
u #+sun® ~ microsystems

Editing Text Files

Part Number: 800-1754-11
Revision A of27 March, 1990

The Sun logo, Sun Microsystems, Sun Workstation, NFS, and TOPS are
registered trademarks of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SPARCstation, SPARCserver, NeWS, NSE,
OpenWindows, SPARC, Sunlnstall, SunLink, SunNet, SunOS, SunPro, and Sun­
View are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T; OPEN LOOK is a trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations, and
Sun Microsystems, Inc. disclaims any responsibility for specifying which marks
are owned by which companies or organizations.

Material in this manual comes from a number of sources: An Introduction to
Display Editing with Vi, William Joy, University of California, Berkeley, revised
by Mark Horton; Vi Command and Function Reference, Alan P. W. Hewett,
revised by Mark Horton; Ex Reference Manual, William Joy, revised by Mark
Horton, University of California, Berkeley; A Tutorial Introduction to the UNIX
Text Editor, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey;
Advanced Editing on UNIX, Brian W. Kernighan, Bell Laboratories, Murray Hill,
New Jersey; Sed- a Non-Interactive Text Editor, Lee. E. McMahon, Bell
Laboratories, Murray Hill, New Jersey; Awk-A Pattern Scanning and Process­
ing Language, Alfred V. Aho, Brian W. Kernighan, Peter J. Weinberger, Bell
Laboratories, Murray Hill, New Jersey; Introducing the UNIX System, Henry
McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. A Practical
Guide to the UNIX System, Mark G.Sobell, Benjamin Cummings Publishing
Company, 1984. These materials are gratefully acknowledged.

Copyright © 1984-1990 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical -
including photocopying, recording, taping, or storage in an information retrieval
system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(l)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485
4,688,190 4,527,232 4,745,407 4,679,014 4,435,792 4,719,569 4,550,368 in
addition to foreign patents and applications pending.

u

i)
_,!

u

(\
\._.)

u

Contents

Chapter 1 Introduction to Text Editing .. 1
1.1. Available Editors ... 1
1.2. What to Do If Something Goes Wrong ... 2
1.3. Other Text-Handling Programs ... 3

Chapter 2 Using vi, the Visual Display Editor.. 5
2.1. vi and ex
2.2. Getting Started

Editing a File .. .

5

6

6
The Editor's Copy - Editing in the Buffer .. 7

Arrow Keys .. 7
Special Characters: ESC, CR and CTRL-C ... 7
Getting Out of vi- :q :q! :w zz :x :wq.. 8

2.3. Moving Around in the File ... 8

Scrolling and Paging- CTRL-D CTRL-U CTRL-E CTRL-Y
CTRL-F CTRL-B ... 8
Searching, Goto, and Previous Context - I ? G 9

Moving Around on the Screen - h j k 1 + - H M 10

Moving Within a Line - b w e E B w
Viewing a File - view

2.4. Making Simple Changes

Inserting - i I a A o and o
Making Small Corrections - x r s R

Deleting, Repeating, and Changing- dw • db c

-iii-

12

13

Contents - Continued

Operating on Lines - dd cc s ... 13 u
Undoing- u U .. 14

2.5. Rearranging and Duplicating Text .. 14
Low-level Character Motions - f F ~ ... 14
Higher Level Text Objects - () { } [[]] ... 15
Rearranging and Duplicating Text - y Y p P .. 16

2.6. High-Level Commands.. 16
Writing, Quitting, and Editing New Files- zz : w : q : e : n 16

EscapingtoaShell-: ! :shCTRL-z ... 17
Marking and Returning - m .. 17
Adjusting the Screen CTRL-L, z .. 17

2.7. Special Topics ... 18
Options, the Set Variable, and Editor Start-up Files 18

Recovering Lost Lines ... 19
Recovering Lost Files - the -r Option ... 20
Continuous Text Input - wrapmargin .. 20
Features for Editing Programs ... 21
Filtering Portions of the Buffer ... 21

I \
\)
"'---"

Commands for Editing LISP ... 22
Macros... 22
Word Abbreviations - : ab : una ... 24

2.8. Nitty-gritty Details .. 24
Line Representation in the Display .. 24

Command Counts ... 25
File Manipulation Commands ... 26
More about Searching for Strings .. 27
More about Input Mode .. 28

2.9. Command and Function Reference... 29
Notation.. 29
Commands .. 30
Entry and Exit ... 30
Cursor and Page Motion ... 30
Searches .. 33

u
-iv-

Contents- Continued

Text Insertion.. 33
Text Deletion ... 34
Text Replacement ... 34
Moving Text .. 34
Miscellaneous Commands ... 35
Special Insert Characters .. 36
: Commands ... 37
Set Commands.. 38
Character Functions ... 42

2.10. Terminal Information ... 50
Specifying Terminal Type ... 50
Special Arrangements for Startup ... 52
Open Mode on Hardcopy Terminals and 'Glass tty's' 52
Editing on Slow Terminals .. 53
Upper-Case Only Terminals ... 54

Vi Quick Reference .. 55

Chapter 3 Command Reference for the ex Line Editor............................. 57
3.1. Using ex... 57
3.2. File Manipulation .. 58

Current File .. 58
Alternate File... 58
Filename Expansion :... 59

3.3. Special Characters... 59
Multiple Files and Named Buffers.. 59
Read-Only Mode ... 59

3.4. Exceptional Conditions .. 59
Errors and Interrupts ... 60
Recovering If Something Goes Wrong .. 60

3.5. Editing Modes ... 60
3.6. Command Structure ... 60

Specifying Command Parameters ... 61
Invoking Command Variants... 61

-v-

Contents - Continued

Flags After Commands 61 'U
Writing Comments 61
Putting Multiple Commands on a Line 61
Reporting Large Changes .. . 61

3.7. Addressing Primitives .. . 62

Combining Addressing Primitives 62
3.8. Regular Expressions and Substitutions .. . 62

Magic and Nomagic 63

Basic Regular Expression Summary 63
Combining Regular Expression Primitives 64

Substitute Replacement Patterns 64

3.9. Command Reference 64

3.10. Option Descriptions 74

3 .11. Limitations 79

Ex Quick Reference 81

Chapter 4 Using theed Line Editor .. .

4.1. Getting Started

83 / \
83 u

Creating Text - the Append Command a 84

Error Messages - ? 85
Writing Text Out as a File - the Write Command w 85

Leaving ed - the Quit Command q 86

Creating a New File - the Edit Command e 86

Exercise: Trying the e Command .. . 88

Checking the Filename - the Filename Command f 88

Reading Text from a File - the Read Command r 88

Printing the Buffer Contents - the Print Command p 89

Exercise: Trying the p Command 91

Displaying Text - the List Command 1 91

The Current Line - 'Dot' or ' . ' .. . 92

Deleting Lines - the Delete Command d .. . 93

Exercise: Experimenting 94

Modifying Text - the Substitute Command s .. . 94

(_)

-vi-

Contents - Continued

(_)
The Ampersand & ... 97
Exercise: Trying the s and g Commands ... 98

Undoing a Command - the Undo Command u .. 98
4.2. Changing and Inserting Text - the c and i Commands 99

Exercise: Trying the c Command ... 99

4.3. Specifying Lines in the Editor ... 100

Context Searching .. 100
Exercise: Trying Context Searching.. 101
Specifying Lines with Address Arithmetic - + and - 102

Repeated Searches - I I and ? ? .. 104
Default Line Numbers and the Value of Dot .. 105

Combining Commands - the Semicolon ; ... 106

Interrupting the Editor.. 108
4.4. Editing All Lines - the Global Commands g and v 108

Multi-line Global Commands .. 110

4.5. Special Characters... 111

Matching Anything - the Dot '.' ... 111
Specifying Any Character- the Backslash '\' ... 112

Specifying the End of Line - the Dollar Sign $ 114
Specifying the Beginning of the Line - the Circumflex A 116

Matching Anything - the Star * .. 116

Character Classes- Brackets [] .. 119

4.6. Cutting and Pasting with the Editor .. 120

Moving Lines Around .. 120
Moving Text Around- the Move Command m .. 120

Substituting Newlines .. 122
Joining Lines - the Join Command j ... 123
Rearranging a Line with \ (. . . \) ... 123

Marking a Line - the Mark Command k .. 124

Copying Lines-the Transfer Command t ... 124

4.7. Escaping to the Shell with ! ... 125

4.8. Supporting Tools ... 125

Editing Scripts .. 125

u
-vii-

Contents - Continued

Matching Patterns with grep 126
CJ

4.9. Summary of Commands and Line Numbers 127

Chapter 5 Using sect, the Stream Text Editor 129
5 .1. Introduction 129
5.2. Using sed 130

Command Options 131
5.3. Editing Commands Application Order 132
5.4. Specifying Lines for Editing .. . 132

Line-number Addresses 132
Context Addresses 132
Number of Addresses .. . 133

5.5. Functions 134
Whole-Line Functions 134

The Substitute Function s .. . 137
Input-output Functions 138

Multiple Input-line Functions

Hold and Get Functions

139 \

140 u
Flow-of-Control Functions 141
Miscellaneous Functions 142

Chapter 6 Scanning Files 143
6.1. Viewing Files 143

Seeing the Top with head 143

Seeing the Bottom with tail 143

Sequential Views with cat 144

Selected Views with more 144

Random Views with view 144
6.2. Searching Through Files 144

Searches with grep 145
Searching for Character Strings 145
Inverted Search for 'Everything Except' 146

Regular Expressions 146

u
-viii-

u

u

u

Contents - Continued

Match Beginning and End of Line .. 146
Match Any Character .. 14 7
Character Oasses .. 148
Closures - Repeated Pattern Matches ... 149

Searching for Fixed Strings - fgrep .. 150

Extended Regular Expressions - egrep ... 150

Dictionary Search with look ... 153

Reversing Lines with rev ... 153

Counting Words with we ... 153

Chapter 7 Pattern Scanning and Processing with awk 155
7.1. Using awk ... 156

Program Structure ... 156

Records and Fields ... 157
7.2. Displaying Text .. 157
7.3. Specifying Patterns... 159

BEGIN and END .. 159
Regular Expressions .. 160
Relational Expressions .. 161
Combinations of Patterns ... 162
Pattern Ranges .. 162

7.4. Actions... 162
Assignments, Variables, and Expressions .. 162

Field Variables ... 163
String Concatenation .. 164

Built-In Functions... 165
length Function... 165
substring Function.. 165

index Function .. 165

sprintf Function ... 165

Arrays ... 166
Flow-of-Control Statements ... 166

The getline Function.. 167

-ix-

Contents - Continued

Chapter 8 Manipulating Files 169 u
8.1. Comparing Different Files .. . 169

Comparing Binaries with cmp 169
Comparing Text with di ff .. . 170

dif f - First Form .. . 171
diff -Second Form .. . 171
diff-Third Form .. . 171

Three Files- diff3 .. . 175
Finding Common Lines with comm .. . 176
Combining Files with join .. , 179
Repeated Lines and uniq .. . 180

8.2. Modifying Files 181
8.3. Printing Files 181

Index 183

u

-x-

u

Tables

Table 2-1 Editor Options .. 18
Table 2-2 File Manipulation Commands .. 26
Table 2-3 Extended Pattern Matching Characters ... 28

Table 2-4 Input Mode Corrections .. 28
Table 2-5 Common Character Abbreviations... 30

Table 2-6 Terminal Types ... 51

Table 6-1 grep Option Summary.. 151
Table 6-2 grep Special Characters ... 152

Table 8-1 diff3 Option Summary .. 176

Table 8-2 join Option Summary.. 179
Table 8-3 uniq Option Summary .. 180

u
. -xi-

u

u

Summary of Contents

Usage Conventions

Pref ace

This manual describes the facilities for editing and manipulating text available
with standard Sun system software .. The preliminary chapters cover the use of
various editors, and later chapters introduce more advanced text manipulation
commands. We assume you are familiar with a terminal keyboard and the Sun
system. If you are not, read the SunOS User's Guide: Getting Started.

This manual is divided into eight chapters. The first few chapters cover the stan­
dard text editors, presented in decreasing order of use. Remaining chapters
describe how to scan and manipulate files. Here is a short outline of the chapters:

o The introductory chapter provides a guide to the available editing tools, and
suggestions for what to if something goes wrong in the editor. Newcomers
to editing on a Sun workstation should start here.

o The chapter on vi provides tutorial and reference information on the most
commonly used visual display editor.

o The next chapter constitutes a command reference for the line-oriented edi­
tor ex, which is actually the_same editor (in a different mode) as edit and
vi.

D

D

D

D

The chapter on ed provides a user's guide to the oldest UNIX system editor,
which is now largely outmoded.

The chapter on scanning files is divided into two parts: looking at files (as
with more) and searching through files (as with grep).

The chapter on awk presents an interesting programminglJilfu~~~(.iesigned
for pattern scanning and text processing. .·.·. ·.·.·.·.·.·.·. ·.·.·.·.·.·.·. w

~·wc::p::;;)~=~~~~~~~:: .e:~d~!:d!il~~.
lpr). ····•···• ·•• WW WW WW W ••·•··•···

Throughout this manual we use

[hostname%)

as the prompt after which you type system commands. Bold typewriter
font indicates commands that you must type exactly as printed in the manual.

- xiii-

Preface - Continued

Reading Suggestions

Regular typewriter font represents what the system prints out to your
screen. Typewriter font also specifies Sun system command names (program
names) and illustrates source code listings. Italic font indicates general argu­
ments or parameters that you should replace with a specific word or string. We
also occasionally use italics to emphasize important terms.

The information in this manual is presented in two styles: examples then exer­
cises, and reference. As you are reading sections of this manual, sit down at your
workstation and try the exercises and examples. The reference sections serve
two functions: they explain in greater detail how to use the most-often-used
features, and also cover the less-often-used features and options. Another refer­
ence source for additional details on Sun system commands and programs is the
SunOS Reference Manual.

-xiv-

!)
\..-;1

u

(\ u
1.1. Available Editors

u

1
Introduction to Text Editing

If you are familiar with text editors on the UNIX system, you can refer directly to
the chapter in this manual covering the specific editor in which you are
interested.

If you want a quick reference to remind you of a particular feature of either vi or
ex, you can refer to one of the summary sheets for these editors, following the
vi and ex chapters, respectively.

If you are not familiar with available text editors, read the chapter "Editing Files"
in SunOS User's Guide: Getting Started. It provides a good introduction to vi,
including how to create a file, move the cursor around within a file, and change
the contents of a file.

SunOS provides the text editors vi, ex, edit, ed, and text edit. The one
you will probably use most often is vi, although you may prefer another editor
that is more familiar to you. When inside the window system, textedit pro­
vides a mouse-based editing interface; for an introduction to this editor see the
Sun View User's Guide.

vi is a screen-oriented, or display editor. It is "built on top of' ex, which means
vi has almost all of the features of ex, plus many more features that are specific
to vi. You can issue almost all ex commands from within vi by preceding
them with the colon (:)character. Only a few ex commands require you to
invoke the ex editor explicitly. edit is a subset of ex, and is therefore covered
in that chapter.

The following diagram briefly sketches the history of UNIX system text editors.
ed was the original line editor, after which all the others were modeled. ex
improved on ed, by being less terse, and providing display options like num­
bered lines, by allowing shorthand versions of commands, and by responding
with clearer error messages. However, ex is still a line editor. edit, another
line editor, provides a subset of ex's features. Later, open mode was added to
ex, which enabled the user to make changes and move the cursor around on only
a single line at a time. The most advanced and most widely-used text editor as of
this writing is the screen-oriented editor vi.

1 Revision A, of 27 March 1990

2 Editing Text Files

1.2. What to Do If
Something Goes
Wrong

terse, hard to use

less terse than ed
Options
Shorthand

/ ~ Better Error Messages

.-----e-d-1.,..' t--1 ~
subset of ex

I openmodeofex
Changes and move around
on single line

~
II vi II visual editor

In case you make a mistake, or something goes wrong, here are some suggestions
for what to do.

If you make a mistake in the editor that you cannot recover from easily, don't
panic. As long as you don't write the file and quit the editor, you can retrieve the
original file. In such a case you have two choices:

1. Write ALL (good and bad) changes you just made to a new file and quit edit-
ing the current file, or

2. Quit the editor without saving any changes you just made.

You should write the entire edit buffer into a new file as long as most of the new
changes are valid. In vi, the commands are :w newfilename to write the new
file, then : q ! to get out of the editor. You should quit without saving ANY of
the changes if you know they are all wrong. In vi, the command is : q!.

Occasionally, you can get into a state where your workstation or terminal acts
strangely. For example, you may not be able to move the cursor, or your cursor
may disappear, or the terminal won't echo what you type, or typing RETURN
may not cause a linefeed or return the cursor to the left margin. After a suitable
length of time, try the following solutions:

o First, type CTRL-Q. In case you had accidentally typed CTRL-S, freezing the
screen, this would resume the suspended output. Typing CTRL-Q would also
resume suspended output from accidentally typing a NO SCRL key on your
keyboard (also called SET UP/NO SCROLL on some terminals). This also
freezes the keyboard like typing a CTRL-S.

u

o Next, try pressing the LINEFEED key, followed by typing RESET, and press-
ing LINEFEED again. u

o If that doesn't help, try logging out and logging back in. If you are using a
terminal, try powering it off and on to regain normal operation.

~~sun ~'?f'/ microsystems
Revision A, of 27 March 1990

/ \

\,_)

u

1.3. Other Text-Handling
Programs

Chapter 1 - Introduction to Text Editing 3

o If you get unwanted messages or garbage on your screen, type CTRL-L to
refresh the workstation screen. (Use CTRL-R on a terminal.)

If your system goes down, the edit buffer is automatically saved in a file.
Depending on the elapsed time since your last change, most to all of your latest
changes are recoverable. After rebooting your system, or doing whatever needs
to be done, you will receive mail indicating that the file has been saved. The
mail message contains instructions on how to recover the file with your edits in
it. First, return to the directory where the file belongs. Then, re-enter the editor
with the -r option to restore the file:

[hostname% vi -r filename

When you are ready, write the changes to the file by typing : w or : wq.

)

Other utility programs such as awk, sed, grep, fgrep, egrep, and tr
operate on a text file, but do not change the original file. You pass the file to be
"edited" through a script (such as awk or sed) or command (such as grep) and
the "changes" appear on your screen, but the file remains intact. Refer to the fol­
lowing diagram for an outline of how these utility programs work.

~ Original File
~

!
Command

Script

I v

Output from Script
to Screen or New File

~ Original File Unchanged
~

For more information, refer later chapters in this manual.

~\sun ~ microsystems
Revision A, of 27 March 1990

4 Editing Text Files

~~sun ~"(f? microsystems
Revision A, of 27 March 1990

\
_,J

u

u

2.1. vi and ex

u

2
Using vi, the Visual Display Editor

This chapter describes vi (pronounced vee-eye), the visual display editor.1 The
first part of this chapter discusses the basics of using vi. The second part gives a
command reference and provides information on setting up terminals. Finally,
there is a quick reference sheet, which summarizes vi commands. Keep this
reference sheet handy while learning vi.

This chapter assumes you are using vi on the Sun Workstation. If you are using
vi on a terminal, refer to the section "Terminal Information" for instructions on
setting up your terminal.

Actually vi and ex are links to the same program. Depending on whether you
invoke the vi or ex command, you see different aspects of this program. While
ex presents a line-oriented editing interface, vi presents a screen-oriented inter­
face. Of course, the full command set of ex is available from within vi, and
screen editing is available from within ex. Most people prefer editing with vi
rather than with ex. However, some editing tasks (such as global substitutions)
are performed more easily with ex. See the chapter "Command Reference for
the ex Line Editor" for more information on the ex command set.

After typing vi, you are placed in visual mode~ after typing ex, you are placed
in command mode. It is possible to switch between these modes without leaving
the editor. When you are in line-oriented command mode, you can escape to
visual mode by typing vi I Return I. When you are in visual mode, you can
escape to line-oriented command mode by typing Q all by itself. Alternatively,
you can type : all by itself, which places the cursor on the command line at the
bottom of the screen. From here you can issue any single-line ex command,
ending it with a I Return). All the colon-commands introduced in the section enti­
tled "File Manipulation Commands" are also available in ex.

In rare instances, an internal error may occur in vi. In such a case you will get a
diagnostic and be left in the command mode of ex. You should save your work
and quit by giving the command wq (Return I after the : prompt that the editor
gives you. Or if you prefer, you can re-enter visual mode by giving the com­
mand vi I Return I after the colon prompt.

1 The material in this chapter is derived from An Introduction to Display Editing with Vi, W.N. Joy, M.
Horton, University of California, Berkeley and Vi Command and Function Reference, A.P. W. Hewett, M.
Horton.

~~sun ~"f(I' mlcrosystems
5 Revision A, of 27 March 1990

6 Editing Text Files

2.2. Getting Started

Editing a File

_,

When using vi, changes you make to the file you are editing are reflected in
what you see on your workstation screen.

During an editing session, there are two usual modes of operation: command
mode and insert mode. In command mode you can move the cursor around in
the file. There are commands to move the cursor forward and backward in units
of characters, words, sentences and paragraphs. A small set of operators, like d
for delete and c for change, are combined with the motion commands to form
operations such as delete word or change paragraph. You can do other opera­
tions that do not involve entering fresh text. To enter new text into the file, you
must be in insert mode. You get into insert mode with the a or A (append), o or
o (open) and I or i (insert) commands. You get out of insert mode by typing the
ESC (escape) key (or ALT on some keyboards). The significant characteristic of
insert mode is that commands can't be used, so anything you type except ESC is
inserted into the file. If you change your mind anytime in insert mode using vi,
typing ESC cancels the command you started and reverses to command mode. If
you had already typed some characters, typing u undoes the last insert operation.
Also, if you are unsure of which mode you are in, type ESC until the screen
flashes; this means that you are back in command mode.

Run vi on a copy of a file you are familiar with while you are reading this. Try
the commands as they are described.

To use vi on the file, type:

(hostname% vi filename J
...____ -----~

replacing.filename with the name of the file copy you just created. The screen
clears and the text of your file appears.

If you do not get the display of text, you may have typed the wrong filename. vi
has created a new file for you with the indication" file" [New file].
Type : q (colon and the 'q' key) and then type the RETURN key. This should get
you back to the command level interpreter. Then try again, this time spelling the
filename correctly.

If vi doesn't seem to respond to the commands you type here, try sending vi an
interrupt by typing a CTRL-C (or INTERRUPT signal) at your workstation (or by
pressing the DEL or RUB keys on your terminal). Then type the : q command
again followed by a RETURN. If you are using a terminal and something else
happens, you may have given the system an incorrect terminal type code. vi
may make a mess out of your screen. This happens when it sends control codes
for one kind of terminal to some other kind of terminal. Type a : q and
RETURN. Figure out what you did wrong (ask someone else if necessary) and try
again.

~~sun ~~ microsystems
Revision A, of 27 March 1990

u

u

u

The Editor's Copy - Editing
in the Buffer

Arrow Keys

Special Characters: ESC, CR
andCTRL-C

Chapter 2- Using vi, the Visual Display Editor 7

vi does not directly modify the file you are editing. Rather, vi makes a copy of
this file in a place called the buffer, and remembers the file's name. All changes
you make while editing only change the contents of the buffer. You do not affect
the contents of the file unless and until you write the buffer back into the original
file.

The editor command set is independent of the workstation or tenninal you are
using. On most tenninals with cursor positioning keys, these keys will also work
within the editor. 2 If you don't have cursor positioning keys, that is, keys with
arrows on them, or even if you do, you can use the h, j, k, and 1 keys as cursor
positioning keys. As you will see later, h moves back to the left (like C1RL-H, a
backspace), j moves down (in the same column), k moves up (in the same
column), and 1 moves the cursor to the right.

Several of these special characters are very important, so be sure to find them
right now. Look on your keyboard for a key labelled ESC (or ALT on some ter­
minals). It is near the upper left comer of your workstation keyboard. Try typ­
ing this key a few times. vi flashes the screen (or beeps) to indicate that it is in a
quiescent state. You can cancel partially fonned commands with ESC. When
you insert text in the file, you end the text insertion with ESC. This key is a fairly
hannless one to press, so you can just press it until the screen flashes if you don't
know what is going on.

Use RETURN (or CR for carriage return) key to tenninate certain commands. It
is at the right side of the workstation keyboard, and is the same key used at the
end of each shell command.

Use the special character CTRL-C (or DEL or RUB key), to send an interrupt, to
tell vi to stop what it is doing. It is a forceful way of making vi listen to you,
or to return vi to the quiescent state if you don't know or don't like what is
going on.

Try typing the'/' key on your keyboard. Use this key to search for a string of
characters. vi displays the cursor at the bottom line of the screen after a'/' is
displayed as a prompt. You can get the cursor back to the current position by
pressing BACK SPACE (or DEL); try this now. This cancels the search. Typing
C1RL-C also cancels the search. From now on we will simply refer to typing
CTRL-C (or pressing the DEL or.RUB key) as 'sending an interrupt. '3

vi often echoes your commands on the last line of the screen. If the cursor is on
the first position of this last line, then vi is perfonning a computation, such as
locating a new position in the file after a search or running a command to refor­
mat part of the buffer. When this is happening, you can stop vi by sending an
interrupt.

2 Note for the HP2621: on this tenninal the function keys must be shifted to send to the machine, otherwise
they only act locally. Unshifted use leaves the cursor positioned incorrectly.

3 On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is
computing with the cursor on the bottom line.

Revision A, of 27 March 1990

8 Editing Text Files

Getting Out of vi - : q : q!
:wZZ ::x: :wq

2.3. Moving Around in the
File

Scrolling and Paging -
CTRL-D CTRL-U CTRL-E
CTRL-Y CTRL-F CTRL-B

When you want to get out of vi and end the editing session, type : q to quit. If
you have changed the buffer contents and type : q, vi responds with No write
since last change (:quit! overrides). Ifyouthenwanttoquit
vi without saving the changes, type : q ! . You need to know about : q ! in case
you change the editor's copy of a file you wish only to look at. Be very careful
not to give this command when you really want to save the changes you have
made.

Do not type : q ! if you want to save your changes. To save or write your
changes without quitting vi, type : w. While in the middle of an editing session,
if you are sure about the changes you have made, it's a good idea to save your
changes from time to time by typing : w.

To write the contents of the buffer back into the file you are editing, saving any
changes you have made, and then to quit, type zz or : :x:. And finally, to write
the file even if no changes have been made, and exit vi, type : wq.

You can terminate all commands that read from the last display line with an ESC
as well as a RETURN.

vi has a number of commands for moving around in the file. You can scroll for­
ward and backward through a file, moving part of the text on the screen. You can
page forward and backward through a file, by moving a whole screenful of text.
You can also display one more line at the top or bottom of the screen.

The most useful way to move through a file is to type the control (CTRL) and D
keys at the same time, sending a CTRL-D. We use this notation to refer to control
sequences from now on. When coupled with the CTRL key, the shift key is
ignored, so CTRL-D and CTRL-d are equivalent.

Try typing CTRL-D to see that this command scrolls down in the file. The com­
mand to scroll up is CTRL-U. (Many dumb terminals cannot scroll up at all. In
that case type CTRL-U to clear and refresh the screen, placing a line that is farther
back in the file at the top of the screen.)

If you want to see more of the file below where you are, you can type CTRL-E to
expose one more line at the bottom of the screen, leaving the cursor where it is.
The CTRL-Y (which is hopelessly non-mnemonic, but next to CTRL-U on the
keyboard) exposes one more line at the top of the screen.

You can also use the keys CTRL-F and CTRL-B to move forward and backward a
page, keeping a couple of lines of continuity between screens so that it is possi­
ble to read through a file using these rather than CTRL-D and CTRL-U if you
wish. CTRL-F and CTRL-B also take preceding counts, which specify the number
of pages to move. For example, 2CTRL-F pages forward two pages.

Notice the difference between scrolling and paging. If you are trying to read the
text in a file, typing CTRL-F to page forward leaves you only a little context to
look back at. Scrolling with CTRL-D on the other hand, leaves more context, and

\
' I
_./

moves more smoothly. You can continue to read the text as scrolling is taking u· \

place.

~~sun ~"({fl microsystems
Revision A, of 27 March 1990

u

u

Searching, Goto, and Previous
Context - I ? G

Chapter 2- Using vi, the Visual Display Editor 9

Another way to position yourself in the file is to give vi a string to search for.
Type the character 'I' followed by a string of characters tenninated by RETURN.
vi positions the cursor at the next occurrence of this string. Try typing n to go
to the next occurrence of this string. The character '?' searches backward from
where you are, and is otherwise like 'I '. N is like n, but reverses the direction of
the search.

You can string several search expressions together, separated by a semicolon in
visual mode, the same as in command mode in ex. For example:

(/today/;/tomorrow)
moves the cursor to the first 'tomorrow' after the next 'today'. This also works
within one line.

These searches nonnally wrap around the end of the file, so you can find the
string even if it is not on a line in the direction you search, provided it is some­
where else in the file. You can disable this wraparound with the command : s e
nowrapscanCR, or more briefly : se nowsCR.

If the search string you give vi is not present in the file, vi displays Pattern
not found on the last line of the screen, and the cursor is returned to its initial
position.

If you wish the search to match only at the beginning of a line, begin the search
string with a caret character(~). To match only at the end of a line, end the
search string with a dollar sign($). So to search for the word 'search' at the
beginning of a line, type:

(1Asearch<CR>)
and to search for the word 'last' at the end of a line, type:

(11ast$<CR>)
Actually, the string you give to search forhere can be a regular expression in the
sense of the editors ex and ed. If you don't wish to learn about this yet, you can
disable this more geneml facility by typing

(:se nomagic<CR>

By putting this command in EXINIT in your environment, you can have always
this nomagic option in effect. See the section on "Special Topics" for details on
how to do this.

The command G, when preceded by a number, positions the cursor at that line in
the file. Thus 1 G moves the cursor to the first line of the file. If you do not give
G any count, it positions you at the last line of the file.

)

Revision A, of 27 March 1990

10 Editing Text Files

Moving Around on the Screen
-hjkl+-HML

Moving Within a Line - b w
eEBW

If you are near the end of the file, and the last line is not at the bottom of the
screen, vi places only the character tilde(-) on each remaining line. This indi­
cates that the last line in the file is on the screen; that is, the - lines are past the
end of the file.

You can find out the state of the file you are editing by typing a CTRL-G. vi
shows you the name of the file you are editing, the number of the current line, the
number of lines in the buffer, and the percentage of characters already displayed
from the buffer. For example:

I "data. file" [Modified] line 329 of 1276 -8%-

Try doing this now, and remember the number of the line you are on. Give a G
command to get to the end and then another G command with the line number to
get back where you were.

You can get back to a previous position by using the command ' ' (two apos­
trophes). This returns you to the first non-blank space in the previous location.
You can also use ' ' (two back quotes) to return to the previous position. The
former is more easily typed on the keyboard. This is often more convenient than
G because it requires no advance preparation. Try typing a G or a search with I
or ? and then a ' ' to get back to where you were. If you accidentally type n or
any command that moves you far away from a context of interest, you can

u

quickly get back by typing ' ' . i~J

Now try just moving the cursor around on the screen. Try the arrow keys as well
ash, j, k, and 1. You will probably prefer these keys to arrow keys, because
they are right underneath your fingers. These are very common keys for moving
up and down lines in the file. Notice that if you go off the bottom or top with
these keys then the screen scrolls down (and up if possible) to bring a line at a
time into view.

Type the+ key. Each time you do, notice that the cursor advances to the next
line in the file, at the first non-blank position on the line. The - key is like + but
the cursor goes to the first non-blank character in the line above.

The RETURN key has the same effect as the + key.

vi also has commands to take you to the top, middle and bottom of the screen.
H takes you to the top (lwme) line on the screen. Try preceding it with a number
as in 3H. This takes you to the third line on the screen. Try M, which takes you
to the middle line on the screen, and L, which takes you to the last line on the
screen. L also takes counts, so 5 L takes you to the fifth line from the bottom.

Now pick a word on some line on the screen, not the first word on the line. Move
the cursor using h, j, k, 1 or RETURN and - to be on the line where the word is.
Try typing thew key. This advances the cursor to the next word on the line. w
advances to the next word ignoring any punctuation. Try typing the b key to
back up words in the line. Also try the e key which advances you to the end of U
the current word rather than to the beginning of the next word. Also try SPACE
(the space bar) which moves right one character and the BACKSPACE (or CTRL-

Revision A, of 27 March 1990

u

/ \
') \._,

(\.

0

Viewing a File-view

2.4. Making Simple
Changes

Inserting- i I a Ao and O

Chapter 2- Using vi, the Visual Display Editor 11

H) key which moves left one character. The key h works as CTRL-H does and is
useful if you don't have a BACKSPACE key.

If the line had punctuation in it, you may have noticed that the w and b keys
stopped at each group of punctuation. You can also go backward and forward
words without stopping at punctuation by using w and B rather than the lower
case equivalents. You can think of these as bigger words. The E command
advances to the end of the current word, but unlike e, ignores punctuation. Try
these on a few lines with punctuation to see how they differ from the lower case
e, w, and b.

The word keys wrap around the end of line, rather than stopping at the end. Try
moving to a word on a line below where you are by repeatedly typing w.

If you want to use the editor to look at a file, rather than to make changes, use
view instead of vi. This sets the readonly option which prevents you from
accidently overwriting the file. For example, to look at a file called kubla, type:

hostname% view kubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.
"kubla" [Read only] 5 lines, 149 characters

To scroll through a file longer than one screenful, use the characters described in
the previous section on "Scrolling and Paging." To get out of view, type : q. If
you accidentally made changes to the file while the readonly option was set, type
: q ! to exit.

Simple changes involve inserting, deleting, repeating, and changing single char­
acters, words, and lines of text. In vi, you can also undo the previous change
with ease in case you change your mind.

There are two basic commands for inserting new text: i to insert text to the left
of the cursor, and a to append text to the right of the cursor. After you type i,
everything you type until you press ESC is inserted into the file. Try this now;
position yourself at some word in the file and try inserting text before this word.
(If you are on an dumb terminal it will seem, for a minute, that some of the char­
acters in your line have been overwritten, but they will reappear when you type
ESC.)

Now try finding a word that can, but does not, end in an 's'. Position the cursor
at this word and type e (move to end of word), then a (for append), 's', and ESC
to terminate the text insert. Use this sequence of commands to easily make a
word plural.

Try inserting and appending a few times to make sure you understand how this
works.

~~sun ~~ mlcrosystems
Revision A, of 27 March 1990

12 Editing Text Files

Making Small Corrections -
xrsR

It is often the case that you want to add new lines to the file you are editing,
before or after some specific line in the file. Find a line where this makes sense
and then give the command o to create a new line after the line you are on, or the
command o to create a new line before the line you are on. After you create a
new line in this way, text you type up to an ESC is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only
in that one is given by a lower-case key and the other is given by an upper-case
key. In these cases, the upper-case key often differs from the lower-case key in
its sense of direction, with the upper-case key working backward or up, while the
lower-case key moves forward or down.

Whenever you are typing in text, you can give many lines of input or just a few
characters. To type in more than one line of text, type a RETURN at the middle
of your input. A new line will be created for text, and you can continue to type.
(If you are on a slow, dumb terminal vi may choose to wait to redraw the tail of
the screen, and will let you type over the existing screen lines. This avoids the
lengthy delay that would occur if vi attempted to always keep the tail of the
screen up to date. The tail of the screen will be fixed up, and the missing lines
will reappear, when you type ESC.)

While you are inserting new text, you can use the DEL key at the system com­
mand level to backspace over the last character you typed. (This may be CTRL-H
on a terminal.) Use C1RL-U (this may be CTRL-X on a terminal) to erase the
input you have typed on the current line. In fact, the character C1RL-H (back­
space) always works to erase the last input character here, regardless of what
your erase character is.

CTRL-W erases a whole word and leaves you after the space after the previous
word; use it to quickly back up when inserting.

Notice that when you backspace during an insertion, the characters you back­
space over are not erased; the cursor moves backward, and the characters remain
on the display. This is often useful if you are planning to type in something simi­
lar. In any case the characters disappear when you press ESC; if you want to get
rid of them immediately, hit an ESC and then a again.

Notice also that you can't erase characters you didn't insert, and that you can't
backspace around the end of a line. If you need to back up to the previous line to
make a correction, just hit ESC and move the cursor back to the previous line.
After making the correction you can return to where you were and use the insert
or append command again.

You can make small corrections in existing text quite easily. Find a single char­
acter that is wrong or just pick any character. Use the arrow keys to find the
character, or get near the character with the word motion keys and then either
backspace with h (or the BACKSPACE key orC1RL-H) or type a SPACE (using
the space bar) until the cursor is on the character that is wrong. If the character is
not needed, type the x key; this deletes the character from the file. It is analogous
to the way you x out characters when you make mistakes on a typewriter, except
it's not as messy.

Revision A, of 27 March 1990

' ' \ v'

')
0

u

u

u

Deleting, Repeating, and
Changing - dw • db c

Operating on Lines - dd cc
s

Chapter 2 - Using vi, the Visual Display Editor 13

If a single character is incorrect, you can replace it with the correct character by
typing the command re, where c is replaced by the correct character. You don't
need to type ESC. If you want to replace or type over more than one character,
type R and then the ESC key to get out of insert mode when you are finished.
Finally, if the incorrect character should be replaced by more than one character,
type s which substitutes for the single character, a string of characters, and end
the substitution with ESC. If there are a small number of incorrect characters,
you can precede s with a count of the number of characters to be replaced. You
can use counts with x to specify the number of characters to be deleted and with
r, such as 4rx to specify that a character be replaced with four x's.

Use xp to correct simple typos in which you have inverted the order of two
letters. The p for put is described later.

You already know almost enough to make changes at a higher level. All you
need to know now is that the d key acts as a delete operator. Try the command
dw to delete a word. Try typing ' . ' a few times. Notice that this repeats the
effect of the dw. The'.' repeats the last command that made a change. You can
remember it by analogy with an ellipsis ' ... '.

Now try db. This deletes a word before the cursor, namely the preceding word.
Try dSPACE. This deletes a single character, as does the x command.

Use D to delete the rest of the line the cursor is on.

Another very useful operator is c or change. Thus cw changes the text of a sin­
gle word. You follow it by the replacement text ending with an ESC. Find a
word that you can change to another, and try this now. Notice that the end of the
text to be changed is marked with the dollar sign character($) so that you can
see this as you are typing in the new material.

It is often the case that you want to operate on lines. Find a line you want to
delete, and type dd, the d operator twice. This deletes the line.

If you are on a dumb terminal, vi may just erase the line on the screen, replacing
it with a line with only an at-sign(@) on it. This line does not correspond to any
line in your file, but only acts as a place holder. It helps to avoid a lengthy
redraw of the rest of the screen which would be necessary to close up the hole
created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this changes a whole line, erasing its previous
contents and replacing them with text you type up to an ESC. The command s is
a convenient synonym for cc, by analogy withs. Think of s as a substitute on
lines, while s is a substitute on characters.

You can delete or change more than one line by preceding the dd or cc with a
count, such as 5dd, which deletes 5 lines. You can also give a command like
dL to delete all the lines up to and including the last line on the screen, or d3L to
delete through the third from the bottom line. Try some commands like this
now.4 Notice that vi lets you know when you change a large number oflines so

4 One subtle point here involves using the 'I' search after a d. This nonnally deletes characters from the
current position to the point of the match. H what is desired is to delete whole lines including the two points,

Revision A, of 27 March 1990

14 Editing Text Files

Undoing-u U

2.5. Rearranging and
Duplicating Text

Low-level Character Motions
-fF A

that you can see the extent of the change. It also always tells you when a change
you make affects text you cannot see.

Now suppose that the last change you made was incorrect; you could use the
insert, delete and append commands to put the correct material back. However,
since it is often the case that we regret a change or make a change incorrectly, vi
provides a u command to undo the last change you made. Try this a few times,
and give it twice in a row to notice that a u also undoes a u.

The undo command lets you reverse only a single change. After you make a
number of changes to a line, you may decide that you would rather have the ori­
ginal state of the line back. The u command restores the current line to the state
before you started changing it, only as long as you do not move the cursor off the
line. If you move the cursor away from the line you changed, u does nothing.

You can recover text that you delete, even if u (undo) will not bring it back; see
the section on "Recovering Lost Lines" on how to recover lost text.

This describes more commands for moving in a file and explains how to rear­
range and make copies of text.

Now move the cursor to a line where there is a punctuation or a bracketing char­
acter such as a parenthesis, a comma or a period. Try the command fx to find the
next x character to the right of the cursor in the current line. Try then hitting a ;
which finds the next instance on that line of the same character. By using the f
command and then a sequence of ; s you can often get to a particular place in a
line much faster than with a sequence of word motions or SPACES. There is also
an F command, which is like f, but searches backward. After instituting a
search, the ; repeats the search in the same direction as it was begun, and a
comma (,) repeats the search in the opposite direction.

When you are operating on the text in a line, it is often desirable to deal with the
characters up to, but not including, the first instance of a character. Try dfx for
some x now and notice that the x character is deleted. Undo this with u and then
try dtx; the there stands for to, that is, delete up to the next x, but not the x.
The command T is the reverse oft.

When working with the text of a single line, a 'A' moves the cursor to the first
non-blank position on the line, and a $ moves it to the end of the line. Thus $a
appends new text at the end of the current line (as does A which is easier to type).

Your file may have tab (CTRL-1) characters in it. These characters are
represented as a number of spaces expanding to a tab stop, where tab stops are
every eight positions. 5 When the cursor is at a tab, it sits on the last of the several
spaces that represent that tab. Try moving the cursor back and forth over tabs so
you understand how this works.

give the pattern as I pal I+ 0, a line address.

S You can set this with a command of the fonn : se t s=x<CR>, where xis four to set tabstops every four : \
columns, for example. This affects the screen representation within the editor. \..._)

Revision A, of 27 March 1990

u

(..

0

u

Higher Level Text Objects -
(){}[[]]

(
I

I

Chapter 2- Using vi, the V~sual Display Editor 15

On rare occasions, your file may have non-printing charact¢rs in it. These charac­
ters are displayed as control sequences, and look like a caret character (A) adja-

1

cent to another character. For example, the symbol for a n~w page (CTRL-L),
looks like AL in the input file. However, spacing or backswacing over the charac­
ter reveals that the two characters displayed represent onlyia single character.

The editor sometimes discards control characters, dependitlg on the character and
the setting of the beautify option, if you attempt to insert ttlem in your file. You
can get a control character in the file by beginning an insert and then typing a
CTRL-V before the control character. The CTRL-V quotes the following charac-
ter, causing it to be inserted directly into the file. !

In working with a document it is often advantageous to wdrk in terms of sen­
tences, paragraphs, and sections. The operations ' (' and ') ' move to the begin­
ning of the previous and next sentences respectively. Thus the command d)

I

deletes the rest of the current sentence; likewise d (delete's the previous sen-
tence if you are at the beginning of the current sentence, o~ the current sentence
up to where you are if you are not at the beginning of the current sentence.

I

A sentence is defined as ending at a '. ', '! ' or '?' followed by either the end of a
line, or by two spaces. Any number of closing')',']',"" ~d '''characters may
appear after the '.', '!' or '?' before the spaces or end of the line.

The operations ' { ' and ' } ' move over paragraphs and the ~perations ' [[' and
I

' J J ' move over sections. The ' [[' and ' J J ' operations require the operation
character to be doubled because they can move the cursor far from where it
currently is. While it is easy to get back with the command '' ' ', these com­
mands would still be frustrating if they were easy to type accidentally.

I

A paragraph begins after each empty line, and also at eachlof a set of paragraph
macros, specified by the pairs of characters in the definition of the string-valued
option paragraphs. The default setting for this option defihes the paragraph mac­
ros of the -ms macro package, that is the . IP, . LP, . PP ·I and . QP macros.
You can easily change or extend this set of macros by assigning a different string
to the paragraphs option in your EXINIT. See the section bn "Special Topics"
for details. The . bp directive is also considered to start a !paragraph. Each para­
graph boundary is also a sentence boundary. The sentenc~ and paragraph com­
mands take counts to operate over groups of sentences anq paragraphs.

I

Sections in the editor begin after each macro in the sectio~ option, normally
• NH and . SH, and each line with a formfeed CTRL-L in ilie first column. Section

I

boundaries are always line and paragraph boundaries also.!
I

Try experimenting with the sentence and paragraph comm:ands until you are sure
how they work. If you have a large document, try looking! through it using the
section commands. The section commands interpret a preceding count as a dif­
ferent view size in which to redraw the screen at the new lbcation, and this size is

I

the base size for newly-drawn screens until another size is I specified. (This is
very useful if you are on a slow terminal and are looking for a particular section.
You can give the first section command a small count to tfyen see each successive
section heading in a small screen area.) 1

~~sun ~~ microsystems

I

Rievision A, of 27 March 1990

16 Editing Text Files

Rearranging and Duplicating
Te~t-y Yp P

2.6. High-Level Commands

Writing, Quitting, and Editing
New Files- zz : w : q : e : n

vi has a single unnamed buffer where the last deleted or changed text is saved
away, and a set of named buffers a-z that you can use to save copies of text and
to move text around in your file and between files.

The operator y yanks a copy of the object that follows into the unnamed buffer.
If preceded by a buffer name, "xy, wherex here is replaced by a letter a-z, it
places the text in the named buffer. The text can then be put back in the file with
the commands p and P; p puts the text after or below the cursor, while P puts the
text before or above the cursor.

If the text you yank forms a part of a line, or is an object such as a sentence that
partially spans more than one line, then when you put the text back, it will be
placed afterthe cursor(orbefore if you use P). If the yanked text forms whole
lines, they will be put back as whole lines, without changing the current line. In
this case, the put acts much like an o or o command.

Try the command YP. This makes a copy of the current line and leaves the cur­
sor on this copy, which is placed before the current line. The command Y is a
convenient abbreviation for yy. The command Yp will also make a copy of the
current line, and place it after the current line. You can give Y a count of lines to
yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back
in another. You can precede a delete operation by the name of a buffer in which
the text is to be stored as in "a5dd deleting 5 lines into the named buffer a.
You can then move the cursor to the eventual resting place of the lines and do a 0
"ap or "aP to put them back. In fact, you can switch and edit another file
before you put the lines back, by giving a command of the form : e nameCR
where name is the name of the other file you want to edit. You will have to write
back the contents of the current editor buffer (or discard them) if you have made
changes before vi will let you switch to the other file. An ordinary delete com-
mand saves the text in the unnamed buffer, so that an ordinary put can move it
elsewhere. However, the unnamed buffer is lost when you change files, so to
move text from one file to another you must use a named buffer.

A description of high-level commands that do more than juggle text follows.

So far you have seen how to enter vi and to write out your file using either zz or
: wCR. The first exits from vi, writing if changes were made, and the second
writes and stays in vi. We have also described that if you have changed the
editor's copy of the file but do not wish to save your changes, either because you
messed up the file or decided that the changes are not an improvement to the file,
you type

[:q! <CR>)
to quit from the editor without writing the changes.

You can also re-edit the same file and start over by typing : e ! CR. Use the ' ! ' i0
command rarely and with caution, as it is not possible to recover the changes you
have made after you discard them in this manner.

Revision A, of 27 March 1990

u

u

u

Escaping to a Shell - : ! : sh
CTRL-Z

Marking and Returning - m

Adjusting the Screen CTRL-L,

z

Chapter 2- Using vi, the Visual Display Editor 17

You can also edit a different file without leaving vi by giving the command
: e nameCR. If you have not written out your file before you try to do this, vi
tells you this, ('No write since last change: (:edit! overrides)') and delays editing
the other file. You can then type : wCR to save your work, followed by the
: e nameCR command again, or carefully give the command :e! nameCR, which
edits the other file discarding the changes you have made to the current file. To
save changes automatically, include set autowrite in yourEXINIT, and use
: n instead of : e. See the "Special Topics" section for details on EXINIT.

You can get to a shell to execute a single command by giving a vi command of
the form : ! cmdCR. The system runs the single command cmd and when the
command finishes, vi asks you to Press RETURN to continue. When
you have finished looking at the output on the screen, type RETURN, and vi
redraws the screen. You can then continue editing. You can also give another :
command when it asks you for a RETURN; in this case the screen will not be
redrawn.

If you wish to execute more than one command in the shell, give the command
: shCR. This gives you a new shell, and when you finish with the shell, ending it
by typing a CTRL-D, vi clears the screen and continues.

Use CTRL-Z to suspend vi and to return to the top level shell. The screen is
redrawn when vi is resumed. This is the same as : stop.

The command ' ' returned to the previous place after a motion of the cursor by a
command such as I, ? or G. You can also mark lines in the file with single letter
tags and return to these marks later by naming the tags. Try marking the current
line with the command mx, where you should pick some letter for x, say a. Then
move the cursor to a different line (any way you like) and type ' a. The cursor
will return to the place you marked. Marks last only until you edit another file.

When using operators such as d and referring to marked lines, it is often desir­
able to delete whole lines rather than deleting to the exact position in the line
marked by m. In this case you can use the form 'x rather than 'x. Used without
an operator, 'x will move to the first non-blank character of the marked line;
similarly ' ' moves to the first non-blank character of the line containing the pre­
vious context mark ' ' .

If the screen image is messed up because of a transmission error to your worksta­
tion, or because some program other than vi wrote output to your workstation,
you can type a CTRL-L, the ASCII form-feed character, to refresh the screen. (On
a dumb terminal, if there are @ lines in the middle of the screen as a result of line
deletion, you may get rid of these lines by typing CTRL-R to retype the screen,
closing up these holes. 6)

If you wish to place a certain line on the screen at the top middle or bottom of the
screen, position the cursor to that line, and give a z command. Follow the z
command with a RETURN if you want the line to appear at the top of the

6 This includes Televideo 912/920 and ADM31 terminals.

Revision A, of 27 March 1990

18 Editing Text Files

2.7. Special Topics

Options, the Set Variable, and
Editor Start-up Files

Table 2-1

window, a'.' if you want it at the center, or a'-' if you want it at the bottom.

If you want to change the window size, use the z command as in z 5<CR> to
change the window to five lines.

There are several facilities that you can use to customize an editing session.

vi has a set of options, some of which have been mentioned above. The most
useful options are described in the following table.

Editor Options

Option Default Description

auto indent noai Supply indentation automatically
auto write noaw Automatic write before : n, : ta, C1RL-A, !
ignorecase noic Ignore letter case in searching
lisp nolisp ({) } commands deal with S-expressions
list no list Tabs print as Al, end oflines marked with $
magic magic The characters . [and * are special in scans
number nonu Lines displayed prefixed with line numbers
paragraphs para=IPLPPPQPP LI ... Macro names that start paragraphs
redraw no re Simulate a smart terminal on a dumb one
sections sect=NHSHH HU ... Macro names that start new sections
shiftwidth sw=8 Shift distance for<, > and input CTRL-D
showmatch nosm Show matching (or { as) or } is typed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle
options. You can set numeric and string options by a statement of the form:

Fopr-val
Toggle options can be set or unset by statements of one of these forms:

Put these statements in your environment variable EXINIT (described below), or
use them while you are running vi by preceding them with a : and following
them with a RETURN. For example, to display line numbers at the beginning of
each line, use:

(:se nu

To get a list of all options that you have changed, or the value of a single option,
use:

l

Revision A, of 27 March 1990

u

u

u

Recovering Lost Lines

(_)

Chapter 2- Using vi, the Visual Display Editor 19

:set<CR>
redraw term=sun wrapmargin=8

: set opt?<CR>

For example:

[

:set noai?<CR> l
noautoindent

'------------
This command generates a list of all possible options and their values:

You can abbreviate set to se. You can also put multiple options on one line, as
follows:

[:se ai aw nu<CR> J
When you set options with the set command, they only last until you terminate
the editing session in vi. It is common to want to have certain options set when­
ever you use the editor. To do this, create a list of ex commands to be run every
time you start up vi, ex, or edit. All commands that start with a colon (:)are
ex commands. A typical list includes a set command, and possibly a few map
commands. Put these commands on one line by separating them with the pipe
(I) character. If you use the c shell, csh, put a line like this in the

setenv EXINIT 'set ai aw terselmap @ ddlmap # x'

This sets the options autoindent, autowrite, terse, (the set command), and
makes@ delete a line, (the first map), and makes# delete a character, (the
second map). (See the "Macros" section for a description of the map command.)

If you use the Bourne shell, put these lines in the file .profile in your home direc­
tory:

EXINIT='set ai aw terselmap @ ddlmap # x
export EXINIT

Of course, the particulars of the line depend on the options you want to set.

You might have a serious problem if you delete a number of lines and then regret
that they were deleted. Despair not, vi saves the last nine deleted blocks of text
in a set of numbered registers 1-9. You can get the nth previous deleted text
back in your file by "n p. The " here says that a buffer name is to follow, n is
the number of the buffer you wish to try (use the number 1 for now), and p, that
puts text in the buffer after the cursor. If this doesn't bring back the text you

·~r!?s1!! Revision A, of 27 March 1990

20 Editing Text Files

Recovering Lost Files - the
-r Option

Continuous Text Input -
wrap margin

wanted, type u to undo this and then (period) . to repeat the p. In general the
' . ' command repeats the last change you made. As a special case, when the last
command refers to a numbered text buffer, the ' . ' command increments the
number of the buffer before repeating the command. Thus a sequence of the
form:

["lpu.u.u.

will, if repeated long enough, show you all the deleted text that has been saved
for you. You can omit the u commands here to gather up all this text in the
buffer, or stop after any . command to keep just the recovered text. You can
also use P rather than p to put the recovered text before rather than after the cur­
sor.

)

If something goes wrong so the system goes down, you can recover the work you
were doing up to the last few changes. You will normally receive mail when you
next log in giving you the name of the file that has been saved for you. You
should then change to the directory where you were when the system went down
and type:

[hostname% vi -r filename)
replacingfilename with the name of the file you were editing. This will recover LJ
your work to a point near where you left off. In rare cases, some of the lines of
the file may be lost. vi will give you the numbers of these lines and the text of
the lines will be replaced by the string 'LOST'. These lines will almost always be
among the last few that you changed. You can either choose to discard the
changes you made (if they are easy to redo) or to replace the few lost lines by
hand.

You can get a listing of the files that are saved for you by typing:

[~h_o_s_t_n_a_m_e_% __ v_i __ -_r ________ ~~~--~~~----------------------)
If there is more than one instance of a particular file saved, vi gives you the
newest instance each time you recover it. You can thus get an older saved copy
back by first recovering the newer copies.

The invocation 'vi -r' will not always list all saved files, but they can be
recovered even if they are not listed.

When you are typing in large amounts of text it is convenient to have lines bro­
ken near the right margin automatically. To do this, use the set wrapmargin
option:

[:se wm=lO<CR>

This rewrites words on the next line that you type past the right margin.

)

Revision A, of 27 March 1990

_)

u

u

Features for Editing
Programs

Filtering Portions of the
Buffer

Chapter 2- Using vi, the Visual Display Editor 21

If vi breaks an input line and you wish to put it back together, you can tell it to
join the lines with J. You can give J a count of the number of lines to be joined
as in 3J to join 3 lines. vi supplies blank space, if appropriate, at the juncture of
the joined lines, and leaves the cursor at this blank space. You can delete the
blank space with x if you don't want it.

If you want to split a line into two, put the cursor where you want the break, and
type rCR.

vi has a number of commands for editing programs. To generate correctly­
indented programs, use the autoindent option:

[:se ai<CR>

Now try opening a new line with o. Type a few tabs on the line and then some
characters. If you type a CR and start another line, notice that vi supplies blank
space at the beginning of the line to align the text of the new line with that of the
previous line.

l

After you have started a new line, you might want to indent your current line less
than the previous line. You are still in insert mode, and cannot backspace over
the automatic indentation. However, you can type CTRL-D to backtab over each
level of indentation. Each time you type C1RL-D, you back up one position, nor­
mally to an eight-column boundary. You can set the number of columns that a
tab shifts with the shiftwidth option. Try giving the command:

[:se sw=4<CR>

and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >.
These shift the lines you specify right or left by one shiftwidth. Try<< and>>
which shift one line left or right, and <L and > L shifting the rest of the text left
and right.

l

If you have a complicated expression and wish to see how the parentheses match,
put the cursor at a left or right parenthesis and type % • This shows you the
matching parenthesis. This works also for braces { and } , and brackets [and].

If you are editing C programs, you can use [[and]] to advance or retreat to a
line starting with a { , that is, a function declaration at a time. When you use]]
with an operator, it stops after a line that starts with } ; this is sometimes useful
with y]].

You can run system commands over portions of the buffer using the operator ' ! '.
You can use this to sort lines in the buffer, or to reformat portions of the buffer
with a pretty printer. Try typing in a list of random words, one per line and end­
ing them with a blank line. Back up to the beginning of the list, and then give
the command:

Revision A, of 27 March 1990

22 Editing Text Files

Commands for Editing LISP

Macros

This says to sort the next paragraph of material, and that the blank line ends a
paragraph. The result is sorted text in your file.

If you are editing a LISP program, set the option lisp by doing:

(:se lisp<CR>

This changes the (and) commands to move backward and forward over s­
expressions. The { and } commands are like (and) but don't stop at atoms.
Use { and} to skip to the next list, or through a comment quickly.

The autoindent option works differently for LISP, supplying indentation to align
at the first argument to the last open list. If there is no such argument, the indent
is two spaces more than the last level.

The showmatch option shows matching parentheses. Try setting it with:

(:se sm<CR>

l

l
and then try typing a '(' some words and then a ')'. Notice that the cursor briefly
shows the position of the'(' which matches the')'. This happens only ifthe <.__)
matching '(' is on the screen, and the cursor stays there for at most one second.

vi also has an operator to realign existing lines as though they had been typed in
with lisp and autoindent set. This is the= operator. Try the command=% at the
beginning of a function. This realigns all the lines of the function declaration.

When you are editing LISP, the [[and]] advance and retreat to lines beginning
with a (, and are useful for dealing with entire function definitions.

vi has a parameterless macro facility you can set up so that when you type a sin­
gle keystroke, vi will act as though you had typed some longer sequence of
keys. Set this up if you find yourself repeatedly typing the same sequence of
commands or text. There are two kinds of macros:

I. Ones where you put the macro body in a buffer register, say x. You can then
type @x to invoke the macro. The@ may be followed by another@ to repeat
the last macro.

2. You can use the map command from vi (typically in yourEXINIT) with a
command of the form:

(:map lhs rhs<CR>1)
This maps rhs into lhs. There are restrictions: lhs should be one keystroke (either LJ

7 /hs is an abbreviation for left hand side. rhs is an abbreviation for right hand side.

Revision A, of 27 March 1990

\

' I \,_,,;

/ \

\._)

Chapter 2- Using vi, the Visual Display Editor 23

one character or one function key) since it must be entered within one second
unless notimeout (see the "Option Descriptions" section) is set. In that case you
can type it as slowly as you wish, and vi will wait for you to finish before it
echoes anything). The lhs can be no longer than ten characters, the rhs no longer
than 100. To get a space, tab or newline into lhs or rhs, escape them with a
CTRL-V. It may be necessary to double the CTRL-V if you use the map com­
mand inside vi, rather than in ex. You do not need to escape spaces and tabs
inside the rhs.

Thus to make the q key write and exit vi, type:

l
which means that whenever you type q, it will be as though you had typed the
four characters : wqCR. A CTRL-V is needed to quote the first CR; the second CR
ends the map definition. Actually the first CR is part of the rhs, while the second
terminates the : command.

You can delete macros with

If the lhs of a macro is '#0' through '#9', this maps the particular function key
instead of the two-character'#' sequence. So that terminals without function
keys can access such definitions, the form '#x' will mean function key x on all
terminals and need not be typed within one second. You can change the charac­
ter '#' by using a macro in the usual way:

to use tab, for example. This won't affect the map command, which still uses#,
but just the invocation from visual mode.

The undo command reverses an entire macro call as a unit, if it made any
changes.

Placing a ! after the word map applies the mapping to input mode, rather than
command mode. So, to arrange for CTRL-T to be the same as four spaces in
input mode, type:

l

l
where l6 represents a blank. The CTRL-V prevents the blanks from being taken as
blank space between the lhs and rhs. Type simply:

(:map! l
to list macros that apply during input mode and

Revision A, of 27 March 1990

24 Editing Text Files

Word Abbreviations - : ab
:una

2.8. Nitty-gritty Details

Line Representation in the
Display

(__ :map _______)

to list macros that apply during command mode.

A feature similar to macros in input mode is word abbreviation. You can type a
short word and have it expanded into a longer word or words with : abbrevi­
ate (: ab). For example:

[:ab foo find outer otter)
always changes the word 'foo' into the phrase 'find outer otter'. Word abbrevia­
tion is different from macros in that only whole words are affected. If 'foo' were
typed as part of a larger word, it would be left alone. Also, the partial word is
echoed as it is typed. There is no need for an abbreviation to be a single keys­
troke, as it should be with a macro. This only operates in visual mode and uses
the same syntax as the map command, except that there are no '!' forms.

Use : unabbreviate (: una) to tum off the abbreviation. To unabbreviate
the above, for example, type:

[:una foo)
\

The vi editor has a number of short commands that abbreviate the longer com- '\._)
mands we have introduced here. You can find these commands easily in the "ex
Commands" section of the "ex Quick Reference." They often save a bit of typ-
ing, and you can learn them when it's convenient.

The following presents some functional details and some ex commands (see the
"File Manipulation Commands" section) that are particularly useful in vi.

vi folds long logical lines onto many physical lines in the display. Commands
that advance lines advance logical lines and skip over all the segments of a line
in one motion. The command J moves the cursor to a specific column, and may
be useful for getting near the middle of a long line to split it in half. Try 8 O I on
a line over 80 columns long. You can make long lines very easily by placing the
cursor on the first line of two you want to join and typing shift-J (capital J).

vi only puts full lines on the display; if there is not enough room on the display
to fit a logical line, the vi editor leaves the physical line empty, placing only an
'@' on the line as a place holder. (When you delete lines on a dumb terminal,
vi will often just clear the lines to '@' to save time rather than rewriting the rest
of the screen.) You can always maximize the information on the screen with
CTRL-R.

If you wish, you can have the editor place line numbers before each line on the
display. To enable this, type the option:

(:se nu<CR> J

~~sun ~~ mlcrosystems
Revision A, of 27 March 1990

(_)

Command Counts

u

Chapter 2- Using vi, the Visual Display Editor 25

To tum it off, use the no numbers option:

(:se nonu<CR>)
You can have tabs represented as CTRL-1 (appears as A I) and the ends of lines
indicated with '$' by giving the list option:

(:se list<CR>)
To tum this off, use:

(:se nolist<CR>)
Finally, lines consisting of only the character•-• are displayed when the last line
in the file is in the middle of the screen. These represent physical lines that are
past the logical end of file.

Most vi commands use a preceding count to affect their behavior in some way.
The following table lists the common ways the counts are used:

New window size
Scroll amount
Line/column number
Repeat effect

I ? [[J J
CTRL-D CTRL-U
z G
Most of the rest

vi maintains a notion of the current default window size. (On terminals that run
at speeds greater than 1200 baud, vi uses the full terminal screen. On terminals
slower than 1200 baud, and most dialup lines are in this group, vi uses eight
lines as the default window size. At 1200 baud, the default is 16 lines.)

vi uses the default window size when it clears and refills the screen after a
search or other motion moves far from the edge of the current window. All com­
mands that take a new window size as count often redraw the screen. If you anti­
cipate this, but do not need as large a window as you are currently using, you
may wish to change the screen size by specifying the new size before these com­
mands. In any case, the number of lines used on the screen will expand if you
move off the top with a'-' or similar command or off the bottom with a com­
mand such as RETURN or CTRL-D. The window will revert to the last specified
size the next time it is cleared and refilled, but not by a CTRL-L which just
redraws the screen as it is.

The scroll commands CTRL-D and CTRL-U likewise remember the amount of
scroll last specified, using half the basic window size initially. The simple insert
commands use a count to specify a repetition of the inserted text. Thus 1 O a+­
- - - ESC inserts ten repetitions of a plus sign followed by four minus signs:

(+----+----+----+----+----+----+----+----+----+----

A few commands also use a preceding count as a line or column number.

)

Revision A, of 27 March 1990

26 Editing Text Files

Except for the few commands that ignore any counts, such as CTRL-R, the rest of
the vi commands use a count to indicate a simple repetition of their effect. Thus
5w advances five words on the current line, while 5RETURN advances five lines.
A very useful instance of a count as a repetition is a count given to the . com­
mand, which repeats the last changing command. If you do dw and then 3 . , you
delete first one and then three words. You can then delete two more words with
2 ..

File Manipulation Commands The following table lists the file manipulation commands you can use when you
are in vi.

Table 2-2 File Manipulation Commands

Command Meaning
:w Write back changes
:wq Write and quit
:x Write (if necessary) and quit (same as ZZ).
:e name Edit file name
:e! Re-edit, discarding changes
:e + name Edit, starting at end
:e +n Edit, starting at line n
:e # Edit alternate file
:w name Write file name
:w! name Overwrite file name
:x,yw name Write lines x through y to name
:r name Read file name into buffer
:r !cmd Read output of cmd into buffer
:n Edit next file in argument list
:n! Edit next file, discarding changes to current
: n args Specify new argument list
:ta tag Edit file containing tag tag, at tag

A CR or ESC follows all of these commands. The most basic commands are : w
and : e. End a normal editing session on a single file with a z z command. If
you are editing for a long period of time, use the : w command occasionally after
major amounts of editing, and then finish with a z z. When you edit more than
one file, you can finish with one with a : w and start editing a new file by giving a
: e command, or set autowrite and use : n.file.

If you make changes to the editor's copy of a file, but do not wish to write them
back, give an ! after the command you would otherwise use to exit without
changing the file. Use this carefully.

0

Use the : e command with a+ argument to start at the end of the file, or a +n
argument to start at linen. In actuality, n may be any editor command not con­
taining a space, usually a scan like +I pat or +?pat. In forming new names to the
e command, use the character % which is replaced by the current filename, or the
character # which is replaced by the alternate filename. The alternate filename is LJ
generally the last name you typed other than the current file. Thus if you try to
do a : e and get a diagnostic that you haven't written the file, you can give a : w

~~sun ~~ microsystems
Revision A, of 27 March 1990

u

(_)

u

More about Searching for
Strings

Chapter 2- Using vi, the Visual Display Editor 27

command and then a : e 4f command to redo the previous : e.

You can write part of the buffer to a file by finding out the lines that bound the
range to be written using CTRL-G, and giving these numbers after the : and
before thew, separated by , s. You can also mark these lines with m and then use
an address of the form 'x, 'y on the w command here.

You can read another file into the buffer after the current line by using the : r
command. You can similarly read in the output from a command, just use ! cmd
instead of a filename.

If you wish to edit a set of files in succession, you can give all the names on the
command line, and then edit each one in tum using the command : n. To
respecify the list of files to be edited, give the : n command a list of filenames, or
a pattern to be expanded as you would have given it on the initial vi command.

For editing large programs, use the : ta command. It uses a database of function
names and their locations, which can be created by programs such as ctags(l)
to quickly find a function whose name you give; see the SunOS Reference
Manual for details. If the : ta command requires the editor to switch files, then
you must : w or abandon any changes before switching. You can repeat the : ta
command without any arguments to look for the same tag again.

When you are searching for strings in the file with I and ? , vi normally places
you at the next or previous occurrence of the string. If you are using an operator
such as d, c or y, then you may well wish to affect lines up to the line before the
line containing the pattern. You ~an give a search of the form /pat/-n to refer
to the nth line before the next line containing pat, or you can use + instead of -
to refer to the lines after the one containing pat. If you don't give a line offset,
vi will affect characters up to the match place, rather than whole lines; thus use
+0 to affect the line that matches.

To have vi ignore the case of words in searches, give the ignorecase option:

[:se ic<CR>

To tum this off so that vi recognizes case again, use:

J

Strings given to searches may actually be regular expressions. If you do not want
or need this facility, you should put:

[set nomagic

in your EXINIT. When nomagic is set, only the characters caret (A) and dollar
sign($) are special in patterns. The character backslash(\) is also special with
nomagic set. You can precede some of the normally special characters (not spe­
cial in nomagic mode) with a backslash to enable their special properties.

J

~\sun ,~ microsystems
Revision A, of 27 March 1990

28 Editing Text Files

It is necessary to use a backslash(\) before a slash(/) to search for a slash char­
acter in a forward scan and before a question mark(?) to search for a question
mark in a backward scan. The command to search for a slash character is shown
on the last line of the example below, as it would appear on your screen.

text text text text text text text text text text text
text text text/text text text text text text text
text text text text text text text text text text text
text text? text text text text text text text text? text
text text text/text text text text text/text text
text text text text text text text text text text text
//<CR>

The following table gives the extended forms when magic is set.

Table 2-3 Extended Pattern Matching Characters

Character Meaning
At beginning of pattern, matches beginning of line

$ At end of pattern, matches end of line
Matches any character

\ < Matches the beginning of a word
\ > Matches the end of a word
[string]
[A string]
[x-y]

*

Matches any single character in string
Matches any single character not in string
Matches any character between x and y
Matches any number of the preceding pattern

If you use nomagic mode, use the ' . [' and '*' primitives with a preceding\

More about Input Mode There are a number of characters to make corrections during input mode. These
are summarized in the following table.

Table 2-4 Input Mode Corrections

Character
CTRL-H
CTRL-W
erase
kill
\
ESC
DEL
CR
CTRL-D
0CTRL-D
ACTRL-D

CTRL-V

Meaning
Deletes the last input character
Deletes the last input word
Your erase character, same as CTRL-H
Your kill character, deletes the input on this line
Escapes a following CTRL-H and your erase and kill
Ends an insertion
Interrupts an insertion, terminating it abnormally
Starts a new line
Backtabs over autoindent
Kills all the autoindent
Same as CTRL-D, but restores indent next line
Quotes the next non-printing character into the file

The most usual way of making corrections to input is to type DEL (CTRL-H on a

Revision A, of 27 March 1990

u

(' u

2.9. Command and
Function Reference

Notation

[option]

[count]

{variable item}

<character [-character]>

Chapter 2- Using vi, the Visual Display Editor 29

tenninal) to correct a single character, or by typing one or more CTRL-W to back
over incorrect words.

Your system kill character C1RL-U (or sometimes CTRL-X) erases all the input
you have given on the current line. In general, you can neither erase input back
around a line boundary nor can you erase characters you did not insert with this
insertion command. To make corrections on the previous line after a new line
has been started, press ESC to end the insertion, move over and make the correc­
tion, and then return to where you were to continue. Use A to append at the end
of the current line; this is often useful for continuing text input.

If you wish to type in your erase or kill character, say CTRL-U, you must precede
it with a \, just as you would do at the normal system command level. A more
general way of typing non-printing characters into the file is to precede them
with a C1RL-V. The CTRL-V echoes as a i character on which the cursor rests.
This indicates that the editor expects you to type a control character. In fact you
may type any character and it will be inserted into the file at that point. 8

If you are using autoindent, you can backtab over the indent that it supplies by
typing a C1RL-D. This backs up to a shiftwidth boundary. This only works
immediately after the supplied autoindent.

When you are using autoindent you may wish to place a label at the left margin
of a line. The way to do this easily is to type a caret (C1RL-) and then C1RL-D.
The editor will move the cursor to the left margin for one line, and restore the
previous indent on the next. You can also type a zero (O) followed immediately
by a C1RL-D if you wish to kill all the indent and not have it come back on the
next line.

The following section provides abridged explanations of the various vi and ex
commands.

Notation used in this section is as follows.

Denotes optional parts of a command. Many vi commands have an optional
count, explained below.

Means that an optional number may precede the command to multiply or iterate
the command.

Denotes parts of the command that must appear, but can take any number of dif­
ferent values.

Means that the character or one of the characters in the range described between
the two angle brackets is to be typed. For example ESC means type the ESCAPE
key. <a-z > means type a lower-case letter. CTRL-<character> means type the
character as a control character, that is, with the CTRL key held down while

8 This is not quite true. vi does not allow the NULL (CTRL-@) character to appear in files. Also, the editor
uses LF (linefeed or CTRL-J) to separate lines in the file, so it cannot appear in the middle of a line. You can
insert most non-printing characters, however, after a CTRL-V. The exceptions are CTRL-S or CTRL-Q (for
suspending and resuming output), which vi ignores; use ex if you need to insert these characters.

~\sun ~ microsystems
Revision A, of 27 March 1990

30 Editing Text Files

Table 2-5

Commands

Entry and Exit

Cursor and Page Motion

simultaneously typing the specified character. Here we indicate control charac­
ters with upper-case letters, but ClRL-<uppercase letter> and CTRL-<lower-case
letter> are equivalent. That is, ClRL-D is equal to ClRL-d. The most common
character abbreviations used in this list are as follows:

Common Character Abbreviations

Character Meaning Hexadecimal
Abbreviation Representation

ESC escape Ox lb
CR carriage return, CTRL-M Oxd
<lf> linefeed ClRL-J Oxa
<nl> newline, ClRL-J Oxa (same as linefeed)
<bs> backspace,CTRL-H Ox8
<tab> tab, CTRL-1 Ox9
<bell> bell, CTRL-G Ox7
<ff> formfeed, CTRL-L Oxc
<Sp> space Ox20
DEL delete Ox7f

Following are brief explanations of the vi commands categorized by function
for easy reference.

To use vi to edit a particular file, type:

(hostname% vi filename J
'---· _____ __..

vi will read the file intro the buffer, and place the cursor at the beginning of the
first line. The first screenful of the file is displayed on the screen.

To exit from vi, type:

(~~-z~_(_o_r~=-x~o-r~:q~o-r~:-q_!_)~~~~~~~~~~~~~~~__.J
If you are in some special mode, such as input mode or the middle of a multi­
keystroke command, it may be necessary to type ESC first.

Note: You can move the cursor on your screen with the arrow keys on your
workstation keyboard, the control character versions, or the h, j, k, and 1 keys.
If you are using a terminal that does not have arrow keys, use the control charac:­
ter .versions or the h, j, k, and 1 keys.

[count]<bs> or [count]h or [count]f- Move the cursor to the left one character. Cursor stops at the left margin of the
page. [count] specifies the number of spaces to move.

u

[count]<lf> or [count]j or [count]..!, Also [count]CTRL-N. Move the cursor down one line. Moving off the screen u/
scrolls the window to force a new line onto the screen. Mnemonic: Next.

Revision A, of 27 March 1990

u

u

u

Chapter 2- Using vi, the Visual Display Editor 31

[count]k or [count]i Also [count]ClRL-P. Move the cursor up one line. Moving off the top of the
screen forces new text onto the screen. Mnemonic: Previous.

[count]<sp> or [count]l or [count]-? Move the cursor right one character. Cursor will not go beyond the end of the
line.

[count]- Move the cursor up the screen to the beginning of the next line. Scroll if neces­
sary.

[count]+ or [count]CR Move the cursor down the screen to the beginning of the next line. Scroll up if
necessary.

[count]$ Move the cursor to the end of the line. If there is a count, move to the end of the
line count lines forward in the file.

Move the cursor to the beginning of the first word on the line.

0 Move the cursor to the left margin of the current line.

[count] I Move the cursor to the column specified by the count. The default is column
zero.

[count]w Move the cursor to the beginning of the next word. If there is a count, then move
forward that many words and position the cursor at the beginning of the word.
Mnemonic: next-word

[count]W Move the cursor to the beginning of the next word that follows a blank space
(<sp>,<tab>, or <nl>). Ignore other punctuation.

[count]b Move the cursor to the preceding word. Mnemonic: backup-word

[count]B Move the cursor to the preceding word that is separated from the current word by
a blank space (<sp>,<tab>, or <nl>).

[count]e Move the cursor to the end of the current word or the end of the countth word
hence. Mnemonic: end-of-word

[count]E Move the cursor to the end of the current word which is delimited by blank space
(<sp>,<tab>, or <nl>).

[line number]G Move the cursor to the line specified. Of particular use are the sequences IG and
G, which move the cursor to the beginning and the end of the file respectively.
Mnemonic: Go-to

Note: The next four commands (CTRL-D, ClRL-U, CTRL-F, CTRL-B) are not true
motion commands, in that they cannot be used as the object of commands such
as delete or change.

[count]CTRL-D Move the cursor down in the file by count lines (or the last count if a new count
isn't given). The initial default is half a page. The screen is simultaneously
scrolled up. Mnemonic: Down

[count]CTRL-U Move the cursor up in the file by count lines. The screen is simultaneously
scrolled down. Mnemonic: Up

[count]CTRL-F Move the cursor to the next page. A count moves that many pages. Two lines of
the previous page are kept on the screen for continuity if possible. Mnemonic:
Forward

Revision A, of 27 March 1990

32 Editing Text Files

[count]CTRL-B Move the cursor to the previous page. Two lines of the current page are kept if
possible. Mnemonic: Backward

[count])

[count](

[count]}

[count] {

]]

Move the cursor to the beginning of the next sentence. A sentence is defined as
ending with a '. ', '!',or '?' followed by two spaces or a <nl>.

Move the cursor backward to the beginning of a sentence.

Move the cursor to the beginning of the next paragraph. This command works
best inside nroff documents. It understands the nroff macros in -ms, for
which the commands . IP, • LP, . PP, • QP, as well as the nroff command
. bp, are considered to be paragraph delimiters. A blank line also delimits a
paragraph. The nroff macros that it accepts as paragraph delimiters are adju­
stable. See the entry for "Paragraphs" in the "Set Commands" section.

Move •ihe cursor backward to the beginning of a paragraph.

Move the cursor to the next 'section,' where a section is defined by the set of
nroff macros in -ms, in which . NH, . SH and . H delimit a section. A line
beginning with a <ff><nl> sequence, or a line beginning with a ' {' are also con­
sidered to be section delimiters. The last option makes it useful for finding the
beginnings of C functions. The nroff macros that are used for section delim­
iters can be adjusted. See the "Sections" entry under the heading "Set Com­
mands."

[[Move the cursor backward to the beginning of a section.

% Move the cursor to the matching parenthesis or brace. This is very useful in C or
lisp code. If the cursor is sitting on a (,) , { , or } , it is moved to the matching
character at the other end of the section. If the cursor is not sitting on a brace or
a parenthesis, vi searches forward on that line until it finds one and then jumps
to the match mate.

[count]H If there is no count, move the cursor to the top left position on the screen. If
there is a count, then move the cursor to the beginning of the line count lines
from the top of the screen. Mnemonic: Home

[count]L If there is no count, move the cursor to the beginning of the last line on the
screen. If there is a count, move the cursor to the beginning of the line count
lines from the bottom of the screen. Mnemonic: Last

M Move the cursor to the beginning of the middle line on the screen. Mnemonic:
Middle

m<a-z> Mark the place in the file without moving the cursor; use a character from a to z,
'<a-z>', as the label for referring to this location in the file. See the next two
commands. Mnemonic: mark Note: the mark command is not a motion and can­
not be used as the target of commands such as delete.

'<a-z> Move the cursor to the beginning of the line that is marked with the label '<a­
z>'.

'<a-z> Move the cursor to the exact position on the line that was marked with the label
'<a-z>'.

Revision A, of 27 March 1990

u

u

u

Chapter 2 - Using vi, the Visual Display Editor 33

Move the cursor back to the beginning of the line where it was before the last
non-relative move. A non-relative move is something such as searching or jump­
ing to a specific line in the file, rather than moving the cursor or scrolling the
screen.

Move the cursor back to the exact spot on the line where it was located before the
last non-relative move.

Searches The following commands search for items in a file.

[count]f{chr} Search forward on the line for the next or countth occurrence of the character chr.
The cursor is placed at the character of interest. Mnemonic: find character

[count]F { chr} Search backward on the line for the next or countth occurrence of the character
chr. The cursor is placed at the character of interest.

[count]t{chr} Search forward on the line for the next or countth occurrence of the character chr.
The cursor is placed just preceding the character of interest. Mnemonic: move
cursor up to character

[count]T { chr} Search backward on the line for the next or countth occurrence of the character
chr. The cursor is placed just preceding the character of interest.

[count]; Repeat the last f, F, tor T command in the same search direction.

[count], Repeat the last f, F, tor T command, but in the opposite search direction. This
is useful if you overshoot what you are looking for.

[count]/[string]/<nl> Search forward for the next occurrence of 'string'. Wraparound at the end of the
file does occur. The final I is not required.

[count]?[string]?<nl> Search backward for the next occurrence of 'string'. If a count is specified, the
count becomes the new window size. Wraparound at the beginning of the file
does occur. The final ? is not required.

n Repeat the last /[string]/ or ?[string]? search. Mnemonic: next occurrence.

N Repeat the last /[string]/ or ?[string]? search, but in the reverse direction.

:g/[string]/[editor command]<nl> Using the : syntax, it is possible to do global searches like you can in theed edi­
tor.

Text Insertion The following commands insert text. Terminate all multi-character text inser­
tions with an ESC character. You can always undo the last change by typing au.
The text insert in insertion mode can contain newlines.

a{text}<esc> Insert text immediately following the cursor position. Mnemonic: append

A {text} <esc> Insert text at the end of the current line. Mnemonic: Append

i {text} <esc> Insert text immediately preceding the cursor position. Mnemonic: insert

I {text} <esc> Insert text at the beginning of the current line.

o {text} <esc> Insert a new line after the line on which the cursor appears and insert text there.
Mnemonic: open new line

Revision A, of 27 March 1990

34 Editing Text Files

O{text}<esc> Insert a new line preceding the line on which the cursor appears and insert text
there.

Text Deletion The following commands delete text in various ways. You can always undo
changes by typing the u command.

[count]x Delete the character or characters starting at the cursor position.

[count]X Delete the character or characters starting at the character preceding the cursor
position.

D Delete the remainder of the line starting at the cursor. Mnemonic: Delete the rest
ofline

[count]d{motion} Delete one or more occurrences of the specified motion. You can use any motion
here described in the sections "Low Level Character Motions" and "Higher Level
Text Objects." You can repeat the d (such as [count]dd) to delete count lines.

Text Replacement Use the following commands to simultaneously delete and insert new text. You
can undo all such actions by typing u following the command.

r<chr> Replace the character at the current cursor position with <chr>. This is a one­
character replacement. No ESC is required for termination. Mnemonic: replace
character

u

R {text} <esc> Start overlaying the characters on the screen with whatever you type. It does not
~~~~an~. U 

[ count]s {text} <esc> Substitute for count characters beginning at the current cursor position. A '$' 
appears at the position in the text where the countth character appears so you will 
know how much you are erasing. Mnemonic: substitute 

[count]S{text}<esc> Substitute for the entire current line or lines. If you do not give a count, a'$' 
appears at the end of the current line. If you give a count of more than 1, all the 
lines to be replaced are deleted before the insertion begins. 

[count]c{motion} {text}<esc> Change the specified motion by replacing it with the insertion text. A'$' appears 
at the end of the last item that is being deleted unless the deletion involves whole 
lines. Motions can be any motion from the sections "Low Level Character 
Motions" and "Higher Level Text Objects." Repeat the c (such as [count]cc) to 
change count lines. 

Moving Text You can move chunks of text around in a number of ways with vi. There are 
nine buffers into which each piece of text deleted or yanked is put in addition to 
the undo buffer. The most recent deletion or yank is in the undo buff er and also 
usually in buffer 1, the next most recent in buffer 2, and so forth. Each new dele­
tion pushes down all the older deletions. Deletions older than 9 disappear. There 
is also a set of named registers, a-z, into which text can optionally be placed. If 
you precede any delete or replacement type command by "<a-z>, that named 
buffer will contain the text deleted after the command is executed. For example, 
"a3dd deletes three lines starting at the current line and puts them in buffer "a. 
Referring to an upper-case letter as a buffer name (A-Z) is the same as referring 
to the lower-case letter, except that text placed in such a buffer is appended to it 

Revision A, of 27 March 1990 

u 



u 

I 1 

'-/ 

u 

["<a-z> ][count]y {motion} 

["<a-z> ][count]Y 

["<a-z>]p 

Chapter 2- Using vi, the Visual Display Editor 35 

instead of replacing it. There are two more basic commands and some variations 
useful in getting and putting text into a file. 

Yank the specified item or count items and put in the undo buffer or the specified 
buffer. The variety of items that you can yank is the same as those that you can 
delete with the d command or changed with the c command. In the same way 
that dd means delete the current line and cc means replace the current line, yy 
means yank the current line. 

Yank the current line or the count lines starting from the current line. If no 
buffer is specified, they will go into the undo buffer, like any delete would. It is 
equivalent to yy. Mnemonic: Yank 

Put undo buffer or the specified buffer down after the cursor. If you yanked or 
deleted whole lines into the buffer, they are put down on the line following the 
line the cursor is on. If you deleted something else, like a word or sentence, it is 
inserted immediately following the cursor. Mnemonic: put buffer 

Note that text in the named buffers remains there when you start editing a new 
file with the : e fileCR command. Since this is so, it is possible to copy or delete 
text from one file and carry it over to another file in the buffers. However, the 
undo buffer and the ability to undo are lost when changing files. 

["<a-z> ]P Put undo buffer or the specified buffer down before the cursor. If you yanked or 
deleted whole lines into the buffer, they are put down on the line preceding the 
line the cursor is on. If you deleted something else, like a word or sentence, it is 
inserted immediately preceding the cursor. 

[count]>{motion} The shift operator right shifts all the text from the line on which the cursor is 
located to the line where the motion is located. The text is shifted by one 
shiftwidth. (See the ''Terminal Information" section.) >>means right shift the 
current line or lines. 

[count]<{motion} The shift operator left shifts all the text from the line on which the cursor is 
located to the line where the item is located. The text is shifted by one 
shiftwidth. (See the section on "Terminal Information.")<< means left shift the 
current line or lines. Once the line has reached the left margin, it is not affected 
further. 

[count]={motion} Prettyprints the indicated area according to LISP conventions. The area should 
be a LISP s-expression. 

Miscellaneous Commands A number of useful miscellaneous vi commands follow: 

ZZ Exit from vi. If any changes have been made, the file is written out. Then you 
are returned to the shell. 

CTRL-L Redraw the current screen. This is useful if messages from a background process 
are displayed on the screen, if someone 'writes' to you while you are using vi or 
if for any reason garbage gets onto the screen. 

CTRL-R On dumb terminals, those not having the 'delete line' function (the vtlOO for 
example), vi saves redrawing the screen when you delete a line by just marking 
the line with an '@' at the beginning and blanking the line. If you want to 

~~sun ~~ microsystems 
Revision A, of 27 March 1990 



36 Editing Text Files 

actually get rid of the lines marked with '@' and see what the page looks like, 
type a CTRL-R. 

CTRL-T An abbreviation synonym for the pop command, used to manipulate the tagstack. 

Converts the character under the cursor to lower-case if it is upper-case, or to 
upper-case if it is lower-case. With a count, converts the specified number of 
characters at and to the right of the cursor. The cursor ends up after the last char­
acter converted. 

'Dot' repeats the last text modifying command. You can type a command once 
and then move to another place and repeat it by just typing '.'. 

u Undo the last command that changed the buffer. Perhaps the most important 
command in the editor. Mnemonic: undo 

U Undo all the text modifying commands performed on the current line since the 
last time you moved onto it. 

[count]J Join the current line and the following line. The <nl> is deleted and the two lines 
joined, usually with a space between the end of the first line and the beginning of 
what was the second line. If the first line ended with a 'period', two spaces are 
inserted. A count joins the next count lines. Mnemonic: Join lines 

Q Switch to ex editing mode. In this mode vi behaves very much like ed - it 
operates on single lines and does not attempt to keep the window up to date. 
Once in this mode you can also switch to the open mode of editing by entering . · \ 
the command [line number] open<nl>, which is similar to normal visual mode !."-:-) 
except the window is only one line long. Mnemonic: Quit visual mode 

CTRL-] An abbreviation for a tag command. The cursor should be positioned at the 
beginning of a word. That word is taken as a tag name, and the tag with that 
name is found as if it had been typed in a : tag command. 

[count]! {motion} {Sun cmd}<nl> Any Sun system filter (that is, a command that reads the standard input and out­
puts something to the standard output) can be sent a section of the current file 
and have the output of the command replace the original text. Useful examples 
are programs like cb, sort, and nroff. For instance, using sort you can sort 
a section of the current file into a new list. Using ! ! means take a line or lines 
starting at the line the cursor is currently on and pass them to the Sun system 
command. Note: To escape to the shell for just one command, use 
: ! { cmd} <nl> (see the "High Level Commands" section). 

z{count}<nl> Reset the current window size to count lines and redraw the screen. 

Special Insert Characters Following are some characters that have special meanings during insert mode. 

CTRL-V During inserts, typing a CTRL-V quotes control characters into the file. Any 
character typed after the CTRL-V is inserted into the file. 

ncTRL-D CTRL-D without any argument backs up one shiftwidth. Use this to remove 
indentation that was inserted by the autoindent feature. Typing "'CTRL-D tem­
porarily removes all the autoindentation, thus placing the cursor at the left mar­
gin. On the next line, the previous indent level is restored. This is useful for 

Revision A, of 27 March 1990 



u 

u 

u 

: Commands 

C1RL-W 

<bs> 

:w[!] [file] 

Chapter 2- Using vi, the Visual Display Editor 37 

putting 'labels' at the left margin. OC1RL-D removes all autoindents and keeps it 
that way. Thus the cursor moves to the left margin and stays there on successive 
lines until you type TABs. As with the TAB, the C1RL-D is effective only before 
you type any other 'non-autoindent' controlling characters. Mnemonic: Delete a 
shiftwidth 

If the cursor is sitting on a word, C1RL-W moves the cursor back to the begin­
ning of the word, erasing the word from the insert. Mnemonic: erase Word 

The backspace always serves as an erase during insert modes in addition to your 
nonnal 'erase' character. To insert a <bs> into your file, quote it with the CTRL­
V. 

Typing a colon ( : ) during command mode puts the cursor at the bottom on the 
screen in preparation for a command. In the : mode, you can give vi most e:x: 
commands. You can also exit from vi or switch to different files from this 
mode. Tenninate all commands of this variety by a <nl>, <er>, or ESC. 

Write out the current text to the disk. It is written to the file you are editing 
unless you supply file. If file is supplied, the write is directed to that file instead. 
If that file already exists, vi does not write unless you use the '! ' indicating you 
really want to write over the older copy of the file. 

:q[!] Exit from vi. If you have modified the file you are currently looking at and 
haven't written it out, vi refuses to exit unless you type the ! . 

:e[!] [+[cmd]] [file] Start editing a new file calledfilename or start editing the current file over again. 
The command : e ! says 'ignore the changes I've made to this file and start over 
from the beginning'. Use it if you really mess up the file. The optional'+' says 
instead of starting at the beginning, start at the 'end', or, if you supply cmd, exe­
cute cmd first. Use this where cmd is n (any integer) that starts at line number n, 
and I text searches for 'text' and starts at the line where it is found. 

CTRL-A Switch back to the place in the previous file that you were editing with vi, 
before you switched to the current file. (Same as : e # on the command line.) 

:n[!] Start editing the next file in the argument list. Since you can call vi with multi­
ple filenames, the : n command tells it to stop work on the current file and switch 
to the next file. If you have modified the current file, it has to be written out 
before the : n will work or else you must use '! ', which discards the changes you 
made to the current file. 

:n[!] file [file file ... ] Replace the current argument list with a new list of files and start editing the first 
file in this new list. 

:r file Read in a copy of file on the line after the cursor. 

:r !cmd Execute the cmd and take its output and put it into the file after the current line. 

:!cmd Execute any system shell command. 

:ta[!] tag vi looks in the file named tags in the current directory; tags is a file of lines 
in the fonnat: 

tag filename vi-search-command 

Revision A, of27March1990 



38 Editing Text Files 

If vi finds the tag you specified in the : ta command, it stops editing the current 
file if necessary. If the current file is up to date on the disk, it switches to the file 
specified and uses the search pattern specified to find the 'tagged' item of 
interest. Use this when editing multi-file C programs such as the operating sys­
tem. There is a program called ctags which generates an appropriate tags file 
for C and f'l7 programs, so that by saying : ta function you can switch to that 
function. It can also be useful when editing multi-file documents, though the 
tags file has to be generated manually in this case. 

:pop You can pop tags from the stack either with the : pop directive, or with the 
CTRL-T command. The directive : set notagstack eliminates this stack 
altogether. 

Set Commands vi has a number of internal variables and switches you can set to achieve special 
affects. These options come in three fonns: switches that toggle off or on, 
options that require a numeric value, and options that require an alphanumeric 
string value. Set the toggle options by a command of the fonn: 

( : set option<nl> ) 
and tum off the toggle options with the command: 

( : set nooption<nl> ) 
To set commands requiring a value, use a command of the fonn: 

( : set option=value<nl> ) 
To display the value of a specific option, type: 

( : set option?<nl> ) 
To display only those that you have changed, type: 

(: set<nl> 

and to display the long table of all the settable parameters and their current 
values, type: 

Most of the options have a long fonn and an abbreviation. Both are described in 
the following list as well as the nonnal default value. 

To use values other than the default every time you enter vi, place the appropri­
ate set command in your EXINIT environment, such as (for the C shell): 

) 

Revision A, of 27 March 1990 

u 

u 



u 

( \, 
\._) 

u 

Chapter 2- Using vi, the Visual Display Editor 39 

setenv EXINIT 'set ai aw terse sh=/bin/csh' 

Or (for the Bourne shell): 

EXINIT='set ai aw terse sh=/bin/csh' 
export EXINIT 

Place these in your . login or .profile file in your home directory. 

autoindent ai Default: noai Type: toggle 
When in autoindent mode, vi helps you indent code by starting each line in the 
same column as the preceding line. Tabbing to the right with <tab> or CTRL-T 
moves this boundary to the right; to move it to the left, use CTRL-D. 

autoprint ap Default: ap Type: toggle 
Displays the current line after each ex text modifying command. Not of much 
interest in the normal vi visual mode. 

autowrite aw Default: noaw type: toggle 
Does an automatic write if there are unsaved changes before certain commands 
that change files or otherwise interact with the outside world are executed. These 
commands are : ! , : tag, : next, : rewind, CTRL-A, and CTRL-]. 

beautify bf Default: nobfType: toggle 
Discards all control characters except <tab>, <nl>, and <ff>. 

directory dir Default: dir=ltmp Type: string 
This is the directory in which vi puts its temporary file. 

errorbells eb Default: noeb Type: toggle 
Error messages are preceded by a <bell>. Sun Workstations not equipped with 
speakers flash instead of beeping. 

flash ft Default: ft Type: toggle 
If the terminal has visual bell capability, use that instead of the audible bell. 

hardtabs ht Default: hardtabs=8 Type: numeric 
This option contains the value of hardware tabs in your terminal, or of software 
tabs expanded by the Sun system. 

ignorecase ic Default: noic Type: toggle 
Map all upper-case characters to lower case in regular expression matching. 

lisp Default: nolisp Type: toggle 
Auto indent for LISP code. The commands (, ) , [ [ , and ] ] are modified 
appropriately to affect s-expressions and functions. 

list Default: nolist Type: toggle 
Show the <tab> and <nl> characters visually on all displayed lines. 

magic Default: magic Type: toggle 
Enable the metacharacters for matching. These include . , *, <, >, [string] , 
[A string], and [ <chr>-<chr>]. 

Revision A, of 27 March 1990 



40 Editing Text Files 

number nu Default: nonu Type: toggle 
Display each line with its line number. 

optimize opt Default: opt Type: toggle 
Useful only when using the ex capabilities. This option prevents automatic 
<cr>s from taldng place, and speeds up output of indented lines, at the expense of 
losing type-ahead on some versions of the operating system. 

paragraphs para Default: para=IPLPPPQPP Llpplpipnpbp Type: string 
Each pair of characters in the string indicates nroff macros to be treated as the 
beginning of a paragraph for the { and } commands. The default string is for the 
-ms macros. To indicate one-letter nroff macros, such as . P or . H, insert a 
space for the second character position. For example: 

(:set paragraphs=PPH\ bp<nl> 

causes vi to consider . PP, • H and . bp as paragraph delimiters. 

prompt Default: prompt Type: toggle 
In ex command mode the prompt character : is displayed when ex is waiting 
for a command. This is not of interest from vi. 

redraw Default: noredraw Type: toggle 
On dumb terminals, force the screen to always be up to date by sending great 
amounts of output. Useful only at high speeds. 

report Default: report=5 Type: numeric 

J 

Set the threshold for the number of lines modified. When more than this number 
oflines is modified, removed, or yanked, vi reports the number of lines changed 
at the bottom of the screen. 

scroll Default: scroll= { 1(2 window} Type: numeric 
This is the number of lines that the screen scrolls up or down when using the 
CTRL-U and CTRL-D commands. 

sections Default: sections=NHSHH HUuhsh+c Type: string 
Each two-character pair of this string specifies nroff macro names that are to 
be treated as the beginning of a section by the J J and [ [ commands. The 
default string is for the -ms macros. To enter one-letter nroff macros, use a 
quoted space as the second character. See the "Paragraphs" entry for a fuller 
explanation. 

shell sh Default: sh=from environment SHELL or /bin/sh Type: string 
Specify the name of the sh to be used for 'escaped' commands. 

shifiwidth sw Default: sw=8 Type: numeric 
Specify the number of spaces that a CTRL-T or CTRL-D will move over for 
indenting, and the amount that< and> will shift by. 

showmatch sm Default: nosm Type: toggle 
When a ) or } is typed, show the matching ( or { by moving the cursor to it for 
one second if it is on the current screen. 

Revision A, of 27 March 1990 

. J v 



u 

/ \ u 

(_) 

Chapter 2- Using vi, the Visual Display Editor 41 

showmode smd Default: nosmd Type: toggle 
Who the current input mode on the message line: 

state 
command mode 
in a command 
ins command 
inc command 
inRcommand 
in o command 
in i command 
in r command 

display 
(nothing) 
APPEND MODE 
SUBSTITUTE MODE 
CHANGE MODE 
REPLACE MODE 
OPEN MODE 
INSERT MODE 
REPLACE 1 CHAR 

slowopen slow Default: tenninal dependent Type: toggle 
Prevent updating the screen some of the time to improve speed on tenninals that 
are slow and dumb. 

tabstop ts Default: ts=8 Type: numeric 
<tab>s are expanded to boundaries that are multiples of this value. 

taglength tl Default: tl=O Type: numeric 
If nonzero, tag names are only significant to this many characters. 

tenn Default: (from environment TERM, else dumb) Type: string 
This is the tenninal and controls the visual displays. It cannot be changed when 
in visual mode; you have to type a Q to change to command mode, type a set 
term command, and enter vi to get back into visual. Or exit from vi, fix 
$TERM, and re-enter. The definitions that drive a particular tenninal type are in 
the file I etc/termcap. 

terse Default: terse Type: toggle 
When set, the error diagnostics are short. 

warn Default: warn Type: toggle 
Warns if you try to escape to the shell without writing out the current changes. 

window Default: window= { 8 at 600 baud or less, 16 at 1200 baud, and screen size - 1 at 
2400 baud or more} Type: numeric 
Specify the number of lines in the window whenever vi must redraw an entire 
screen. It is useful to make this size smaller if you are on a slow line. 

w300, w1200, w9600 Set the window, but only within the corresponding speed ranges. They are useful 
in an EXINIT to fine tune window sizes. For example, 

(set w300=4 wl200=12 

produces a four-line window at speeds up to 600 baud, a 12-line window at 1200 
baud, and a full-screen window (the default) at over 1200 baud. 

wrapscan ws Default: ws Type: toggle 

l 

Searches will wrap around the end of the file when is option is set. When it is off, 
the search will tenninate when it reaches the end or the beginning of the file. 

Revision A, of 27 March 1990 



42 Editing Text Files 

wrapmargin wm Default: wm=O Type: numeric 
vi automatically inserts a <nl> when it finds a natural break point (usually a 
<sp> between words) that occurs within wm spaces of the right margin. There­
fore with 'wm=O', the option is off. Setting it to 10 means that any time you are 
within 10 spaces of the right margin, vi looks for a <sp> or <tab> that it can 
replace with a <nl>. This is convenient if you forget to look at the screen while 
you type. If you go past the margin (even in the middle of a word), the entire 
word is erased and rewritten on the next line. 

writeany wa Default: nowa Type: toggle 
vi normally makes a number of checks before it writes out a file. This prevents 
you from inadvertently destroying a file. When the writeany option is enabled, 
vi no longer makes these checks. 

Character Functions This section describes how the editor uses each character. The characters are 
presented in their order in the ASCII character set: control characters come first, 
then most special characters, the digits, upper-, and finally lower-case characters. 
For each character we list its meaning as a command and its meaning (if any) 
during insert mode. 

CTRL-@ Not a command character. If typed as the first character of an insertion, it is 
replaced with the last text inserted, and the insert terminates. Only 128 charac­
ters are saved from the last insert; if more characters were inserted the mechan­
ism is not available. A CTRL-@ cannot be part of the file due to the editor imple-
mentation. 

CTRL-A Unused. 

CTRL-B Scroll backward one window. A count specifies repetition. The top two lines in 
the window before typing CTRL-B appear as the bottom two lines of the next 
window. 

CTRL-C Unused. 

CTRL-D As a command, scrolls down a half window of text. A count gives the number of 
(logical) lines to scroll, and is remembered for future CTRL-D and CTRL-U com­
mands. During an insert, CTRL-D backtabs over autoindent blank space at the 
beginning of a line. This blank space cannot be backspaced over. 

CTRL-E Exposes one more line below the current screen in the file, leaving the cursor 
where it is if possible. 

CTRL-F Move forward one window. A count specifies repetition. The bottom two lines 
in the window before typing CTRL-F appear as the top two lines of the next win­
dow. 

CTRL-G Equivalent to : fCR. These commands display the current file, a message if the 
file has been modified, the line number of the line the cursor is on, the total 
number of lines in the file, and the percentage of the way through the file that the 
current line is. 

CTRL-H (BS) Same as f- (see h). During an insert, CTRL-H eliminates the last input character, l~ 
backing over it but not erasing it; the character remains so you can see what you 
typed if you wish to type something only slightly different. 

Revision A, of27 March 1990 



u 

u 

Chapter 2- Using vi, the Visual Display Editor 43 

CTRL-1 (TAB) Not a command character. When inserted it prints as some number of spaces. 
When the cursor is at a tab character, it rests at the last of the spaces that 
represent the tab. The tabs top option controls the spacing of tabstops. 

CTRL-J (LF) Same as J. (see j). 

CTRL-K Unused. 

CTRL-L The ASCII formfeed character, that clears and redraws the screen. This is useful 
after a transmission error, if characters typed by a program other than the editor 
scramble the screen, or after output is stopped by an interrupt. 

CTRL-M (CR) A carriage return advances to the next line, at the first non-blank position in the 
line. Given a count, it advances that many lines. During an insert, a CR causes 
the insert to continue onto another line. 

CTRL-N Same as J. (see j). 

CTRL-0 Unused. 

CTRL-P Same as i (see k). 

CTRL-Q Not a command character. In input mode, CTRL-Q quotes the next character, the 
same as CTRL-V, except that some teletype drivers will eat the CTRL-Q so that 
vi never sees it. Resumes operation suspended by CTRL-S. 

CTRL-R Redraws the current screen, eliminating logical lines not corresponding to physi­
cal lines Oines with only a single @ character on them). On hardcopy terminals 
in open mode, retypes the current line. 

CTRL-S Some teletype drivers use CTRL-S to suspend output until CTRL-Q is pressed. 
Unused. 

CTRL-T Not a command character. During an insert with autoindent set and at the begin­
ning of the line, inserts shiftwidth blank space. 

CTRL-U Scrolls the screen up half a window, the reverse of CTRL-D, which scrolls down. 
Counts work as they do for CTRL-D, and the previous scroll amount is common 
to both CTRL-D and CTRL-U. On a dumb terminal, CTRL-U will often necessi­
tate clearing and redrawing the screen further back in the file. 

CTRL-V Not a command character. In input mode, quotes the next character so that it is 
possible to insert non-printing and special characters into the file. 

CTRL-W Not a command character. During an insert, backs up as b does in command 
mode; the deleted characters remain on the display (see CTRL-H). 

CTRL-X Unused. 

CTRL-Y Exposes one more line above the current screen, leaving the cursor where it is if 
possible. (No mnemonic value for this key; CTRL-Y is the reverse of CTRL-E). 

CTRL-Z Stops the editor, exiting to the top level shell. Same as : stopCR. 

CTRL-[ (ESC) Cancels a partially-formed command, such as a z when no following character 
has yet been given; terminates inputs on the last line (read by commands such as 
: I and ?); ends insertions of new text into the buffer. If an ESC is given when 
quiescent in command state, the editor flashes the screen or rings the bell. You 

Revision A, of 27 March 1990 



44 Editing Text Files 

can thus type ESC if you don't know what is happening till the editor flashes the 
screen. If you don't know if you are in insert mode, you can type ES Ca, and then 
material to be input; the material is inserted correctly whether or not you were in 
insert mode when you started. 

CTRL-\ Unused. 

CTRL-] Searches for the word which is after the cursor as a tag. Equivalent to typing 
: ta, this word, and then a CR. Mnemonically, this command is 'go right to'. 

CTRL-A Equivalent to : e #CR, returning to the previous position in the last-edited file, 
oreditingafilethatyouspecifiedifyougotaNo write since last 
change diagnostic and do not want to have to type the filename again. 
You have to do a : w before CTRL-A will work in this case. If you do not wish to 
write the file you should do : e ! #CR instead. 

CTRL-_ Unused. Reseived as the command character for the Tektronix 4025 and 4027 
tenninal. 

SPACE Same as~ (see 1). 

II 

# 

$ 

% 

& 

An operator that processes lines from the buffer with refonnatting commands. 
Follow ! with the object to be processed, and then the command name ter­
minated by CR. Doubling ! and preceding it by a count filters the count lines; 
otherwise the count is passed on to the object after the ! . Thus 2 ! } fmtCR 
refonnats the next two paragraphs by running them through the program fmt. If 
you are working on LISP, the command ! %grindCR, given at the beginning of a 
function, will run the text of the function through the LISP grinder. (The grind 
command may not be present at all installations.) To read the output of a com­
mand into the buffer, use : rcommand. To simply execute a command, [from 
vi], use : ! command. 

Precedes a named buffer specification. There are named buffers 1-9 used for 
saving deleted text and named buffers a-z into which you can place text. 

The macro character which, when followed by a number, will substitute for a 
function key on tenninals without function keys. In input mode, if this is your 
erase character, it will delete the last character you typed in input mode, and must 
be preceded with a \ to insert it, since it nonnally backs over the last input char­
acter you gave. 

Moves to the end of the current line. If you : s e list CR, the end of each line 
is indicated by showing a $ after the end of the displayed text in the line. Given 
a count, advances to the count'th following end of line; thus 2$ advances to the 
end of the next line. 

Moves to the parenthesis or brace { } that balances the parenthesis or brace at 
the current cursor position. 

A synonym for : &CR, by analogy with the ex & command. 

When followed by a ' ' ', returns to the previous context at the beginning of a 
line. The previous context is set whenever the current line is moved in a non- '0 
relative way. When followed by a letter a-z, returns to the line that was marked 
with this letter with a m command, at the first non-blank character in the line. 

Revision A, of 27 March 1990 



u 

I ' u 

u 

( 

) 

* 
+ 

Chapter 2- Using vi, the Visual Display Editor 45 

When used with an operator such as d, the operation takes place over complete 
lines; if you use ' , the operation takes place from the exact marked place to the 
current cursor position within the line. 

Retreats to the beginning of a sentence, or to the beginning of a LISP s-expression 
if the lisp option is set. A sentence ends at a . , ! , or ? and is followed by either 
the end of a line or by two spaces. Any number of closing ) , ] , ", and ' charac­
ters may appear after the . , ! , or ? , and before the spaces or end of line. Sen­
tences also begin at paragraph and section boundaries (see the 11 

{ 
11 and 11 

[ [ 
11 

entries below). A count advances that many sentences. 

Advances to the beginning of a sentence. A count repeats the effect. See ( 
above for the definition of a sentence. 

Unused. 

Same as CR when used as a command. 

Reverse of the last f, F, t, or T command, looking the other way in the current 
line. Especially useful after typing too many ; characters. A count repeats the 
search. 

Retreats to the previous line at the first non-blank character. This is the inverse 
of+ and RETURN. If the line moved to is not on the screen, the screen is 
scrolled, or cleared and redrawn if scrolling is not possible. If a large amount of 
scrolling is required, the screen is also cleared and redrawn, with the current line 
at the center. 

Repeats the last command that changed the buffer. Especially useful when delet­
ing words or lines; you can delete some words or lines and then type . to delete 
more words or lines. Given a count, it passes it on to the command being 
repeated. Thus after a 2dw, 3. deletes three words. 

I Reads a string from the last line on the screen, and scans forward for the next 
occurrence of this string. The normal input editing sequences may be used dur­
ing the input on the bottom line; an ESC returns to command state without ever 
searching. The search begins when you type CR to terminate the pattern; the cur­
sor moves to the beginning of the last line to indicate that the search is in pro­
gress; you can then terminate the search with a CTRL-C (or DEL or RUB), or by 
backspacing when at the beginning of the bottom line, returning the cursor to its 
initial position. Searches normally wrap end-around to find a string anywhere in 
the buffer. 

When used with an operator, the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern, you can affect whole lines. 
To do this, give a pattern with a closing I and then an offset +n or -n. 

To include the character I in the search string, you must escape it with a preced­
ing \. A A at the beginning of the pattern forces the match to occur at the begin­
ning of a line only; this may speed the search. A $ at the end of the pattern 
forces the match to occur at the end of a line only. More extended pattern match­
ing is available. Unless you set nomagic in your .login file(*?*), you will have 
to precede the characters . , [, *, and - in the search pattern with a \ to get them 
to work as you would naively expect. 

Revision A, of 27 March 1990 



46 Editing Text Files 

0 Moves to the first character on the current line. Also used, in fonning numbers, 
after an initial 1-9. 

1-9 Used to fonn numeric arguments to commands. 

A prefix to a set of commands for file and option manipulation and escapes to the 
system. Input is given on the bottom line and tenninated with a CR, and the 
command is then executed. You can return to where you were by typing ESC or 
DEL if you type : accidentally. 

Repeats the last single character find that used f, F, t, or T. A count iterates the 
basic scan. 

< An operator that shifts lines left one shiftwidth, nonnally 8 spaces. Like all 
operators, affects lines when repeated, as in<<. Counts are passed through to the 
basic object, thus 3<< shifts three lines. 

= Reindents line for LISP, as though they were typed in with lisp and autoindent 
set. 

> An operator that shifts lines right one shiftwidth, nonnally 8 spaces. Affects 
lines when repeated as in>>. Counts repeat the basic object. 

? Scans backward, the opposite of I. See the I description above for details on 
scanning. 

@ A macro character. If this is your kill character, you must escape it with a\ to 
type it in during input mode, as it nonnally backs over the input you have given 
on the current line. 

A Appends at the end of line; a synonym for $a. 

B Backs up a word, where words are composed of non-blank sequences, placing the 
cursor at the beginning of the word. A count repeats the effect. 

C Changes the rest of the text on the current line; a synonym for c $. 

D Deletes the rest of the text on the current line; a synonym for d$. 

E Moves forward to the end of a word, defined as blanks and non-blanks, like B and 
w. A count repeats the effect. 

F Finds a single following character backward in the current line. A count repeats 
this search that many times. 

G Goes to the line number given as preceding argument, or to the end of the file if 
you do not give a preceding count. The screen is redrawn with the new current 
line in the center if necessary. 

H Home arrow. Homes the cursor to the top line on the screen. If a count is given, 
the cursor is moved to the count'th line on the screen. In any case the cursor is 
moved to the first non-blank character on the line. If used as the target of an 
operator, full lines are affected. 

I Inserts at the beginning of a line; this is equivalent to 'Oi '. 

J Joins together lines, supplying appropriate blank space: one space between 
words, two spaces after a ' . ', and no spaces at all if the first character of the 

Revision A, of 27 March 1990 



u 

u 

K 

L 

M 

N 

0 

p 

Chapter 2- Using vi, the Visual Display Editor 47 

joined on line is ) . A count causes that many lines to be joined rather than the 
default two. 

Unused. 

Moves the cursor to the first non-blank character of the last line on the screen. 
With a count, to the first non-blank of the count'th line from the bottom. Opera-
tors affect whole lines when used with L. 

Moves the cursor to the middle line on the screen, at the first non-blank position 
on the line. 

Scans for the next match of the last pattern given to I or ? , but in the reverse 
direction; this is the reverse of n. 

Opens a new line above the current line and inputs text there up to an ESC. A 
count can be used on dumb tenninals to specify a number of lines to be opened; 
this is generally obsolete, as the slowopen option works better. 

Puts the last deleted text back before/above the cursor. The text goes back as 
whole lines above the cursor if it was deleted as whole lines. Otherwise the text 
is inserted between the characters before and at the cursor. May be preceded by a 
named buffer specification "x to retrieve the contents of the buffer; buffers 1-9 
contain deleted material, buffers a-z are available for general use. 

Q Quits from vi to ex command mode. In this mode, whole lines fonn com­
mands, ending with a RETURN. You can give all the : commands; the editor 
supplies the : as a prompt. 

R Replaces characters on the screen with characters you type (overlay fashion). 
Tenninates with an ESC. 

S Changes whole lines, a synonym for cc. A count substitutes for that many lines. 
The lines are saved in the numeric buffers, and erased on the screen before the 
substitution begins. 

T Takes a single following character, locates the character before the cursor in the 
current line, and places the cursor just after that character. A count repeats the 
effect. Most useful with operators such as d. 

U Restores the current line to its state before you started changing it. 

V Unused. 

W Moves forward to the beginning of a word in the current line, where words are 
defined as sequences of blank/non-blank characters. A count repeats the effect. 

X Deletes the character before the cursor. A count repeats the effect, but only char­
acters on the current line are deleted. 

Y Yanks a copy of the current line into the unnamed buffer, to be put back by a 
later p or P; a very useful synonym for yy. A count yanks that many lines. May 
be preceded by a buffer name to put lines in that buffer. 

ZZ Exits the editor. (Same as : xCR.) If any changes have been made, the buffer is 
written out to the current file. Then the editor quits. 

Revision A, of 27 March 1990 



48 Editing Text Files 

[[ Backs up to the previous section boundary. A section begins at each macro in 
the sections option, nonnally a . NH or . SH and also at lines that start with a 
fonnfeed CTRL-L. Lines beginning with { also stop [ [ ; this makes it useful for 
looking backward, a function at a time, in C programs. If the lisp option is set, 
stops at each ( at the beginning of a line, and is thus useful for moving backward 
at the top level LISP objects. 

\ Unused. 

]] Forward to a section boundary; see [ [ for a definition. 

Moves to the first non-blank position on the current line. 

Unused. 

When followed by a ' returns to the previous context. The previous context is 
set whenever the current line is moved in a non-relative way. When followed by 
a letter a-z, returns to the position that was marked with this letter with an m 
command. When used with an operator such as d, the operation takes place from 
the exact marked place to the current position within the line; if you use ' , the 
operation takes place over complete lines. 

a Appends arbitrary text after the current cursor position; the insert can continue 
onto multiple lines by using RETURN within the insert. A count causes the 
inserted text to be replicated, but only if the inserted text is all on one line. Ter­
minate the insertion with an ESC. 

b Backs up to the beginning of a word in the current line. A word is a sequence of 
alphanumerics, or a sequence of special characters. A count repeats the effect. 

c An operator that changes the following object, replacing it with the following 
input text up to an ESC. If more than part of a single line is affected, the text that 
is changed is saved in the numeric named buffers. If only part of the current line 
is affected, the last character to be changed away is marked with a $. A count 
causes that many objects to be affected, thus both 3 c) and c 3) change the fol­
lowing three sentences. 

d An operator that deletes the following object. If more than part of a line is 
affected, the text is saved in the numeric buffers. A count causes that many 
objects to be affected; thus 3dw is the same as d3w. 

e Advances to the end of the next word, defined as for b and w. A count repeats 
the effect. 

f Finds the first instance of the next character following the cursor on the current 
line. A count repeats the find. 

g Unused. 

h Left arrow. Moves the cursor one character to the left. Like the other arrow 
keys, either h, the left arrow key, or one of the synonyms, CTRL-H has the same 
effect. A count repeats the effect. 

Inserts text before the cursor. 

Revision A, of 27 March 1990 

. \ 
\_.) 



u 

u 

u 

Chapter 2- Using vi, the Visual Display Editor 49 

j Down arrow. Moves the cursor one line down in the same column. If the posi­
tion does not exist, vi comes as close as possible to the same column. 
Synonyms include C1RL-J (linefeed) and C1RL-N. 

k Up arrow. Moves the cursor up one line. C1RL-P is a synonym. 

1 Right arrow. Moves the cursor one character to the right. SPACE is a synonym. 

m Marks the current position of the cursor in the mark register that is specified by 
the next character a-z. Return to this position or use with an operator using '' ' 
or'''. 

n Repeats the last I or ? scanning commands. 

o Opens new lines below the current line; otherwise like o. 
p Puts text after or below the cursor; otherwise like P. 

q Unused. 

r Replaces the single character at the cursor with a single character you type. The 
new character may be a RETURN; this is the easiest way to split lines. A count 
replaces each of the following count characters with the single character given; 
see R above which is the more usually useful iteration of r. 

s Changes the single character under the cursor to the text that follows up to an 
ESC; given a count, that many characters from the current line are changed. The 
last character to be changed is marked with$ as inc. 

t Advances the cursor up to the character before the next character typed. Most 
useful with operators such as d and c to delete the characters up to a following 
character. You can use . to delete more if this doesn't delete enough the first 
time. 

u Undoes the last change made to the current buffer. If repeated, will alternate 
between these two states, thus is its own inverse. When used after an insert that 
inserted text on more than one line, the lines are saved in the numeric named 
buffers. 

v Unused. 

w Advances to the beginning of the next word, as defined by b. 

x Deletes the single character under the cursor. With a count deletes that many 
characters forward from the cursor position, but only on the current line. 

y An operator, yanks the following object into the unnamed temporary buffer. If 
preceded by a named buffer specification, "x, the text is placed in that buffer 
also. Text can be recovered by a later p or P. 

z Redraws the screen with the current line placed as specified by the following 
character: RETURN specifies the top of the screen, . the center of the screen, and 
'-'at the bottom of the screen. A count before the z gives the number of the line 
to place in the center of the screen instead of the default current line. To change 
the window size, use a count after the z and before the RETURN, as in z S<CR>. 

Revision A, of 27 March 1990 



50 Editing Text Files 

CTRL-C (DEL) 

2.10. Terminal Information 

Specifying Terminal Type 

Retreats to the beginning of the preceding paragraph. A paragraph begins at each 
macro in the paragraphs option, normally . IP, • LP, • PP, . QP, and . bp. A 
paragraph also begins after a completely empty line, and at each section boun­
dary (see [ [ above). 

Places the cursor on the character in the column specified by the count. 

Advances to the beginning of the next paragraph. See { for the definition of 
paragraph. 

Converts the character under the cursor to lower-case if it is upper-case, or to 
upper-case if it is lower-case. With a count, converts the specified number of 
characters at and to the right of the cursor. The cursor ends up after the last char­
acter converted. 

Interrupts the editor, returning it to command accepting state. 

vi works on a large number of display terminals. You can edit a terminal 
description file to drive new terminals. While it is advantageous to have an intel­
ligent terminal that can locally insert and delete lines and characters from the 
display, vi functions quite well on dumb terminals over slow phone lines. vi 
allows for the low bandwidth in these situations and uses smaller window sizes 
and different display updating algorithms to make best use of the limited speed 
available. 

You can also use the vi command set on hardcopy terminals, storage tubes and \_j 
'glass ttys' using a one-line editing window. 

Before you can start vi you must tell the system what kind of terminal you are 
using. Here is a (necessarily incomplete) list of terminal type codes. If your ter­
minal does not appear here, you should consult with one of the staff members on 
your system to find out the code for your terminal. If your terminal does not 
have a code, one can be assigned and a description for the terminal can be 
created. 

Revision A, of 27 March 1990 

u 



u 

I . 

\_) 

u 

Chapter 2 - Using vi, the Visual Display Editor 51 

Table 2-6 Terminal Types 

Code Full Name Type 

sun Sun Workstation Intelligent 
tvi925 Televideo 925 Dumb 
wy-50 Wyse50 Dumb 
2621 Hewlett-Packard 2621A/P Intelligent 
2645 Hewlett-Packard 264x Intelligent 
act4 Microtenn ACT-IV Dumb 
act5 Microtenn ACT-V Dumb 
adm3a Lear Siegler ADM-3a Dumb 
adm31 Lear Siegler ADM-31 Intelligent 
clOO Human Design Concept 100 IntelHgent 
dm1520 Datamedia 1520 Dumb 
dm2500 Datamedia 2500 Intelligent 
dm3025 Datamedia 3025 Intelligent 
fox Perkin-Elmer Fox Dumb 
h1500 Hazeltine 1500 Intelligent 
h19 Heathkit h19 Intelligent 
ilOO Infoton 100 Intelligent 
mime Imitating a smart act4 Intelligent 
t1061 Teleray 1061 Intelligent 
vt52 Dec VT-52 Dumb 

Suppose for example that you have a Hewlett-Packard HP2621A tenninal. The 
code used by the system for this tenninal is '2621 '. In this case you can use one 
of the following commands to tell the system your tenninal type: 

[hostname% setenv TERM 2621 

If you are using the Bourne shell, use: 

[ 

$ TERM=2621 
$ export TERM 

If you want to arrange to have your tenninal type set up automatically when you 
log in, use the tset program. If you dial in on a mime, but often use hardwired 
ports, a typical line for your .login file (if you use csh) is 

[ setenv TERM 'tset - -d mime' 

or for your .profile file (if you use sh): 

[ TERM='tset - -d mime' 

ts et knows which tenninals are hardwired to each port and needs only to be 

) 

l 

l 
) 

Revision A, of 27 March 1990 



52 Editing Text Files 

Special Arrangements for 
Startup 

Open Mode on Hardcopy 
Terminals and 'Glass tty's' 

told that when you dial in you are probably on a mime. You can use tset to 
change the erase and kill characters, too. 

vi takes the value of $TERM and looks up the characteristics of that tenninal in 
the file /etc/termcap. If you don't know vi's name for the tenninal you are 
working on, look in I etc/termcap. The editor adopts the convention that a 
null string in the environment is the same as not being set. This applies to 
TERM, TERMCAP, and EXINIT. 

When vi starts, it attempts to read the variable EXINIT from your environment. 
If that exists, it takes the values in it as the default values for certain of its inter­
nal constants. IfEXINIT doesn't exist, you will get all the nonnal defaults. 

Should you inadvertently hang up the phone while inside vi, or should some­
thing else go wrong, all may not be lost. Upon returning to the system, type: 

[ hostnarne% vi -r filename l 
This will nonnally recover the file. If there is more than one temporary file for a 
specific filename, vi recovers the newest one. You can get an older version by 
recovering the file more than once. The command vi -r without a filename 
lists the files from an on-line list that were saved in the last system crash (but not 
the file just saved when the phone was hung up). 

If you are on a hardcopy tenninal or a tenninal that does not have a cursor that 
can move off the bottom line, you can still use the command set of vi, but in a 
different mode. When you give a vi command, the editor will tell you that it is 
using open mode. This name comes from the open command in ex, which is 
used to get into the same mode. 

The only difference between visual mode and open mode is the way the text is 
displayed. In open mode the editor uses a single-line window into the file, and 
moving backward and forward in the file displays new lines, always below the 
current line. Two vi commands that work differently in open mode are: 

D Zand 

D CTRL-R. 

The z command does not take parameters, but rather draws a window of context 
around the current line and then returns you to the current line. 

If you are on a hardcopy tenninal, the CTRL-R command retypes the current line. 
On such tenninals, vi nonnally uses two lines to represent the current line. The 
first line is a copy of the line as you started to edit it, and you work on the line 
below this line. When you delete characters, the editor types a number of\'s to 
show you the characters that are deleted. It also reprints the current line soon 
after such changes so that you can see what the line looks like again. 

\ 

0 

It is sometimes useful to use this mode on very slow tenninals that can support 
1 

1 
vi in the full screen mode. You can do this by entering ex and using an open \J 
command. 

sun Revision A, of 27 March 1990 
mlcrosystems 



u Editing on Slow Terminals 

/ .\ 

v 

u 

Chapter 2- Using vi, the Visual Display Editor 53 

When you are on a slow terminal, it is important to limit the amount of output 
that is generated to your screen so that you will not suffer long delays, waiting 
for the screen to be refreshed. We have already pointed out how the editor 
optimizes the updating of the screen during insertions on dumb terminals to limit 
the delays, and how the editor erases lines to @ when they are deleted on dumb 
terminals. 

The use of the slow terminal insertion mode is controlled by the slowopen 
option. You can force the editor to use this mode even on faster terminals by 
giving the command: 

[ :se slow<CR> ) 
If your system is sluggish this helps lessen the amount of output coming to your 
terminal. You can disable this option by: 

[ :se noslow<CR> ) 
The editor can simulate an intelligent terminal on a dumb one. Try giving the 
command: 

[: se redraw<CR> ) 
This simulation generates a great deal of output and is generally tolerable only on 
lightly loaded systems and fast terminals. You can disable this by giving the 
command: 

[~=-s_e~n_o_r_e_d_r_a_w_<_c_R>~~~~~~~~~~~~~~~~~~~~---) 
The editor also makes editing more pleasant at low speed by starting editing in a 
small window, and letting the window expand as you edit. This works particu­
larly well on intelligent terminals. The editor can expand the window easily 
when you insert in the middle of the screen on these terminals. If possible, try 
the editor on an intelligent terminal to see how this works. 

You can control the size of the window that is redrawn each time the screen is 
cleared by giving window size as an argument to the commands that cause large 
screen motions: 

:/?[[]]'' 

Thus if you are searching for a particular instance of a common string in a file, 
you can precede the first search command by a small number, say 3, and the edi­
tor will draw three line windows around each instance of the string it locates. 

You can expand or contract the window size, placing the current line as you 
choose, with the z command, as in z S<CR>, which changes the window to five 
lines. You can also use . or-. Thus the command z 5 . redraws the screen with 
the current line in the center of a five-line window. Note that the command 5 z . 
has an entirely different effect, placing line 5 in the center of a new window. Use 

Revision A, of 27 March 1990 



54 Editing Text Files 

Upper-Case Only Terminals 

-, as in 5 z- to position the cursor at line 5 in the file. 

The default window sizes are 8 lines at 300 baud, 16 lines at 1200 baud, and 
full-screen size at 9600 baud. Any baud rate less than 1200 behaves like 300, 
and any over 1200 like 9600. 

If the editor is redrawing or otherwise updating large portions of the display, you 
can interrupt this updating by typing a DEL or RUB as usual. If you do this, you 
may partially confuse the editor about what is displayed on the screen. You can 
still edit the text on the screen if you wish; clear up the confusion by typing a 
CTRL-L, or you can move or search through the file again, ignoring the current 
state of the display. 

See the section on open mode for another way to use the vi command set on 
slow tenninals. 

If your tenninal has only upper-case characters, you can still use vi by using the 
nonnal system convention for typing on such a tenninal. Characters that you 
nonnally type are converted to lower case, and you can type upper-case letters by 
preceding them with a'\'. The characters { - } I' are not available on such termi­
nals, but you can escape them as\(\"\) \! \'. These characters are represented on 
the display in the same way they are typed. However, the '\' character you type 
will not echo until you type another key. 

Revision A, of 27 March 1990 



u 

u 

u 

Chapter 2- Using vi, the Visual Display Editor 55 

Vi Quick Reference 

Entering and Leaving vi 

% vi name edit name at top 
... at linen % vi +nname 

% vi+ name 
% vi-r 
% vi-rname 
% vi name ... 
% vi-ttag 
% vi +/pat name 
% view name 
zz 
CTRL·Z 

The Display 

Last line 

@lines 
- lines 
CTRL-x 
tabs 

Vi Modes 

Command 

Insert 

Last line 

... atend 
list saved files 
recover file name 
edit first; rest via :n 
start at tag 
search for pat 
read only mode 
exit from vi, saving changes 
stop vi for later resumption 

Error messages, echoing input to: I? and!, 
feedback about i/o and large changes. 
On screen only, not in file. 
Lines past end of file. 
Control characters, DEL is delete. 
Expand to spaces, cursor at last. 

Normal and initial state. Others return 
here. ESC (escape) cancels partial com­
mand. 
Entered by a i A Io 0 c C s S R. Arbitrary 
text then terminates with ESC character, or 
abnormally with interrupt. 
Reading input for: I? or!; terminate with 
ESC or CR to execute, interrupt to cancel. 

Counts Before vi Commands 

line/column number 
scroll amount 
replicate insert 
repeat effect 

Simple Commands 

dw 
de 
dd 
3dd 
ite:ttESC 
cwnewESC 
easESC 
xp 

Interrupting, Cancelling 

z GI 
CTRL-D CTRL-U 
a i A I 
most rest 

delete a word 
... leaving punctuation 
delete a line 
... 3 lines 
insert text abc 
change word to new 
pluralize word 
transpose characters 

ESC 
CTRL-C 
CTRL·L 

end insert or incomplete cmd 
interrupt (or DEL) 
refresh screen if scrambled 

~~sun ~~ microsystems 

File Manipulation 

:w 
:wq 
:q 
:q! 
:e name 
:e! 
:e +name 
:e +n 
:e# 
CTRL·· 
:rname 
:wname 
:w!name 
:sh 
:!cmd 
:n 
:n args 
:f 
CTRL·G 
:ta tag 
CTRL·] 

write back changes 
write and quit 
quit 
quit, discard changes 
edit file name 
reedit, discard changes 
edit, starting at end 
edit starting at line n 
edit alternate file 
synonym for :e # 
read file name 
write file name 
overwrite file name 
run shell, then return 
run cmd, then return 
edit next file in arglist 
specify new arglist 
show current file and line 
synonym for : f 
to tag file entry tag 
:ta, following word is tag 

Positioning within File 

CTRL-F forward screenfull 
CTRL-B backward screenfull 
CTRL-D scroll down half screen 
CTRL-U scroll up half screen 
G goto line (end default) 
/pat next line matching pat 
?pat prev line matching pat 
n repeat last I or ? 
N reverse last I or ? 
lpatl+n n'th line after pat 
?pat?-n n 'th line before pat 
]] next section/function 
[[ previous section/function 
% find matching ( ) { or } 

Adjusting the Screen 

CTRL·L 
CTRL·R 
zCR 
z-
z. 
lpatlz-
zn. 
CTRL-E 
CTRL-Y 

clear and redraw 
retype, eliminate @ lines 
redraw, current at window top 
... at bottom 
... at center 
pat line at bottom 
use n line window 
scroll window down 1 line 
scroll window up 1 line 

Revision A, of 27 March 1990 



56 Editing Text Files 

Marking and Returning 

previous context 
... at first non-white in line 

mx mark position with letter x 
'x to markx 
'x ... at first non-white in line 

Line Positioning 

H 
L 
M 
+ 

CR 
J. or j 
iork 

home window line 
last window line 
middle window line 
next line, at first non-white 
previous line, at first non-white 
return, same as + 
next line, same column 
previous line, same column 

Character Positioning 

0 
$ 
hor~ 

Ior~ 
CTRL-H 
space 
rx 
Fx 
tx 
Tx 

' I 
% 

first non-blank 
beginning of line 
end of line 
forward 
backwards 
same as~ 
same as~ 
find x forward 
fbackward 
upto x forward 
backuptox 
repeat last f F t or T 
inverse of; 
to specified column 
find matching ( { ) or } 

'\Vords,Sentences,Paragraphs 

w word forward 
b back word 
e end of word 
) to next sentence 
} to next paragraph 
( back sentence 
{ back paragraph 
W blank delimited word 
B backW 
E to endofW 

Commands for LISP 

) 
} 
( 
{ 

Forward s-expression 
... but don't stop at atoms 
Back s-expression 
... but don't stop at atoms 

Corrections During Insert 

CTRL-H erase last character 
CTRL-W erases last word 
erase your erase, same as CTRL·H 
kill your kill, erase input this line 
\ escapes CTRL·H, your erase and kill 
ESC ends insertion, back to command 
CTRL·C interrupt, terminates insert 
CTRL·D backtab over autoindent 
CTRL· •D kill autoindent, save for next 
OCTRL-D ... but at margin next also 
CTRL· V quote non-printing character 

Insert and Replace 

a append after cursor 
i insert before 
A append at end of line 
I insert before first non-blank 
o open line below 
0 open above 
rx replace single char with x 
R replace characters 

Operators (double to affect lines) 

d delete 
c change 
< left shift 
> right shift 

filter through command 
= indent for LISP 
y yank lines to buffer 

Miscellaneous Operations 

c 
D 
s 
s 
J 
x 
x 
y 

change rest of line 
delete rest of line 
substitute chars 
substitute lines 
join lines 
delete characters 
... before cursor 
yank lines 

Yank and Put 

p put back lines 
P put before 
11 xp put from buffer x 
11 xy yank to buffer x 
11 xd delete into buffer x 

Undo, Redo, Retrieve 

u undo last change 
U restore current line 

repeat last change 
11 d p retrieve d'th last delete 

' \ 

0 

Revision A, of 27 March 1990 



u 

3.1. Using ex 

(_) 

u 

3 
Command Reference for the ex Line 

Editor 

This chapter provides reference material for ex, the line-oriented text editor.9 
The screen-oriented display editor vi, described in the previous chapter, is actu­
ally a separate mode of ex. This chapter describes the line-oriented part of ex. 
You can also use these commands with vi. For a summary of ex commands, 
see the "ex Quick Reference." 

ex has a set of options, which you can use to tailor ex to your liking. The com­
mand edit invokes a version of ex designed for more casual or beginning users 
by changing the default settings of some of these options. To simplify the 
description which follows, we assume the default settings of the options, and we 
assume that you are running ex on a Sun Workstation. 

If there is a variable EXINIT in the environment, ex executes the commands in 
that variable. Otherwise, if there is a file . exrc in your HOME directory, ex 
reads commands from that file, simulating a source command. Then ex looks 
for . exrc in the current directory, and reads commands contained in that file, if 
any. Option setting commands placed in EXINIT or . exrc are executed before 
each editor session. 

If you are running ex on a tenninal, ex detennines the tenninal type from the 
TERM variable in the environment when invoked. It there is a TERMCAP vari­
able in the environment, and the type of the tenninal described there matches the 
TERM variable, that description is used. Also if the TERMCAP variable contains a 
pathname (beginning with a/), ex seeks the description of the tenninal in that 
file, rather than in the default I etc It ermca p .) 

The standard ex command fonnat follows. Brackets'['']' surround optional 
parameters here. 

ex [ - ) [-v) [-t tag] [-r] [-1) [-wn] [-x] [-R] 
[+command l filename ... 

The most common case edits a single file with no options, that is: 

9 The material in this chapter is derived from Ex Reference Manual, W.N. Joy, M. Horton, University of 
California, Berkeley. 

57 Revision A, of 27 March 1990 



58 Editing Text Files 

3.2. File Manipulation 

Current File 

Alternate File 

(~h_o_s_t_n_a_m_e_%~e-x~fi_k_n_am~e~~~~~~~~~~~~~~~~~~---l 
The'-' command line option suppresses all interactive-user feedback and is use­
ful in processing ex scripts in command files. The -v option is equivalent to 
using vi rather than ex. The -t option is equivalent to an initial tag command, 
editing the file containing the tag and positioning the editor at its definition. 

Use the -r option to recover a file after an editor or system problem, retrieving 
the last saved version of the named file or, if no file is specified, displaying a list 
of saved files. The -I option sets up for editing LISP, setting the showmatch and 
lisp options. The -w option sets the default window size to n, and is useful on 
dialups to start in small windows. The -x option causes ex to prompt for a key, 
which is used to encrypt and decrypt the contents of the file, which should 
already be encrypted using the same key (see crypt(l) in the SunOS Reference 
Manual for details). The -R option sets the readonly option at the start. If set, 
writes will fail unless you use an ! after the write. This option affects z z, 
autowrite and anything that writes to guarantee you won't clobber a file by 
accident. Filename arguments indicate files to be edited. An argument of the 
fonn +command indicates that the editor should begin by executing the specified 
command. If command is omitted, it defaults to '$',initially positioning ex at 
the last line of the first file. Other useful commands here are scanning patterns of 
the fonn '/pat' or line numbers, such as + 10 0, which means 'start at line 100.' 

The following describes commands for handling files. 

ex nonnally edits the contents of a single file, whose name is recorded in the 
current filename. ex perfonns all editing actions in a buffer into which the text 
of the file is initially read. Changes made to the buffer have no effect on the file 
being edited unless and until you write the buffer contents out to the file with a 
write command. After the buffer contents are written, the previous contents of 
the written file are no longer accessible. When a file is edited, its name becomes 
the current filename, and its contents are read into the buffer. 

The current file is almost always considered to be edited. This means that the 
contents of the buffer are logically connected with the current filename, so that 
writing the current buffer contents onto that file, even if it exists, is a reasonable 
action. If the current file is not edited, ex will not nonnally write on it if it 
already exists. The file command will say [Not edited] if the current file is 
not considered edited. 

Each time a new value is given to the current filename, the previous current 
filename is saved as the alternate filename. Similarly if a file is mentioned but 
does not become the current file, it is saved as the alternate filename. 

~~sun ~~ microsystems 
Revision A, of 27 March 1990 



u 

u 

Filename Expansion 

3.3. Special Characters 

Multiple Files and Named 
Buffers 

Chapter 3 - Command Reference for the ex Line Editor 59 

You may specify filenames within the editor using the nonnal Shell expansion 
conventions. In addition, the character % in filenames is replaced by the current 
filename and the character # by the alternate filename. This makes it easy to 
deal alternately with two files and eliminates the need for retyping the name sup­
plied on an edit command after a No write since last change diag­
nostic is received. 

Some characters take on special meanings when used in context searches and in 
patterns given to the substitute command. For edit, these are the caret(~) and 
dollar sign($) characters, meaning the beginning and end of a line, respectively. 
ex has the following additional special characters: 

( & * % 

To use one of the special characters as its simple graphic representation rather 
than with its special meaning, precede it by a backslash (\). The backslash 
always has a special meaning. 

J 

If more than one file is given on the ex command line, the first file is edited as 
described above. The remaining arguments are placed with the first file in the 
argument list. You can display the current argument list with the args command. 
To edit the next file in the argument list, use the next command. You may also 
respecify the argument list by specifying a list of names to the next command. 
These names are expanded, the resulting list of names becomes the new argu­
ment list, and ex edits the first file on the list. 

To save blocks of text while editing, and especially when editing more than one 
file, ex has a group of named buffers. These are similar to the nonnal buffer, 
except that only a limited number of operations are available on them. The 
buffers have names a through z. It is also possible to refer to A through Z; the 
upper-case buffers are the same as the lower but commands append to named 
buffers rather than replacing if upper-case names are used. 

Read-Only Mode It is possible to use ex in read only mode to look at files that you have no inten­
tion of modifying. This mode protects you from accidently overwriting the file. 
Read only mode is on when the readonly option is set. It can be turned on with 
the -R command line option, by the view command line invocation, or by set­
ting the readonly option. It can be cleared by setting noreadonly. It is possible 
to write, even while in read only mode, by indicating that you really know what 
you are doing. You can write to a different file with : w newfilename, or can use 
the : w ! fonn of write, even while in read only mode. 

3.4. Exceptional Conditions The following describes additional editing situations. 

Revision A, of 27 March 1990 



60 Editing Text Files 

Errors and Interrupts 

Recovering If Something Goes 
Wrong 

3.5. Editing Modes 

3.6. Command Structure 

When errors occur ex flashes the workstation screen and displays an error diag­
nostic. If the primary input is from a file, editor processing terminates. If you 
interrupt ex, it displays 'Interrupt' and returns to its command level. If the pri­
mary input is a file, ex exits when this occurs. 

If something goes wrong and the buffer has been modified since it was last writ­
ten out, or if the system crashes, either the editor or the system (after it reboots) 
attempts to preserve the buffer. The next time you log in, you should be able to 
recover the work you were doing, losing at most a few lines of changes from the 
last point before the problem. To recover a file, use the -r option. If you were 
editing the file resume for example, change to the directory where you were when 
the problem occurred, and use ex with the -r (recover) option: 

[ hostname% ex -r file 
J 

After checking that the retrieved file is indeed ok, you can write it over the previ­
ous contents of that file. 

You will normally get mail from the system telling you when a file has been 
saved after the system has gone down. Use the -r option without a following 
filename: 

[hostname% ex -r J 
to display a list of the files that have been saved for you. In the case of a hangup, 
the file will not appear in the list, although it can be recovered. 

ex has five distinct modes. The primary mode is command mode. You type in 
commands in command mode when a ' : ' prompt is present, and execute them 
each time you send a complete line. In insert mode, ex gathers input lines and 
places them in the file. The append, insert, and change commands use insert 
mode. No prompt is displayed when you are in text input mode. To leave this 
mode and return to command mode, type a ' • ' alone at the beginning of a line. 

The last three modes are open and visual modes, entered by the commands of the 
same names, and, within open and visual modes text insertion mode. In open 
and visual modes, you do local editing operations on the text in the file. The 
open command displays one line at a time on the screen, while visual works on 
the workstation and CRT terminals with random positioning cursors, using the 
screen as a single window for file editing changes. See the chapter on "Using 
vi, The Visual Display Editor" for descriptions of these modes. 

Most command names are English words; you can use initial prefixes of the 
words as acceptable abbreviations. The ambiguity of abbreviations is resolved in 
favor of the more commonly used commands. As an example, the command 
substitute can be abbreviated ass while the shortest available abbreviation 
for the set command is se. See the "Command Reference" section for descrip­
tions and acceptable abbreviations. 

Revision A, of 27 March 1990 

u 

u 



u 

u 

u 

Specifying Command 
Parameters 

Invoking Command Variants 

Flags After Commands 

Writing Comments 

Putting Multiple Commands 
on a Line 

Reporting Large Changes 

Chapter 3 - Command Reference for the ex Line Editor 61 

Most commands accept prefix addresses specifying the lines in the file upon 
which they are to have effect. The forms of these addresses will be discussed 
below. A number of commands also may take a trailing count specifying the 
number of lines to be involved in the command. Counts are rounded down if 
necessary. Thus the command lOp displays the tenth line in the buffer, while 
d5 deletes five lines from the buffer, starting with the current line. 

Some commands take other information or parameters, that you provide after the 
command name. Examples would be option names in a set command such as, 
set number, a filename in an edit command, a regular expression in a sub­
stitute command, or a target address for a copy command, such as, 1, 5 
copy 25. 

A number of commands have two distinct variants. The variant form of the com­
mand is invoked by placing an ! immediately after the command name. You can 
control some of the default variants with options; in this case, the ! serves to tog­
gle the default. 

You may place the characters*· p and 1 after many commands. You must pre­
cede a p or 1 by a blank or tab except in the single special case of dp. The com­
mand that these characters abbreviates is executed after the command completes. 
Since ex normally shows the new current line after each change, p is rarely 
necessary. You can also give any number of + or - characters with these flags. 
If they appear, the specified offset is applied to the current line value before the 
display command is executed. 

It is possible to give editor commands which are ignored. This is useful when 
making complex editor scripts for which comments are desired. Use the double 
quote " as the comment character. Any command line beginning with " is 
ignored. You can also put comments beginning with" at the ends of commands, 
except in cases where they could be confused as part of text, for example as shell 
escapes and the substitute and map commands. 

You can place more than one ex command on a line by separating each pair of 
commands by a pipe ( I ) character. However the global commands, comments, 
and the shell escape ! must be the last command on a line, as they are not ter­
minated by a I . 

Most commands which change the contents of the editor buffer give feedback if 
the scope of the change exceeds a threshold given by the report option. This 
feedback helps to detect undesirably large changes so that you may quickly and 
easily reverse them with undo. After commands with more global effect, such as 
global or visual, you will be informed if the net change in the number of lines in 
the buffer during this command exceeds this threshold. 

Revision A, of 27 March 1990 



62 Editing Text Files 

3.7. Addressing Primitives The following describes the editor commands called addressing primitives. 

The current line. The current line is traditionally called 'dot' because you 
address it with a dot ' • '. Most commands leave the current line as the last line 
which they affect. The default address for most commands is the current line, so 
you rarely use ' • ' alone as an address. 

n The nth line in the editor's buffer, lines being numbered sequentially from 1. 

$ The last line in the buff er. 

% An abbreviation for 1, $, the entire buffer. 

+n -n An offset relative to the current buffer line. The forms . + 3 + 3 and +++ are all 
equivalent; if the current line is line 100, they all address line 103. 

I pat I ? pat? Scan forward and backward respectively for a line containing pat, a regular 
expression (as defined below in the section "Regular Expressions and Substitute 
Replacement Patterns." The scans normally wrap around the end of the buffer. If 
all that is desired is to show the next line containing pat, you may omit trailing I 
or?. If you omit pat or leave it explicitly empty, the last regular expression 
specified is located. The forms V and\? scan using the last regular expression 
used in a scan; after a substitute, I I and ? ? would scan using the 
substitute's regular expression. 

Combining Addressing 
Primitives 

" 'x Before each non-relative motion of the current line '.',the previous current line 
is marked with a tag, subsequently referred to as '' ' ', which makes it easy to 
refer or return to this previous context. You can also establish marks with the 
mark command using single lower-case letters. For example, '' x' would refer 
to the line marked x. 

Addresses to commands consist of a series of addressing primitives, separated by 
','or';'. Such address lists are evaluated left-to-right. When addresses are 
separated by ';' the current line '.' is set to the value of the previous addressing 
expression before the next address is interpreted. If you give more addresses 
than the command requires, all but the last one or two are ignored. If the com­
mand takes two addresses, the first addressed line must precede the second in the 
buffer. Null address specifications are permitted in a list of addresses; the default 
in this case is the current line '.'. So ', 100' is equivalent to '., 100'. It is an error 
to give a prefix address to a command which expects none. 

3.8. Regular Expressions 
and Substitutions 

A regular expression specifies a set of strings of characters. A member of this set 
of strings is said to be matched by the regular expression. The editor remembers 
two previous regular expressions: the previous regular expression used in a sub­
stitute command and the previous regular expression used elsewhere 
(referred to as the previous scanning regular expression). The previous regular 
expression can always be referred to by a null regular expression, that is I I (for­
wards) or?? (backwards). 

Revision A, of 27 March 1990 

'0 



u 

u 

Magic and Nomagic 

Basic Regular Expression 
Summary 

char 

$ 

\< 

\> 

[string] 

Chapter 3 - Command Reference for the ex Line Editor 63 

The regular expressions allowed by ex are constructed in one of two ways 
depending on the setting of the magic option. The ex and vi default setting of 
magic gives quick access to a powerful set of regular expression metacharacters. 
The disadvantage of magic is that the user must remember that these metacharac­
ters are magic and precede them with the character backslash(\) to use them as 
"ordinary" characters. With nomagic, the default for edit, regular expressions 
are much simpler because there are only two metacharacters: 'A' (beginning of 
line) and'$' (end ofline). The power of the other metacharacters is still avail­
able by preceding the (now) ordinary character with a\. Note that\ is thus 
always a metacharacter. 

The remainder of the discussion of regular expressions assumes that the setting 
of this option is magic.10 

The following basic constructs are used to construct regular expressions (only 
when in magic mode). 

An ordinary character matches itself. The characters A at the beginning of a line, 
$ at the end of line, * as any character other than the first, ' . ', \, [ , and ' - ' are 
not ordinary characters and must be escaped (preceded) by \ to be treated as 
such. 

Attthe beginning of a pattern forces the match to succeed only at the beginning of 
a line. 

At the end of a regular expression forces the match to succeed only at the end of 
the line. 

Matches any single character except the new-line character. 

Forces the match to occur only at the beginning of a 'variable' or 'word'; that is, 
either at the beginning of a line, or just before a letter, digit, or underline and 
after a character not one of these. 

Similar to \ <, but matching the end of a 'variable' or 'word,' that is either the 
end of the line or before character which is neither a letter, nor a digit, nor the 
underline character. 

Matches any single character in the class defined by string. Most characters in 
string define themselves. A pair of characters separated by - in string defines a 
set of characters between the specified lower and upper bounds, thus [ a - z ] as a 
regular expression matches any single lower-case letter. If the first character of 
string is a A, the construct matches all but those characters; thus [A a-z] 
matches anything but a lower-case letter and of course a newline. You must 
escape any of the characters A, [, or - in string with a preceding \. 

10 To discern what is true with nomagic it is sufficient to remember that the only special characters in this 
case will be • at the beginning of a regular expression, $ at the end of a regular expression, and \. With 
nomagic the characters ' - ' and & also lose their special meanings related to the replacement pattern of a 
substitute. 

sun Revision A, of 27 March 1990 
mlcrosystems 



64 Editing Text Files 

Combining Regular 
Expression Primitives 

Substitute Replacement 
Patterns 

3.9. Command Reference 

The concatenation of two regular expressions matches the leftmost and then 
longest string, which can be divided with the first piece matching the first regular 
expression and the second piece matching the second. Any regular expressions 
mentioned above that match a single character may be followed by the character 
* to fonn a regular expression that matches any number of adjacent occurrences 
(including 0) of characters matched by the regular expression it follows. 

The character ' - ' may be used in a regular expression, and matches the text 
which defined the replacement part of the last substitute command. A regu­
lar expression may be enclosed between the sequences \ ( and \ ) with side 
effects in the substitute replacement patterns. 

If the replacement pattern is % by itself, it refers to the previous replacement pat­
tern. 

The basic metacharacters for the replacement pattern are & and - ; these are given 
as \ & and \ - when nomagic is set. Each instance of & is replaced by the charac­
ters which the regular expression matched. The metacharacter ' - ' stands, in the 
replacement pattern, for the defining text of the previous replacement pattern. 

Other metasequences possible in the replacement pattern are always introduced 
by the escape character\. The sequence' \n' is replaced by the text matched by 
the n-th regular subexpression enclosed between \ ( and \ ) .11 The sequences \ u 
and \ 1 cause the immediately following character in the replacement to be con­
verted to upper- or lower-case respectively if this character is a letter. The 
sequences \ u and \ L tum such conversion on, either until \ E or \ e is encoun­
tered, or until the end of the replacement pattern. 

The following fonn is a prototype for all ex commands: 

address command I parameters count flags 

All parts are optional; the simplest case is the empty command, which displays 
the next line in the file. To avoid confusion from within visual mode, ex ignores 
a : preceding any command. 

In the following command descriptions, the default addresses are shown in 
parentheses, which are not, however, part of the command. 

abbreviate word rhs abbr: ab 

Add the named abbreviation to the current list. When in input mode in visual, if 
word is typed as a complete word, it will be changed to rhs. 

(.)append 
text 

abbr: a 

I l 
0 

11 When nested, parenthesized subexpressions are present, n is determined by counting occurrences of \ ( ,
1

• \ 

starting from the left. 'J 

Revision A, of 27 March 1990 



u 

( 

~) 

u 

Chapter 3 - Command Reference for the ex Line Editor 65 

Reads the input text and places it after the specified line. After the command, 
' • ' addresses the last line input or the specified line if no lines were input. If 
address O is given, text is placed at the beginning of the buffer. 

a! 
text 

The variant flag to append toggles the setting for the autoindent option during 
the input of text. 

args 

The members of the argument list are printed, with the current argument delim­
ited by [ and ] . 

( . , . ) change count 
text 

abbr: c 

Replaces the specified lines with the input text. The current line becomes the last 
line input; if no lines were input, it is left as for a delete. 

c! 
text 

The variant toggles autoindent during the change. 

( . , . ) copy addr flags abbr: co 

A copy of the specified lines is placed after addr, which may be 'O' (zero). The 
current line ' . ' addresses the last line of the copy. The command t is a 
synonym for copy. 

(., . ) delete buffer count.flags abbr: d 

Removes the specified lines from the buffer. The line after the last line deleted 
becomes the current line; if the lines deleted were originally at the end, the new 
last line becomes the current line. If a named buffer is specified by giving a 
letter, then the specified lines are saved in that buffer, or appended to it if an 
upper case letter is used. 

edit file 
ex file 

abbr: e 

Used to begin an editing session on a new file. Same as : vi file. The editor first 
checks to see ifthe buffer has been modified since the last write command was 
issued. If it has been, a warning is issued and the command is aborted. The 
command otherwise deletes the entire contents of the editor buffer, makes the 
named file the current file and prints the new filename. After insuring that this 
file is sensible the editor reads the file into its buffer. A 'sensible' file is not a 
binary file such as a directory, a block or character special file other than 
I dev It t y, a tenninal, or a binary or executable file as indicated by the first 
word. 

Revision A, of 27 March 1990 



66 Editing Text Files 

If the read of the file completes without error, the number of lines and characters 
read is typed. If there were any non-ASCII characters in the file they are stripped 
of their non-ASCII high bits, and any null characters in the file are discarded. If 
none of these errors occurred, the file is considered edited. If the last line of the 
input file is missing the trailing newline character, it will be supplied and a com­
plaint will be issued. This command leaves the current line '.' at the last line 
read. If executed from within open or visual, the current line is initially the first 
line of the file. 

edit! file 
ex! file 

abbr: e 

The variant fonn suppresses the complaint about modifications having been 
made and not written from the editor buffer, thus discarding all changes which 
have been made before editing the new file. 

e +n file 

Causes the editor to begin at line n rather than at the last line; n may also be an 
editor command containing no spaces, for example: +I pat. 

file abbr: f 

Prints the current file name, whether it has been [Modi£ ied] since the last 
write command, whether it is "read only", the current line, the number of 

u 

lines in the buffer, and the percentage of the way through the buffer of the current ' 
line. In the rare case that the current file is [Not edited] this is also noted. i..__"_) 
You have to use w ! to write to the file, since ex does not want to write a file 
unrelated to the current contents of the buffer. 

file file 

The current filename is changed to file which is considered [Not edited]. 

(1, $)global /pat/ cmds abbr: g 

First marks each line among those specified which matches the given regular 
expression. Then the given command list is executed with '.' initially set to each 
marked line. 

The command list consists of the remaining commands on the current input line 
and may continue to multiple lines by ending all but the last such line with a\. 
If cmds (and possibly the trailing I delimiter) is omitted, each line matching pat 
is printed. append, insert, and change commands and associated input are 
pennitted; the ' . ' tenninating input may be omitted if it would be on the last line 
of the command list. open and visual commands are pennitted in the com­
mand list and take input from the tenninal. 

The global command itself may not appear in cmds. The undo command is 
also not pennitted there, as undo instead can be used to reverse the entire glo­
bal command. The options autoprint and autoindent are inhibited during a 
global, and the value of the report option is temporarily infinite, in deference 
to a report for the entire global. Finally, the context mark ' ' is set to the value iU 
of ' . ' before the global command begins and is not changed during a global 
command, except perhaps by an open or visual command within the 

sun Revision A, of 27 March 1990 
microsystems 



u 

u 

u 

Chapter 3 - Command Reference for the ex Line Editor 67 

global. 

g! /pat/ cmds 

The variant fonn of global runs cmds at each line not matching pat. 

(.)insert 
text 

abbr: v 

abbr: i 

Places the given text before the specified line. The current line is left at the last 
line input; if there were none input it is left at the line before the addressed line. 
This command differs from append only in the placement of text. 
• I J.. 

text 

The variant toggles autoindent during the insert. 

(., . +1) join count flags abbr: j 

Places the text from a specified range of lines together on one line. White space 
is adjusted at each junction to provide at least one blank character, two if there 
was a ' . ' at the end of the line, or none if the first following character is a ) . If 
there is already white space at the end of the line, then the white space at the start 
of the next line will be discarded. 

j ! 

The variant causes a simpler join with no white space processing; the charac­
ters in the lines are simply concatenated. 

(.) k x 

The k command is a synonym for mark. It does not require a blank or tab 
before the following letter. 

( . , . ) list count flags abbr: 1 

Prints the specified lines in a more unambiguous way: tabs are printed as CTRL-I 
Cl) and the end of each line is marked with a trailing $. The current line is left at 
the last line printed. 

map lhs rhs 

The map command is used to define macros for use in visual mode. lhs should 
be a single character, or the sequence '1tn, for n a digit, referring to function key 
n. When this character or function key is typed in visual mode, it will be as 
though the corresponding rhs had been typed. On tenninals without function 
keys, you can type '1tn. See the "Macros" section in the chapter "Using vi, the 
Visual Display Editor" for more details. 

(. )markx abbr: ma 

Gives the specified line mark x, a single lower case letter. The x must be pre­
ceded by a blank or a tab. The addressing fonn 'x then addresses this line. The 
current line is not affected by this command. 

Revision A, of27March1990 



68 Editing Text Files 

(.,.)move addr abbr: m 

The move command repositions the specified lines to be after addr. The first of 
the moved lines becomes the current line. 

next abbr: n 

The next file from the command line argument list is edited. 

n! 

The variant suppresses warnings about the modifications to the buffer not having 
been written out, discarding (irretrievably) any changes that may have been 
made. 

n filelist 
n +command filelist 

The specifiedfilelist is expanded and the resulting list replaces the current argu­
ment list; the first file in the new list is then edited .. If command is given (it must 
contain no spaces), then it is executed after editing the first such file. 

( . , . ) number count flags abbr:# or nu 

Prints each specified line preceded by its buffer line number. The current line is 
left at the last line printed. The count option specifies the number of lines to 
print. 

( . ) open flags 
(.)open /pat/ flags 

abbr: o 

Enters intraline editing open mode at each addressed line. If pat is given, then the 
cursor will be placed initially at the beginning of the string matched by the pat­
tern. To exit this mode, use Q. See the chapter on "Using vi the Visual Display 
Editor." 

preserve 

The current editor buffer is saved as though the system had just crashed. This 
command is for use only in emergencies when a write command has resulted 
in an error and you don't know how to save your work. After a preserve you 
should seek help. 

( . , . ) print count abbr: p orP 

Prints the specified lines with non-printing characters printed as control charac­
ters 'AX'; delete (hexadecimal Ox7 f) is represented as A?. The count option 
specifies the number of lines to print. The current line is left at the last line 
printed. 

( . ) put buffer abbr: pu 

Puts back previously deleted or yanked lines. Normally used with delete to 
effect movement of lines, or with yank to effect duplication of lines. If no 
buffer is specified, then the last deleted or yanked text is restored. But no modi-

1 ) 

fying commands may intervene between the delete or yank and the put, nor \_) 
may lines be moved between files without using a named buffer. By using a 

Revision A, of 27 March 1990 



u 
Chapter 3 - Command Reference for the ex Line Editor 69 

named buffer, text may be restored that was saved there at any previous time. 

quit abbr: q 

Causes ex to terminate. No automatic write of the editor buffer to a file is per­
formed. However, ex issues a warning message if the file has changed since the 
last write command was issued, and does not quit. ex also warns you ifthere 
are more files in the argument list. Normally, you do want to save your changes, 
so you should use a write command; if you wish to discard them, use the q! 
command variant. 

q! 

Quits from the editor, discarding changes to the buffer without complaint. 

(. ) read.file abbr: r 

Places a copy of the text of the given file in the editing buffer after the specified 
line. If no file is given the current file name is used. The current file name is not 
changed unless there is none in which case file becomes the current name. The 
sensibility restrictions forthe edit command apply here also. If the file buffer 
is empty and there is no current name then ex treats this as an edit command. 

Address 'O' (zero) is legal for this command and causes the file to be read at the 
beginning of the buffer. Statistics are given as for the edit command when the 
read successfully terminates. After a read the current line is the last line read. 
Within open and visual modes the current line is set to the first line read rather 
than the last. 

( . ) read ! command 

Reads the output of command into the buffer after the specified line. This is not a 
variant form of the command, rather a read specifying a command rather than a 
filename; a blank or tab before the ! is mandatory. 

recover file 

Recovers.file from the system save area. Used after an accidental hangup of the 
phone or a system crash or pre serve command. The system saves a copy of 
the file you were editing only if you have made char..ges to the file. Except when 
you use preserve you will be notified by mail when a file is saved. 

rewind abbr: rew 

The argument list is rewound, and the first file in the list is edited. 

rew! 

Rewinds the argument list discarding any changes made to the current buffer. 

set parameter abbr: se 

With no arguments, prints those options whose values have been changed from 
their defaults; with parameter all it prints all of the option values. 

Giving an option name followed by a ? causes the current value of that option to 
be printed. The ? is unnecessary unless the option is Boolean valued. Boolean 
options are given values either by the form set option to tum them on or set 

sun Revision A, of 27 March 1990 
microsystems 



70 Editing Text Files 

nooption to tum them off; string and numeric options are assigned via the form 
set option=value. More than one parameter may be given to set; they are 
interpreted from left to right. 

shell 

A new shell is created. When it terminates, editing resumes. 

source file 

abbr: sh 

abbr: so 

Reads and executes commands from the specified file. source commands may 
be nested. 

stop 

Suspends the editor, returning control to the top level shell. If autowrite is set 
and there are unsaved changes, a write is done first unless the form stop! is 
used. This commands is only available where supported by the teletype driver 
and operating system. 

(., . ) substitute /pat/repl/ options count flags abbr: s 
On each specified line, the first instance of pattern pat is replaced by replacement 
pattern repl. If the global indicator option character g appears, then all instances 
are substituted; if the confirm indication character c appears, then before each 
substitution the line to be substituted is typed with the string to be substituted 
marked with ~ characters. By typing a y one can cause the substitution to be ,_) 
performed, any other input causes no change to take place. After a subs ti- ~ 
tute command is executed, the last line substituted becomes the current line. 
Lines may be split by substituting new-line characters into them. The newline in 
repl must be escaped by preceding it with a \. Other metacharacters available in 
pat and repl are described below. 

(. , . ) substitute options count flags abbr: s 

If pat and repl are omitted, then the last substitution is repeated. This is a 
synonym for the & command. 

( . , . ) t addr flags 

The t command is a synonym for copy. 

tag tag abbr: ta 

The focus of editing switches to the location of tag, switching to a different line 
in the current file where it is defined, or if necessary to another file. If you have 
modified the current file before giving a tag command, you must write it out. 
When a tag command is specified with no tag, the previous tag is reused. 

The tags file is normally created by a program such as ctags, and consists of a 
number of lines with three fields separated by blanks or tabs. The first field gives 
the name of the tag, the second the name of the file where the tag resides, and the 
third gives an addressing form which can be used by the editor to find the tag; , , \ 
this field is usually a contextual scan using '/pat/' to be immune to minor \_) 
changes in the file. Such scans are always performed as if nomagic were set. 

Revision A, of 27 March 1990 



u 

u 

Chapter 3 - Command Reference for the ex Line Editor 71 

The tag names in the tags file must be sorted alphabetically. 

unabbreviate word 

Delete word from the list of abbreviations. 

undo 

abbr: una 

abbr: u 

Reverses the changes made in the buffer by the last buffer editing command. 
Note that global commands are considered a single command for the purpose 
of undo (as are open and visual commands.) Also, the commands write 
and edit which interact with the file system cannot be undone. undo is its own 
inverse. undo always marks the previous value of the current line ' . ' as ' ' ' '. 
After an undo the current line is the first line restored or the line before the first 
line deleted if no lines were restored. For commands with more global effect 
such as global and visual the current line regains its pre-command value 
after an undo. 

unmap lhs 

The macro expansion associated by map for lhs is removed. 

(1, $) v /pat/ cmds 

A synonym for the global command variant g ! , running the specified cmds on 
each line that does not match pat. 

version abbr: ve 

Prints the current version number of the editor as well as the date the editor was 
last changed. 

vi file 

Same as : edit file or : exfile. 

( . ) visua1 type count flags abbr: vi 

Enters visual mode at the specified line. Type is optional and may be'-' , '"'or 
'.' as in the z command to specify the placement of the specified line on the 
screen. By default, if type is omitted, the specified line is placed as the first on 
the screen. A count specifies an initial window size; the default is the value of 
the option window. See the chapter "Using vi, the Visual Display Editor" for 
more details. To exit visual mode, type Q. 

visua1 file 
visua1 +n file 

From visual mode, this command is the same as edit. 

(1, $)write file abbr: w 

Writes changes made back to file, printing the number oflines and characters 
written. Nonnally file is omitted and the text goes back where it came from. If a 
file is specified, then text will be written to that file. 12 If the file does not exist it 

12 The editor writes to a file only if it is the current file and is edited, if the file does not exist, or if the file is 
actually /dev /tty or /dev /null. Otherwise, you must give the variant form w ! to force a write. 

Revision A, of 27 March 1990 



72 Editing Text Files 

is created. The current file name is changed only if there is no current file name; 
the current line is never changed. 

If an error occurs while writing the current and edited file, the editor considers 
that there has been No write since last change even if the buffer had 
not previously been modified. 

(1, $)write>> file abbr: w>> 
Writes the buffer contents at the end of an existing file. 

w! name 

Overrides the checking of the normal write command, and will write to any file 
which the system permits. 

(1, $) w ! command 

Writes the specified lines into command. Note the difference between w ! which 
overrides checks and w ! which writes to a command. 

wq name 

Like a write and then a quit command. 

wq! name 

The variant overrides checking on the sensibility of the write command, as w ! 
does. 

xit name abbr: x 
If any changes have been made and not written, writes the buffer out. Then, in 
any case, quits. Same as wq, but does not bother to write if there have not been 
any changes to the file. 

( . , . ) yank buffer count abbr: ya 

Places the specified lines in the named buffer, for later retrieval via put. Ifno 
buffer name is specified, the lines go to a more volatile place; see the put com­
mand description. 

(. +1) z count 

Print the next count lines, default window. 

( . ) z type count 

Displays a window of text with the specified line at the top. If type is'-' the line 
is placed at the bottom; a'.' places the line in the center. A count gives the 
number of lines to be displayed rather than double the number specified by the 
scroll option. On a terminal, the screen is cleared before display begins unless 
you give a count less than the screen size. The current line is left at the last line 
displayed. Forms z= and z A also exist; z= places the current line in the center, 
surrounds it with lines of - characters and leaves the current line at this line. The 
form z A prints the window before z- would. The characters +, A and - may be 
repeated for cumulative effect. 

Revision A, of 27 March 1990 

\_) 



u 

u 

u 

Chapter 3 - Command Reference for the ex Line Editor 73 

! command 

The remainder of the line after the ! character is sent to a shell to be executed. 
Within the text of command the characters % and # are expanded as in filenames 
and the character ! is replaced with the text of the previous command. Thus, in 
particular, ! ! repeats the last such shell escape. If any such expansion is per­
formed, the expanded line will be echoed. The current line is unchanged by this 
command. 

If there has been [No write] of the buffer contents since the last change to 
the editing buffer, then a diagnostic will be printed before the command is exe­
cuted as a warning. A single ! is printed when the command completes. 

(addr,addr) ! command 

Talces the specified address range and supplies it as standard input to command; 
the resulting output then replaces the input lines. 

($)= 

Prints the line number of the addressed line. The current line is unchanged. 

( . , . ) > count jla.gs 
( . , . ) < count jla.gs 

Perform intelligent shifting on the specified lines; < shifts left and > shifts right. 
The quantity of shift is determined by the shiftwidth option and the repetition of 
the specification character. Only white space (blanks and tabs) is shifted; no 
non-white characters are discarded in a left-shift. The current line becomes the 
last line which changed due to the shifting. 

CTRL-D 

An end-of-file from a terminal input scrolls through the file. The scroll option 
specifies the size of the scroll, normally a half screen of text. 

( • I • ) 

(. I • ) I 

An address alone causes the addressed lines to be printed. A blank line prints the 
next line in the file. 

( • , • ) & options count flags 

Repeats the previous substitute command. 

( . , . ) - options count jla.gs 

Replaces the previous regular expression with the previous replacement pattern 
from a substitution. 

Revision A, of 27 March 1990 



74 Editing Text Files 

3.10. Option Descriptions Here are the various options that can be set by means of the set command. 
Note that binary options can be turned off with two letters no in front of the 
option. 

autoindent, ai default: noai 

The autoindent option can be used to ease the preparation of structured program 
text. At the beginning of each append, change, or insert command, or 
when a new line is opened or created by an append, change, insert, or 
substitute operation within open or visual mode, ex looks at the line being 
appended after, the first line changed or the line inserted before and calculates the 
amount of white space at the start of the line. It then aligns the cursor at the level 
of indentation so determined. 

If you then type in lines of text, they will continue to be justified at the displayed 
indenting level. If more white space is typed at the beginning of a line, the fol­
lowing line will be aligned with the first non-white character of the previous line. 
To back the cursor up to the preceding tab stop, type CTRL-D. The tab stops 
going backwards are defined at multiples of the shiftwidth option. You cannot 
backspace over the indent, except by sending an end-of-file with a CTRL-D. 

Specially processed in this mode is a line with no characters added to it, which 
turns into a completely blank line (the white space provided for the autoindent is 
discarded.) Also specially processed in this mode are lines beginning with a A 

and immediately followed by a CTRL-D. This causes the input to be repositioned 
at the beginning of the line, but retains the previous indent for the next line. 
Similarly, a 'O' (zero) followed by a CTRL-D repositions at the beginning but 
without retaining the previous indent. 

autoindent doesn't happen in global commands or when the input is not a ter­
minal. 

autoprint, ap default: ap 

Causes the current line to be printed after each delete, copy, join, move, 
substitute, t, undo, or shift command. This has the same effect as sup­
plying a trailing p to each such command. autoprint is suppressed in globals, 
and only applies to the last of many commands on a line. 

autowrite, aw default: noaw 

Causes the contents of the buffer to be written to the current file if you have 
modified it and give a next, rewind, stop, tag, or ! command, or a CTRL­
~ (switch files) or CTRL- J (tag goto) command in visual mode. Note, that the 
edit and ex commands do not autowrite. In each case, there is an equivalent 
way of switching when autowrite is set to avoid the autowrite (edit for next, 
rewind! for rewind, stop! for stop, tag! for tag, shell for ! , and 
: e #and a : ta! command from within visual mode). 

beautify, bf default: nobeautify 

Causes all control characters except tab, newline and form-feed to be discarded 
from the input. A complaint is registered the first time a backspace character is 
discarded. beautify does not apply to command input. 

Revision A, of 27 March 1990 

u 

u 



u 

u 

Chapter 3 - Command Reference for the ex Line Editor 7 5 

directory, dir default: dir= I tmp 

Specifies the directory in which ex places its buffer file. If this directory is not 
writeable, then the editor will exit abruptly when it fails to be able to create its 
buffer there. This feature is useful on systems where I tmp fills up. Being able 
to specify that the editor use your own file space can allow you to edit even if 
I tmp is full. 

edcompatible default: noedcompatible 
Causes the presence or absence of g and c suffixes on substitute commands to be 
remembered, and to be toggled by repeating the suffixes. The suffix r makes the 
substitution be as in the - command, instead of like &. 

errorbells,eb default: noeb 
Error messages are preceded by a beep or bell. 13 If possible the editor always 
places the error message in a standout mode of the tenninal (such as inverse 
video) instead of ringing the bell. 

flash, fl default: fl 

If the tenninal has visual bell capability, use that instead of the audible bell. 
hardtabs, ht default: ht=8 
Gives the boundaries on which tenninal hardware tabs are set (or on which the 
system expands tabs). 

ignorecase, ic default: noic 
All upper case characters in the text are mapped to lower case in regular expres­
sion matching. In addition, all upper case characters in regular expressions are 
mapped to lower case except in character class specifications. 

lisp default: nolisp 
autoindent indents appropriately for LISP code, and the (, ) , {, } , [ [, and J J 
commands in open and visual modes are modified to have meaning for LISP. 

list default: nolist 
All printed lines will be displayed (more) unambiguously, showing tabs and 
ends-of-lines as in the list command. 

magic default: magic for ex and vi 14 

If nomagic is set, the number of regular expression metacharacters is greatly 
reduced, with only A and $ having special effects. In addition the metacharacters 
- and & of the replacement pattern are treated as nonnal characters. All the nor­
mal metacharacters may be made magic when nomagic is set by preceding them 
with a backslash (\). 

13 Beeping and bell ringing in open and visual on errors is not suppressed by setting noeb. 
14 nomagic for edit. 

~~sun ~ microsystems 
Revision A, of 27 March 1990 



76 Editing Text Files 

mesg default: mesg 

Causes write pennission to be turned off to the tenninal while you are in visual 
mode, if nomesg is set. 

number, nu default: nonumber 

Causes all output lines to be printed with their line numbers. In addition each 
input line will be prompted for by supplying the line number it will have. 

optimize, opt default: optimize 

Throughput of text is expedited by setting the tenninal to not do automatic car­
riage returns when printing more than one (logical) line of output, greatly speed­
ing output on tenninals without addressable cursors when text with leading white 
space is printed. 

paragraphs, para default: para=IPLPPPQPP Llpplpipnpbp 

Specifies the paragraphs for the { and } operations in open and visual modes. 
The pairs of characters in the option's value are the names of the macros which 
start paragraphs. 

prompt 

Command mode input is prompted for with a : . 

readonly, ro 

default: prompt 

default: off 

If set, writes will fail unless you use an ! after the write. Affects x, z z, 
autowrite and anything that writes to guarantee you won't clobber a file by 
accident. Abbreviate to ro. 

redraw default: noredraw 

The editor simulates (using great amounts of output), an intelligent tenninal on a 
dumb tenninal (e.g. during insertions in visual mode the characters to the right of 
the cursor position are refreshed as each input character is typed.) Useful only at 
very high speed. 

remap default: remap 

If on, macros are repeatedly tried until they are unchanged. For example, if o is 
mapped to 0, and 0 is mapped to I, then if remap is set, o will map to I, but if 
noremap is set, it will map to 0. Can map q to# and #1 to something else, and 
ql to something else. If off, can map CTRL-L to 1 and CTRL-R to CTRL-L 
without having CTRL-R map to 1. 

report default: report=515 

Specifies a threshold for feedback from commands. Any command which 
modifies more than the specified number of lines will provide feedback as to the 
scope of its changes. For commands such as global, open, undo, and 
visual which have potentially more far reaching scope, the net change in the 
number of lines in the buffer is presented at the end of the command, subject to 

15 2 for edit. 

Revision A, of 27 March 1990 

u 



u 

u 

Chapter 3 - Command Reference for the ex Line Editor 77 

this same threshold. Thus notification is suppressed during a global command 
on the individual commands performed. 

scroll default: scroll=1h window 

Determines the number of logical lines scrolled when an end-of-file is received 
from a terminal input in command mode, and the number of lines printed by a 
command mode z command (double the value of scroll). 

sections default: sections=NHSHH HUuhsh+c 

Specifies the section macros for the [ [ and J ] operations in open and visual 
modes. The pairs of characters in the option's string are the names of the macros 
that start paragraphs. 

shell, sh default: sh=lbinlsh 
Gives the path name of the shell forked for the shell escape command ! , and by 
the shell command. The default is taken from SHELL in the environment, if 
present. 

shiftwidth, sw default: sw=8 
Gives the width a software tab stop, used in reverse tabbing with CTRL-D when 
using autoindent to append text, and by the shift commands. 

showmatch, sm default: nosm 

In open and visual mode, when a ) or } is typed, move the cursor to the match­
ing ( or { for one second if this matching character is on the screen. Extremely 
useful with LISP. 

showmode, smd default: nosmd 

In visual mode, show the current input mode on the message line. 

state 
command mode 
in a command 
ins command 
inc command 
in Rcommand 
in o command 
in i command 
in r command 

slowopen, slow 

display 
(nothing) 
APPEND MODE 
SUBSTITUTE MODE 
CHANGE MODE 
REPLACE MODE 
OPEN MODE 
INSERT MODE 
REPLACE 1 CHAR 

terminal dependent 

Affects the display algorithm used in visual mode, holding off display updating 
during input of new text to improve throughput when the terminal in use is both 
slow and unintelligent. See the chapter "Using vi, the Visual Display Editor" 
for more details. 

Revision A, of 27 March 1990 



78 Editing Text Files 

tabstop, ts default: ts=8 

The editor expands tabs in the input file to be on tabstop boundaries for the pur­
poses of display. 

taglength, ti default: tl=O 

Tags are not significant beyond this many characters. A value of zero (the 
default) means that all characters are significant. 

tags default: tags=tags I us r I 1 ib It ag s 

A path of files to be used as tag files for the tag command, similar to the path 
variable of csh. Separate the files by spaces, and precede each space with a 
backslash. Files are searched left to right. Always put tags as your first entry. A 
requested tag is searched for in the specified files, sequentially. By default (even 
in version 2) files called tags are searched for in the current directory and in 
/usr I lib (a master file forthe entire system.) 

term 

The terminal type of the output device. 

terse 

default: from environment TERM 

default: noterse 

Shorter error diagnostics are produced for the experienced user. 

timeout default: on 

Causes macros to time out after one second. Tum it off and they wait forever. 
Use this if you want multi-character macros. If your terminal sends an escape 
sequence for arrow keys, type ESC twice. 

warn default: warn 

Warn ifthere has been '[No write since last change]' before a ! 
command escape. 

window default: window=speed dependent 

The number of lines in a text window in the vis ua 1 command. The default is 8 
at slow speeds (600 baud or less), 16 at medium speed (1200 baud), and the full 
screen (minus one line) at higher speeds. 

w300, w1200, w9600 

These are not true options but set window only if the speed is slow (300), 
medium (1200), or high (9600), respectively. They are suitable for an EXINIT 
and make it easy to change the 8/16/full screen rule. Can specify a 12-line win­
dow at 300 baud and a 23-line window at 1200 in yourEXINIT with: :set 
w300=12 w1200=23. Synonymous with window but only at 300, 1200, and 9600 
baud. 

wrapscan, ws default: ws 

Searches using the regular expressions in addressing will wrap around past the 
1 

) 

end of the file. \.._! 

~~sun ~~ microsystems 
Revision A, of 27 March 1990 



u 

3.11. Limitations 

' '\ u 

u 

Chapter 3 - Command Reference for the ex Line Editor 79 

wrapmargin, wm default: wm=O 
Defines a margin for automatic wrapover of text during input in open and visual 
modes. Any number other than 0 (zero) is a distance from the right edge of the 
area where wraps can take place. If you type past the margin, the entire word is 
rewritten on the next line. Behaves much like fil]/nojustify mode in nroff. See 
the section "Using vi, the Visual Display Editor'' for details. 
writeany, wa default: nowa 
Inhibit the checks normally made before write commands, allowing a write to 
any file which the system protection mechanism will allow. 

Editor limits that the user is likely to encounter are as follows: 1024 characters 
per line, 256 characters per global command list, 128 characters per file name, 
128 characters in the previous inserted and deleted text in open or visual modes, 
100 characters in a shell escape command, 63 characters in a string valued 
option, and 30 characters in a tag name, and a limit of 250,000 lines in the file is 
silently enforced. 

The visual implementation limits the number of macros defined with map to 32, 
and the total number of characters in macros to be less than 512. 

Revision A, of 27 March 1990 



80 Editing Text Files 

'\ 
' \ 

\_) 

Revision A, of 27 March 1990 



u 

\ 

\__) 

u 

Chapter 3 - Command Reference for the ex Line Editor 81 

Ex Quick Reference 

Entering/Leaving ex 

% ex name edit name, start at end 
... at linen % ex+nname 

% ex-ttag 
%ex-r 
% ex-rname 
% ex name ... 
% ex-Rname 
:x 
: q! 

ex States 

Command 

Insert 

Open/visual 

ex Commands 

abbrev ab 
append a 
args ar 
change c 
copy co 
delete d 
edit e 
file f 
global g 
insert i 
join j 
list I 
map map 
mark ma 
move m 

start at tag 
list saved files 
recover file name 
edit first; rest via :n 
read only mode 
exit, saving changes 
exit, discarding changes 

Normal and initial state. Input 
prompted for by : . Your kill character 
cancels partial command. 
Entered by a i and c. Arbitrary text 
then terminates with line having only • 
character on it or abnormally with 
interrupt. 
Entered by open or vi, terminates with 
Q or'\. 

next n unabbrev una 
number nu undo u 
open 0 unmap unm 
preserve pre version ve 
print p visual vi 
put pu write w 
quit q xit x 
read re yank ya 
recover rec window z 
rewind rew escape 
set se shift < 
shell sh print next CR 
source so resubst & 
stop st rshift > 
substitute s scroll ·n 

ex Command Addresses 

n linen /pat next with pat 
current ?pat previous with pat 

$ last x-n n beforex 
+ next x,y x throughy 

previous 'x marked with x 
+n n forward previous context 
% 1,$ 

Specifying Terminal Type 

% setenv TERM type 
$ TERM=type; export TERM 
See also tset in the user's manual. 

(for csh) 
(for sh) 

Some Terminal Types 

2621 43 adm31 dwl 
dw2 
gt40 
gt42 
h1500 
h1510 

h19 
ilOO 
mime 
owl 
t1061 
vt52 

2645 733 adm3a 
300s 745 clOO 
33 act4 dml520 
37 act5 dm2500 
4014 adm3 dm3025 

Initializing Options 

EXINIT place set's here in environment var. 
set x enable option 
set nox disable option 
set x=val give value val 
set show changed options 
set all show all options 
set x? show value of option x 

Useful Options 

autoindent 
autowrite 
ignorecase 
lisp 
list 
magic 
number 
paragraphs 
redraw 
scroll 
sections 
shiftwidth 
showmatch 
slowopen 
window 
wrapscan 
wrapmargin 

ai 
aw 
ic 

nu 
para 

sect 
SW 

sm 
slow 

WS 

wm 

supply indent 
write before changing files 
in scanning 
() {}are s-exp's 
print "I for tab, $ at end 
. [ * special in patterns 
number lines 
macro names which start ... 
simulate smart terminal 
command mode lines 
macro names ... 
for < >, and input ·n 
to ) and } as typed 
choke updates during insert 
visual mode lines 
around end of buffer 
automatic line splitting 

Scanning Pattern Formation 

$ 

[str] 
[t str] 
[x-y] 

* 

beginning of line 
end of line 
any character 
beginning of word 
end of word 
any char in str 
... not instr 
... between x and y 
any number of preceding 

Revision A, of 27 March 1990 



82 Editing Text Files 

' \ u 

u 
Revision A, of 27 March 1990 



u 

4.1. Getting Started 

u 

4 
Using theed Line Editor 

This chapter describes the editing tools of theed line editor.16 Jt provides the 
newcomer with elementary instructions and exercises for learning the most 
necessary and common commands and the more advanced user with information 
about additional editing facilities. The contents include descriptions of append­
ing, changing, deleting, moving, copying and inserting lines of text; reading and 
writing files; displaying your files; context searching; the global commands; line 
addressing; and using special characters. There are also brief discussions on 
writing scripts and on the pattern-matching tool grep, which is related to ed. 

We assume that you know how to log in to the system and that you have an 
understanding of what a file is. You must also know what character to type as 
the end-of-line on your workstation or terminal. This character is the RETURN 
key in most cases. 

If you need basic information on the Sun system, refer to SunOS User's Guide: 
Getting Started. See ed(l) in the SunOS Reference Manual for a nutshell 
description of the ed commands. 

The ed text editor is an interactive program for creating and modifying text, 
using directions that you provide from your workstation. The text can be a docu­
ment, a program or perhaps data for a program. 

We'll assume that you have logged in to your system, and it is displaying the 
hostname and prompt character, which we show throughout this manual as: 

[ hostname% ) 
To use ed, type ed and a carriage return at the 'hostname%' prompt: 

[ hostname% ed ) 
You are now ready to go. ed does not prompt you for information, but waits for 
you to tell it what to do. First you '11 learn how to get some text into a file and 
later how to change it and make corrections. 

16 The material in this chapteris derived from A TuJorial Introduction lo the UNIX Text Editor, B.W. 
Kernighan and Advanced Editing on UNIX, B.W. Kernighan, Bell Laboratories, Murray Hill, New Jersey. 

83 Revision A, of 27 March 1990 



84 Editing Text Files 

Creating Text - the Append 
Command a 

Let's assume you are typing the first draft of a memo and starting from scratch. 
When you first started, in this case, you are working with a 'blank piece of 
paper'; there is no text or information present. To supply this text, you either 
type it in or read it in from a file. To type it in, use the append command a. 

I 

So, to type in lines of text into the buffer, you type an a followed by a 
I RETURN ], followed by the lines of text you want, like this: 

hostname% ed 
a<CR> 
Now is the time 
for all good men 
to come to the aid of their party. 

If you make a mistake, use the I DEL I key to back up over and correct your mis­
takes. You cannot go back to a previous line after typing I RETURN I to correct 
your errors. The only way to stop appending is to tell ed that you have finished 
by typing a line that contains only a period. It takes practice to remember it, but 
it has to be there. If ed seems to be ignoring you, type an extra line with just '.' 
on it. You may then find you've added some garbage lines to your text; you will 
have to take them out later. 

After the append command, your file contains the lines: 

Now is the time 
for all good men 
to come to the aid of their party. 

The a and '.' aren't there, because they are not text. 

To add more text to what you already have, type another a, and continue typing. 

If you have not used a text editor before, read the following to learn a bit ofter­
minology. If you have used an editor, skip to the "Error Messages- ?"section. 

In edjargon, the text being worked on is said to be in a work space or 'kept in a 
buffer'. The buffer is like a piece of paper on which you write things, change 
some of them, and finally file the whole thing away for another day. 

You have learned how to tell ed what to do to the text by typing instructions 
called commands. Most commands consist of a single letter that you type in 
lower case letters. An example is the append command a. Type each command 
on a separate line. You sometimes precede the command by information about 
what line or lines of text are to be affected; we discuss this shortly. 

As you have seen, ed does not respond to most commands; that is, there isn't 
any prompting or message display like 'ready'. If this bothers you as a beginner, 
be patient. You'll get used to it. 

Revision A, of 27 March 1990 

\~ 



u 

( . 
I \ 

\_) 

u 

Error Messages - ? 

Writing Text Out as a File -
the Write Command w 

Chapter 4 - Using the ed Line Editor 85 

When you make an error in the commands you type, ed asks you: 

? 

This is about as cryptic as it can be, but with practice, you can usually figure out 
how you goofed. 

When you want to save your text for later use, write out the contents of the buffer 
into a file with the write command w, followed by the filename you want to write 
in. Thew command copies the buffer's contents into the specified file, destroy­
ing any previous information on the file. To save the text in a file named junk, 
for example, type: 

Leave a space between thew and the filename. ed responds by displaying the 
number of characters it wrote out, in this case 68. Remember that blanks and the 
return character at the end of each line are included in the character count. The 
buffer's contents are not disturbed, so you can go on adding lines to it. This is an 
important point. ed works on a copy of a file at all times, not on the file itself. 
There is no change in the contents of a file until you type aw. Writing out the 
text into a file from time to time is a good idea to save most of your text should 
you make some horrible mistake. If you do something disastrous, you only lose 
the text in the buffer, not the text that was written into the file. 

When you want to copy a portion of a file to another name so you can format it 
separately, use thew command. Suppose that in the file being edited you have: 

[
.TS .. . lotsofstu/f l 
.TE .....____ __ 

This is the way a table is set up for the tbl program. To isolate the table in a 
separate file called, for example, table, first find the start of the table (the . TS 
line), then write out the interesting part: 

/"\.TS/ 
. Ts ( ed prints the line it found) 
. , /" \ . TE/w table 

and the job is done. If you are confident, you can do it all at once with: 

(1·\.TS/;/•\.TE/v table l 
The point is that w can write out a group of lines, instead of the whole file. In 
fact, you can write out a single line if you like; give one line number instead of 
two (we explain line numbers later - see the sectio~ "Specifying Lines in the 

Revision A, of 27 March 1990 



86 Editing Text Files 

Leaving ed - the Quit 
Commandq 

Creating a New File-the 
Edit Command e 

Editor" for details). For example, if you have just typed a very long, complicated 
line and you know that you are going to need it or something like it later, then 
save it- don't re-type it. In the editor, say: 

a 
... lots of stuff. .. 
... very long, complicated line ... 

. w temp 
number of characters 
a 
.. . more stuff. .. 

. r temp 
number of characters 
a 
.. . more stuff. .. 

This last example is worth studying to be sure you appreciate what's going on. 
The . w temp writes the very long, complicated line (the current line) you typed 
to the file called temp. The . r temp reads that line from temp into the file you 
are editing after the current line 'dot' so you don't have to re-type it. 

To terminate an ed session, save the text you're working on by writing it into a 
file using the w command, and then type the quit command q. 

w 

number of characters 
q 
hostname% 

The system responds with the hostname prompt. At this point your buffer van­
ishes, with all its text, which is why you want to write it out before quitting. 
Actually, ed displays '?'if you try to quit without writing. At that point, write 
the file if you want; if not, type another q to get you out of ed regardless of 
whether you changed the file or not. 

The edit command e says "I want to edit a new file called newfile, without 
leaving the editor." To do this, you type: 

The e command discards whatever you 're currently working on and starts over 
on newfile. It's exactly the same as if you had quit with the q command, then 
re-entered ed with a new filename, except that if you have a pattern remembered, 

u 

a command like I I will still work. (See the section "Repeated Searches - I I ,\ ) 
and ??"later in this chapter.) ~ 

~\sun ~~ mlcrosystems 
Revision A, of 27 March 1990 



u 

u 

Chapter 4 - Using theed Line Editor 87 

If you entered with the command: 

[ hostname% ed file l 
ed remembers the name of the file, and any subsequent e, r or w commands that 
don't contain a filename refer to this remembered file. Thus: 

hostname% ed filel 
... (editing) ... 

w (writes back infilel) 
e file2 (edit new file, without leaving editor) 

... (editing in file2) ... 
w (writes back in file2) 

and so on does a series of edits on various files without ever leaving ed and 
without typing the name of any file more than once. 

A common way to get text into the buffer is to read it from a file in the file sys­
tem. This is what you do to edit text that you saved with w in a previous session. 
The edit command e also fetches the entire contents of a file into the buffer. 
So if you had saved the three lines 'Now is the time', etc., with win an earlier 
session, the ed command e fetches the entire contents of the file junk into the 
buffer, and responds with the number of characters in junk: 

[~~stname% e junk ] 

If anything was already in the buffer, it is deleted first. 

If you use e to read a file into the buffer, you do not need to use a filename after 
a subsequent w command; ed remembers the last filename used in an e com­
mand, and w will write on this file. Thus a good way to operate is: 

hostname% ed 
e file 
number of characters 
[editing session] 
w 
number of characters 
q 
hostname% 

This way, you can simply say w from time to time, and be secure that you are 
writing into the proper file each time. 

Revision A, of 27 March 1990 



88 Editing Text Files 

Exercise: Trying the e 
Command 

Checking the Filename - the 
Filename Command f 

Reading Text from a File -
the Read Command r 

Experiment with the e command - try reading and displaying various files. 
You may get an error 

(?name 

where name is the name of a file; this means that the file doesn't exist, typically 
because you spelled the filename wrong, or perhaps because you are not allowed 
to read or write it. Try alternately reading and appending to see that they work 
similarly. Verify that: 

hostname% ed filename 
number of characters in file 

is equivalent to: 

hostname% ed 
e filename 
number of characters in file 

J 

You can find out the remembered filename at any time with the f command; just 
type f without a filename. In this example, if you type f, ed replies: 

hostname% ed junk 
68 
f 
junk 

You can also change the name of the remembered filename with f; this following 
sequence guarantees that a careless w command will write on junk instead of pre­
cious. Try: 

hostname% ed precious 
f junk 

... (editing) ... 

Sometimes you want to read a file into the buffer without destroying anything 
that is already there. To do this, use the read command r. The command: 

u 

\._) 

reads the file junk into the buffer, adding it to the end of whatever is already in 
the buffer. ed responds with the number of characters in the buffer. So if you do 'U 
a read after an edit: 

~~sun ~~ mlcrosystems 
Revision A, of 27 March 1990 



u 

u 
Printing the Buffer Contents 
- the Print Command p 

Chapter 4 - Using theed Line Editor 89 

hostname% ed junk 
68 
r junk 
68 
w 
136 
q 
hostname% 

the buffer contains two copies of the text or six lines (136 characters) in this case. 
Like w and e, r displays the number of characters read in after the reading opera­
tion is complete. Now check the file contents with cat: 

hostname% cat junk 
Now is the time 
for all good men 
to come to the aid of their party. 
Now is the time 
for all good men 
to come to the aid of their party. 
hostname% 

Generally speaking, you won't user as much as e. 

Suppose you have a file called memo, and you want the file called table to be 
inserted just after the reference to Table 1. That is, in memo somewhere is a line 
that says 

Table 1 shows that ... 

The data contained in table has to go there so nroff or troff will format it 
properly. Now what? 

This one is easy. Edit memo, find 'Table 1 ', and add the file table right there: 

hostname% ed memo 
/Table 1/ 
Table 1 shows that ... (response from ed) 
.r table 

The critical line is the last one. As we said earlier, the r command reads a file; 
here you asked for it to be read in right after line dot. An r command without 
ar.y address adds lines at the end, which is the same as $ r. 

To print or 'display' the contents of the buffer or parts of it on the screen, use the 
print command p. To do this, specify the lines where you want the display to 
begin and where you want it to end, separated by a comma, and followed by p. 
Thus to show the first two lines of the buffer, for example, say: 

Revision A, of 27 March 1990 



90 Editing Text Files 

1, 2p (starting line=l, ending line=2 p) 
Now is the time 
for all good men 

Suppose you want to print all the lines in the buffer. You could use 1, 3p if you 
knew there were exactly three lines in the buffer. But in general, you don't know 
how many lines there are, so what do you use for the ending line number? ed 
provides a shorthand symbol for 'line number of last line in buffer' - the dollar 
sign $. Use it to display all the lines in the buffer, line 1 to last line: 

1,$p 
Now is the time 
for all good men 
to come to the aid of their party. 
Now is the time 
for all good men 
to come to the aid of their party. 

If you want to stop the display of more than one screenful before it is finished, 
type the interrupt character-probably (Control-CI. 

] 
ed waits for the next command. 

To display the last line of the buffer, you can use: 

[~:-~_$_~_o_m_e~t-o~t-h_e~a-i_d_o_f~t-h_e_i_·r~p-a_r_t_Y_·~~~~~~~~~~~----] 
or abbreviate it to: 

[ !~ come to the aid of their party. 

You can show any single line by typing the line number followed by a p. So, to 
display the first line of the buffer, type: 

[~~w is the time 

] 

] 
In fact, ed lets you abbreviate even further: you can display any single line by 
typing just the line number - there is no need to type the letter p. So if you say: 

[~or all good men ] 

Revision A, of 27 March 1990 



u 

(_j 

u 

Exercise: Trying the p 
Command 

Displaying Text - the List 
Commandl 

Chapter 4- Using theed Line Editor 91 

ed displays the second line of the buffer. 

You can also use$ in combinations to display the last two lines of the buffer, for 
example: 

$-1,$p 
for all good men 
to come to the aid of their party. 

This helps when you want to see how far you got in typing. 

As before, create some text using the a command and experiment with the p 
command. You will find, for example, that you can't show line 0 or a line 
beyond the end of the buffer, and that attempts to show a buffer in reverse order 
don't work. For example, you get an error message if you type: 

[_~,lp _________ ] 
ed provides two commands for displaying the contents of the lines you 're edit­
ing. You are familiar with the p command that displays lines of text. Less fami­
liar is the list command 1 (the letter 'ell'), which gives slightly more information 
than p. In particular, 1 makes visible characters that are normally invisible, such 
as tabs and backspaces. If you list a line that contains some of these, 1 will show 
each tab as;. and each backspace as...::. A sample display of a random file with 
tab characters and backspaces is: 

[~ow is the >>time for<< all good men 

This makes it much easier to correct the sort of typing mistake that inserts extra 
spaces adjacent to tabs, or inserts a backspace followed by a space. 

l 
The 1 command also 'folds' long lines for printing. Any line that exceeds 72 
characters is displayed on multiple lines. Each printed line except the last is ter­
minated by a backslash ' \', so you can tell it was folded. This is useful for 
displaying long lines on small terminal screens. A sample output of a folded line 
is: 

1 
This is an example of using the 1 command to display a very long line \ 
that has more than 72 characters ... 

Occasionally the 1 command displays in a line a string of numbers preceded by a 
backslash, such as ''-07' or '\16'. These combinations make visible the characters 
that normally don't show, like form feed or vertical tab or bell. Each such com­
bination is a single character. When you see such characters, be wary - they 
may have surprising meanings when displayed on some terminals. Often their 

Revision A, of 27 March 1990 



92 Editing Text Files 

The Current Line- 'Dot' or 
' ' 

presence means that your finger slipped while you were typing; you almost never 
want them. 

Suppose your buffer still contains the six lines as above, and that you have just 
typed: 

1,3p 
Now is the time 
for all good men 
to come to the aid of their party. 

ed has displayed the three lines for you. Try typing just a p to display: 

p (no line numbers) 
to come to the aid of their party. 

The line displayed is the third line of the buffer. In fact it is the last or most 
recent line that you have done anything with. (You just displayed it!) You can 
repeat p without line numbers, and it will continue to display line 3. 

u 

The reason is that ed maintains a record of the last line that you did anything to 
(in this case, line 3, which you just displayed) so that you can use it instead of an 
explicit line number. You refer to this most recent line by the shorthand symbol: \_;) 

(pronounced 'dot') 
to come to the aid of their party. 

Dot is a line number in the same way that'$' is; it means exactly 'the current 
line', or loosely, 'the line you most recently did something to'. You can use it in 
several ways - one possibility is to display all the lines from and including the 
current line to the end of the buffer . 

. '$p 
Now is the time 
for all good men 
to come to the aid of their party. 
to come to the aid of their party. 

In our example these are lines 3 through 6. 

Some commands change the value of dot, while others do not. The p command 
sets dot to the number of the last line displayed; that is, after this command sets 
both '.' and '$' refer to the last line of the file, line 6. 

Dot is most useful in combinations like: 

[ . +1 (or equivalently, . +lp) 

This means 'show the next line' and is a handy way to step slowly through a 

J 

Revision A, of 27 March 1990 

u 



u 

' \ 
( ! 
"-/ 

u 

Deleting Lines - the Delete 
Commandd 

Chapter 4 - Using theed Line Editor 93 

buffer. You can also say: 

[ .-1 (or .-lp) ) 
This means 'show the line before the current line'. Use this to go backward if 
you wish. Another useful one is something like: 

[ .-3,.-lp l 
This command displays the previous three lines. 

Don't forget that all of these change the value of dot. You can find out what dot 
is at any time by typing: 

l 
Let's summarize some things about p and dot. Essentially you can precede p by 
0, 1, or 2 line numbers. If you do not give a line number, p shows the 'current 
line', the line that dot refers to. If there is one line number given with or without 
the letter p, it shows that line and dot is set there; and if there are two line 
numbers, it shows all the lines in that range, and sets dot to the last line 
displayed. If you specify two line numbers, the first can't be bigger than the 
second. 

Typing a single I RETURN I displays the next line - it's equivalent to . + lp. 
Try it. Try typing a-; you will find that it's equivalent to . -lp. 

Suppose you want to get rid of the three extra lines in the buffer. To do this, use 
the delete command d. The d command is similar to p, except that d deletes 
lines instead of displaying them, You specify the lines to be deleted ford exactly 
as you do for p: 

[starting line, ending line d 

Thus the command: 

[4,$d 
deletes lines 4 through the end. There are now three lines left, as you can check 
by using: 

1,$p 
Now is the time 
for all good men 
to come to the aid of their party. 

And notice that'$' now is line 3. Dot is set to the next line after the last line 

l 
) 

Revision A, of 27 March 1990 



94 Editing Text Files 

Exercise: Experimenting 

Modifying Text - the 
Substitute Command s 

deleted, unless the last line deleted is the last line in the buffer. In that case, dot 
is set to'$'. 

Experiment with a, e, r, w, p and d until you are sure you know what they do, 
and until you understand how to use dot, '$' and the line numbers. 

If you are adventurous, try using line numbers with a, r and w as well. You will 
find that a appends lines after the line number that you specify rather than after 
dot; that r reads a file in after the line number you specify and not necessarily at 
the end of the buffer; and that w writes out exactly the lines you specify, not 
necessarily the whole buffer. These variations are useful, for instance, for insert­
ing a file at the beginning of a buffer: 

[ 0 r filename 
number of chorocters 

ed indicates the number of characters read in. You can enter lines at the begin­
ning of the buffer by saying: 

l 
[ ~· .. ·~· . . . ] 
Or you can write out the lines you specify with w. Notice that . w is very dif­
ferent from: 

[:umber of chorocters 

One of the most important commands is the substitute commands. Uses to 
change individual words or letters within a line or group of lines. For example, 
you can correct spelling mistakes and typing errors. 

Suppose that by a typing error, line 1 says: 

[Now is th time 

-the 'e' has been left off 'the'. You can uses to fix this up as follows: 

[ls/th/the/ 

This says: 'in line 1, substitute for the characters 'th' the characters 'the'. ed 
does not display the result automatically, so verify that it works with: 

] 

l 

l 

~~sun \~ mlcrosystems 
Revision A, of 27 March 1990 



u 

( \) 

~ 

u 

Chapter 4 - Using theed Line Editor 95 

is the time l 
You get what you wanted. Notice that dot has been set to the line where the sub­
stitution took place, since p printed that line. The s command always sets dot in 
this way. 

The general way to use the substitute command is: 

starting-line, ending-line s I change this I to this I 

Whatever string of characters is between the first pair of slashes is replaced by 
whatever is between the second pair, in all the lines between starting-line and 
ending-line. Only the first occurrence on each line is changed, however. If you 
want to change every occurrence, read on below. The rules for line numbers are 
the same as those for p, except that dot is set to the last line changed. But there 
is a trap for the unwary: if no substitution took place, dot is not changed. This 
causes an error'?' as a warning. 

Thus you can say: 

[ 1,$s/spelinq/spellinq/ 

and correct the first spelling mistake on each line in the text. (This is useful for 
people who are consistent misspellers!) 

You can precede any s command by one or two 'line numbers' to specify that 
the substitution is to take place on a group of lines. Thus, to change the first 
occurrence of 'mispell' to 'misspell' on every line of the file, type: 

l 

[1,$s/mispell/misspell/ J 
But to change every occurrence in every line, type: 

[1,$s/mispell/misspell/q ] 

This is more likely what you wanted in this particular case. 

Note: Be careful that this is exactly what you want to do. Unless you specify the 
substitution specifically, globally changing the string 'the', will also change 
every instance of those characters, including 'other', etc. 

If you do not give any line numbers, s assumes you mean 'make the substitution 
on line dot,' so it changes things only on the current line. You will see that a 
very common sequence is to correct a mistake on the current line, and then 
display the line to make sure everything is all right: 

Revision A, of 27 March 1990 



96 Editing Text Files 

slsomethinqlsomethinq elselp 
line with something else 

If it didn't, you can try again. 

Notice that there is a p on the same line as the s command. With few excep­
tions, p can follow any command. No other multi-command lines are legal. 

You can also say: 

[ sl ... 11 l 
which means 'change the first string of characters to nothing;' that is, remove the 
first string of characters. Use this sequence for deleting extra words in a line or 
removing extra letters from words. For instance, if you had: 

[Nowxx is the time 

To correct this, say: 

[ s/xx//p 
Now is the time 

Notice that I I (two adjacent slashes) means 'no characters,' not a blank. There 
is a difference! (See the section "Repeated Searches" for another meaning of 
I I.) 

If you wantto replace the.first 'this' on aline with 'that', for example, use: 

[ slthislthatl 

If there is more than one 'this' on the line, a second form with the trailing global 
command g changes all of them: 

[slthislthatlq 

The general format is: 

[ sl ... I ... lqp 

Try other characters instead of slashes to delimit the two sets of characters in the 
s command - anything should work except blanks or tabs. If you get funny 
results using any of the characters: 

[~ $ * \ & 

read the section on "Special Characters." 

l 

l 

l 

l 
l 

l 
~)§r!!1!! Revision A, of 27 March 1990 

.. I 
\~ 



u 

The Ampersand & 

CJ 

lJ 

Chapter 4 - Using theed Line Editor 97 

You can follow either form of the s command by p or 1 to display or list the 
contents of the line. 

s/this/that/p 
s/this/that/l 
s/this/that/gp 
s/this/that/gl 

are all acceptable and mean slightly different things. Make sure you know what 
the differences are. 

You should also notice that if you add a p or 1 to the end of any of these substi­
tute commands, only the last line that was changed will be displayed, not all the 
lines. We will talk later about how to show all the lines that were modified. 

The & is a shorthand character-it is used only on the right-hand part of a sub­
stitute command where it means 'whatever was matched on the left-hand side'. 
Use it to save typing. Suppose the current line contained: 

and you wanted to put parentheses around it. You could just retype the line, but 
this is tedious. Or you could say: 

[•/'/(/ l 
.s/$/)/ . 

using your knowledge of A and $. But the easiest way uses the & : 

This says 'match the whole line, and replace it by itself surrounded by 
parentheses'. 

You can use the & several times in a line: 

s/.*/&? &!!/ 
Now is the time? Now is the time!! 

or 

s/the/& best and & worst/ 
Now is the best and the worst time 

You don't have to match the whole line, of course, if the buffer contains: 

[the end of the world l 
Revision A, of 27 March 1990 



98 Editing Text Files 

Exercise: Trying the s and g 
Commands 

Undoing a Command - the 
Undo Command u 

you can type: 

/wor1d/s//& is at hand/ 
the end of the world is at hand 

Observe this expression carefully, for it illustrates how to take advantage of ed 
to save typing. The string '/world/' found the desired line; the shorthand / / 
found the same word in the line; and the & saves you from typing it again. 

Notice that & is not special on the left side of a substitute, only on the right side. 

The & is a special character only within the replacement text of a substitute com­
mand, and has no special meaning elsewhere. You can tum off the special mean­
ing of & by preceding it with a backslash (\): 

[ s/ampersand/\&/ J 
converts the word 'ampersand' into the literal symbol'&' in the current line. Of 
course this isn't much of a saving if the thing matched is just 'the', but if it is 
something truly long or awful, or if it is something like '. *' which matches a lot 
of text, you can save some tedious typing. There is also much less chance of 
making a typing error in the replacement text. For example, to put parentheses 
around a line, regardless of its length, use: 

[ s/.*/(&)/ J 

Experiment with s and g. See what happens if you substitute for some word on 
a line with several occurrences of that word. For example, do this: 

a 
the other side of the coin 

s/the/on the/p 
on the other side of the coin 

Occasionally you will make a substitution in a line, only to realize too late that it 
was a mistake. Use the undo command u to undo the last substitution. This 
restores the last line that was substituted to its previous state. For example, study 
the following example: 

s/party/country/ 
p 
to come to the aid of their country. 
u 
p 
to come to the aid of their party. 

Revision A, of 27 March 1990 

. l v 

' u 



u 

u 

4.2. Changing and 
Inserting Text - the c 
and i Commands 

Exercise: Trying the c 
Command 

Chapter 4 - Using the ed Line Editor 99 

This section discusses the change command c and the insert command i. The 
change command changes or replaces a group of one or more lines. The insert 
command inserts a group of one or more lines. 

The c command replaces a number of lines with different lines you type in at the 
workstation. For example, to change lines '.+ l' through '$' to something else, 
type: 

.+1,$c 
. . type the lines of text you want here 

The lines you type between the c command and the'.' take the place of the ori­
ginal lines between start line and end line. This is most useful in replacing a line 
or several lines that have errors in them. 

If you only specify one line in the c command, just that line is replaced. You 
can type in as many replacement lines as you like. Notice the use of'.' to end 
the input - this works just like the '.' in the append command and must appear 
by itself on a new line. If no line number is given, line dot is replaced. The 
value of dot is set to the last line you typed in. 

'Insert' is similar to append, for instance: 

/string/i 
. . type the lines to be inserted here 

inserts the given text before the next line that contains 'string', that is, the text 
between i and '.' is inserted before the specified line. If no line number is 
specified dot is used. Dot is set to the last line inserted. 

Change is rather like a combination of delete followed by insert. Experiment to 
verify that: 

start, end d 
i 
... text ... 

is almost the same as: 

... text. .. 
[ 

start, end c 

] 
These are not precisely the same if line '$' gets deleted. Check this out. What is 
dot? 

~\sun ~ microsystems 
Revision A, of 27 March 1990 



100 Editing Text Files 

4.3. Specifying Lines in the 
Editor 

Context Searching 

Experiment with a and i, to see that they are similar, but not the same. You will 
obseive that to append after the given line, you type: 

[ 

line-number a l 
... text ... 

--------
while to insert before it, you type: 

[ 

line-number i 
_ ... text . . . ] 
Obseive that if you do not give a line number, i inserts before line dot, while a 
appends after line dot. 

To specify which lines are to be affected by the editing commands, you use line 
addressing. There are several methods, and they are described below. 

One way is context searching. Context searching is simply a method of specify­
ing the desired line, regardless of what its number is, by specifying some context 
on it. 

Suppose you have the original three-line text in the buffer: 

Now is the time 
for all good men 
to come to the aid of their party. 

If you want to find the line that contains 'their' so you can change it to 'the'. 
With only three lines in the buffer, it's pretty easy to keep track of what line the 
word 'their' is on. But if the buffer contains several hundred lines, and you'd 
been making changes, deleting and rearranging lines, and so on, you would no 
longer really know what this line number would be. 

For example, to locate the next occurrence of the characters between slashes 
('their'), type: 

/their/ 
to come to the aid of their party. 

To search for a line that contains a particular string of characters, the general for­
mat is: 

[I string of characters we want to find/ 

This is sufficient to find the desired line. It also sets dot to that line and displays 
the line for verification. 'Next occurrence' means that ed starts looking for the 
string at line '.+ 1 ', searches to the end of the buffer, then continues at line 1 and 

J 

Revision A, of 27 March 1990 



u 

( \ 
\._) 

u 

Exercise: Trying Context 
Searching 

Chapter 4- Using theed Line Editor 101 

searches to line dot. That is, the search 'wraps around' from '$' to 1. It scans all 
the lines in the buffer until it either finds the desired line or gets back to dot 
again. If the given string of characters can't be found in any line, ed displays the 
error message: 

? 

Otherwise it shows the line it found. 

Less familiar is the use of: 

(?thing? ) 
This command scans backward for the previous occurrence of 'thing'. This is 
especially handy when you realize that the thing you want to operate on is back 
up the page from where you are currently editing. 

The slash and question mark are the only characters you can use to delimit a con­
text search, though you can use essentially any character in a substitute com­
mand. You can do both the search for the desired line and a substitution all at 
once, like this: 

/their/s/their/the/p 
to come to the aid of the party. 

There were three parts to that last command: a context search for the desired line, 
the substitution, and displaying the line. 

The expression /their/ is a context search expression. In their simplest fonn, 
all context search expressions are like this - a string of characters surrounded by 
slashes. Context searches are interchangeable with line numbers, so you can use 
them by themselves to find and show a desired line, or as line numbers for some 
other command, likes. We use them both ways in the examples above. 

Experiment with context searching. Try a body of text with several occurrences 
of the same string of characters, and scan through it using the same context 
search. 

Try using context searches as line numbers for the substitute, print and delete 
commands. You can also use context searching with r, w, and a. 

If you get funny results with any of the characters: 

[~ $ * \ & 

read the section on "Special Characters." 

) 

Revision A, of 27 March 1990 



102 Editing Text Files 

Specifying Lines with Address 
Arithmetic - + and -

Another area where you can save typing in specifying lines is to use minus ( - ) 
and plus ( +) as line numbers by themselves. To move back up one line in the 
file, type: 

In fact, you can string several minus signs together to move back up that many 
lines: 

moves up three lines, as does -3. Thus: 

[ -3,3p 

is also identical to the examples above. 

Since -is shorter than . -1, use it to change 'bad' to 'good' on the previous line 
and on the current line. 

[-, .s/bad/good/ 

J 

J 
You can use+ and - in combination with searches using I . .. I and ? ... ? , '0 
and with $. To find the line containing 'thing', and position you two lines before 
it, type: 

[/thing/-- J 
The next step is to combine the line numbers like '.' and '$ ', context searches 
like'/ ... /' and'? ... ?' with'+' and'-'. Thus: 

[ $-1 J 
displays the next-to-last line of the current file, that is, one line before line '$'. 
For example, to recall how far you got in a previous editing session, type: 

[ $-5, $p J 

which shows the last six lines. (Be sure you understand why it shows six, not 
five.) If there are less than six, of course, you'll get an error message. Suppose 
the buffer contains the three familiar lines: 

Now is the time 
for all good men 
to come to the aid of their party. 

Revision A, of 27 March 1990 



u 

u 

Chapter 4 - Using the ed Line Editor 103 

Then the ed line numbers: 

[ /Now/+1 
/good/ 
/party/-1 

are all context search expressions, and they all refer to the same line, line 2. To 
make a change in line 2, you could say: 

l 
[/Now/+ls/good/bad/ J 

or: 

(~'-g_o_o_d_l_s_lq_o_o_d_l_b_a_d_/~~~~~~~~~~~~~~~~~~~J 
or: 

[/party/-ls/qood/bad/ 

Convenience dictates the choice. You could display all three lines by, for 
instance: 

[/Now/,/party/p 

or: 

J 

J 

(~'-N_o_w_l_,_l_N_o_w_l_+_2_p~~~~~~~~~~~~~~~~~~~~~-"J 
or by any number of similar combinations. The first one of these might be better 
if you don't know how many lines are involved. Of course, if there were only 
three lines in the buffer, you'd use: 

[ 1, $p J 
but not if there were several hundred. 

The basic rule is: a context search expression is the same as a line number, so 
you can use it wherever a line number is needed. 

As another example: 

displays from three lines before where you are now at line dot to three lines after, 
thus giving you a bit of context. By the way, you can omit the'+': 

Revision A, of 27 March 1990 



104 Editing Text Files 

Repeated Searches - I I and 
?? 

(~.-3,_.3P __________ ~JU 
is identical in meaning. 

Suppose you ask for the search: 

(~/-h_o_r_r_i_b_l_e~t-h_i_n_g_/~~~~~~~~~~~~~~~~~~~~--J 
and when the line is displayed, you discover that it isn't the horrible thing that 
you wanted, so you have to repeat the search again. You don't have to re-type 
the search; use the construction: 

II 

as a shorthand for 'the previous thing that was searched for', whatever it was. 
You can repeat this as many times as necessary. You can also search backward 
through the file by typing: 

?? 

? ? searches for the same thing, but in the reverse direction. 

Not only can you repeat the search, but you can use 'II' as the left side of a sub- '0 
stitute command, to mean 'the most recent pattern.' 

/horrible thing/ 
... ed prints line with 'horrible thing' ... 

s//good/p 

To go backward and change a line, say: 

You can still use the & on the right hand side of a substitute to stand for whatever 
got matched: 

[/Isl/& &/p J 

This finds the next occurrence of whatever you searched for last, replaces it by 
two copies of itself, then displays the line just to verify that it worked. 

u 
~~sun ~'ff/ mlcrosystems 

Revision A, of 27 March 1990 



u 

u 

Default Line Numbers and the 
Value of Dot 

Chapter 4- Using theed Line Editor 105 

One of the most effective ways to speed up your editing is always to know what 
lines will be affected by a command if you don't specify the lines it is to act on, 
and on what line you will be positioned, that is, the value of dot, when a com­
mand finishes. If you can edit without specifying unnecessary line numbers, you 
can save a lot of typing. 

As the most obvious example, if you give a search command like: 

you are left pointing at the next line that contains 'thing'. No address is required 
with commands like s to make a substitution on that line. Addresses are also not 
required with p to show it, 1 to list it, d to delete it, a to append text after it, c to 
change it, or i to insert text before it. 

What would happen if there were no 'thing'? Then you are left right where you 
were - dot is unchanged. This is also true if you are sitting on the only 'thing' 
when you issue the command. The same rules hold for searches that use ? . . . ? ; 
the only difference is the direction in which you search. 

The delete command d leaves dot pointing at the line that followed the last 
deleted line. When line '$' gets deleted, however, dot points at the new line '$'. 

The line-changing commands a, c and i by default all affect the current line. If 
you do not give a line number with them, the a appends text after the current 
line, c changes the current line, and i inserts text before the current line. 

The a, c, and i commands behave identically in one respect- when you stop 
appending, changing or inserting, dot points at the last line entered. This is 
exactly what you want for typing and editing on the fly. For example, you can 
say: 

a 
... text ... 
... botch... (minor error) 

(to get out of append mode) 
s/botch/correct/ (fix botched line) 
a 
... more text ... 

without specifying any line number for the substitute command or for the second 
append command. Or you can say: 

a 
... text ... 
... horrible botch... (major error) 

(to get out of append mode) 
c (replace entire line) 
... fixed up line ... 

You should experiment to determine what happens if you do not add any lines 

Revision A, of 27 March 1990 



106 Editing Text Files 

Combining Commands - the 
Semicolon; 

with a, c or i. 

The r command reads a file into the text being edited, either at the end if you do 
not give an address, or after the specified line if you do. In either case, dot points 
at the last line read in. Remember that you can even say Or to read a file in at 
the beginning of the text. You can also say O a or 1 i to start adding text at the 
beginning. 

The w command writes out the entire file. If you precede the command by one 
line number, that line is written, while if you precede it by two line numbers, that 
range of lines is written. The w command does not change dot; the current line 
remains the same, regardless of what lines are written. This is true even if you 
say something that involves a context search, such as: 

[/A\.AB/,/A\.AE/w abstract J 

Since w is so easy to use, you should save what you are editing regularly as you 
go along just in case something goes wrong, or in case you do something foolish, 
like clobbering what you 're editing. 

With the s command, the rule is simple; you are left positioned on the last line 
that got changed. If there were no changes, dot doesn't move. 

To illustrate, suppose that there are three lines in the buffer, and the cursor is sit­
ting on the middle one: 

The command line 

[ -,+s/x./y/p 
J 

displays the third line, the last one changed. But if the three lines had been: 

and the same command had been issued while dot pointed at the second line, 
then the result would be to change and show only the first line, and that is where 
dot would be set. 

Searches with I ... I and ? ... ? start at the current line and move forward or 
backward respectively until they either find the pattern or get back to the current 
line. Sometimes this is not what is wanted. Suppose, for example, that the 
buffer contains lines like this: 

l 

sun Revision A, of 27 March 1990 
mlcrosystems 



u 

(j 

(j 

Chapter 4 - Using the ed Line Editor 107 

ab 

be 

Starting at line l, one would expect that the command: 

would display all the lines from the 'ab' to the 'be' inclusive. Actually this is not 
what happens. Both searches (for 'a' and for 'b') start from the same point, and 
thus they both find the line that contains 'ab'. The result is to display a single 
line. Worse, if there had been a line with a 'b' in it before the 'ab' line, then the 
print command would be in error, since the second line number would be less 
than the first, and you cannot display lines in reverse order. 

This happens because the comma separator for line numbers doesn't set dot as 
each address is processed; each search starts from the same place. In e d, you can 
use the semicolon ; just like comma, with the single difference that use of a 
semicolon forces dot to be set at that point as the line numbers are being 
evaluated. In effect, the semicolon 'moves' dot. Thus in the example above, the 
command: 

[/a/;/b/p 

displays the range oflines from 'ab' to 'be', because after the 'a' is found, dot is 
set to that line, and then 'b' is searched for, starting beyond that line. 

Use the semicolon when you want to find the second occurrence of something. 
For example, to find the second occurrence of 'thing', you can say: 

/thing/ 
line with 'thing' 
II 
second line with 'thing' 

) 

But this displays the first occurrence as well as the second, and is a nuisance 
when you know very well that it is only the second one you 're interested in. The 
solution is to find the first occurrence of 'thing', set dot to that line, then find the 
second and display only that: 

(/thing/: II l 
Revision A, of 27 March 1990 



108 Editing Text Files 

Interrupting the Editor 

4.4. Editing All Lines -
the Global Commands 
gand v 

Closely related is searching for the second previous occurrence of something, as 
in: 

We leave you to try showing the third or fourth or ... in either direction. 

Finally, bear in mind that if you want to find the first occurrence of something in 
a file, starting at an arbitrary place within the file, it is not sufficient to say: 

( l;/thing/ 

This search fails if 'thing' occurs on line 1. But it is possible to say: 

This is one of the few places where 0 is a legal line number, for this starts the 
search at line 1. 

As a final note on what dot gets set to, be aware that if you type an INTERRUPT 
(C1RL-C is the default, but your terminal may be set up with the DELETE, 
RUBOUT or BREAK keys) while ed is doing a command, things are put back 
together again and your state is restored as much as possible to what it was 
before the command began. Naturally, some changes are irrevocable - if you 
are reading or writing a file or making substitutions or deleting lines, these will 
be stopped in the middle of execution in some clean but unpredictable state; 
hence it is not usually wise to stop them. Dot may or may not be changed. 

Displaying is more clear cut. Dot is not changed until the display is done. Thus 
if you display lines until you see an interesting one, then type I Control-C I, you 
are not sitting on that line or even near it. Dot is left where it was when the p 
command was started. 

Use the global command g to execute one or more ed commands on all those 
lines in the buffer that match some specified string. For example, to display all 
lines that contain 'peling', type: 

[g/peling/p 

As another example: 

J 

J 

J 
displays all the formatting commands in a file. The pattern that goes between the 

u 

u 

slashes can be anything that could be used i~ a line search or in a substitute com- U" 

mand; the same rules and limitations apply. 

~~sun ~"'fl mlcrosystems 
Revision A, of 27 March 1990 



u 

i \ 
\_) 

u 

Chapter 4 - Using theed Line Editor 109 

For a more useful command, which makes the substitution everywhere on the 
line, then displays each corrected line, type: 

[g/pe1inq/s//pellinq/gp ] 

Compare this to the following command line, which only displays the last line 
substituted: 

( 1,$s/peling/pelling/gp 

Another subtle difference is that the g command does not give a'?' if 'peling' is 
not found whereas the s command will. 

The substitute command is probably the most useful command that can follow a 
global because you can use this to make a change and display each affected line 
for verification. For example, you can change the word 'SUN' to 'Sun' every­
where in a file, and verify that it really worked, with: 

l 

[g/SUN/s//Sun/gp ] 

Notice that you use I I in the substitute command to mean 'the previous pattern', 
in this case, 'SUN'. The p command is done on every line that matches the pat­
tern, not just those on which a substitution took place. 

The v command is identical to g, except that it operates on those lines that do not 
contain an occurrence of the pattern; that is, v 'inverts' the process, so: 

The command that follows g or v can be anything: 

deletes all lines that begin with '.', and: 

deletes all empty lines. 

The global command operates by making two passes over the file. On the first 
pass, all lines that match the pattern are marked. On the second pass, each 
marked line in tum is examined, dot is set to that line, and the command exe­
cuted. This means that it is possible for the command that follows a g or v to 
use addresses, set dot, and so on, quite freely. 

l 

l 

displays the line that follows each . PP command (the signal for a new paragraph 

Revision A, of 27 March 1990 



110 Editing Text Files 

Multi-line Global Commands 

in some formatting packages). Remember that+ means 'one line past dot'. And: 

[ g/topic/?•\.SB?l J 

searches for each line that contains 'topic', scans backward until it finds a line 
that begins . SH (a section heading) and shows the line that follows that, thus 
showing the section headings under which 'topic' is mentioned. Finally: 

[q/A\,EQ/+,/A\.EN/-p J 

displays all the lines that lie between lines beginning with . EQ and . EN format­
ting commands. 

You can also precede the g and v commands by line numbers, in which case the 
lines searched are only those in the range specified. 

You can use more than one command under the control of a global command, 
although the syntax for expressing the operation is not especially natural or 
pleasant. As an example, suppose the task is to change 'x' to 'y' and 'a' to 'b' on 
all lines that contain 'thing'. Then: 

[

g/thing/s/x/y/\ J 
_ s/a/b/ _ 

is sufficient. The ' \' signals g that the set of commands continues on the next 
line; it terminates on the first line that does not end with'\'. You can't use a 
substitute command to insert a newline within a g command. 

Watch out forthe command: 

[
g/x/s//y/\ ] 

_ s/a/b/ _ 

which does not work as you expect. The remembered pattern is the last pattern 
that was actually executed, so sometimes it will be 'x' (as expected), and some­
times it will be 'a' (not expected). You must spell it out, like this: 

[
g/x/s/x/y/\ ] 
s/a/b/ . 

It is also possible to execute a, c and i commands under a global command; as 
with other multi-line constructions, all that is needed is to add an \ at the end of 
each line except the last. Thus to add a . nf and . sp command before each . EQ 
line, type: 

Revision A, of 27 March 1990 

u 

u 

u 



u 

(_) 

u 

4.5. Special Characters 

Matching Anything - the Dot 
' ' . 

Chapter 4- Using theed Line Editor 111 

[

g/•\.EQ/i\ 1 
.nf\ 
.sp .._______ __ 

You do not need a final line containing a '.' to terminate the i command, unless 
you are using further commands under the global command. On the other hand, 
it does no harm to put it in either. 

Certain characters have unexpected meanings when they occur in the left side of 
a substitute command, or in a search for a particular line. You may have noticed 
that things just don't work right when you use some characters. like '.', *, $, and 
others in context searches and with the substitute command. These special char­
acters are called metacharacters. Basically, ed treats these characters as special, 
with special meanings. For instance, in a context search or the first string of the 
substitute command only,'.' means 'any character,' not a period, so: 

(/x.y/ l 
means 'a line with an 'x', any character, and a 'y' ',not just 'a line with an 'x', a 
period, and a 'y'.' A complete list of the special characters is: 

$ * \ 

Use the 'dot' metacharacter '.' to match any single character. For example, to 
find any line where 'x' and 'y' occur separated by a single character, type: 

l 

( /x.y/ l 
You may get any of: 

x+y 
x-y 
x y 
x. 

and so on. 

Since '.' matches a single character, it gives you a way to deal with funny char­
acters that 1 displays. Suppose you have a line that, when displayed with the 1 
command, appears as: 

( 
... th07is ... J 

._____ _____ _____. 

and you want to get rid of the 07 (which represents the bell character, by the 
way). 

Revision A, of 27 March 1990 



112 Editing Text Files 

Specifying Any Character -
the Backslash ' \' 

The most obvious solution is to try: 

[ s/07// 
J 

but this will fail. (Try it) The brute force solution, which most people would 
now take, is to re-type the entire line. This is guaranteed, and is actually quite a 
reasonable tactic if the line in question isn't too big, but for a very long line, re­
typing is a bore. This is where the metacharacter '.'comes in handy. Since '07' 
really represents a single character, if we say: 

(s/th.is/this/ 
J 

the job is done. The '.' matches the mysterious character between the 'h' and the 
'i', whatever it is. 

Bear in mind that since '.' matches any single character, the command: 

[ s/./,/ 

converts the first character on a line into a comma (, ), which very often is not 
what you intended. 

J 

As is true of many characters in ed, the '.' has several meanings, depending on ,\ l 
its context. This line shows all three: .._,; 

[.s/././ J 
The first '.' is a line number, the number of the line we are editing, which is 
called 'line dot'. The second '.'is a metacharacter that matches any single char­
acter on that line. The third '.' is the only one that really is an honest literal 
period. On the right side of a substitution, '.' is not special. If you apply this 
command to the line: 

(Now is the time. 

the result will be: 

which is probably not what you intended. 

J 

l 
The backslash character'\' is special toed as noted in the description of the 
ampersand. For safety's sake, avoid the backslash where possible. If you have to 
use one of the special characters in a substitute command, you can tum off its 
magic meaning temporarily by preceding it with the backslash. Thus: 

Revision A, of 27 March 1990 



u 

u 

Chapter 4 - Using theed Line Editor 113 

( s/\\\.\*/backslash dot star/ 

changes '\. *' into 'backslash dot star'. 

Since a period means 'any character', the question naturally arises of what to do 
when you really want a period. For example, how do you convert the line: 

(Now is the time. 

into: 

(Now is the time? 

Use the backslash'\' here as well to tum off any special meaning that the next 
character might have; in particular, '\.' converts the '.' from a 'match anything' 
into a period, so you can use it to replace the period in 'Now is the time.', type: 

[ s/\./?/p 
Now is the time? 

ed treats the pair of characters '\.' as a single real period. 

You can also use the backslash when searching for lines that contain a special 
character. Suppose you are looking for a line that contains: 

.PP 

The search for . PP finds: 

[I .PP/ 
THE APPLICATION OF 

because the '.' matches the letter 'A'. But if you say: 

(/\.PP/ 

you will find only lines that contain . PP. 

Consider finding a line that contains a backslash. The search: 

l 

l 
l 

l 

l 
l 

l 
won't work, because the '\' isn't a literal '\', but instead means that the second 
'/'no longer delimits the search. But by preceding a backslash with another one, 
you can search for a literal backslash. Thus: 

Revision A, of 27 March 1990 



114 Editing Text Files 

Specifying the End of Line -
the Dollar Sign $ 

does work. Similarly, you can search for a forward slash'/' with: 

( /\// ) 
The backslash turns off the meaning of the immediately following'/' so that it 
doesn't terminate the/ .. ./ construction prematurely. 

As an exercise, before reading further, find two substitute commands that each 
convert the line: 

into the line: 

( \x\y 

Here are several solutions; verify that each works as advertised. 

[ •/\\\.// 
s/x. .. /x./ 
s/ .. y/y/ 

Here are a couple of miscellaneous notes about backslashes and special charac­
ters. First, you can use any character to delimit the pieces of an s command: 
there is nothing sacred about slashes. But you must use slashes for context 
searching. For instance, in a line that contains a lot of slashes already, like: 

) 

l 
(~1_1_e_x_e_c~/-/-sy_s~.f_o_r_t_._g_o~/-/_e_t_c~··-·~~~~~~~~~~~~~~) 
you could use a colon as the delimiter - to delete all the slashes, type: 

(..___s:/:-:g ______ ) 

When you are adding text with a or i or c, the backslash is not special, and you 
should only put in one backslash for each one you really want. 

The dollar-sign, $, denotes the end of a line: 

(/string$/ 

only finds an occurrence of 'string' that is at the end of some line. This implies, 
of course, that: 

) 

Revision A, of 27 March 1990 

\ 

\ . ._) 



, \ 

\_) 

u 

Chapter 4- Using theed Line Editor 115 

[~~-~-st_r_i_n_g$-/~~~~~~~~~~~~~~~~~~__..J 
finds a line that contains just 'string', and: 

[r.$1 
finds a line containing exactly one character. 

As an obvious use, suppose you have the line: 

[Now is the 

and you wish to add the word 'time' to the end. Use the $ like this: 

J 

J 

[_=_~_!_1_i_:_i_~_h_~_p_t_i_m_e ________________________________________ __,] 

Notice that a space is needed before 'time' in the substitute command, or you 
will get: 

[Now is thetime 

As another example, replace the second comma in a line with a period without 
altering the first comma. Type: 

s/,$/./p 
Now is the time, for all good men, 

The $ sign here specifies the comma at the end of the sentence. Without it, of 
course, s operates on the first comma to produce: 

good men, 

As another example, to convert: 

into: 

as you did earlier, you can use: 

J 

l 

Revision A, of 27 March 1990 



116 Editing Text Files 

Specifying the Beginning of 
the Line - the Circumflex A 

Matching Anything - the 
Star* 

[ ~/.$/?/p .Now is the time? ] 
Like '.', the $ has multiple meanings depending on context. In the line: 

( $s/$/$/ ) 
the first $ refers to the last line of the file, the second refers to the end of that line, 
and the third is a literal dollar sign, to be added to that line. 

The circumflex A signifies the beginning of a line. Thus: 

] 
finds 'string' only if it is at the beginning of a line, but not: 

[the string ... 
J 

You can also use A to insert something at the beginning of a line. For example, 

0 

to place a space at the beginning of the current line, type: U 
( sr I I ) 

You can combine metacharacters. To search for a line that contains only the char­
acters . PP by typing: 

r~·\.PP$/ ] 

Suppose you have a line that looks like this: 

(text x y text 

where text stands for lots of text, and there are some indetenninate number of 
spaces between the 'x' and the 'y'. Suppose the job is to replace all the spaces 
between 'x' and 'y' by a single space. The line is too long to retype, and there 
are too many spaces to count. What now? 

J 

This is where the metacharacter *comes in handy. A character followed by a 
star stands for as many consecutive occurrences of that character as possible. To 
refer to all the spaces at once, say: 

( s/x *y/x y/ J 

Revision A, of 27 March 1990 

u 



u 

u 

Chapter 4- Using theed Line Editor 117 

The construction * means 'as many spaces as possible'. Thus x * y means 'an 
x, as many spaces as possible, then a y'. 

You can use the star with any character, not just the space. If the original exam­
ple was instead: 

[_t_ex_t~x_-_-_-_-_-_-_-_-_y~re_x_t~~~~~~~~~~~~~~~~~~~___,] 
then you can replace all - signs by a single space with the command: 

( s/x-*y/x. y/ 

Finally, suppose that the line was: 

( text x . . . . . . . . . . . . . . . . . y text 

Can you see what trap lies in wait for the unwary? What will happen if you 
blindly type: 

J 

J 

The answer, naturally, is that it depends. If there are no other x's or y's on the 
line, then everything works, but it's blind luck, not good management. 
Remember that '.' matches any single character. Then '. *' matches as many sin­
gle characters as possible, and unless you 're careful, it can eat up a lot more of 
the line than you expected. If the line was, for example, like this: 

( text x text x . . . . . . . . . . . . . . . y text y text J 
then saying: 

[~s_l_x_.*_y_/x.~y-/~~~~~~~~~~~~~~~~~~J 
takes everything from the.first 'x' to the last 'y'. In this example, this is more 
than you wanted. 

The solution, of course, is to turn off the special meaning of '.' with \ • : 

( s/x.\. *y/x. y/ J 
Now everything works, for \.*means 'as many periods as possible'. 

The dot is useful in conjunction with *, a repetition character; a* is a shorthand 
for 'any number of 'a' s', so • *matches any number of anythings. Use this like: 

(•/.*/stuff/ J 

Revision A, of 27 March 1990 



118 Editing Text Files 

which changes an entire line, or: 

[ sl. *, 11 
J 

which deletes all characters in the line up to and including the last comma. Since 
* finds the longest possible match, this goes up to the last comma. 

There are times when the pattern . * is exactly what you want. For example, 
use: 

Now is the time for all good men .... 
sl for.*l.lp 
Now is the time. 

The • * replaces all of the characters from the space before the word 'for' with a 
dot. The string 'Now is the time.' is the result in this example. 

There are a couple of additional pitfalls associated with * that you should be 
aware of. First note that 'as many as possible' means zero or more. The fact that 
zero is a legitimate possibility is sometimes rather surprising. For example, if 
your line contained: 

[ text xy text x y text 

and you said: 

[six *ylx yl 

the.first 'xy' matches this pattern, for it consists of an 'x', zero spaces, and a 'y'. 
The result is that the substitute acts on the first 'xy', and does not touch the later 
one that actually contains some intervening spaces. 

The way around this, if it matters, is to specify a pattern like: 

[ lm/bl*'fl 

where~ represents a blank. This describes 'an x, a space, then as many more 
spaces as possible, then a y', in other words, one or more spaces. 

The other startling behavior of * is again related to the fact that zero is a legiti­
mate number of occurrences of something followed by a star. The following 
command does not produce what was intended: 

abcdef 
slx*lylg 
p 
yaybycydyeyfy 

J 

J 

J 

The reason for this behavior again, is that zero is a legal number of matches, and 

Revision A, of 27 March 1990 

u 

\ 

10 



u 

u 

Character Classes - Brackets 
[ ] 

there are no x's at the beginning of the line (so that gets converted into a 'y'), nor 
between the 'a' and the 'b' (so that gets converteC. into a 'y'), nor ... and so on. 
Make sure you really want zero matches; if not, i11 this case write: 

( s/x:x.*/y/g 

xx* is 'one or more 'x's'. 

The [ and ] brackets form 'character classes'. A11y characters can appear within 
a character class, and just to confuse the issue, there are essentially no special 
characters inside the brackets; even the backslash doesn't have a special mean­
ing. For example, to match any single digit, use: 

(1co1234S6789J/ 

Any one of the characters inside the braces will c:mse a match. It is a nuisance to 
have to spell out the digits, so you can abbreviate them as [0-9]. Similarly, [a-z] 
stands for the lower-case letters, and [A-Z] for upper case. 

Suppose that you want to delete any numbers that appear at the beginning of all 
lines of a file. You might first think of trying a series of commands like: 

1,$s/""l*// 
1, $s/""2*// 
1, $s/""3*// 

and so on, but this is clearly going to take forever if the numbers are at all long. 
Unless you want to repeat the commands over anj over until all numbers are 
gone, you must get all the digits on one pass. Th.sis the purpose of the brackets 
[and J. 

l 
Another example: To match zero or more digits (an entire number), and to delete 
all digits from the beginning of all lines, type: 

( 1,$s/A[0123456789]*// 

To search for special characters, for example, you can say: 

(/[,\$A[ ]/ 

Within [ ... ] , the [ is not special. To get a ] i11to a character class, make it the 
first character. 

As a final frill on character classes, you can specify a class that means 'none of 
the following characters'. To do this, begin the class with a caret (A) to stand for 
'any character except a digit': 

Revision A, of27March1990 



120 Editing Text Files 

4.6. Cutting and Pasting 
with the Editor 

Moving Lines Around 

Moving Text Around - the 
Move Command m 

Thus you might find the first line that does not begin with a tab or space by a 
search like: 

( r ["'(space> (tab) JI 
J 

Within a character class, the circumflex has a special meaning only if it occurs at 
the beginning. Just to convince yourself, verify that to find a line that doesn't 
begin with a circumflex, you type: 

ed has commands for manipulating individual lines or groups of lines in files. 

There are several ways to move text around in a file. 

Use the move command m for cutting and pasting - you can move a group of 
lines from one place to another in the buffer. Suppose you want to put the first 
three lines of the buffer at the end instead. You could do it by saying: 

[ 1,3w temp 
$r temp 
1,3d 

This is the brute force way; that is, you write the paragraph into a temporary file, 
read in the temporary file at the end, and then delete it from its current position. 
As another example, consider: 

[ .,/•\.PP/-w temp 
. '//-d 
$r temp 

That is, from where you are now('.') until one line before the next . PP 

] 

] 
(! ... \.PP/-), write into temp. Then delete the same lines. Finally, read in temp 
at the end. 

But you can do it a lot easier with m, so you can do a whole operation at one 
crack. 

( 1,3m$ 

The general case is: 

( start line, end line m after this line 

J 

J 
Notice that there is a third line to be specified - the place where the moved stuff 
gets put. 

Revision A, of 27 March 1990 



u 

u 

u 

Chapter 4- Using theed Line Editor 121 

If you try: 

l 
ed reminds you that you can't do this. 

The m command is like many other ed commands in that it takes up to two line 
numbers in front that tell what lines are to be moved. It is also followed by a line 
number that tells where the lines are to go. Thus: 

[ line], line2 m line3 ) 
says to move all the lines between 'linel' and 'line2' after 'line3'. Naturally, any 
of 'linel' etc., can be patterns between slashes, dollar signs, or other ways to 
specify lines. 

Of course you can specify the lines to be moved by context searches; if you had: 

First paragraph 

end of first paragraph. 
Second paragraph 

end of second paragraph. 

you could reverse the two paragraphs like this: 

[/second/,/end of second/m/First/-1 ) 
Notice the -1: the moved text goes after the line mentioned. Dot gets set to the 
last line moved. Suppose you want to move a paragraph from its present position 
in a paper to the end. How would you do it? As a hint, suppose each paragraph 
in the paper begins with the formatting command . PP. Think about it and write 
down the details before reading on. 

Suppose again that you're sitting at the first line of the paragraph. Then you can 
say: 

[ . , r \ . PP I -m$ 

That's all. 

As another example of a frequent operation, you can reverse the order of two 
adjacent lines by moving the first one after the second. Suppose that you are 
positioned at the first. Then, to move line dot to one line after line dot, type: 

) 

(_m+ -----~) 
Revision A, of 27 March 1990 



122 Editing Text Files 

Substituting Newlines 

If you are positioned on the second line, and want to do the reverse, type: 

[ m--

As you can see, m is more succinct and direct than writing, deleting and re­
reading. When is brute force better? This is a matter of personal taste - do 
what you have most confidence in. The main difficulty with m is that if you use 
patterns to specify both the lines you are moving and the target, you have to take 
care that you specify them properly, or you may well not move the lines you 
thought you did. The result of a botched m command can be a mess. Doing the 
job a step at a time makes it easier for you to verify at each step that you accom­
plished what you wanted to. It's also a good idea to use aw command before 
doing anything complicated; then if you goof, it's easy to back up to where you 
were. 

J 

You can split a single line into two or more shorter lines by 'substituting in a 
newline'. As the simplest example, suppose a line has gotten unmanageably long 
because of editing or merely because it was unwisely typed. If it looks like: 

[text xy text 
J 

you can break it between the 'x' and the 'y' like this: 

] 
This is actually a single command, although it is typed on two lines. Bearing in 
mind that ' \' turns off special meanings, it seems relatively intuitive that a ' \' at 
the end of a line would make the newline there no longer special. 

You can in fact make a single line into several lines with this same mechanism. 
As a large example, consider underlining the word 'very' in a long line by split­
ting 'very' onto a separate line, and preceding it by the nroff formatting com­
mand .ul. 

[text a very big text 

To convert the line into four shorter lines, preceding the word 'very' by the line 
. ul, and eliminating the spaces around the 'very', all at the same time, type: 

s/ very /\ 
.ul\ 
very\ 
I 

When a newline is substituted in, dot is left pointing at the last line created. 

J 

Revision A, of 27 March 1990 

u 

u 



C_J 

(_) 

Joining Lines-the Join 
Command j 

Rearranging a Line with \ ( 
. . . \) 

Chapter 4- Using theed Line Editor 123 

You may also join lines together, but use the join command j for this instead of 
s. Given the lines: 

and supposing that dot is set to the first of them, then the command: 

j 

joins them together. No blanks are added, which is why we carefully showed a 
blank at the beginning of the second line. 

All by itself, a j command joins line dot to line dot+ 1, but any contiguous set of 
lines can be joined. Just specify the starting and ending line numbers. For exam­
ple: 

(~1_,_$]-·p~~~~~~~~~~~~~~~~~~------l 
joins all the lines into one big one and displays it. 

Skip this section if this is the first time you 're reading this chapter. Recall that & 

stands for whatever was matched by the left side of an s command. In much the 
same way you can capture separate pieces of what was matched; the only differ­
ence is that you have to specify on the left side just what pieces you' re interested 
in. 

Suppose, for instance, that you have a file of lines that consist of names in the 
form: 

[

Smith, A. B. 

.Jones, C. 

and so on, and you want the initials to precede the name, as in: 

l 
[

A. B. Smith l 
~c-·~J_o_n_e_s~~~~~~~~~~~~~~~~~~~~~~~--
It is possible to do this with a series of editing commands, but it is tedious and 
error-prone. (It is instructive to figure out how it is done, though.) 

The alternative is to 'tag' the pieces of the pattern, in this case, the last name, and 
the initials, and then rearrange the pieces. On the left side of a substitution, if 
part of the pattern is enclosed between\( and\), whatever matched that part is 
remembered, and available for use on the right side. On the right side, the sym­
bol \ 1 refers to whatever matched the first\( ... \) pair, \ 2 to the second\( ... \), 
and so on. 

Revision A, of 27 March 1990 



124 Editing Text Files 

Marking a Line - the Mark 
Commandk 

Copying Lines - the Transfer 
Command t 

The command: 

[ 1,$s/A\([A,]*\), *\(.*\)/\2 \1/ ) 
although hard to read, does the job. The first\( ... \) matches the last name, which 
is any string up to the comma; this is referred to on the right side with \ 1. The 
second\( ... \) is whatever follows the comma and any spaces, and is referred to as 
'\2'. 

Of course, with any editing sequence this complicated, it's foolhardy to simply 
run it and hope. The global commands g and v provide a way for you to display 
exactly those lines which were affected by the substitute command, and thus ver­
ify that it did what you wanted in all cases. 

You can mark a line with a particular name so you can refer to it later by name, 
regardless of its actual line number. This can be handy for moving lines, and for 
keeping track of them as they move. The mark command is k. To mark the 
current line with the name x, use: 

If a line number precedes the k, that line is marked. The mark name must be a 
single lower-case letter. Now you can refer to the marked line with the address: ~) 

'x 

Marks are most useful for moving things around. Find the first line of the block 
to be moved, and mark it with 'a. Then find the last line and mark it with 'b. 
Now position yourself at the place where the stuff is to go and say: 

['a, 'bm. ) 

Bear in mind that only one line can have a particular mark name associated with 
it at any given time. 

We mentioned earlier the idea of saving a line that was hard to type or used 
often, to cut down on typing time. Of course this can be more than one line, in 
which case the saving is presumably even greater. 

ed provides another command, called t (transfer) for making a copy of a group 
of one or more lines at any point. This is often easier than writing and reading. 

The t command is identical to m, except that instead of moving lines, it simply 
duplicates them at the place you named. Thus, to duplicate the entire contents 
that you are editing, use: 

Revision A, of 27 March 1990 



( \ 

0 

u 

4.7. Escaping to the Shell 
with! 

4.8. Supporting Tools 

Editing Scripts 

Chapter 4- Using theed Line Editor 125 

A more common use fort is for creating a series of lines that differ only slightly. 
For example, you can say: 

a 

t. 
s/x/y/ 
t. 
s/y/z/ 

and so on. 

x 

(make a copy) 
(change it a bit) 
(make third copy) 

(change it a bit) 

(long line) 

Sometimes it is convenient to be able to temporarily escape from the editor to 
use some Shell command without leaving the editor. Use the ! (escape) com­
mand to do this. 

To suspend your current editing state and execute the shell command you asked 
for, type: 

[ : any shell command ] 

When the command finishes, ed will signal you by displaying another ! ; at that 
point, you can resume editing. 

You can really do any shell command, including another ed. This is quite com­
mon, in fact. In this case, you can even do another ! . 

There are several tools and techniques that go along with the editor, all of which 
are relatively easy once you know how ed works, because they are all based on 
the editor. This section gives some fairly cursory examples of these tools, more 
to indicate their existence than to provide a complete tutorial. For more infonna­
tion on each, refer to the SunOS Reference Manual. 

If you have a fairly complicated set of editing operations to do on a whole set of 
files, the easiest thing to do is to make up a 'script', that is, a file that contains the 
operations you want to perform, and then apply this script to each file in tum. 

For example, suppose you want to change every 'SUN' to 'Sun' and every 'SYS­
TEM' to 'System' in a large number of files. Then put into a file, which we '11 
call changes, the lines: 

g/SUN/,s//Sun/g 
g/SYSTFJIJ./s//System/g 
w 

q 

Now you can say: 

Revision A, of 27 March 1990 



126 Editing Text Files 

Matching Patterns with grep 

hostname% ed filel <script 
hostname% ed file2 <script 

This causes ed to take its commands from the prepared script called changes. 
Notice that you have to plan the whole job in advance. 

And of course by using the SunOS command interpreter, the shell, you can cycle 
through a set of files automatically, with varying degrees of ease. 

Sometimes you want to find all occurrences of some word or pattern in a set of 
files, to edit them or perhaps just to verify their presence or absence. You can 
edit each file separately and look for the pattern of interest, but if there are many 
files, this can get very tedious, and if the files are really big, it may be impossible 
because oflimits in ed. 

The program grep gets around these limitations. The search patterns that are 
described in this chapter are often called 'regular expressions', and 'grep' stands 
for 'general regular expression, print.' That describes exactly what grep does 
- it displays every line in a set of files that contains a particular pattern. Thus, 
to find 'thing' wherever it occurs in any of the filesfilel ,file2, etc., type: 

hostname% grep 'thing' filel file2 file3 ... 

grep also indicates the file in which the line was found, so you can later edit it if 
you like. 

The pattern represented by 'thing' can be any pattern you can use in the editor, 
since grep anded use exactly the same mechanism for pattern searching. It is 
wisest al ways to enclose the pattern in the single quotes ' ... ' if it contains any 
non-alphabetic characters, since many such characters also mean something spe­
cial to the SunOS command interpreter, the shell. If you don't quote them, the 
command interpreter will try to interpret them before grep gets a chance. 

There is also a way to find lines that do not contain a pattern: 

( 
hostname% grep -v 'thing' filel file2 . . . J 
'---· _____ ____.. 

finds all lines that don't contain 'thing'. The -v must occur in the position 
shown. Given grep and grep -v, it is possible to do things like selecting all 
lines that contain some combination of patterns. For example, to get all lines that 
contain 'x' but not 'y', use: 

( hostname% grep x file. . . I grep -v y J 

u 

The notation I is a 'pipe', which causes the output of the first command to be u/ 
used as input to the second command; see the SunOS User's Guide: Doing More 
for an introduction to 'piping.' See the SunOS Reference Manual for details on 
grep. 

Revision A, of 27 March 1990 



u 

(_) 

4.9. Summary of 
Commands and Line 
Numbers 

Chapter 4- Using theed Line Editor 127 

The general form of ed commands is the command name, perhaps preceded by 
one or two line numbers, and, in the case of e, r, and w, followed by a filename. 
Only one command is allowed per line, but a p command may follow any other 
command, except fore, r, wand q. 

a Append, that is, add lines to the buffer at line dot, unless a different 
line is specified. Type a '.' on a new line to terminate appending. 
Dot is set to the last line appended. 

c Change the specified lines to the new text that follows. Type a '.' as 
with a to terminate the change. If no lines are specified, replace line 
dot. Pot is set to last line changed. 

d Delete the lines specified. If none is specified, delete line dot. Dot 
is set to the first undeleted line, unless '$' is deleted, in which case 
dot is set to '$'. 

e 

f 

g 

[ 

Edit new file. Any previous contents of the buffer are thrown away, 
so use a w beforehand. 

Print remembered filename. If a name follows f the remembered 
name will be set to it. 

The command: 

g I---/ commands 

executes the commands on those lines that contain ' --- ', which can 
be any context search expression. 

i Insert lines before specified line (or dot) until a '.' is typed on a new 
line. Dot is set to last line inserted. 

J 

m Move lines specified to after the line named after m. Dot is set to the 
last line moved. 

p Display specified lines. If none is specified, display line dot. A sin­
gle line number is equivalent to line-number p. Type a single 
I RETURN I to show • + 1, the next line. 

q Quit ed. This wipes out all text in buffer if you give it twice in a 
row without first giving a w command. 

r Read a file into the buffer at the end unless an address is specified. 
Dot is set to the last line read. 

s The command: 

(~~~~~-s-/-st_r_i_·n_g_1_1_s_t_r_i_n_g_2_1~~~~~~~~~~~~~~-J 
substitutes the characters 'string2' into 'string!' in the specified 
lines. If no lines are specified, make the substitution in line dot. Dot 
is set to last line in which a substitution took place, which means 
that if no substitution took place, dot is not changed. An s changes 

Revision A, of 27 March 1990 



128 Editing Text Files 

only the first occurrence of 'stringl' on a line; to change all of them, 
type a g after the final slash. 

v The command: 

[~~~~~-v_l_--_-_i_co_m_m_a_nd~s~~~~~~~~~~~~~~~~~---'] 
executes commands on those lines that do not contain ' --- '. 

w Write out buffer into a file. Dot is not changed. 

Show value of dot (current line number). An'=' by itself shows the 
value of '$.' (number of the last line in the buffer). 

The line: 

executes command as a SunOS shell command. 

I - - - - - I Context search. Search for next line that contains this string of char­
acters and display it. Dot is set to the line where string was found. 
Search starts at '.+ 1 ', wraps around from '$' to 1, and continues to 
dot, if necessary. 

?-----? Context search in reverse direction. Start search at' .-1 ',scan to 1, 
wrap around to'$.'. 

~\sun ~ mlcrosystems 
Revision A, of 27 March 1990 



u 

5.1. Introduction 

0 

u 

5 
Using sed, the Stream Text Editor 

SunOS provides a stream editor called sed that you can use to search through a 
file and edit it temporarily. sed is particularly useful for transient changes. sed 
commands can reside in a file or can be given on the command line. sed edits a 
file non-interactively and prints out the edited lines on standard output. The 
actual file remains unchanged and the changes are not saved permanently unless 
you redirect the s ed output to a file. 

This chapter describes s ed, the non-interactive context or stream editor.17 Use 
sed for editing files too large for comfortable interactive editing, editing any 
size file when the sequence of editing commands is too complicated to be com­
fortably typed in interactive mode, and performing multiple global editing func­
tions efficiently in one pass through the input. Because the default mode is to 
apply edit commands globally, and because its output is to the standard output, 
your workstation or terminal screen, sed is good for making changes of a tran­
sient nature, rather than permanent modifications to a file. 

You can create a complicated editing script separately and use it as a command 
file. For complex edits, this saves considerable typing, and its attendant errors. 
Running sed from a command file is much more efficient than any interactive 
editor even if that editor can be driven by a pre-written script. 

Whereas theed editor copies your original file into a buffer, sed does not use 
temporary files so you can edit any size file. The only space requirement is that 
the input and output fit simultaneously into the available second storage. Addi­
tionally, ed lets you explore the text in whatever order you want, while sed 
works on your file from beginning to end, and allows you no choice of edit com­
mands once you have started it. Basically sed passes some data through a set of 
transformations called editor functions. 

By default sed copies the standard input to the standard output, perhaps per­
forming one or more editing commands on each line before writing it to the out­
put. You can modify this behavior by adding a command-line option; see the 
"Command Options" section below. 

17 The material in this chapteris derived from Sed-a Non-Interactive Text Editor, L.E. McMahon, Bell 
Laboratories, Murray Hill, New Jersey. 

,, sun 129 Revision A, of27March1990 
mlcrosystems 



130 Editing Text Files 

5.2. Using sed 

As a lineal descendant of theed editor, sed recognizes basically the same regu­
lar expressions as ed. The range of pattern matches is called the pattern space. 
Ordinarily, the pattern space is one line of text, but you can read more than one 
line into the pattern space if necessary. But because of the differences between 
interactive and non-interactive operation, ed and sed are different enough that 
even experienced ed users should read this chapter. You cannot use relative 
addressing with sed as you can with an interactive editor because sed operates 
a line at a time. sed also does not give you any immediate verification that a 
command has done what was intended. 

Refer to the chapter on "Using the ed Line Editor" in Editing Text Files on the 
Sun Workstation for more information on ed and to the man pages for sed and 
ed in SunOS Reference Manual. 

The general format of an editing command is: 

sed [line] [,line2]] function [arguments] 

There is an optional line address, or two line addresses separated by a comma, a 
single-letter edit function, followed by other arguments, which may be required 
or optional, depending on which function you use. See the section "Specifying 
Lines for Editing" for the format of line addresses. Any number of blanks or tabs 
may separate the line addresses from the function. sed ignores tab characters 
and spaces at the beginning of lines. The function must be present; the available \ .• ) 
commands are discussed in the "Functions" section under each individual func-
tion name. You can either put the edit commands on the sed command line or 
put the commands in a file, which is then applied to the file you want to edit. If 
the commands are few and simple, put them on the sed command line. For 
example, assume the following input text in a file called kubla: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

Let's copy the first two lines of input as a simple example: 

hostname% sed 2q kubla 
In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

As another example, suppose that you want to change the 'Khan' to 'KHAN.' 
Then the command: 

[ hostname% sed s/Khan/KJ:JAN/q kubla 

applies the command's/Khan/KAN/' to all lines from kubla and copies all lines 

J 

Revision A, of 27 March 1990 

u 



u 

Command Options 

/ \ 
\_) 

u 

Chapter 5 - Using sed, the Stream Text Editor 131 

to the standard output. The advantage of using sed in such a case is that you can 
use it with input too large for ed to handle. All the output can be collected in 
one place, either in a file or perhaps piped into another program. 

If the editing transfonnation is so complicated that more than one editing com­
mand is needed, commands can be supplied from a file or on the command line 
with a slightly more complex syntax. To take commands from a file, for exam­
ple: 

[~h_o_s_t_n_a_m_e_%_s_e_d __ -_£_c_m_d_~_1e_m_p_u_~fl_k_s._ .. ____________ __,] 

sed has three options that modify sed's action. If you invoke sed with the -f 
(file) option, the edit commands are taken from a file. For example: 

hostname% sed -f edcomds oldfile > newfile 

The name of the file containing the edit commands must immediately follow the 
-f option. Here, the edit commands in the edcomds file are applied to the file 
oldfile, and the standard output is redirected to newfile. 

You use the -e (edit) option to place editing commands directly on the sed 
command line. If you are only using one edit command, you can omit the-e, 
but we include it in the example below for instructive purposes. For example, to 
delete a line containing the string 'Khan' from kubla, you type: 

(.._~_o_s_t_n_a_m_e_%_s_e_d_-_e_/Kh_a_n_f_d_k_ub_1_a_>_n_e_w_k_ub_1_a ________ __,] 

If you put more than one edit command on the sed command line, each one 
must be preceded by -e. For example: 

hostname% sed -e /Khan/d -e s/decree/DECF.EE/ newkubla 

You can also use both the -e and the -f options at the same time. 

sed nonnally copies all input lines that are changed by the edit operation to the 
output. If you want to suppress this nonnal output, and have only specific lines 
appear on the output, use the -n option with the p (print) flag. For example: 

hostname% sed -n -e s/to/by/p kubla 
Through caverns measureless by man 
Down by a sunless sea. 

As a quick reference, these options are: 

-f Use the next argument as a filename; the file should contain one edit­
ing command to a line. 

Revision A, of 27 March 1990 



132 Editing Text Files 

5.3. Editing Commands 
Application Order 

5.4. Specifying Lines for 
Editing 

Line-number Addresses 

Context Addresses 

-e 

-n 

Use the next argument as an editing command. 

Send only those lines to the output specified by p functions or p 
functions after substitute functions (see the "Input-Output 
Functions" section). 

Before any editing is done (in fact, before any input file is even opened), all the 
editing commands are compiled into a moderately efficient form for execution 
when the commands are actually applied to lines of the input file. The com­
mands are compiled in the order in which they are encountered; this is generally 
the order in which they will be attempted at execution time. The commands are 
applied one at a time; the input to each command is the output of all preceding 
commands. 

You can change the default linear order of application of editing commands by 
the flow-of-control commands, t and b (see the "Flow-of-Control Functions" 
section). Even when you change the order of application by these commands, it 
is still true that the input line to any command is the output of any previously 
applied command. 

Use addresses to select lines in the input file(s) to apply the editing commands to. 
Addresses may be either line numbers or context addresses. 

Group one address or address-pair with curly braces ' { } ' to control the applica-
tion of a group of commands. See the "Flow-of-Control Functions" section for , \ 
more on this. V 

A line number is a decimal integer. As each line is read from the input, a line­
number counter is incremented; a line-number address matches or 'selects' the 
input line which causes the internal counter to equal the address line-number. 
The counter runs cumulatively through multiple input files; it is not reset when a 
new input file is opened. 

As a special case, the character $ matches the last line of the last input file. 

A context address is a pattern or regular expression enclosed in slashes(/). sect 
recognizes the regular expressions that are constructed as follows: 

ordinary character 

$ 

\n 

An ordinary character (not one of those discussed below) is a regular 
expression, and matches that character. 

A circumflex ~ at the beginning of a regular expression matches the 
null character at the beginning of a line. 

A dollar-sign $ at the end of a regular expression matches the null 
character at the end of a line. 

The characters backslash and en \n match an embedded newline 
character, but not the newline at the end of the pattern space. 

Revision A, of 27 March 1990 

u 



u 

Number of Addresses 

( \ 

\.._) 

* 

Chapter 5- Using sed, the Stream Text Editor 133 

A period . matches any character except the terminal newline of the 
pattern space. 

A regular expression followed by an asterisk '*' matches any 
number (including 0) of adjacent occurrences of the regular expres­
sion it follows. 

[character string] 
A string of characters in square brackets [ ] matches any character 
in the string, and no others. If, however, the first character of the 
string is a circumflex A, the regular expression matches any charac­
ter except the characters in the string and the terminal newline of the 
pattern space. 

concatenation 
A concatenation of regular expressions is a regular expression which 
matches the concatenation of strings matched by the components of 
the regular expression. 

\ ( \ ) A regular expression between the sequences \ ( and \ ) is identical 
in effect to the unadorned regular expression, but has side-effects 
which are described in the section entitled "The Substitute Function 
s" and immediately below. 

\d This stands for the same string of characters matched by an expres­
sion enclosed in \ ( and \ ) earlier in the same pattern. Here d is a 
single digit; the string specified is that beginning with the d th 
occurrence of \ ( counting from the left. For example, the expres­
sion A\ ( . * \) \ 1 matches a line beginning with two repeated 
occurrences of the same string. 

null The null regular expression standing alone (such as, I I) is 
equivalent to the last regular expression compiled. 

To use one of the special characters (A $ . * [ ] \ I ) as a literal, that is, to 
match an occurrence of itself in the input, precede the special character by a 
backslash \. 

For a context address to 'match' the input requires that the whole pattern within 
the address match some portion of the pattern space. 

The commands described in the "Functions" section can have 0, 1, or 2 
addresses. Specifying more than the maximum number of addresses allowed is 
an error. If a command has no addresses, it is applied to every line in the input. 
If a command has one address, it is applied to all lines that match that address. If 
a command has two addresses, it is applied to the inclusive range defined by 
those two addresses. 

The command is applied to the first line that matches the first address, and to all 
subsequent lines until and including the first subsequent line which matches the 
second address. Then an attempt is made on subsequent lines to again match the 
first address, and the process is repeated. A comma separates two addresses. 

Revision A, of 27 March 1990 



134 Editing Text Files 

S.S. Functions 

Whole-Line Functions 

For example: 

/an/ matches lines 1, 3, 4 in our sample kubla.fi/e 
In Xanadu did Kubla Khan 
Where Alph, the sacred river, ran 
Through caverns measureless to man 

/an.*an/ matches line 1 
In Xanadu did Kubla Khan 

/"an/ matches no lines 

/./ matches al/ lines 
In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

/\./ matches line 5 
Down to a sunless sea. 

Ir* an/ matches lines 1,3, 4 (number = zero!) 
In Xanadu did Kubla Khan 
Where Alph, the sacred river, ran 
Through caverns measureless to man 

/\(an\) .*\1/ matches line 1 
In Xanadu did Kubla Khan 

All functions are named by a single character. In the following summary, the 
maximum number of allowable addresses is enclosed in parentheses, followed by 
the single character function name and possible arguments in italics. The sum­
mary provides an expanded English translation of the single-character name, and 
a description of what each function does. 

The functions that operate on a whole line of input text are as follows: 

(2) d Delete lines. The d function deletes from the file all those lines 
matched by its address( es); that is, it does not write the indicated 
lines to the output, No further commands are attempted on a deleted 
line; as soon as the d function is executed, a new line is read from 
the input, and the list of editing commands is re-started from the 
beginning on the new line. For example, this command prints just 
the head of a file, by deleting all lines after the 10th line: 

( hostname% sed '11, $d' filename J 

Revision A, of 27 March 1990 

\ 
\J 



u 

u 

(2) n 

(1) a\ 

Chapter 5 - Using sed, the Stream Text Editor 135 

Next line. The n function reads the next line from the input, replac­
ing the current line. The current line is written to the output if it 
should be. The list of editing commands is continued following the 
n command. 

text Append lines. The a function writes the argument text to the output 
after the line matched by its address. The a function is inherently 
multi-line; a must appear at the end of a line, and text may contain 
any number of lines. To preserve the one command to a line, the 
interior newlines must be hidden by a backslash character (\) 
immediately preceding the newline. The text argument is tenninated 
by the first unhidden newline (the first one not immediately preceded 
by backslash). Once an a function is successfully executed, text will 
be written to the output regardless of what later commands do to the 
line that triggered it. The triggering line may be deleted entirely; 
text will still be written to the output. The text is not scanned for 
address matches, and no editing commands are attempted on it. It 
does not change the line-number counter. For example, this sed 
script appends a . LP after every . H header: 

[ 
( 1) i\ 

r .H /a\ 
.LP l 

text Insert lines. The i function behaves identically to the a function, 
except that text is written to the output before the matched line. All 
other comments about the a function apply to the i function as well. 
For example, this sed script inserts a need command before every 
.FNmacro: 

[ 
(2) c\ 
text 

r .FN /i\ 
.br\ 
.ne 2i l 

Change lines. The c function deletes the lines selected by its 
address( es), and replaces them with the lines in text. Like a and i, 
put a newline hidden by a backslash after c; interior new lines in text 
must also be hidden by backslashes. The c function may have two 
addresses, and therefore select a range of lines. If it does, all the 
lines in the range are deleted, but only one copy of text is written to 
the output, not one copy per line deleted. As with a and i, text is 
not scanned for address matches, and no editing commands are 
attempted on it. It does not change the line-number counter. For 
example, this sed script changes all . DS macro lines to a . BS and 
a .LS macro: 

Revision A, of27March1990 



136 Editing Text Files 

[ r .DS/c\ 
.BS\ 
.LS ] 

No further commands are attempted on a line deleted by a c func­
tion. If text is appended after a line by a or r functions, and the line 
is subsequently changed, the text inserted by the c function will be 
placed before the text of the a or r functions. See the section "Mul­
tiple Input-line Functions" later in this chapter for a description of 
the r function. 

Note: Leading blanks and tabs are not displayed in the output produced by these 
functions. To get leading blanks and tabs into the output, precede the first 
desired blank or tab by a backslash; the backslash does not appear in the output. 
For example, put the following list of editing commands in a file called Xkubla: 

hostname% cat > Xkubla 
n 
a\ 
xxxx 
d 
AD 

u 

hostname% sed -f Xkubla kubla , ,, 
In Xanadu did Kubla Khan V 
xx xx 
Where Alph, the sacred river, ran 
xx xx 
Down to a sunless sea. 

In this particular case, the same effect would be produced by either of the two 
following command lists: 

n 
i\ 
xx xx 
d 

or 

[~~xx ] 

Revision A, of 27 March 1990 

u 



The Substitute Function s 

u 

( \ u 

Chapter 5 - Using sed, the Stream Text Editor 137 

The s (substitute) function changes parts of lines selected by a context search 
within the line. The standard fonnat is the same as the ed substitute command: 

[ (2) s pattern replacement flags 
J 

The s function replaces part of a line, selected by pattern, with replacement. It 
can best be read 'Substitute for pattern, replacement.' 

The pattern argument contains a pattern, exactly like the patterns described in the 
"Specifying Lines for Editing" section. The only difference between pattern and 
a context address is that the context address must be delimited by slash(/) char­
acters; you can delimit pattern by any character other than space or newline. 

By default, only the first string matched by pattern is replaced. See the g flag 
below. 

The replacement argument begins immediately after the second delimiting char­
acter of pattern, and must be followed immediately by another instance of the 
delimiting character. Thus there are exactly three instances of the delimiting 
character. 

The replacement is not a pattern, and the characters which are special in patterns 
do not have special meaning in replacement. Instead, other characters are spe­
cial: 

& Is replaced by the string matched by pattern. 

\d Is replaced by the dth substring matched by parts of pattern enclosed 
in \ ( and \ ) where d is a single digit. If nested substrings occur in 
pattern, the dth is determined by counting opening delimiters (''f). 

As in patterns, you can make the special characters(&,+, and\) literal by 
preceding them with a backslash(\). 

The flags argument may contain the following flags: 

g Substitute replacement for all (non-overlapping) instances of pattern 
in the line. After a successful substitution, the scan for the next 
instance of pattern begins just after the end of the inserted charac­
ters; characters put into the line from replacement are not rescanned. 

p Print or 'display' the line if a successful replacement was done. The 
p flag writes the line to the output if and only if a substitution was 
actually made by the s function. Notice that if several s functions, 
each followed by a p flag, successfully substitute in the same input 
line, multiple copies of the line will be written to the output: one for 
each successful substitution. 

w filename 
Write the line to a file if a successful replacement was done. The w 
flag writes lines which are actually substituted by the s function to a 
file named by filename. If filename exists before sed is run, it is 
overwritten; if not, it is created. A single space must separate w and 
filename. The possibilities of multiple, somewhat different copies of 

Revision A, of 27 March 1990 



138 Editing Text Files 

Input-output Functions 

one input line being written are the same as for p. You can specify a 
maximum of 10 different filenames after w flags and w functions (see 
below), combined. 

For example, applying the following command to the kubla file produces on the 
standard output: 

hostname% sed -e "s/to/by/w changes" kubla 
In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

Note that if the edit command contains spaces, you must enclose it with quotes. 
It also creates a new file called changes that contains only the lines changed as 
you can see using the more command: 

hostname% more changes 
Through caverns measureless by man 
Down by a sunless sea. 

If the nocopy option -n is in effect, you see those lines that are changed: 

hostname% sed -e "s/[.,;?:]/*P&*/gp" -n kubla 
A stately pleasure dome decree*P:* 
Where Alph*P,* the sacred river*P,* ran 
Down to a sunless sea*P.* 

Finally, to illustrate the effect of the g flag assuming nocopy mode, consider: 

hostname% sed -e "/X/s/an/AN/p" -n kubla 
In XANadu did Kubla Khan 

and the command: 

hostname% sed -e 11 /X/s/an/AN/gp" -n kubla 
In XANadu did Kubla KhAN 

The following functions affect the input and output of text. The maximum 
number of allowable addresses is in parentheses. 

(2) p Print. The print function writes the addressed lines to the standard 
output file. They are written at the time the p function is encoun­
tered, regardless of what succeeding editing commands may do to 
the lines. 

Revision A, of 27 March 1990 

u 



u 

Multiple Input-line Functions 

u 

Chapter S - Using sed, the Stream Text Editor 139 

(2) w filename 
Write to filename. The write function writes the addressed lines to 
the file named by filename. If the file previously existed, it is 
overwritten; if not, it is created. The lines are written exactly as they 
exist when the write function is encountered for each line, regardless 
of what subsequent editing commands may do to them. Put only one 
space between w andfilename. You can use a maximum often dif­
ferent files in write functions and with w flags afters functions, 
combined. 

( 1) r filename 
Read the contents of a file. The read function reads the contents of 
filename, and appends them after the line matched by the address. 
The file is read and appended regardless of what subsequent editing 
commands do to the line which matched its address. If you execute 
r and a functions on the same line, the text from the a functions and 
the r functions is written to the output in the order that the functions 
are executed. Put only one space between the r and filename. If a 
file mentioned by a r function cannot be opened, it is considered a 
null file, not an error, and no diagnostic is displayed. 

Note: Since there is a limit to the number of files that can be opened simultane­
ously, put no more than ten files in w functions or flags; reduce that number by 
one if any r functions are present. Only one read file is open at one time. 

Assume that the file notel has the following contents: 

Note: Kubla Khan (more properly Kublai Khan; 1216-1294) 
was the grandson and most eminent successor of Genghiz 
(Chingiz) Khan, and founder of the Mongol dynasty in China. 

Then the following command reads in notel after the line containing 'Kubla': 

hostname% sed -e "/Kubla/r notel" kubla 
In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 1216-1294) 
was the grandson and most eminent successor of Genghiz 
(Chingiz) Khan, and founder of the Mongol dynasty in China. 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

Three functions, all spelled with capital letters, deal specially with pattern spaces 
containing embedded newlines; they are intended principally to provide pattern 
matches across lines in the input. A pattern space is the range of pattern matches. 
Ordinarily, the pattern space is one line of the input text, but more than one line 
can be read into the pattern space by using the N function described below. 

Revision A, of27March1990 



140 Editing Text Files 

Hold and Get Functions 

The maximum number of allowable addresses is enclosed in parentheses. 

(2) N Next line. The next input line is appended to the current line in 
the pattern space; an embedded newline separates the two input 
lines. Pattern matches may extend across the embedded 
newline(s). 

(2) D Delete first part of the pattern space. Delete up to and including 
the first newline character in the current pattern space. If the pat­
tern space becomes empty (the only newline was the tenninal 
newline), read another line from the input. In any case, begin the 
list of editing commands again from its beginning. 

(2) P Print or 'display' first part of the pattern space. Print up to and 
including the first newline in the pattern space. 

The P and D functions are equivalent to their lower-case counteiparts if there are 
no embedded newlines in the pattern space. 

Four functions save and retrieve part of the input for possible later use. 

(2) h Hold pattern space. The h function copies the contents of the pat­
tern space into a hold area, destroying the previous contents of the 
hold area. 

(2) H Hold pattern space. The H function appends the contents of the 
pattern space to the contents of the hold area; the fonner and new 
contents are separated by a newline. 

(2) g Get contents of hold area. The g function copies the contents of 
the hold area into the pattern space, destroying the previous con­
tents of the pattern space. 

(2) G Get contents of hold area. The G function appends the contents of 
the hold area to the contents of the pattern space; the former and 
new contents are separated by a newline. 

(2) x Exchange. The exchange command interchanges the contents of 
the pattern space and the hold area. 

For example, if you want to add : In Xanadu to our standard example, create a 
file called test containing the following commands: 

lh 
ls/ did.*// 
lx 
G 

s/\n/ : I 

Then run that file on the kubla file: 

Revision A, of 27 March 1990 

u 

I \ 
\._II 

u 



u 

Flow-of-Control Functions 

( . 

v 

(_) 

Chapter 5 - Using sed, the Stream Text Editor 141 

hostname% sed -f test kubla 
In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

These functions do not edit the input lines, but control the application of func­
tions to the lines that are addressed. 

(2) ! Called 'Don't', the ' ! ' function applies the next command, writ­
ten on the same line, to all and only those input lines not selected 
by the address part. 

(2) { Grouping. The grouping command' {' applies (or does not apply) 
the next set of commands as a block to the input lines that the 
addresses of the grouping command select. The first of the com­
mands under control of the grouping command may appear on the 
same line as the { or on the next line. 

(0) : label 

(2) b label 

(2) t label 

A matching } standing on a line by itself terminates the group of 
commands. Groups can be nested. 

Place a label. The label function marks a place in the list of edit­
ing commands which may be referred to by b and t functions. 
The label may be any sequence of eight or fewer characters; if two 
different colon functions have identical labels, a compile time 
diagnostic will be generated, and no execution attempted. 

Branch to label. The branch function restarts the sequence of edit­
ing commands being applied to the current input line immediately 
after the place where a colon function with the same label was 
encountered. If no colon function with the same label can be 
found after all the editing commands have been compiled, a com­
pile time diagnostic is produced, and no execution is attempted. 

Ab function with no label is taken to be a branch to the end of the 
list of editing commands. Whatever should be done with the 
current input line is done, and another input line is read. The list 
of editing commands is restarted from the beginning on the new 
line. 

Test substitutions. The t function tests whether any successful 
substitutions have been made on the current input line; if so, it 
branches to label; if not, it does nothing. Either reading a new 
input line or executing a t function resets the flag which indicates 
that a successful substitution has occurred. 

Revision A, of 27 March 1990 



142 Editing Text Files 

Miscellaneous Functions Two additional functions are: 

( 1) = Equals. The = function writes to the standard output the line 
number of the line matched by its address. 

( 1) q Quit. The q function writes the current line to the output if it 
should be, writes any appended or read text, and terminates execu­
tion. 

Revision A, of 27 March 1990 

u 

\ 
\~ 



u 

6.1. Viewing Files 

Seeing the Top with head 

u 

Seeing the Bottom with tail 

u 

6 

Scanning Files 

This chapter describes different methods for scanning files. It is divided into two 
sections: the first on commands to view the contents of files, the second on com­
mands to search though files. 

Viewing a file is much like editing, except you don't change the file when view­
ing it - you just want to look at it on the screen. 

The head command displays the first 10 lines of a file. You can view a different 
number of lines by giving a numeric argument to head: 

[ hostname% head -1 filename 

This command shows just the first line of a file. If you give head a list of files, 
it shows the first few lines of each file in order: 

[ hostname% head chap* 

This shows the first ten lines of each file beginning with chap, including a label 
before each file. 

l 

l 

The tail command displays the last 10 lines of a file. You can view a different 
number of lines by giving a numeric argument to tail: 

[ hostname% tail -1 filename l 
This command shows just the last line of a file. If you give tail a list of files, it 
shows only the last few lines of the final file. In order to look at the last lines of 
each file in a list, use the foreach construct of the C shell: 

hostname% foreach file (chap*) 
? echo === $file ~-
? tail $file 
? end 

If you are running the Bourne shell, use the for construct instead. 

143 Revision A, of 27 March 1990 



144 Editing Text Files 

Sequential Views with cat 

Selected Views with more 

Random Views with view 

6.2. Searching Through 
Files 

For reading a file or a set of files from beginning to end, cat is the most efficient 
command. Its name is shorthand for concatenate. Note: the output scrolls too 
fast unless you enable page mode inside sun view, or have a terminal with 
scrolling control. 

For people using ordinary terminals instead of Sun Workstations, more is a use­
ful command, because it pauses after one screenful with a --More-- message. 
This command also performs underlining. It also permits you to search forward 
for a pattern, and to return to the beginning of a file (but not a pipe). Unfor­
tunately, more is not very efficient. 

This command invokes vi with the readonly option set, which means you 
can't accidentally overwrite the file. If you're accustomed to vi this is great, 
since you can move around the file easily, both backwards and forward. For all 
but the largest files, view is faster than more. 

Often you need to search through files to find a string or operate on that string, or 
both. SunOS provides several different text utilities that approach the problem 
from several different angles. 

The most sophisticated approach is taken by a program called awk, discussed in 
the next chapter. This program searches for a pattern (a string of characters) in a 
file and performs a specified action on the pattern. Actually awk is a program­
ming language, so it is very flexible. 

There is also a utility for searching for patterns and displaying them (usually on 
the standard output). This program, called grep, doesn't perform any opera­
tions on the pattern. To search for a pattern in a file or files with grep and per­
form an operation on the pattern, you would need to pipe the output from grep 
to another program. If you specify more than one input file for grep to search, 
grep precedes each line that matches the pattern with the name of the file that it 
came from. 

There are two variations on grep that have similar functions: egrep and 
fgrep. egrep finds full regular expressions and fgrep searches only for 
fixed strings. 

For looking up strings of characters quickly in a dictionary file like 
/usr I diet/words, there is the utility look. look behaves just like grep 
but unless you give look a different input file, it searches through a specific 
sorted file and prints out all lines that begin with string. 

To search through a file and reverse the order of characters on every line, use the 
program rev. 

A stream editor called sed is available, which permits you to search through a 
file and edit it temporarily. sed is particularly useful for transient changes. sed 
commands can reside in a file or can be given on the command line. sect edits a 

\ u 

file non-interactively and prints out the edited lines on the standard output. The , '\ 
actual file remains unchanged and the changes are not saved permanently unless ~ 
you redirect the sed output to a file. 

Revision A, of 27 March 1990 



u 

u 

u 

Searches with grep 

Searching for Character Strings 

Chapter 6 - Scanning Files 14 5 

The last text utility we present here, we, searches through your input file and 
counts the number of lines, words, and characters. 

There are many occasions when you will want to determine which file contains 
something you are looking for, or whether a particular string of characters exists 
in any of a number of files. One of the most useful text utilities is grep. grep 
stands for 'global regular expression printer', a mouthful of non-mnemonic syll­
ables. However, it is a very useful tool for searching through one or many files 
for a string of characters. 

The synopsis of the grep command and its two related commands: 

grep [-v] [-cl [-1] [-n] [-bl [-i] [-s] [-h] [-w] 

[ -eexpression] expression [filename ... ] 

egrep [-v] [-c] [-1] [-n] [-bl [-s] [-h] 
[-eexpression] [-ffile] [expression] [filename] 

fgrep [-v] [-x] [-c] [-1] [-n] [-bl [-i] [-s] [-h] 
[-eexpression] [-ffile] [strings] [filename] . . . ] 

grep is a utility program that searches a file or files for lines that contain strings 
of a specified pattern. When grep finds the lines that match the pattern, it prints 
them out on the standard output. 

The two variations on grep, egrep and f grep, have functions similar to 
grep. egrep finds full regular expressions and f grep searches only for fixed 
strings. In general, egrep is the fastest of these programs. We will explain 
these two commands later in this section. 

The simplest form of grep searches for a pattern that consists of a fixed charac­
ter string. grep's power lies in its ability to describe more complex patterns, 
called regular expressions. 

grep in its simplest form looks for a fixed character string. For example, if you 
are trying to discover if a specific word exists in a file, you use the form grep 
word file. An example of the command, using the same input files as in the ear­
lier example, is: 

[h?stname% qrep Linda women 
Linda l 

This command searches for the string 'Linda' in the file 'women'. Since the 
grep command uses spaces to separate arguments on the command line, you 
have to be careful what you tell grep to search for. If the string you want to 
search for contains spaces or tabs, you must surround the string with some kind 
of delimiter like quotation marks (single or double). Another example: 

[

hostname% 

.Larry G 

grep 'Larry G' all l 
~~sun ~~ microsystems 

Revision A, of 27 March 1990 



146 Editing Text Files 

Inverted Search for 'Everything 
Except' 

Regular Expressions 

Match Beginning and End of 
Line 

This command searches forthe string 'Larry G' in the file 'all'. Because the 
string 'Larry G' contains a space, we used single quotes to delimit the second 
argument to grep. 

When any of the grep utilities is applied to more than one input file, the name 
of the file is displayed preceding each line that matches the pattern. For exam­
ple: 

hostname% grep Linda women all 
women:Linda 
all:Linda 

This command searches through the two files 'women' and 'all' forthe string 
'Linda'. grep displays the names of the files in which it found the string. 

grep has an option to print every line except those that match string. This is 
done with the -v option. An example would be: 

hostname% grep -v "chicken soup" recipes.file 

if you wanted to list the titles of your recipes to decide what to have for dinner, 
knowing only that you didn't want chicken soup. This command will print out 
everything except the line containing the string chicken soup. 

Many times you can't exactly remember the entire string you want to find. You 
might remember how it begins, or how it ends, or some other feature. Or, you 
might want to perform some operation on every occurrence of a particular string 
in a particular position on a line in the file. You should take advantage of 
gr ep 's powerful feature of searching for regular expressions in text. 

You can ask for patterns like ' ... all six-letter words starting with 'st", or' ... all 
strings looking like . IP and at the beginning of a line'. 

Such a pattern or template is called a 'regular expression'. Regular expressions 
are possible because certain characters have special meanings. These characters 
are often called 'metacharacters' because they represent something other than 
their literal meaning. 

Take care when using the characters $, *, [, ~, I , (, ) , and \, in the regular 
expression as these characters are also meaningful to the Bourne and C shells. 
Enclose the entire expression argument in single quotes (' ' ) to avoid having 
the shell interpret the metacharacter. Double quotes will work most of the time 
also. 

Two of the simplest metacharacters to use are the caret(~) and the dollar sign 
($). These match the beginning and end of a line, respectively. For example: 

[ hostname% grep 'panic' file 

matches any occurrence of the word 'panic' in the file file. But if you slightly 

J 

~~~r!l1!! Revision A, of 27 March 1990 


u

u
Match Any Character

u

Chapter 6 - Scanning Files 14 7

alter the command to:

(hostname% grep '"panic' file l
you will locate only occurrences of the word 'panic' at the beginnings oflines.
Similarly, $ appearing at the end of a string matches the end of a line:

(_h_o_s_t_n_a_m_e_%~g_r_e_p~'p~an_i_·c_$_'~fi-k~~~~~~~~~~~~~~~----l
This last example will find only those occurrences of the word 'panic' that fall at
the ends of lines.

Logically, you can specify with:

hostname% grep '"Do not push the panic button.$' file

because of the beginning-of-line and end-of-line match requirement, that you find
only lines that consist entirely of this pattern and nothing else. Blank lines can
be matched with the pattern "$. If there are spaces or tabs or other non-printing
characters on the line, the "$ pattern will not match such lines.

A text pattern that matches at a specific place on a line is called an 'anchored
match' because it is anchored to a specific position. The " and $ characters lose
their special meanings if they appear in places other than the beginning of the
pattern, or the end of the pattern, respectively.

The period, or dot character, as often known, is a metacharacter that matches any
character at all. So the string 11 st. . . . 11 selects all words beginning with 'st'
and having four other characters, provided the word is preceded and followed by
a space. To find such words at the beginning of a line, you use

(hostname% grep ' "st ' file

or the end of a line

(hostname% grep 'st $' file

What grep really finds is not only words starting with 'st', but any string of six
characters starting with 'st' and preceded by a space. So

(hostname% grep ' st. . . . ' file

finds any of the patterns:

string st[10]
starti stop-g
search story!

l

l

l

Revision A, of 27 March 1990

148 Editing Text Files

Character Classes

Specifying that you only want to search for letters is possible with character
classes explained in the next section. Text patterns never match across lines;
they only match within a line. This is because the dot metacharacter never
matches a newline character.

Characters enclosed in brackets ([]) specify a set of characters that grep is to
search for. The match is on any one of the characters inside the brackets. For
example:

[hostname% grep [Tt] his file

finds both 'this' and 'This'. The expression A [abcxyz] finds all lines begin­
ning with 'a' or 'b' or 'c' or 'x' or 'y' or 'z'. Inside square brackets, the hyphen
character(-) specifies a range of characters. The patterns:

[a-z]
[A-Z]
[0-9]

all lower-case letters
all upper-case letters
all digits

are very common regular expressions. So, in the previous example of words
beginning with 'st', to really limit the search to letters, we could specify:

I hostname% grep ' st [a-z] [a-z] [a-z] [a-z] ' file

If the caret character (A) is the first character inside the square brackets, it does
not mean 'beginning of line' anymore. Instead, it means anything except the
search string. For example, the pattern:

[hostname% grep A [Aa-z] file

finds all lines except those beginning with lower-case letters.

l

l
Note that ranges ofletters refer to the ASCII character set so the range [A- z] not
only finds all upper- and lower-case letters, but also all the other characters that
fall in that range of ASCII character values, namely:

\

There are a few pitfalls you can avoid by paying close attention to syntax in
specifying ranges of characters. For example, the pattern:

l

[[1-30) l
does not mean 'numbers in the range 1 through 30'. It means 'digits in the range
1 through 3, ORO'. This is the same as specifying the pattern:

[[1230] l
Revision A, of 27 March 1990

u

u

u

u

u

Closures - Repeated Pattern
Matches

Chapter 6- Scanning Files 149

or

([0-3]

J
If you want to include the hyphen character (-) in the class of characters, you just
need to ensure that it won't be confused with a range specification. For example,
a hyphen at the beginning of the pattern stands for itself:

([-ab] J
This example means the pattern'-' or 'a' or 'b'. You should threat the charac­
ters [and J with this same caution.

A number enclosed in braces { } following an expression specifies the number
of times the preceding expression is to be repeated. For example, in the earlier
search for six-letter words beginning with 'st' could be expressed:

(~'~s-t-[a_-_z_l_{_4_}_'~~~~~~~~~~~~~~~~~~_.JJ
This repeat number specification is known as a 'closure'. The general format of
the closure is { n, m} , where n is the minimum number of repeats and m is
asswned to be infinity (or at least huge). There are shorthand ways of expressing
some closures:

asterisk * is equivalent to { O , } ,
meaning the preceding
pattern is to be repeated
zero or more times.

plus sign + is equivalent to { 1, } ,
meaning the preceding
pattern is to be repeated
one or more times.

question mark ? is the same as { O , 1 } ,
which means that the
preceding pattern can be
repeated zero or once only.

Closures are the reason that text patterns do not span across lines. If you just
type a grep pattern like this:

(hostname% grep ' . *' file
J

the pattern is trying to specify 'match zero to infinity amounts of any character'.
If patterns could span lines, this would try to digest an entire file. Like any other

Revision A, of 27 March 1990

150 Editing Text Files

Searching for Fixed Strings -
fgrep

Extended Regular
Expressions- egrep

utility, grep has some limit to the size of the pattern it can hold internally. A
whole file could be too large for grep.

Since patterns can not match a newline, the grep ' . *' command in the exam­
ple above finds and displays every line in.file.

The fgrep utility is another text processing utility in the same family as grep
and egrep (described in the following section). The fgrep command only
handles fixed character strings as text patterns. The grep command cannot pro­
cess wild-card matches, character classes, anchored matches, or closures. For
these reasons, fgrep is faster than grep when all you want to search for is a
fixed character string.

An example of fgrep usage:

hostname% fgrep 'comma in' awk.msun
Items separated by a comma in the print statement

You can also give f gr ep a file of fixed strings. Each string appears on a line by
itself, but the newline characters have to be escaped with the backslash character
(\).

Another variation on the basic grep utility is egrep. egrep stands for
'extended grep'. The egrep command is an extension to the basic grep to
allow full regular expressions.

egrep can handle more complex regular expressions, of the form: 'find a pat­
tern, followed by this or that or one of those, followed by something else'. Alter­
native patterns are specified by separating the alternative patterns with the I
(vertical bar) character. This form of regular expression is technically called
'alternation'.

Alternate patterns within regular expressions can be grouped by enclosing the
patterns within parentheses () . For example:

hostname% egrep 'Roman (typelfont)' font.change
This paragraph might appear in either Roman font or Italics
If this is Roman type, .LP resets the font; if Italic, .LP

In this example, egrep searches through the file font.change either for the string
'Roman type' or the string 'Roman font'. In the example, egrep found both so
it printed two different lines each containing one of the patterns it searched for.

Note that the alternatives are in parentheses. If you had typed the command:

hostname% egrep 'Roman typelfont' font.change

you would be searching for the strings 'Roman type' or 'font' and you would get · ·
a different result: 'U

Revision A, of 27 March 1990

u

Table 6-1

u

Chapter 6 - Scanning Files 151

hostname% egrep 'Roman typelfont' font.change
This paragraph might appear in either Roman font or Italics
depending on whether a .LP macro request resets the font.
If this is Roman type, .LP resets the font; if Italic, .LP

Here the first and second lines matched the pattern 'font' and the third line
matched the pattern 'Roman type'.

There are other less-used options to grep, not covered in depth in this section,
and they are summarized below.

grep Option Summary

-v

-:x:

-c

-1

-n

-b

-i

-s

-w

OPTIONS

Invert the search to only display lines that do not match.

Display only those lines that match exactly - that is, only
lines that match in their entirety (fgrep only).

Display a count of matching lines.

List once the names of files with matching lines separated by
newlines.

Precede each line by its relative line number in the file.

Precede each line by the block number on which it was
found. This is sometim~s useful in locating disk block
numbers by context.

Ignore the case of letters in making comparisons - that is,
upper- and lower-case are considered identical. This applies
to grep and fgrep only.

Work silently, that is, display nothing except error messages.
This is useful for checking the error status.

Search for the expression as a word as if surrounded by '\<'
and '\>' - grep only. (See e:x:).

-e expression Same as a simple expression argument, but useful when the
expression begins with a dash (-).

-f file Take the regular expression (egrep) or string list (fgrep)
from file.

Revision A, of 27 March 1990

152 Editing Text Files

Table 6-2 grep Special Characters

\

$

c

[string]

*

+

?

Characters

Escape character. 18 Backslash(\) followed by any single
character other than newline matches that character.

Anchored match: matches the beginning of a line.

Anchored match: matches the end of a line.

Dot (or period). Matches any character.

Matches any single character not otherwise endowed with
special meaning.

Character class: match any single character from string.
Ranges of ASCII character codes may be abbreviated as in
[a- z 0-9] . A right-side square bracket(]) may occur only
as the first character of the string. A literal - must be placed
where it can't be mistaken as a range indicator. A caret(~)
character immediately after the open bracket negates the
sense of the character class, that is, the pattern matches any
character except those in the character class.

Closure: a regular expression followed by an asterisk (*)
matches a sequence of zero or more matches of the regular
expression.

Closure: a regular expression followed by a plus (+)
matches a sequence of one or more matches of the regular
expression.

Closure: a regular expression followed by a question mark
(?) matches a sequence of zero or one matches of the regular
expression.

concatenation Two regular expression concatenated match a match of the
first followed by a match of the second.

(}

Alternation: two regular expressions separated by a vertical
bar (I) or newline match either a match for the first or a
match for the second (egrep only).

A regular expression enclosed in parentheses matches a
match for the regular expression.

18 In this table, the term 'character' excludes newline.

Revision A, of 27 March 1990

u

u

Dictionary Search with look

l)

Reversing Lines with rev

Counting Words with we

u

Chapter 6- Scanning Files 153

The order of precedence of operators at the same parenthesis level is:

[] character classes
* + - closures
concatenation
I and newline alternation

For looking up strings of characters quickly in a dictionary file like
/usr I diet/words, there is the utility look. look behaves just like grep
but unless you give look a different input file, it searches through a specific
sorted file and prints out all lines that begin with string.

look's function is to find lines in a sorted list. The synopsis of the look com­
mand is:

[look [-df] string [file]

The options to look are:

)

-d Dictionary order: only letters, digits, tabs and blanks participate in comparis-
ons.

-f Fold: upper-case letters compare equal to lower-case.

If no file is specified, look uses /usr I diet/words with collating sequence
-df.

To look through a file and reverse the order of characters on every line, use the
program rev. The synopsis of the rev command is:

[rev [file] . . .)

rev copies the named files to the standard output, reversing the order of charac­
ters in every line. If no file is specified, the standard input is copied.

The we program searches through input files, counting the number of lines,
words, and characters. The synopsis for the we command is:

[we [-lwc] [file ...])
we counts lines, words, and characters in the named files, or in the standard input
if no file names appear. A word is a string of characters delimited by spaces,
tabs, or newlines.

If an argument beginning with one of the letters 1, w, or c, is present, we may:

~~sun ~..,, microsystems
Revision A, of 27 March 1990

154 Editing Text Files

I Count lines.

w Count words.

c Count characters.

The default is to use all of the options in the order-lwc (count lines, words, and
characters). Some examples are:

hostname% we wc.1
38 153

hostname% we -1 wc.1
38 wc.1

hostname% we -w wc.1
153 wc.1

hostname% we -c wc.1
943 wc.1

hostname% we wc.1
943 wc.1

host name%

943 wc.1

hostname% we awk.1 qrep.1 look.1
224 1141 6713 awk.l
246 1113 6548 grep.1

22 95 614 look.1
12 58 307 rev.1

211 1053 6253 sed.1
715 3460 20435 total

~~sun ~~ microsystems

rev.1 sed.1

Revision A, of 27 March 1990

u

u

u

7
Pattern Scanning and Processing with

awk

awk is a utility program that you can program in varying degrees of complexity.
awk 's basic operation is to search a set of files for patterns based on selection
criteria, and to perform specified actions on lines or groups of lines that contain
those patterns. Selection criteria can be text patterns or regular expressions.
aw k makes data selection, transformation operations, information retrieval and
text manipulation easy to state and to perform.19

Basic awk operation is to scan a set of input lines in order, searching for lines
which match any of a set of patterns that you have specified. You can specify an
action to be performed on each line that matches the pattern.

aw k patterns may include arbitrary Boolean combinations of regular expressions
and of relational and arithmetic operators on strings, numbers, fields, variables,
and array elements. Actions may include the same pattern-matching construc­
tions as in patterns, as well as arithmetic and string expressions and assignments,
if-else, while, for statements, and multiple output streams.

If you are familiar with the grep utility (see the SunOS Reference Manual for
details), you will recognize the approach, although in awk, the patterns may be
more general than in grep, and the actions allowed are more involved than
merely displaying the matching line.

As some simple examples to give you the idea, consider a short file called sam­
ple, which contains some identifying numbers and system names:

125.1303
125.0x0733
125.1313
125.19

krypton loghost
window
core
haley

If you want to display the second and first columns of information in that order,
use the awk program:

19 The material in this chapter is derived from Awk-A Pa/tern Scanning and Processing Language, A.
Aho, B.W. Kernighan, P. Weinberger, Bell Laboratories, Murray Hill, New Jersey.

155 Revision A, of 27 March 1990

156 Editing Text Files

7.1. Using awk

Program Structure

hostname% awk '{print $2, $1}' s~le
krypton 125.1303
window 125.0x0733
core 125.1313
haley 125.19

This is good for reversing columns of tabular material for example. The next
program shows all input lines with an a, b, or c in the second field.

hostname% awk '$2 - /a Ible/' s~le
125.1313
125.19

core
haley

The general format for using awk follows. You execute the awk commands in a
string that we'll call program on the set of named.files:

[hostname% awk program files l
For example, to display all input lines whose length exceeds 13 characters, use
the program:

hostname% awk 'length> 13' s~le
125.1303 krypton loghost
125.0x0733 window

In the above example, the program compares the length of the sample file lines to
the number 13 and displays lines longer than 13 characters.

awk usually takes its program as the first argument. To take a program from a
file instead, use the -f (file) option. For example, you can put the same state­
ment in a file called how long, and execute it on sample with:

hostname% awk -f howlong hosts
125.1303 krypton loghost
125.0x0733 window

You can also execute aw k on the standard input if there are no files. Put single
quotes around the awk program because the shell duplicates most of awk's spe­
cial characters.

A program can consist of just an action to be performed on all lines in a file, as in
the howlong example above. It can also contain a pattern that specifies the lines
for the action to operate on. This pattern/action order is represented in aw k nota­
tion by:

[pattern {action } l
~~sun ~~ microsystems

Revision A, of 27 March 1990

u

u

u

Records and Fields

u

7 .2. Displaying Text

u

Chapter 7 - Pattern Scanning and Processing with awk 157

In other words, each line of input is matched against each of the patterns in tum.
For each pattern that matches, the associated action is executed. When all the
patterns have been tested, the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not both. If there is no action
for a pattern, the matching line is simply copied to the output. Thus a line which
matches several patterns can be printed several times. If there is no pattern for an
action, the action is performed on every input line. A line which doesn't match
any pattern is ignored. Since patterns and actions are both optional, you must
enclose actions in braces ({action}) to distinguish them from patterns. See more
about patterns in the "Specifying Patterns" section later in this chapter.

awk input is divided into records terminated by a record separator. The default
record separator is a newline, so by default aw k processes its input a line at a
time. The number of the current record is available in a variable named NR.

Each input record is considered to be divided into.fields. Fields are separated by
field separators, normally blanks or tabs, but you can change the input field
separator, as described in the "Field Variables" section later in this chapter.
Fields are referred to as $X where $1 is the first field, $ 2 the second, and so on
as shown above. $ O is the whole input record itself. Fields may be assigned to.
The number of fields in the current record is available in a variable named NF.

The variables FS and RS refer to the input field and record separators; you can
change them at any time to any single character. You may also use the optional
command-line argument -Fe to set FS to any character c.

If the record separator is empty, an empty input line is taken as the record separa­
tor, and blanks, tabs and newlines are treated as field separators.

The variable FILENAME contains the name of the current input file.

The simplest action is to display (or print) some or all of a record with the awk
command print. print copies the input to the output intact. An action
without a pattern is executed for all lines. To display each record of the sample
file, use:

hostname% awk '{print}' sample
125.1303 krypton loghost
125.0x0733 window
125.1313
125.19

core
haley

Remember to put single quotes around the awk program as we show here.

More useful than the above example is to print a field or fields from each record.
For instance, to display the first two fields in reverse order, type:

Revision A, of 27 March 1990

158 Editing Text Files

hostname% awk '{print $2, $1}' sample
krypton 125.1303
window 125.0x0733
core 125.1313

Items separated by a comma in the print statement are separated by the current
output field separator when output. Items not separated by commas are con­
catenated, so to run the first and second fields together, type:

hostname% awk '{print $1 $2}' sample
125.1303krypton
125.0x0733window
125.1313core
125.19haley

You can use the predefined variables NF and NR; for example, to print each
record preceded by the record number and the number of fields, use:

hostname% awk '{print NR, NF, $0 }' sample
1 3 125.1303 krypton loghost
2 2 125.0x0733 window
3 2 125.1313 core
4 2 125.19 haley

You may divert output to multiple files; the program:

hostname% awk '{print $1 >"fool"; print $2 >"foo2"}' filename

writes the first field, $1, on the file f oo J, and the second field on file f 002. You
can also use the > > notation; to append the output to the file Joo for example,
say:

hostname% awk ' {print $1 >>"foo"}' filename

In each case, the output files are created if necessary. The filename can be a vari­
able or a field as well as a constant. For example, to use the contents of field 2 as
a filename, type:

hostname% awk ' {print $1 >$2}' filename

This program prints the contents of field 1 of.filename on field 2. If you run this
on our sample file, four new files are created. There is a limit of 10 output files.

u

Similarly, you can pipe output into another process. For instance, to mail the
output of an awk program to susan, use: U

Revision A, of 27 March 1990

u

~)

7.3. Specifying Patterns

BEGIN and END

u

Chapter 7 -Pattern Scanning and Processing with awk 159

hostname% awk '{print NR, NF, $0 }' sample I mail susan

(See the UNKNOWN TITLE ABBREVIATION: MMBG for details on mail.)

To change the current output field separator and output record separator, use the
variables OFS and ORS. The output record separator is appended to the output of
the print statement.

awk also provides the printf statement for output formatting. To format the
expressions in the list according to the specification informat and print them,
use:

[printf format, expr, expr, ... l
To print $1 as a floating point number eight digits wide, with two after the
decimal point, and $ 2 as a 10-digit long decimal number, followed by a newline,
use:

I hostname% awk '{printf("%8.2f %10ld\n",$1,$2)}' filename

Notice that you have to specifically insert spaces or tab characters by enclosing
them in quoted strings. Otherwise, the output appears all scrunched together. To
print a double quote("), precede it with a backslash. The version of printf is
identical to that provided in the C Standard l/O library (see printfin C Library
Standard 110 (3S) in the SunOS Reference Manual.

A pattern in front of an action acts as a selector that determines whether the
action is to be executed. You may use a variety of expressions as patterns: regu­
lar expressions, arithmetic relational expressions, string-valued expressions, and
arbitrary Boolean combinations of these.

awk has two built-in patterns, BEGIN and END. BEGIN matches the beginning of
the input, before the first record is read. The pattern END matches the end of the
input, after the last record has been processed. BEGIN and END thus provide a
way to gain control before and after processing, for initialization and wrapup.

As an example, the field separator can be set to a colon by:

[

BEGIN { FS = ":" }
: .. rest of program ...

Or the input lines may be counted by:

[END { print NR }

If BEGIN is present, it must be the first pattern; END must be the last if used.

l
l

Revision A, of 27 March 1990

160 Editing Text Files

Regular Expressions The simplest regular expression is a literal string of characters enclosed in
slashes, like

[/smith/

This is actually a complete awk program which displays all lines which contain
any occurrence of the name 'smith'. If a line contains 'smith' as part of a larger
word, it is also displayed. Suppose you have a file testfile that contains:

summertime
smith
blacksmithing
Smithsonian
hammersmith

If you use awk on it, the display is:

hostname% awk /smith/ testfile
smith
blacksmithing
hammersmith

J

awk regular expressions include the regular expression forms found in the text 1___}
editor ed and in grep. In addition, awk uses parentheses for grouping, I for
alternatives, +for 'one or more', and ? for 'zero or one', all as in lex. Charac-
ter classes may be abbreviated. For example:

[/[a-zA-Z0-9]/ J

is the set of all letters and digits. As an example, to display all lines which con­
tain any of the names 'Adams,' 'West' or' Smith,' whether capitalized or not,
use:

['I [Aa] dams I [Ww] est I [Ss]mith/'

Enclose regular expressions (with the extensions listed above) in slashes, just as
in ed and sed. For example:

hostname% awk '/[Ss)mith/' testfile
smith
blacksmithing
Smithsonian
hammersmith

finds both 'smith' and 'Smith'.

J

Within a regular expression, blanks and the regular expression metacharacters are
significant. To tum off the magic meaning of one of the regular expression

~)§r~t!! Revision A, of 27 March 1990

u

u

Relational Expressions

u

Chapter 7 - Pattern Scanning and Processing with a wk 161

characters, precede it with a backslash. An example is the pattern

which matches any string of characters enclosed in slashes.

Use the operators - and ! - to find if any field or variable matches a regular
expression (or does not match it). The program

(~$-1~-~/-[_ss_]_m_i_t_h_/~~~~~~~~~~~~~~~~~~~-J)
displays all lines where the first field matches 'smith' or 'Smith.' Notice that this
will also match 'blacksmithing', 'Smithsonian', and so on. To restrict it to
exactly [sS]mith, use:

hostname% awk '$1 - /~[sS]mith$/' testfile
smith

The caret ~ refers to the beginning of a line or field; the dollar sign $ refers to the
end.

An awk pattern can be a relational expression involving the usual relational and
arithmetic operators<,<=,==, ! =, >=, and>, the same as those in C. An
example is:

['$2>$1+100')

which selects lines where the second field is at least 100 greater than the first
field.

In relational tests, if neither operand is numeric, a string comparison is made;
otherwise it is numeric. Thus,

hostname% awk '$1 >= "s"' testfile
smith

selects lines that begin with an 's', 't', 'u', etc. In the absence of any other infor­
mation, fields are treated as strings, so the program

[$1 > $2]

performs a string comparison between field 1 and field 2.

Revision A, of 27 March 1990

162 Editing Text Files

Combinations of Patterns

Pattern Ranges

7 .4. Actions

Assignments, Variables, and
Expressions

A pattern can be any Boolean combination of patterns, using the operators J

(or), & & (and), and ! (not). For example, to select lines where the first field
begins with 's', but is not 'smith', use:

hostname% awk '$1 >= "a" && $1 < "t" && $1 != "smith'" testfile
summertime

& & and I I guarantee that their operands will be evaluated from left to right;
evaluation stops as soon as the truth or falsehood is determined.

The program:

($1 !=prev {print; prev=$1}

J
displays all lines in which the first field is different from the previous first field.

The pattern that selects an action may also consist of two patterns separated by a
comma, as in

(~atternl, pattern2 { ... } J
'---· _____ ____..

In this case, the action is performed for each line between an occurrence of pat­
tern] and the next occurrence of pattern2 inclusive. For example, to display all
lines between the strings 'sum' and 'black', use:

hostname% awk '/sum/, /black/' testfile
summertime
smith
blacksmithing

while

(NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

An awk action is a sequence of action statements terminated by newlines or
semicolons. These action statements can be used to do a variety of bookkeeping
and string manipulating tasks.

J

The simplest action is an assignment. For example, you can assign 1 to the vari­
able x:

x = 1

The 'l' is a simple expression. awk variables can take on numeric (floating
point) or string values according to context. In

Revision A, of 27 March 1990

\ u

u

u

u

Field Variables

u

Chapter 7 - Pattern Scanning and Processing with a wk 163

(..___x = 1 _____ ___..J
x is clearly a number, while in

it is clearly a string. Strings are converted to numbers and vice versa whenever
context demands it. For instance, to assign 7 to x, use:

[x = "3" + "4"

Strings that cannot be interpreted as numbers in a numerical context will gen­
erally have numeric value zero, but it is unwise to count on this behavior.

By default, variables other than built-ins are initialized to the null string, which
has numerical value zero; this eliminates the need for most BEGIN sections. For
example, the sums of the first two fields can be computed by:

[{ sl += $1; s2 += $2 J
END { print sl, s2 }

l

]
Arithmetic is done internally in floating point. The arithmetic operators are+,-,
*• I, and % (mod). For example:

[NF % 2 == 0
displays lines with an even number of fields. To display all lines with an even
number of fields, use:

J

(~N-F~%~2_=_=~0~~~~~~~~~~~~~~~~~~~~_.J
The C increment++ and decrement--operators are also available, and so are
the assignment operators+=,-=,*=,/=, and%=.

An awk pattern can be a conditional expression as well as a simple expression as
in the 'x = l' assignment above. The operators listed above may all be used in
expressions. An awk program with a conditional expression specifies condi­
tional selection based on properties of the individual fields in the record.

Fields in awk share essentially all of the properties of variables -they may be
used in arithmetic or string operations, and may be assigned to.

To replace the first field of each line by its logarithm, say:

[{ $1 = log($1); print }

Thus you can replace the first field with a sequence number like this:

l
Revision A, of 27 March 1990

164 Editing Text Files

String Concatenation

(
{ $1 = NR; print } J

..___. _____ ___..

or accumulate two fields into a third, like this:

[{ $1 = $2 + $3; print $0 }

or assign a string to a field:

if ($3 > 1000)
$3 = "too big"

print

which replaces the third field by 'too big' when it is, and in any case prints the
record.

Field references may be numerical expressions, as in

J

(~{~p_r_i_n_t~$-i_,_$~(1-·+_1_>_'~$-(_i_+_n_)~}~~~~~~~~~~~~~----l
Whether a field is considered numeric or string depends on context; fields are
treated as strings in ambiguous cases like: _,)

[if ($1 == $2) . . . J
Each input line is split into fields automatically as necessary. It is also possible
to split any variable or string into fields. To split the string 's' into 'array[!]' ... ,
'array[n]', use:

[n = split(s, array, sep)

This returns the number of elements found. If the sep argument is provided, it
is used as the field separator; otherwise F s is used as the separator.

Strings may be concatenated. For example:

[length($1 $2 $3)

returns the length of the first three fields. Or in a print statement,

l

J

[print $1 " is " $2]

prints the two fields separated by ' is '. Variables and numeric expressions may
1

•• \

also appear in concatenations. \.-)

Revision A, of 27 March 1990

u
Built-In Functions

length Function

u

substring Function

index Function

sprintf Function

u

Chapter 1 - Pattern Scanning and Processing with awk 165

aw k provides several built-in functions.

The length function computes the length of a string of characters. This pro­
gram shows each record, preceded by its length:

hostname% awk '{print length, $0}' testfile
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmith

length by itself is a 'pseudo-variable' that yields the length of the current
record; length (argument) is a function which yields the length of its argu­
ment, as in the equivalent:

hostname% awk '{print lenqth($0), $0}' testfile
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmith

The argument may be any expression.

awk also provides the arithmetic functions sqrt, log, exp, and int, for
square root, base e logarithm, exponential, and integer part of their respective
arguments.

The name of one of these built-in functions, without argument or parentheses,
stands for the value of the function on the whole record. The program

(~~-e_n_g_t_h~<~l-0~1-l~l-e_n_g_t_h~>~2-0~~~~~~~~~~~~~·-~---)
displays lines whose length is less than 10 or greatet than 20.

The function substr (s, m, n) produces the substring of s that begins at
position m (origin 1) and is at most n characters long. If n is omitted, the sub­
string goes to the end of s.

The function index (sl, s2) returns the position where the string s2 occurs
in sl, or zero if it does not.

The function sprintf (j, el, e2, ...) produces the value of the expressions el,
e2, and so on, in the pr intf format specified by f. Thus, for example, to set x
to the string produced by formatting the values of $1 and $ 2, use:

(x ~ sprint£ ("%8. 2£ %10ld", $1, $21)

~~sun ~~ mlcrosysterns
Revision A, of 27 March 1990

166 Editing Text Files

Arrays

Flow-of-Control Statements

Array elements are not declared; they spring into existence by being mentioned.
Subscripts may have any non-null value, including non-numeric strings. As an
example of a conventional numeric subscript, the statement

[x [NR] = $0)

assigns the current input record to the NR -th element of the array x. In fact, it is
possible in principle though perhaps slow to process the entire input in a random
order with the awk program

l
The first action merely records each input line in the array x.

Array elements may be named by non-numeric values, which gives awk a capa­
bility rather like the associative memory of Snobol tables. Suppose the input
contains fields with values like 'apple', 'orange', etc. Then the program

/apple/ { x["apple"]++ }
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"]

increments counts for the named array elements, and prints them at the end of the
input.

awk provides the basic flow-of-control statements if-else, while, for, and
statement grouping with braces, as in C. We showed the if statement in the
"Field Variables" section without describing it. The condition in parentheses is
evaluated; if it is true, the statement following the if is done. The else part is
optional.

The while statement is exactly like that of C. For example, to print all input
fields one per line,

i = 1
while (i <= NF)

print $i
++i

The for statement is also exactly that of C:

[

for (i ~ l; i <~ NF; i++)
. print $i

does the same job as the while statement above.

l
Revision A, of 27 March 1990

u

u

u

{)_./

The getline Function

u

Chapter 7 - Pattern Scanning and Processing with a wk 167

There is an alternate fonn of the for statement which is suited for accessing the
elements of an associative array:

[

for (i in array)]
statement

'--------
does statement with i set in tum to each element of array. The elements are
accessed in an apparently random order. Chaos will ensue if i is altered, or if any
new elements are accessed during the loop.

The expression in the condition part of an if, while or for can include rela­
tional operators like<,<=,>,>=,== ('is equal to'), and ! =('not equal to'); reg­
ular expression matches with the match operators - and ! - ; the logical operators
I I , & & , and ! ; and of course parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or
for; the continue statement causes the next iteration to begin.

The next statement causes awk to skip immediately to the next input record
and begin scanning the patterns from the top of program. The exit statement
causes the program to behave as if the end of the input had occurred.

You may put comments in awk programs: begin them with the character# and
end them with the end of the line, as in

[print x, y # this is a comment

The get line function fetches the next input record and perfonns the nonnal
field-splitting operations on it, setting NF and NR. It returns 1 if there was a
record present, and 0 if end-of-file was encountered. Control flow continues at
that point of the program.

l

Revision A, of27March1990

168 Editing Text Files

Revision A, of 27 March 1990

\
I)

\~

u

(\

'-')

u

8.1. Comparing Different
Files

Comparing Binaries with cmp

8
Manipulating Files

Occasionally you want to know whether two files are identical, or if they are not,
what the differences are. There exist several different text utilities for comparing
the contents of files. You can choose the command best for the task at hand,
based on what kind of information it conveys to you. Most of the commands
issue no output if the files are the same. Some return terse output stating barely
more than the fact that the files differ. Others give a more complete summary of
how the files differ and how you would have to modify one file to match t:qe
other(s).

The command cmp is an example of a command that issues terse output. At
most, cmp prints the byte and line number where the files differ. Two other
functions for directly comparing files are di ff and comm. comm compares two
files, putting the comparison information into three different columns: column
one lists lines only infilel, column two lists lines only infile2, and column three
lists lines common to both files. diff compares files and also directories. A
special version of di ff, diff3, also compares three files, identifying the
differing contents with special flags.

The relational database operator join compares a specific field or fields in two
files. Each time join finds the compared fields in the two files identical, it pro­
duces one output line.

For comparing adjacent lines in a single file, there is the command uniq. uniq
can be made to report merely the repeated lines or to count them or to remove all
but the first occurrence.

The command cmp is for comparing two files. The synopsis of the cmp com­
mand is:

[cxnp [-1] [-s] filel file2

cmp compares.fzleJ andfile2. If filel is the standard input('-'), cmp reads from
the standard input. Under default options, cmp makes no comment if the files
are the same. If the files differ, cmp announces the byte and line number at
which the difference occurred. If one file is an initial subsequence of the other,
that fact is noted.

)

169 Revision A, of 27 March 1990

170 Editing Text Files

Comparing Text with diff

The options available with cmp are:

-1 Print the byte number (decimal) and the differing bytes (octal) for each
difference.

-s Print nothing for differing files; return codes only.

For summarizing the differences between two files or directories, diff is the
appropriate tool. To use the diff command, you would follow one of these
models:

diff [-cefh] [-b] filelfile2

diff [-Dstring] [-bl filelfile2

diff [-ll [-rl [-sl [l [-Snamel [-cefhl [-bl dirl dir2

di ff is a differential file comparator. When run on regular files, and when com­
paring text files that differ during directory comparison (see the notes below on
comparing directories), di ff tells what lines must be changed in the files to
bring them into agreement. Except in rare circumstances, diff finds a smallest
sufficient set of file differences. If neither filel nor file2 is a directory, either may
be given as '-',in which case the standard input is used. Iffil~l is a directory, a
file in that directory whose file-name is the same as the file-name of file2 is used
(and vice versa).

There are several options for output format; the default output format contains
lines of these forms:

[nl a n3,n4
nl,n2 d n3
nl ,n2 c n3 ,n4]

These lines resemble ed commands to convert fl/el into file2. The numbers after
the letters pertain to file2 . In fact, by exchanging 'a' for 'd' and reading back­
ward you can see how to convertfi/e2 into filel. As in ed, identical pairs where
nl = n2 or n3 = n4 are abbreviated as a single number.

Following each of these specification lines come all the lines that are affected in
the first file flagged by the character'<', then all the lines that are affected in the
second file flagged by the '>' character.

If both arguments are directories, diff sorts the contents of the directories by
name, and then runs the regular file di ff program as described above on text
files that are different. Binary files that differ, common subdirectories, and files
that appear in only one directory are listed.

Revision A, of 27 March 1990

u
di ff - First Fonn

di ff - Second Fonn

diff -Third Fonn

u

Chapter 8 - Manipulating Files 171

To produce a script of append (a), change (c), and delete (d) commands for the
editor ed, which will recreatefile2 fromfilel, use the first fonn of di ff with the
option-e.

Extra commands are added to the output when comparing directories with diff
-e, so that the result is a Bourne shell (sh) script for converting text files com­
mon to the two directories from their state in dirl to their state in dir2.

To produce a script similar to that using-e, but in the opposite order, that is, to
recreatefileJ fromfile2, use di ff -f. The script generated with the -f option
is not useful withed, however.

To surround the specification lines the simplest use of di ff puts out with some
lines of context, use di ff -c. The default is to present three lines of context.
To change this (to 10, for example), add 10 to the -c option (-clO). With the -c
option, the output fonnat is slightly different from other diff output. It begins
by identifying the files involved and the dates they were created. Then each
change is separated by a line with a dozen stars(*). The lines removed fromfilel
are marked with'-'; those added tofile2 are marked'+'. Lines that are changed
from one file to the other are marked in both files with '! '.

If you know you've only made small changes to the files you are comparing, and
you want to speed up the time di ff takes to work, you can use di ff -h. This
command only does a fast, half-hearted job. di ff -h works only when changed
stretches are short and well-separated, but does work on files of unlimited length.

Except for the -b option, which my be given with any of the others, the options
-c, -e, -f, and-hare mutually exclusive.

To create a merged version offilel andfile2 on the standard output with C
preprocessor controls included, use the second fonn of diff with the option -
Dstring. Compiling the result without defining string is equivalent to compiling
filel, while compiling the result with string defined will yieldfi/e2.

If you want dif f to ignore trailing blanks (spaces and tabs), use the option -b.
Other strings of blanks compare equal. The way di ff works, when it compares
directories with the -b option specified, diff first compares the files (as in
cmp), and then decides to run the diff algorithm if they are not equal. This
may cause a small amount of spurious output if the files then tum out to be ident­
ical, because the only differences are insignificant blank string differences.

When comparing directories, you might be interested in several different things.
If diff puts out a lot of output, you probably want to use the -1 option (for
long output). Each text file di ff is piped through the program pr to paginate it,
(see "Printing Files" later in this manual). Other differences are remembered and
summarized after all text file differences are reported.

To compare directories and subdirectories, use the -r option. -r applies di ff
recursively to common subdirectories encountered.

Since dif f ordinarily only outputs infonnation on files and directories that
differ, if a file or several files are identical in directories you are comparing, you
won't see the identical files listed in the output. The -s option reports files that

~~sun ~"({fl' microsystems
Revision A, of27March1990

172 Editing Text Files

are the same, in addition to the usual diff output, which are otherwise not men­
tioned.

Here are two directories, macros and new. For this example, here are lists of
their contents.

hostname% ls macros
Makefile
SunMacros.msun
contents.pie
contentsfile.msun

making.index.msun
mechanisms.msun
mmemo.7
model.makefile.msun

document.styles.msun process.pie
intro.msun structures.msun

hostname% ls new
Makefile
SunMacros.msun
contents.pie
contentsfile.msun

making.index.msun
mechanisms.msun
mmemo.7
model.makefile.msun

document.styles.msun process.pie
intro.msun structures.msun

summary. msun
test.tr
text.effects.msun
troff.msun

summary .msun
test.tr
text.effects.msun
troff.msun

Right now these two directories are identical. The output of diff for these two 1:.J
directories macros and new, if there are no differences is:

(hostname% diff :macros new J
The normal output is nothing, no response. Now if we edit some files and
remove some others in the directory new, leaving the files like this:

hostname% ls macros new
macros:
Makefile
SunMacros.msun
contents.pie
contentsfile.msun

making.index.msun
mechanisms.msun
mmemo.7
model.makefile.msun

document.styles.msun process.pie
intro.msun structures.msun

new:
Makefile
SunMacros.msun
contents.pie
document.styles.msun

intro.msun
making.index.msun
mechanisms.msun
model.makefile.msun

summary. msun
test.tr
text.effects.msun
troff.msun

structures.msun
summary.msun
text.effects.msun
troff.msun

Revision A, of 27 March 1990

u

(l
G

u

The regular di ff output looks like this:

hostname% diff macros new
diff macros/Makefile new/Makefile
7c7
< FORMATTER /usr/local/iroff

> FORMATTER /usr/doctools/bin/troff
Only in macros: contentsfile.msun
diff macros/intro.msun new/intro.msun
Oal
> .LP
6,10c7,9

Chapter 8 - Manipulating Files 173

< Document preparation at Sun Microsystems relies on variations of the
< .I troff
< text formatter as the underlying mechanism for turning your wishes into
< printed words and outlines on paper. Using
< .I troff

> Document preparation at Sun Microsystems relies on variations of the
> troff text formatter as the underlying mechanism for turning your wishes
> into printed words and outlines on paper. Using troff
Only in macros: mmemo.7
diff macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the
< .I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pie
Only in macros: test.tr
host name%

The output of dif f is rather cryptic. But if you look carefully at the
specification lines and the direction of the angle brackets, you can decipher the
results accurately.

To get a more complete picture of how the two directories compare, you might
want to know which files are identical and which files exist only in one directory.
For this, you use di ff -s. The di ff -s output from our example above
looks like this:

Revision A, of 27 March 1990

174 Editing Text Files

hostname% diff -s macros new
diff -s macros/Makefile new/Makefile
7c7
< FORMATTER /usr/local/iroff

> FORMATTER /usr/doctools/bin/troff
Files macros/SunMacros.msun and new/SunMacros.msun are identical
Files macros/contents.pie and new/contents.pie are identical
Only in macros: contentsfile.msun
Files macros/document.styles.msun and new/document.styles.msun are identical
diff -s macros/intro.msun new/intro.msun
Oal
> .LP
6,10c7,9
< Document preparation at Sun Microsystems relies on variations of the
< .I troff
< text formatter as the underlying mechanism for turning your wishes into
< printed words and outlines on paper. Using
< .I troff

> Document preparation at Sun Microsystems relies on variations of the
> troff text formatter as the underlying mechanism for turning your wishes
> into printed words and outlines on paper. Using troff
Files macros/making.index.msun and new/making.index.msun are identical
Files macros/mechanisms.msun and new/mechanisms.msun are identical
Only in macros: mmemo.7
diff -s macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the
< .I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pie
Files macros/structures.msun and new/structures.msun are identical
Files macros/summary.msun and new/summary.msun are identical
Only in macros: test.tr
Files macros/text.effects.msun and new/text.effects.msun are identical
Files macros/troff.msun and new/troff.msun are identical
hostname%

To compare two directories beginning somewhere in the middle of the direc­
tories, use the option - Sfilename where filename is a file in one of the directories
you are comparing. The syntax for this command is

(_)

! \

0

(..._di_"_£_£_-_s_:ft_le_n_am_e_d_ir_1_di_·,_2 ___________________ J .0
For example, comparing the two directories from the example above, and

~~sun ~~ mlcrosystems
Revision A, of 27 March 1990

u

u

u

Chapter 8 - Manipulating Files 17 5

beginning with the file model .makefile .msun:

hostname% diff -Smodel.makefile.msun macros new
diff macros/model.makefile.msun new/model.makefile.msun
3,7c3
< The
< .I Makefile
< below is the
< .I Makefile
< used to actually make this document:

> The Makefile below is the Makefile used to actually make this document:
Only in macros: process.pie
Only in macros: test.tr

Three Files - di ff 3 If you have three versions of a file that you want to compare at once, use the
diff3 command. The synopsis for the diff3 command is:

(diff3 [-ex3] file] file2 file3

di ff 3 compares three versions of a file, and publishes disagreeing ranges of
text flagged with these codes:

all three files differ

====1 filel is different

==== 2 file2 is different

====3 file3 is different

The type of change required to convert a given range of a given file to a range in
some other file is indicated in one of these ways:

J

[~f:_nia ____________ ~]
Text is to be appended afterline number nl in file/, where/= l, 2, or 3.

[t:nl,n2c
J

Text is to be changed in the range line nl to line n2. If nl = n2, the range may be
abbreviated to nl.

The original contents of the range follows immediately after a c indication.
When the contents of two files are identical, the contents of the lower-numbered
file is suppressed.

Revision A, of 27 March 1990

176 Editing Text Files

Table 8-1

Finding Common Lines with
corcun

Under the -e option, di ff 3 publishes a script for the editor ed that will incor­
porate intofilel all changes betweenfile2 andfile3, (that is, the changes that nor­
mally would be flagged ==== and ====3). Option -x produces a script to
incorporate only changes flagged====. Option-3 produces a script to incor­
porate only changes flagged ====3. The following command will apply the
resulting script to filel .

((cat script; echo '1,$p') I ed - ftkl

Note: Text lines that consist of a single dot (' . ') will defeat the -e option.

diff3 Option Summary

OPTIONS

J

-e Publish a script for the editor ed that will incorporate into filel all
changes betweenfile2 andfile3, (that is, the changes that normally would
be flagged==== and ====3).

-x Produce a script for ed to incorporate only changes flagged ====.

-3 Produce a script for ed to incorporate only changes flagged ====3.

The corcun command prints lines that are common to two files. corcun readsfilel
andfile2, which should be ordered in ASCII collating sequence, but at least in the
same order, and produces a three-column output:

Column 1
lines only infilel

Column 2 Column 3
lines only infile2 lines in both files

The synopsis of the corcun command is:

(comm [- [12 3 J l ftlel ftle2

As an example of the corcun command's output, consider these files:

J

Revision A, of 27 March 1990

u

/ \
I. I

\J

u

hostname% cat all
Aaron
Bruce
Dave
Elaine
Greg
Joe
Jon
Kevin
Larry G
Larry K
Linda
Mary
Mike B
Mike F
Niel
Pam
Randy
Sid
Tad
Tom
Wanda
hostname%

hostname% cat women
Christy
Cyndi
Elaine
Gale
Jeanette
Julia
Katherine
Katy
Linda
Lori
Mary
Pam
Pat
Patti
Rose Marie
Susan
Wanda

Chapter 8 - Manipulating Files 177

Here is the output of comm. The three columns overlap making output from files
with long lines a little difficult to read.

Revision A, of 27 March 1990

178 Editing Text Files

hostname% comm women all
Aaron
Bruce

Christy
Cyndi

Dave
Elaine

Gale
Greg

Jeanette
Joe
Jon

Julia
Katherine
Katy

Kevin
Larry G
Larry K

Linda
Lori

Mary
Mike B
Mike F
Niel

Pam
Pat
Patti

Randy
Rose Marie

Sid
Susan

Tad
Tom

Wanda

The filename'-' means the standard input. The flags l, 2, or 3, suppress printing
of the corresponding column. Thus:

[hostname% comm -12)
prints only the lines common to the two files, and

[_~_o_s_t_n_a_m_e_%~c_o_mm~_-_2_3~~~~~~~~~~~~~~~~~~~~~)
prints only lines in the first file, but not in the second. (comm -123 does noth­
ing).

~~sun ~~ microsystems
Revision A, of 27 March 1990

' .)
~

u Combining Files with join

Table 8-2

u

Chapter 8 - Manipulating Files 179

To compare two files of database information and output a join of two fields,
there is a utility called join. join is a relational database operator. The
synopsis of the command is:

hostname% join [-an] [-e string] [-j[l12] m] [-o list] [-tc] ftlelftle2

The program join forms, on the standard output, a join of the two relations
specified by the lines of filel andfile2. If filel is'-', the standard input is used.
filel andfile2 must be sorted in increasing ASCII collating sequence on the fields
on which they are to be joined, normally the first in each line.

There is one line in the output for each pair of lines infilel andfile2 that have
identical join fields. The output line normally consists of the common field, then
the rest of the line from filel, then the rest of the line from file2. Fields are
separated by blanks, tabs or newlines. Multiple separators count as one, and
leading separators are discarded.

Note: With default field separation, the collating sequence is that of sort -b.
Using the join -t, the sequence is that of a plain sort.

join Option Summary

OPTIONS

-an The parameter n can be one of the values:

-e string

1 produce a line for each unpairable line infilel.
2 produce a line for each unpairable line infile2.
3 produce a line for each unpairable line in bothfilel andfile2.

in addition to producing the normal output.

Replace empty output fields with string.

-j [11 2] m Join on the mth field of file n, where n is 1 or 2. If n is missing,
use the mth field in each file. Note that join counts fields from
1 instead of 0 like sort does.

-o list

-tc

Each output line comprises the fields specified in list, each ele­
ment of which has the form n.m, where n is a file number and m
is a field number.

Use character c as a separator (tab character). Every appearance
of c in a line is significant.

Revision A, of 27 March 1990

180 Editing Text Files

Repeated Lines and uniq If you want to check your input file for repeated lines, use uniq, which reports
repeated lines in a file.

The synopsis of the uniq command is:

uniq [-udc [+n] [-n] l [input file [output file] l

uniq reads the input file comparing adjacent lines. In the nonnal case, the
second and succeeding copies of repeated lines are removed; the remainder of the
text (no repeated lines) is written in the output file. Note that repeated lines must
be adjacent in order to be found.

Nonnally, the lines in the input file that were not repeated and the first
occurrence of the lines that were repeated fonns the output. If you want to iso­
late either of these functions, you can specify either the -u or the -d option.
uniq -u copies only the lines not repeated in the original file to the output file.
uniq -d writes one copy of just the repeated lines to the output file.

In case you are interested in knowing how many occurrences of a given line
appear in the input file, you can use the option uniq -c. With the -c option,
you get first the number of occurrences, then the output in default fonnat (all of
the unique lines and no adjacent repeated lines).

There is also an option to compare the latter parts of lines rather than entire lines.
Then arguments specify skipping an initial portion of each line in the com­
parison:

-n The first n fields, together with any blanks before each, are ignored. A
field is defined as a string of non-space, non-tab characters separated by
tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

Table 8-3 uniq Option Summary

OPTIONS

-u Copy only those lines that are not repeated in the original file.

-d Write one copy of just the repeated lines.

-c Supersedes -u and -d and generates an output report in default style but
with each line preceded by a count of the number of times it occurred.

-n The first n fields together with any blanks before each are ignored. A
field is defined as a string of non-space, non-tab characters separated by
tabs and spaces from its neighbors.

+n The first n characters are ignored. Fields are skipped before characters.

sun Revision A, of 27 March 1990
mlcrosystems

u 8.2. Modifying Files

8.3. Printing Files

(' u

u

Chapter 8 - Manipulating Files 181

The following commands can be used to modify files: colrm, compact,
compress, fold, pack, sort, split, tr, and tsort. All of these com­
mands are described in the SunOS Reference Manual.

To print files on paper, use the lpr command. To examine the print queue, use
the lpq command. To remove jobs from the print queue, use the lprm com­
mand. All three of these commands are described in the SunOS Reference
Manual.

Revision A, of 27 March 1990

u

u

u

Index

A
awk command, 155 thru 167
awk programming, 155 thru 167

action statements, 162
arrays, 166
assignment statements, 162
BEGIN and END sections, 159
Boolean operators, 162
built-in functions, 165
concatenation of strings, 164
control flow statements, 166
displaying text, 157
END and BEGIN sections, 159
expressions, 162
field variables, 163
fields and records, 157
flow of control statements, 166
index() function, 165
length () function, 165
pattern specification, 159
printing text, 157
program structure, 156
ranges for patterns, 162
records and fields, 157
regular expressions, 160
relational operators, 161
setting variables, 162

- sprintf () function, 165
string concatenation, 164
substr () function, 165
usage on command line, 156
variables, 162

c
cat command, 144
cmp command, 169
comm command, 176
count lines, words, characters with we, 153

D
dictionary word search, 153
di ff command, 170
diff3 command, 175
display editor vi, 5 thru 54

-183-

E
ed editor, 83 thru 128

$ for end of line, 114
& for remembered text, 97
* to match repeated expressions, 116
. to match any character, 111
; command separator, 106
[...] for character classes, 119
\to escape magic, 112
A for beginning of line, 116
address arithmetic, 102
all lines in file, 108
appending text, 84
changing lines of text, 99
command format, 100
command summary, 127
copying lines, 124
current line and dot, 92
cutting and pasting, 120
deleting lines, 93
dot and current line number, 105
edit new file, 86
editing scripts, 125
error messages, 85
field rearrangement, 123
find current filename, 88
global commands, 108
inserting text, 99
interrupting actions, 108
joining lines, 123
line addressing, 100
listing lines in buffer, 91
magic characters, 111
marking lines, 124
metacharacters, 111
moving lines, 120
newline substitution, 122
printing lines in buffer,
quit from, 86
read text from file, 88
rearranging fields in a line,
repeating searches, 104
running system commands from,
searching for strings, 100
shell escape, 125
special characters, 111
starting, 83
substituting text, 94
summary of commands, 127

Index - Continued

ed editor, continued
tool creation, 125
transferring lines, 124
undoing changes, 98
write file, 85

editing text
ed line editor, 83 thru 128
ex line editor, 57 thru 79
sed stream editor, 129 thru 142
vi display editor, 5 thru 54

error messages in ed editor, 85
error messages in ex editor, 60
ex - line editor, 57 thru 79
ex editor, 57thru19

as alternate file, 59
% as current file, 59
addressing combinations, 62
addressing primitives, 62
alternate file, 58
command parameters, 61
command reference, 64
command structure, 60
command variants, 61
comments in edit scripts, 61
current file, 58
errors and interrupts, 60
file manipulation, 58
flags after commands, 61
limitations, 79
magic and nomagic, 63
magic characters, 59
metacharacters, 59
modes for editing, 60
multiple commands on line, 61
named buffers, 59
options, 74
readonly mode, 59
recovering after crash, 60
regular expressions, 62, 63
replacement patterns, 64
special characters, 59
starting up, 57
substituting text, 62

G
grep command, 145

H
head command, 143

J
join command, 179

L
line editors

ed, 83 thru 128
ex, 57 thru 19

look command, 153
look up word in dictionary, 153

M
manipulating files, 169 thru 181
more command, 144

p
pattern scanning and processing with awk, 155 thru 167

R
regular expressions, 62, 111, 146, 160

$ end of line, 146
*repeated expression, 149
• match any character, 147
[••• J character class, 148

A beginning ofline, 146
closure of pattern *, 149

rev command, 153
reversing lines with rev, 153

s
screen editor vi, 5 thru 54
search for string pattern, 145
search on-line dictionary for word, 153
sed stream editor, 129 thru 142

address arithmetic, 132
address ranges, 133
command functions, 134
command-line options, 131
context addresses, 132
flow-of-control commands, 141
hold space for lines, 140
input and output, 138
line commands, 134
line numbers, 132
miscellaneous commands, 142
multi-line commands, 139
order of execution, 132
starting up, 130
substituting text, 137
uses of, 129

stream editor sed, 129 thru 142

T
tail command, 143
text editing

ed line editor, 83 thru 128
ex line editor, 57thru19
sed stream editor, 129 thru 142
vi display editor, 5 thru 54

text manipulation

-184-

awk program, 155 thru 167
cat - view files sequentially, 144
comm - find common lines, 17 6
comparing binary files, 169
comparing directories, 170
comparing files, 169 thru 180
comparing text files, 170
dif f - compare directories, 171
dif f - compare text files, 170, 171
dif f - merge text files, 171
dif f 3 - compare three files, 175
egrep - extended pattern search, 150
fgrep- fixed string search, 150

, \ u

u

u

u

text manipulation, continued
file manipulation, 169 thru 181
grep- pattern searching, 145
head- top of file, 143
inverted search for pattern, 146
join - join database fields, 179
modifying files, 181
more - view files selectively, 144
pattern searching, 144 thru 154
printing files, 181
regular expressions, 146
scanning files, 143 thru 154
search for string pattern, 145
searching through files, 144 thru 154
sed stream editor, 129 thru 142
tail - bottom offile, 143
uni q - for repeated lines, 180
view-view files randomly, 144
viewing files, 143 thru 144

text processing with awk, 155 thru 167
textedit command, used in Sun View, 1

u
uniq command, 180

v
vi editor, 5 thru 54

abbreviating text, 24
adding text, 33
adjusting the screen, 17
appending text, 33
arrow keys, 7
buffer for editing, 7
C programming, 21
character by character, 42
colon commands, 37
command mode and insert mode, 6
command reference, 29
compared to ex, 5
corrections, 12
counted commands, 25
cutting and pasting, 14, 16, 34
deleting text, 13, 34
editing a file, 6
editing new files, 16
escape key, 7
EXINIT environment variable, 52
exiting from, 8
• exrc file, 52
file manipulation commands, 26
filtering lines, 21
getting out of, 8
go to line number, 9
implementation details, 24
input mode, 28
insert mode and command mode, 6
inserting text, 11, 33
line-oriented operations, 13
LISP programming, 22
low-level details, 24
macro mapping, 22
marking and returning, 17
miscellaneous commands, 35

vi editor, continued

-185-

modes (command and insert), 6
modifying text, 34
moving around file, 8
moving around screen, 10
moving cursor and positioning screen, 30
moving on line, 14
moving within a line, 10
options and set variables, 18
paging forward and backward, 8
power typing, 20
primitive terminals, 52
programming aids, 21
quitting, 8
read-only option, 11
recovering deleted lines, 19
recovering lost files, 20
removing text, 34
replacing text, 34
scrolling forward and backward, 8
searching for strings, 9, 27, 33
set commands, 38
shell escape, 17
simple changes, 11
slow terminals, 53
starting up, 6
starting up and quitting, 30
startup files, 52
tags and tagstack, 36, 37
TERM environment variable, 52
TERMCAP environment variable, 52
terminal type, 50
textual objects, 15
tools for filtering lines, 21
undoing changes, 14
upper-case-only terminals, 54
viewing a file (read only), 11
write and quit, 16

view command, 144

w
we command, 153
word (line, character) count with we, 153

Index - Continued

\
_,)

.··) u

