
' ~~~ s··un®
~~,
~ mic rosystems

Doing More with SunOS,." :
Beginner's Guide

11----------------------------

Part Number: 800-1710-10
Revision A , of 9 May 1988

A sun®
• microsystems

Doing More with SunOSTM:
Beginner's Guide

Part Number: 800-1710-10
Revision A, of 9 May 1988

Sun Workstation® and Sun Microsystems® are registered trademarks of Sun
Microsystems, Inc.

Sun View™, SunOS™, Sun386i™, and the combination of Sun with a numeric
suffix are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright© 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reseived.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other­
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

Chapter 2 More About Files ... 7

2.1. Filename Substitution ... 7

Single-Character Matching with [and J .. 7

Listing Hidden Files with 1 s - a ... 7

String Matching with { and } ... 8

2.2. Properties of Files .. 8

2.3. Permissions ... 9

File Type.. 9

Owner's Permissions .. 10

Public Permissions ... 11

Permissions of Directories ... 11

2.4. Changing Permissions with chrnod ... 12

2.5. Setting Default Permissions with urnask ... 14

2.6. Ownership

2.7. Modification Time ... ,. , .. ,

2.8. Making Links ... : ;

2.9. Seeing File Types with ls -F ;., ... ;;.:::

2.10. Encrypting Files ... ,.,.,:,.,;., ~··"···:'·- ,. : :::::"

2.11. Searching Through a File with more ,., :·'····':·.-··· ":'"' .. ··<·::::·

2.12. Using pushd, popd and dirs to""' "" .. "-~

-iii-

Contents-Continued

3.1. Redirecting Output, Redirecting Input, and Pipes .. 23

Redirecting Output ... 23

Redirecting Input .. 24

Pipes and Pipelines .. 25

Filters ... 26

Using the tee Command .. 28

Redirecting the Standard Error ... 29

3.2. Escape Character, Quotes, Separation and Continuation

Symlx>ls ... 29

3.3. grep and grep Search Patterns ... 30

Chapter 4 The C Shell ... 35

4.1. Overview .. 35

4.2. Filename Completion.. 36

4.3. History Substitution and Command-Line Editing.. 38

Reviewing Commands ... 38

Repeating Commands .. 39

Command Line Editing ... 40

Selecting Words Within Events ... 41

Modifying Selected Words and Events .. 41

4.4. Amazing Aliases .. 42

Escaping an Alias ... 4 3

4.5. Unaliasing an Alias .. 44

4.6. Variable Substitution ... 44

Storing Lists in C Shell Variables ... 45

Processing Lists with f oreach .. 47

Predefined Variables ... 48

Environment Variables.. 48

4.7. Output Substitution .. 49

4.8. Job Control .. 50

Chapter 5 Processes and Other Users.. 55

5 .1. Processes ... 55

-iv-

Contents - Continued

Tenninating a Process with kill .. 56

Timing Processes .. 5 8

5.2. Running Commands Automatically ... 58

at and batch ... 58

Running Commands Periodically- crontab 59

5.3. Other Users.. 60

Users Currently Logged In .. 61

Changing Identity with su .. 63

5.4. Becoming root, the superuser... 64

Chapter 6 Managing Your Files .. 69

6.1. Locating Files .. 69

Looking Up a Command with whereis and which 69

Looking Up a Command's Description with whatis 70

Looking Up Files with find... 70

Running Commands with find.. 71

Looking at File Types with file... 71

6.2. Looking at Differences Between Files with diff 72

6.3. Monitor Changes with s cc s .. 73

Putting a File Under secs Control (secs create)........................ 73

Which Files are Checked Out? (secs info)... 75

Recovering the Current Version (secs get) ... 75

Checking a File Out (secs edit).. 75

Looking at Current Changes (secs diffs) .. 76

Checking a File In (secs delget) ... 76

Backing Out With No Changes (secs unedit) 76

Looking at the File's History (secs prt) .. 76

Comparing Versions (secs sccsdiff) ... 77

Restoring a Previous Version (secs get -r) 77

Solving Problems with secs .. 78

6.4. Automating Complicated Tasks with make .. 79

Makefiles ... 80

Running make .. 81

-v-

Contents - Continued

Testing Makefiles .. 82

Defining Macros in the Makefile ... 82

Selecting A Target.. 83

6.5. Managing Disk Storage .. 84

Looking at Disk Usage with df ... 84

Directory Usage and du.. 85

6.6. Making a Tape Archive with tar ... 85

Looking at the Contents of a Tape Archive ... 86

Extracting Files From a Tape Archive ... 86

Chapter 7 More About Printing ... 89

7.1. Looking at the Queue with lpq .. 89

7.2. Removing Printer Jobs with lprm .. 89

7.3. Selecting a Printer lpr -P .. 90

7.4. Printing troff Output Files with lpr -t ... 90

7.5. Printing Screen Dumps... 90

7.6. Printing Other Graphics Displays .. 91

Appendix A Glossary ... 95

Appendix B C Shell Scripts ... 103

Pathname Processing Primitives .. 105

Return Codes ... 106

Exit.. 109

Appendix C C Shell Special Characters .. 113

Appendix D Bourne Shell Scripts ... 123

Appendix E Command Summary ... 153

Index... 161

-vi-

Tables

Table 2-1 chmod Command Syntax Diagram .. 13

Table 2-2 Chart of chmod Numeric Arguments.. 13

Table 2-3 Values and Permissions .. 14

Table 2-4 Values and Permissions for New Files .. 15

Table 2-5 ls -F File Type Indicators.. 16

Table 3-1 grep Search Pattern Elements .. 31

Table 5-1 Information Displayed By ps ... 56

Table 5-2 Information Displayed By time .. 58

Table 5-3 Information Contained in I etc/pas swd ... 61

Table D-1 Variables Initialized by the Bourne Shell ... 125

Table D-2 Quoting Mechanisms.. 141

Table D-3 SunOS Signals .. 143

-vii-

Figures

Figure 2-1 The tty Command .. 8

Figure 2-2 The ls -1 Command.. 8

Figure 2-3 Information Displayed By ls -1 ... 9

Figure 2-4 The File Type Field ... 9

Figure 2-5 Owner's Permissions Field ... 10

Figure 2-6 Group Permissions Field .. 1 O

Figure 2-7 The 1 s -1 g Command .. 11

Figure 2-8 The groups Command .. 11

Figure 2-9 Public Permissions Field .. 11

Figure 2-10 Checking Directory Permissions .. 12

Figure 2-11 Using the chmod Command .. 13

Figure 2-12 Giving Open Permissions to Everybody .. 14

Figure 2-13 An Unlikely Permission Setting.. 14

Figure 2-14 Making a File Secret 17

Figure 2-15 Decoding a file .. 17

Figure 2-16 Using vi on and Encrypted File 17

Figure 2-17 Using more 18

Figure 2-18 pushd, popd, and dirs 19

Figure 2-19 di rs with Full Pathnames , .. ,., , .. , , , , .. ,.,

Figure 3-1 Redirecting Output ... , ,,

Figure 3-2 The source Command .. , :.: "::"':"

Figure 3-3 Appending to an Existing File ;

Figure 3-4 Redirecting Standard Input .. .

-ix-

24

25

Figures- Continued

Figure 3-5 Another Way to Display a File... 25

Figure 3-6 Using Pipes .. 26

Figure 3-7 grep without sed .. 27

Figure 3-8 grep with sed ... 27

Figure 3-9 Creating a Rhyming Dictionary ... 28

Figure 3-10 Using tee to Get Dual Output.. 28

Figure 3-11 Using tee to Append Output .. 28

Figure 3-12 Redirecting Standard Error .. 29

Figure 3-13 Double Quotes as Escape Characters ... 29

Figure 3-14 Multiple Commands on a Single Line ... 30

Figure 3-15 Commands on Two Lines... 30

Figure 3-16 The . Metacharacter .. 30

Figure 3-17 The ... Metacharacter .. 31

Figure 3-18 The $ Metacharacter .. 31

Figure 3-19 Putting it All Together .. 32

Figure 4-1 Where the C Shell Sits .. 35

Figure 4-2 Using Filename Completion: I.. 37

Figure 4-3 Using Filename Completion: II.. 37

Figure 4-4 Using Filename Completion: III .. 37

Figure 4-5 Using Filename Completion: IV.. 37

Figure 4-6 Listing Matching Files .. 38

Figure 4-7 A Completed Line.. 38

Figure 4-8 The history Command... 38

Figure 4-9 The ! Metacharacter ... 39

Figure 4-10 Backing Up ... 39

Figure 4-11 Repeating a Matching Command (An Error) 39

Figure 4-12 Repeating a Matching Command (Correctly)..................................... 40

Figure 4-13 Matching Embedded Strings in Commands ... 40

Figure 4-14 Aliases.. 42

Figure 4-15 Event Designators in Aliases .. 42

Figure 4-16 Making Multi-Command Aliases... 42

Figure 4-17 Seeing Current Aliases ... 43

-x-

Figures- Continued

Figure 4-18 Escaping an Alias .. 4 3

Figure 4-19 Escaping Aliases on Builtins .. 43

Figure 4-20 Unaliasing .. 44

Figure 4-21 Setting Variable Values ... 44

Figure 4-22 Displaying a Variable's Contents... 44

Figure 4-23 Directories as Variables ... 45

Figure 4-24 Multiple-Word Variables .. 45

Figure 4-25 Variables in Commands... 45

Figure 4-26 Specifying a Range for Variables... 46

Figure 4-27 Metacharacters in Variables .. 46

Figure 4-28 Using foreach .. 47

Figure 4-29 Listing Files with f oreach .. 47

Figure 4-30 Listing Directories with f oreach ... 48

Figure 4-31 Predefined Variables.. 48

Figure 4-32 Exporting Variable Values ... 49

Figure 4-33 Output Substitution .. 50

Figure 4-34 A Background Job ... 50

Figure 4-35 Moving a Job from the Background... 51

Figure 4-36 Stopping a Job ... 51

Figure 4-37 Restarting Jobs in the Background.. 51

Figure 4-38 Killing Jobs ... 51

Figure 5-1 ps .. 55

Figure 5-2 Terminating a Process ... 57

Figure 5-3 slay ... 57

Figure 5-4 Using slay... 57

Figure 5-5 The time Command ... 58

Figure 5-6 Creating an at File ... 58

Figure 5-7 Using an at File ... 59

Figure 5-8 Some Typical crontab Entries .. 60

Figure 5-9 crontab ... 60

Figure 5-10 The /etc/passwd File.. 61

Figure 5-11 who .. 62

-xi-

Figures - Continued

Figure 5-12 w ... 62

Figure 5-13 ps -au .. 63

Figure 5-14 An Alien File.. 63

Figure 5-15 Using su ... 63

Figure 5-16 whoami .. 64

Figure 5-17 Becoming root... 65

Figure 6-1 whereis ... 69

Figure 6-2 which .. 69

Figure 6-3 what is... 70

Figure 6-4 find ... 70

Figure 6-5 The -o Option to find ... 71

Figure 6-6 Reversing a find Option... 71

Figure 6-7 What Kind of File Am I? file ... 72

Figure 6-8 Two Sample Files and di ff Output .. 73

Figure 6-9 Putting Files under secs .. 74

Figure 6-10 secs create ... 74

Figure 6-11 Removing Backup Originals... 74

Figure 6-12 Checking a File Out ... 75

Figure 6-13 Checking a File In ... 76

Figure 6-14 secs prt ... 77

Figure 6-15 Flow of Events with secs-Controlled Files 78

Figure 6-16 Sample Makefile to Put Files under secs ... 80

Figure 6-17 Running make .. 81

Figure 6-18 The make -n Option.. 82

Figure 6-19 Sample Makefile for Printing a Document ... 82

Figure 6-20 A Makefile with Independent Procedures ... 83

Figure 6-21 df ... 84

Figure 6-22 du ... 85

Figure 7-1 The lpq Command .. 89

Figure 7-2 Removing Files with lprm .. 90

Figure 7-3 Selecting a Printer .. 90

-xii-

Figures - Continued

Figure B-1 Starting a C Shell Script .. 103

Figure B-2 The $? Notation .. 104

Figure B-3 The $#Notation .. 104

Figure B-4 A Sample C Shell Script ... 106

- xiii-

Prerequisite Documents

Companion Documents

Pref ace

This manual describes some of the more sophisticated features Sun OS provides,
and how to use them to simplify complicated tasks.

Chapter 1 is a brief introduction.

Chapter 2 provides details about files, their attributes, filename substitution, and
searching through text files.

Chapter 3 describes how to use commands as building blocks for complicated
tasks.

Chapter 4 provides an overview of the C shell and its timesaving features.

Chapter 5 describes processes and their behind-the-scenes role in providing bal­
anced service to concurrent tasks.

Chapter 6 introduces tools for sophisticated file management.

Chapter 7 describes the printer queue, how to select a printer, printing preformat­
ted files, and printing graphics from the workstation screen.

In addition to a glossary, command summary, and quick reference, there are
appendices that describe details about the C shell, such as special characters and
scripts.

Getting Started with SunOS: Beginner's Guide
Mail and Messages: Beginner's Guide
Using the Network: Beginner's Guide
Setting Up Your SunOS Environment: Beginner's Guide

If you are using Sun View, the Sun windows C"''"1t"'m

manual first:

Sun View 1 Beginner's Guide

Self-Help with Problems: Beginner's Guide
SunOS Reference Manual

For Sun386i users, this manual augments the material in the Sun386i Advanced
Skills manual.

-xv-

1
Introduction

Introduction ... 3

You are here. ~

Why and How

1

Introduction

SunOS provides you with features that are powerful, flexible, and adaptable.

This means that there is quite a lot that the system can do for you, and there is

quite a lot to learn. The power and richness of the commands make for limitless

possibilities. In fact, one of the main advantages of the SunOS system design is

its open-ended nature.

Everyone goes through several stages when learning to use SunOS effectively,

including:

a) learning the basics

b) learning enough to get curious

c) experimenting with the various features and commands

d) educated experimentation and writing simple shell scripts

e) digging deeper into the system and its internal workings.

This manual is intended to help satisfy your curiosity with an overview of

features that give you major productivity gains.

Previous manuals in this series, such as Getting Started with SunOS: Beginner's

Guide Setting Up Your SunOS Environment: Beginner's Guide and Mail and

Messages: Beginner's Guide gave you a basic familiarity with Sun OS, but may

not have answered questions about why the system works the way it does, or how

to get more out of it. Hopefully, this one does.

Companion manuals, such as Using the Network: Beginner's Guide will tell you

about more specialized topics.

SunOS is based on the UNIX operating system developed at Bell Laboratories; it

is an enhanced version, incorporating many of the additions developed at the

University of California, Berkeley.

From its origins as a simple research project, the UNIX system evolved into a

powerful, flexible and popular computer operating system, and a major influence

in the industry. It was designed to accommodate this evolution by providing a

simple model for storing and transferring information, called a.file, a collection

of simple commands to operate on files, and a straightforward method for com­

bining commands to perform more complicated tasks. Because the UNIX system

grew out of a computer science research environment, the terminology and

3 Revision A of 9 May 1988

4 Doing More with SunOS

Try it Yourself!

Play it Safe!

Hang in There!

command names are oriented toward professionals in that field, as are many of
the tools.

Commands are terse to save keystrokes. They are usually suggestive of the sim­
ple function they perfonn. Unless you are already familiar with those sorts of
functions, the names may seem cryptic. The more you learn, the more sensible
things will begin to seem. So, rather than being put off by it, get familiar with
the jargon! You'll leam a lot more about computers than just how to use one.

When learning more about SunOS, there is no substitute for experimenting on
your own. To really grasp what a command does, you simply have to try it. So,
as you go through this, and the remaining beginner's guides in this series, try out
the examples. Then try out variations of your own design.

Whenever you experiment with SunOS it is important to set up a safe place in
which to do so. Never experiment with an unfamiliar command on valuable
data. Instead, make a copy and place it in a directory where the data is known to
be dispensable. Always run your tests in this directory to avoid the risk of cor­
rupting previous work. Once you have tested the command and have seen what
it does, only then should you apply it to files that you care about.

Make a directory, test, in your home directory, as follows:

Consider everything in this directory to be expendable, and never place anything
there that you intend to keep.

Because the UNIX system was developed to support programming research, many
of Sun OS's standard features are oriented toward the programming professional.
This is one reason why the system is so powerful, and also why some features
seem a bit abstract at first. In most cases, their power and flexibility make this an
easy thing to get used to.

SunOS is designed to be general in scope. It can support a wide variety of appli­
cations, and work well within a broad range of situations. The information in
this manual should help you to take this general and flexible, but somewhat
abstract system, and use it to meet your specific needs and working style.

Revision A of 9 May 1988

2
More About Files

More About Files .. 7

2.1. Filename Substitution ... 7

Single-Character Matching with [and J .. 7

Listing Hidden Files with ls -a... 7

String Matching with { and } ... 8

2.2. Properties of Files .. 8

2.3. Permissions ... 9

File Type.. 9

Owner's Permissions .. 10

Public Permissions ... 11

Permissions of Directories 11

2.4. Changing Permissions with chmod ... 12

2.5. Setting Default Permissions with umask ... 14

2.6. Ownership .. 15

2.7. Modification Time .. 15

2.8. Making Links ... 16

2.9. Seeing File Types with ls -F ... 16

2.10. Encrypting Files... 17

2.11. Searching Through a File with more ... 17

2.12. Using pushd, popd and dirs to Change Directories................... 18

2.1. Filename Substitution

Single-Character Matching
with [and J

Listing Hidden Files with 1 s

-a

2

More About Files

As you learned in Getting Started with SunOS: Beginner's Guide filename wild

cards can save you time and keystrokes. The system replaces, or substitutes

characters from filenames for the wild card symbols.

In addition to the wild cards, *, and ? , Sun OS provides more sophisticated ways

of specifying a set of files on the command line.

You can use brackets instead of a?, to match a single character. Within the

brackets you can specify a list of characters to match against. For instance,

[ab]*

matches all filenames that begin with a lower-case a orb. You can also specify

a range of characters to match against. Thus,

[A-Z]*

matches all filenames that begin with an upper-case alphabetical character.

Filenames that begin with a dot (.) are a special case. They aren't matched

unless you specify a dot in the first character. However, the name . stands for

the current directory, and . . stands for the parent directory. So, although the

command

ls .*

does list hidden files, it also lists all the other files in the directory (matching

. I*), and the parent directory (matching .. I *).1

To list hidden files along with the others, use the command:

ls -a

1 To make matters worse, it also lists the contents of any directory, in the current directory, which starts with

a dot.

7 Revision A of 9 May 1988

8 Doing More with SunOS

String MatchiQg with { and
}

2.2. Properties of Files

Figure 2-1

Figure 2-2

You can use braces instead of *, to match specific character strings of any
length. Within the braces, strings are separated by commas. For instance,

{uranus,sygnus,x}*

matches any filenames beginning with uranus, sygnus or x.

Within braces, *, and ? , are legal. You can nest braces within strings for
interesting results. For instance, { { ura, syg} nus, x} *is another way to
match filenames beginning with uranus, sygnus or x.

As your skill with the system grows, you will encounter situations in which a
prior understanding of files and their properties, especially file ownership and
permissions, will be of immense help.

You can think of a file as a named location from which infonnation can be
obtained or to which data can be sent. SunOS uses the notion of a file as a gen­
eral model for all sources (input) or destinations (output) of data operated on by
commands. The system treats tenninals, printers, tape drives, and other such
devices for putting infonnation into, or getting infonnation out of the system, as
if they too were files.

Commands and programs don't need to know whether the data they use comes
from (or goes to) a tenninal, disk file, printer (or even another program). Just
like any other file, each device has a pathname. The tty command tells you the
pathname of your tenninal or window.

The tty Command

In addition to having a name, and contents, a file under SunOS has other impor­
tant properties that you can examine with options to 1 s. (Refer to 1 s in the
SunOS Reference Manual for a complete list of these options.) The -1 options
shows a more detailed (long) list of the files:

The ls -1 Command

The top line tells you how many blocks (units of space on the disk), are occupied
by files in the directory. The remaining lines are composed of columns that

Revision A of 9 May 1988

Figure 2-3

permissions

-rw-rw-r--

2.3. Permissions

Like devices, programs are treated
as files. When you enter a com­
mand, SunOS looks up a file by that
name among the directories listed
in the PATH environment variable,
and performs the instructions con­
tained in that file.

File Type
Figure 2-4

Chapter 2 - More About Files 9

describe specific properties of each file:

Information Displayed By 1 s -1

links
owner

size

1 sam 77293

modification time

Jun 27 15:36

filename

csh.1

The leftmost column shows the permissions for each file. Pennissions are

explained in detail below. The second column shows the number of links, to it.

Links are also described later on.

The third column shows each file's owner. Nonnally, the owner of a file is the

person who created it, although the operator of your system can change this. Not

shown here is the file's group ownership.

The fourth column shows the file's size in bytes. The size of the file often

changes when you edit it.

The next three columns show the date and time when the file was last modified

(modification time). This also changes whenever you edit the file. If a file hasn't

been modified in six months, they display the year and date instead.

The rightmost column shows the filename.

Every file has a set of access modes or permissions that determine which users

have access to read, write, or execute its contents.

The permissions column consists often characters as shown in Figure 2-3, above.

The leftmost character shows the type of file (regular, directory or device). The

next triplet of characters displays access modes for the owner. The second triplet

shows those for the group, and the last, those for the public.

The File Type Field

[l Type : Owner's Group Public

IOI I I

Revision A of 9 May 1988

10 Doing More with Sun OS

Owner's Permissions
Figure 2-5

Figure 2-6

A d in the leftmost character indicates that the file is a directory. A - indicates a
standard file. A b, or c indicates that the file is a device. An s, indicates that the
file is a socket for communication between two running programs. An 1 indi­
cates that the filename is a symbolic link that refers to the name of another file.

Owner's Permissions Field

[-~~-1~_0_0_0_1_r_1~r-~1~~--]
In the listing of Figure 2-3, sam is the owner of the file c sh . 1. An r as the first
character in this triplet indicates that the owner has permission to read the file. A
- indicates that the permission does not apply. Aw as the second character indi­
cates that the owner can write on (modify, add to, or remove) the file. An x as
the third character indicates that the owner can execute the file (use it as if it were
a command2). As Figure 2-3 shows, sam can read and write on, but not execute
the file csh. 1.

You can change the access privileges for a file with the command chmod
(described further on). However, only a system administrator can change the
file's ownership (with the chown command.)

Group Permissions Field

[________ 1~_~l_0~_a·s_1_b_D_1o_l_i_1 __________]

To see which group the file belongs to, use the -lg option of ls.

2 Of course, unless the file is either a program or list of shell commands, executing it doesn't make any
sense.

~\sun ~~ microsystems Revision A of 9 May 1988

Figure 2-7

Figure 2-8

Public Permissions
Figure 2-9

Permissions of Directories

Chapter 2 - More About Files 11

The ls -lg Command

In this case, all files belong to the group wheel. The files csh. 1 through

csh. spc can be read and written on by any member of the group. The file

script can be executed and read, but not written on.

You can change the group ownership of a file or directory by using chgrp; you

must be a member of the group to which you're reassigning it (and you have to

own the file). For more infonnation on chgrp, see the SunOS Reference

Manual or type man chgrp.

How do you know which group or groups you belong to? Simple-with the

groups command, as follows:

The groups Command

This tells you that you belong to the groups wheel and staff.

Public Permissions Field

[______ 1fy_~l_0~_~·s ___ IJ __ b_D_lo_1 __ ~~]
All files in the above list can be read by anyone. The x in the rightmost character

for script indicates that anyone can use it as a command.

With directories, the access modes have a slightly different meaning. To check

the pennissions of the current directory, use the-ld option of ls.

Revision A of 9 May 1988

12 Doing More with SunOS

Figure 2-10

2.4. Changing Permissions
with chmod

Checking Directory Permissions

An r indicates that the directory can be read. You must have read access to a
directory before you can list its contents.

A w indicates that files can be added or removed from the directory.

An x indicates that the directory can be searched (that you can list its contents).
The directory must have search permissions turned on for you to cd into it, or for
you to add or delete files, or even to list its contents. (This is because if the sys­
tem can't search the directory's contents, it can't know what's there to retrieve,
or overwrite, etc.)

You can remove any file in a directory for which you have write permission,
regardless of who owns that file.3 If you do not have write permission for the file
itself, the system asks you for confirmation before removing it.

In the directory shown above, the owner (sam) can read, search, and add or
delete files, as can the group. The public can read and search, but cannot add or
delete files.

From time to time you may want to change the access modes of files that you
own, either to restrict or to allow access to it. In most cases, restricting access to
a file is sufficient to protect it from tampering or unwarranted reading. Even so,
you should be aware that the operator of your system has unlimited access to any
file. Because SunOS evolved in a relatively friendly research-and-development
setting, the file system provides adequate, but not unbreakable, security between
users.4

You can use an argument to chmod to specify the access mode for each class of
user (owner, group, or public), or to indicate how the mode is to be changed. An
argument is composed of one or more classes, an operation, and one or more per­
missions from the chart below:

3 The exception to this is for directories with the "sticky bit" set; then only the superuser or the file's owner
can remove it.

4 No computer system provides unbreakable security between authorized users. Also note that the system
administrator can read any file on the system. H you want to protect your files from unauthorized reading, you
can encrypt them. See Section 2.10 below, for details.

•\sun ~" microsystems Revision A of 9 May 1988

Table 2-1

Figure 2-11

Table 2-2

Chapter 2 - More About Files 13

chmod Command Syntax Diagram

chmod [class(es)] operationpermission(s) [, ...] filename ...

where class(es), operation and permission(s) can be selected from:

class operation

u user (owner) = set pennission

g group - remove access

0 others (public) + give access

a all

For example, the command

Using the chmod Command

a) removes read pennission for the public (others),

b) adds execute pennission for all three classes, and

c) sets access to read and write for the group

for the file csh. 1.

If you omit class, the new setting is applied to all three.

permission

r read
w write
x execute

chmod can also use a digit from zero to seven to represent each triplet in the per­

missions column, as f.ollows:

chmod [o[g]]p

where o is a digit representing the owner's permissions, g is a digit representing

the group permissions, and p is a digit representing permissions for the public.

The value of each digit is the sum of the permission values as in the following

chart.

Chart of chmod Numeric Arguments

value permission explanation

4 r read
2 w write
1 x execute

To figure each digit, add up the values corresponding to each pennission setting

in the triplet. For read, write and execute pennission, the value is 7. All values,

and the pennissions they correspond to, are shown below:

Revision A of 9 May 1988

14 Doing More with SunOS

Table 2-3

Figure 2-12

Figure 2-13

2.5. Setting Default
Permissions with
umask

Values and Permissions

value permissions explanation
7 rwx read, write, and execute
6 rw- read and write
5 r-x read and execute
4 r-- read only
3 -wx write and execute
2 -w- write only
1 --x execute only
0 --- no access whatsoever

The command

Giving Open Permissions to Everybody

gives read, write and execute access to cs h . 1 to the owner, the group, and the
public.

On the other hand, the command

An Unlikely Permission Setting

gives the public read and write access, and denies all access to the owner and the
group. So, although they aren't required, ifs a good idea always to use all three
digits.5

When you create a new file or directory, the system automatically assigns per­
missions. The default setting for new files is

-rw-r--r--

or 6 4 4. For new directories, the default is

drwxr-xr-x

or 7 55.

You can change the default permission setting for the current session with the
urnask command:

5 There is also a fourth digit, one that is used to allow certain programs to assume another user ID or group
ID while running, or to to remain in memory even when stopped. Unless you are writing programs like that,
you will have little occasion to use the fourth digit.

•~sun ~'fl: microsystems Revision A of 9 May 1988

You can change the permissions for
all sessions by placing a umask

command in your . cshrc file.

Table 2-4

2.6. Ownership

2.7. Modification Time

Chapter 2 - More About Files 15

umask [o[g]]p

o, g and pare digits corresponding to the owner's, group, and public pennission

masks, respectively.

Like chmod, umask uses three digits to determine the pennissions. Unlike

chmod, it computes the pennissions according to the following table:

Values and Permissions for New Files

Files Directories

value permissions value permissions

0 rw- 0 rwx

1 rw- 1 rw-

2 r-- 2 r-x

3 r-- 3 r--

4 -w- 4 -wx

5 -w- 5 -w-

6 --- 6 --x

7 --- 7 ---

umas k does not activate execute pennission for files.

So, the command

umask 2

or

umask 002

yields pennissions of -rw-rw-r-- for files, and drwxrwxr-x for directories.

The command

umask 22

yields pennissions of -rw-r--r-- for files and drwxr-xr-x for directories.

Only the owner' of a file can change its permissions. To find out how to change

the ownership or group ownership of files, refer to Using the Network:

Beginner's Guide.

The modification time indicates the most recent time that the file has been edited,

or appended to. You can change a file's modification time, without affecting its

contents, with the touch command.

touch filename

Touch does not alter the contents of.filename, but rather, resets the modification

time to the current date and time. If the file does not exist already, touch

6 or the superuser, described in Section 5.4.

•\sun ~ microsystems

Revision A of 9 May 1988

16 Doing More with SunOS

2.8. Making Links

2.9. Seeing File Types with
ls -F

Table 2-5

creates it. touch is useful when you want to create empty files (say, for a test)
or when you want to update a file when using Make.

A link is a name associated with a file. SunOS allows several links to a file at
any one time, so the same file can have more than one name. This is useful when
you want to get at a file quickly from within different directories. Moreover, you
can keep a link to a file in a restricted directory, thus allowing people access to
the file without giving them access to the forbidden directory. When you create a
file, the system makes the first link, or filename, for you. To make an additional
link, use the ln command.

ln oldname newname

If you attempt to make a link to a file in a directory that is on a different disk or
disk partition than that of oldname, you will get an error message of the form:

newname: Cross-device link

In this case, you can use the -s option of ln to make a symbolic link to the file.
ln -s o/dname newname

A symbolic link is an entry in the directory that points to the name of another
file, rather than the file itself. A symbolic link can be made across devices, and
can be made even when oldname does not exist. Because a symbolic link refers
to another file's name, rather than the file itself, it may be to your advantage to
use a symbolic link instead of a regular link when you want to specify an alter­
nate pathname to the same file.

Both regular (hard) and symbolic links allow you to use newname instead of old­
name to gain permitted access to a file. But, neither a regular (hard) link nor a
symbolic link changes the ownership, group, or permissions of a file. So,
although you can make a link to a file that you can't read, you still won't be able
to read its contents, whichever name you use.

The -F option of ls appends a character to the end of each filename to indicate
what type of file it is, as follows:

1 s - F File Type Indicators

tag type of File
(none) normal file

I directory

* execute access allowed
@ symbolic link

You may find it useful to place an alias in your . cs hr c so that 1 s is replaced
with ls -F:

alias ls 'ls -F'

•\sun ~~ microsystems Revision A of 9 May 1988

Chapter 2 - More About Files 17

2.10. Encrypting Files You can use crypt 7 to encode the contents of confidential files. To encode a

file named secret. plans, use the following command:

Figure 2-14 Making a File Secret

Remember to remove the unen­
crypted version, or your secrets
may not keep!

Figure 2-15

Figure 2-16

2.11. Searching Through a
File with more

The angle brackets are required. The > should be familiar to you. The < is

explained in Chapter 3.

crypt then asks you for an encryption key. A key is some memorable, but

unlikely, word, the longer and odder the better. This key is necessary for crypt

to do its work, and like your password, you must remember it if you want to read

your file once again.

Key:

You can also use crypt to decode a file:

Decoding a file

decoy. plans will contain the text you started out with.

If you want to look at the decoded contents, a command of the form:

crypt < cryptfile I more

will, after asking for the key, display them on the screen.

You can edit the contents of an encrypted file using the -x option of vi.

Using vi on and Encrypted File

Whenever you issue thew, or write, command, vi runs the file through crypt.

There are times when you need to look up something in a long file, but gr ep

won't do because you need to see a whole paragraph or screenfull of information,

rather than just one line. If the file is very long, stepping through it a screenfull

at a time with more may take too much time. So, more allows you to search for

a string within a file. Instead of typing a (SPACE I to see the next page, or a

(Return J to see the next line, you can type in a slash(/), followed by a string, and

more will skip ahead to a screenfull containing string.

7 SunOS encryption facilities are only available to customers within the United States of America.

Revision A of 9 May 1988

18 Doing More with SunOS

Figure 2-17

2.12. Using pushd, popd
and di rs to Change
Directories

Using more

To skip to the next occurrence of that same string, use n.

When using more to look at several files, the command : n will skip to the next
file.

Sometimes, when you are traveling through a variety of directories, you may find
that you want to backtrack. Of course, cd, doesn't remember where you've
been. So, unless you do, backtracking can be painful. pushd, popd and dirs
allow you to stack up a list of directories to revisit. 8 When you are in a directory
you'll want to return to, type

pushd directory

where directory is the name of the directory you want to switch to. (Unlike cd,
you must always specify a destination directory, even when changing to your
home directory.) pushd changes to the new directory, while keeping track of
the directory you changed from and to.

If you want to jump back to a previous directory, type
po pd

to work your way back.

If it's been a while since you last did a pushd or popd, and you want to see the
list of directories you've stacked up, the

di rs

command will show it to you. (Note that pushd and popd will also display the
directory stack, with the current directory at the left.)

8 These commands only work with the C shell. Refer to Chapter 4, The C Shell, for more information.

Revision A of 9 May 1988

Figure 2-18

Figure 2-19

Chapter 2 - More About Files 19

pushd, popd, and dirs

di rs, with the -1 option, displays the full pathnames of stacked directories:

di rs with Full Pathnames

Revision A of 9 May 1988

3
More About Commands

More About Commands .. 23

3.1. Redirecting Output, Redirecting Input, and Pipes .. 23

Redirecting Output... 23

Redirecting Input .. 24

Pipes and Pipelines .. 25

Filters... 26

Using the tee Command .. 28

Redirecting the Standard Error ... 29

3.2. Escape Character, Quotes, Separation and Continuation

Syml:x>ls ... 29

3.3. grep and grep Search Patterns ... 30

3.1. Redirecting Output,
Redirecting Input, and
Pipes

Redirecting Output

Figure 3-1

3

More About Commands

Commands perfonn actions, typically on data contained in a file. Unless you

indicate otherwise, they nonnally display their results on the tenninal screen.

The tenninal is known as the command's standard output.

Because Sun OS commands treat files and devices in a uniform way, you can

direct the output of a command to any file or device that you choose. You can

also use the output of one command as direct input to another, using a special

connection symbol called a pipe.

Unless you indicate otherwise, commands nonnally operate on data as you type

it in from the keyboard; so the tenninal is known as the command's standard

input.

As you learned in Getting Started with SunOS: Beginner's Guide, a right angle­

bracket (>)9 on the command line indicates that the next word is the name of a

file or device in which to place, or redirect the output of a command. For

instance, the command line:

Redirecting Output

places the output of the ls -la command (a detailed list of all files, including

hidden files) in a file named list.

CAUTION If a file by that name already exists, any previous contents are deleted before

the command is performed.

So, the command

cat will.be.empty >will.be.empty

removes all existing contents from the file will. be. empty before the cat

command is executed.

To avoid writing over existing files, add a line with the command

9 may be pronounced as "into"

23 Revision A of 9 May 1988

24 Doing More with SunOS

Figure 3-2

Figure 3-3

Redirecting Input

set noclobber

to your . cshrc file if one isn't there already.IO Then type in the command: 11

The source Command

When you are certain that you want to overwrite the previous contents of a file,
using a > ! overrides this file protection.

You can append, or 'add to the end of' a file using a double-right-angle-bracket
(>>).12 Thus, the command13

Appending to an Existing File

adds a second version of output from 1 s (containing just the names of nonhidden
files) onto the end of list.

Just as you can redirect the output of a command, you can also specify a file (or
device) from which that command obtains its input.

You can use a left angle-bracket (<)14 to redirect the standard input of a com­
mand. For instance, the following command prints the contents of the file 1 is t.

10 Refer to Setting Up Your SunOS Environment: Beginner's Guide for more information about this file.
11 If using windows, type this source c001mand in each shelltool or cmdtool window, so that the

change will take effect in the C shell running within each.

12 may be pronounced as "onto"
13 With noclobber set, a file must already exist before the standard output can be appended to it. Using a

> > ! overrides this.
14 may be pronounced as "from"

Revision A of 9 May 1988

Figure 3-4

Figure 3-5

Pipes and Pipelines

A less efficient way to accomplish
would be to use a temporary file:

1 s -1 >filename
grep 1 rwx <filename
rm filename

Chapter 3 - More About Commands 25

Redirecting Standard Input

Most commands allow the input file to be specified as an argument. You could,

for example, produce the same display with the command:

Another Way to Display a File

However, other commands, such as crypt, only read from the standard input,

and thus require use of <,the input redirection symbol.

J

The output of one command can be fed in directly as input to another. A set of

commands strung together in this way is called a pipeline, and the symbol for

this input/output (1/0) connection is a vertical bar (I), 15 called a pipe. Pipes and

pipelines have a wide variety of uses.

For example, suppose you wanted only to list symbolic links in the directory.

You can combine ls and grep to get the result you want. The pipeline

ls -1 I grep lrwx

will do the trick. But it will also list any files with the unlikely combination lrwx

in their filenames, so, just to be sure, you might want to try this pipeline:

ls -F I grep @

(The ls -F command shows links with the @symbol.)

15 may be pronounced as "through"

Revision A of 9 May 1988

26 Doing More with SunOS

Figure 3-6

Filters

ls is not a filter, because it doesn't
accept data from the standard input.
Neither is date. As you might
expect, the command ls I date
produces only the date, since date
ignores its standard input. What
does date I ls produce?

There is no filename following grep because the pipe symbol indicates that
gr ep is to search through its standard input, which in this case is the output of
ls.

You can connect several commands to make longer pipelines. For instance, the
command line:

Using Pipes

uses we (word count) to display the number oflines, words, and characters,
respectively, in the list of symbolic links culled from the output of ls by grep.
Since we received only one line from grep, there was only one symbolic link in
the directory.

The ability to 'cook up' intricate commands on the spot is a very special feature
of the SunOS system, and one that becomes increasingly useful as you continue
to experiment and learn.

Commands like grep are called.filters. They accept text as input, transfonn it in
a straightforward way, and produce text as output. Although often used as com­
mands in their own right, filters are especially useful in pipelines.

more is another type of filter. It transfonns the data by breaking it up into
screen-sized chunks. Some other interesting filters are:

head -n

tail -n

tail +n

displays the first n lines of a file. With no -n argument, it
displays the first ten lines.

displays the last n lines. With no -n argument, it displays the
last ten.

skips to line n and displays that line through the end of the file.

more +/pattern

cat -v

sort

sort -n

f mt

like tail, this command begins printing two lines before the
first match for pattern, which can be either a string or a grep
search pattern (described below under grep and grep Search
Patterns).

translates nonprinting characters into strings of regular charac­
ters of the fonn "c (for control characters), or M-c (for 8-bit char­
acters).

display the line in alphanumeric order, or according to an order
you specify. Refer to sort in the SunOS Reference Manual for
more infonnation.

sort in numerical order.

does rudimentary fonnatting of text.

Revision A of 9 May 1988

The command

look string

looks up words (in the system dic­
tionary) whose leftmost characters
match string. The command

look a

will display all words starting with a.
To further restrict the search, add
more characters.

Figure 3-7

Figure 3-8

Example of Filters in Action

rev

pr -t -n

spell

sed

Chapter 3 - More About Commands 27

reverses the order of characters within each line.

breaks up the output into n columns. The -t option suppresses a

heading that would otherwise appear.

produces a list of possibly-misspelled words.

perfonns simple edits on a line-by-line basis. For instance, the

alias:

alias grep 'grep \!* I sed "s/:/: /"'

Improves the appearance of grep output by substituting a

"colon-plus-three-spaces" for the first "colon" on a line (if

any). Compare:

grep without sed

with:

grep with sed

Or you can use a I Tab I rather than three spaces for better align­

ment. Refer to Editing Text Files for more on sed.

One clever trick is to create a rhyming dictionary of words using filters and the

system dictionary:

Revision A of 9 May 1988

28 Doing More with SunOS

Figure 3-9

Using the tee Command

Figure 3-10

Figure 3-11

Creating a Rhyming Dictionary

As noted above, rev reverses the character order of each line. Since each word
appears on a line by itself in the system dictionary, rev reverses the order of
characters in each word. sort then sorts the words in order of (what was) their
last character. A second pass through rev reverses the characters in each word a
second time so that they read correctly, and you have the makings of a rhyming
dictionary! Piping this through pr and more, yields a more readable display.

Suppose that you want to send duplicate output both to the tenninal screen, and
to a file for future reference. When placed in a pipeline, the tee command lets
you direct output to more than one destination. For example, the pipeline

Using tee to Get Dual Output

With the -a option, tee appends the data onto named files that already exist.
So the command:

Using tee to Append Output

•\sun ~ microsystems Revision A of 9 May 1988

Redirecting the Standard
Error

Chapter 3 - More About Commands 29

When a command performs without problems, it produces results on its standard

output. When that command encounters a problem, however, it uses a different

channel to send error messages, or diagnostic output, to the terminal. This

second channel, called the standard error, can also be redirected.

You can redirect the standard error to the same destination as the standard output

by appending an ampersand(&) to the output redirection symbol.

>& sends both standard and diagnostic output to a destination file. 16 >>&

appends the output to the file. I & includes both types of output as input to the

next command in the pipeline.

If you want a command to perform silently, that is, to display no output of either

kind, you can redirect its output to I de v In u 11, the system ''wastebasket.''

command >& /dev/null

To separate the standard error from the standard output, use a command line of

the form: 17

(command > out.file> >& errorfile

When you want to force output to appear on the terminal, you can redirect it to

I dev It t y, (a synonym for) the name of the terminal.

command >& /dev/tty

So, the command

Figure 3-12 Redirecting Standard Error

3.2. Escape Character,
Quotes, Separation
and Continuation
Symbols

throws away any formatted output and displays only the error messages produced

by nroff (if any). This construction can save you time when testing long­

running commands.

To indicate that a special character or symbol is to be taken as literal text, pre­

cede it with a backslash(\). By prepending the backslash, you escape the spe­

cial meaning of the symbol.

You can use double quotes(") to surround text that you want to be interpreted as

one word. For example, if you want to use grep to search all files for the phrase

roger, good buddy, you would type

Figure 3-13 Double Quotes as Escape Characters

16 The Bourne shell uses the symbols: 2 > & 1 to accomplish this.

17 In the Bourne shell:

command > outfile 2 > e"orftle

~\sun ~ microsystems

J

Revision A of 9 May 1988

30 Doing More with SunOS

Single quotes (') also group multi-word phrases into single units. Single quotes
also make sure that certain characters, such as $,are interpreted literally. (The
history metacharacter, ! is always interpreted as such, unless you escape it with
a backslash.) In any case, it is a good idea to escape characters such as & , ! , $,
? , . , ; , and \ when you want them taken as ordinary typographical characters.

To place more than one command on a single command line, separate them with
a semicolon (;). For instance, this command changes you to your home direc­
tory and then lists its contents:

Figure 3-14 Multiple Commands on a Single Line

Figure 3-15

3.3. grep and grep
Search Patterns

Figure 3-16

To continue a command onto the next line, use a backslash to escape the (Return)
key.

Commands on Two Lines

produces the rhyming dictionary described above. The tenninal displays the car­
riage return, but the system ignores it.

You can use grep to search for patterns much like those you are familiar with
from Filename Substitution.

Although the action is similar to that of filename substitution, the way you
specify search patterns is different. Because they search through lines of text,
grep search patterns, or regular expressions18 cover a broader range of text pat­
terns than those for filename substitution, and they have a different syntax.19

Some characters with special meaning to grep also have special meaning to the
system and need to be quoted or escaped. So, whenever you use a grep regular
expression on the command line, surround it with quotes, or escape such charac­
ters as & , ! , . , *, $, ? , and especially \, with a backslash.

Within a regular expression, dot (.) matches any single character (like ? in
filename substitution). So the command

The . M etacharacter

matches all lines in which b is preceded by a character. In effect, this matches
all lines containing b, except when bis the first character on the line.

18 The name grep is derived from theed search and print command: g /regular-expression Ip
19 Although not a formal definition, you can think of the syntax of a command or argument as a rule for

typing it in correctly.

Revision A of 9 May 1988

Figure 3-17

Figure 3-18

table 3-1

Chapter 3 - More About Commands 31

A caret ("') anchors the pattern to the beginning of the line. So the command

The "' Metacharacter

J
matches any line starting with b. A dollar-sign($) anchors the pattern to the end

of the line. The command

The $ M etacharacter

(__ v __ e __ n_u..._.s_ ••••• ~ ' g __ r __ e--Hp_)_<_, __ ~b $--·····----'--• 1----i--st_·..........._ ____________________ ~-------------------------J
matches any line in which bis the only character.

Bracketed lists and ranges work just as they do for filename substitution, but the

asterisk(*) doesn't. When the asterisk follows a character, grep interprets it as

'zero or more instances of that character'. When the asterisk follows a regular

expression, gr ep interprets it as 'zero or more instances of characters matching

the pattern'. To match zero or more occurrences of any character, use

*

Suppose you want to find lines in the text that have a period in them. Preceding

the dot in the regular expression with a backslash(\) tells grep to ignore

(escape) its special meaning. The expression

-\.

matches lines starting with a period, and is especially useful when searching for

nroff formatting requests.

grep Search Pattern Elements

character ma.tches:

.... The beginning of a text line .

$ The end of a text line.
Any single character (like ? in filename substitution).

[... J Any single character in the bracketed list or range.

[....... J Any character not in the list or range.

* Zero or more occurrences of the preceding charac-

teror regular expression. (Not like filename substitu-

tion.)
* Zero or more occurrences of any single character.

Equivalent to '*' in filename substitution.

\ Escapes special meaning of next character.

Going back to the rhyming dictionary, we can now use grep to produce an alli­

terative list of rhyming words starting with a:

~\sun ~ microsystems

Revision A of 9 May 1988

32 Doing More with SunOS

Figure 3-19 Putting it All Together

Refer to grep in the SunOS Reference Manual for more infonnation about regu­
lar expressions and the grep family of commands.

~\sun ~ microsystems Revision A of 9 May 1988

4

The C Shell

The C Shell.. 35

4.1. Overview .. 35

4.2. Filename Completion .. 36

4.3. History Substitution and Command-Line Editing .. 38

Reviewing Commands... 38

Repeating Commands .. 39

Command Line Editing ... 40

Selecting Words Within Events ... 41

Modifying Selected Words and Events .. 41

4.4. Amazing Aliases .. 42

Escaping an Alias 4 3

4.5. Unaliasing an Alias .. 44

4.6. Variable Substitution ... 44

Storing Lists in C Shell Variables ... 45

Processing Lists with f oreach .. 47

Predefined Variables ... 48

Environment Variables .. 48

4.7. Output Substitution .. 49

4.8. Job Control .. 50

4.1. Overview

Although the shell waits before issu­
ing a prompt, the terminal allows
you to type ahead. That is, the ter­
minal displays what you type and
passes each line along when the
shell (or interactive program like vi)
is ready for it.

Figure 4-1

4
The C Shell

When you type in a command, you can expect certain things to happen. By now

you know that if you misspell a command the system replies with an error mes­

sage. You then get a new prompt so that you can try again. When you type in

the command correctly, the system waits for it to finish before giving you another

prompt (unless you put it in the background with an&).

Of course, these things don't just happen by magic. A program, called a shell,

accepts and interprets what you type, passes your interpreted commands on to be

performed, and waits for each to finish before proceeding to the next.

There are two shells available on the Sun Workstation, the C shell, and the

Bourne shell. The C shell has convenient features for interactive use, and we

assume that you are using it for this purpose. The Bourne shell has fewer con­

veniences, but runs faster, and has a simpler syntax for writing command rou­

tines, called scripts.

The system starts a shell whenever you log in or create a terminal with

shell tool. Technically speaking, the C shell is known as a command inter­

preter. You can think of the C shell as a layer of software between you and the

system's internal workings.

Where the C Shell Sits

C shell (/bin/ csh)

System Internals (kernel)

~~sun ~'f' microsystems
35 Revision Aof9 May 1988

36 Doing More with SunOS

4.2. Filename Completion
Currently, filename completion will
not work in SunView command or
text windows unless scrolling in that
window is disabled. See the Sun­
View 1 Beginner's Guide on how to
enable and disable scrolling.
Filename completion will work in
shell tool windows.

Filename substitution is one example of how the C shell interprets what you
type. When you use the* wild card, the C shell compares it against entries in
the directory and builds a list of filenames that match. It then replaces the wild
card with the list, sending this expanded version of the command you typed on to
the control of the system's internal scheduling mechanisms.

The way the C shell performs alias substitution is another example. When you
type in an alias, the C shell recognizes it as such, and replaces it with the more
complex command or, expansion that you have assigned to it.

A shell is an interactive program just as Mail and vi are. You can switch to a
new C shell, just as you can switch to vi, by typing in the csh command. To
escape such a subshell use (Ctrl-D J or exit.

You can run a command within a noninteractive C shell by placing it within
parentheses on the command line. You have already seen an example of this in
More About Commands, where a subshell is used to separate the standard output
from the standard error:

(command > outfile) >& errorfile

The C shell provides features that you can use to further simplify entering of
commands. In addition to repeating previous commands, you can use the his -
tory mechanism to modify them. You can put "placeholders" within alias
definitions to simplify complicated commands and pipelines. And, you can
define variables to stand for long strings or lists of words.

These and other features make the C shell easy to work with and easy to custom­
ize.

In addition to the wild card characters ? and *, the C shell provides a filename
completion utility which fills in the rest of a filename after you type in just the
first few characters. Suppose you want to look at the file ala ska in the direc­
tory united. states, which itself is the only subdirectory of directory
north. america in directory hinterland in the home directory
/home/medici.20 (Whew!) You could type in:

cat -/hinterland/north.america/united.states/alaska

but you'd soon get quite tired of that.

SunOS provides you with a file name completion feature. By including the line

set f ilec

in your . cshrc file, you can type the first letter, or first few letters, of a file's
name and let the C shell fill in the rest.21

20 This filesystem is diagrammed in the "Abbreviations for Special Directory Pathnames" section of the
manual Getting Started with SunOS: Beginner's Guide.

21 See the manual Setting Up Your SunOS Environment: Beginner's Guide for more on . cshrc files.

•\sun ~~ microsystems Revision A of 9 May 1988

Figure 4-2

Figure 4-3

Figure 4-4

Listing Matching Files

Figure 4-5

Chapter 4 - The C Shell 37

With filec set, type

cat - /hi Esc)

and the C shell will fill in the rest of the letters of the directory name hinter­

land and leave you on the same line, ready to type in more. This is what you

see:

Using Filename Completion: I

(venus% cat -/hinterlandl J
just as though you had typed all of hinterland in yourself. Note that SunOS does

not process the command until you hit (Return l; instead, it returns you to the end

of the line you 're typing in. Then type a I and the letter n followed by the

~.Like so:

Using Filename Completion: II

and SunOS completes the filename north.america :

Using Filename Completion: III

venus% cat -;hinterland/north.americal

You can do the same with the directory united. states. In fact, you don't

have to type any of the letters united.states because it's the only thing in its

directory. The C shell completes its name when just~ is typed.

Now suppose that in the directory united. states there are several files:

alaska, alaska.wilderness, alaska.urban,and hawaii. You

(and the SunOS file completion feature) have typed in

Using Filename Completion: IV

venus% cat -;hinterland/north.america/united.states/1

and now you want to look at ala ska. urban.

First, type the letter a. This eliminates the file hawaii from being name­

completed. Then, by typing (Ctrl-D l, you make SunOS show you all the possible

files and directories which start with a. (You could have typed in al or ala

or alaska, the principle is the same.) It's as though you did an ls a* and

retyped the cat command line. This is what you see:

Revision A of 9 May 1988

38 Doing More with SunOS

Figure 4-6 Listing Matching Files

Again, you're returned to the end of the command line you're typing in. There is
more than one file which starts with the letter a, so if you type I Esc J now, SunOS
flashes the screen to indicate that it doesn't know how to finish off the file name.
It fills in as much as the three choices share in common-in this case, the first six
letters alaska-and then waits. By adding a . and a u , you make the file name
unambiguous, and now your (Esc l completes alaska. urban and you're left
with the completed command line

Figure 4-7 A Completed Line

4.3. History Substitution
and Command-Line
Editing

Add this command to your • cshrc
file if it isn't already there.

Reviewing Commands

Figure 4-8

venus% cat -;hinterland/north.america/united.states/alaska.urban

Then hit (Return J and you 're done-and you've saved thirty-eight keystrokes.

(As a side note, you could do much of the above using the wild card character
* . But file name completion with I Esc I is less ambiguous because you can see
exactly what characters are being substituted, and because it displays a range of
choices with I Ctrl-D I. The *character is better suited for working with groups
of files.)

The C shell keeps a list of previous commands that you have typed in. The
history variable determines the length of this list.

To set or change this variable, use a command of the form:
set history=n

where n is the number of commands to remember.

To see the list of previous events, or command lines, type history after the
prompt.

The history Command

~\sun ~ micros~tems Revision A of 9 May 1988

Repeating Commands

Figure 4-9

Chapter 4 - The C Shell 39

As you learned in Getting Started with SunOS: Beginner's Guide, you can repeat

the most recent event by typing in two exclamation points (! !). The history

mechanism lets you repeat any command in the events list by typing an exclama­

tion point, followed by its command line number,

!n

for example:

The ! M etacharacter

You can specify the n 'th command back,

!-n

as in:

Figure 4-10 Backing Up

Figure 4-11

You can repeat an event by typing an exclamation point, followed by the first few

characters that match it,

! str

The history mechanism performs the first match it encounters. You may have to

add a few characters to get the desired event. In this example the user wants to

repeat the clear (to clear the screen) command:

Repeating a Matching Command (An Error)

Because the user typed in too few characters to specify the event precisely, ! c

matched the most recent event beginning with c, namely cp, even though this

wasn't the event desired. The observant user interrupts it, and then types in ! c 1

to match the desired event:

Revision A of 9 May 1988

40 Doing More with SunOS

Figure 4-12 Repeating a Matching Command (Correctly)

Sometimes it's easier to match against a string of characters embedded within the
event. To repeat a command in this way, use:

! ?str?

where str is the embedded string to search for. For example:

Figure 4-13 Matching Embedded Strings in Commands

Command Line Editing A word on the command line that begins with an exclamation is referred to as an
event designator. An event designator can stand for a previous command, or
selected words from a previous command line.

You have already seen how to edit the previous command using quick substitu­
tion("' old" new"). And, you have seen how to repeat the last word of the previ­
ous command (! $). The history mechanism provides you with the means to
select any word from any event in the history list, and to modify it. In some
cases, it can be easier just to type the new command directly. But in many cases,
command line editing can save you time and keystrokes.

You can place a : p on the end of an event designator or quick substitution to
prevent the expanded command from being performed. The shell interprets the
command, echos it, and places it in the history list. This gives you a chance to
look at the expanded version before actually running it. If it checks out, you can
use ! ! to run it. Otherwise you can do successive edits using

-01d-new- :p

until you get it just right.

Suppose that you want to apply several commands to a long list of files, and you
don't want to have to retype the list every time. ! * repeats all arguments to the
previous command (all but the first word of the command line). ! ... expands to
the first argument. If the last command was

echo first

! ... would expand to first. ! : n expands to then 'th argument (n+l 'th word).

! : 0 expands to the zero-th argument, which in SunOS is the command itself.
So, for example, if you type

morefilel

Revision A of 9 May 1988

Selecting Words Within
Events

Modifying Selected Words
and Events

you can then type

! : 0 file2

which expands to

more file2

Chapter 4 - The C Shell 41

You can select a specific word from a specific event by appending a word desig­

nator to its event designator. A word designator has the form of a colon, fol­

lowed by a character. : * expands to all arguments in the event. Using the his­

tory list above,

mv ! ?t:mp? : *

expands to

mv *.dit /tmp

: $ expands to the last argument of the selected event. : "' expands to the first

argument. : n expands to the n 'th argument. : 0 expands to the command itself,

in this case, mv.

You can edit the text of an event or word by appending an event modifier to it. A

modifier starts with a colon, followed by one or more characters that indicate the

actions to perform. : s I old I new I substitutes new for old in the first word where

there is a match for old. When inserted between the colon and the modifier, a g

indicates that the modifier applies to all designated words, not just the first. So

mv !?t:mp?:*:gs/dit/dot/

expands to

mv *.dot /tmp

As mentioned above, : p indicates that the event or word is to be expanded and

echoed, but not performed. You can place several modifiers in an event or word

designator. For instance:

mv !?t:mp?:*:gs/dot/dit/:p

is echoed as

mv *.dit /tmp

but not performed.

For more information about event designators, word designators, and event

modifiers, refer to Appendix C, C Shell Special Characters.

Revision A of 9 May 1988

4 2 Doing More with SunOS

4.4. Amazing Aliases

Figure 4-14

Figure 4-15

Figure 4-16

An event designator can be used
more than once within an alias
definition.

You can use escaped event and word designators within alias definitions to create
aliases for complicated commands and pipelines. When you use the alias as a
command, the escaped event designator (such as \ ! *) is replaced by command
line arguments that you then type in. For instance, you might want to create an
alias for a pipeline to fonnat and then print a file.

An alias for nroff with the proper options is easy, because no characters fol­
low the arguments you supply when using it:

Aliases

But if you want to get the formatted output to the printer with the same com­
mand, you must supply a pipe symbol, followed by lpr. Rather than having to
type these characters in every time, you can use the event designator \ ! * within
the definition to stand for all arguments to nroff. When you actually run the
command, the C shell replaces the event designator with any words that follow
print on the command line.

Event Designators in Aliases

The & at the end of the line makes both nroff and lpr run in the background;
that is, out of sight so that you can continue to type commands in while the com­
mand line is processed. (Running things in the background is explained later on
in this chapter.)

You can also use the command-separation symbol ; to create aliases that per­
form several commands in succession.

Making Multi-Command Aliases

Another alias that is quite useful tells you which directory you've changed to
whenever you use cd:22

alias cd 'cd \!* ; pwd'

22 Although you could use \ ! : 1 instead of \ ! : * (since cd gives an error message when used with more

• ~ ll fl Revision A of 9 May 1988 ~ m1crosystems

Figure 4-17

Escaping an Alias

Figure 4-18

Figure 4-19

Chapter 4 - The C Shell 4 3

To see what aliases you have, just type alias; to see a particular alias, type

alias followed by the command you want to see:

Seeing Current Aliases

To run the unaliased version of a command, precede the name of that command

with a backslash. Here, rm is aliased to confirm file deletions, but in its escaped

form it removes the file without checking first.

Escaping an Alias

Some C shell builtin commands, such as cd and pushd, cannot be escaped with

a backslash. To escape these commands, put the null string before the command.

The null string is represented by a set of empty double quotes:

Escaping Aliases on Builtins

(The semicolon separates two commands, as discussed in section 3.2.)

than one argument), it is simpler to figure out what is going on if your aliases preserve, as closely as possible,

the original behavior of commands they replace.

Revision A of 9 May 1988

44 Doing More with SunOS

4.5. Unaliasipg an Alias To remove an alias, simply use the unaliascommand:

Figure 4-20 U naliasing

4.6. Variable Substitution A variable is a named location in which to store text that you'd like the C shell to
remember for you. You can use the set command to associate a variable name
with a word to remember. A placeholder, composed of a dollar-sign($), fol­
lowed by the name of a variable, is replaced with the contents of that variable by
the C shell. Thus, you can use a variable name, preceded by a $, as an abbrevia­
tion for its contents.

Figure 4-21

Figure 4-22

To assign a value to a variable, type in a command like:

Setting Variable Values

To display that variable's contents:

Displaying a Variable's Contents

Suppose that you are working with files in two directories, each with very long,
and very different pathnames:

/home/sam/sources/gfx/lines/module3
/home/bin/c/gfx/lines/module3

You can abbreviate these pathnames as follows:

set src /home/sam/sources/gfx/lines/module3
set bin = /home/bin/c/gfx/lines/module3

J

Then, when you want to perform commands on files in these directories, you can
use$ src instead of /home/ sam/ sources/ gfx/ lines/module3, and
$bin instead of /home/bin/ c/ gfx/ lines /module3 on the command
line:

Revision A of 9 May 1988

Figure 4-23

Storing Lists in C Shell
Variables

Figure 4-24

Figure 4-25

Chapter 4 - The C Shell 45

Directories as Variables

The set command with no arguments prints a list of all C shell variables and

their current values. To see the value of a single variable, use a command of the

form:

echo $variable

In addition to single words, you can store a list of words in a C shell variable by

enclosing the list in parentheses when you use the set command. One example

of this is the path variable that you set in your . c shrc file. Another might be:

Multiple-Word Variables

Suppose that you just want to list those files in these directories which start with

the letter b:

Variables in Commands

This failed: 1 s lists the files starting with bin /home/ dakota/ gym, and all

the files in /home/dakota/kitchen. This is because the lb* got appended

to mdir s as a whole, and not to to each individual 11art of the variable. So typ­

ing

ls $mdirs/b*

Revision A of 9 May 1988

46 Doing More with SunOS

Figure 4-26

Figure 4-27

is equivalent to typing

ls /home/dakota/kitchen /home/dakota/gym/b*

(You can operate on each member of a variable list by using the foreach com­
mand, described in the next section.)

You can Select a specific word from the list by appending an index to the calz23

to the variable as follows:

$var [n]

where var is the name of the variable, and n is a number indicating the position
of the word within the list. Using the above example, the word
/home/ dakota/ gym is the second word in the list. So the command:

echo $mdirs[2]

displays the value

/home/dakota/gym

You can also specify a range:

Specifying a Range for Variables

But if you enclose a number in the braces that is higher than the count of words
in the variable, you will get an error message. You can use filename substitution
to simplify entering a list. The command:

set man= (/usr/man/{man,cat}?)

yields the following value:

Metacharacters in Variables

which is a complete list of all the directories containing Manual Page sources and
formatted files.

23 A call to a variable is the string you use to indicate that what you really want is the value it contains, in
this case the name of the variable preceded by a dollar-sign.

Revision A of 9 May 1988

Processing Lists with
f oreach

Figure 4-28

Figure 4-29

Chapter 4 - The C Shell 4 7

The foreach command provides a means to apply a set of commands succes­

sively for every word in a list. It prompts you for a set of commands, uses an

index van.able to store the current word while executing each pass through the

commands, and repeats the list of commands once for each word in the list.

The syntax of the foreach command is:

fore a ch index (list)

where index is the name of the variable, and list is a list of words. After you type

in the (Return I, f oreach prompts for a command with a question mark. It con­

tinues to prompt for commands until you type the command end by itself after

the question mark. This signifies the end of the loop.24 In Figure 4-25 we tried

unsuccessfully to list all the files beginning with the letter bin the directories

contained in the variable $mdirs. foreach allows you to do this:

Using f oreach

Here's another example. In this example, *is the filename metacharacter which

represents all the files in a directory, and the -n option to echo is used to put all

the output on the same line:

Listing Files with f oreach

The result is like using ls, except the files all appear on the same line, with a

comma we specifically provided:

... filel, file2, file3, file4, ...

You can use variable substitution, as well as filename substitution symbols

within the list.25 Using the variable man defined above, the following f oreach

loop gives you a count of the source files and then the formatted files within each

section of the Manual Pages. As the loop proceeds, the value of the index vari­

able (written as $dir) changes with each pass.

24 A loop is a set of commands to repeated successively.

25 This also works with the set command.

Revision A of 9 May 1988

48 Doing More with SunOS

Figure 4-30

Predefined Variables

Figure 4-31

Environment Variables

Listing Directories with f oreach

The C shell maintains a set of predefined variables. Some of these, like
noclobber, are used by the C shell to affect the way it behaves. Others keep
track of information that the C shell needs to know about. home, for instance,
keeps a record of your home directory. If you change the value of home, and
then use cd with no argument, the C shell attempts to change directories to that
new value.

Predefined Variables

The C shell also maintains a set of variables, called environment variables; you
should be familiar with them from reading Setting Up Your SunOS Environment:
Beginner's Guide . Environment variables are passed along to any commands or
subshells. They are created and modified using the setenv command, which
has a different syntax than that of set.

4}\sun ~~ microsystems Revision A of 9 May 1988

Others include:
user and USER,
term and TERM,
shell and SHELL, and
path and PATH

Chapter 4 - The C Shell 49

setenv name value

There is no equal sign between the name of the variable and its value, as there is

with set. And, only one word (or string within quotes) can be assigned to an

environment variable.

Environment variables are passed to all commands and programs run from withh~

the current shell. C shell variables are only effective within the current shell.

Typically, the names of environment variables are given in all capitals. In some

cases, there is a lower-case equivalent used by the C shell.

The environment variable HOME is such a case. When you use the set com­

mand to change the value of the (home) shell variable, the equivalent environ­

ment variable is also changed. When you use setenv to change the environ­

ment variable, however, the value of the home shell variable is not affected:

Figure 4-32 Exporting Variable Values

4.7. Output Substitution

To get a list of all environment variable and their current values, use the com­

mand printenv.

Output substitution allows you to use the output of other commands as arguments

on the command line.

When you surround a command with backquotes (') anywhere on the command

line, the C shell starts a subshell, executes the commands within the backquotes,

and substitutes the resulting output for the backquoted text. Suppose, for exam­

ple, that you have a list of names in a file called n arne 1 is t . The following

command automatically mails the file message to each person in namelist.

•\sun ~ microsystems
Revision A of 9 May 1988

50 Doing More with SunOS

Figure 4-33

echo is a useful command for test­
ing the results of filename, variable,
and command substitution.

4.8. Job Control

Because each window runs with a
different shell, you can't use job
control to inquire about jobs started
from different windows.

Figure 4-34

Output Substitution

SunOS is a multitasking operating system. This means that it can keep track of
several users and their commands simultaneously. The system also allows you to
run several commands at once by placing them in the background. The C shell
provides you with the means to inquire about, stop, or bring to the foreground
any job started through it.

To see how job control works, start a background job that won't finish until you
tell it to:

A Background Job

The [1] is the job number. The 4001 is a process number that you can ignore
for now.26 In this case, number 1, running vi, is the only job that is either
stopped or running in the background. When vi attempts to write its startup
message to the terminal, it does not succeed because control of the terminal
belongs to the C shell. So, vi stops, and waits for you to give it access to the
terminal. The C shell reports any change in the status of jobs under its control,
so you see a message that looks like:

[1] + Stopped (tty output) vi test

when the C shell issues the next prompt. Notice the plus sign. This indicates
that the job is current, meaning that it is the most recent job to have stopped. A
minus sign indicates that a job is next. When the current job is finished, a job so
marked will become current.

To give a job access to the terminal, or 'bring it into the foreground', type in
%n

where n is the job number. If you omit the job number, the C shell brings the
current job forward. When you stop an interactive program like vi, it waits,
under job control, for you to start it running again. So, if you want to stop in the
middle of vi without losing your place, you can type a I Ctrl-Z l. vi stops, and
the C shell resumes control of the terminal until you type in a % •

26 Processes are described in Chapter 5, Processes and Other Users.

Revision A of 9 May 1988

Chapter 4 - The C Shell 51

Figure 4-35 Moving a Job from the Background

To stop the job once again, type in a I Ctrl-Z I.

Figure 4-36 Stopping a Job

Stopping ajob and resuming it can be useful when you have large programs

(such as nroff) running, and you need to do something quickly. Rather than

opening a new shell tool or cmdtool, or waiting for the big program to

finish, you can stop (or suspend) it temporarily, perform your urgent task, and

then resume the big program from where it left off.

To see what jobs are either stopped or running in the background, type in jobs.

To indicate that a stopped job should continue to run in the background, type in

%n &

where n is the number of the stopped job.

Figure 4-37 Restarting Jobs in the Background

To abort a background job, use a command of the form:

kill %job

where job is the number of the job to kill.

Figure 4-38 Killing Jobs

Revision A of 9 May 1988

52 Doing More with SunOS

Exiting With Stopped Jobs

bg and fg

If you try to exit a shell while a job is stopped, you get the warning message:

There are stopp8d jobs.

A second.logout will then log you out (but its a good idea to see what jobs are
stopped with jobs before you exit).

The C shell has two builtin commands, bg and f g, which can be used to put jobs
in the background or foreground. See the SunOS Reference Manual under csh.

Revision A of 9 May 1988

5
Processes and Other Users

Processes and Other Users ... 55

5.1. Processes... 55

Tenninating a Process with kill .. 56

Timing Processes .. 5 8

5.2. Running Commands Automatically ... 58

at and batch ... 58

Running Commands Periodically- crontab 59

5.3. Oilier Users.. 60

Users Currently Logged In.. 61

Changing Identity with su .. 63

5.4. Becoming root, tlle superuser... 64

5.1. Processes

5
Processes and Other Users

After each command is interpreted by the C shell, SunOS creates an independent

process, with a unique process ID number (PID), to perform it.27

The system juggles its time and resources amongst the various processes

currently running, and uses the PID to track the progress, current status, the

amount of time and the percentage of available memory each process uses.

The C shell passes its environment variables28 (created by the set en v com -

mand) and their values along to the processes it starts. These are known as child

processes. A child process may also create new children of its own.29 In general,

when a process creates a child, it waits for the child to finish before proceeding

with its own tasks. As each child process completes its work, it sends an exit

status number, or return code to its parent process. Most programs that finish

normally exit with a return code of 0. Programs that encounter errors typically

exit with a status of 1 (or some other number).

To see what processes you have running, use the p s command. In addition to

showing the PID for each process you own (created as a result of a command y01~

typed in), p s also shows you the terminal from it was started, its current status

(or state), the cpu time it has used so far, and the command it is performing.

Figure5-1 ps

7J Technically speaking, a process is an area in memory that contains a copy of the program indicated by the

command you typed in, along with any data from the files you supplied as arguments (or from your terminal).

28 It does not pass along shell variables (created by set).

29 The parent is said to fork a child process.

55 Revision A of 9 May 1988

56 Doing More with SunOS

Table 5-1

Terminating a Process with
kill

You can pipe ps output through
grep:
ps I grep command-name

The table below should help decipher the display.
Information Displayed By ps

Column Symbol Meaning
PID process ID number
TT tenninal:

co /dev/console
mn /dev/ttymn

STAT state of the process:
R runnable (running)
T stopped
p paging
D waiting on disk
s sleeping Oess than 20 seconds)
I idle (more than 20 seconds)
z tenninated, control passing to parent
w swapped out31

> exceeded soft memory limit
N priority was reduced
< priority was raised

TIME processing time (so far)
COMMAND command being performed

kill provides you with a direct way to stop commands that you no longer want,
even from a shell running on another tenninal or from another window. This is
particularly useful when you make a mistake typing in a command that takes a
long time to run, such as troff .32

To tenninate a process, type ps to find out the process ID.

When you see which process or processes to tenninate, type in kill followed
by the PIDs for those processes.

31 Of the various states in the STAT column, IWcan be an indication that a process is in trouble. If you find
a process in this state, and if in 5 minutes or so it is still in that state, it is probably a good idea to tenninate it
and run the command again (checking to be sure that the command line makes sense and is typed in correctly).

32 troff is a powerful text formatter that can prepare typeset-quality documents like this one.

Revision A of 9 May 1988

Figure 5-2

Note that in Figure 5-1 grep reports
two processes with the word troff in
them.

Figure 5-3

Figure 5-4

Chapter 5 -Processes and Other Users 57

Terminating a Process

Use kill -9 PID to forcefully tenninate a process.

kill will accept either a PID number, or a job number preceded with a% (%1,

for instance) as an argument. 33 You can, however, set up an alias that will

search for a command by name and tenninate the first process it finds running

that command:34

slay

The first part of this alias (up to the semicolon) searches for the command that

you supply as an argument, strips off all but the first occurrence and stores the

output line in the variable p . The second part displays which process it is about

to kill. The third part selects the first word in the variable p (the PID), and kills

the process with that number. Here's how slay works (view is a version of

the vi editor):

Using slay

33 When run from the C shell, not the Bourne shell.

34 When you desire functions that are more complex than this, such as performing steps repeatedly or

making use of more than one variable, you should consider writing a shell script to perform it. See Appendix D

for information about writing Bourne shell scripts, or Appendix B for information about C shell scripts.

~\sun ~ microsystems

Revision A of 9 May 1988

5 8 Doing More with Sun OS

Timing Proces.ses To keep track of the system resources used by a particular command, type in
time, followed by the command:

Figure 5-5 The time Command

time displays statistics about the command as follows:

Table 5-2 Information Displayed By time

Column Explanation
u user time - -
s system time - -

- : - - elapsed time
% cpu time as a percentage of elapsed time - -

+ k average shared memory, plus average unshared memory (kilobytes)
_+_io number of block input operations, plus block output operations
_pf+ page faults

w swaps -

When a command runs for longer than a certain number of cpu seconds (deter­
mined by the time C shell variable), these statistics are displayed automatically.

5.2. Running Commands
Automatically

at and batch

Figure 5-6

You can take advantage of hours when the system is not heavily used to run large
jobs that require a large amount of system time or memory (like formatting large
documents with troff).

First, create a file containing the command line(s) you wish to run later on:

Creating an at File

Then type in at, followed by the time you wish to run the job, and the name of
the file containing the command line(s).

~~sun ~~ microsystems Revision A of 9 May 1988

Figure 5-7

Running Commands
Periodically - crontab

In earlier versions of SunOs, each
machine had a single crontab file,
which everyone using the machine
shared, and the user had to
become superuser (root) in order
to modify it.

Chapter 5 - Processes and Other Users 59

Using an at File

This command tells the system to start formatting and printing the large docu­

ment at 2:00am. You can use up to four digits to specify the time in hours and

minutes, followed by an a for am, or p for pm.

batch is similar to at except that, instead of running a job or bunch of jobs at

a time you choose, batch sends the jobs off immediately to be executed, but

waits until the system load level is low before actually running them.

There are two files, at. allow and at. deny, which regulate who can use the

at command. For more on at and batch, see the SunOS Reference Manual or

type man at.

at and batch are useful for running jobs on a one-time basis. To run com­

mands periodically, use the crontab command. For example, you can use it to

clean out your I tmp directory on the fifteenth of each month, or reset your clock

every day.

crontab is a program which edits the file

/var/ spool/ cron/ crontabs/username, where username is the your

login name. This file contains a number of commands to execute. Each com­

mand is preceded by the time (and date, ifneeded) the command is to be run.

The command may be an actual shell command or it may be the name of an exe­

cutable file, such as a shell script.

Each person on a machine has his or her own crontab file, including root.

Commands which only the superuser can execute- such as rdate and sa,

described below- must be in root's crontab file, while other commands or

files to execute can be in your own crontab file.35

A crontab file consists of lines of six fields each. The fields are separated by

spaces or tabs. The first five are integer patterns to specify the minute (0-59),

hour (0-23), day of the month (1-31), month of the year (1-12), and day of the

week (1-7 with l=Monday). Each of these patterns may contain a number in the

range above; two numbers separated by a dash meaning a range inclusive; a list

of numbers separated by commas meaning any of the numbers; or an asterisk

meaning all legal values. The sixth field is the command or file to be executed.

Here are some example lines from a crontab file, to give you a better sense of

the file's format:

35 See Section 5.4 for information on becoming root, your machine's superuser.

Revision A of 9 May 1988

60 Doing More with SunOS

Figure 5-8

For more on rdate and sa, see the
SunOS Reference Manual.

Figure 5-9

A daemon is a program which the
system runs to do certain house­
keeping chores. A print daemon,
for example, might queue up and
print files, while a mailer daemon
takes care of the details of sending
electronic mail. Most daemons are
invisible to the user.

5.3. Other Users

Some Typical crontab Entries

15 0 * * * /usr/etc/sa -s >/dev/null
0,20,40 * * * * /usr/ucb/rdate chiqui
0 1 15 * * /home/titan/medici/mail/.mailrun

o The first line says to run the s a command at fifteen minutes past midnight,
every day. (sa is a program run by root to maintain system accounting
files; in this case, it does some maintenance and produces a summary report
which is automatically sent to the "garbage" directory I dev /null.)

o The second line says to run rdate every twenty minutes. rdate gets the
time and date from the machine chiqui. (rdate also is run by root.)

o The third says to run the script . mailrun at one A.M. on the fifteenth of
every month; . mai lrun is some script, probably to manage mail files,
written by user medici; it does not have to go in root's crontab file.

To use the crontab program, type

crontab

This starts you editing your er on tab file (it creates one if none exists). Type in
the commands you want, in the format given above. A permanent process, the
cron daemon, examines it and executes its commands at appropriate times.

You must pay attention to file permissions when using crontab. Make sure
that any files you want cron to run are marked as executable. Moreover,
because the cron daemon is owned by the system and not by you, you must
make sure that any files you want it to erase have their permissions set to allow
this. Likewise, if cron is creating files for you to access, you must have cron
set open permissions on them for you. For more information on permissions, see
Section 2.3.

As with at, there are two files, cron. allow and cron. deny, which regulate
who can make or modify er on tab files on your machine. For more on cron
and crontab, see the SunOS Reference Manual.

By now you've realized that to the system you're not just another pretty face.
From the system's standpoint, every user has a login name, a password, an
identification number, or userid, a group membership, a user's name or other per­
tinent data, a home directory, and a default shell. This information is kept in the
file I etc/passwd. To find out who can log in to your system, look in this file.

+~.!! Revision A of 9 May 1988

Figure 5-10

Table 5-3

Users Currently Logged In

Chapter 5 - Processes and Other Users 61

The I etc/passwd File

root:OXtYHFnkYou3Y:O:lO:Operator:/:/bin/csh

daemon:*:l:l::/:

uucp:eXs0qzRjUOS8Y:4:4::/var/spool/uucppnblic:

cindy:Lu8UBYYbPNEpw:26:20:Cindy Smith:/home/cyndi:/bin/csh

carter:SQxRMoQbqQOHk:612:20:Jamie Carter:/home/carter:/bin/csh

jimg:lUvG9UKYOuE/A:l131:60:Julie Gomez:/home/jimg:/bin/csh

ben:bAwVM.A6LiXFo:l132:30:Ben Benson:/home/ben:/bin/csh

karla:mceur1TqKdcDQ:1172:30:Karla Caracas:/home/karla:/bin/csh

Fields corresponding to the above categories are separated by colons, and

described in the following table (using the last line above as a sample entry).

Information Contained in I etc/passwd

Field Sample

login name karla
encrypted password mceurl TqKdcDQ

user ID number 1172
group ID number 30
commentary Karla Caracas

home directory /home/karla
login shell /bin/csh

The first line of this file contains an entry for root, the operator of the system.

When logged in as root, the operator can access any file or device on the sys­

tem, perform system maintenance, and edit system files such as this. (For more

on root, see Section 5.4.) The next two entries allow for certain networking

functions to be performed, and the subsequent lines correspond to individual

users.

If you are using the Yellow Pages, then a single plus sign (+) on a line by itself in

I etc/pas swd gives login privileges on your machine to anyone in the Yellow

Pages directory. To find out more about the Yellow Pages, and users with access

over the network, refer to Using the Network: Beginner's Guide or System and

Network Administration.

For a more complete treatment of I etc /pas swd, see the SunOS Reference

Manual or type man 5 passwd.

The system tries to provide equivalent performance to everyone using it. To find

out who is logged in, type who.

Revision A of 9 May 1988

62 Doing More with SunOS

Figure 5-11 who

who shows you the login-name of each user on the system, the terminal that per­
son is using, when they logged in, and, if logged in from a remote machine, the
name of that machine. 36

From time to time, you may want to see what others are doing. The w command
tells you what command is running on each user's terminal. In addition, it shows
you the amount of time since the user last typed something in (idle), the total
CPU time spent by each user so far (JCPU), the CPU time spent by the command
now running (PCPU).

Figure 5-12 w

To get a detailed list of everyone's processes, use the command

ps -au

36 See Using the Network: Begin!Ulr' s Guide for more information about using remote machines.

Revision A of 9 May 1988

Figure 5-13

Changing Identity with su

Figure 5-14

It is usually better to copy such a
file yourself, since you often don't
know the password of another user.

Figure 5-15

...

Chapter 5 - Processes and Other Users 63

ps -au

The -a option tells ps to show you infonnation about all processes, not just your

own. The -u option gives a more detailed display that includes the name of the

user who owns the process. The -au option is simply the combination of these

two.37 For infonnation about the remaining columns, refer tops in the SunOS

Ref ere nee Manual.

If you know someone else's password, you can temporarily assume that person's

system identity by using the su (superuser) command. A common reason for

doing so is to get access to files that you don't own. Suppose that a colleague has

moved a file into one of your directories that you want to edit:

An Alien File

First, use cp to make a copy of the file. You will own the copy, and can edit it.

To get rid of the version you don't own, switch your userid and delete it:

Using su

......_..._......_.......__.__.__.__.__._...._--~---...-....-......---.;.--.--.--...._...__..._..._.._.___.__........_-'--'-'

To revert to your previous ID, enter a (Ctrl-D J (or the command exit).

If, after switching userids, you want to find out what your effective login identity

is, type whoami:

37 Single-letter options that can be combined like this are sometimes referred to as flags.

•\sun
• microsystems

Revision A of 9 May 1988

64 Doing More with SunOS

Figure 5-16 whoami

5.4. Becoming root, the
superuser

The command

who am i

reveals your original login identity when you use su to temporarily become
someone else. For more on who am i, see Using the Network: Beginner's
Guide.

Each machine has a superuser, a user who has powers and permissions quite
above and beyond those of mortal users. This superuser is often known as root.
A person with superuser status can edit files which are off-limits to ordinary
users, such as I etc/passwd, the password file, or I etc/hosts.equiv, the
list of other machines on a network which your machine trusts. root can also
use some restricted commands, such as mount or reboot.

Originally, the UNIX operating system, on which SunOS is based, was designed
for many users to be working on a single, more-or-less centralized machine. One
person, the System Administrator, was in charge of maintaining, configuring, and
upgrading the system -hence the name superuser.38

With a network of independent workstations like Suns, however, each person
may have the ability to become root on his or her own machine, and take care
of many of the tasks which were formerly the province of the superuser, such as
making connections to printers or mounting remote filesystems. In a workstation
environment, then, a superuser and a System Administrator are not necessarily
the same thing: a System Administrator would be someone who maintains
shared machines and networks.

For example, suppose you are a diskless client of the server chiqui. That
means that you have your own workstation-call it venus - and you keep
your files on the machine chiqui. On your own machine, venus, you can
become superuser. But maintenance and configuration of chiqui is left to your
System Administrator. On the other hand, if you are running a standalone system
(one with a disk), then you are the System Administrator, and you become root
to carry out all System Administrator tasks.

If you type su with no name, it attempts to switch you to root, also referred to
as the superuser. When you become the superuser, the last character of the
prompt changes from a percent sign (%) to a pound sign (#).

38 This is still the setup for people using "dumb" terminals.

~\sun ~~ microsystems Revision A of 9 May 1988

Figure 5-17

Chapter 5 - Processes and Other Users 65

Becoming root

As root, you can kill any process running on your machine. You have read and

write privileges on every file on your machine's disk (or disk partition) and you

can change the ownership of these files.39 Additionally, there are a number of

commands, such as mount and reboot, which require that you be superuser to

use them.

You must become root to perform system maintenance tasks such as adding

new users, adding new tenninals or printers, etc. Refer to System and Network

Administration for more infonnation on performing these tasks.

Sun386i users can use SNAP instead of su; see the Sun386i SNAP Administra­

tion manual.

39 Files mounted from a remote host belong to that machine. You must be logged in as root on the remote

host to get superuser privileges for files that reside on it. Referto Using the Network: Beginner's Guide to find

out more about remote hosts and mounted file systems.

~\sun ~ microsystems

Revision A of 9 May 1988

6

Managing Your Files

Managing Your Files ... 69

6.1. Locating Files .. 69

Looking Up a Command with where is and which 69

Looking Up a Command's Description with whatis 70

Looking Up Files with find ... 70

Running Commands with find .. 71

Looking at File Types with file... 71

6.2. Looking at Differences Between Files with diff 72

6.3. Monitor Changes with s cc s .. 73

Putting a File Under secs Control (secs create) 73

Which Files are Checked Out? (secs info)... 75

Recovering the Current Version (secs get) ... 75

Checking a File Out (s cc s edit) .. 75

Looking at Current Changes (secs diff s) .. 76

Checking a File In (secs delget) ... 76

Backing Out With No Changes (secs unedit) 76

Looking at the File's History (secs prt) .. 76

Comparing Versions (secs sccsdiff) ... 77

Restoring a Previous Version (secs get -r) 77

Solving Problems with secs .. 78

6.4. Automating Complicated Tasks with make.. 79

Makefiles ... 80

Running make .. 81

Testing Makefiles .. 82

Defining Macros in the Makefile ... 82

Selecting A Target .. 83

6.5. Managing Disk Storage.. 84

Looking at Disk Usage with df ... 84

Directory Usage and du.. 85

6.6. Making a Tape Archive with tar ... 85

Looking at the Contents of a Tape Archive ... 86

Extracting Files From a Tape Archive ... 86

6.1. Locating Files

Looking Up a Command with
whereisand which

Figure 6-1

Figure 6-2

6
Managing Your Files

SunOS has good facilities to help you locate files, monitor changes to important

files, and manage your space on the disk.

To locate a file in the file system hierarchy, you may need to know its absolute

pathname. When trying to locate a file, chances are that you are either looking

for the pathname of a particular command, or you are looking for a certain text

file. SunOS provides several ways to locate commands. These are presented

first, followed by methods for locating text files.

To find the pathname of a standard SunOS command, type in whereis fol­

lowed by the command name. (where is also displays the pathname of the man

entry.)

whereis

You can also use which to look up a command. This is useful when you have

commands that are aliased, or if your system contains commands in addition to

the standard set. If the command is an alias, which shows you its definition. If

the command is in a directory listed in your path variable, which displays its

pathname. If there is more than one version of a command in those directories,

which displays the version that the system finds first. This is the same version

that the system performs when you type the command in.

which

69 Revision A of 9 May 1988

70 Doing More with SunOS

Looking Up a Command's
Description with what is

Figure 6-3

Looking Up Files with find

Figure 6-4

what is, followed by the name of a command, will give you a brief description
of what that command does.

what is

Starting with a named directory,40 find searches for files that meet conditions
you specify. A condition could be that the filename match a certain pattern, that
the file is owned by a certain user (or belong to a certain group), or that the file
has been modified within a certain timeframe.

Unlike most SunOS commands, find options are several characters long, and
the name of the starting directory must precede them on the command line.

find directory options

Each option describes a criterion for selecting a file. A file must meet all criteria
to be selected. So, the more options you apply, the narrower the field becomes.
The -print indicates that you want the results to be displayed. (As described
later on, you can use find to run commands. You may want find to omit the
display of selected files in that case.)

The -name filename option tells find to select files that match filename. Here
filename is taken to be the rightmost component of a file's full pathname. For
example, the rightmost component of the file /usr I lib/ calendar is
calendar. This portion of a file's name is often called the basename. To see
which files within the current directory and its subdirectories end in s, type in:

find

Other options include:

-name filename select files whose rightmost component matches
filename. Surround file name with single quotes if it
includes filename substitution patterns.

-user userid select files owned by userid. userid can be either a
login name or user ID number.

40 You must supply a name.

•\sun ~ microsystems Revision A of 9 May 1988

Figure 6-5

Figure 6-6

Running Commands with
find

Looking at File Types with
file

Chapter 6 - Managing Your Files 71

-group group select files belonging to group.

-mtime n select files that have been modified within n days.

-newer checkfile select files modified more recently than checkfile.

You can combine options within (escaped) parentheses (\ (... \)) to specify an

order of precedence for criteria. Within escaped parentheses, you can use the -o

flag between options to indicate that find should select files that qualify under

either category, rather than just those files that qualify under both.

The -o Option to find

You can invert the sense of an option by prepending an escaped exclamation

point. find then selects files for which the option does not apply.

Reversing a find Option

You can also use find to apply commands to the files it selects with the

-exec command'{}' \;

option. This option is terminated with an escaped semicolon (\;). The quoted

braces are replaced with the filenames that find selects.

You can use find to automatically remove temporary work files. If you name

your temporary files consistently, you can use find to seek them out and des­

troy them wherever they lurk.41 For example, if you name your temporary files

test or dummy, this command will find them and remove them:

find . \(-name test -o -name dummy\) -exec rm'{}' \;

Sometimes you want to see what sort of data a file contains without having to

look at its contents. In particular, if the file is a compiled program (object-file),

trying to display its contents can produce spectacular and disconcerting results on

your screen. file quickly tells you whether a file contains, for example, plain

text, troff sources, C program sources, executable files, or tape-format

archives. (There are a number of kinds of files; see under file in the SunOS

Reference Manual.

41 For good housekeeping, you may want to get rid of such files on a regular basis without having to think

about it. If you put a command like this in your . logout file, then whenever you log out, the system will

clean up unwanted files for you.

Revision A of 9 May 1988

72 Doing More with SunOS

Figure 6-7

6.2. Looking at Differences
Between Files with
di ff

What Kind of File Ami? file

It often happens that different people with access to a file make copies of it and
then edit their copies. di ff will show you the specific differences between ver­
sions of a file and provide you with an indication of how the contents of one can
be edited to produce the other. The command

diff leftfile right.file

scans each line in leftfile and rightfile looking for differences. When it finds a
line (or lines) that differ, it detennines whether the difference is the result of an
addition, a deletion, or a change to the line, and how many lines are affected. It
tells you the respective line number(s) in each file, followed by the relevant text
from each.

If the difference is the result of an addition di ff displays a line of the fonn

/[,/] a r[,r]

where l is a line number in leftfile and r is a line number in rightfile. If the differ­
ence is the result of a deletion, di ff uses a d in place of a; if it is the result of a
change on the line, diffuses a c.

The relevant lines from both files immediately follow. Text from leftfile is pre­
ceded by a left angle-bracket (<). Text from rightfile is preceded by a right
angle-bracket(>). This example shows two sample files, followed by their diff
output.

•\sun ~ microsystems
Revision A of 9 May 1988

Figure 6-8

6.3. Monitor Changes with
secs

Putting a File Under secs
Control (secs create)

Chapter 6 - Managing Your Files 73

Two Sample Files and di ff Output

When you want to protect an ASCII file from accidental deletion, keep track of

changes to it, or allow more than one person to modify it, you can monitor the

file using secs. secs, or "source code control system" is a utility program that

protects important files by allowing only one person at a time to make changes,

by maintaining a record of those changes, and by rebuilding the current (or any

previous) version upon request.

To put a file under secs control, perform the following steps:

1. cd to the directory containing the file(s) to be protected. If a subdirectory

name SCCS is not already present, create it. If you want to allow other users

access to the files, change the permissions of the current directory and those

of the sccs subdirectory to 7 7 s.42

42 Unless you are sure that you do not want them to have access, it is normally a good idea to change

permissions of both directories to allow it, at least for other members of your user group.

Revision A of 9 May 1988

7 4 Doing More with Sun OS

Figure 6-9

Figure 6-10

When working with files that are
part of a large project, secs ID key­
words can be important. Refer to
Programming Utilities for the Sun
Workstation for more information
about secs as a tool for managing
large programming projects.

Figure 6-11

Putting Files under s cc s

2. Type in a command of the form:

secs create filename ...

filename is the name of a file or files to monitor. This is how you would put
all you files under SCCS:

secs create

verius% sc::c::s create<~

For each file that you indicate on the command line, secs produces a spe­
cial file called a history file, and puts it in the secs subdirectory. The his­
tory file has a name of the form:

s .filename43

and contains a complete record of all lines changed throughout the life of the
file. secs maintains a checksum on all history files, so do not edit them!

secs may respond with the warning:

No id keywords (cm7)

This message can safely be ignored when you are auditing your own files.

3. Remove the backup file(s) that s cc s leaves behind. These files are created
by s cc s as a safety precaution, and are no longer necessary once the
create operation is complete. Names of these backup files begin with a
comma(,).

Removing Backup Originals

Once under secs control, you have to check a file out before you can make
changes to it. Files that aren't checked out through secs have permissions set
to read-only for everyone (4 4 4).

43 History files are also ref erred to as "s.files."

Revision A of 9 May 1988

Which Files are Checked
Out? (secs info)

Recovering the Current
Version (secs get)

Checking a File Out (secs
edit)

Figure 6-12

Chapter 6 - Managing Your Files 7 5

To see which files in the working directory are checked out, use the secs info

command. lfno files are checked out, secs responds with the message:

Nothing being edited

If there are files checked out, it lists those that are, the current version number of

each, the version number each will have when checked in again, the name of the

user who checked out each and the date and time of check-out:

csh.1: being edited: 1.4 1.5 sam 85/09/04 16:32:15

Because several people may have write access to the directory, it is possible that

a file in the working directory may be deleted accidentally. Files that aren't

under secs control are gone for good once they are removed, but you can easily

restore files under secs from their history-files using the secs get command:

secs get filename

If you want to recover the current version of all files in the directory, use the

command:

secs get SCCS

Only one person at a time can check a file out. This assures you that changes

won't be lost, garbled, or intermixed between the edits of different users. To

check out a file, type in s cc s edit followed by the file or files you wish to

check out. secs will respond with the current version number, the new version

(delta) number, and the number of lines in the file.

Checking a File Out

Once checked out, you can edit the file using vi, or an editor of your choice.

When you check out a file, sccs changes the ownership of the file to you, gives

you write permission (owner only), and places a lock file containing your userid,

the version number, and other information in the SCCS directory.44 When you

check the file back in, the lock file is removed and the permissions are set to read

only, but you retain ownership of the file.

44 The lock file has a name of the form: p .filename, and referred to as a "p-file."

Revision A of 9 May 1988

7 6 Doing More with Sun OS

Looking at Current Changes
(secs diff s)

Checking a File In (secs
delget)

Figure 6-13

Backing Out With No
Changes (secs unedit)

Looking at the File's History
(secs prt)

While still checked out, you may want to review the changes you have made so
far. To do so, type in:

secs di ff s filename

s cc s responds with standard di ff output, using s cc s's current version as the
"leftfile" and the filename as the "rightfile." (See section 6.2.)

When you are done making changes you can check in the new version of the file
by typing in the nonintuitive command:

secs delget filename

delget is a contraction for delta, the command to incorporate a new version
into the history file, and get, the command to recover the newest version (that
you are just now checking in).45

When you use delget (or delta) to check in the file, secs asks you for a line
of comments. These comments are included in the history file, and should briefly
summarize the changes you have made. After adding your comments and press­
ing (Return I, secs responds with the new version number, the number of lines
inserted, deleted and unchanged, and the total number of lines.

Checking a File In

A replaced line shows up as an insertion and deletion.

To check a file back in without any changes, type in:

secs unedit filename

To review a file's history, use the command:

secs prt filename

This command shows you the version number, comment lines, date checked in,
and user responsible for each version of the file.

45 H secs responds with an error message, it does not perform the get action, and you may have to recover
files using secs get secs.

Revision A of 9 May 1988

Figure 6-14

Comparing Versions (s cc s

sccsdiff)

Restoring a Previous Version
(secs get -r)

Chapter 6 - Managing Your Files 77

SCCS prt

To compare previous versions of a file, use the command

secs sccsdiff -rx.y -rm.n filename

Where x. y and m. n are version numbers to be compared. This command pro­

duces standard di ff output.

If you want to back out a version of the file that is already checked in, you must

perfonn the following steps:

1. Recover the previous version. You can look up its number using s cc s

prt filename. To rebuild the previous version, type in a command of the

fonn:

secs get -rx.y filename

where x.y is the desired version number.

2. Rename the recovered version of the file

mv filename temp

3. Check the file out with secs edit.

4. Replace the checked-out version with the old version:

mv temp filename

5. Check the file back in with secs delget.

To assure that it all worked properly, compare the latest version with the desired

previous version using s cc s s cc s di ff.

Revision A of 9 May 1988

78 Doing More with SunOS

The typical flow of events when making changes to a file under secs control is:

Figure 6-15 Flow of Events with secs-Controlled Files

original restored checked out checked in
r-------------,
I I

src src (1.1) : src (1.1) : src (1.2)
I I
L ___ ----- ___ .J

SCCS/s.src (version 1.1) (v. 1. 2 lines)

--->

Solving Problems with secs

Are Files Under sccs Control?

ls the File Checked Out?

Was the File Checked In?

What If I Can't Check the File Out?

... time ...

secs is a complicated and verbose utility. There may be times when it responds
with an error message even though things worked properly. Its error messages
are sometimes difficult to interpret. If you are not sure that s cc s succeeded in
doing what you asked, you can take certain steps to verify whether it has:

ls -1 SCCS
will show an s.file for each file under s cc s control.

secs info
will show which files are checked out, and to whom.

secs prtfilename
will show your comments in the first three lines when you have checked in a
file successfully.

If you attempt to check a file out and you get the message:

ERROR [SCCS/s . .filename] : writable '.filename' exists (ge4)

this usually means that someone has the file checked out already. You can verify
this using secs info. If secs info does not list the file as being edited,

Revision A of 9 May 1988

6.4. Automating
Complicated Tasks
with make

Chapter 6 - Managing Your Files 79

then the lock file in the SCCS directory has been deleted. When this happens

s cc s will not allow anyone to check the file either in or out.

To correct this problem, first run s cc s di ff s on the file to see if it differs
from the version last checked in. If so, it is a good idea to contact the file's
owner to find out if the changes made should be kept. If so, then copy the file to

a new filename, remove the writable original, and check the file out using s cc s

edit. Then move the new filename back to the original name (overwriting the

checked out version), and check the new version back in using secs delget.

If the changes need not be saved, you can correct the problem by simply remov­

ing the writable file, restoring the current version using secs get and then

checking it out using secs edit.

Performing complicated tasks, such as producing object code for programs or

formatting large documents involves processing different files through various

programs at the proper times and in the proper order. This can be a lot to
remember. make simplifies these complications by following a record of the

steps involved, called a makefile, that you create.

The makefile contains a list of the steps called targets; each target contains a list

of SunOS commands. A target can be qualified by a list of other targets upon

which it depends. One target is said to depend on another if the latter must be be

completed before the former can be performed successfully. The latter target is

called a dependency.

For example, an secs subdirectory must be created before you can put files

under secs. And, you must put a file under secs with secs create before

you can check that file out. So the command secs edit depends in practice

on the commands mkdir secs and secs create for its own success.

make uses the list of targets as a recipe to produce a desired program, document,

or other object file called a target file, or simply target.

make performs only those steps that are required to bring the target files up to

date. The makefile lists the various steps involved, and how they depend on one
another, and make examines the list to see which target files are outdated.

A target is considered to be outdated when a source file used to produce it has
changed since the target file itself was last produced. make then performs only
those steps required to replace any outdated target files.

make has a facility to perform macro substitution.46 This allows you to abbrevi­
ate long lists, and to predefine parameters that often change, so that with a few

simple edits the same procedure can be used to produce other, similar objects.

46 Like an alias, a macro is a string of text that is replaced by its definition, or expansion when encountered

in an input file (or command line).

Revision A of 9 May 1988

80 Doing More with SunOS

Makefiles

Figure 6-16

Like a recipe card, a makefile is composed of two sections. The first section is a
list of macro definitions. These are described in detail later on. The second sec­
tion outlines steps in the procedure and their relationships to one another. In
make parlance, each step is called a target.

Each target has a name. If that target's function is to produce an object file of
some sort, then the name of the target should be the same as the name of the file
it produces. If the target performs some sort of housekeeping step, then it can
have any name you like.

A target may also have a list of dependencies, or targets it depends on, associated
with it. make uses this list to determine whether files produced by the target are
up to date.

Finally, each target has a list of SunOS commands to perform. When performing
a step, make performs each command in tum, starting a Bourne shell47 for each
command line. 48

The following is an example of a makefile to put the contents of a directory
under s cc s control. The file consists of just three targets, and no macro
definitions:

Sample Makefile to Put Files under secs
r

makefile: for putting files under secs

no macro definitions

target definitions

put.under: secs
these lines begin with a required tab character
-secs create *
-rm ,*
-secs get SCCS

SCCS:
-mkdir SCCS
-chmod 775 SCCS .

The targets are put. under and SCCS. The target put. under depends on the
target secs. If the secs directory is not already present and up to date (direc­
tories always are), make performs the commands listed under secs first.
The format of each target is significant. The name of the target must be followed
by a colon and the list of dependencies, if any. (If this list is longer than one line,

47 Because it runs a Bourne shell, certain C shell constructs, such as fore a ch, don't work. Refer to sh in
the SunOS Reference Manual for more information about the Bourne shell.

48 Since each command line is executed in its own shell, you must use the command separation character ; ,
and the command-line continuation character \ (Return) to build command routines.

Revision A of 9 May 1988

Running make

Chapter 6 - Managing Your Files 81

you can split it in two by leaving a backslash(\) at the end of the first line.) The
list of commands immediately follows the target name, and each command line
begins with a CTiill].

Comments begin with a #, and can be placed to the right of commands on any
line (not ending in a backslash). At least one blank line separates target
definitions from one another.

When you prepend a - to a command, make ignores a nonzero (error) return
code from that command. Normally, make halts whenever a command it runs
exits with a nonzero status. Adding the dashes in this case tells make to con­
tinue putting new files under s cc s control, even though it may encounter older
files already there.

Because make checks for dependencies, you can write makefiles in a top-down
fashion. The step that produces the final output should appear first. Steps that it
depends upon can appear next, followed by steps that they depend on.

When the makefile is ready, simply type in make.

make looks for a file in the working directory named makefile, or
Makef ile,49 checks for dependencies, beginning with the first target it
encounters, and then performs commands in their proper order.

Figure 6-17 Running make

The error message

ERROR: directory 'SCCS' specified as 'i' ...

indicates that secs attempted to create a history file for the directory SCCS.

Because we used a dash as the first character of the command line, make contin­
ued processing.

49 You can specify the name of some other makefile, using the -f filename option, as in

make -f buildit, where buildit is a different Makefile.

Revision A of 9 May 1988

82 Doing More with SunOS

Testing Makefiles

Figure 6-18

Defining Macros in the
Makefile

Figure 6-19

Most makefiles take a bit of debugging. To find out what commands make will
perform without actually running them, use the -n option.

The make -n Option

In the above makefile, put. under depends upon SCCS. When you ran make
the first time, the SCCS directory was created. When you ran make -n subse­
quently, make did not indicate that it would perform that step (since it was up­
to-date anyway). If you were to remove the SCCS directory, and then run make,
it would perform commands in the secs target once again.

The next example is a makefile used to format and print a document made up of
several source files. With macro substitution, copies of a makefile such as this
can be used for different documents:

Sample Makefile for Printing a Document

Makefile: for printing a document

macro definitions

SOURCES title intro tutorial reference appendix
PRINTER = Plw
MACROS ms

target definitions

print: troff .output
lpr -$(PRINTER) -t troff.output &

troff.output: $(SOURCES)
tbl $(SOURCES) I eqn I troff -t -$(MACROS) >troff.output

A change to the list of sources, the printer, or the macro package can be made in
one place and take effect throughout the makefile. For large and complex pro­
cedures, this is a big advantage.

By placing the troff output in an intermediate file,5° you can avoid having to
reformat the document every time you want to print a copy. By making print
depend upon the file troff. output, you can be sure that you always get the
latest formatted version.

50 troff intermediate output files are not text files. They will produce strange results if you try to look at
them on the screen, and they should not be placed under secs. It would be a good idea to put the source files
under s cc s instead.

Revision A of 9 May 1988

Chapter 6 - Managing Your Files 8 3

By making troff. output depend on the list of sources (the expansion of the

$(SOURCES) macro), you can be sure that when you change any one of the
sources, make will rebuild troff. output, and the change will be reflected

when you print the document.

Selecting A Target You can select any target in the makefile by specifying it as an argument to

make on the command line. If a target does not appear in the list of dependen­

cies for the target you select (or the first target by default) make will not perfonn

it. So, you can record several independent procedures within the same makefile.

For example, this makefile can be used either to put new source files under

\.

s cc s, or to print a finished document.

Figure 6-20 A Makefile with Independent Procedures

Makefile: for printing a document
and putting sources under SCCS

* macro definitions

SOURCES title intro tutorial reference appendix

PRINTER Plw
MACROS ms

* target definitions

print: troff .output
lpr -$(PRINTER) -t troff.output &

troff.output: $(SOURCES)
tbl $(SOURCES) I eqn I troff -t -$(MACROS) >troff.output

* ---
put.under: SCCS
the next three lines begin with a tab

SCCS:

-secs create 'ls I grep -v troff.output'
-rm,*
-secs get *

mkdir SCCS
chmod 775 SCCS .

Using this makefile, if you type in make (or make print), you will get the

document (typing make does everything in the Makefile). If you type in

make put.under

your sources will be put under s cc s.

Revision A of 9 May 1988

84 Doing More with SunOS

6.5. Managing Disk
Storage

Looking at Disk Usage with
df

Space on the disk is a limited resource. So, it is a good idea to keep track of how
much space you use, especially if your syster11 is running with disk quotas.51

SunOS provides facilities to monitor your disk usage and locate big directories
that are candidates for housekeeping. Even so, it can be unwise to delete old files
willy-nilly. You never know what gems you may have socked away there. So,
the system also provides a facility to make tape archives of important files. Tape
archives are especially good for large files that you need to keep but don't often
use. If you make a tape archive before cleaning house, you can be sure that you
won't lose anything important. You can use df, du and ls -1 to locate such
files, and you can use tar to move them onto a tape for storage offline, as
described in the following sections.

df shows you the amount of space used up on each disk that is mounted (directly
accessible) to your system. It is very simple to use, just type

df

to see the capacity of each disk mounted on your system, the amount available,
and the percentage of space already used up.

Figure 6-21 df

Filesystems at or above 90% of capacity should be cleansed of unnecessary files.
You can do this either by moving them to a disk or tape that is less full using,
cp, and then remove them with rm. Or you can simply remove them outright.
Of course, you should only perfonn housekeeping chores on files that you own.

51 A disk quota is a limit on the amowit of space (information) a user is allowed to use on the disk at any
one time.

Revision A of 9 May 1988

Directory Usage and du

Chapter 6 - Managing Your Files 85

You can use du to display the usage of a directory and all its subdirectories (in
kilobytes).

du shows you the disk usage in each subdirectory. To get a list of subdirectories
in a filesystem (disk), cd to the pathname associated with that filesystem, and
run the following pipeline:

du I sort -r -n

For instance:

Figure 6-22 du

6.6. Making a Tape
Archive with tar

Sun386i users should refer to the
Sun386i SNAP Administration manual
for information on the SNAP backup
procedure.

This pipeline, which uses the reverse and numeric options of sort, pinpoints
large directories. Use 1 s -1 to look at the size (in bytes), and modification
times of files within each directory. Old files, or text files over lOOK bytes, often
warrant storage off-line.

The simplest and most complete method to make a tape archive is to:

1. Mount a fresh tape on the tape drive. If you don't know how to do this, see
your System Administrator or consult System Administration for the Sun
Workstation for details.

2. cd to a directory you wish to archive. If you wish to archive an entire
hierarchy of files, cd to the topmost directory in that hierarchy. tar will
archive the directory and all its subdirectories.

3. Type in the tar command as follows:

tar -cvf drive

The -c option tells tar to create a new tape archive and overwrite the pre­
vious contents of the tape. The v stands for verbose. tar tells you every­
thing that it is doing. The f tells tar to put the archive on the file (tape
drive) drive. Your System Administrator can tell you the name of a tape
drive to use.

Revision A of 9 May 1988

86 Doing More with SunOS

Looking at the Contents of a
Tape Archive

Extracting Files From a Tape
Archive

Tapes can be reused. If you do not wish to overwrite the previous contents, you
can use -r rather than -c. With -r, tar skips to the end of the previous
archive, and then adds files onto the end. If you want to conserve space on the
tape, you can use-u.52 With-u, tar replaces files whose contents have
changed with their newest version, adds new files onto the end, and leaves
untouched files alone.

drive can be a diskfile. Since tar output takes up less space than do text files, a
tape archive on disk can provide some space savings and a bit more convenience
than using an actual tape. For even more space reduction, run the tape archive
file, or tar.file through compact.53

To examine the contents of a tar tape archive, use the -t option:

tar -tvf drive

To search for a specific file on the tape, pipe the output oft ar -t through
grep.

To extract files from a tape archive, cd to the directory in which to place the file,
mount the tape, and then use the tar -x option:

tar -xvf drive filename ...

If you omit filename, tar extracts the contents of the entire tape. If you specify
a.filename, or a list of filenames, tar extracts the named file(s).

52 The -r and -u options do not work with quarter-inch cassettes. They only work with half-inch tape
drives. See the mt command for quarter-inch tapes.

53 The command uncompact restores the tarfile to its original state, and you can then use tar to retrieve
files from within the tarfile just like you would from a tape drive.

Revision A of 9 May 1988

7
More About Printing

More About Printing .. 89

7.1. Looking at the Queue with lpq .. 89

7.2. Removing Printer Jobs with lprm .. 89

7.3. Selecting a Printer lpr -P .. 90

7.4. Printing troff Output Files with lpr -t ... 90

7 .5. Printing Screen Dumps ... 90

7.6. Printing Other Graphics Displays .. 91

7 .1. Looking at the Queue
with lpq

Figure 7-1

7 .2. Removing Printer Jobs
with lprm

7
More About Printing

In Getting Started with SunOS: Beginner's Guide you learned how to print a file.
Printers are often in high demand, and are normally shared by a number of peo­
ple. To keep things running smoothly, the system feeds each request to the
printer on a first-come first-served basis. Requests that are waiting are kept in the
print queue.

To look at the queue on the printer you normally use, type in

lpq

(short for "line printer queue"). If the queue is empty, lpq will respond with:

no entries

If there are some entries, lpq will list them for you and indicate which one is
currently being printed.

The lpq Command

1 pq will also tell you if there's some problem printing out your file. Some of
the error messages lpq gives are described in the SunOS Reference Manual, or
you can type man lpq for the information.

If you decide not to print a job after all, you can remove it from the queue by typ­
ing in lprm followed by the job number, as shown by lpq:

~\sun ~ microsystems
89 Revision A of 9 May 1988

90 Doing More with SunOS

Figure 7-2 Removing Files with lprm

7 .3. Selecting a Printer
lpr -P

Figure 7-3

7.4. Printing troff
Output Files with lpr
-t

7 .5. Printing Screen Dumps

To remove all your jobs from the queue, use the - option:

lprm -

If the line for the printer is too long and there is another printer available to your
system, you can direct jobs to that other printer with the -Pprinter option of
lpr. Your System Administrator can tell you the names of other printers that
you can use. lpq and lprm also accept this argument.

Selecting a Printer

To print troff output files, use the -t option of lpr.

lpr -t troff .output

If you want to capture an image of the workstation screen on paper, use the fol­
lowing pipeline:

screendump I rastrepl I lpr -v &

screendump captures the image dot-for-dot, rastrepl increases its size, and
the -v option of lpr prints the resulting image. There is significant computa­
tion involved in each of these steps, so be sure to run this pipeline in the back­
ground.

Revision A of 9 May 1988

7 .6. Printing Other
Graphics Displays

Chapter 7 - More About Printing 91

lpr will print out a variety of graphics displays, depending upon the capabilities
of the printer you use. For more information, consult the SunOS Reference
Manual, and your System Administrator.

Revision A of 9 May 1988

A
Glossary

Glossary ... 95

A
Glossary

angle-brackets
Tenn for the characters < and >.

append
To add text or data onto the end of a file.

archive
A copy of a file or set of files, usually on tape, made for historical purposes
or for long-term storage.

background
A process that is running, but does not have control of the terminal from
which it was started, is said to be running in the background.

braces
Tenn for the characters { and } .

brackets
Tenn for the characters [and J •

built in
Adjective for a command that is part of a particular shell; it is literally "built
in" to the shell software. Such commands are only available when using the
particular shell that supports them. Contrast this with such commands as
ls, which are available for use with either shell.

C shell
A command interpreter for SunOS that provides filename substitution, alias
substitution, a history mechanism, variable substitution, command (output)
substitution, and job control. The C shell can interpret commands directly
from the tenninal, or from command files with a syntax modeled after the C
programming language.

child process
A process started from within a shell or another process.

contents
The text or data contained in a file.

daemon
A process which runs in the background, usually invisible to the user. Dae­
mons perfonn routine maintenance and low-level functions, s'uch as

~\sun ~ microsystems
95 Revision A of 9 May 1988

96 Doing More with SunOS

queueing up files for the printer and sending mail.

default
An assumed value, or an action taken when you omit an argument, com­
mand, or value.

dependency
A step within a procedure upon which a subsequent step depends. The step
must be completed before the latter can be performed properly. make uses
this notion to organize sets of SunOS commands, and do the minimum
amount of work required to perform a task or bring a set of object-files up to
date.

device
Typically a hardware peripheral supported by the system, and the software
that controls it. May also be a specialized software program. SunOS treats a
device as if it were a file. The programs that operate peripheral devices
reside in the directory I de v.

directory
A type of file that contains names and access information about other files,
including other directories. Directories are organized in a hierarchy, the root
of which is named I.

drive
(tape drive or disk drive). The hardware that performs the physical transfer
of data from the system onto a tape or disk, and vice-versa.

embedded
Contained within a file, within a line of text, or within a word. Usually
applied to commands or symbols that are surrounded by ordinary characters.

encrypt
To encode or scramble data to prevent unauthorized reading.

environment
General: to the extent that an interactive program can be customized, the
values of the various options, settings, and variables that are currently in
effect. Technical: the set of data inherited from the parent process and/or
passed along to child processes.

escape
A character, usually a backslash, indicating that the character following it is
to be interpreted as plain text, rather than as a symbol having special mean­
ing.

event
In history substitution: the text of a command-line contained in the history
list.

execute
To perform a set of instructions or program.

expansion
The value of a variable or macro. For instance, in the C shell the expansion

Revision A of 9 May 1988

Appendix A - Glossary 97

of the character - is the pathname of the user's home directory.

filename

file

The name of a file, directory, or device.

A portion of a mass-storage memory device, typically a disk, containing a
specific, named set of data. Generalized to include any source from which
data can be received or transferred within the system.

file type
A field in the permissions column of the 1 s -1 display that indicates
whether the file is a plain disk file, a directory, a device, or a symbolic link.

filter
A command or program that accepts text from the standard input, applies a
transformation rule (or rules) to that text, and produces text on the standard

output.

foreground
The process that has control of the terminal is said to be running in the fore­
ground. Processes that do not control the terminal are said to be running in
the background, or they may be suspended.

fork
By a shell or command: to start a new process and wait for it to finish before
proceeding.

group

job

key

link

A subset of users with access to the system. Members of a group may be
granted more complete access to files than the public at large. The permis­
sions that control group access to files.

A background process, running or stopped, under the control of the C shell.

A character string used to encode or decode a file by crypt.

A filename, or entry in a directory corresponding to a file. A hard link is a
direct entry. A symbolic link is a string that contains the name of the file it is
associated with.

macro
A string of text that is replaced by another, typically much longer, string
when interpreted by a shell or program.

makefile
A file containing instructions for make. Typically named makefile or
Makefile.

modification time
The date and time at which a file was last changed. A field in the directory
entry for a file that can be altered directly using the touch command.

Revision A of 9 May 1988

98 Doing More with SunOS

monitor (v.)
To maintain a record of changes to a file, to assure that only one user at a
time .can make changes, and to assure that the most recent version of a file
can quickly be restored.

multitasking
Performing multiple tasks at once. The ability of the system to handle the
work of several simultaneous users or windows.

noninteractive
A program that accepts no input from, and displays no output on, the termi­
nal.

object-file
A file containing the output, typically not text, of a compiler, plotting pro­
gram, or other such program.

off-line
Disconnected from the system.

operation
The action of the system or program to accept input, transform data, and pro­
duce output.

owner
The user to whom a file belongs, who can alter its name, access permissions,
and other attributes.

pattern
A string that includes special characters that, when interpreted, correspond to
a set of possible text strings.

parent directory
A directory containing the current directory, or directory of interest.

parent process
A process, from which the current process of interest was started.

permissions
Attributes of a file that determine whether a specific user has access to read,
write on (or delete), or execute (use as a command), a file.

pipe
The vertical bar character I . The mechanism by which the system passes
the output of one command as direct input to another command.

pipeline
A set of commands connected by pipes. The intermediate commands are
typically filters.

process
General: A command that is being performed by the system. Each process
has a unique number. The mechanism by which the system keeps track of a
single task among the many requested of it at any given time. Technical: a
set of instructions and data under the control of the system's memory

~\sun ~ microsystems
Revision A of 9 May 1988

Appendix A - Glossary 99

management facilities.

public
The entire set of users who have access to the system. The permissions that
control public access to files.

range
A set of characters specified by the first and items in a list. For instance, the
entire upper-case alphabet can be specified as: A-Z.

redirect
The standard input, standard output, and standard error output of a command
is normally received by, or sent to, the terminal. To explicitly indicate a file
from which, or to which the command is to send or received data using sym­
bols such as > and <.

regular expression
The method for specifying search patterns for grep, and editors such as vi.

resources
Refers to the computation capacity and speed, available memory, (and some­
times the peripheral devices) available to the system.

return code
The value returned (to its parent) by a process upon completion.

robust
Programs: Able to perform reliably under a variety of conditions, or with a
variety of (possibly unexpected) data. Syntax: The degree to which a set of
rules allows for expression of a wide range of information.

routine
A set of commands or instructions that together perform a complete task.

s-file
An sccs history file in the SCCS subdirectory.

shell
A programmable command interpreter.

size
The number of characters in a text file.

standard error
The channel through which a command sends diagnostic messages.

standard input
The channel through which a command receives data.

standard output
The channel through which a command sends results.

state
The current condition of a process.

string
A set of characters terminated on either end by a tab, space, newline, or

Revision A of 9 May 1988

100 Doing More with SunOS

other delimiting character.

subdirectory
A directory that resides within another. For instance, /usr is a subdirectory
of/.

sub shell
A shell invoked from within another shell or program.

superuser

rule

A mnemonic for the su command, which allows a user to temporarily adopt
the ID of another user on the system, typically root. Also a term for the
Operator or System Administrator's userid, root.

A list of SunOS commands for make to perform in order to complete a step,
or produce a target file.

syntax
General: the format for a legal command and its arguments. Technical: the
rules by which input is interpreted.

target
An object file to be produced, or label for a list of SunOS commands to be
performed, by make.

user
A person with an account on the system who can log in, issue commands,
and create files.

userid
The login name, or ID number assigned to each user by the system adminis­
trator.

variable
A named location in which a data value (or list of values) is temporarily
stored in memory.

Revision A of 9 May 1988

B
C Shell Scripts

C Shell Scripts .. 103

Pathname Processing Primitives .. 105

Return Codes ... 106

Exit.. 109

B
C Shell Scripts

You can put a sequence of Sun OS commands in a file called a script. By using
the source filename command, or by setting the execute permissions and typ­
ing in the filename as if it were a command, you can tell the C shell to read and
perform commands in the file.

NOTE We recommend that you use the Bourne shell for writing shell scripts. The
Bourne shell has a simpler command syntax.faster execution time, and provides
better security. Refer to Appendix D for information about writing Bourne shell
scripts.

C Shell Invocation

C shell scripts do not serve the
same function as make, which is
useful for consistently performing a
set of operations on related files.
While scripts can be written to do
this, the C shell is more general in
scope. Scripts do not check for
dependencies, for instance. And,
there are many things that you can
do with scripts, such as prompting
for input from the terminal, that are
not practical using make.

Figure B-1

Command-Line Arguments in
Scripts

This appendix outlines features that you can use when writing scripts for the C
shell.

When a script is invoked by name, the system looks at the very first line of the
file to decide how to run it:

o If the first line of the script starts with a # ! , followed by the name of a pro­
gram, the system uses that program to perform commands in the script.

o If the first line starts with a# (hash sign), the system uses the C shell to run
the script.

o If the first line does not start with a# (hash sign), the system uses the
Bourne shell to run the script.

To run a script with no C shell startup processing, the first line should be of the
form:

Starting a C Shell Script

[# ! csh -f script J

To pass command-line arguments as parameters to a script, type its name, fol­
lowed by any arguments you wish. The C shell places words following the name
in the variable argv, the arguments list. Command-line arguments are treated
as words contained in this variable, or you can use the equivalent variables: $1
through $n where n is the number of arguments in the list.

~\sun ~~ microsystems
103 Revision A of 9 May 1988

104 Doing More with Sun OS

Variables in Scripts

Figure B-2

Figure B-3

A number of notations are available for accessing words in variables, and other
variable attributes. The notation:

$?name

expands to 1 if a named variable exists (using the set command), or to 0 other­
wise.

The $? Notation

All other forms of reference to undefined variables cause errors.

The notation

$#name

expands to the count of words in the variable name:

The $ # Notation

There is a special C shell variable, $ $, which represents the process number of
the shell itself. Why would you want a variable like this? Because the shell's
process number is unique on the system, you can use it as part of a file's name if
you want to create unique temporary files from inside the shell. Part of your
script might create a file called I trnp . $ $, for example; that file will not be
confused with any other which already exists.

The redirection characters:

$<

indicate that a line is to be read from the terminal. To write out the prompt yes
or no? without a newline and then read the answer into the variable a:

echo -n "yes or no?"
set a=($<)

In this case $#a would be 0 if either a blank line or (Ctrl-D l were typed in
response.

~\sun ~ microsystems
Revision A of 9 May 1988

Expressions

File Enquiries

Pathname Processing
Primitives

Appendix B - C Shell Scripts 105

A minor difference between $ n and $ ar gv [n] is that $ ar gv [n] yields an
error if n is larger than the word count$ #argv, while $n never yields a
subscript-out-of-range error. This is for compatibility with older shells.

It is never an error to give a subrange of the form var [n-] . If there are less than
n words in the given variable, then no words are selected.

A range of the form var [m-n] likewise returns a value without an error, even
when m exceeds the number of words, provided that n is in range.

All of the arithmetic operations of the C language are available in the C shell
with the same precedence that they have in C. These operations are useful for
evaluating expressions in branches and loops. The operations == and ! = com­
pare strings, and the operators & & and I I implement the logical and and or
operations, respectively. The operators=- and ! - are similar to== and ! =,
allowing for pattern matching as with filename substitution.

The expression:

-e filename

returns 1 if the file exists, and 0 otherwise. Similar primitives provide other
tests:

-r 1 if read-access is allowed for the user running the script.

-w 1 if write-access is allowed for the user.

-x 1 if execute-access is allowed.

-o 1 if the user owns the file.

- z 1 if the file has zero length.

- f 1 if a plain file.

-d 1 if a directory.

There are also primitives to apply to pathnames to strip off unneeded com­
ponents:

: t (tail) removes all but the rightmost component (or base name) of the path­
name.

: r (root) removes suffixes beginning with a dot (.).

: e (end) removes prefixes ending with a dot.

: h (head) removes the last component, leaving the pathname of the directory in
which the file resides.

Here's an example of how these apply to a file:

If you had a file called /usr/ include/ sys/types. h, then : t would
remove all but types. h; : r would leave you with
/usr I include/ sys/types; : e would leave you with just h; and : h
would give you /usr/include/sys.

4}\sun
~ microsystems

Revision A of 9 May 1988

106 Doing More with SunOS

Return Codes

Sample C Shell Script

Figure B-4

Basic Control Structures: if
and foreach

It is possible to test whether a command tenninates nonnally by using a primitive
of the form { command } , which returns 1 if the command exits nonnally (with
exit status O), or O if the command tenninates abnormally (with a nonzero return
code).

If more detailed infonnation about the status of a command is required, it can be
executed and the variable status examined in the next command. Since every
command returns a value to status, you must save values of interest on the
very next line of the script:

set checkpoint=$status

where checkpoint is a suitable variable name.

The following script, copyc, copies files named as arguments into a backup
directory:

A Sample C Shell Script
,

copyc copies files named on the command line
#to the directory -;backup if they differ from the files
already in -;backup

set noglob
foreach i ($argv)

end

if ($i !- *.c) continue #not a .c file so do nothing

if (! -r -;backup/$i:t) then
echo $i:t not in backup ... not cp\'ed
continue

endif

cmp -s $i -;backup/$i:t #to set $status

if ($status != 0) then

endif

echo new backup of $i
cp $i -;backup/$i:t

This script uses the foreach command, which causes the C shell to execute the
commands between it and the corresponding end with the named variable taking
on each of the values given between (and) . The named variable - in this case
i - is set to successive words in the list. Within this loop you can use the
break command to stop executing the loop and continue to tenninate one
iteration and begin the next. After the f oreach loop, the iteration variable (i
in this case) has the value it had during the last iteration.

The variable noglob is set to prevent filename expansion from being perfonned
on members of argv. This is a good idea, in general, if the arguments to a C
shell script are filenames that have already been expanded or if the arguments

Revision A of 9 May 1988

Introducing Comments with #

Other C Shell Control
Structures

Appendix B - C Shell Scripts 107

may contain filename expansion metacharacters. It is also possible to quote each
use of a $ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form:

if (expression) then
comma.nd

endif

The placement of the keywords here is not flexible. The word then must appear
on the same line as if, when used with a block of commands.

The C shell does not accept the formats:

if (expression)
then

or

if expression) then command endif

For individual conditional commands, the C shell has another form of the if
statement:

if (expression) command

which can also be written as

if (expression) \
command

The newline is escaped here for the sake of appearance. The command must not
involve I , & or ; and must not be another control command. The final \ must
immediately precede the end-of-line. This is the only form of the if command
that can be used within an alias definition.

The more general if statement also admits a sequence of else-if pairs fol­
lowed by a single else and an endif.

if (expression) then
commands

else if (expression then
commands

else
commands

endif

The character# introduces a C shell comment in a script (but not from the termi­
nal), and the C shell ignores all subsequent characters the line.

The C shell also has the control structures while and switch that are similar
to those in C.

•\sun
• microsystems

Revision A of 9 May 1988

108 Doing More with SunOS

Here Documents

while (expression
commands

end

and

switch (word

case str 1:
commands
breaksw

case str n:
commands
breaksw

default:
commands
breaksw

endsw

See the csh manual page for details. C programmers should note that breaksw
exits from a switch, while break exits a while or foreach loop.

Finally, csh allows a goto statement, with labels looking as they do in C, that
is:

loop:
commands
goto loop

A here document is a special notation used to pass instruction along to com­
mands that nonnally run interactively. The here document begins with a < <eot
and ends with a line containing eot by itself. eot can be any string.

Here is a script that runs ed to delete leading blanks from every line in each file
in the argument list. In this case, the eot string is "woof':

deblank -- remove leading blanks
foreach i ($argv)
ed - $i << 'woof'
1,$sr[J*//
w

q
'woof'
end

(The brackets in the script contain a tab and a space.)

The notation<< 'woof, means that the standard input for theed command is
the text in the C shell script file up to the next line consisting of exactly
'woof'. The fact that the woof is enclosed in quote characters prevents the C

Revision A of 9 May 1988

Catching Interrupts with
onintr

Exit

Appendix B - C Shell Scripts 109

shell from substituting variables on the intervening lines. In general, the C shell
uses the word following<< to terminate the text to be given to the command. If
any part of the word following the < < is quoted, these substitutions are not per­

formed. In this case, since the form 1, $ was used in the editor script, you
needed to ensure that the $ is not variable-substituted. You can also ensure this
by preceding the$ here with a\, for instance:

1,\$sr[J*//

but quoting the woof terminator is a more reliable way of achieving the same
effect.

If your script creates temporary files, you can use onintr to catch interrupts, so
that the script can delete them before halting.

onintr label

where label is a label in your program that is followed by your housekeeping

commands. If the C shell receives an interrupt, it performs a goto label, and
executes those commands.

You can also use the exit command (which is built in to the C shell) toter­
minate the script. If you wish to exit with a nonzero status, do the following:

exit (status)

where status is the status you want to exit with.

Revision A of 9 May 1988

c
C Shell Special Characters

C Shell Special Characters .. 113

c
C Shell Special Characters

Characters with special meaning to the C shell:

? Single character wild card.

* String wild card, zero or more characters.

Abbreviation for current working directory.

Abbreviation for the parent of the current directory.

Abbreviation for your home directory.

user Abbreviation for the home directory of user.

[...] Matches any single character listed within the brackets.

[x - y] Matches any character within the range of x and y.

{ str, ... } Grouping. Matches each str successively. Filename substitution is
applied to each str before matching occurs. Thus, { x, *y*,? z *}
matches a filename x, all filenames containing the letter y, and all
filenames having z as the second character. Groups enclosed with
braces can be nested.

& Places the command in the background.

I Ctrl-Z I Stops the foreground job, placing it stopped in the background.

%[n] Brings the current (stopped) job, or the specified background job to
the foreground.

%[n] & Continues, in the background, the current or specified stopped job.

>filename

>!filename

~\sun ~ microsystems

Redirects the standard output to filename. If.filename already exists,
its previous contents are lost. When set, the shell variable
no clobber prevents redirection to existing files or character spe­
cial devices.

Forces the standard output to.filename, even when no clobber is
set.

113 Revision A of 9 May 1988

114 Doing More with SunOS

>&filename
Routes diagnostic (standard error) output to filename, along with the
standard output.

>& ! filename

>>filename

Forces diagnostic and standard output to filename.

Appends the standard output to filename. When noclobber is set,
the file must already exist.

>>!filename
Forces the standard output to filename, even when no clobber is
set. Creates a new file if necessary.

>>&filename
Appends the diagnostic as well as standard output to filename. When
noclobber is set, the file must already exist.

> >& ! filename
Forces appending of diagnostic and standard output to filename, even
when noclobber is set.

cmd I cmd
Pipe. Uses the standard output of the left-hand cmd as standard input
for the right-hand cmd.

cmd I& cmd
Uses both standard and diagnostic output of the left-hand cmd as
standard input for the right-hand cmd.

(...) Command grouping. Commands and pipelines surrounded by
parentheses are executed in a subshell and treated as a unit by the
current C shell.

(...) >& filename

<filename

Redirects the standard output (if any) and the diagnostic output of
the enclosed command(s) to filename. This is especially useful if the
enclosed commands redirect the standard output to a file (thus send­
ing the standard output and the standard error to separate destina­
tions).

Opens filename as the standard input.

cmd << word
(Here document). Indicates that a command (typically interactive) is
to accept its commands from the same device or file (usually a script)
as the shell. word is interpreted literally as the end-of-input mark for
the command. The C shell parses, but does not execute, each text
line between the here document and a line containing word by itself.
After applying command, filename, and variable substitution, the C
shell passes each line on to cmd. To suppress all substitution,
include a \, ", or ' in word.

~~ S ll Il Revision A of 9 May 1988 ~ micros vs terns

Appendix C-C Shell Special Characters 115

Separates commands on one input line.

\ At the end of a line, escapes the newline character and continues the
command to the next input line.

\ Escape the special meaning of the character it precedes.

" "

The C shell treats the enclosed text as one word, preventing history
and variable substitution.

The C shell treats the enclosed text as one word, breaking words only
at enclosed newlines.54 History and variable substitution is per­
formed before escape characters are interpreted.

'command '
Replaces the backquoted command or pipeline (including the
backquote marks) with its output. Output is broken into words at
blanks, tabs and newlines, except for the final newline. Unless the
right-hand backquote is followed by a space, the last word of the
substitution is prepended to the following word on the command
line.

Escaped history substitution event designators and word designators (described
below) can be used to indicate command line arguments within an alias
definition.

Substitutes the string r for the string l in the previous command line.
The final " is required only if history substitution modifiers are
appended.

Begins a history substitution. To escape its special meaning, precede
the ! with a backslash(\). A ! is also escaped when followed by a
blank, tab, new line, (or =.

The following designators select an event (command line) from the history list.
Word designators and modifiers can be appended for command-line editing.

! ! The previous command.

! n Command line number n.

! -n Selects the event whose number is n less than the current one.

! str The most recent command beginning with str.

! ?str[?] The most recent command containing str. The closing question
mark is only required when word designators or modifiers are
appended.

! * All arguments from the previous command, but not argument zero
(the command name).

54 An enclosed newline is a carriage return within quotes; ie., an escaped newline.

Revision A of 9 May 1988

116 Doing More with SunOS

! ,. The first argument from the previous command. If, for instance, the
command was echo first, then ! ,. would expand to first.

! $ The last argument from the previous command.

! : n The n 'th argument from the previous command.

! # The contents of the current command line typed in so far.

! { str} . . . Restrict the event designation to str; text following the brackets is
appended to the last word of the expansion after substitution takes
place.

Word designators can be appended to the history substitution character (! for the
previous event) to a quick substitution, or to an event designator.

: * All arguments, except argument zero.

The first argument .

: $ The last argument.

: n The n 'th argument.

: % The word matched by most recent ! ? search.

: x-y Argument x through argument y.

: -y abbreviates : 0-y.

: x* Argument x through the last argument.

: x- Argument x through the next-to-last argument.

: # The contents of the current command line typed in so far.

The following modifiers can be used in any sequence to modify a selected event
or word. A colon is required to separate modifier(s) from event or word designa­
tors.

[:]p Prints the new command but does not execute it.

[:]h Removes a trailing pathname component, leaving the head.

[:]t Removes all leading pathname components, leaving the tail.

[:]r Removes a filename extension (.xxx).

[:]e Removes all but the extension.

[:]s/l/r/ Substitutes r for l. l is a literal string, not a regular expression.
Any character may be used as the delimiter in place of I. The char­
acter & in the right hand side is replaced by the left hand string. A
null I uses the previous string either from a l or from a ? event
search.

[:] & Repeats the previous substitution.

[:]q Quotes the substituted words, preventing further substitutions.

~~ S ll fl Revision A of 9 May 1988 ~ microsystems

[:]x

:gm ...

Appendix C - C Shell Special Characters 117

Like : q, but breaks words at blanks, tabs and newlines.

Global prefix. When prefixed any of the above modifiers, m, the
modifier(s) apply to all words in the specified event. Normally, each
word must be modified separately.

After the input line is aliased and parsed, and before each command is executed,
the C shell performs variable substitution on words that start with an unescaped
$,according to the list below. A$ is escaped by preceding it with a backslash
(\),or when followed by a blank, tab, or end-of-line.

Shell variables have names consisting of up to 20 letters, digits and underscore
characters, starting with a letter.

Environment variables can be expanded but not modified.

$var Is replaced with the value of var.

$ {var} . . . The brackets indicate that the enclosed string is the variable name.
The value of the named variable is prepended to the text that follows
on the command line.

$ {var [selector] }
Select words from within var. selector can be one of:

n

x - y

x -

- y

*
$var

a number.

two numbers separated by a-to specify a range.

Word x through the last word.

The first word through wordy.

all words in the value.

the value of another variable, in which case variable sub­
stitution is applied to the selector first, and then to the
entire word.

$#var The number of words in the variable.

$ {#var} Same as $#var

$ 0 The name of the file from which command input is being read. An
error occurs if the name is not known.

$n Then 'th word in the argument list; equivalent to $argv [n] .

$ { n} Same as $ n .

$* All words in the argument list; equivalent to $argv [* J.
$?var

$ { ?var} replaced with 1 if var is set, or O if not.

$? 0 replaced with 1 if the current input filename is known, 0, otherwise.

$$ Is replaced with the process ID (PID) of the (parent) shell.

• S ll fl Revision A of 9 May 1988
~ microsystems

118 Doing More with SunOS

$< replaced with text taken from the standard input, with no further
interpretation. Used to read from the keyboard in a C shell script.

The modifiers [:]h, [:]t, [:]r, [:]q, and [:]x can be applied to the substitutions
above. See Modifiers under History Substitution, above, for a description.

If braces { ... } appear in the variable substitution, modifiers must be enclosed
within them.

The current implementation allows only one modifier within each variable sub­
stitution.

The following variable substitutions can not be modified: $?, $$,and $<.

Expressions appear within the @, exit, if, and while builtin commands.

Null or missing terms are interpreted as 0.

Results of all expressions are strings that represent decimal numbers. Results of
logical expressions are 1 (for true) or O (for false).

(. . .)

= =

=
=
! -

<

< =

>

> =

I I

&&

{ ... }

Parentheses indicate grouping of operators and terms within an
expression, overriding the standard precedence of operators.

True if the string on the left is equal to the string on the right (after
all substitutions are performed).

True if the string on the left is not equal to the string on the right.

True if the string on the left is matched by the pattern on the right.

True if the string on the left is not matched by the pattern on the
right.

True if the number on the left is less than the number on the right.

True if the number on the left is less than or equal to the number on
the right.

True if the number on the left is greater than the number on the right.

True if the number on the left is greater than or equal to the number
on the right.

Logical or connective.

Logical and connective.

Command successful. True if the command surrounded by brackets
exits with status code O.

An operator of the form

flag filename
is true if the attribute flag applies to filename, with respect to the
current user. flag can be one of:

-r read access

Revision A of 9 May 1988

Appendix C - C Shell Special Characters 119

-w write access

-x execute access

-e existence

-o ownership

-z zero size

-£ plain file

-d directory

! flag true if flag does not apply.

If the file does not exist, or is inaccessible, then all inquiries yield
false as a result.

+ Addition.

Subtraction.

* Multiplication.

I Division.

% Remainder after division.

Ostr A string with a leading zero is interpreted as an octal numeral.

<< Bitwise shift left operator.

>> Bitwise shift right operator.

Bitwise or operator.

Bitwise exclusive or operator.

& Bitwise and operator.

•\sun ~~ microsystems
Revision A of 9 May 1988

D
Bourne Shell Scripts

Bourne Shell Scripts ... 123

Bourne shell scripts do not serve
the same function as make, which is
useful for consistently performing a
set of operations on related files.
While scripts can be written to do
this, the Bourne shell is more gen­
eral in scope. Scripts do not check
for dependencies, for instance.
And, there are many things that you
can do with scripts, such as prompt­
ing for input from the terminal, that
are not practical using make.

NOTE

Bourne Shell Variables

D
Bourne Shell Scripts

You can use the Bourne shell to perfonn a set of SunOS commands contained in
a file called a script.

To run a Bourne shell script (for which you have execute pennission), type in its
filename as if it were a command. When you do, the system looks at the very
first line of the file to decide which Shell should run the script:

o If the first line does not start with a# (hash sign), the system uses the
Bourne shell to run the script.

o If the first line starts with a # (hash sign) and is not followed by a ! (excla­
mation mark), the system uses the C shell to run the script.

o Finally, if the first line of the Shell script starts with a # ! combination and
is followed immediately by a name, the system looks for a program of that
name to run the Shell script. If you supply arguments on the command line,
these are passed along to variables in the Bourne shell called arguments.
The first argument after the name of the script is placed in variable 1. The
second is placed in variable 2, and so forth.

You can often simplify testing of Bourne shell scripts (or commands to run within
them) by using the Bourne shell interactively. To do so, type in the command
/bin/ sh, and enter commands as described in this Appendix. Use (Ctrl-D I to
exit and return to the C shell. Most of the examples below make use of the
Bourne shell interactively, as well as within scripts.

The Bourne shell provides string-valued variables. Variable names begin with a
letter and consist ofletters, digits and underscores. You may assign values to
variables by writing the variables name, an equal sign, and a value (with no
spaces between). For example:

t$ r$er~fre4····box=tnQQ~·····~cqe+oo.o.g j

assigns values to the variables user, box and acct. To set a variable to the null
string, you can say:

l ~nE.~e~$i'" J
The value of a variable is substituted by preceding its name with $ - for

~~sun ~~ microsystems
123 Revision A of 9 May 1988

124 Doing More with SunOS

Bourne Shell Initial Variables

example:

You can use variables to provide abbreviations for strings that are used fre­
quently throughout a script. A script containing the following lines

[_:_:_~_:_~_me_~_:_r_e_d_/_b-in~~~~~~~~~~~~~~~~~~----l
moves the file pgm from the current directory to the directory lhome!fredlbin. A
more general notation is available for parameter (or variable) substitution, as in:

[~e_c_h_o~$~{u_s_e_r_}~~~~~~~~~~~~~~~~~~~~~~___.J
which is equivalent to

(echo $user

and is used when the parameter name is followed immediately by a letter or
digit:

J

[
tmp=/tmp/ps J
~.p_s~>-$_{_t_m_p_}_a~~~~~~~~~~~~~~~~~~~~~~~--
directs the output of ps to the file /tmp/psa.

Variables can be concatenated onto each other. If the variable x is set to hello,
then $x. foo will be equal to hellofoo.

Except for $?, the variables defined in table D-1 are set initially by the Bourne
shell. $? is set after executing each command.

~\sun ~ microsystems
Revision A of 9 May 1988

Table D-1

Variables with Special Meaning
to the Bourne Shell

The file . profile in your home
directory is the setup file for the
Bourne shell - equivalent to the
combination of the • c shrc and
. login files for the C shell.

Appendix D - Bourne Shell Scripts 125

Variables Initialized by the Bourne Shell

Variable Explanation

$? The exit status (return code) of the last command executed, as a
decimal string. Most commands return a zero exit status if they
complete successfully, otherwise a non-zero exit status is returned.

$ # The number of arguments(in decimal).
$ $ The process number of this Shell (in decimal). Since process

numbers are unique among all existing processes, this string is fre­
quently used to generate unique temporary filenames. For example,
tmp . $ $ will not be confused with any other file.

$! The process number of the last process run in the background (in
decimal).

$- The current Bourne shell flags, such as -x and -v .

Some variables have a special meaning to the Bourne shell; avoid them in gen­
eral use.

$MAIL When the Bourne shell is used interactively, it looks at the file
specified by this variable before it issues a prompt. If the specified file
has been modified since it was last looked at, the Bourne shell prints
the message you have mail before prompting for the next command.
This variable is typically set in the file . profile in your home direc­
tory. For example:

MAIL=/var/spool/mail/fred

$HOME Your home directory; this variable is also typically set in . profile.

$PATH A list of directories that contain commands (the search path). Each
time the Bourne shell executes a command, a list of directories is
searched for an executable file by that name. If PATH is not set, then
the current directory, /bin, and /usr /bin are searched by default.
$PATH consists of directory names separated by : . For example,

$PS1

$PS2

PATH=:/home/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :),
/home/ fred/bin, /bin, and /usr /bin are to be searched in that
order. This allows you to have your own private commands accessible
independent! y of the current directory. If the command name contains
a I, then this directory search is not used.

The primary Bourne shell prompt string, by default, ' $ '.

The Bourne shell prompt when further input is needed, by default,
'> '.

$ IFS The set of characters to be interpreted as blanks when parsing com­
mand lines.

t~ S ll fl Revision A of 9 May 1988
~ microsystems

126 Doing More with SunOS

The test Command

[• • • J alternative form of
the test command

Although the test command is not part of the Bourne shell, scripts frequently
use it. test can be used to check on the status of files, to compare strings and
algebraic expressions, and to perform integer calculations. For instance:

test -f file

returns zero exit status if file exists and non-zero exit status otherwise. In general
test evaluates a predicate and returns the result as its exit status. Here is the
list of things you can test for.

-bfile

-cfile

-dfile

-f file

-g file

-hfile

-kfile

-1 string

-n string

-r file

-s file

-t [fildes]

-w file

-xfile

-z string

true if file exists and is a block special device.

true if file exists and is a character special device.

true if file exists exists and is a directory.

true if file exists and is not a directory.

true if file exists and is setgid.

true if file exists and is a symbolic link.

true if file exists and is sticky.

the length of string.

true if the length of string is nonzero.

true if file exists and is readable.

true if file exists and has a size greater than zero.

true ifthe open file whose file descriptor number isfildes (l by
default) is associated with a terminal device.

true if file exists and is writable.

true if file exists and is executable.

true if the length of string is zero.

string-1 = string-2
true if the strings string-1 and string-2 are equal.

string-1 ! = string-2

string

nl -eq n2

true if the strings string-1 and string-2 are not equal.

true if string is not the null string.

true if the integers nl and n2 are algebraically equal. Any of the
comparisons -ne, -gt, -ge, -lt, or -le may be used in place
of-eq, where ne means "not equal," -ge means "greater than
or equal to," -lt means "less than," and so on.

You can also call test by surrounding the expression to be tested with brackets
([J). (The left bracket is a command name, the right bracket is a argument sig-
nifying the end of the expression.) This form is most often used with the if
command described later on.

Revision A of 9 May 1988

Getting Started - A Simple
Procedure

Control Flow in the Bourne
Shell- for

General form of the for loop

Appendix D-Bourne Shell Scripts 127

Here is a very simple Bourne shell script to look up names in a list of names and
telephone numbers contained in a file called names. list. Let's call the
lookup script name:

This is about as simple as you can get. Let's run the name procedure looking for
people called Ted:

Later on we will show a more sophisticated version of name, and expand on this
procedure to demonstrate other features of the Bourne shell.

A frequent use of Bourne shell procedures is to loop through the arguments ($1,
$2, . .) executing commands once for each argument. Here's an
expanded version of the name procedure from above. The original version of
name can only look for one person's name. Now we want to expand it to look
for more than one name at a time. Let's look at the new version:

Here we set a variable called person to the value of each argument, one at a
time, then we call out the value of person in the grep command. Now we can
look for more than one name at a time:

Ben··· Tortcake
Madge Hittite

The for loop notation is recognized by the Bourne shell and has the general
form

for name in wl w2 ...
do command-list
done

A command-list is a sequence of one or more simple commands separated or

Revision A of 9 May 1988

128 Doing More with SunOS

Control Flow in the Bourne
Shell- case

tenninated by a newline or semicolon. Furthennore, reseived words like do and
done are only recognized following a newline or semicolon. Name is a Bourne
shell variable that is set to the words w 1 w2 ... in tum each time the command-
list following do is executed. If in w 1 w2 ... is omitted, then the loop is exe-
cuted once for each argument; that is, in $*is assumed.

An example of the use of the for loop is the create command whose text is

for i do >$i; done

(Remember that cat >filename creates a file where none exists.)55 The com­
mand:

ensures that two empty files alpha and beta exist and are empty. Use the nota­
tion >file on its own to create or clear the contents of a file. Notice also that a
semicolon (or newline) is required before done.

The case notation provides a multi-way branch.For example, suppose you
wrote a script called append which contained the following lines:

case $# in

esac

1)
2)

cat >>$1 ;;
cat >>$2 <$1 ,,

*) echo 'usage: append [from] to' ;;

esac, you may have noticed, is case backwards.

When called with one argument as

$ # is the string "1" and the standard input is copied onto the end of file using
the cat command. To append the contents of filel onto file2, say:

If the number of arguments supplied to append is other than 1 or 2, a message is
displayed indicating proper usage.

The general fonn of the case command is:

55 In fact, in the Bourne shell, you don't need cat; typing> filename by itself creates a file.

~\sun ,~ microsystems
Revision A of 9 May 1988

A word of caution: no check is
made to ensure that only one pat­
tern matches the case argument.
The first match found defines the
set of commands to be executed.
In the example the commands fol­
lowing the second * are never exe­
cuted.

Matching Multiple Patterns in
One Case

case word in
pattern-]) command-list-1; ;
pattern-2) command-list-2; ;

esac

Appendix D - Bourne Shell Scripts 129

The Bourne shell attempts to match word with each pattern, in the order in which
the patterns appear. If a match is found the associated command-list is executed,
and execution of the case is complete. Since * is the pattern that matches any
string, you can use it for the default case.

case $# in
*)
*) . .

esac

Another example of the use of the case construction is to distinguish between
different forms of an argument. The following example is a fragment of a cc (C
compiler) command:

for i
do case $i in

done

-[ocs]) . ;;
-*) echo 'unknown flag $i' ;;
* . c) I lib I c 0 $ i . . . I I

*) echo 'unexpected argument $i' ,,
esac

What does this do? It checks for the options (or flags) -o, -c, or -s; if it gets
some other flag, it reports it as unknown. It checks to see if it gets a file ending
in . c and processes it when it does; if it gets anything else it reports an unex­
pected argument.

To allow the same commands to be associated with more than one pattern the
case command provides for alternative patterns separated by a' I'. For exam­
ple:

case $i in
-xl-y)

esac

is equivalent to

case $i in
-[xy])

esac

The usual quoting conventions apply, so that

case $i in
\?)

will match the character ? .

~\sun ~ microsystems
Revision A of 9 May 1988

130 Doing More with SunOS

Here Documents in the Bourne
Shell

The name Command Using
Here Document

Sometimes a Shell procedure requires data. Instead of having the data in some
file somewhere in the system, the data can be included as part of the Shell pro­
cedure. Such a collection of data is called a here document- the data (docu­
ment) is right here in the Shell procedure. One advantage of a here document is
that Shell parameters can be substituted in the document as the Shell is reading
the data.

The general form of a here document is like this:

lines of Shell commands

command-name < < end-marker
lines of data
belonging to the
here document

end-marker

more lines of Shell commands

Let's revisit the name procedure discussed in earlier sections. Instead of having
the names and numbers in one file and the Shell procedure in another file, you
can keep both the procedure and the list in the same file - that is, in the pro­
cedure. Here's another version of the name command:

In this example the Bourne shell takes the lines between <<woof and woof as
the standard input for grep. The string woof is arbitrary, the document being
terminated by a line that consists of the string following < <.

Now you'll notice that in this version of name we 're back to being able to only
look up one name at a time. We could combine the multiple-name version with
the here-document version:

Revision A of 9 May 1988

Parameter Substitution in Here
Documents

Appendix D - Bourne Shell Scripts 131

The problem with this approach is that the Shell reads up the list of names every
time around the for loop. This could become excruciatingly slow. In a later
section we show another version of name using temporary files for faster perfor­
mance.

Parameters are substituted in the here document before it is made available to
whatever command as illustrated by the following procedure called edg (ed glo­
bally).

ed $3 <<woof
g/$1/s//$2/g
w

woof

Then the command line:

and changes all occurrences of string] infile to string2. You can prevent substi­
tution by using \to quote the special character $ as in

ed $3 <<woof
1,\$s/$1/$2/g
w

woof

This version of edg is equivalent to the first except that ed displays a ? if there
are no occurrences of the string $1. Quoting the tenninating string prevents sub­
stitution entirely within a here document, for example:

Revision A of 9 May 1988

132 Doing More with SunOS

Control Flow in the Bourne
Shell- while

Control Flow in the Bourne
Shell- if

grep $i <<\#

In this case the shell does not try to replace the #with anything.

The document is presented without modification to grep. If parameter substitu­
tion is not required in a here document, this latter form is more efficient.

The actions of the for loop and the case branch are determined by data avail­
able to the Bourne shell. A while or until loop and an if then else
branch are also provided whose actions are determined by the exit status returned
by commands. A w hi 1 e loop has the general form

while command-list-]
do command-list-2
done

The value tested by the while command is.the exit status of the last simple
command following while. Each time round the loop command-list-1 is exe­
cuted; if a zero exit status is returned then command-list-2 is executed; otherwise,
the loop terminates. For example,

while test $1
do ...

shift
done

is equivalent to

for i
do ...
done

shift is a Bourne shell command that renames the arguments $ 2 , $ 3 ,
. . . as $ 1, $ 2 , . . . and discards $1.

Another kind of use forthe while/until loop is to wait until some external
event occurs and then run some commands. In an until loop the termination
condition is reversed. For example,

until test -f file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before
trying again. Presumably another process will eventually create the file.

A general conditional branch of the form

if command-list
then command-list
else command-list
fi

is also available to test the value returned by the last simple command following

•\sun ~ microsystems
Revision A of 9 May 1988

Appendix D-Boume Shell Scripts 133

if.

We can illustrate a very simple use of the if command by expanding on our
name procedure from before. The relevant change is in the first few lines
(remember that -1 t means less than):

The change here is the if command-the original version of the procedure
didn't check that the user supplied any parameters at all. This version checks the
number of parameters ($ #) using the test command, and displays a usage mes­
sage if there are no parameters to remind the user of the correct way to use the
procedure.

We mentioned earlier that the test command can also be written as [. Here is
the first couple of lines of the name procedure above rewritten in that way:

The if command may also be used in conjunction with the test command to
test for the existence of a file as in

~\sun ~~ microsystems
Revision A of 9 May 1988

134 Doing More with SunOS

elif: Multiple-Test Version
of if

if test -f file
then process file
else do something else
f i

Here is an example of the test command in action. This is an extract from the
di ff 3 Shell procedure:

The relevant line is number 8, which reads

if test $# = 3 -a -f $1 -a -f $2 -a -f $3

This says that if the number of parameters($#) is equal to 3, and all three param­
eters are files, the procedure can continue, otherwise the procedure displays an
error message and stops. (The -a is a logical and operator; it joins statements
just like the word and.)

A multiple-test if command of the form

if .
then
else if

then
else if

f i
f i

f i

may be written using an extension of the if notation:

•\sun ~ microsystems
Revision A of 9 May 1988

Command Grouping

Debugging Bourne Shell
Procedures

Appendix D - Bourne Shell Scripts 135

if condition-I
then actions-I
elif condition-2
then actions-2
elif condition-3

f i

The sequence

if command-I
then command-2
f i

may be written this way (the & & is a logical and):

command-I & & command-2

Conversely,

command-I I I command-2

executes command-2 only if command-] fails (the I I is a logical or). In each
case the value returned is that of the last simple command executed.

Commands may be grouped in two ways,

{ command-list ; }

and

(command-list

In the first, command-list is simply executed. (The semi-colon is necessary to
indicate the end of command-list.) The second form executes command-list as a
separate process. For example,

[•~········(c~···xr······En\······junk······) J
executes rm junk in the directory x without changing the current directory of
the invoking Shell.

The commands

have the same effect but leave the invoking Shell in the directory x.

The Bourne shell provides two tracing mechanisms to help in debugging Shell
procedures. The first is invoked within a procedure as

set -v

(v for verbose) and displays lines of the procedure as they are read. It is useful to

•\sun ~~ microsystems
Revision A of 9 May 1988

136 Doing More with SunOS

help isolate syntax errors. It may be invoked within a script, or when the pro­
cedure is run, as here: procedure, by saying

where proc is the name of a Bourne shell procedure. This flag may be used in
conjunction with the -n flag which prevents execution of subsequent commands.
-n serves as a breakpoint, allowing you to stop a script at a convenient point in
the debugging, instead of having the whole script execute. Note that saying
set -n at a terminal will render the terminal useless until an end-of-file is
typed.

The command

set -x

produces an execution trace. Following parameter substitution, each command is
displayed as it is executed. The -v and -x flags are similar; -x puts a +sign
in front of the line shown being executed, and it only displays executing lines,
not control lines. This means that a for or while loop line will be displayed
with -v but not with -x. The following shows the difference:

Notice how, in the second example, one and two are substituted in for $ i. Both
flags may be turned off by saying

set -

and the current setting of the Bourne shell flags is available as $-.

~\sun ~ microsystems
Revision A of 9 May 1988

Keyword Parameters in the
Bourne Shell

Parameter Transmission in the
Bourne shell

Appendix D - Bourne Shell Scripts 137

Bourne shell variables may be given values by assignment or when a Shell pro­
cedure is invoked. An argument to a Bourne shell procedure of the form
name=value that precedes the command name causes value to be assigned to
name before execution of the procedure begins. The value of name in the invok­
ing Shell is not affected. For example,

($.u~er .. ~5ea c~~~ J
executes command with user set to fred. The - k flag causes arguments of the
fonn name=value to be interpreted in this way anywhere in the argument list.
Such names are sometimes called keyword parameters. If any arguments remain,
they are available as arguments $1 , $ 2 ,

You can also use the set command to set arguments from within a procedure.
For example,

set - *

sets $1 to the first filename in the current directory, $ 2 to the next, and so on.
Note that the first argument,-, ensures correct treatment when the first filename
begins with a - .

When a Bourne shell procedure is called, both arguments and keyword parame­
ters may be supplied with the call. Keyword parameters are also made available
implicitly to a Bourne shell procedure by specifying in advance that such param­
eters are to be exported. For example,

export user box

marks the variables user and box for export to procedures. When a Shell pro­
cedure is called, copies are made of all exported variables for use within the
invoked procedure. For example:

Modification of such variables within the procedure does not affect the values in
the calling Shell. (It is generally true of a Bourne shell procedure that it may not
modify the state of its caller without explicit request on the part of the caller.
Shared file descriptors are an exception to this rule.)

Names whose values are intended to remain constant may be declared readonly.
The fonn of this command is the same as that of the export command,

readonly name . . .

Subsequent attempts to set readonly variables are illegal.

~\sun ~ microsystems
Revision A of 9 May 1988

138 Doing More with SunOS

Parameter Substitution in the
Bourne Shell

Command Substitution in the
Bourne Shell

If a Bourne shell parameter is not set, the null string is substituted for it. For
example, if the variable d is not set

or

[~~$~· ~e~ch~o~<?~$~{d~}~~~~------------~~~-----------------~~~~~------J
will echo nothing. A default string may be given as in

[..._~ $..;_i_:_e_c_:_h..;_p..;_$.....;.J..;_d..;_-...... • •••• _)..;_..;_..;.;.;..;_..;_..;_..;_..;_..;_..;_..;_..;_......_ __ _....,J
which will echo the value of the variable d if it is set and '.' otherwise. The
default string is evaluated using the usual quoting conventions so that

[r 7c1io Ha:.'.*· 1 ~
will echo * if the variable d is not set. Similarly

($./echo ${d,-$1) ~
will echo the value of d if it is set and the value (if any) of $1 otherwise. A vari­
able may be assigned a default value using the notation

echo $ { d=.}

which substitutes the same string as

echo ${d-.}

and if d was not previously set then it is now set to the string'.'. The notation
$ { ... = ... } is not available for arguments.

echo ${d?message}

echos the value of the variable d if it has one; otherwise the Bourne shell prints
message, if the Shell is interactive, and stops executing the procedure. If mes­
sage is absent, then a standard message is printed. A Bourne shell procedure that
requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the Bourne shell and does nothing once
its arguments have been evaluated. If any of the variables user, acct or bin are
not set, and the Shell is not interactive, the Shell stops executing the procedure.

In a similar way, you can substitute the standard output from a command as the
value of a parameter. The command pwd displays on its standard output the
name of the current directory. For example, if the current directory is
lhome!fredlbin then the command

•\sun ~~ microsystems
Revision A of 9 May 1988

Evaluation and Quoting in the
Bourne Shell

Appendix D - Bourne Shell Scripts 139

d='pwd'

is equivalent to

d=/home/fred/bin

The entire string between grave accents56 (' ... ')is taken as the command to be
executed and is replaced with the output from the command. The command is
written using the usual quoting conventions except that a ' must be escaped
using a \ . For example,

ls 'echo "$1"'

is equivalent to

ls $1

Command substitution occurs in all contexts where parameter substitution occurs
(including here documents) and the treatment of the resulting text is the same in
both cases. This mechanism allows use of string processing commands within
Bourne shell procedures. An example of such a command is basename, which
removes a specified suffix and the pathname's prefix from a string. For example,

basename /home/fred/main.c .c

displays the string main. The following fragment from a cc command illustrates
its use:

case $A in

*.c) B='basename $A .c

esac

that sets B to the part of $A with the pathname and suffix . c stripped.

Here are some composite examples.

o for i in 'ls -t'; do .
The variable i is set to the names of files in time order, most recent
first.

o set 'date'; echo $6 $2 $3, $4
will print, for instance, 19 7 7 Nov 1, 2 3: 5 9: 5 9

The Bourne shell is a macro processor that provides parameter substitution, com­
mand substitution and filename generation for the arguments to commands. This
section discusses the order in which these evaluations occur and the effects of the
various quoting mechanisms.

Commands are parsed initially according to the grammar given in the 'Grammar'
section. Before a command is executed, the following substitutions occur.

56 Often called backquotes.

•\sun ~~ microsystems
Revision A of 9 May 1988

140 Doing More with SunOS

o Parameter substitution, such as $user

o Command substitution, such as 'pwd'

Only one evaluation of a variable occurs. For example, if the value of the
variable y is hello, so that

echo $y

yields hello, and we set the variable x to $y, then

echo $X

yields $y and not hello.

o Blank interpretation

Following the above substitutions, the resulting characters are broken into
non-blank words (blank interpretation). For this purpose 'blanks' are the
characters of the string $IFS. By default, this string consists of blank, tab
and newline. The null string is not regarded as a word unless it is quoted.
For example,

echo ''

will pass on the null string as the first argument to echo, whereas

echo $null

will call echo with no arguments ifthe variable null is not set or set to the
null string with null=' ' .

o Filename generation

Each word is then scanned for the file pattern characters * , ? , and
[• • • J , and an alphabetical list of filenames is generated to replace the
word. Each such filename is a separate argument.

The evaluations just described also occur in the list of words associated with a
for loop. Only parameter and command substitution occurs in the word used
for a case branch.

As well as the quoting mechanisms described earlier using and ' . . . ' , a
third quoting mechanism is provided using double quotes. Within double quotes,
parameter and command substitution occur, but filename generation and the
interpretation of blanks does not. The following characters have special mean­
ings within double quotes and may be quoted using \.

Character

$

"
\

~\sun ~~ microsystems

Meaning

parameter substitution
command substitution
ends the quoted string
quotes the special characters $ ' " \

Revision A of 9 May 1988

Table D-2

Appendix D - Bourne Shell Scripts 141

For example,

echo "$x"

passes the value of the variable x as a single argument to echo. Similarly,

echo "$*"

passes the argument as a single argument and is equivalent to

echo "$1 $2 ... "

The notation $ @ is the same as $ * except when it is quoted.

echo "$@"

passes the arguments, unevaluated, to echo and is equivalent to

echo "$1" "$2" . . .

The following table gives, for each quoting mechanism, the Bourne shell meta­
characters that are evaluated.

Quoting Mechanisms

Quoting
M etacharacter

Character

\ $ * "
n n n n n t
y n n t n n

" y y n y t n

Where t=tenninator, y=interpreted, and n=not interpreted

In cases where more than one evaluation of a string is required, use the built-in
command eval. For example, if the variable x has the value $y and y has the
value pqr, then

eval echo $X

echos the string pqr.

In general, the eval command evaluates its arguments (as do all commands) and
treats the result as input to the Bourne shell. The input is read and the resulting
command(s) are executed. For example,

wg='eval wholgrep'
$wg f red

is equivalent to

wholgrep fred

In this example, eval is required since there is no interpretation of metacharac­
ters, such as I, following substitution.

•\sun ~~ microsystems
Revision A cf 9 May 1988

142 Doing More with SunOS

Error Handling .in the Bourne
Shell

The treatment of errors detected by the Bourne shell depends on the type of error
and on whether the Bourne shell is being used interactively. A Bourne shell
invoked with the - i flag is deemed to be interactive.

Execution of a command (see also 'Command Execution') may fail for any of the
following reasons.

o Input/output redirection may fail, for example, if a file does not exist or can­
not be created.

o The command itself does not exist or cannot be executed.

o The command terminates abnormally, for example, with a 'bus error' or
'memory fault.' See table D-3 for a complete list of SunOS signals.

o The command terminates normally but returns a non-zero exit status.

In all of these cases the Bourne shell goes on to execute the next command.
Except for the last case, the Bourne shell displays an error message. All remain­
ing errors cause the Bourne shell to exit from a command procedure. An interac­
tive Bourne shell will return to read another command from the terminal. Such
errors include the following:

o Syntax errors such as, if ... then ... done

o A signal such as an interrupt. The Bourne shell waits for the current com­
mand, if any, to finish execution and then either exits or returns to the termi­
nal.

o Failure of any of the built-in commands such as ed.

The Bourne shell flag -e terminates the Bourne shell if any error is detected.

~\sun ~Cf/I microsystems
Revision A of 9 May 1988

Appendix D - Bourne Shell Scripts 14 3

Table D-3 SunOS Signals

Notes on the Signals

Fault Handling in the Bourne
Shell

Signal Signal
Notes Description

Name Number

SIGHUP 1 hangup
SI GI NT 2 interrupt
SIGQUIT 3 * quit
SI GILL 4 * illegal instruction
SIGTRAP 5 * trace trap

SI GI OT 6 * IOT instruction
SIGEMT 7 * EMT instruction
SIGFPE 8 * floating point exception
SI GK ILL 9 kill - cannot be caught, blocked, or ignored
SI GB US 10 * bus error

SIGSEGV 11 * segmentation violation
SIGSYS 12 * bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal from kill

SIGURG 16 urgent condition on IO channel
SI GS TOP 17 t stop - cannot be caught, blocked, or ignored
SIGTSTP 18 t stop signal from tty
SIGCONT 19 • continue after a stop - cannot be blocked
SIGCHLD 20 • to parent on child stop or exit

SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22 t background write attempted from control terminal
SIGIO 23 input/output possible signal *
SIGXCPU 24 exceeded CPU time limit
SIGXFSZ 25 exceeded file size limit

SIGVTALRM 26 virtual time alarm
SIGPROF 27 profiling time alarm
SIGWINCH 28 • window changed

* These signals normally create a memory image of the terminated process
("core dumped").

• These signals are discarded if the signal action is s IG _DFL.

t These signals normally stop the process.

The Bourne shell itself ignores quit, which is the only external signal that can
cause a dump. The signals in this list of potential interest to Bourne shell pro­
grams are 1, 2, 3, 14 and 15.

Bourne shell procedures normally terminate when an interrupt is received from
the terminal. The trap command is used if some cleaning up is required, such as
removing temporary files. For example,

~\sun ~~ microsystems
Revision A of 9 May 1988

144 Doing More with SunOS

trap 'rm /tmp/ps$$; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received it exe­
cutes the commands

rm /tmp/ps$$; exit

Exit is another built-in command that terminates execution of a Bourne shell pro­
cedure. The exit is required; otherwise, after the trap has been taken, the Bourne
shell will resume executing the procedure at the place where it was interrupted.

Sun OS signals can be handled in one of three ways. They can be ignored, in
which case the signal is never sent to the process. They can be caught, in which
case the process must decide what action to take when the signal is received.
Lastly, they can be left to cause termination of the process without its having to
take any further action. If a signal is being ignored, on entry to the Bourne shell
procedure, for example, by invoking it in the background (see 'Command Execu­
tion'), then trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the name command.
You'll recall that the version of the name command shown using a here docu­
ment would only look for one name at a time and that if we modified it to look
for multiple names, the here document would be read every time around the for
loop. Here is a version that copies the here document into a temporary file. The
name of the temporary file is derived from the process ID of this command.
When the procedure terminates, the trap is called to remove the temporary file.
Let's take a look at this version of the name command (note that script creates a
temporary file using the $ $ variable):

#! /bin/sh -u
if [$# -lt 1]; then

echo Usage: name person
exit 1

f i
junk=/tmp/$cmd.$$
trap "rm -f $junk; exit" 0 1 2 15
cat > $junk <<woof
Ted Applehead teda@seeds
Bernice Barns

more names

David Smiter
Ben Tortcake
Dave von Noknock
woof
for person

boat@carib

acme@nadir
tort@icky
dave@dove

do grep -i $person $junk
done

7534
7441

7435
7258
7296

The trap command appears before the creation of the temporary file; otherwise
it would be possible for the process to die without removing the file.

~\sun ~ microsystems
Revision A of 9 May 1988

The scan Command

Appendix D - Bourne Shell Scripts 145

Since there is no signal 0 in SunOS, the Bourne shell uses it to indicate the com­
mands to be executed on exit from the Bourne shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as
the argument to trap. The following fragment is taken from the nohup command:

trap '' 1 2 3 15

which causes both the procedure and the invoked commands to ignore the
hangup, interrupt,and kill signals.

Traps may be reset by saying:

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list of the
current values of traps may be obtained by writing:

trap

The scan procedure shown below is an example of the use of trap where
there is no exit in the trap command. scan takes each directory in the current
directory, prompts with its name, and then executes commands typed at the ter­
minal until an end of file or an interrupt is received. Interrupts are ignored while
executing the requested commands but cause termination when scan is waiting
for input.

d='pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

f i
done

while echo "$i:"
trap exit 2
read x

do trap : 2; eval $x; done

read is a built-in command that reads one line from the standard input and
places the result in the variable which is its argument. read returns a non-zero
exit status if either an end-of-file is read or an interrupt is received.

Here is an example of the scan command in action:

~\sun ~ microsystems
Revision A of 9 May 1988

146 Doing More with SunOS

Command Execution in the
Bourne Shell

To run a command (other than a built-in), the Bourne shell first creates a new
process using the fork system call. The execution environment for the command
includes input, output and the states of signals, and is established in the child
process before the command is executed. The built-in command exec is used in
the rare cases when no fork is required and simply replaces the Bourne shell with
a new command. For example, a simple version of the nohup command looks
like:

trap
exec $*

1 2 3 15

The trap turns off the specified signals so that they are ignored by subsequently
created commands and exec replaces the Shell by the command specified.

~\sun ~ microsvstems
Revision A of 9 May 1988

A file descriptor is a number assigned
to a file when the file is opened for
reading and/or writing. File descriptors
0, 1, and 2 refer to the standard input,
standard output, and standard error
(error messages) respectively.

Appendix D-Bourne Shell Scripts 147

Most f01rns of input/output redirection have already been described. In the fol­
lowing, word is only subject to parameter and command substitution. No
filename generation or blank interpretation takes place so that, for example,

echo ... >* .c

writes its output into a file whose name is * . c. Input/output specifications are
evaluated left to right as they appear in the command.

>word

>>word

<word

<<word

>&digit

<&digit

<&­

>&-

The standard output (file descriptor 1) is sent to the file word,
which is created if it does not already exist.

The standard output is sent to file word. If the file exists, then out­
put is appended (by seeking to the end); otherwise the file is
created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines of Bourne shell input
that follow, up to but not including a line consisting only of word.
If word is quoted then no interpretation of the document occurs.
If word is not quoted, then parameter and command substitution
occur, and \ is used to quote the characters \ $ ' and the first
character of word. In the latter case newline quoted with
backslashes are ignored (c.f. quoted strings).

The file descriptor digit is duplicated using the system call dup (2)
and the result is used as the standard output.

The standard input is duplicated from file descriptor digit.

The standard input is closed.

The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor
created is that specified by the digit instead of the default 0 or 1. For example,

. . . 2>f ile

runs a command with message output (file descriptor 2) directed to file .

. . . 2>&1

runs a command with its standard output and message output merged. (Strictly
speaking file descriptor 2 is created by duplicating file descriptor 1 but the effect
is usually to merge the two streams.)

The environment for a command run in the background such as

list *.c I lpr &

is modified in two ways. First, the default standard input for such a command is
the empty file !devlnull. This prevents two processes (the Shell and the com­
mand), which are running in parallel, from trying to read the same input. Chaos
would ensue if this were not the case. For example,

~\sun ~ microsystems
Revision A of 9 May 1988

148 Doing More with SunOS

Calling the Bourne Shell

Bourne Shell Grammar

would allow both the editor and the Shell to read from the same input at the same
time.

The other modification to the environment of a background command is to tum
off the QUIT and INTERRUPT signals so that the command ignores them. This
allows these signals to be used at the terminal without causing background com­
mands to terminate. For this reason the SunOS convention for a signal is that if
it is set to 1 (ignored), then it is never changed, even for a short time. Note that
the Bourne shell command trap has no effect for an ignored signal.

The Bourne shell interprets the following flags when it is called. If the first char­
acter of argument zero is a minus-that is, the command itself starts with a
minus-then commands are read from the file .profile.

-c string
If the -c flag is present, commands are read from string.

- s If the - s flag is present or if no arguments remain, commands are read from
the standard input. Bourne shell output is written to file descriptor 2.

- i If the - i flag is present or if the Bourne shell input and output are attached
to a terminal (as determined by gtty), then this Bourne Shell is interactive.
In this case TERMINATE is ignored (so that kill 0 does not kill an
interactive Bourne Shell), and INTERRUPT is caught and ignored (so that
wait is interruptable). In all cases, the Shell ignores QUIT.

Commands are parsed initially according to the following grammar.

item: word
input-output
name= value

simple-command: item
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part f i

pipeline: command
pipeline I command

andor: pipeline

4}\sun
~~ microsystems

andor & & pipeline
andor I I pipeline

Revision A of 9 May 1988

Bourne Shell Metacharacters
and Reserved Words

Syntactic

command-list: andor
command-list ;
command-list &

command-list ; andor
command-list & andor

input-output: > file
< file
>> word
<< word

file: word
& digit
& -

case-part: pattern) command-list ; ;

pattern: word
pattern I word

Appendix D - Bourne Shell Scripts 149

else-part: elif command-list then command-list else-part
else command-list
empty

empty:

word: a sequence of non-blank characters

name: a sequence of letters, digits or underscores starting with a letter

&&

I I

&

digit: 0 1 2 3 4 5 6 7 8 9

pipe symbol

'andf' symbol

'orf' symbol

command separator

case delimiter

background commands

command grouping

< input redirection

< < input from a here document

> output creation

>> output append

~\sun ~ microsystems
Revision A of 9 May 1988

150 Doing More with SunOS

Patterns

Substitution

Quoting

Reserved Words

* match any character(s) including none

? match any single character

[. . .]
match any of the enclosed characters

$ { . . . }
substitute Shell variable

substitute command output

\ quote the next character

quote the enclosed characters except for '

II II

quote the enclosed characters except for $ ' \ 11

if then else elif f i
case in esac
for while until do done

read

Revision A of 9 May 1988

E
Command Summary

Command Summary .. 153

Filename Substitution

File Properties

E
Command Summary

[range]
Match characters in a list or range.

[ab]*
matches filenames starting with a orb.

[a-Zl-0]*
matches filenames starting with any alphanumeric character.

{string, string}
Match enclosed strings.

{venus,mars}
matches the filenames venus and mars.

chmod arg .filename
change permissions. arg is one of:

ddd
where d is a digit from O to 7.

class op perm ...
where class, op and perm, are taken from:

class op

u user (owner) = set permission
g group - remove access
0 others (public) + give access
a all

crypt [key] .filename

perm

r read
w write
x execute

encrypt a file using key as the encryption key. To edit an encrypted file, use
vi -x.

ln [-s] oldname newname
make a link to oldname called newname. With-s, make a symbolic link.

ls option
List files and selected properties. option can be one or more ?f:

~\sun ~~ microsystems
153 Revision A of 9 May 1988

154 Doing More with SunOS

I/0 Redirection

-a list hidden files.

-1 long listing. Shows permissions, links, owner, modification time,

and name.

-lg groups. Shows group ownership in addition to above properties.

-ld directory. Shows -1 listing for a directory itself, rather than the files
it contains.

-F Append a tag indicating the file type:

* execute permission is set.

I directory.

@ symbolic link.

pushd, popd and dirs
use the directory stack to remember and revisit directories.

touch filename
change a file's modification time to the current time. Create a file if filename
doesn't exist.

tty
display the filename of the terminal.

urnask ddd
set initial permissions mask for new files according to the table below. The
default mask is 0 2 2.

Files Directories

value permissions value permissions

0 rw- 0 rwx
1 rw- 1 rw-
2 r-- 2 r-x
3 r-- 3 r--
4 -w- 4 -wx
5 -w- 5 -w-
6 --- 6 --x
7 --- 7 ---

> redirect the standard output.

> ' force redirection, even if the file exists.

> > append the standard ouput to the file.

> > ! append the standard output, creating the file if necessary.

> & redirect both the standard output and the standard error.

>>& append both the standard output and the standard error.

< redirect the standard input.

Revision A of 9 May 1988

Command-Line Special
Characters

Appendix E-Command Summary 155

pipe. Use the standard output of the command on the left as the standard
input for the command on the right.

I & Use both the standard output and standard error of the command on the
left as input for the command on the right.

/dev/null
The system wastebasket. Unwanted output can be redirected to this file.

/dev/tty
The terminal. Output from commands in scripts and subshells can
redirected to the screen using this filename.

set noclobber
This command prevents files from accidental overwrites. Include it in
your . cs hr c file.

tee.filename
When placed on the end of a pipeline, the standard output is both
redirected to filename and echoed on the screen.

& run the command in the background.

\c escape character. Interpret c as text with no special meaning.
,, double-quote. Interpret characters enclosed by double-quotes as a single

word.

quote. Interpret characters enclosed by quotes as a single word, and do not
perform substitutions. (Special characters must still be escaped to be
ignored.)

command separator. Commands separated by semicolons are performed
sequential! y.

•\sun ~~ microsystems
Revision A of 9 May 1988

156 Doing More with SunOS

Filters cat filename ...
concatenate and print one or several files.

f mt filename
simple file formatter.

grep "reg_exp" filename ...
search for a regular expression in a file or files. reg_ exp is a combination of
text, escaped characters, and grep special characters from the following
table:

character matches:
,., The beginning of a text line.
$ The end of a text line.

Any single character (like ? in filename substitution).
[...] Any single character in the bracketed list or range.

[......] Any character not in the list or range.
* Zero or more occurrences of the preceding charac-

teror regular expression. (Not like filename substitu-
tion.)

* Zero or more occurrences of any single character.
Equivalent to '*' in filename substitution.

\ Escapes special meaning of next character.

head [-n]filename
Display the first n lines of a file.

look str
look up words beginning with str in the system dictionary.

more
page through a file. The subcommand:

/string skips to a screenful containing string.

nroff -mac filename
format a file using the mac macro package.

pr -t -n filename
print a file in n column format. The -t option suppresses a heading that
would otherwise appear.

rev filename
reverse the order of characters in each line of a file.

spell filename
check for misspelled words.

sort filename
put lines of a file in order.

tail optionfilename
display the last several lines of a file, as determined by option:

Revision A of 9 May 1988

Job Control

Process Control

User Activity

Managing Files

find

Appendix E - Command Summary 157

-n display the last n lines.

+n skip to line number n, and display the remaining lines.

we filename
display the number of lines, words and characters in a file.

% [n]
bring job n, or the current job, to the foreground.

% [n] &

resume processing stopped job n, or the current job, in the background.

jobs
display the list of background jobs.

kill PID
terminate process number PID.

ps [-au]
display the list of processes. With the -au option, display the list of
processes owned by all users.

grep userid I etc/passwd
search for userid in file containing the list of local users.

su [userid]
switch userid to userid, or root (the superuser), when userid is omitted.

w display a detailed list of users currently logged in.

who
display a brief list of users currently logged in.

who am i
display the userid, terminal name, date and time.

whoami
display the userid only.

di ff leftfile rightfile
show differences between two files.

df show disk space utilization on each disk as a percentage of capacity.

du show disk space utilization in the current directory.

find pathname options
locate files that meet the conditions specified in options, within the directory
pathname, and its subdirectories. options can be:

\!option

\ (option .. . \)

invert the meaning of option. (Select files for which
the option doesn't apply.)

group a set of options into one condition.

Revision A of 9 May 1988

15 8 Doing More with SunOS

make

-exec command ' {}' \;
perfonn command on the located files.

-group group locate files belonging to group.

select files modified within n days. -mtime n

-name filename locate files that matchfilename after filename substi­
tution.

-newer checkfile

-o

locate files modified more recently than checkfile.

within an option group of the fonn:

\ (-option -o option \)

select files for which either option applies. Nor­
mally, a file is selected only when all options apply.

-print print the list of selected files.

-user use rid select files owned by userid.

file filename detennine the type of device, or type of data con­
tained in,filename.

make [-n] [-f makefile]
perfonn the procedure described in makefile. With the-n option, make
echoes the commands it will perfonn, without performing them.

makefile is composed of macro definitions and target definitions:

macro definition
a line of the fonn:

macro = expansion

macro
is a character string.

expansion
is the remainder of the text on the line.

Once defined, macros are called as:

$ (macro)

throughout the file.

target definitions
a set of lines of the fonn:

target: dependency ...
command line51

57 starts with a I Tab l

Revision A of 9 May 1988

SCCS

tar

Locating Commands

Appendix E- Command Summary 159

target
a filename produced by, or logical label for, the step.

dependency
the name of another target upon which this one depends.

command line
a SunOS command line, beginning with a tab character. (If the
tab is followed immediately by a dash(-) then return codes
from commands on that line are ignored. Comment lines are
introduced with a #).

s cc s subcommand filename

use a feature of the source code control system. subcommand is one of:

create put a file under secs control by creating a history file in the
secs subdirectory.

info report any files checked out (omitfilename in this case).

edit check out a file.

dif f s contrast the edited version with the most recent checked in ver­
sion.

delget check in a new version to the history file and replace the existing
version of the text.

delta check in a new version to the history file.

get rebuild the current checked in version.

prt examine the summary comments for all versions in the history
file.

sccsdiff -rx.y -rm.n
contrast previous versions x.y and m.n.

tar option filename
tape archive program. option is one of:

-cvf drive create an archive on drive.

-xvf drive extract files from an archive on drive.

-t vf drive display the files in the archive on drive.

whatis command
give one-line description of a command.

whereis command
search the standard directories for the pathname of a command.

which command
search directories in the user's path variable for command.

•\sun ~~ microsystems
Revision A of 9 May 1988

160 Doing More with SunOS

Line Printer Commands

Misc. Commands

lpr [-Pprinter] filename
select a printer to print a file.

lpq [-Pprinter]filename
display the queue for printer.

lprm [-Pprinter] job
remove job from the queue for printer.

troff -t options filename . . . > output.file
place typesetter-formatted output in an intermediate (binary) output.file for
later printing.

1 pr -t output.file
print a troff output file.

screendump I rastrepl I lpr -v
print the workstation screen display.

chesstool
window-based chess-playing program.

csh
the C shell command.

date
display the date and time.

echo
display the arguments on the terminal.

printenv
display the list of environment variables and values.

set var [=value]
create, or assign a value to, a C shell variable.

sh the Bourne shell command.

source filename
read and perform commands infilename.

time command
report statistics for command.

•\sun ~ microsystems
Revision A of 9 May 1988

Index

Special Characters
! : n n' th argument designator, 40
! ? event search designator, 40
! A first argument designator, 40
% command (bring job to foreground), 50
: $ last argument word designator, 41
: * word designator for all arguments, 41

A first argument word designator, 41
: 0 first argument (command) designator, 41
: g event modifier global flag, 41
: n n'th argument word designator, 41
: p event modifier, 40
: s/old/new/ event modifier for string substitution, 41
; separation character, 30
< input redirection symbol, 24
> output redirection symbol, 23
>& redirect standard output and standard error, 29
> > append output, 24
>>& append standard output and standard error, 29
[and] , 7
\ escape character, 29, 30
{ and }, 8
I pipe symbol , 25
I & send diagnostic output through pipe, 29

alias
A

escaping, 43
event designators within an, 42
removing, 44
seeing current aliases, 43
substitution, 42

alias command, 42
and pipelines, 42
seeing current aliases, 43

at command, 58
automatic program execution with cron, 60

B
background, running processes in, 50
backquote

substitution, 49
basename, 70, 105
batch command, 59
Bourne shell, 35

-161-

Bourne shell, continued
command substitution, 138 thru 139
evaluation, 139 thru 141
executing commands, 146 thru 148
fault handling, 143 thru 146
here documents, 130 thru 132
keyword parameters, 137
metacharacters, 149
parameter substitution, 138
procedures, debugging, 135
quoting, 139 thru 141
reserved words, 150
scripts, 123 thru 150
test command, using with, 126
variables, 123 thru 125

Bourne shell commands
case, 128 thru 129
do, 128, 132
done, 128, 132
elif, 134
else, 132
esac, 128
fi, 132
for, 127 thru 128
grouping, 135
if, 132 thru 135
in, 128
shift, 132
then, 132
trap, 143 thru 146
until, 132
while, 132

Bourne shell parameters
export, 137
readonly, 137

brackets, pattern matching, 7

c
C shell

and alias substitution, 42
and command line editing, 38
and :filename substitution, 36
and history substitution, 38
and output substitution, 49
and processes, 55
c sh command, 36
dirs, 18
environment variables, 48

Index - Continued

C shell, continued
features, 36
job control, 50
noclobber variable, 24
overview, 35
path variable, 69
popd, 18
predefined variables, 48
pushd, 18
scripts, 35, 103 thru 109
special characters, 113 thru 119
stopped jobs warning, 52
time variable, 58
variable substitution, 44

case command in Bourne shell, 128 thru 129
cdcommand

and the home variable, 48
chesstool command, 69
chgrp command, 11
child processes, 55
chmod command, 10

changing permissions with, 12 thru 14
numeric arguments, 13
syntax diagram, 13

ch own command, 10
command

%,50
alias, 42
and command line editing, 38
and the C shell, 35
argument, as standard input, 25
at, 58
batch, 59
cd,48
chesstool, 69
chgrp, 11
chmod, 13
chown, 10
crypt, 17
csh, 36
df, 84
diff, 72
dirs (C shell only), 18
du, 85
file, 71
filters, 26
find, 70
fmt, 26
grep, 30
groups, 11
head, 26
history, 38
jobs, 51
kill, 56
look, 27
lpq, 89
lprm, 89
ln, 16
ls -a, 7
ls -1, 8
ls -lg, 10
make, 79
make -n, 82

-162-

command, continued
more, 17
pipes and pipelines, 25
popd (C shell only), 18
pr,27
printenv, 49
ps, 55
ps -au, 62
pushd (C shell only), 18
rastrepl, 90
rdate, 60
rev, 27
running with find, 71
sa, 60
secs, 73 thru 78
screendump, 90
sed, 27
set,44
setenv, 48
shell tool, 36
sort, 26
spell, 27
standard input, 23
standard output, 23
SU, 63
tail, 26
tar, 85
tee, 28
time, 58
touch, 15
troff, 56
tty, 8
umask, 14
unalias, 44
vi : stopping and resuming, 50
whatis, 70
whereis, 69
who, 61
whoami, 63

command execution in Bourne shell, 146 thru 148
command interpreter, C shell, 35
command statistics, 58
command substitution in Bourne shell, 138 thru 139
comments, and makefiles, 81
comparing files with dif f, 72
compound commands in Bourne shell, 135
continuation character, 30
control flow in Bourne shell

case, 128 thru 129
do, 128, 132
done, 128, 132
elif, 134
else, 132
esac, 128
fi, 132
for, 127 thru 128
if, 132 thru 135
in, 128
shift, 132
then, 132
trap, 143 thru 146
until, 132
while, 132

control keys
Ctrl-D, 37

cron daemon, 59
crontab command, 59
crypt command, 17
csh command, 36
current job, 50

D
daemon, definition of, 60, 95
debugging Bourne shell procedures, 135
decoding files, 17
default permissions, 14
dependencies, and make, 80
describe a command: what is, 70
devices, treated as files, 8
df command, 84
diagnostic output, 29
di ff command, 72
directories

disk usage, 85
permissions, 11

dirs command, 18
disk usage

percentage used, 84
specific directories, 85

disk, managing space, 84
do command in Bourne shell, 128, 132
done command in Bourne shell, 128, 132
dot files, 7
du command, 85

E
editing encrypted files, 17
el if command in Bourne shell, 134
else command in Bourne shell, 132
encrypting files, 17
encryption key, 17
environment variables in C shell, 48
esac command in Bourne shell, 128
escape character, 29, 37
escaped event designators, and aliases, 42
escaping an alias

with "", 43
with \, 43

/etc/passwd, 60
evaluation in Bourne shell, 139 thru 141
event designators, in history substitution, 40
event modifiers, 41
event, in history substitution, 38
execute permission, 10
executing commands in Bourne shell, 146 thru 148
expansion

of aliases, 42
of macro, 79

exporting parameters in the Bourne shell, 137

-163-

F
fault handling in Bourne shell, 143 thru 146
f i command in Bourne shell, 132
file, 7 thru 19

/usr/dict/words,27
and disk storage, 84
and ls -F, 16
and root privileges, 65
appending to, 24
basename, 105
comparing with diff, 72
encrypting, 17
I etc/passwd, 60
extracting from tape, 86
file type field, 9
filename substitution and the C shell, 36
getting a long listing with 1 s -1, 8
group ownership, 10
hidden, 7
links, 16
makefile, 80
making tape archives, 85
modification time, 15
monitor with secs, 73
name of terminal (I dev It t y), 29
notion of, 8
permissions, 9 thru 12
reading encrypted, 17
rightmost component, 70, 105
searching with more, 17
system wastebasket, 29
transforming with filters, 26

file command, 71
filename completion, 36
filename substitution, 7 thru 8

and the C shell, 36
filters, 26
findcommand, 70
f mt command, 26
for command in Bourne shell, 127 thru 128
foreground, running processes in, 50

G
: g event modifier global flag, 41
grep command

and regular expressions, 30
group

ownership, 10
permissions, 10

grouping commands in Bourne shell, 135
groups command, 11

H
head command, 26
here documents, 130 thru 132
hidden files, 7
history command, 38
history substitution

and aliases, 42
and the C shell, 38

history variable, 38

Index - Continued

Index - Continued

history, word designator, 41
home C shell predefined variable, 48
HOME environment variable, 49

I
I/O, input/output. 25
if command in Bourne shell, 132 thru 135
in command in Bourne shell, 128
input redirection, 24
interpretation

alias substitution, 42
filename substitution, 36
history substitution, 38
output substitution, 49
quick substitution, 40
variable substitution, 44

J
job control

background, 50
foreground, 50
stopped jobs warning, 52

jobs command, 51

K
key

crypt command, 17
keyword parameters in the Bourne shell, 137
kill command, 56

and root privileges, 65

L
links, 16
ln command, 16
locating a command with which, 69
locating a file with find, 70
look command, 27
lpq command, 89
lprm command, 89
ls command

-a option, 7
-F option, 16
-1 option, 8
- lg option, 10

M
macro substitution, and make, 82
make command, 79

-n option, 82
and command status, 81
and dependencies, 80
specifying a target on the command line, 81

makefile, 80
and comments, 81

modification time, 15
more command

searching through a file, 17

-164-

N
: n n'th argument word designator, 41
nextjob, 50
noclobber

C shell variable, 24

0
output

redirection, 23
substitution, 49

output substitution, 49
ownership, group, 10

p
parameter substitution in Bourne shell, 138
parameters

exporting in the Bourne shell, 137
read-only in the Bourne shell, 137

passwdfile, see /etc/passwd
password file, 60
path variable, 69
pattern matching

and history substitution, 39
braces, 8
ranges, 7

patterns and filename substitution, 7
permissions

changing, 12 thru 14
default, 14
description, 9 thru 12
directories, 11
execute, 10
group, 10
owner's, 10
public or other, 11
read, 10
read (for a directory), 12
search (directory only), 12
write, 10
write (on a directory), 12

PID number, 55
pipes

and pipelines, 25
and the tee command, 28

popd command, 18
pr command, 27
printenv command, 49
printing

files, 89 thru 91
screen dumps, 90
troff output files, 90

privileges as root, 65
processes

child and parent, 55
PID,55

ps command, 55
-au option, 62

public permissions, 11
pushd command, 18

Q
quick substitution (command line editing), 40
quote marks, 29
quoting in Bourne shell, 139 thru 141

R
ranges, pattern matching, 7
ra st re pl command, 90
rda t e command, 60
read permission, 10
read-only parameters in the Bourne shell, 137
redirection, 23 thru 29

filters, 26
input, 24
output, 23
pipes and pipelines, 25
standard error, 29
standard error only, 29

regular expressions, 30 thru 32
removing an alias, 44
removing printer jobs, 89
restricting access to files, 12
return code

and make, 81
and the parent process, 55

rev command, 27
root

and system maintenance, 65
running programs automatically with cron, 60

s
sa command, 60
secs, 73 thru 78
screendump command, 90
scripts

and the shell, 35
Bourne shell, 123 thru 150
C shell, 103 thru 109

search permission, 12
security

encrypting files, 17
restricting access, 12

sed command, 27
seeing current aliases, 43
seeing differences between files with di ff, 72
selecting a printer, 90
selecting files by category with find, 70
separation character, 30
set command, 44

and environment variables, 49
setenv command, 48, 49

and set,49
and shell variables, 49

shell
and filename substitution, 36
and output substitution, 49
Bourne shell, 35
C shell overview, 35
scripts, 35
variable substitution, 44

-165-

shell tool command, 35
shift command in Bourne shell, 132
slay sample alias, 57
sort command, 26
spell command, 27
standard error, 29

separating from standard output, 29
standard input, 23

as an argument, 25
pipes, 25
redirecting, 24

standard output, 23
filters, 26
pipes, 25
redirecting, 23

stopped job, 50
strings, pattern matching, 8
s u command, 63

Index - ConJinued

substituting commands in Bourne shell, 138 thru 139
substituting parameters in Bourne shell, 138
substitution

alias, 42
filename, 36
history, 3 8 thru 41
macro: make, 82
output, 49
quick (command line editing), 40
variable, 44

Sun386i, 85
superuser, 63

and root privileges, 65
and the kill command, 65

symbolic links, 16
syntax

informal meaning of, 30
system dictionary, 27
system maintenance and root, 65
system wastebasket, 29

T
tail command, 26
tape archives, 85
tar command, 85
targets, and make, 80
tee command, 28
terminal, name of (/dev /tty), 29
test command

used with Bourne shell, 126
then command in Bourne shell, 132
time command, 58
time variable, 58
touch command, 15
trap command in Bourne shell, 143thru146
troff command, 56
tty command, 8

u
umask command, 14
unalias command, 44
unaliasing, 44

Index - Continued

until command in Bourne shell, 132
userid, changing, 63
users

list of, 60
root, 61
who command, 61

v
variables

and the C shell, 44
environment, 48
home,48
path, 69
predefined in the C shell, 48

variables in the Bourne shell, 123 thru 125
/var/spool/crontab/username file, see crontab
vi editor

-x option, 17
stopping and resuming, 50

w
w command, 62
whatis command, 70
wherei s command, 69
which command, 69
while command in Bourne shell, 132
who command, 61
whoami command, 63
word designator, 41
write permission, 10

on a directory, 12

-166-

Notes

Notes

[

Corporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View, CA 94043
415 960-1300
TLX 287815

For U.S. Sales Office
locations, call:
800 821-4643
In CA: 800 821-4642

European Headquarters
Sun Microsystems E urope , Inc.
Sun House
31-41 Pembroke Broadway
Camberley
Surrey GU15 3XD
England
027662111
TLX 859017

Australia: 61-2-436-4699
Canada: 416 4 77-6745
France: (1) 46 30 23 24
Germany: (089) 95094-0
Japan: (03) 221-7021
The Netherlands: 02155 24888
UK: 0276 691297

Europe, Middle East , and Africa,
call European Headquarters:
027662 111

Elsewhere in the world,
call Corporate Headquarters:
415 960- 1300
Intercontinental Sales

