
{_)

A sun®
• microsystems

Using NROFF and TROFF

Part Number: 800-1755-10
Revision A, of 9 May 1988

UNIX is a registered trademark of AT&T.
SunOS is a trademark of Sun Microsystems, Inc.
Sun Workstation is a registered trademark of Sun Microsystems, Inc.

Material in this manual comes from a number of sources: Nroff/Troff User's
Manual, Joseph F. Ossanna, Bell Laboratories, Murray Hill, New Jersey; A Troff
Tutorial, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey; Typ­
ing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff,
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; A Guide to Preparing
Documents with -ms, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey;
Document Formatting on UNIX Using the -ms Macros, Joel Kies., University of
California, Berkeley, California; Writing Papers with Nroff Using -me, Eric P.
Allman, University of California, Berkeley; and Introducing the UNIX System,
Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. These
materials are gratefully acknowledged.

Copyright© 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retliieval system,
translated, transcribed, or transmitted, in any fonn, orby any means manual,
·electric, electronic, electro-magnetic, mechanical, chemical, optical, or other- r'_.. .··
wise, without prior explicit written permission from Sun Microsystems. \,.)

u

{ ...

~)

Contents

Chapter 1 Introduction '... 3

1.1. nroff and troff .. 3

Text Formatting Versus Word Processing ... 4,

The Evolution of nroff and troff .. 5

Preprocessors· and Postp:mcessors ... 6

1.2. troff, Typesetters, and Special-Purpose Formatters 6

1.3. Using the nroff and troff Text Formatters.. 6

Options Common to nroff and troff .. .

Options Applicable Only to nroff

Options.Applicable Only to troff

7

7

8

1.4. General Explanatfon oft ro ff and nroff Source Files 8

Backspacing· ... 9

Comments.. 9

Continuation Lines.. 10

Transparent Throughput .. 10

Fonnatter and Device Resolution ... 1n
Specifying Numerical Parameters• .. #M~~~~~··· .. ······ 10

Numerical Expressions· ... :t:':;EH0>:.;.:1u~~····'.i~b':,'.' 12

1.5. Output and Error Messages ... ,4~fr '.:.%~,..~:'.l;fo . .Jj~~t.' ... ~~.) 13 .. :::::::::::-· .·:<\>· ·.· ::::-. ·::::::::;. ..-::
·:·:.:.:-:.. \'.){~~Y.'.'. .. -: .. ::.·.::.'.~:.'.~:.'.t :;:·:········ .·.·.:-:·:-:-· .·:-:-·.-.-.·.·.·.·

Chapter 2 Line Format ... :~~t .. ~~rn:':~~~~~}f'.:'.~;.~rn: .. ~,~·~~,n·::.:::;::.~~~ ... :.::t::+:17::::

2.1. Controlling Line Breaks ... :'::~::: ~~:.i.! ,J.~: ~~;~»:;:.::~~ ... ::;;[[:rn:.i>fg

. br - Break Lines .. :~.J.~:~~~ ... ~fafa,:'.'.:.~~~~;;.~'.Sk... 20·

Continuation Lines and Interrupted Text :.' :]~~ .• ; ... ,;L.:.'.'.'.:.·...... 20

-iii-

C0ntents - Continued

/~
/

2.2. Justifying Text and Filling Lines 21
. ad - Specify Adjusting Styles 21
. na - No .Adjusting .. . 22
. nf and • f i -Tum Filling Off and On .. . 23

2.3. Hyphenation 24
• nln and . hy - Control Hyphenation 24
.hw-Specify Hyphenation Word List .. . 25
. nc -Specify Hyphenation Character 26

2.4. . ce - Center Lines of Text 27
2.5. . uIL. and . cu - Underline or Emphasize Text 28
2.6. . uf - Underline Font 29

Chapter 3 Page Layout .. . 33
3.l .. Margins and Indentations 35

. po - Set Page Offset .. . 35

. l.l - Set Line Length .. . 35

. in - Set Indent .. .

. ti - Temporarily Indent One Line

36 ()
38

3.2. Page Lengths, Page Breaks, and Conditional Page Breaks 41
• pIL - .set Page Length 41
. bp - Start a .New Page .. . 41
. pn - Set Page Number 42
.ne-.Specify Space Needed 42

3.3. Multi-Column Page Layout by Marking and Returning 43
. mk - ,Mark Current Vertical Position 43
. rt - Return to Marked Vertical Position .. . 44

Chapter 4 Line Spacing and Character Sizes 47
4.1. . sp - Space Vertically .. . 47
4.2 .. ps -Change tlle Size ofthe·Type 48
43. . :vs - Change Vertical Distance Between Lines 50
4.4 .. ls -Change Line Spacing .. . 51
4.5. \x Function -Get Extra Line-Space 52

:ry

-iv-

Contents - Continued

u
4.6 .. sv,- Save Block of Vertical Space... 52

4.7 .• os -Output Saved Vertieal Space.. 53

4.8. . ns- Set No Space Mode .. 5,3

4.9. . rs - Restore, Space Mode .. 53

4.10 .. ss - Set Size of Space Character.. 54'

4.11. . cs - Set Constant-Width Characters .. 54

Chapter S Fonts and Special Characters .. 57

5.1. . :ff t - Set Font ... 58

5.2. . fp- Set Font Position .. 59

5.3 .. fz-Force Font Size... 59

5.4. . bd - Artificial Boldface ... 60

5,_5. Character Set .. 61

5.6. Fonts .. 62

5.7 .. Jlg,-Control Ligatures,... 62

u Chapter 6 Tabs, Leaders, and Fields .. 67

6.1. • ta- Set Tabs... 67

Setting, Relative Tab Stops .. 68

Right-Adjusted Tab Stops•.. 68

Centered Tab Stops, .. 68

. t c -. Change Tab Replacement Character ... 69

Summary, of Tabs,.. 7,Q

6.2. Leaders- Repeated Runs of Characters .. 71

• JJ c - Change the Leader Character ... 73

6.3. . f c - Set Field Characters -.. 74·

Chapter 7 Titles and Page Numbering .. 81

7.1. Titles, in Page Headers. .. 81

7 .2. Fonts and Point Sizes in Titles ... 83

7'.3. . pc - Page Number Charaeter ... 84

7.4' .. tl Request-Three Parameters .. , 85

Chapter 8 troff Input and Output... 89

-v-

C011lteIDts - Continued

~
J

8.1. . so - Read Text fr0m a File ,. 89

8.2. . nx - Read Next S0urce File, 91

8.3.' Pipe Output toa Specified Program (nroff only), 91

8:4. . rd - Read from the Standard Input 92

8.5. . ex - Exit fr0m nroff or ,troff .. . 94
8.6. . 1tm - Send Messages to the Standard Error File 94

Chapter 9 Strings, .. . 97
9.1. . ds -Define Strings .. . 98

9 .2. . as - Append to .a String .. . 99

9.3. Removing or Renaming String Definitions 101

Chapter 10 Macros, Diversions, and Traps .. . 105
10.1. ,Macros 105

. de - Define .a ·Macro .. . 105

. rm - Remove Requests, Macros, or Strings 107

. rn - Rename Requests, Macros or Strings
1Macros With Arguments

108 n 108

. am - .Awpend to .a Macro 112

Copy Mode Input lnterpretati0n 112

10.2. Using Diversions to Store Text for Later Processing 112

. di - Divert Text .. . 113

. da - Append to a Diversi0n .. . 114

10.3. Using Traps to Process Text at Specific Places 0na Page 114
. wh - Set Page or Positi0n Traps .. . 115

. ch-Change Position ofaPage·Trap .. . 116

. dt - Set :a Diversion Trap .. . 116

. it - Set an Input-Line Count Trap 116

• em - Set the End of Processing Trap .. . 117

Chapter 11 Number Registers .. . 121
11.1. . nr - Set Number Registers .. . 121

11.2. Auto-Increment Number Registers .. . 123

,!"\
\ J

-vi-

Contents- Continued

u
11.3. Arithmetic Expressions with Number Registers. ... 124

11.4. . af - Specify Format of Number Registers ... 125

11.5. . rr - Remove Number Registers ... 127

Chapter 12 Drawing Lines and Characters ... 131

12.1. \u and \ d Functions- Half-Line Vertical Movements....................... 131

12.2. Arbitrary Local Horizontal am[Vertical Motions 132·

\ v Function - Arbitrary Vertical Motion .. 132:

\h Function - Arbitrary Horizontal Motion .. 133

12.3. \0 Function - Digit-Size Spaces·.. 134

12.4. '\ ' Function - UnpaddalDle. Space ... 13·0

12.5. \ I and \ ... Functions-Thick and Thin Spaces 136

12.6. \ & Function - Non-Printing Zero.-Width Character 137

12.7. \o Function- Overstriking Characters... 138

12.8. \z Function - Zero Moti0n Characters .. 139

12.9. \ w Function - Get Width of a String .. 140

u 12.10. \k Function - Mark Current Horizontal Place 141

12.11. \b Function - Build Large Brackets ... 142

12.12. \r Function-Reverse Vertical Motions .. 143

12.13. Drawing Horizontal and Vertical Lines .. 143

\1 Function - Draw Horizontal Lines.. 143

\L Functi~m - Draw Vertical Lines· .. 144

Combining the Horizontal and Vertical Line Drawing
Functions· ... 145

12.14. . me - Place Characters in the Margin .. 145

Chapter 13 Character Translations.. 149

13.1. Input Character Translations .. 149

13.2. . ec and . eo - Set Escape Character or Stop Escapes 149

13.3. . cc and . c2 - Set Control Characters :... 150

13.4. . tr - Output Translation ... 150

Chapter 14 Automatic Line Numbering .. 153

14·.1 .. nm·- Number Output Lines:... 153

-viii-

Contents - Continued

()
14.2. . nn -.Stop Numbering Lines .. . 154

Chapter 15 Conditional Requests .. . 157
15.1 .. if - Conditional Request 157

15.2 .. ie and . el -If-Else and Else Conditionals 160
15.3. . ig - Ignore Input.Text 160

Chapter 16 Debugging Requests 165
16.1. . pm - Display Names and Sizes of Defuled Macros 165
16.2. . f 1 - .Flush Output Buffer 166
16.3. . .ab - Abort 166

Chapter 17 Environments .. . 169
17.l .. ev - Switch Environment .. . 169

Appendix A troff Request Summary .. . 173

Appendix B Font and Character Examples 181 C)
B. l. Font Style Examples 181
B.2. Non-Asen Characters and minus on the Standard Fonts 182
B.3. Non-Asen Characters and',', G, 'it-,--:,=, and* on the Special

Font 182

Ap.pendix C Escape .Sequences 187

Appendix D Predefined Number Registers 191

Appendix E troff Output Codes 195
E.l. Codes OOxxxxxx- .Flash Codes to Expose Characters 196
E.2. Codes lx.nxn:x - Escape Codes Specifying Horizontal

Motion 197
E.3. Codes 011.xxxxx - Lead Codes Specifying Vertical Motion 197
E.4. Codes OlOlx.nx-Size Change Codes .. . 197
E.5. Corles 0100.x.xxx- Control Codes 198
E.6. Ho·w Fonts ~are Selected .. . 199

()
/

-viii-

Conrems.- Contlnued

E.7·. Initial State of tlle C/A{f .. 199

Index... 201

u
-ix-

(')

(~
'. j

u

Tables

Table 1-1 Seale Indicators for Numerical Input .. 11

Ta1Dle 1-2 Default Seale Indicators for Certain troff Requests. and

Functions• .. 11

Table 1-3 Arithmetie Operators and Logical OJ)erators for Expressicms 12

Table 2-1 Construets that Break the Filling Process .. 19

Table 2-2 · Fcmnatter Requests. that Cause a Line Break ... 20

Table2-3 Adjusting Styles for Filled Text.. 21

Table 5-1 Exceptions to the Stanclard Asen Charaeter Mapping 62

Table 6-1 Types. of Tab Stops· ... 7·0

Table 7-1 Requeststhat Cause a Line Break.. 83

Table 11-1 Access Sequences for Auto-incrementing NUm.ber

Registers:········-··· 124·

Table 11-2 Arithmetic Operators and Logical Operators for :\j?:::,.

Expressions• .. 4~~}:~~:~~ .. :~~~~fa~,:•.····· 124

Table 11-3 Interpolation Formats for Number Registers. ·.·A~~jj]~»~:,~j:j'j:;:~;:;'.~;;.,~~ •• ~;.:.~~~~+-. 126

Table 12-1 troff Wiclth Function - ct Number..:§~~j~~~~::~l,ti~~:-·::~.~~.;.: rn~~;;::::::rni4·~!:::
Table 12-2 Pieces for, Construeting Large Brackets 4~~~;~~~4\'.:;:L~ .. @:;':°I@;.,,:, ... ;::#W> :l4'2

Table 15-1 Built-In Condition Names for Conditional ~~i~ ~;:~~~;~::;:. 159

-xi-

Tables - Continued

Table A-1 Summary of nroff and troff Requests ... 173

Table A-2 Notes in fue·Tables ... 178

Table B-1 Summary of troff Special Characters .. 182

Table C-1 troff Escape.Sequences ... 1877

Table D-1 General Number Registers ... 191

Table D-2 Read-Only Number Registers .. 191

Table E-1 Size Change Codes... 191

Table E-2 Single Point-Sizes versus Double Point-Sizes.. 198

Table E-3 C/Aff Control Codes and t:ll.eir Meanings .. 198
Table E-4 Correspondence Between Rail, Mag, Tilt, and Font Number 199

-~i-

/ \ u

Figures

Figure 2-1 Filling and Adjusting Styles .. 22

Figure 3-1 Layout of a Page ... 34·

u

(-...,\I

u

-xm,-

(~
' ' . /

n .. /

u

u
Summary of Contents

(j

Pref ace

This manual provides reference information and examples for the text formatters

nroff and troff. Weassumeyou are familiar with a terminal keyboard and

the Sun system. If you are not, see Getting Started with SunOS: Beginner's

Guide for information on the basics, like logging in aml the Sun file system. If

you are not familiar with text editors, read Doing Morewith SunOS: Beginnet:' s

Guide and the chapter "Introduction to Text Editing" in Editing Text Files.

Finally, we assume that you are using a Sun Workstation, although specific ter­

minal information is also provided.

For additional details on Sun system commands and programs, see the SunOS

Reference Manual.

Here is a summary of the chapters that follow:

1. Introduction- Describes what troff can do for you, some tools you can

use with troff or nroff to refine your results, how to use :r:iroff and

troff, the differences between the two text formatting programs, and a lit­
tle about the mechanisms built-in to nroff and troff.

2. Line Format - Explains how the text formatting programs. fill and adjust

text input lines and how various. formatting requests affect filling and adjust­

ing functions in troff.

3. Page~ Layout- Describes the default page layout parameters built-in to

troff and how you can alter them. Also explains. h0w certa~n formatting
requests interact in laying out pages. ·.· ·,:,.,.,., ..

4. Line Spacing and Character Sizes- Explains· the avaU~~1~:::t1P¢;'::cm~::§pac-
ing sizes in troff and nroff, and h0w to changeJP.efri{::<: ,.,.,.,.,.,._ .. ,.,..

·::::{~~\ ··:-·-·.·

5. Fonts and Special Characters - Describes. the .. f9rtt$t~v'.~µ~}?1efwit!i'::~.:if6°¥.,;~,::::::,.
and troff and h0w to change them. ':':':::::,:::;:::::::::- __ .,/'// '\/,./\?'·> ,\/

6. Tabs, Leaders, and Fields- Explains what tab~~"'re!~¢.m~:::~~!\'.:!J.t~~;;'~f~:m~H~,.-
h0w to set them. ·-::::\\i~:::=;~:·--::;;;·:-:-:-:-.·-:·:·=·:·:·:·. ·-:··-· ·

·.·

7. Titles and Page Numbering- Expfains how to create p~gi:·~~:~~icl .. ancl

page footers. Also covers h0w to· use the built-in troff page:'number regis;..

ter to print page numbers on your document automatically.

-xv-

Preface - Continued

Conventions Used in This
Manual

8. troff Input and Output - Describes how to embed files within files, to
switch input fmm one file to another, to display a message on your tenninal
when ;troff reaches a certain point in a file, and in nroff only, how to
pipe the output fmm a file to a program by using a special nroff command
in the file.

9. Strings - Explains how to give a string of characters a new name so you
can reference them easily. Also provides a facility for referencing the values
of the strings.

10. Macros, Diversions, and Traps - Describes how to define macros, store
infonnation in diversions, and use diversions and traps to process text at
specific places on pages.

11. Number Registers - Explains what troff number registers are and what
you can use their values for.

12. Drawing Lines and Characters - Describes the several built-in troff
functions for moving to arbitrary places on the page and for drawing things.

13. Character Translations - Describes how to change the escape character
and translate the value of one character into another.

14. Automatic Line Numbering-Explains how to use the t:1:1off requests for
numbering lines in the output file.

15. Conditional Requests-Describes troff mechanisms for conditionally
accepting input.

16. Debugging Requests - Explains requests for displaying names and sizes of
defined macros, flushing the output buffer, and aborting the fonnatting.

17. Environments - Describes how to shift input processing between the three
nroff /tI'off environments.

A. troff Request Summary- A quick reference summarizing nroff and
troff requests.

B. Font and Character Examples - Several tables of special characters like
Greek letters, foreign punctuation, and math, symbols.

C. Escape Sequences - Summarizes escape sequences for obtaining values of
number registers, for describing arbitrary motions and drawing things, and
for specifying certain miscellaneous functions.

D. Predefined Number Registers - Tables of troff General and Predefined
Number Registers

E. troff Output Codes-A summary of the binary codes for the C/A!f µho­
totypesetter.

Thmughout this manual we use

(}

f_~_os_t_n_am_e_% ----------------~] n
-.X\li-

Notation Used in This Manual

/ '\ u

Preface- Continued

as the prompt to which y~m type system commands. Bo1dface type­
writer font indicates commands that you type in exactly as pJlinted on the
page of this manual. Regular typewriter font represents what the sys­
tem prints out to your screen. Typewriter font also specifies Sun system com­
mand names. (program names) and illustrates source code listings. Italics in.di,.
cates general arguments or parameters thatJ you should repliace with a specific
word or string. We also occasionally use italics. to emphasize important tenns~

Numerical parameters are indicated in this manual in two ways~ -±N means that
the argument may take the forms.N, +N, or -N and that the corresponding effect
is to set the affected parameter to N, to increment it by N, or to decrement it by N
respectively. Plain N means. that an initial algebraic sign is. not an increment
inclieator, but merely the sign of N. Generally, unreasonable numerical in~ut is
either ignored or truncated to a reasonable value. For example, most requests
expect to set parameters to. non-negative values; exceptions are . sp, . wh, . ch,
.nr,and .if. The requests .ps, .ft, .po, .v:s, .ls, .11, .in,ancl .lt
restore the previous parameter value in the absenceof an argument.

Single-character arguments are indicated by single lower case letters and one- 011

two-character arguments. are indicated by a pair of lower case letters. Characte11
string arguments are indicated bymulti-charaeter mnemonics.

-xvii-

n

(')

n
;

u

(\
_)

1
Introduction

Introduction ... 3

1.1. nro,f f atld troff .. 3

Text Formatting Versus Word Processing ... 4

The Evolution of nroff and troff "'...................................... 5

Prep11ocessors, and Postprocessovs, ... 6

1.2. troff, Typesetters, atld Special-Purpose Formatters 6

1.3. Using the nroff atld troff Text Formatters, .. .

Options Common to nroff and troff .. .

Options Applicable Only to nroff

OptionsApplicableOnlyto troff

lA. General Explanation oft ro ff and nroff Source Files

6

7

7

8

8

Backspacing, ... 9

Comments', ... 9

Continuation, Lines ,... 1 O

Tratlsparent Throughput .. , 10

F~mnatter and Device Resolution .. , 10

Speeifying Numerical Parameters ... 10

Numerieal Exp11essions, .. 12

1.5. Output and E:r:ror Messages: ... ,....................................... 13

/. '. i \ u

1.1. nroff and troff

u

u

1
Introduction

nroff and troff are text processing utilities.folithe Sun system. nroff for­
mats text for typewriter-like tenninals (such as Diablo printers). troff is
specifically oriented to formatting text for a phototypesetter. nroff and troff

accept linesoftext (t0 be printed on the final output device) interspersed with
lines. of format control information (to specify how the text is to be laid out on
the page} and format the text into a printable, paginated document having a user­
designed style. nroff and troff offer unusual freedom in document styling,
including:

[!]

D

D'

Cl

[!]

D

D

D

detailed control over page layout;

arbitrary style headers and footers;

arbitrary style footnotes;

automatic sequence numbering for paragraphs, sections, etc;

multiple-column output;

dynamic font and point-size control;

arbitrary horizontal and vertical local motions. at any point;

a family of automatic overstriking,. bracket construction., and line drawing
functions~

nroff and troff are highly compatible with each other and it is. almost
always possible to prepareinput acceptable to both. Theformatterspmvide
requests (conditional input) so that you can embed input expressly destined for
either nro,ff or troff. nroff can prepare output directly for a variety ofter­
minal types and is capable of utilizing the full resolution of each terminal.

This manual pmvides a user's guide and referenee section for nroff and
troff. Note that throughout the text we refer to nroff and troff more or
less• interchangeably - places where the narrative refers. specifically to one or the
other processor are noted. 1

You should be aware that using nroff m: troff 'in the raw' requires a
detailed kn0wledge of the way that these pmgrams w0rk and a certain kn0wledge

1 The material1 inithis chapter evolvedifromiA troffiTutoria/1, by Briani Kemighan1of Belli laboratories; and 1

from1 nroffi/trof/I User's Manua/1, originall¥ written,by Joseph1 Ossanna of Belli Laboratories.

•\sun
• microsystems

3 Revision A, 0£ 9 May 1988'

4 Using nroff and troff

Text Formatting Versus Word
Processing

of typographical tenns. nroff and troff don't do a great deal of work for you
- for example, you have to explicitly tell them how to indent paragraphs and
number pages and things like that.

If what you are trying to do is just get a job done (like writing a memo), you
shouldn't be reading this manual at all, but rather the chapter "Formatting Docu­
ments with the ~ms Macros" in the Formatting Documents manual. If, on the
other hand, you would like ,to learn the :fute details of a programming language
designed to control a typesetter, this is the place to start reading.

In many ways, nrofrs and troff's control language resembles an assembly
language for a computer - a remarkably powerful and :flexible one - many
operations must be specified at a level of detail and in a form that is too hard for
most people to use effectively.

n
\ /

The single most important rule when using troff is not to use it directly, but
through some intennediary such as one of the macro packages, or one of the vari­
ous preprocessors described in Formatting Documents. In the few cases where
existing macro packages don't do the whole job, the solution is not to write an
entirely new set of troff instructions from scratch, but to make small changes
to adapt existing packages. In accordance with this strategy ofletting someone
else do the work, the part oft ro ff described here is on1 ya small part of the
whole, although it tries to concentrate on the more useful parts. In any case,
there is no attempt to be complete. Rather, the emphasis is on showing how to
do simple things, and how to make incremental changes to what already exists. n
If you are interested in the complete story, look into the troff source itself.

Many newcomers to the UNIX system are surprised to find that there are no word
processors available. This is largely historical - the types of documents (such
as the Sun manuals) that people do with the UNIX system's text formatting pack­
ages just can't be done with existing word processors. Before you get into the
details of nroff and troff, here is a short discussion on the differences
between text fonnatters and word processors, and their relative strengths and
weaknesses.

A wordprocessor is a program that to some extent simulates a typewriter - text
is edited ·and formatted by one program. You type text at a computer terminal,
and the word processor fonnats the text on the screen for you as you go. You
usually get special effects like underlining and boldface by typing control indica­
tors. The word processor usually displays these activated features using inverse
video or special marks on the screen. The docmnent is displayed on the tenninal
screen in the same format as it will appear on the printing device. The effects of
this are often tenned 'What You See Is What You Get' (usually called
WYSIWYG and pronounced 'wizzi-wig'). Unfortunately, as has been pointed
out, the problem with many WYSIWYG editors is that 'What You See Is All You
Get'. In general, word processors· cannot handle large documents. In principle, it
is possible to write large manuals and even whole books with word processors,
but the process gets painful for large manuscripts. Sometimes a change, such as
deleting a sentence or inserting a new one, in the early part of a document can (~
require that the whole document has to be refonnatted. A change in the overall ',. .)
structure of the formatting requirements (for example, a changed indentation

•\sun
• 'microsystems Revision A, of 9 May 11988

/ \ u

u

,·· ''-.

u

The Evolution of nroff and
troff

Chapter 1 - Introduction1 5

depth) will also mean that the whole document has to be reformatted. W01d pro­

cessors usually don't cope with automatic chapter and section numbering (of the

kind you see in the Sun manuals), neither can they generate tables. of contents

and indices automatically. These tasks have to be done manually, and are a
potential source of error. Word processors. are eminently suitable for memos ancd

letters, and can handle short documents. But large documents, or formatting

documents for sophisticated devices like modem phototypesetters, requires a: text
formatter.

A textformatter such as.nroff or troff does not in general perform any edit­

ing - its only job is reading text from a file and formatting that text for panting
on some device. Entering the text into the file, and formatting the text from that

file for printing are two separate and independent operations. You pi;epare y0ur

file of text using a text editor such as vi (described elsewhere in this manual~~

The file contains text to be fonnatted, interspersed with formatting instructions

which control the layout ofthe final text. The text formatter reads this file of

text, and obeys the formatting instructions contained in the file. The results of
the formatting pi;oeess is. a finished document. The disadvantage of a text for­

matter is that y0u have to run them to find out what the final result will lo0k like.
Many people find the idea of embedded 'formatting commands' foreign, as they

do the idea of two separate processes. (an edit followed by a run of the formatter)

to get the final document.

Notwithstanding all of the above, the UNIX system has had text formatting utili­

ties since the very beginning, and many documents were written using the capa:..

bilities of nroff or troff.

One of the very first text formatting programs was called runoff and was a utility
for the Compatible Time Sharing System (CTSS) at MIT in the early 1960' s.
Runoff was.named for the way that people would say 'I'll just run off a docu­
ment'.

When the UNIX system came to have a text formatter, the text formatter was

called roff, because UNIX people like to call things. by short and cryptic names.

Roff was a simple program that was easy to work with as. long as you were writ'""
ing very small and simple documents for a line-printer. In some ways, rojf is

easier to use than nroff or troff because roff had built-in facilities such as

being able to specify running headers and footers for a document with simple

commands.

nroff stands.for 'Newer rojf. troff is.an adaptation of nroff to drive a
phototypesetting machine. Alth0ugh troff is sup]!>Osed to mean 'typesetter

roff', some peo~le have formed the theory that troff actually stands for 'Times
Romanoff' because oft ro ff' s penchant for the Times Roman typeface.

nroff and troff are much more flexible (and much more complicated) pm~

grams- it's safe to say that they don't do a lot for y0u - for instance, y0u have

to manage your own pagination, headers, and footers~ The way that nroff and

troff ease the burden is via facilities to define y0ur own text formatting com­

mands (macms), define strings, and store and manipulate numbers. With0ut

these facilities, y0u would go mad (many people have - the author of this

Revisioni A, 015 9 May 1988

6 Using nroff and troff

Preprocessors and
Postprocessors

1.2. troff, Typesetters,
and Special-Purpose
Formatters

1.3. Using the nroff and
troff Text
Formatters

document among them). In ad~tion, there are supporting packages for doing
special effects such as mathematics and tabular layouts.

Because troff or nroff are so hard to use 'in the raw', various tools have
evolved to convert from human-oriented ways of specifying things into codes
that troff or nroff can understand. Tools that do translations for troff or
nroff before the fact are called preprocessors. There are also tools that hack
over the output of Rroff for different devices or for other requirements. Tools
that do conversions of troff or nroff output after the fact are called postpro­
cessors. Refer to the manual Formatting Documents for explanations of nroff
and troff pre- and postprocessors.

Please be sure to read this : this section covers some aspects of troff that
are generally glossed over in the traditional UNIX system manuals. troff was
originally designed as a text formatter targeted to one specific machine - that
machine was called a Graphics Systems Incorporated (GSI) C/A/f :(Computer
Assisted Typesetter). The C/A/f is a strange and wonderful device with strips of
film mounted ona rev0lving drum, lenses., and light pipes. The C/A!f flashes
character images on film which you then develop to produce page proofs for your
book or manual or whatever. The C/A/f is almost extinct now except for some
0dd niches like Berkeley.

()

troff was written very much with the C/A/T in mind. The internal units of
measurement that troff uses are C/A/T units, troff only understands four n
fonts at a time, and so on. Throughout this chapter, much of the terminology is
based on troff's intimate relationship with the C/A/f.

To use nroff or troff y0u first prepare your file of text with nroff or
troff requests embedded in the file to control the formatting actions. The
remainder of this document discusses the formatting commands. Then you run
the formatter at the command level like this:

{ hostname% nroff .optionsrfi/es

or, ofcourse:

{ hostname% troff optionsrfiles

where options represents any ofa number of option arguments and files
represents the list of files containing the d0cument to be formatted.

An,argumentc0nsisting ofa single minus(-) is taken to be a file name
corresponding to the standard input. If no file names are given, input is taken
frnm the standard input.

Options may appear in any orderso long as they appear before the files. There

J

]

are three parts to the list of options below: the first list of 0ptions are comm0n to ~
b0th nroff and troff; the second list of 0ptions are 0nly applicable to 1,,)

nroff; the third list of options are 0nly applicable to troff.

Revision A, of 9 May 1988

u

u

(\ u

Options Common to nroff
and troff

Options Applicable Only to
nroff

Chapter: 1 - Introduction 7

Each option is typed as a separate argument - for example,

hostname% nroff -04,8-10 -T300S -ms filel file2

fonnats pages: 4, 8, 9, and 10 of a document contained in the files named filel and
file2, specifies the output terminal as a DASI-300S, and invokes the -msun macro
package.

-olist
Print only pages whose page numbers appear in list, which consists of
comma-separated numbers and number ranges. A number range has the
fonn N-M and means pages.N through M; an initial -N means from the
beginning to page N; and a final N- means. from N to the end.

-nN
Number first generated page N.

-sN
Stop every N pages. nroff will halt pfior to every N pages (default N= 1)
to allow paper loading or changing, and will resume upon receipt of a new­
line.

-mname
Adds the macro file /usr I lib/tmac/tmac. name· before the input files.

-raN
Register a (one-character) is set to N.

-i Read standard input after the input files· are exhausted.

-q InvC>ke the simultaneous input-output mode of the . rd request.

-z Supl'ress formatted output. The only output yC>u get are messages from . tm
(terminal message) requests, and from diagnostics.

-h Output tabs used during horizontal spacing to speed output as well as reduce
byte count. Device tab settings assumed to be every 8 nominal character
widths. Default settings of input (logical) tabs is also initialized to every 8
nominal character widths.

-Tname
Specifies. the name of the output terminal type. Currently-defined names. ai:e
3 7 for the (default) Model 37 Teletype®, tn30 0 for the GE TermiNet 3QO
(or any terminal without half-line capabilities), 30 OS for the DASI-300S,
300 fortheDASI-300, and 450fortheDASI-450(Diablo Hytenn).

-e Produce equally-spaced wC>rds in adjusted lines, using full terminal res01u ...
ti on.

Revision A, ofl 9 May 1988

8 Using nroff:and troff

Options Applicable Only to
troff

1.4. General Explanation
of troff and nroff
Source Files

-t Direct·output to the·standard output instead of the phototypesetter.

-a Send a printable (ASCII) approximation of the results to the standard output.

-pN
Print all characters in point size N while retaining all prescribed spacings
and motions, to reduce phototypesetter elapsed time.

This section of the nroff and troff manual covers generic topics related to
the format of the input file, how requests are formed, and how numeric parame­
ters to requests are stated.

To use troff, you have to prepare not only the actual text you want printed, but
some information that tells how you want it printed. For troff, the text and the
formatting information are often intertwined. Most commands to troff are
placed on a line separate from the text itself, begimtlng with a period'(one com­
mand per line). For example:

Here is some text in the regular size characters,
but we want to 1make some of the text in a
.ps 14

, larger size to emphasize something
: ...

changes the 'point size', that is, the size of the letters being printed, to '14 point'
(one point is 1n2 inch) like this:

Here is some text in the regular size characters, but we want to make some of the
text in a larger size to emphasize something
Occasionally, though, something special occurs in the middle of.a line - to
produce Area= 1tr 2 you have to type

'(Area - \'(*p\fir\fF.\ 'I \s;8\u2\d\s.O]

(which we will explain shertly). The backslash character(\) introduces troff
commands and special characters within a line of text.

To state the above more formally, an input file to be processed by troff or
nroff consists of text lines, which are destined to be printed, interspersed with
control lines, which set parameters or otherwise control subsequent processing.
A control line is usually called a request.

A request begins with a controlcharacter - normally . (period) or ' (apos­
trophe or acute accent) - followed by a one or two character name. A request is
either:

a basic .request
(also called a command) which is one of the many predefined things that
nroff or troff cando. For example, .11 6 .Si isa basic request to set
the line-length to 6.5 inches, and . in 5 is a basic request to indent the foft 0
margin by five en-"spaces. ,)

•\sun ~~ · microsystems Revisicm A, <>f 9 May 1988

u

u
Backspacing

Comments

Chapter 1 - Introductfon, 9

a maero reference
specifies substitution of a user-defined macro in place of the request. A
macro is a predefined collection of basic requests and (possibly) other mac­
ros. For example, in the -ms macro package discussed elsewhere in this
manual, . LP is a macro to start a new left-blocked paragra~h.

The ' (a~strophe or acute accent) control character sup~resses the break
function-- the forced output of a partially filled line- caused by certain
requests.

The control character may be separated from the request or macro name by white
space (spaces and/or tabs) for aesthetic reasons. Names must be followed by
either space or newline. nroff or troff ignores control lines whose names
are unrecognized.

Various special functions. may be inttoduced anywhere in the input by means. of
an escape character, ncmnally \. For example, the function \ nR interpolates the
contents of the number register whose name is. R in place of the function. Here R
is either a single character name in which case the escape sequence has the form

\nx, or else R is a two-character name, in which case the escape sequence must
have the form \ n (xx. In general, there are many escape sequenees wh0se one­
character form is \fx and whose two-character form is \ f (xx, where f is the
function and x or xx is. the name.

To print the escape character (usually backslash), use \e (backslash e).

Unless in copy mode, the ASCII backspaee character is replaced by a backward
h0rizontal motion having the width of the space character. Underlining as a form
of line-drawing is discussed in the secti0n on Arbitrary Motions and Drawing
Lines and Characters. A generalized overstriking function is also described in
the above- mentioned section.

Comments may be placed at the end of any line by prefacing them with \". A
comment line cannot be continued by placing a\ at the end of the line-see the
discussion on continuation lines below.

A line beginning with\" appears as a blank line and behaves like a . sp 1

request:
,
1

Here is a lime of text.
\" Here is a comment on a line by itself.

·Here is another line of text.

when we format the above lines. we get this:

1,Here is a line of text.

Here is another line of text.

If y0u want acommem on a line by itself but you dcm't want it to appear asa
blank line, type it as . \ " :

Revision A, o:fi 9 May 1988

10 Using nroff and troff

Continuation Lines

Transparent Throughput

Formatter and Device
Resolution

Specifying Numerical
Parameters

Here is a line of te~t
.\" and here is a comment on a line by itself
and here is another line of text

when we format the above lines we get this:
,
• Here is a line ,of te~t
i

and here is another line of text

An uncomfortably long input line that must stay cme line (for example, a string
definition, or unfilled text) can be split into many physical lines by ending all but
the last one with the escape\. The sequence \(newline) is always ignored -
except in a comment - see below. This provides a continuation line facility.
The \at the end of the line is called a concealed newline in the jargon.

An input line beginning with a \ ! is read in copy mode and transparently output
(witl10ut the initial \ !); the text processor is otherwise unaware of the line's
presence. This mechanism may be used to pass control information to a post­
processor or to embed control lines in a macro created by a diversion. Refer to
Chapter 10 for information describing diversions.

troff internally uses 432 units/inch, corresponding to the phototypesetter
which has a horizontal resolution of 1/432 inch and a vertical resolution of 1/144
inch. nroff internally uses 240 units/inch, corresponding to the least common
multiple of the horizontal and venical resolutions of various typewriter-like out­
put devices. troff rounds horizontal/vertical numerical parameter input to the
actual horizontal/vertical resolution of the Graphic Systems typesetter. nroff
similarly rounds numerical input to the actual resolution of the output device
indicated by the -T option {default Model 37 Teletype).

Many requests can have numerical arguments. Both nroff and troff accept
numerical input in a variety of units. The general form of such input is

f _· x_x_n_n_n_n_u_n_it_s---------------------~J
where . xx is the request, nnnn is the number, and units is the '~scale indicator:"

Scale indicators are shown in the following table, where Sis the current type .size
in points, V is the current vertical line spacing in basic units, and C is a nominal
character width in basic units.

Revision A, of 9 May 1988

t)
. /

n
/

u

u

Table 1-1

Table 1-2

Chapter; 1 - lnt:mducticm' 11

Scale Indicators/or Numerical Input

'

Scale
Meaning

Number of basic units
:

'Indicator tr0f f nroff
i

i

i Inch 432 240
c Centimeter

:

432x50/127 I 240x50/127
i

p Pica = 1/6 inch i 72 I 240/6
i

I: ffi: Em=Spoints 6XS c
:

: n , En=Em/2 • 3XS C,sameasEm i
I

'

!,
p , Point = 1n2 inch 6 240/72

Basic unit
:

1 1 1Jl I:

v Vertical line space 'v v ':

I

none • Default, see below
I ~

In nroff, both the em and the en are taken to be equal to the C, which is
output-device dependent; common values are 1/10 and 1/12 inch. Actual charac­
ter widths in nroff need not be all the same and constructed characters such as
-> (~) are often extra-wide.

The default scaling is ems for the horizontally-oriented requests and functions,
Vs for the vertically-oriented requests and functions, p for the vertical spacing
request; and u for the number register and conditicmal requests. See Table 1-2 for
a summary of the default scale indicators for the troff requests and functi0ns
that take scale indicators.

Default Scale Indicators/or Certain troff Requests and Functions

!

!

Request Default Scaling Unit . Request Default Scaling Unit
'

' .11 ems .pl vertical units (Vs)
•

I:

.in II .wh "'

.ti "' .ch II

1: II
I•

II

.ta .dt

.lt II• .sp II

,,
.po " .sv Iii

I• '

II II
i

.me .ne
: \h "' .rt:. II :

'\1
Iii

' \v II

machine units (u) \x II I

.nr I

,,

,i
.if II \L II

I
i

.ie II .vs picas(p)

All other requests ignore any scale indicators~ When a number register contain­
ing an already appropriately-sealed number is interpolated to provide numerical,
input, the unit scale indicator u may need to be appended to prevent an addition.al
inappvopriatedefault scaling. The number, N, may be specified in decimal fon:n,
but the parameter finally stoFed is rounded to an integer number of basic units.

+§!U! Revision A, 0£ 9 May 1988

12 Using nroff and troff

The absolute position indicator I (the pipe character) may precede a number N to
generate the absolute distance to the vertical or horizontal place N. For
vertically-oriented requests and functions, 1

1 N becomes the absolute distance in
basic units from the current vertical place on the page or in a diiversion .(see
Chapter 10 for the section on diversions) to the vertical place N. For all other
requests and functions, I N becomes the distance from the current horizontal
place on the input line to the horizontal place N. For example,

(.sp I 3 .2c

J
will space in the required direction to 3.2 centimeters from the top of the page.

Numerical Expressions Wherever numerical input is expected, you can type an arithmetic expression.
An expression involves parentheses and the arithmetic operators and logical
operators shown in the table below:

Table 1-3 Arithmetic Operators and Logical Operators for Expressions
:

:

i

•

i

:

Arithmetic Operator Meaning
':

!

+ Addition
i

- Subtraction
:

I Division
:

* Multiplication
% Modulo

Logical Operator Meaning

!

< Less than
> Greater than

'

<= Less than or equal to
:

>= Greater than or equal to
=or== Equal to

& and :

or

Except where controlled by parentheses, evaluation of expressions is left-to-right
- there is no operator precedence.

In certain requests, an initial + or - is stripped and interpreted as an increment or
decrement indicator respectively. In the presence of default scaling, the desired
scale indicator must be attached to every number in an expression for which the
desired and default scaling differ. For example, if the number register x contains
2 and the current point size is 10, then

'[___ • i_1 __ <_,4 ___ 2_s_i_+__n_x_P+_3_)_/_2_u_, _________________ _,,]

will set the line length to 1/2 the sum of4.25 inches+ 2 picas+ 30 points.

•\sun ~ microsystems Revision A, of 9 May 1988

r)
' /

11)
. J

u

u

u

1.5. Output and Error
Messages

Chapter 1 - Int.mduction1 13

The output from . tm, . pm~ and the prompt from . rd', as well as various error
messages are written onto the standard error message output. The latter is dif­
ferent from the standard output, where nroff formatted output goes. By
default, both are written onto the user's terminal, but they can be independently
redirected - in the case of troff, the standard output sh0uld always be
redirected unless. the-a option is in effect, because troff's output is a strange
binary format destined to drive a typesetter.

Various. error conditions may occur during the operation of nroff and troff.
Certain less serious. errors having only focal impact d0 n0t stop processing. Two
examples are word overflow, caused by a word that is too large to fit into the
word buffer (in fill mode), and line· overflow, caused by an output line that grew
too large to fit in the line buffer; in both cases, a message is printed, the offend­
ing excess is discarded, and the affected word or line is marked at the point of
truncation with a* in nroff and a<= in tro,ff. The phifosophy is to continue
processing, if possible, on the grounds that output useful for debugging may be
produced. If a serious error occurs, processing terminates, and an appropriate
message is printed. Examples are the inability to create, read, or write files, and
the exceeding of certain internal limits that make future output unlikely to be
useful.

~\sun ~ microsystems
Revision A, 0£ 9 May 1988

u
2

Line Format

Line Fo:r:mat .. 17

2.1. Controlling Line Breaks... 18

. br - Break Lines· .. 20

Continuation Lines and Interrupted Text .. 20

2.2. Justifying Text and Filling Lines .. 21

. ad-Specify Adjusting Styles .. 21

u . na - No Adjusting· ... :................................. 22

. nf an<! . f i - Turn Filling Off an<! On ... 23

2.3. Hyphenation ... 24

. nh an<! . hy-Control Hyphenation.. 24

. hw - Specify Hyphenation Word List .. 25

. he - Specify Hyphenation Character .. 26

2.4 .. ce - Center Lines· of Text.. 27

2.5. . u 1 and . cu - Unc!erline or Emphasize Text .. 28

2.6. . uf - Underline Font .. 29

u

(\

\._;'

/ "'\
(\
\._)

2
Line Format

Perhaps the most important reason for using troff or Rr off is to use its filling
and adjusting capabilities. Here is what filling and adjusting mean:

Filling means that troff or nroff collects words from your input text
lines and assembles the collected words into an output text line until
some word doesn't fit. An attempt is.then made to hyphenate the
word in an effort to assemble a part of it into the output line. Filling
continues until something happens to break the filling process~ such
as a blank line in the text, or one of the troff or nroff requests
that break the line - things that break the filling process are dis:..
cussed later on.

Adjusting means that once the line has been filled as full as possible, spaces
between words on the output line are then increased to spread out the
line to the current line-length minus any current indent. The para­
graphs you have just been reading are both filled and adjusted.
Justification implies filling - it makes. no sense to adjust lines
without also filling them.

In the absence of any other information, troff'sor nroff'sstandard behavi0r
is to fill lines and adjust f01~ straight left and right margins, so it is quite possible
to create a neatly formatted document which only contains lines of text and no
formatting requests. Given this as a starting point, the simplest document of all
contains nothing but blocksoftext separated by blank lines-troff or nroff
will fill and justify those blocks of text into paragraphs. for you. To get further
control over the layout of text, you have to use requests. and functions embedded
in the text, and that is the subject of this entire paper on using troff.

A word is any string of characters delimited by the space character or the begin­
ning or end of the input line. Any adjacent pair of words that must be kept
together (neither split across output lines nor spread apart in the adjustment pm­
cess) can be tied together by separating them with the unpaddable space charac­
ter '\ ' (backslash-space) - also called a 'hard blank' in other systems. The
adjusted word spacings are uniform in troff and the minimum interword spac­
ing can be controlled with the . ss (space size) request. In nroff, interword
spaces are normally nonuniform because of quantization to character-size spaces,
but the -e command line option requests uniform spacing to the full resolution
of the output device. Multiple inter-word space characters found in the input are
retained, except for trailing spaces.

17 Revision A, of 9 May 1988

18 Nsing nroff and troff

2.1. Controlling Line
Breaks

Filling and adjusting and hyphenation can all be prevented or controlled by
requests that are discussed later in this part of the manual.

An input text line ending with . , ? , or ! is taken to be the end of a.sentence, and
an additional space character is automatically provided during filling.

A text input line that happens to begin with a control character can be made to
not look like a control line by prefacing it with the non-printing, zero-width filler
character \&. Still another way is to specify output translation of some con­
venient character into the control character using the . tr (translate) request -
see the relevant section.

The text length on the last line output is available in the . n number register, and
text baseline position on the page for this line is in the n 1 number register. The
text baseline high-water mark on the current page is in the . h number register.

When filling is turned on, words of text are taken from input lines and placed on
output lines to make the output lines as long as they can be without overflowing
the line length, until something happens to break the filling process. When a
break occurs, the current output line is printed just as it is, and a new output line
is started for the following input text. There are various things that cause a break
to occur:

ReV1isi0n A, of 9 May 1988

n

u

0

Table 2-1

Construct

Blank line(s)

Spaces

A . br request

troff or nroff requests

A \p Function

End of file

Chapter 2-Line Formatl 19

Constructs that Break the Filling Process

Explanation

If your input text contains any completely blank lines, troff or nroff
assumes. you mean them. So it prints the current output line, then your blank
lines~ then starts the following text on a new line.

at the beginning of a line are significant. If there are spaces at the start of a
line, troff or nro . .:fff assumes you know what you are doing and that yc>U
really want spaces there. Obviously, to achieve this, the current output line
must be pt.tinted and a new line begun. A void using tabs. for this purpose,
since.they do not cause a break.

A . br request (break) request can be used to make sure that the folfowing
text is. started on a new line.

Some troff or nroff requests cause a break in the filling process.
However, there is an alternate format of these requests which does not cause a
break. That is the format where the initial period character (.) in the request
is replaced by the apostrophe or single quote character ('). The list of
requests that cause a break appears. in the table below this. one.

When filling is in effect,thein-line \p function maybe embedded or attached
1

,

to a word to cause a break at the end of the word and have the resulting output
line spread out to fill the current line length.

Filling stops when the end of the input file is reached.

Breaks caused by blank lines or spaces at the beginning of a line enable you to
take, advantage of the filling and justification features provided by troff or
nroff without having to use any troff or nroff requests in your text.

As mentioned in the table above in the item entitled "troff or nroff
requests," there are some requests that cause a break when they are encountered.
The list of requests that break lines is short and natural:

•\sun
• microsystems

Revision A, 0£ 9 May 1988'

20 Using nroff and troff

Table 2-2 Formatter Requests that Cause a Line Break

. br - Break Lines

Mnemonic:

Form of Request:

Initial Value:

lfNo Argument:

Explanation:

Continuation Lines and
Interrupted Text

Command

I .bp
.br

.. ce

Explanation

Begin a new page
Break the current output line
Center line(s)
Start filling text lines
Stop filling text lines
Space vertically
Indent the left margin

.fi

.nf
I .sp

.in

. iti Temporary indent the left margin for the next line only .

No other requests break lines, regardless of whether you use a . or a ' as the c~m­
trol character. If you really do need a break, add a . br .(break.) request at the
appropriate place, as described below.

The . b r (break) request breaks the current output line and stops filling that line .
Any new output will start on a new line.

Summary of the .br Request

break

.br

Not Applicable

cause break

Stop filling the line currently being collected and output the line witlumt
adjustment. Text lines beginning with space characters and empty text lines
(blank lines) also cause a break.

The copying ofan input line in nofill (n~m-fill) mode (see below) can be inter­
rupted by tenninating the partial line with a\ c. The next enc~mntered input text
line will be considered to be a continuation of the same line ofinput 1text. .Simi­
larly, a word withinfilled text may be interrupted by terminating the word {and
line) with \c; the next encountered 1text will be taken as a continuation of the
interrupted word. If the intervening control lines cause a break, any partial line
will be forced out along with any partial word.

Revision A, of 9May1988

n
\)

u

u

_J

2.2. Justifying Text and
Filling Lines ,

. ad - Specify Adjusting
Styles

Table2-3i

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

Notes:

Chapter 2 - Line Format: 21

To change the style of text justification, use the . ad (adjust) request to specify

one of the four different methods for adjusting text:

Adjusting Styles/or Filled Text

Adjusting
Indicator

.. ad l

.ad r

.ad c

.ad b

.ad n
I .ad
I

Adjusting
Style

Left

Right
Center

Both
Normal
Reset

Description

Produces flush-left, ragged-right output, whieh
is the same as. filling with no adjustment.
Produces flush-right, ragged-left output
Centers each output line, giving both left and

right ragged margins.

Justifies both left and right margins.

Resumes adjusting lines in the last mode

requested.

It makes no sense to try to adjust lines when they are not being filled, so if filling

is off when a . ad request is seen, the adjusting is deferred until filling is turned

on again.

Summary of the . ad Request

adjust

.adc

. ad b-that is, adjust both margins.

Adjust in the last specified adjusting mode.

Adjust lines.- if fill mode is off, adjustment is. be deferred until fill mode is

back on. If the type indicator c is present, the adjustment type is changed as.

shown in Table 2-3.

E (see Table-A-2)

The current adjustment indicator c can be obtained from the . j number register.

The following figure illustrates. the different appearances of filled and justified

text.

Revision A, 0£ 9 May 1988'

22 lJsing nroff and troff

This paragraph is filled and adjusted on both margins. This is the easiest fonnatting style to achieve
using nroff or troff because you don't

1
have to place any requests in your text- you just type the

blocks of text into the input file and the fonnatter does something reasonably sane with them. Although
we specified nothing to get the paragraph filled and adjusted, we could have used an . ad b (adjust
both) request, or a . ad n (adjust nonnal) request- they both mean the same thing, namely, fill lines
and adjust both margins.

This paragraph is an example of'flush left, ragged right', which is what you get when you have filling
without adjusting - words are placed on the line to fill lines out as far as possible, but no interword
spaces are inserted so the right-hand margin looks ragged. This paragraph was fonnatted using an . ad
1 (adjust left) request, which has the same effect as using a . na (no adjust) request described later.

Then this paragraph is an illustration of text fonnatted as 'flush right, ragged left' - words are placed on
the line to fill lines out as far as possible, then the lines are made to line up on the right-hand margin, no
interword spaces are inserted, and so the left-hand margin looks ragged. This paragraph was fonnatted

using an . ad r (adjust right) request.

Finally, this paragraph is an instance of a fonnatting style called 'centered' adjusting, also known as
'ragged left, ragged right' - words are placed on the line ,to fill lines out as far as possible, then the lines
, are centered 'SO that both margins look ragged. This paragraph was fonnatted using an . ad c (adjust

center) request.

Figure 2-1 Filling and Adjusting Styles

. na - No Adjusting If you don't specify otherwise, troff or nroff justifies your text so that b0th
left and right margins are straight. This can be changed if necessary - one way,
as we showed above, is to use the . ad 1 request to get left adjusting only so
t?at the left margin is straight and the right margin is ragged. Another way to
achieve this same effect is to use the . na (no adjust) request. Output lines are
still filled, providing that filling hasn't also been turned off-see the . nf (no
fill) and . f i (fill) requests below. If filling is still on, troff or nroff pro­
duces flush left, ragged right output. ·To tum adjusting back on (return to the pre­
vious stat~), use the . ad request.

•\sun
• ;microsystems Revision A, of 9 May 1988

n
~• /

n
/

u

u

/ u

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. nf and . fi -Turn Filling
Off and On

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes~·

Summary of the . na Request

no adjust

.na

Adjusting is on by default

adjusting is. turned off

Chapter 2 - Line Formati 23

Tum off adjustment - the right margin will be ragged. The adjustment
type for the . ad request is not changed. Output lines· are still filled if fill
mode is on. To tum adjusting back on (return to the previous state), use the
. ad request.

E (see Table A-2)

The . nf (no fill) request turns off filling. Lines in the result are neither filled
nor adjusted. The output text appears exactly as it was typed in, complete with
any extra spaces and blank lines you might type - this is often called 'as-
is text', or 'verbatim'. No filling is mainly used for showing examples, espe­
cially in computer books where you want to show examples of program source
code.

You should be aware that traditional typesetting people have trouble with the
concept of no filling, because their typesetting systems are geared up to fill and
adjust text all the time. When you ask for stuff to be pfinted exactly the way you
typed it, they have problems, especially when you want blank lines left in the
unfilled text exactly where you put them. In the world of typography, things that
don't fit into the Procrustean mold of filled text are often called 'displays' and
have to be handled specially.

The . f i (fill) request turns on filling. If adjusting has not been turned off by a
. na request, output lines are also adjusted in the prevailing mode set by any pre,.
vious . ad tequest.

Summary of the . fi Request

fill

.fi

Filling is on by default

filling is turned on

Fill subsequent output lines. The number register . u is. 1 in fill mode and 0
in nofill mode.

E,B (see Table A-2)

Revisicmr A, of 9 May 1988'

24 Using nrof 1f and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

2.3. Hyphenation

. nh and . h y - Control
Hyphenation

Summary of the . nf Request

no fill

.nf

Filling is on by default

filling is turned off

Subsequent output lines are neither filled nor adjusted. Input text lines are
copied directly to output lines without regard for the current line length.
The number register . u is 1 in fill mode and 0 in no fill mode.

E,B (see Table A-2)

When troff or nroff fills lines, it takes each word in tum from the input text
line, and puts the word on the output text line, until it finds a word that will not
fit on the output line. At this point, troff or nroff tries to hyphenate the
word. If possible, the first part of the hyphenated word is put on the output li:ro.e
followed by a -, and the remainder of the word is put on the next line. We
should emphasize that, although the examples show text that is ooth filled and
justified, it is during filling that :troff or nroff hyphenates words, not adjust­
ing.

If you have words in your input text containing hyphens (such.as jack-in-the-box,
or co-worker), troff or nroff will, if necessary, split these words overtwo
lines, even if hyphenation is turned off.

Normally, when you invoke troff or nroff, hyphenation is turned on, but
you can change this. The . nh (no hyphenation) request turns offautomatic .
hyphenation. When hyphenation is turned off, the only words that are split over
more than one line are those that already contain hyphens. Hyphenation can be
turned on again with the .];1y (hyphenate) request.

You can give . hy an argument to restrict the amount of hyphenation that troff
or nroff does. The argument is numeric. The request .hy 2 stops troff or
nroff from hyphenating the last word on a page .. hy '4 instructs troff or
nroff not to split the last two characters from a word; so, for example,
'repeated' will never be hyphenated 'repeat"'ed' .. hy 8 requests the same thing
for the first two characters of a word; . so, for example, 'repeated' will not be
hyphenated 're-peated'.

The values of the arguments are additive: .hy 12 makes sure that words like
'repeated' will never be hyphenated either as 'repeat-ed' or.as 're-peated' .. hy
14 calls up all three restrictions on hyphenation.

!~
' }

A . hy 1 request is the same as the simple . h y request - it turns on hyphena­
tion everywhere. Finally, a . hy .0 request is the same as the . nh request - it
turns off automatic hyphenation altogether. n

',)'

Revision A, of 9 May 1988

u

u

(\
_/

Mnemonic:

Form of Request:

Initial Value:

If NoArgument:

Explanation:

Notes:

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

Notes:

. h w - Specify Hyphenation
Word List

Chapter 2 - Line FonmatJ 25

Only words that consist of.a central alphabetic string surrounded by (usually
null) non-alphabetic strings are considered candidates for automatic hyphenation..
Words that were input comaining hyphens. (minus), em-dashes (\ (em), or
hyphenation characters- such as mother-in-law - are alw«ys subject to split­
ting after those characters, whether or not automatic hyphenation is on or off.

Summary of the . nh Request

no hyphenation

.nh

Hyphenation is on by default

hyphenation is turned off

Tum automatic hyphenation off.

E (see Table A-2)

Summary of the . hy Request

hyphenation

.hyN

Hyphenation is on by default in mode 1.

N=l.

Turn automatic hyphenation on for N-C.l, or off for N=O. lfn=l, all words
are subject to hyphenation. If N =2, do not hyphenate last lines (ones. that
cause a trap). If N =4,. do· not hyphenate the last two characters of a word. If
N=8, do not hyphenate the.first two characters of a word. These values are
additive - that is~. N= 14 invokes all three restrictions. Note: odd values of
N (except 1) don't make sense.

E (see TableA-2)

If there are wmds that you want troff or nro·ff to hyphenate in some special
way, you can specify them with the . h w (hyphenate words) request. This
request tells troff or nroff that you have special cases it should know about,
for example:

(.hw pre-empt ant-eater

Now, if either of the words 'preempt' or 'anteater' need to be hyphenated, they
will appear as specified in the . hwrequest, regardless of what troff or
nroff's usual hyphenation rules would do. If you use the . hwrequest, be
aware that there is a limit of about 128 characters in total, for the list of special
words.

]

Revision A, of! 9 May 1988'

26 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

. h c - Specify Hyphenation
Character

Summary of the . hw Request

hyphenate word

.hw word] ...

None

Ignored

Specify hyphenation points in words with embedded minus signs. Versions
ofa word with tenninal s are implied - that is, dig-it implies dig-its. This
list is examined initially and after each 'Suffix stripping. The space availali>le
is small - about 128 characters .

A hyphenation indicator character may be embedded in a word to specify desired
hyphenation points, or may precede the word 1to suppress hyphenation. For
example, hyphenation looks particularly disruptive if it occurs in titles. So, if
you had a long title like:

Input and Output Conventions and Character Translations,

n

you could shorten it, or you could insert the hyphenation character just before the
first character of each of the long words at the end of the titile. The input might
look like this: (~

.H C "Input and Output Conventic:ms and \%Character \.%Translations'

{If you are using a reasonable line length, you don't need to worry about hyphe­
nation occurring earlier in the title in this example.)

Here is an example of using the hyphenation character to specify acceptabl~
hyphenation points within a word. The word "workstation" is often mis­
hyphenated because of the collection of consonants at the end of "work" and the
beginning of"station". So, your input might look like this:

f_w_o_r_k__%_s_t_a_t_i_o_n _____________________ ___..J

Revision A, 0f9 May 1988

u

0

Mnemonic:

Form oft Request:

Initial Value:

If No Argument:

Explanation:

Notes~·

2.4. . ce - Center Lines of
Text

Summary of the . he Request

hyphenation character

.he c

\%

\%

Chapter 2- Line Formal! 27

Set hyphenation indicator character to c or to the default \ % • The indicator
does not appear in the output.

E (see Table A-2)

When we described "Filling and Adjusting,~' we showed how the text produced
by nroff or troff could be centered by using the . ad c request. Setting
text adjustment for centering is a fairly unusual way of getting centered text,
because the text is being filled at the same time. The more usual use for center­
ing isto have unfilled lines that are centered - that is, each line that you type is
centered within the output line. You get lines centered via the . ce (center)
request, which centers lines of text.

If you just use a . ce request without an argument, troff or nro.f f centers the
next line of text:

[_.ce ______)
centers the following line of text, whereas:

[___ .ce _s _____ _____,,]

centers the following five lines of text. Filling is temporarily turned off when
lines are centered, so each line in the input appears as a line in the output, cen­
tered between the left and right margins. For centering purposes, the left margin
includes both the page offset (see later) and any indentation (also see later) that
may bein effect.

An argument of zero to the . ce request simply stops any centering that might be
in progress. So, if you don't want to count how many lines you want centered,
you can ask for some large number of lines to be centered, then follow the last of

the lines with a . ce O request:

Revision A, 0£ 9 May 1988

28 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

lfNo Argument:

Explanation:

Notes:

2.5 .. ul and . cu -
Underline or
Emphasize Text

' :

.ce n.oo

lines of text to be centered

.ce 0

The '100' in the example above could be any large number that you think is
bigger than the number of lines to center.

Note that the argument to the . ce request only applies to following text lines in
the input. Lines containing nroff or 1troff requests are not counted.

Summary of the . ce Request

center

.ceN

Centering is off by default.

N=l

Center the next N input text lines within the current line (line ... length minus
indent). If N =0, any residual count is cleared. A break occurs after each of
the N input lines. If the input line is too long, it is left adjusted.
E,B (see Table A-2)

There are times when you want to lend emphasis to a word in a piece of text.
The normal way to do this is to place the word or piece of text in italics if you
have an italic font, or underline the word if you don't have an italic font. The
. nl (underline) request underlines alphanumeric characters in nroff, and
prints those characters in the italic font in troff. As with the . ce request, a
. ul request with no argument underlines a single line of text, so:

f fi_o~_z~_w_i_ng-lin_e_o_if_te_x_t _____________________ _,]

simply underlines the following line oftext Unlike .·ce, though, . ul does not
tum filling off. A numeric argument to the . ul request specifies the number of
text lines you want underlined, so:

:(. ul 3]. --~~~~~~___,·n
underlines the next three lines of text. As with centering, an argument of zero ·
. ul O cancels the underlining process.

+.~!! Revision A. 0f9 May 1988

u

("--)

Mnemonic:

Form ofi Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Mnemonic:

Form ofi Request:

Initial Value~·

If No Argument:

Explanation:

Notes:

2.6. . u f - Underline Font

Summary of the . u1 Request

underline

.ulN

Underlining is off by default
(

N=l

Chapter 2 - Line Forma~ 29

Underline in nroff (italicize. in troff) the next N input text lines~ Actu­

ally, switch to underline font, saving the current font for later restoration;
other font changes within the span of a . ul will take effect, but the restom~
tion will undo the last change. Output generated by a . t l request is
affected by the font change, but does not decrement N. If N> 1, there is the
risk that a trap-interpolated macro may provide text lines. within the span -
environment switching can.prevent this.

E (see Table A-2)
/

Another form of underlining is called up with the . cu request, and asks for con­
tinuous underlining. This is the same as the . ul request, except that all charac­
ters are underlined. Again, if you are using t ro.f f the characters are printed in

the italic font instead of undedined. There is a way to get characters underlined
in troff, and this technique is explained later in this manual.

As with . ce, only lines of text to be underlined are counted in the number given

to the underline request nroff or troff requests interspersed with the text
lines· are not counted.

Summary of the . cu Request

continuously underline

.cuN

Underlining is off by default.

N=l

A variant of . ul that underlines every character in nroff. Identical to
. ul in troff.

E (see Table A-2)

nroff automatically underlines charactersin the underline font, specifiable
with a . u:ff (underline font) request. The underline font is. normally Times Italic
and is.mounted on font position 2. In addition to the . ft (font) request and the

\fF, the underline font may be selected by the . ul (underline) request and the

. cu (continuous underline) request. Underlining is restricted to an output-

device-dependent subset of reasonable characters~

Revision A, of 9 May 1988

30 . Using nroff and troff

Mnemonic:

F@rm of Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . uf Request

underline font

.uf F

Italic

Italic

Set underline font to F. In nroff., F may not be on position 1 (initially
Times Roman).

:

'

'

Revision A, 0f9May 1988

(~

':J

u
3

Page Layout

Page Layout .. 33

3.1. Margins and Indentations: .. 35

. po - Set Page Offset ... 35

. 11 - Set Line Length ... 35

. in -Set Indent.. 36

. ti - Temporarily Indent One Line .. 38

0 3.2. Page Lengths, Page Breaks, and Conditional Page Breaks 41

. pl - Set Page Lengtll ... 41

. bp - Start a New Page ... 41

. pn - Set Page Number .. 4'2

. ne - Specify, Space Needed ... '........... 42

3.3. Multi-Column Page Layout by Marking and Returning 43

. mk - Mark Current Vertical Position .. 43

. rt - Return to Marked Vertical Positicm ... 44

n

/ " (\ u

c

u

3
Page Layout

Now we get into the subject of altering the physical dimensions of the laycmt of
text on a page. There are two major parts to page control, and they can be
roughly divided into controlling the horizontal aspects of lines, and controlling
the vertical aspects of the page dimensions.

Horizontal page control Deals with subjects such as the location of the left margin, the location of the
right margin (the length of the line), and indentation of lines.

Vertical page control Deals with the physical length of the page, when pages get started, and whether
there's.enou,gh room on the current page for a block of text. Page numbering is
also covered in this area.

Page Offset

Line· Length

Indent

Page Length

These topics are covered in this section~ We deal first with horizontal page con­
trol, then with the vertical aspects of page control.

We should explain how troff thinks of a page. The next page contains a
diagram of a page of text, and here we explain what some of the terms mean:

is. the distance from the physical edge of the paper to the place where all text
begins~ In normal-world terms, this distance is called the 'left margin'. N0r­
mally you only set the page-offset at the very start of a formatting job and you
never change it again.

is the distance from the left margin (or page-offset) to the right edge of the text.
The line-length is relative to the page-offset. In some respects, 'line-length' is a
bit of a misn0mer, because once you have set the page-offset at the start of the
document (and assuming you never change it), the line-length really nails down
the position of the right margin and has little to do with thelength of the line.

is where the left edge of your text starts. Normally the indent is zero, so that the
edge of the text is where the page-offset is, but you can change the indent so that
the text starts. somewhere else. ~ote that the line,.. length is not affected by the
indent - that is, indenting the text doesn't change the position of the right mar­
gin.

is the distance from the extreme top of the page to the extreme bottom of the
page, that is, the page length is the physical length of the paper.

The following figure is a diagram of a page of text with the relevant parts pointed
out. This diagram is a scale-model of an 85 x 11-ineh sheet of paper, so while
the numbers quoted in the text below are expressed in 'real' units, the aetual
dimensions are scaled.

33 Revision A, 0£ 9 May 1988

34 Using nroff and troff

Figure 3-1 Layout of a Page

left header center header right header

This paragraph has the page-offset set to give a left margin of approximately one inch (scaled). The
line-.Jength is set to 6.5 inches (scaled). This means there is a one-inch (scaled) left margin and a one­
inch (scaled) right margin. The indent is set to zero so that the current left margin is at the same place
as the page-offset.

This paragraph has the page-offset and the line-length the same as the last paragraph, but
we've used a . in +rO . 5 i request to indent the left margin by half .an inch - the current left
margin is now page-offset+ indent. Note that the position of the right margin remains the
same as in the previous paragraph - only the left margin moved, •SO the effective length of the
lines is shoFter.

This paragraph now has the left margin back 1to the original position because we inserted a . in
-0 . 5 i request before it.

This paragraph· could have the foft margin moved, not by indenting, but by changing the page-offset via
a . po +0 . 5 i request. Now all text would be moved to the left, and because the line-length hasn't
changed, the right margin would move as well. The example,can 't •show this because page offset is
measured from the margin, and because this example is in a box, changing the page offset within the
box is meaningless.

This is the regular old paragraph where the first line is indented and the rest of the text in the para­
'graph is .flushed to the left margin. The first line was indented via a . ti +0 . 2 5 i request to give a
1tempo:rary indent of the first line.

• This paragraph is an example of an 'item' or 'bulleted' or 'hanging' paragraph, where the left mar­
gin is moved to the right, and the 'bullet' or 'tag' is moved back to the old left margin. This effect
was achieved via a . in +O . 2 5 i request to move the left margin rightward, and then the 'bullet'
was preceded by a . ti -0 . · 2 5 i request to get a 1temporary indent to the old position of the left
margin.

Finally, note that tab stops are relative to the current left margin as we show here with' a couple of
blocks of text with different indents. Note that the positions of the tab stops are shown with exclama­
tion point{!) characters:
! ! ! !
You can see by the line of ! marks above where the tab stops are.

Now we have an0ther block of.text here but with the indent moved over a half-inch. As y0u
can see by the tine of ! marks below, the tab stops have moved with the left margin:
! ! ! ! !

left footer center footer right footer

Revision A, 0f9 May 1988

!CJ

n

0

0

0

3.1. Margins and
Indentations

. po - Set Page Offset

Mnemonic:

Form of Request:

Initial Value~·

If NoArgument:

Explanation,:

Notes:

. 11 - Set Line Length

Chapter 3 - Page Layou~ 35

As we said above, the positions of the left-hand and right-hand margins are con­
trolled via the page,..offset and the line-length. After that, any movements of the
left-hand margin are controlled via indent and temporary indent requests; These
topics are discussed in the following subsections .

The usable page width on the Graphic Systems phototypesetter is about 7.54
inches, beginning about 1/27 inch from the left edge of the 8 inch wide, continu­
ous roll paper. The physical limitations.on nroff output are output-device
dependent.

The page-offset is the distance from the extreme left-hand edge of the paper te
the left margin of your text. When you use 'standard' 8.5xl 1-inch paper, it is
customary to have the left and right margins be one inch each, so that the physi~
cal length of the printed lines are 6.5 inches- or you'd say that the measu.ue was
39 picas.if you're a typographer and can't handle inches.

In general, you only set the page,.. offset once in the course of formatting a docu­
ment. Setting the page-offset determines. the position of the physical left margin
for the text, and then you (almost) never change the page-offset again - all
indentation is done via . in (indent) requests and . ti (temporary indent)
requests. We talk about these requests later in this. part of the manual.

The position ofthe physical right margin for the text is. determined by the line­
length relative to the page-offset. The . 11 (line length) request is. discussed
below.

Summary of the . po Request

page offset

.po±N

0 in nroff, 26/27 inch in troff.

Previous value

Set the current left margin to ±N. In troff the initial value is26/27inch,
which provides about one inch of paper margin ineluding the physical
typesetter margin of 1/27 inch. In troff the maximum (line­
length)+(page-offset) is about 7.54 inches. In nroff the initial page-offset
is zero.

v (see Table A-2)

The current page-offset is available in the . o register.

troff gives you full control over the length of the printed lines. By the way,
typographers don't use terms like 'line-length', they use the word 'measure' to
mean the length of a line. They always measure vertical distances in 'picas'.

Nevertheless, to set theline-length in troff, use the .11 (line length) request,
as in

•~sun
• microsystems

Revision A, 0£ 9 May 1,988

36 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

lfNo Argument:

Explanation:

Notes:

. in - Set Indent

[.....__.11 _6i _______]

As with.the . sp request, the actual length can be specified in several ways -
inches are probably the most intuitive unless y~m live in one of the very few
places in the world where they don't use inches.

The maximum line-length provioed by the typesetter is 7.5 inches., by the way.
To use the full width, you have to reset the default physical left margin ('page­
offset'), which is nonnally slightly- less than one inch from the left edge of the
paper. This is done by the . po (page offset) request discussed above.

{ .po 0 J
sets the offset as far to the left as it will go.

Note that the line-length includes indent space but not page-offset space. The
line-length minus the inoent is the basis 'for centering with the . ce request. The
effect of the . J.. 1 request is delayed, if.a partially-collected line exists, until after
that line is output. In fill mode, the length of text on an output line is less than or
equal to the line-length minus the indent. The current line-length is available in
the . l number register. The length of three-part titles produced by a . t l
request (see Chapter 7, Titles and Page Numbering) is independent of the line-
length set by the . lil. request- the length ofa three-part title is set by the .1 t n. , ·.
request. .

Summary of the .11 Request

line length

.ll±N

6.5 inches

Previous value

Set the line-length to N where N is the value of the line length, or an incre­
ment or decrement for the line-length. In troff the maximum (line­
length)+(page-offset) is about 7.54 inches.

E, m (see Table A-2)

Given that you've got your page-offset and line-length correctly set for a docu­
ment to establish the position of the left and right margins, you now make all
other movements of the left margin via the . in {indent) request discussed here,
and via the . ti (temporary indent) request described below.

The . in (indent) request indents the left margin by some specified amount from
the page-offset. This means that all the following text will be indented by the
specified amount until you do something to change the indent. To get only the
first line of a paragraph indented, you don't use the . in request, but you use the

Revision A, 0f 9 May 1988

n

(_)

(_)

Chapter 3 - Page Layou~ 37

. t. i (temporary indent) request described below~

As an example, a common text structure in books and magazines is the 'quota'­
tion' - a paragraph that is indented both on the right and the left of the line. A
quotation is used ror precisely that purpose, namely to set some text off from the
rest of the copy. We can achieve such a paragraph by using the . in request to
move the left margin in, and the . 11 request to move the right margin leftward:

f:

I: .in +0.5i
I .11 -0.5i

;;] was to lea.I:'n later in life that w.e tend. t.o meet!. any new

1

, situation by reorganizinc;g-; ancl a wonderful method

it. can be for creating the illusion of progress

,, while producing confusion, inefficiency, ancl demoralization.
11

I .ll +0.5i

.in -0.5i

When you format the above construct you get a block that looks like this:

I was to learn later in life that we tend to meet any new situation
by reorganizing; and a wonderful method it can be for creating
the illusion of progress while producing confusion, inefficiency,
and demoralization. 2

Notice the use of'+' and '-'to specify the amount of change. These change the
previous setting by the specified amount rather than just overriding it. The dis­
tinction is quite important: . 11 + 2 . 0 i makes lines two inches. longer, whereas
~ 11 2 . 0 i makes them two inches. long:

(

.11 2.0i
- , I was to learn later in life that we tencl to meet any new

i situation by reorganizing; and a w.onderful method
1 it can be for creating the illusion of progress

i

1

while producing confusion, inefficiency, ancll d~moralization.

I was. to learn later in life that
we tend to meet any new situa'"
tion by reorganizing; and a
wonderful method it can be for
creating the illusion. of progress
while produeing confusion,
jnefficieney ': and demoraliza-
tion.

With . in, .11, and . po, the previous valueis used if no argument is specified.
So, in the above example, the lines:

2 Petr:onius Arbiter,A.D. 60:

~\sun ~ microsystems
Revisi0n1 A, 0£ 9 May 1988

38 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

lfN o Argument:

Explanation:

Notes:

. ti -Temporarily Indent
One Line

[..____:~_! ~-~ :_:~ ____________]

I

could have been

[-~i
. in

J
and would have had the same effect.

Note that the line-length includes indent space but not page-offset space. The
line-length minus the indent is the basis for centering with the . ce request. The
effect of the . in request is delayed, if a partially collected line exists, until after
that line is output. In fill mode the length of text on an output line is less than or
equal to the line-length minus the indent. The current indent is available in the
. i number register.

Summary of the . in Request

indent

.in±N

0

Previous value

Set the indent to ±:N where N is the value of the indent, or an increment m
decrement on the current value of the indent. The . in request causes a
break.

E, m (see Table A-2)

The . ti {temporary indent) request indents the next text line by a specified
amount.

A common application for . ti is where the first line of a paragraph must be
indented just like the ~me you 're reading now. You get such a construct with a
sequence like:

.ti 3
·. A common application for . . .

• A. anddwbhethren the par~gfiradph i~ f~nna1ttiked,thi~e first liThr·ne of the phara?graph is .: .. r-'\····.. . muente y · e spec1 e uruts JUSt e s one. ee of w at. The default \)
unit for the . ti request, as for most horiz~mtally-oriented requests - . 11 (line
length), . in (indent), and . po (page offset) - is ems. An em is roughly the

Re~ision A, of9 May 1988

u

Chapter: 3 - Page Layout 39

width of the letter 'm' in the current point size. Thus, an em is alwaysprop@r­
tional to the point size you are using. An em in size p is the number of p points

in the width of an 'm'. Here's an em followed by an em dash in several point

sizes to shaw why this. is a proportional unit of measure. You wouldn't want a

20-point dash if yau are printing: the rest of a dacument in 12-point text. Here's
12-point text:

m
i.-1

Here's 16:-point text:

m
1-1

And here's 20-point text:

I~
Thus. a temporary indent of . ti 3 in the current point size results in an indent

of three m's width or Imm.ml.

Although inches· are usually clearetthan ems· to peaple wha don't set type for a·

living, ems have a place: they are a measure of size that is proportional to the

current point size. If you want to make text that keeps its proportions regardless
of point size, you should use ems for all dimensions. Ems can be specified as
scale factors directly, asin . ti 2. Sm~

Lines can also be indented negatively if the indent is already positive:

[.ti -l.3i J

moves the next line back three tenths of an inch. A common text structure found

in documents is 'itemized lists' where the paragraphs are indented but are set off

by 'bullets.' or some such. Item lists are often called 'hanging paragraphs'

because the first line with the item on it 'hangs' to the left. For example, you

could type the following series of lines like this (we've deliberately shartened the

length of the line to illustrate the effects):

Revision A, of 9 May 1988

40 Using nroff.andtroff

Mnemonic:

F tirm @f R'eq11est:

Initial Value:

If No Argument:

Explanation:

Notes:

r

\.

.11 4.0i

.in +0.2i

.ta +0.2i

.ce
Indent Control Requests

sh01rteni/inesifor1this example
1indent;/eftmargin1by1aififth 1inch
seta 1tabforrtheihafl.gifl.g1indent
centerra 1line of title

.ti:o .2i ,mo11e 1left,marginback1temporariily
\(bu ·tab the \fL\& .po\fP request sets the
page-offset to the ~esired amount thereby making
sure the left margin is correct .
. ti -0 . 2 i ,move left,ma'f!gin.back1temporarily
\(bu 1tab the \fL\&.in\£P request sets the
indent from the left margin for all following text .
. ti:o. 2i ,mo11eJeft.ma'f!gin,back1temporariily
\(bu1tab the \fL\&.ti\fP request sets the indent for
the following line of text only, thus providing for
fancy paragraph effects.

We had to play some tricks with tabs as well to geteverything lined up, but that
won't ·affect the main point of the discussion. The tab markers in the lines above
show where there's a tab character, and the\ (bu sequence at the start of the
lines gets you a bullet { •) like that - we'll show the special character sequences
later in this manual. When you fonnat the text as shown in the example above,
you get this· effect:

Indent Control Requests
• the . po request sets the page-offset to the desired amount

thereby making sure the kft margin is correct.
• the . in request sets the indent from the 1left margin for.all

following text.
• the . ti request sets· the indent for the following line of ,text

only, thus providing for fancy paragraph effects.

Remember that the line-length includes indentspace but.notpage-offset·space.
The effect ofa . ti request is delayed, if a partially collected line exists, until
after that line is output. In fill mode the length of text on an output line is less
than or equal to the line-length minus the indent. The current indent is available
in the . i register.

Summary of the . ti Request

temporary indent

.ti±N

0

Ignored

Indent the next output te~t line a distance ±.N with respect to the current
indent. The resulting total indent may n0t be negative. The cQrrent indent
is not changed. The . ti request causes a break.

E, m (see Table A-2)

j

, Re~isfon A, of9May1988

n

1'.)
. /

u

u

u

3.2. -Page Lengths, Page
Breaks, and
Conditional Page
Breaks

. pl - Set Page Length

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

Notes~·

. bp - Start a New Page

Chapter 3 - Page Layout 41

Neither nroff nor troff provide any facilities. for top and bott:om margins on

a page, nor for any kind of page numbering at all. The -ms macro package
described in a previous section of this manual sets things up so that reasonable

pagination with top and bottom margins and page numbers. is dcme automatically.

If you want top and bottom margins when using raw troff or Bro ff, you have
to do some tricky stuff. The tricky stuff is.done via traps and macros. The trap

tells troff or nroff when to do some processing forthe margins (for exam­

ple, you might set a trap to start the bottom margin 0.75 inches from the bottom

of the page), and the macro defineswhatto do when the trap is sprung. It is con­

ventional to set traps for them at vertical positions. 0 (top) and -N (N from the
bottom).

A pseudo-page transiticm onto the first page occurs. either when the first break
occurs or when the first non diverted text processing occurs. Arrangements for a

trap to occur at the top of the first page must be completed before this transition.

In the following tables, referencesto the current diversion mean that the mechan.­
ism being described works during both ordinary and diverted output (the former

considered as the top diversion level). Refer to Chapter 10 fot more information

on diversions~

Just as the . po, .11, . in, and . ti requests changed the horizontal aspects of
the page, the . pl (page length) request determines the physical length of the
page. In general you won't need to use the . p 1 request because the standard set­

ting is right for all but the most esoteric purposes.

Summary of the . pl Request

page length

.pl±N

11 inches

11 inches

Set page length to ±N. The internal limitation is about 75 inches in t.rof f

and about 136 inches in nroff. The current page length is available in the
. p number register.

v (see Table A-2)

This. request causes a break and skips to a new page .

Revision1 A, of: 9 May 1988'

42 Using nroff and trof.f

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

.pn-Set Page Number

Mnemonic:

Form of Request:

Initial Value:

I/No Argument:

Explanation:

. ne - Specify Space Needed

Summary of the . bp Request

begin page

.bpW

N=l

Increment current page number by 1.

Eject the current page and start a new page. If frN is given, the new page
number will be fr:N. Also see the . ns {no space)_request. The . bp request
causes a break.

v (see Table A-2)

Summary of the . pn Request

page number

. pn r1:.N

N=l

Ignored

The next page (when it occurs) will have the page number ±N. A . pn
request must occur before the initial pseudo-page transition to affect the
page number of the first page. The current page number is in the % register .

In some applications you need to make sure that a few lines of text all .appear
together on the same page. There are several ways to achieve this ranging fmm
simple to complicated. One of the simplest ways is to use the . ne {need) verti­
cal space request:

.ne 3
some
lines
of
text
,to

be
kept

: on the
1 same page

specify we need at ·least three lines

The arrangement of the . n e request specifies that if there are many lines of text
in (say) a paragraph, at least three of the lines will appear together on the same
page, otherwise a new page will be started. The object of this exercise is to avoid
what typographers call 'orphans' - that is, the first line of a paragraph appearing

+!!1,.!! Re~isi0n A, 0f 9 May 1988

()
' ~/

u

u

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation,:

Notes:

3.3. Multi-Column Page
Layout by Marking
and Returning

. mk - Mark Current
Vertical Position

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chapter: 3 - Page Laycm~ 43

all alone and lonely on the bottom of a page, while the rest of the paragraph
appears on the next page. This is generally considered to be somewhat ugly and
shc:mld be avoided if possible. By itself, troff is too stupid to recognize the
existence of orphans (indeed of any text constructs at all), but the facilities are
there to avoid these situations. In general, macro packages such as the -ms
macro package discussed elsewhere have 'begin paragraph' maeros such as . PP

which take care of controlling orphans;

Summary of the . ne Request

need

.neN

Not applicable

IV

Need N vertical space. If the distance, D, to the next trap position is less
than N, a forward vertical space of size D occurs, which will spring the trap.
If there are no remaining traps on the page, D is the distance to the bottom
of the page. If D < V, anodler line could still be output and spring the trap.
In a diversion, Dis the distance to the diversion trap, if any, or is very large.

v (see Table A-2)

It is possible to achieve multi-column output in troff or nroff via the . mk
(mark) and . rt (return) requests~ Other useful special effects. can also be
obtained using these requests, but one of the common uses is to do multi-column
output. Basically,the . mk request marks the current vertical position on the
page (you can place the result of the mark in a register). You do a column's
worth of output, then when you get to the end of the page, instead of starting the
next page, you return (via the . rt request) to the marked position, set up anew
indent and line-length, and crank out another column .

Summary of the . mk Request

mark

.mik.R

Not applicable

R is an internal register

Mark the current vertical place in an internal register (both associated with
the current diversion level), or in register R, if given. See the . rt request.

•\sun ~ microsystems
Revision A, of 9' May 1'988'

44 Using nroff and tro·f f

. rt - Return to Marked
Vertical Position

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . rt Request

return

.rt±N

Not applicable

return to place marked by a previous . mk request.

Return upward only to a marked vertical place in the current diversion. If
±N (with respect to the·current place) is given, the place is ±Nfrom the top
of the page or diversion or, ifN is absent, to a place marked by a prevfous
.mk. Note that the . sp request (refer to the chapter Line Spacing and
Character Sizes} may be used in all cases instead of . rt by spacing to the
absolute place stored in a explicit register; for example, using the sequence
.:mk R sp - \nRu.

Re~isfon A, of 9 May 1988

n

u
4

Line Spacing and Character Sizes

Line Spacing and Character Sizes... 47

4.1. . sp- Spaee V'ertically ... 47

4.2. . ps - Change the Size of the Type ... 48

4.3 .. vs -Change Vertieal Distance Between Lines....................................... 50

4.4. . 1 s - Chan.ge Line Spacing, .. 51

4.5. \ x Functfon - Get Extra Line-Spaee .. 52

0 4.6 .. sv- Save Block ofVertieal Space ~.. 52

4.7 .. os -Output Saved Vertical Space.. 53

4.8. . ns - Set No Space Mode .. 53

4.9. • rs - Restolie SpaceMode .. 53

4.10. . s s - Set Size of Space Character .. 54

4.11. . cs - Set Constant-Width Characters .. 54

n
_/

(

u

G

/
(\

\.._)

4.1 . . sp - Space
Vertically

4

Line Spacing and Character Sizes

You get extra vertical space with the . sp (space) request. A simple

(_.sp _____ __..J
request with no argument gives. you one extra blank line (one . vs, whatever that
has been set to). Typically, that's more or less than you want, so . sp can be fol­
lowed by information about how much space you want -

[__ .sp-2i _______]

means 'two inches. of vertical space'.

[.sp 2p
J

means. 'two points of vertical space'; and

[_.sp-2 _______]
means 'two vertical spaces.'- two of whatever . vs is set to (this can also be
made explicit with . sp 2v); troff also understands decimal fractions in most
places, so

[.sp 1.5i J

is a space of 1.5 inches~ These same scale factors can be used after the . vs

request to define line spacing, and in fact after most requests that deal with ph.ysi""
cal dimensicms.

It shcmld be noted that all size numbers are converted intemally to 'machine
units', which are 1/432 inch (1/6 point). For most purposes,thisis_.encmgh reso­
lution that you don't have to. worry about the accuracy of the representation. The
situation is. not quite so good vertically, where resolution is 1/144 inch (1/2
pd int)~

Revision A, ofi 9 May 1·988'

48 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.2. . p s - Change the
Size of the Type

Summary of the . sp Request

space

.spN

Not applicable

N=lV

Space vertically in either direction. If N is negative, the motion is backward
(upward) and is limited to the distance to the top of the page. Forward
(downward) motion is truncated to the distance to the nearest trap. If the
no~space mode is on, no spacing occurs {see . n s, and . rs below).

B, v(see Table A-2)

In troff, you can change the physical size of the characters that are printed m
the page. The . ps (point size) request sets the point size. One point is 1/72
inch, so 6-point characters are at most 1/12-inch high, and 36-point characters are
1/2-inch. troff and the machine it was originally designed for understand 15
point sizes, listed below.

, 6 paint:'Pack my box with five dozen liquor jugs. ~
7 point: Pack1my box with five, dozen liquor j\lgs. ()
:8,point: Pack1my box :withifive1dozeniliquor~qgs. \ /
9 point: Pack my box with ifive dozen :liquor jugs.
10 point: Pack my box with five dozen liquor jugs.
11 point: Pack my box with five dozen liquor jugs.
12 point: Pack my box with five dozen liquor jugs.
14 point: Pack my box with five dozen liquor jugs.
16 point: Pack my box with five dozen liquor jugs.
18 point: Pack my box with five dozen liquor jugs.
20 point: Pack my box with five dozen liquor jugs.
22 point: Pack my box with five dozen liquor jugs.
24 point: Pack my box with five dozen liquor jugs.
28 point: Pack my box with five dozen liquor

36 point: Pack my box with five doz
Ifthe numberaftera .ps request is not one of these legal sizes, it is rounded up
to the next valid value, with a maximum of36. If no number follows . ps.,
troff reverts to the previous size, whatever it was. :troff begins with point ,r-'\
size 10, which is usually fine. This document is in 11-point. 1

Re~ision A, of9 May 1988

U·
Chapter 4~ - Line Spacing and Chm:acter Sizes 49

The point size can also be changed in the middle of a line or even a word with an
in-line size change sequence. In general, text which is in ALL CAPITALS in the
middle of a sentence tends to loom large over the rest of the text and so it is cus:­
tomary to drop the point size of the capitals so that it looks like ALL CAPITALS

instead. You use the \ s (for size) sequence to state what the point size should
be. You can state the size explicitly as in this line here:

(_~T-h_e __ _·s_s_P_o_WE __ R__s_o_· _o_f_a __ _s_a_s_u_N__·s_o __________________________ __,]

to produce the output line like:

The POWER of a SUN

As above, \ s should be followed by a legal point size, except that \ s O makes
the size revert to its previous. value (before you just changed it).

Note that because there are a fixed number of point sizes that the system knows
about, the sequence \ s 9 6 gets you a nine~poin~ 6 instead of 96;JX>int type like ycm
wanted, whereas the sequence \ s 18 O gets you an 18-point U instead of 180-
point type.

Stating the point size in absolute terms as above is not always a good idea -
what you really want is for the changed size to be relative to the surrounding text,
so that if your document is ih 11-point type like this one, you'd really like the
bigger (or smaller stuff) to be a couple of points different without your having to
know explicitly what the actual size is~ So in this case, you can use a relative
size-change sequence of the form \s+ n to raise the point size, and \s- n to
lower the point size. The number n is restricted to a single digit. So we can
rework our previous example from above like this:

[The \.s-2P0WER\s+2 o,f a \s-2SUN'\s+2 J
to produce the output line like:

[The POliER of a SUN]
Relative size changes have the advantage that the size difference is independent
of the starting size of the document. Of course this. stuff only works really well
(in typography terms) when the changes in size aren't too violently out of whack
with the point size - a change of two points in 36-point type doesn't have quite
the same impact as it does for 12-point type - there is a question of the weigh~
of the type, but by the time you get to that stuff you '11 be much more knowledge­
able about typography.

The current size is available in the . s number register. nroff ignores type size
control.

Revision A, 0£ 9 May 1988'

$0 Bsing nroff and tro.f f

Mnemonic:

Form .of Request:

Initial Value:

lfNo Argument:

Explanation:

Notes:

4.3. . vs - Change
Vertical Distance
Between Lines

Summary of the . ps Request

point size

.ps -±N

10points

Previous value

Set point..;size to ±N. Alternatively embed\ sN or \ s-±N. Any positive size
value may be requested; if invalid, the next larger valid size will result, with
a maximum of36. The sequence

.ps +N

.ps N

works the same as

.ps +N

.ps ~N

because the previous requested value is also remembered. Ignored in
nr,off.

E(see Table A-2)

The other parameter that determines what the type looks like is the spacing
between lines, which is set independently of the p0int size. Vertical spacing is
measured from the bottom of one line to the bottom of the next. The oottom of
the text on a line is often called the baseline. The vertical spacing is often/called
leading (pron~mnced 'led-ing') and comes from the days when text was produced
with lead slugs instead of electronic widgets like laser printers.

You control vertical spacing with the . vs {vertical spacing) request. For run­
ning text, it is usually best to set the vertical spacing aoout 20% bigger than the
character size. For example, so far in this document, we· have used 11-point type
with a vertical line..:spacing of l3 points between baselines. Typographers call
this '11 on 13', so when you hear some one say that a book is set in '11 on 13 ',
you know that it's 11-point type with 13-point vertical spacing.

So, somewhere at the start of this document, the macro package that fonnats this
document for us had requests like:

1

[_.ps ll-p ____].· - .vs 13p -

Had we set the point size and the vertical spacing like this:

(~
/

:[:~: ~~: J !~
-----------------------------~ ·. ,·

Re~ision A, of'9 May 1988

u

u Mnemonic:

Form of Request:

Initial Value;·

If No Argument:

Explanation:

Notes:

4.4. . ls - Change Line
Spacing

Chapter 4- Line Spacing and Charracter: Sizes 51

the running text would k>ok like this. After a few lines, you will agree it looks a
little cramped. The right vertical spacing is partly a matter of taste, depending on
how much text you want to squeeze into a given space, and partly a matter of
traditional printing style. By default, t:rroff uses 10 on 12.

Point size and vertical spacing make a substantial difference in the amount
of text per square inch. This is 12 on 14.
Point si7.C and wrtical spacing makD a substantial difference in the amount of:tcxt per square inch. Far cxamplc, 10 on 12 UBC11 about twice as much
space as 7. on 8. This iS 6 'm ,7, which ii even smaller •. It packs a lot :more wordS pcrliilc, ,but you can gQ ·blind 'trying to n::ad it.

When used without arguments, both . ps and . vs revert to the pvevious size amd
vertical spacing respectively.

The vertical spacing (V) between the base-lines of successive output lines can be
set using the . vs request with a resolution of 1/144 inch= 1/2 point in troff,
and to the output device resolution in nroff. Vmust be large enough to accom,..
modate the character sizes on the affected output lines. For the common type
sizes (9-12 points), usual typesetting practice is to set V to. 2 points greater than
the point size; troff default is 10-point type on a 12-point spacing. This docu­
ment is set in 11-point type with a 13-point vertical spacing~ The current Vis
available in the . v number register.

Summary of the . vs Request

vertical spacing

.vsN

1/6 inch in nroff, 12 points in t:rroff.

Previous value

Set vertical base-line spacing size V. Transient extra vertical space avail­
able with \x'N '(see section on \x Function).

E, p (see Table A-2)

Multiple-¥ line separation (for instance, double spacing} can be requested with
the . 1 s (line spacing) request.

Revision A, of 9 May 1988

.52 lJsing nroff and trof.f

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.5. \ x Function - Get
Extra Line-Space

4.6 . . sv-Save Block of
Vertical Space

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . ls Request

line spacing

.lsN

N=l

Previous value

Set line spacing to ±:N. N-1 Vs (blank lines) are appended to each output
text line. A)!)pemled blank lines are omitted, if the text or previous a)!)pended
blank line reached a trap position.

E (see Table A-2)

Ifa word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function
\ x 'N 'can be embedded in or attached to that word. In this and other functions
having a pair of delimiters around their parameter (here '), the delimiter choice
is arbitrary, except that it can't lo0k like the continuation ofa number expression
for N. If N is negative, the output line /containing the word will be preceded by N
extra vertical space; if N is positive, the output line containing the word will be
followed by N extra vertical space. If successive requests for extra space a)!)ply
to the same line, the maximum values are used. The most recently used post-line
extra line~space is available in the . a register.

A block of vertical space is ordinarily requested using the . sp (space) request,
which honors the no"'space mode and which does not space past a trap. A con­
tiguous block of vertical space may be reserved using the . sv request (see
below).

Summary of the . sv Request

save space

.svN

Not applicable

N=lV

Save a contiguous vertical block of size N. If the distance to the next trap is
greater thanN, N vertical space is output. No~space mode has no effect. If
this distance is less than N, no vertical space is immediately output, but N is
remembered for later output (see the . os request). Subsequent . sv
requests will overwrite any still-remembered N.

v (see Table A-2)

+~.!! Re~isicm A, of9 May 1988

()

u
4. 7. . o s - Output Saved

Vertical Space

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

4.8 •. ns - Set No Space
Mode

Mnemonic:

Form of Request:

Initial Value":

If N oArgument:

Explanation:

Notes:

4.9 .. rs - Restore Space
Mode

Mnemonic:

Form of Request:

Initial Value,:

If No Argument:

Exp.lanation:

Notes:

Chapter 4- Line Spacing and Char:acter: Sizes 53

Summary of the . os Request

output saved space

.OS

Not applicable

Output saved vertical space

Output saved vertical space. No-space mode has no effect. Used to finally
output a block of vertical space requested by an earlier . s v request.

Summary of the . ns Request

no-space mode

.ns

Not applicable

Tum on no-space mode

Tum on no-space mode - When on, the no-space mode inhibits .. sp
requests and . bp requests. without a next page number. The no-space mode
is turned off when a line of output occurs, or with . rs.

D (see Table A-2)

Summary of the . rs Request

restore space mode

• ES

Not applicable

Tum off no-space mode

Restore spacing- tum off no-space mode.

D (see Table.A-2)

Revisicm1 A, 0£ 9 May 1988

54 Using nroff and troff

4.10. . ss - Set Size of
Space Character

Mnemonic:

F @rm of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

4.11 .. cs -Set Constant­
Width Characters

Mnemonic:

Form @f Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . ss Request

space..;character. size

.ssN

12/36 em

Ignored

Set space-character size to N/36 ems. This size is the minimum word spac­
ing in adjusted text. Ignored in nroff.

E (see Table A-2)

Summary of the . cs Request

constant· spacing

.csFNM

Off

Ignored

Constant character space (width) mode is set on for font F (if mounted); the
width of every character is taken as N/36 ems. If Mis absent, the em is that
of the character's point size; if Mis given, the em is M-points. All affected
characters are centered in this space, including those with an actual width
larger than this space. Special Font characters occurring whlle the 1Current
font is F are also so treated. If N is absent, the mode is turned off. ·The
mode must be still or again in effect when the characters are physically
printed. Ignored in nroff.

P (see Table A-2)

Revisicrm A, 0f9 May 1988

(~
/

~
1.)

(~
. I

l
/

(\ u

5
Fon ts and Special Characters

Fonts and Special Characters .. 57

5.1. . ft - Set Font .. 58

5.2. . f p - Set Font Position ... 59

5.3. . f z - Force Font Size ... 59

5.4. . bd - Artifieial Boldfaee .. 60

5 .. 5.. Charaeter Set .. 61

/' 5.6. Fonts:... 62
{ I

_/ 5. 7. . lg - Control Lig·atures· ... 62

u

()

I~
\ _)

n ,,

c

5
Fonts and Special Characters

troff and the typesetter allow four different fonts at any one time. Nonnally
three fonts (Times. Roman, italic and bold) and one collection of special charac­
ters. are pennanently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
. ABCDEFGHIJKLMNOPQRSTUVWXYZ
abadefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

! abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGillJKLMNOPQRSTUVWXYZ

The Greek, mathematical symbols, and miscellany of the special font are listed in
Appendix B,Font and Character Examples.

troff prints in Roman unlesstold otherwise. To switch into bold, use the . ft
(font) request:

(.ft B

and for italics,

(.ft I

To return to Roman, use . ft R; to return to the pvevious font, whatever it was,
use either . ft P or just . ft.

J

J

57 Revision A, 0£ 9 May 1988'

58 Bsing nro.f f and troff

5.1. . ft - Set Font

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . ft Request

font

.ftF

Roman

Previous Font

Change font to F. Alternatively, embed\ fF. The font name P is reserved
to mean the previous font.

E (see Table A-2)

The 'underline' request

[.ul
J

makes the next input line print in italics. . ul can be followed by a count to indi­
cate that more than one line is to be italicized. Refer to Chapter 2 for a more
detailed description of the . ul request.

n
/

Fonts can also be changed within a line or word with the in-line request \ f: ()

boldface text

is produced by the input

(\fBbold\fiface\fR text

If you want to do this so the previous font, whatever it was, is left undisturbed,
insert extra in-line \ f P commands, like this:

]

(_'_· f_B_b_o_1_d__f_P__f_:r_f_a_c_e__fP__ .. f_R_t_e_x_t__f_P _____________ J
Because only the immediately previous font is remembered, you have to restore
the previous font after each change or you lose it. The same is true of . p s and
• :vs when used without an argument.

There are other fonts available besides the standard set, although you can still use
only four at any given time. The . fp (font position) request tells troff what
fonts are physically mounted on the typesetter:

{ .fp 3 H

says that the Helvetica font is mounted on position 3. Appmpriate . fp requests
should appear at the beginning of your document if you do not use the standard
fonts.

]

~~sun ~~ microsystems Revision A, of9 May 1988

' /

!~
\)

/

I . u

u

u

5.2. . f p - Set Font
Position

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

5.3 •. fz -Force Font Size

Mnemonic:

F orm1 of Request:

Initial Value~·

If No Argument:

Explanation:

Chapter 5 - Fonts. and Special, Chllllacte!ls 59

It is possible to make a document relatively independent of the actual fonts used
to print it by using font numbers instead of names; for example, \ f 3. and· . ft 3
mean 'whatever font is mounted at position 3', and thus work for any setting.
Nonnal settings are Roman font (R) on font position 1, italic (I) on position 2,
bold (B) on position 3, and special (S) on position 4 - the mnemonic 'RIB S'
might help you remember.

Summary of the . fpRequest

font position

.fpNF

R, I, B, S

Ignored

Font position - this is. a statement that a font named F is mounted on posi­
tion N (1-4). It is a fatal error if F is not known. The phototypesetter has
four fonts physically mounted. Each font consists of a film strip that can be
mounted on a numbered quadrant of a wheel. The default mounting
sequence assumed by troff is R,J, B, and Son positions 1, 2, 3 and 4.
Any . f p request specifying a font on some position must precede . f z

requests relating to that position.

Summary of the . fz Request

font size

. fz SF N

None

None

Forces font For S for special characters to be in sizeN. A . fz 3 -2
causes implicit ~ 2 every time font 3 is. entered, and a matching~+ 2 when
left. Same for special font characters that are used during F. Use S to han­
dle special characters during F. . f z 3 -3 or . f z s 3 -0 causes
automatic reduction of font 3 by 3 points while special characters are not
affected. Any . f p request specifying a font on some position must precede
. f z requests relating to that position.

There is also a way to get 'synthetic' bold fonts by overstriking letters. with a
slight offset. Look at the . bd request.

Revision1A, o£9May 1988

00 Using nroff and troff

5.4. . bd - Artificial
Boldface

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Form of Request:

Explanation:

Notes:

Summary of the . bd Request

bold

.hdFN

Off

No Emboldening

Artificially embolden characters in font F by printing each one twice,
separated by N-1 basic units. A reasonable value forN is 3 when the char­
acter size is in the vicinity of 10 points. If N is missing the embolrlen mode
is turned off. The mode must be still or again in effect when the characters
are physically printed. Ignored in nI1off.

.bd SFN

Embolden characters in the special font whenever the current font is F. The
mode must be still or again in effect when the characters are physically
printed.

P (see Table A-2)

Special characters have four-character names begimtlng with \ (,and they may
be inserted anywhere. For example,

1A4 ·1h= %

is produced by

(__<_1_·4_+_· _'_<_1_2_= __ ,_<_3_·4 ___________________________________ J
In particular, Greek letters are all of the form \ (* x, where x represents an upper­
or lower-case Roman letter reminiscent of the Greek .. Thus to get

in raw 1troff we have to type

(__. ·._< *_s_<_'_·<_*_a__·<'m_u__. ·_< *_b_>_'_<_-_>__< i_· f ________________ J
That line is unscrambled as follows:

Re~isfon A, of 9 May 1988

n

n , I

u

5.5. Character Set

(\
_)

Chapter 5- Fonts. and Special1 Ch3Iiacte11s 611

Escape Character
Description Sequence Printed

'

\ (*S l: Upper-case·Sigma or Sum
((

·\(*a a lower-case alpha
\(ma x multiplication sign or signum
\(.*b ~ lower-case beta
))
\(-> ~ tends toward
\(if 00 infinity

A complete list of these special names occursin Appendix B, Font and Charae'"
ter Examples.

In eqn, explained in the chapter ''Formatting Mathematics with eqn" in Format­
ting Documents, you can achieve the same effect with the input

(SIGMA (alpha times beta) -> inf]
which is less concise (31 keystrokes instead of 27!), but clearer to the uninitiated.

Notice that each four-character name is a single character as far as troff is con­
cerned. For example, the translate request

[
-.tr \.(mi\ (em].

-------.....----'
is perfectly clear, meaning

[_[.tr_--:-______)

that is~ to translate- (minus sign) into-(em-dash).

Some characters are automatically translated into others: grave 'and acute '
accents (apostrophes) become open and close single quotes''; the combination
of'' ... '' is generally preferable to the double quotes"~ .. ". Similarly a typed
minus sign becomes a hyphen -. To print an explicit - sign, use \-. To get a
backslash printed, use \e~

The troff character set consists of the Graphics Systems Commercial II char­
acter set p1us a Special Mathematical Font character set - each having 102 char­
acters. These character sets are shown in Appendix B, Font and Character
Examples. All ASCII characters are included, with some on the Special Font
With three exceptions, the ASCII characters are input as themselves, and non­
ASCII characters are input in the form \ (xx where xx is. a two-character name
also explained in Ap.(l>endix B. The three ASCII exceptions are mapped as fol­
lows:

Revision' A, of 9 May 1988

62 Using nroff and troff

Table 5-1

5.6. Fonts

5.7. . lg - Control
Ligatures

:,

:

:

'·

Exceptions to the Standard ASCII Character Mapping

ASCII Input Printed by troff
Character Name Character Name

:

,
acute accent ' ' close quote

...
grave accent ' open quote

- minus
:

- hyphen
:

The characters ', ' , and - may be input by \ ' , \ ' , and \- respectively or by
their names found in Appendix B. The ASCII characters.@, #, ", ', ', <, >, \, {,
} , - , , and _ exist only on the Special Font and are printed as 1l one..;em space if
that font is not mounted.

nroff understands the entire troff character set, but can in general print only
ASCII characters, additional characters as may be available on the output device,
such characters as may be constructed by overstriking or other combination, and
those that can reasonably be mapped into other printable characters. The exact
behavior is determined by a driving table prepared for each device. ·Tue 'Charac­
ters ', ' , and _ print as themselves.

The default mounted fonts are Times Roman (R), Times Italic (!), Times Bold
(B), and the Special Mathematical Font{S) on physical typesetter positions 1, 2,
3., and 4 respectively. ·These fonts and others are used in this document. The
current font, initially Roman, may be changed (among the mounted fonts) by use
of the . ft request, or by embedding at any desired point either \ fx, \ f (xx, or
\ fN where x and xx are the name of a mounted font and N is a numerical font
position. It is not necessary to change to the Special font; characters on that font
are automatically handled. A request fora named but not-mounted font is
ignored. troff can be informed that any particular font is mounted by use of
the . fp request. The list oflrnown fonts is installation..;dependent. In the subse­
quent discussion of font-related requests, F represents either a one- or two­
character font name or the numerical font position, 1 through 4. The current font
is available (as numerical position) in the read-only number register . f.

nroff understands font control and_ normally underlines italic characters.

A ligature is a·special way ofjoining two characters together as one. Way back
in the days before Gutenberg, scribes would have a variety of special forms to
choose from to make lines come out all the same length on a manuscript. Some
of these forms are still with us today.

Five ligatures are available in the current troff character set- fi, fl, ff, ffi, and
ffl. They may be input (even in nroff) by\ (fi, \.(fl,\ (ff,\ .(Fi, and
\ (Fl respectively.

(~
' /

The ligature mode is normally on in troff, and automatically invokes ligatures n.... '

during input. .

·Revisfon A, 0f 9 May 1988

/ u

Mnemonic:

Form ofi Request:

Initial Value~·

If No Argument:

Explanation,:

(\ u

Chapter 5- Fonts and, Special1 Chwacters 63

If you want other ligatures like the re, re, IE, and CE ligatures, you have to make
them up yourself - t:rro ff doesn't know about them. See Chapter 12 the sec­
tion on ''Arbitrary Horizontal Motion" (the \h function) for some examples on
constructing these ligatures.

Summary of the . lg Request

ligature

.lgN

Off in nroff, on in tro,ff.

on

Turn Ligature mode on-ifN is absent or mm-zero. Turn ligature mode off if
N=O. If N=2, only the two-character ligatures are automatically invoked.
Ligature mode is. inhibited for request, macro, string, register, or file names,
and in copy mode. No effect in nroff.

Revision A, 0£ 9 May 1988

IC)

n

u
6

Tabs, Leaders, and Fields

Tabs, Leaders,. and Fields ... 67

6.1. . ta-Set Tabs... 67

Setting Relative Tab Stops .. 68

Right-Adjusted Tab Stops... 68

Centered Tab Stops·... 68

. t c - Change Tab Repfaeement Charaeter ... 69

Summary· of Tabs... 70

6.2. Leaders - Repeated Runs of Charaeters .. 71

. 1 c - Change the Leader Charaeter ... 73

6.3. . f c - Set Field Charaeters. ... 74

u

u

6.1. . ta - Set Tabs

word-one
!
word-two

6
Tabs, Leaders, and Fields

There are several ways to get stuff lined up in columns, and to achieve other
effects such as· horizontal motion and repeated strings· of characters. The three
related topics we discussin this section are tabs, leaders, andfields.

tabs behave just like the tab stops on a typewriter.

leaders are for generating repeated strings of characters.

fields are a general mechanism for helping to line stuff up into
columns~

This part of the document concentrates on the 'easy' parts, so to speak. Later
sections of this document contain discussions on the facilities for drawing lines
and for producing arbitrary motions on the page.

Tabs (the ASCII horizontal tab character) can be used to produce output in
columns, or to set the horizontal position of output. Typically tabs are used only
in unfilled text. Tab stops are set by default every half inch from the current
indent (in troff) and every 0.8 inch from the current indent (in nroff), but
can be changed by the . ta (tab) request. In the example below, we set tab stops
every one-and-a-half inches and set some text in columns based on those tab
stops. We place a line of exclamation marks (!) above and below the text to
show where the tabs stops are in the output page:

seNabs , .ta 1.5i 3.0i 4.5i 6.0i
I taM taMtaMtab·I show where tabs are with/character:

• · word-one tab word-two tab word-three tab word-four tab word-five

1

I tab I tab I tab I tabcl
I

When we format the above example, we get this output:

!
word-three

67

!
word-four

!
word-five

Revision1 A, 0£ 9: May 1988'

68 Using nroff and troff

Setting Relative Tab Stops

Right-Adjusted Tab Stops

Centered Tab Stops

The tab stops set in the example above are in terms of absolute position on the
line. You could also set tabs relati1ve to previous tabs stops by preceding the tab
stop number with a 4 sign, and get exactly the same result:

.ta 1.51 +1.51 +1.51 +1.51
, ! 1tab ! 1tab ! tab ! 1tab !

setrtabs

word-one 1lab word-two 1tab word-three 1tab word-four 1tab word-five
! tab ! 1tab ! 1tab ! ,tab !

In the standard case as shown in the above examples, the tab stops are left­
adjusted (as on a typewriter). You can also make the tab stops right-adjusting for
doing things like lining up columns of numbers. When you right-adjust a tab
stop, the action of placing a tab before the field places the material behind the tab
stop on the output line. Here"s an example of some input with both alphabetic
and numeric items:

.nf

.ta 2.0d.R
July tab 5
August tab 9
Septembe,r tab 15
Oct0ber tab 60
November tab 85
December tab 12 6
.fi

Notice the . ta request - it has the letter R on the end to indicate that this is a
right-adjusted tab. When we format that table, we get this result:

July 5
August 9
September 15
October 60
November 85
December 126

Notice how the numbers in the second column line up.

Finally you can make a centered tab stop, so that things get centered between the
tabs. We can use the centering tabs to put a title on our table from above:

Revision A, 0f9 May 1988

n

u

u

. tc - Change Tab
Replacement Character

Chapter 6 - Tabs, Leaders, and Fields 69

.nf

.ta 2.0iC
Month tab Shipments
.ta 2.0±R

1 July tab 5
August tab 9
Sept.ember tab 15
October tab 60
November tab 85
December tab 126
.fi

and when we format this table now, we get this. result:

Month
July
August
September
October
November
December

Shipments
5
9

15
60
85

126

Notice that the column headings are centered over the data in the table.

If you have a complex table,instead of using troff or nroff directly, use the
tbl pmgram described in the chapter "Formatting Tables with tbl" in Format­
ting Documents. A good example of where tbl does more work for you is. when
numerically-aligned items have decimal points in them - it is. really hard to do
this using the raw troff or nro,ff capabilities~

A tab inserts blank spaces between the item that came before and after it. You
can change this by filling up tabhed-over space with some other character. Set
the 'tab replacement character' with the . t c (tab character) request:

;: Name -tab Age tab

~.ta £.Si 4.5i
.tc

This produces

Name ___________ Age

There is. a more general mechanism for drawing lines, described in the sections
''Drawing Vertical Lines'' and ''Drawing Horizontal Lines'~ in the chapter "Arbi""
trary Motions and Dmwing Lines and Characters."

To reset the tab replacement character toa space, use the . t c request with n0

argument. Lines can also be drawn with the in-line \1 command, described in
the chapter "Arbitrary Motions and Drawing Lines and Characters."

l

Revision1 A, 0£ 9 May t988

70 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of Tabs

Table 6-1

I

i

'

:

Summary of the . tc Request

tab character

.t'c c

space

Removed

The tab repetition character becomes c, or is removed, specifying motion.

E (see Table A-2)

The table below is a summary of the types of tab stops. There are three types of
internal tab stops - left-adjusting, right-adjusting, and centering. In the follow­
ing table:

D

next~string

w

is the distance from the current position on the input line
(where a tab was found) to the next tab stop.

consists of the input characters following the tab up to the next
tab or end of line.

is the width of next-"string.

Types of Tab Stops

'

Tab Tab Length .of motion or
:

Location of
letter• type repeated characters next-iString

'

i

'

blank. Left : D FollowingD
I R ' Right ' D-W Right adjusted within D

c Centered' D--W/2 Centered on right end of D
i

Revisi0n A, 0f9 May 1988

1t]

/ ' u

u

u

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

6.2. Leaders - Repeated
Runs of Characters

Chapter 6-Tabs, Leaders, and Fields 71

Summary of the . ta Request

tab

.taNt ...

0.8 inches in nroff, 0.5inches in troff.

Ignored

Set tab stops and types- N is the tab stop value and t is the type. troff
tab stops are preset every0.5 inches; nroff tab stops are preset every 0.8
inches~ t=R means. right-adjusting tabs, t=C means. centering tabs, and if tis
absent, the tabs are left-adjusting tab stops. Stop values in the list of tab
stops are separated by spaces, and a value preceded by + is treated as an
increment to the previous stop value.

E, m (see Table A-2)

Leaders are repeated runs of the same character between tab stops~ Leaders. are
most often used to hang two separated pieces of text together. A common appli­
cation is in tables of contents. If you look at the contents for this manual you
will see that the chapter and section titles. (on theleft of the line) are separated
from the page number (on the right end of the line) by a row of dots. In fact here
is a short example to illustrate what the leaderslook like:

Contents

2.0 Blunt Uses of Clubs. 13
16
18
25
29

2.1 Social Clubs·
2.2 Arthritic Clubs
2.3 Golf Clubs .. .
2.4 Two-by-Four Clubs

The dots. are called leaders, because they 'lead' your eye from one thing to the
other. It is not nearly so easy to read stuff like that if the leaders aren't there:

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Contents

13
16
18
25
29

The leader character is normally a period, but it can in fact be any character you
like - some people prefer dots and some people prefer a solid line:

•\sun ~ microsystems
Revision A, 0£ 9 May 1988

72 Using nroff and troff

Contents

2.0 Blunt Uses of Clubs --------------
2.1 Social Clubs

13
16
18
25
29

2.2 Arthritic Clubs
2.3 Golf Clubs
2:4 Two-by-Four Clubs

A leader is very similar to a tab, but you get the· repeated characters by typing an
in-line \a sequence instead of a tab or a \ t sequence. The \a sequence is a
control-A character or an ASCII SOH (start of heading) character and is hereafter
known as the leader character for the purposes of this discussion. When the
leader character is encountered in text it generates a string of repeated characters.
The length of the repeated string of characters is governed by internal tab stops
specified just as for ordinary tabs as discussed in the section on tabs above. The
major difference between tabs and foaders is that tabs generate motion and
leaders generate a string of periods. Let's look at a fragment of the text that gen­
erated the examples above:

.ns

. ta 5. Oi-SnR 5 .. OiR
2.0 Blunt Uses of ·Clubs \a\t13"

2.Q Social Clubs \a\tl~"
2.2 Arthritic Clubs \a\t18"
2. 3 ·Golf ·CiLubs \a\t25"
2. 4 'Two-by-Four CJ..ubs \a\ 1t29"

.nE

What we're trying to get here are lines of.text with the section numbers and the
titles, followed by a string ofleader characters, followed by some space and then
the page number at the right-hand end of the line. Tables of contents tend to rlo0k
better with shorter line lengths, so we set 0ur first tab to five inches minus five
en~spaces to foave a gap at the end of the leader. The sec~md tab is set to a right­
adjusting tab at five inches. Each line of the table now contains the text to appear
on the left end, followed by a couple of spaces, followed by the \a sequence to
indicated the leader, followed by the \ t sequence to indicate the tab, and finally
followed by the page number. The result of formatting all that stuff is:

2.0 Blunt Uses of Clubs 13
2.1 Social Clubs 16
2.2 Arthritic Clubs 18
2.3 Golf Clubs25
2.4 Two-by-Four Clubs 29

4}\sun
~" , microsystems

Revisfon A, IDf 9 May 1988

u

u

. 1 c - Change the Leader
Character

2.0 Blunt Uses of Clubs
2.1 Social Clubs
2.2 Arthritic Clubs
2.3 Golf Clubs
2.4 Two-by-Four Clubs

Mnemonic:

Farm oj Request:

Initial Value~·

If No Argument:

Explanation·:

Notes:

Chapter 6.- Tabs,.Leaders, and, Fields 73

Just as you could use the . t c request to change the character that gets generated
with tabs, you can use the . 1 c Qeader character) request to specify the character
that is generated by a leader. The standard leader character is. the period. We can
show this by talcing our last fragment and placing a . le request before it to
change the leader character to an underline:

, .DS
.le set leader character
. ta 5. Oi-SnR 5. OiR settabs
2.0 Blunt Uses of Clubs \a\t13"

2.1 Social Clubs \a\t16"
2.2 Arthritic Clubs \a\t18"
2.3 Golf Clubs \a\t25"
2.4 Two-by-Four Clubs \a\t29"

, .DE

Then when we format the thing, it looks like this:

13
16
18
25
29

Whereas. the length of generated motion for a tab can be negative, the length of a
repeated character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is added before the leaders as
space. Tabs or leaders found after the last tab stop are ignored, but may be used
as next-string terminators.

Tabs and leaders are not interpreted in copy mode. \ t and \a always generate a:
non-interpreted tab and leader respectively, and are equivalent to actual tabs and
leaders in copy mode.

Summary of the . le Request

leader character

.le c

Removed - successive \as act like tabs

The leader repetition character becomes c, or is removed. Successive leader
requests (\as) act like tabs.

E (see Table A-2)

Revision A, of 9 May 1988'

74 Using nroff and troff

6.3. . f c - Set Field
Characters

A field is a more general mechanism for laying out material between ta stops.
Hardly anyone ever needs to use fields, but the tbl preprocessor uses em for
placing tabular material on the page. This section is a very short discus ion on
how to use fields. In general, when you want to lay out tabular material ou
should use tbl to do the job for you. Fields are a way of reducing the umber of
tab stops you have to set, and also have troff or nroff do some auto atic
work in parceling out padding space for you.

A field lives between the current position on the input line and the next b stop.
The start and end of the field are indicated by a field delimiter character. troff
or nroff places the field on the line and pads out any excess space wi spaces.
You indicate where the padding actually goes by placing padding indica or char­
acters at various places in the field. You set the field delimiter character and the
padding indicator character with the . fc (field characters) request. In e
absence of any other information, troff or nroff has the field mech · ·sm
turned off entirely. The . f c request looks like:

.f.c dp

where d is the field delimiter character and p is the padding indicator ch racter.
If you do not specify any character for a padding indicator, the space ch racter is
the default. However, this means that you could not have spaces within e field,
so you normally specify the padding indicator as something other than a space.

So lefs start with a very simple example of a single field and see what
Here is the input:

. ta 3 .Oi set a si!Jgle·tab•atithree1inches

. fc # @ set{le/d:delimiter character· lo #·and
setpaddi11,g ·indicator character•lo·@

! •tab ! the ! characters shaw where tabs:are
#string of characters#
! ·tab the 1 characters.shaw.whereitabsrare
.fc

and here is the output after formatting:

!
string of characters
!

This is not very exciting -the characters in the field are simply left-adj sted in
the field, and the rest of the field up to the tab stop are padded with space . You
would get exactly the same result if you placed the padding indicator cha acter at
the right end of the field to indicate that you wanted the padding on the ri ht:

•sun ~ , microsystems Revisfon A. of9 ay 1988

u

/ \ u

u

r

.ta 3.0i

.fc # @

! tab !
#string of characters@#
! tab
.fc

Chapter: 6 - Tabs, Leaders, and Fields 75

set a single tab 1atithree inches
set;fteld delimiter character to #
setpadding indicator character to@

the ! characters show 1where tabs are

the ! characters show where tabs are

As you can see, the result is identical to the one just above:

!
string of characters
!

But now we can place a padding indicator character at the left end of the field
and get strings right-adjusted in the field:
r

.ta 3.0i
.. fc # @

set a single tab at1 three inches
setjield·delimiter character to#
set1padding indicator character as @

! tab ! the ! characters show where tabs are
#@~tring of characters#
#@another string of characters#

the ! characters show 1where tabs a'f'e
.fc

We used two strings of different length here to sh(i)w how they are right-adjusted
against the tab stop:

!
string of characters

another string of characters
!

You can see how the spaees were placed on the left end ofthefield because that
is we where we pl1aced the padding indicator character, and the strings. got
adjusted right to the tab stop.

Then we can get fields centered by placing the padding indicator character at
both ends of the string:

.ta 3.0i

.fc # @

! tab, !
#@string of characters@#

set1a 1single tab atithree inches
setfielddelimiter character to#
setpadding indiaator cha'f'acter as @

the ! characters show where tabs a'f'e

#@longer string of characters@#
! tab, the ! cha'f'acters show where tabs are

· .fc

Again we used two strings. of different lengths to show the effect of centering the
field:

Revision A, ofl 9 May 1988

76 Using nroff and trof,f

!
string of characters
·string of characters
!

left string
10nger ileft string
!

'

string of characters
longer •string of characters

In general, a field or a sub-field between a pair of padding indicator characters is
centered in its space on the line.

Things get even more useful when you have multiple sub-fields in a :field - the
padding spaces are then parceled out so that the sub-fields are uniformly ileft­
adjusted, right-adjusted, or centered between the current position and the next tab
stop:
,

.ta 5.0i

.fc # @

#string of characters#

setra sir~gle 1 tabratifive 1inches

set;fie/d:delimiter character 1to #
setpadding 1indicator characterrasr@

1use the! characters to showwherertabsrare

#string of .characters@another string#
! tab ! 1use1the 1 characters1to showwhereitabs·are

and here is the output after we format that:

another string
!

And finally we can show three strings within a field, with the foft part left­
adjusted, the center part centered, and the right part right-adjusted:
,

.ta 5.0i

.fc # @
! itab !

#left string@center string@right string#
#longer left string@longer center string@longer right string#
! 1tab !

and here is the output after we fonnat that:

center string
longer center string

!
right string

longer right string
!

So to summarize,, a field is contained between a pair of field delimiter characters.
A field consists of sub-fields separated by padding indicator characters. The field
length is the distance on the input line from the position where the :field begins 1to
the next tab stop. The difference between the t~tal length of all the sub-tields and
the :field length is incorpGrated as horizontal padding space that is divided among
the indicated padding places. The incorporated padding can be negative.

Revision A, 0f9 May 1988

()

()

u
Mnemonic:

Form oft Request:

Initial Value:

If No Argument:

Explanation:

u

u

Chapter 6 - Tabs, Leaders, and Fields 77

Summary of the . f c Request

field character

.fc/ p

Field mechanism is off

Field mechanism is. turned off.

Set the field delimiter to f, set the padding indicator top (if specified} or to
the space character if p is not specified. In the absence of arguments, the
field mechanism is turned off.

•~sun ~ microsystems
RevisionA, o£9May 1988'

u
7

Titles and Page Numbering

Titles and Page Numbering .. 81

7.1. Titles in Page Heaclers .. 81

7.2. Fonts ancl Point Sizes in Titles ... 83

7 .3. . pc - Page Number Charaeter ... 84

7.4 .. tl Request-Three Parameters.. 85

u

u

n \ J

n

u

u

u

7 .1. Titles in Page Headers

7
Titles and Page Numbering

This.is an area where things get tougher, because tro,ff doesn't do any ofthls
automatically. Of necessity, some of this section is a cookbook, to be copied
literally until you get some experience.

Suppose you want a title at the top of each page, saying just

left top · center top right top

There was. a very early text formatter called roff, where you could say
r

.he 'leftt ttop'center top'right top'

.fo 'left bottom'center bottomrright bottomr

to get headers and footers automatically on every page. Alas, this doesn't work
in troff, which is a serioushardship for the noviee. Instead you have to do a
lot of specification:

o You have to say what the actual title is (reasonably easy - you just use the
. t 1 request to specify the title).

o You have to specify when to print the title (also reasonably easy- ycm set a
trap to call a macro that actually does the work),

o and finally you have to say what to do at and around the title line (this is the
hard part).

Taking these th.ree things in reverse order, first we define a . NP macro (for new
page) to process titles and the like at the end of one page and the beginning of the
next:

.de NP
'bp
'sp O.Si
.tl 'left top'center top'right top'

' I
sp 0.3i

To make sure we 're at the top of a page, we.issue a 'begin page' request 'bp,
which skips to top-of-page (we'll explain the' sh0rtly). Then we space d0wn
half an inch (with the' sp O. Si request), and print thetitle (the use of . tl

•\sun ~ microsystems
81 Revision A, 0£ 9 May 1988'

82 Using nroff and troff

should be self explanatory - later we will discuss the title parameters), space
another 0.3 inches {with the' sp 0. 3i request), and we're d~me.

To ask for . NP at the bottom of each page, we have to say something like 'when
the text is within an inch of the bottom of the page, start the processing for a new
page'. This is done with a 'when' request .wh:

(_ •. w_h --1-i N_P ___________ J
See Chapter 10 fora more detailed description of the .wh request. No dot (.)is
used before NP in the when request because in this case, we're specifying the
name ofa macro, not calling a macro. The minus sign means measure up from
the bottom of the page, so '-1 i' means one inch from the bottom.

The .wh request appears in the input outside the definition of . NP; typically the
input would be

, .de NP
definition of the NP ,macro

.wh -li NP

Now what happens? As text is actually being output, troff keeps trackof its
vertical position on the page. After a line is printed within one inch from the bot- /')
tom, the . NP macro is activated. In the jargon, the . w h request sets a trap at the
specified place, which is 'sprung' when that point is passed. . NP skips to the top
of the next page (that's what the 'bp was for), then prints the title with the
appropriate margins.

Why ~:Op and' sp instead of .bp and . sp? The answe:r is that . bp and . sp,
like several other requests, break the current line - that is, all the input text col­
lected but not yet printed is flushed out as soon as possible, and the next input
line is guaranteed to start a new line of output. If we had used . bp or . s p in the
• NP macro, a break would occur in the middle of the current output line when a
new page is started. The effect would be ,to print the left-over part of that line at
the top of the page, followed by the next input line on a new output line, some­
thing like this:

last il..ine bu:t one at almost the bottom of the page
last line at the bottom of the

title on the bottom.of the page

page break

Revision A, of9 May 1988

u

u

Chapter 7 - Tides.and Page Numbering 83

,

title on the top of the next page

page.

Thisis not what we want. Using' instead of . for a request tells troff that no
break isto take place - the output line currently being filled should not be
forced out before the space or new page.

The list of requests that break lines is sh0rt and natural:

Table 7:..1 Requests that Cause a Line Break

7.2. Fonts and Point Sizes
in Titles

Mnemonic:

F orrm of Request:

Initial Value~·

If No Argument:

Explanation:

Notes:

Command

.bp
I .br ,,
1• .ce
I

.fi

.nf
, .sp

Explanation

Begin a new page
Break the current output line
Center line(s)
Start filling text lines
Stop filling text lines
Space vertically
Indent the left margin .in

. ti Temporary indent the left margin for the next line only ;:

No other requests break. lines, regardless. of whether you use a . or a'. If y0u
really do need a break, add a . br (break) request at the appropriate place.

One other thing to beware of- if you 're changing fonts. or point sizes a lot, you
may find that if you cross. a page boundary in an unexpected font or size, y0ur
titles come out in that size and font instead of what you intended. Furthenno:re,
the length of a title is independent of the current line length, so titles will come
out at the default length of 6.5 inches unless. you change it, which is done with
the . l t (length of title) request.

Summary of the . lt Request

length of title

.lt±N

6.5 inches

Previous value

Set length of title to ±N. The line-length and the title-length are indepen­
dent. Indents do n0t appl¥ to titles; page-offsets. do.

E, m (see Table A-2)

There are several ways to fix the problems of point sizes and fonts in titles~ For

4}\sun
• microsystems

Revisicmi A, ofi 9 May 1988

84 Using nroff and troff

7.3 .. pc-Page Number
Character

Mnemonic:

Form .@f Request:

Initial V alu:e:

If No Argument:

the simplest applications, we can define the . NP macro to set the proper size and
font for the title, then restore the previous values, like this:

.de NP
'l:Dp
'sp O.Si
.. ft R '\" set title font to Roman
.ps 10 \" and size to 10 point
. lt 6i \" and length to 6 inches
.tl 'left'center'right'
. ps \" revert to previous size
. ft P \" and to previous f.on:t
'sp 0.3i

This version of . NP does not work if the fields in the . t 1 request contain size or
font changes. What we would like to do in cases like this is remember the status
of certain aspects of the environment, change them to meet our needs for the time
being, and then restore them after we' re done with the ·special ·stuff. ·This require­
ment is satisfied by troff"s envinmment mechanism discussed in Chapter 17,
Environments.

To get a footer at the bottom of a page, you can modify . NP so it does some pro­
cessing before the 'bp request, or split the job so that there is a separate footer
macro invoked at the bottom margin and a header macro invoked at the top of the
page.

Output page numbers are computed automatically as each page is produced
(starting at 1), but no numbers are printed unless you ask for them explicitly. To
get page numbers printed, include the character % in the . t l line at the position
where you want the number to appear. For example

(-u "- % -" J
centers the page number inside hyphens.

You 1can change the page number character with the . pc request.

Summary of the . pc Request

page-number character

.fi>C C

%

Off

(:)

Explanation: Set the page-number character to c, or remove it if there is no c argument.
.__ __________________________ Th ___ e_p_1a_g_e_-n_um_· ___ b_er_~_e_gi_·s_te_r_v_e_m_a_in_s __ %_. ___________________________________ ·~· ~

4}\sun ~ : microsystems
Revision A, df 9 May 1988

u

u

u

7 .4~ . t l Request - Three
Parameters

Hunting the Snark

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Chaptei 7 - Titles and Page Numbering· 85

You can set the page number at any time with either . bp n, which immediately
starts a new page numbered n, or with . pn n, which sets. the page number for the
next page but doesn't skip to the new page. Again, . bp +n sets.the page number
to n more than its. current value; . bp means . bp· + 1.

The . tl (title) request automaticallypfacesthree text fields at the.left, center,
and right of a: line (with a title .. length specifiable via the . 1 t (length oftitle)
request. The most common use for three-part titles. is to put running headers and
footers at the top and bottom of pages just like those in this manual. In fact, the
. t 1 request may be used anywhere, and is independent of the normal text col ..

lecting process; For example, we just placed a three-part title right here in the
text:

-85- Smiles. and Soap

by typing the a: three-part title request that looks like:

1 .tl 'Hunting the Snark'- % -'Smiles and Soap'

and you might notice that the page number in the formatted example is the same
as the page number for this page.

Summary of the . tl Request

title

. t l 'left' center 'right '

Nothing

Nothing

The strings in the left, center, and right fields. are respectively left-adjusted,
centered, and right-adjusted in the current title-length. Any of the strings
may be empty, and overlap.(i>ing is permitted. If the page-number character
(initially % J is found within any of the fields it is replaced by the current
page number having the format assigned to register % • Any character may
be used as the string delimiter.

•\sun ~ microsystems
Revision: A, 0£ 9 May 1988

()
·. /

u
8

troff Input and Output

troff Input and Output.. 89

8.1. . so -Read Text from a' File... 89

8.2. . nx - Read Next Source File .. 91

8.3. Pipe Output to a Specified Program (nroff only)...................................... 91

8.4. . rd - Read from the Standard Input .. 92

8.5. . ex -Exit from nroff or troff... 94

/ -".. 8.6. . tm- Send Messages to the Standard Errm: File 94 u

u

,ry

()

n

u

u

8.1 .. so -Read Text
from a File

8
troff Input and Output

We now describe two troff requests that we omitted earlier, because their use­
fulriessismore apparent when you understand the troff command line. N0r­
mally troff takes. its. input from the files given when it is called up. However
there are ways in which the formatter can be made to take part of its input from
elsewhere, using troff requests embedded in the document text.

The . so request, which tells troff to switch over and take its source from the
named file. For example, suppose you have a set of macros that you have
defined, and you have them in a file called macros. We can call them up from
the troff command line:

hostname% troff macros document
!' hostname%

as we showed earlier, but it's a bit of a nuisance having to do this all the time.
Also, if only some of our documents use the macros, and others dcm 't, it can be
difficult to remember which is which. An alternative is to make the first line of
the document file fook like this:

Now we can format the document by:

['

hostname% troff document]
:hostname%

The first thing troff sees in the file document is the request . so macros
which tells. it to read input from the file called macros~ When it finishes taking
input from macros, troff continues. to read the original file document.

Ano©er way of using the . so· request lets you format a complete d0cument, held
in several files, by only giving one filename to the troff command. Let us
create a file called document containing:

89 Revision A, of 9 May 1:988

90 Using nroff.and troff

.so 'macros

.so section.II.

.so section.2

.so section.3
and so on through the document until ...

. so appendix.C

We can now format it with the troff command line:

hostname% troff docwnent I lpr
hostname%

This is a lot easier than typing all the filenames each time you format the docu­
ment, and a lot less prone to error.

This technique is especially useful if your filenames reflect the contents of the
various sections, rather than the order in which they appear. For instance, look at
this file which describes a whole book (something like the one you are reading):

hostname% cat book
.so bookimacros
.so preface
.so intro
. so login '\ "Ge!tting Sitarted on the UNIX System
.so directs \"Directories and the File System

' . so s 1tdio \"Commands, Processes, and Standard Files

.so biblio
, hostname%

<etc ... >
\"Bibliography

It is obviously much easier to format the whole thing witha ,tr1off command
line like this:

hostname% troff book I lpr
1

hostname%

than it would be if you had to supply all the filenames in the right order. Notice
that we used the comment feature of troff to tie chapter titles to filenames.

Re~isfonA. of9May1988

/ ; u

u

u

Mnemonic:

Form of Request:

Explanation:

8.2 .. nx.- Read Next
Source File

Mnemonic:

Form of Request:

If No Argument:

Explanation:

8.3. Pipe Output to a
Specified Program
(nroff only)

Mnemonic:

Form of Request:

Explanation:

Chapter 8 - troff Input<and Outpu~ 91

Summary of the . so Request

source

. so .filename

Switch source file - the top input (file reading) level is switched to
.filename. The sourced-in file is read directly and processed immediately
when the . so line is. encountered. When the new file ends, input is again
taken from the original file. . sos may be nested.

Summary of the . nx Request

next

. nxfilename

end-of-file

Next file is.filename~ Thecurrent file is considered ended, and the input is
immediately switched to .filename. There is no return to the file containing
the . nx command.

A couple of examples of programs you might want you pipe your nroff output
to are lpr and col. Your source line might look like this:

(.pi fusr/ucb/1pr]

or

(.pi /usr/bin/col

if you had formatted tables in your source file.

Summary of the . pi Request

pipe

. pi program_name

Pipe output to program (nroff only). This request must occur before any
printing occurs. No arguments are transmitted to program.

]

Revision' A, 0£ 9 May 1988

92 Using nroff and troff

8.4. . rd - Read from the
Standard Input

Another troff request that switches input from the file you specify is the . rd
(read) request. The standard input can be the user's keyboard, a pipe, or a file.
The . rd request reads an insertion from the standard input. When troff
encounters the . rd request, it prompts for input by s~mnding the terminal bell or
flashing the screen. A visible prompt can be given by adding an argument to
. rd, as we show in the example below.

Everything typed up to a blank line (two newline characters in a row) is inserted
into the text being formatted at that point. This can be used to 'personalize' form
letters. If you have an input file with this text:

.po 10

.nf

.in 20
14th 'February
.in 0
Dear
.rd who

Will you be my Valentine?
If you will, give me a sign
(I like roses, I like wine) .

then when you format it, you will be prompted for input:
r

hostname% troff valentine I lpr
who:Peter

host name%

After t)'l'ing the name Peter you have to press the RETURN key twice, since
troff needs a blank line to end input. The result of formatting that file is:
r

Dear
Peter

14th February

Will you be my Valentine?
I.f you will, give me a sign
(I like roses, I like wine) .

To get another c0py of this for Bill, you just run the troff command again:

hostname% troff valentine I lpr
.who:Bill

hostname%

n

--~~~~~~~~~~~~~~~~--:-~~~~~~~~~~~.../J (---,

and again for Joe, and for Manuel, and Louis, and Alphonse, and ...
/

Revision A, of 9 May 1988

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

u

u

Chapter 8 - tr0f f Input and Outputl 93

Sinee troff takes input from the terminal up to a blank line, you are not limited
to a single wo1d, or even a single line of input. You can use this meth0d t0 insert
addresses or anything else into form letters.

Summary ofthe . rd Request

read

.rdprompt

Not api>licable

prompt=BEL

Read insertion from the standard input until two newlines in a row are
found. If the standard input is the user's keyboard, prompt (or a BEL) is
written onto the user'sterminal. . rd behaves like a macro, and arguments
may be placed after prompt. Use the standard way to access. arguments in
macros (see Chai>ter 10.

If insertions are to be taken from the terminal keyboard while output is being
printed on the terminal, the command line oi>tion -q will tum off the ech0ing oft
keyboard ini>ut and prompt only with BEL. The regular input and insertion ini>ut
cann0t simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the
insertions. for all the coi>ies in one file to be used as the standard ini>ut, and caus­
ing the file containing the letter to reinvoke itself using . nx (see the previous
section); the process would ultimately be ended by a . ex in the insertion file.
Example:

Letter File
Dear
.rd

.nx Letter

Names File
John

blank line
Bill
blank line
.ex

To put everything together, y0u could use:

[h0stname% cat Names I troff Letter J

Revision A, 0£ 9 May 1988

94 Using nroff and troff

8.5 .. ex - Exit from
nroff or troff

Mnemonic:

F@rm (!)!Request:

Explanation:

8.6. . tm -Send Messages
to the Standard Error
File

Mnemonic:

Ferm of Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . ex Request

exit

.ex prompt

Exit fmm nroff or troff. Text processing is terminated exactly as ifall
input had ended.

The . tm (terminal message) request displays a message on the standard error
file. The request looks like:

:[~ tm tell me some good news J

and when troff or nroff encounters this in the input file, it displays the string

i[tell me some .good news
J

on the standard error file. This request has been used in older versions of the
-ms macro package to rebuke the user when {for instance) an abstract for a paper
was longer than a page. Other macro packages use the . tm request for assisting
in generating tables of contents and indices and such supplementary material.

Summary of the . tm Request

terminal message

. tmstring

Not applicable

Display a newline

After skipping initial blanks, string (rest of the line) is read in c@py mode
·and written on the user's terminal.

•\sun ~~ microsystems Re~ision A, of 9 May 1988

u
9

Strings

Strings ... 97

9.1. . ds-Define Strings .. 98

9 .2. . as - Ap~end to a String, 99

9.3. Removing or Renaming String Definitions .. 101

u

(~

(\ u

Q

u

9
Strings

Obviously if a paper contains a large number of occurrences of an acute accent
over a letter 'e', typing \o" e \ ' " for each e would be a great nuisance. (See
Chapter 12 for more detailed information on drawing lines and characters.

Fortunately, troff pllOvidesa waythat you can store an arbitrary collection of
text in a string,. and thereafter use the string name as a shorthand for its contents.
Strings are one of several troff mechanisms whose judicious use lets. you type
a document with less effort and organize it so that extensive format changes. can
be made with few editing changes. A reference to a string is replaced in the text
by the string definition.

A string is a named sequence of characters, not including a newline character,
that may be interpolated by name at any point in your text. Note that names. of
t:r off requests, names of macros, and names of strings all share the same name
list. String names may be one or two characters long and may usurp previously­
defined request, macro, or string names.

You create a string (and give it an initial value) with the . ds (define string)
request. You can later add more characters to the end of the string by using the
. as (append to string} request.

String names. may be either one or two characters long. You get the value of a
string placed in the text, where it is said to be interpolated, by using the notation:

for a one-character string named x, and the more complicated notation:

t * (.D'.

for a two-character string named xx.

String references and macro invocations. may be nested.

]

J

•\sun
• microsystems

97 Revision A, 0£ 9 May 1'988'

98 Using nroff and troff

9.1. . ds - Define Strings You create a string (and define its initial value) with the . ds (define string)
request. The line

(_·_d_s_e__o_"e__'_" __________________ J
defines the string e to have the value \ o" e \ ' "

You refer to them with the sequence \ * x for one-character names or \ * (xy for
two-character names. Thus, to get telephone, given the definition of the string e
as above, we can say t*el*ephone.

As another live example, in the section on ligatures in Chapter $, Fonts and Spe­
cial Characters, we noted that troff doesn't know about the Scandinavian
ligatures - you have to decide for yourself how to define them. Here are our
definitions of the strings for those ligatures:

.ds ae a\b'-(\w' a'u*·4Jl.O) 'e

. ds Ae :A\b' - (\ w' A' u*·4/ 1.0) 'E

.ds oe o\b'-C\w',o'u*4/10) 'e

.ds ·Oe O\h'-(\w'O'u*4/10) 'E

~
\ J
' /

See the section entitled "\h Function - Arbitrary Horizontal Motion" in
Chapter 12 for a discussion on what the \ h constructs are doing in the string
definitions above. Having defined the strings, all you have to do is type the ()
string references like this:

... the Scandinavian ligatures *(oe, *(ae, *(Oe, and *(Ae ...

in order to get ... the Scandinavian ligatures re, re, CE., and :IE ... into your
stream of text.

If a string must begin with spaces, defuie it as

(__ ·_d_s_x_x_" ____ t_e_xt-------------------~J
The double quote character signals the beginning of the definition. There is no
trailing quote - the end of the line tenninates the string.

A string may actually be several lines long; if troff encounters a \ at the end
of any line, the backslash and th~ newline characters are disregarded resulting in
the next line being added to the current one. So you can make a long string sim­
ply by ending each line except the last with a backslash:
r

.ds xx this \
is a very \
long string

Strings may be defined in tenns of other strings, or even in terms of themselves. n
Revision A,, 0f9 May 1988

u

u

Mnemonic~·

Form of Request:

Initial Value~·

If NoArgument:

Explanation:

9.2. . as - Append to a
String

Chapter 9 - Strings 99

Summary of the . ds Request

define string

. ds xx string

Not applicable

Ignored

Define a string xx containing string. Any initial d0uble-quote in string is
stripped off to pennit initial spaces.

The . as (append to string) request adds characters to the end of a string. You
use the . as request like this:

(• as xx string-of-characters

where string-of~characters is appended to the end of whatever is already in the
string xx.

Note that the string mentioned in a . as request is created if it didn't already
exist, so in that respect an initial . as request acts just like a . ds. request.

For example, here'sa short fragment from the . H macro that was used to gen­
erate the section numbers in this d0cument. The . H macro is. called up like

(• H level-number 'Text of the Title''

where level-number is 1, 2,. 3, ... to indicate that this is a first, second,
third, ... level heading. The . H macro keeps track of the various sectfon
numbers via a bunch of number registers Hl through H5, and they are tested fov
and appended to the SN string if ap~ro~riate. For example:

]

]

Revision A, of 9 May 1988

100 Using nroff and,troff

I

.ds

.if

.i1f

.if

.if

SN \\n 1(Hi.
\\n(NS>l .as
\\,n (NS>2 .as
\\n(NS>3 .as
\\n(NS>4 .as

set the initial section number.string
SN \\n (H2 • append H2 if needed
SN \ \n (H3. appendH3 ifneeded
SN \ \n (H4 • append H4 if needed
SN \\n{HS. appendH5 ifneeded

more processing to compute indentations and such ...

*(SN\\ \ \ \t\c
\&\\$2

and yet more processing ...

Now output the text

~--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Let's unscramble that mess. The essential parts are the initial line that says:

.ds SN \\n(Hl. set the initialsection number string

which sets the SN (section number) string to the value of the Hl number register
that counts chapter level numbers. Then the following four lines essentially all
perform a test that says:

. if the level-number is greater than N, append the next higher sec­
tion counter to the string. That is, if the current secti0n number is
greater than 2, we append the value of the level 3 !counter, then if the
section number is greater than 3, we append the value of the 1level 4
counter, and so <i>n.

Finally, the built-up SN string, followed by the text of the title, gets placed into
the output text with the lines that read:

* 1(SN\\ \\ \t\c
\&\ \$2

Now output the text

And in fact we can use the mechanisms that exist to play games like that because
we are using a macro package to format this rloclllllent, and those number regis­
ters are available to us. So we can define a string like this:

[.ds XX \n'(Hl.

J
and interp0late that string like this:

[~'*<_xx __ ~------------~Jn
to get the value

+~!.!! Revisic1m A, of9 May 1988

(j

0

u

Mnemonic:

Form of Request:

Initial Value~·

If NoArgument:

Explanation:

9.3. Removing or
Renaming String
Definitions

Chapter 9 - Strings 101

9.

printed in the text. Now we can append the rest of the section counters. to. that XX
string like this (without caring whether they have any values):

[.as XX \n(H2.\n(H3.\n(H4.\n(H5. J
--_____ ____..

and then when we interpolate that string we get this:

9.2.0.0.0.

which, if you look, should.be the secti0n number of the stuff you are now read­
ing.

Summary of the . as Request

append to string

. as xx string

Not applicable

Ignored

Append string to string xx (append version of . ds). The string xx is. created
if it didn't already exist.

Strings (just like macros) can be renamed with the . rn (rename) request, or can
be removed from the namelist with the . rm (remove) request. Refer to Chapter
10 for more detailed descriptions of the . rn and . rm commands.

•~sun
• microsystems

Revision A, 0£ 9 May 1988

(~

1CJ

n

u

u

10
Macros, Diversions, and Traps

Macros, Diversions, ancl Traps ... 105

10.1. Macros... 105

. de -Define a Macro.. 105

. rm - Remove Requests, Macros, or Strings .. 107

. rn - Rename Requests, Macros. or Strings .. 108

Macros· With Arguments· ... 108

. am-Append to a Macro... 112

Copy Mode Input Interpretation ... 112

10.2. Using Diversions.to Store Text for Later Processing............................... 112

. di -Divert Text .. 113

. da - Append to a Diversi0n ... 114

10.3. Using Traps to Process Text at Specific Places on a Page 114

. wh - Set Page or Position Traps.. 115

. ch - Change Position. of a Page Trap ... 116

. dt - Set a Diversion Trap .. 116

. it - Set an Input-Line Count Trap .. 116

. em - Set the End of Processing Trap ... 117

n

n
' /

/

CJ

(\ u

0

u

10.1. Macros

. de - Define a Macro

10
Macros, Diversions, and Traps

Before we can go much further in nroff or troff, we need to learn something
about the macro facility. In its simplest form, a macro is. just shofthand notation.
similar to a string. A macro is a collection of several separate troff commands
which, when bundled together, achieves (sometimes complex) formatting when
the macro is invoked. Whereas a string is somewhat limited because its
definition is specific, a macro can interpret arguments that can change its
behavior from one invocation to the next.

A macro is a named set of arbitrary lines that may be invoked by name or with a
trap. Macros. are created by . de and . di requests~ and ap~nded to by . am and
. da requests; . di and . da requests cause normal output to be stored in a
macro. A macro is invoked in the same way as. a request; a control line beginning
. xx interpolates the contents of macro xx. The remainder of the line may con.tain
up to nine arguments. Request, macro, and string names share the same name
list. Macro names may be one or two characters.long and may usurp previously­
defined request, macro, or string names. String references and macro invocations
may be nested. Any of these entities may be renamed with a . rn request or
rem~>Ved with a . rm request .

Sup~se we want every paragraph to start in exactly the same way - with a
space and a temporary indent of two ems. We show a (very simplified) vevsi0n
of the . PP (paragraph) macro from the -ms macro package:

[_:::i_+2_m ______________ ~J
Then to save typing, we would like to collapse these into one shorthand line, a
troff 'request' like

[.PP

that would be treated by troff exactly asifyou had typed:

J

[_~::i_+2_m------------~~]
. PP is called a macro. The way we tell troff what . PP meansis to define it

105 RevisionA, o£9 May 1988'

HJ6 Using nroff and troff

with the . de (define) request:

.de PP

.sp

.:ti +2m

The first line names the macro (we used . PP) which is a standard macro notation
for 'paragraph'. It is common practice to use upper-case names for macros so
that their names don't conflict with ordinary troff requests. The last line . .
marks the end of the definition. In between the beginning and end of the
definition, is the text (often called the replacement text), which is simply
inserted whenever troff sees the request or macro call

[.PP
The definition of . PP has to precede its first use; undefined macros are simply
ignored. Nam es are restricted to one or two characters.

Using macros for commonly-occurring sequences of requests is critically impor­
tant. Not only does it save typing, but it makes later changes much easier. Sup­
pose we decide that the paragraph indentshould be greater, the vertical space
should be less, and the font should be Roman. Instead of changing the whole
document, we need only change the definition of the . PP macro to something
like
r

.de PP \" paragraph macro
I .sp 2p

.ti +3m

.ft R
: ..

and the change takes effect everywhere we used . PP.

The notation \" is an in-line :troff function that means that the rest of the line
is to be ignored. We use it here to add comments to the macro definition (a wise
idea once definitions get complicated).

J

Re~ision A, of 9 May 1988

u

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

. rm- Remove Requests,
Macros, or Strings

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation1:

Summary of the . de Request

define

.dexxyy

Not applicable

.yy= . .

Chapter 10 - Macros, Diversions, and Traps 107

Define or redefine the macro xx. The contents of the macro begin on the
next input line. Input lines are copied in copy mode until the definition is.
terminated by a line beginning with . yy, whereupon the macro yy is called.
In theabsenceof yy, thedefinition is terminated by a line beginning with
' . . '. A macro may contain . de requests provided the terminating macros
differ or the contained definition terminator is concealed. ' . . ' can be con­
cealed as \ \ . . which will co~y as \ . . and be reread as ' . . ' .

Summary of the . rm Request

remove

.rm1xx

Not applicable

Ignored

Remove request, macro, or string. The name xx is removed from the name
list and any related storage space is freed. Subsequent references will have
Iio effect.

Revisicmi A, of 9 May 1988

108 Using nroff and troff

. rn - Rename Requests,
Macros or Strings

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Macros With Arguments

Summary of the . rn Request

rename

. rn x.xyy

Not applicable

Ignored

Rename request, macro, or string xx to yy. If yy exists, it is removed first.

Refer to Chapter 9, Strings for information on defining strings.

As another example of macros, consider these two, which start and end a block of
offset, unfilled text, like most of the examples in this paper:

. C!ie BS \" start indented bl0ck

.sp

.nf

. in +t-0. 3ii

.de BE \" end indented bl0ck

.sp
• fri.
.in:0.3i

Now we can surround text like

Copy to:
John Doe
Richard Roberts
Stanley Smith

by the requests . BS and . BE, and it will come out as it did above. N0tice that
we indented by an incremental amount: . in +0. 3i instead of . in O. 3i.
This way we can nest our uses of . BS and . BE to get blocks within blocks.

If later 0n we decide that the indent sh0uld be half.an inch, then it is only neces­
sary to change the.definitions of. BS and . BE, not the whole paper.

The next step is to define macros that can change fmm one use to the next
according to parameters supplied as arguments to the macro. To make this work,
we need two things: first, when we define the macro, we have to indicate that
some parts of it will be provided as arguments when the macro is called. Then
when the macro is called we have to proViide actual arguments to be plugged rnto
the definiti0n.

4}\sun
~~ microsystems Revision A, 0f 9 May 1988

rt)

n
\ /

u
Chapter 10-Macros, Diversions, and Traps 109

When a macro is invoked by name, the remainder of the line can contain up to
nine arguments. The argument separator is the space character, and arguments
may be surrounded by double-qm>tes to permit embedded space characters. Pairs
of double-quotes may be embedded in double-quoted arguments to represent a
single double-quote. If the desired arguments won't fit on a line, a concealed
newline (\) may be used to continue the arguments on the next line.

When a macro is invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is completely
read and the previous level is restored. A macro's own arguments can be imer­
polated at any point within the macro with \$N, which interpolates.the Nth argu­
ment (l~:S;9). If an invoked argument doesn't exist, a null string results. For
example, the macro xx may be defined by

.de xx \"begin definition
,Today is \\$1 the \\$2.

\"end definition

and called by

[~_.x_x_._M_o_n_d_a_y_·_1_4_t_h __)

to produce the text

(Today is Monday the 14th.

Note that the \ $ was concealed in the definition with a preceding backslash (\).
The number of currently available arguments is in the . $ register.

)

No arguments are available at the top (non-macro) level in this implementation..
Because string referencing is implemented as an input-level push-down, no argu­

ments are available from within a string. No arguments are available within a
trap-invoked macro.

Arguments are copied in copy mode onto a stack where they are available for
reference. The mechanism does not allow an argument to contain a direct refer­
ence to a long string (interpolated at copy time) and it is advisable to conceal
string references (with an extra \)to delay interpolation until argument reference

time.

Let's. illustrate by defining a macro . SM that will pFint its. argument two point
sizes smaller than the surrounding text That is, the macro call

[~·-s_M __ u_N_r_x_· __]

will produce UNIX.

The definition of . SM is

Revision A, o£9 May 1988'

110 Using nroff and troff

:[~~~2~~$1\s+2
Within a macro definition, the symbol \\ $ n refers to the nth argument that the
macro was· called with. Thus \ \ $1 is the string to be placed in a smaller point
size when . SM is called.

As a slightly more complicated version, the following clefinition of . SM pennits
optional second and third arguments that will be printed in the normal size:

[~~~3~~-2\ \$1\s+2\ \$2

Arguments not provicled when the macro is called are treated as empty, so

l

l
{ • SM UNIX) , J

produces

UNIX),

while

(~·-s_M ___ u_N_r_x ___ >_· __ J
produces

(UNIX).

It is convenient to reverse the orcler of arguments because trailing punctuation is
much more common than leading.

The following macro .BD is the one used to make the 'bold Roman' we have
been using for troff re~:uest names in text. It combines h0fizontal motions,
width computations, and argument rearrangement.

.de BD

\&\\$3\fl\\$1\h'~\w'\\$1'u+lu'\\$1\fP\\$2

The \ h and \w commands need no extra backslash, as we discuss in the section
C{J)py Mode Input Interpretation. The\ & is there in case the argument begins
with a period.

Two backslashes are needed with the \ \ $ n commands, though, to protect one of

',

()

them when the macro is being clefi.ned. Perhaps a second example will make this ~
(1 clearer. Consider a macro called . SH which produces section headings like the , J

ones in this manual, with the sections numbered automatically, and the title in

~\sun ~~ microsystems
Rev1isi0n A, 0f 9 May 1988

(j

0

u

Chapter 10-Macros, Diversions, and Traps 111

bold in a smaller size. The use is

[.SH •section title ... •

If the argument to a macro is to contain spaces, then it must be surrounded by
double quotes, unlike a string, where only the leading quote is permitted.

Here is the definition of the . s H macro:

.nr SH 0 \" initialize section number

.de SH

.Sp 0.3i

.ft B

.nr SH \\n(SH+l\" increment number

.ps \\n(PS-1 \" deerease PS
\\n (SH. \\$1 \" number. title
.ps \\n(PS \" restore PS

I • sp 0. 3i
.ft R

The section number is kept in number register SH, which is incremented each
time just before it is used. A number register may have the same name as a
macro without conflict but a string may not.

We used \\n (SH instead of \n (SH and\ \n (PS instead of \n (PS. Ifwe had
used \ n (SH, we would get the value of the register at the time the macro was

defined, not at the time it was called. If that's. what you want, fine, but that isn't
the case here. Similarly, by using\ \n (PS, we get the point size at the time the
macro is called.

As an example that does not involve numbers, recall our . NP macro which had:

[.tl 'left'center'right'

We could make these into parameters by using instead

]

]

(_ .• _t_l_'___*_(L_T_. '___*_<_c_T_' __*_(_R_T_' ______________ __,J

so the title comes from three strings called LT~ CT' and RT for left title, center
title, and right title, respectively. If these are empty, then the title will be a blank
line. Normally CTwould be,set with something like

[.ds CT - % - J
--~

to give just the page number between hyphens, but a user couM supply private
· definitions for any of the strings.

4}\sun
• microsystems

Revision A, 0£ 9 May 1'988

112 Using nroff and troff

. am - Append to a Macro

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Copy Mode Input
Interpretation

10.2. Using Diversions to
Store Text for Later
Processing

Summary of the . am Request

append to macro

.amxxyy

Not applicable

.yy= . .

Append to macro xx (append version of. de).

During definition and extension of strings and macros (not by diversion) the
input is read in copy mode. The input is copied without interpretation except
that:

m The contents of number registers indicated by \ n are interpolated.

,o Strings indicated by *are interpolated.

o Arguments indicated by\$ are interpolated.

1 0 Concealed newlines preceded by backslash(\ newline) are eliminated.

o Comments indicated by \ " are eliminated.

o \t and \a are interpreted as ASCII horizontal tab and SOH respectively (see
Chapter 6, Tabs, Leaders, and Fields for more informatiOn).

o \ \ is interpreted as \

o \ . is interpreted as " • '"

These interpretations can be suppressed by adding ~other \ (backslash) to the
beginning of the command. For example, since \ \ maps into a \, \\n will copy
as \ n which will be interpreted as a number register indicator when the macro 0r
string is reread.

There are numerous occasions in page layout when it is necessary to store some
text for a period of time without actually printing it. Footnotes are the most
obvious example: the text of the footnote usually appears in the input well
before the place on the page where it is to be printed is reached. In fact, the place
where it is output normally depends on how big it is, which implies that there
must be a way to process the footnote at least enough to decide its size without
printing it.

troff provides a mechanism called a diversion for doing this processing. A
diversion is very similar to a macro and in fact uses the same mechanisms as the
macro facility. Any part of the output may be sent into a diversion instead o~
being printed, and then at some convenient time the diversion may be brought
back into the input.

•\sun ~~ microsystems Revisi0n A, 0f 9 May 1988

0

n

u
. di - Divert Text

0

(_)

Chapter 10 - Macros, Diversions, andTtaps 113 ·

The request . di .xy begins. a diversion - all subsequent output is. collected into
the diversion called .xy until a . di request with no argument is encountered,
which tenninates the diversion. The processed text is available at any time
thereafter, simply by giving the request:

[___ :.xy _____ ____..J
The vertical size of the last finished diversion is contained in the built-in number
register dn.

As a simple example, suppose we want to implement a 'keep-release' opevatfon,
so that text between the requests . KS and . KE will ne>t be split across. a page
boundary (as for a figure or table). Clearly, when a . KS is encountered, we have
to begin diverting the output so we can find out he>w big it is~ Then when a . KE

is seen, we decide whether the diverted text will fit on the current page, and print
it either there if it fits, or at the top of the next page ifit doesn't. So:

·.de
. br

: .. ev
.fi

: .di

I .de
.br

KS

1

xx

KE

\"
\"
\"
\"
\"

\"
\"

start keep
start fresh . line
collect in new environment
make it filled text
collect in xx

end keep
get last partial line

1

.di \" end diversion

. i:ff \\n (dn>=\\n (. t . bp \" bp if doesn't fit

.nf \" _!:>ring- it back in no-fill

.XX \" text
I . ev \" return to normal environment

Recall that number register n l is the current position on the output page. Since
output was.being diverted, this remains at its value when the diversion started.
dn is the amount of text in the diversion; . t (another built-in register) is the dis;.
tance to the next trap, which we assume is at the bottom margin of the page. If
the diversion is large emmgh to go past the trap, the . if is satisfied, and a . bp
is issued. In either case, the diverted output is. then brought back with It. xx.
troff will do ne> further processing on it.

This.is not the most general keep-release, nor is.it robust in the face of all con­
ceivable inputs, but it we>uld require more space than we have here to write it in
full generality. This section is not intended to teach everything about diversions,
but to sketch out enough that you can read existing macro packages with some
comprehension.

Processed output may be diverted into a macro for purposes such as footnote pm­
cessing or detennining the horizontal and vertical size of some text for condi­
tional changing of pages. or columns~ A single diversion trap may be set at a
specified vertieal position. The number registers dn and dl respectively contain
the vertical and horizontal size of the most recently ended diversion.

4}\sun
• microsystems

Revision A, 0£ 9 May 1988

114 Using nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Processed text that is diverted into a macro retains the vertical size of each of its
lines when reread in nofill mode regardless of the current V. Constant..;spaced
(. cs) or emboldened (. hd) text that is diverted can be reread correctly only if
these modes are again or still in effect at reread time. One way to do this is to
embed in the diversion the appropriate . cs or .bd requests with the 'tran­
sparent' mechanism described in the chapter Introduction to nroff and troff.

Diversions may be nested and certain parameters and registers are associated
with the current diversion level (the top non-diversion level may be thought of as
the 0th diversion level). These are the diversion trap and associated macro, no­
space mode., lhe intemally..;saved marked place (see .mk and . rt), the current
vertical place (. d register), the current high-wate.r text baseline (. h register), and
the current diversion name (. z register).

Summary of the . di Request

divert

.di.xx

Not applicable

End of diversion

Divert output to macro xx. Normal text processing occurs during diversion
except that page offsetting is not done. The diversion ends when the request
. di or . da is encountered without an argument; extraneous requests of this
type sh~mld not appear when nested diversions are being used.
D (see Table A-2)

. da - Append to a Diversion

Mnemonic:

Form of Request:

, Initial Value:

lfNo Argument:

Explanation:

10.3. Using Traps to
Process Text at
Specific Places on a
Page

Summary of the .da Request

append to diversion

.daxx

Not applicable

End of diversion

Append to diversion xx. This is the diversion equivalent of the . am (append
to macro) request.

Three types of trap mechanisms are available, namely page traps, di·version
traps, and input-line-count traps.

Macro-invocation traps may be planted using the . wh (when) request at any page
position including the top. This trap position may be changed using the . ch
(change) request. ·Trap positions at or below the bottom of the page have no
effect unless or until moved to within the page or rendered effective by an

~\sun ~ ;microsystems Revision A, of 9 May Hl88

n
, /

0

u

• w h - Set Page or Position
Traps

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

Notes:

Chapter 10-Macros, Diversions, and Traps 115

increase in page length.

Two traps may be planted at the same position only by first planting them at dif­
ferent positions and then moving one of the traps; the first planted trap will con­
ceal the second unless and until the first one is moved. If the first one is moved
back, it again conceals the second trap.

The macro associated with a page trap is automatically invoked when a line of
text is output whose vertical size reaches. or 'sweeps. past' the trap position.
Reaching the bottom of a page springs the top-of-page trap, if any, provided there
is a next page.

The distance to the next trap position is. available in the . t register; ifthere are
no traps between the current position and the bottom of the page, the distance
returned is. the distance to the page bottom.

A macro-invocation trap effective in the current diversion may be planted using
the . dt (diversion trap) request. The . t register works.in a diversion; if there is
no subsequent trap a large distance is returned. For a description ofinput-line­
count traps, see the . it. request below .

Summary of the . wh Request

when

.whNxx

Not applicable

Not applicable

Install a trap to invoke xx at page position N; a negativeN is intetpreted
with respect to the page bottom. Any macro previously planted at N is
replaced by xx. A zero N refers to the top of a page. In the absence of xx,

/ the first-found trap at N, if any, is removed.

v (see Table.A-2)

Revision' A, 0£ 9 May 1988'

116 l:Jsing nroff and troff

. ch - Change Position of a
Page Trap

Mnemonic:

Form of Request:

Initial Value:

lfNo Argument:

Explanation:

Notes:

. dt - Set a Diversion Trap

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

. it - Set an Input-Line
Count Trap

Mnemonic:

Form of Request:

Initial Value:

If No Ar:gument:

Explanation:

Notes:

Summary of the . ch Request

change trap

.chxxN

Not applicable

Not applicable

Change the trap position for macro xx to be N. In the absence ofN, the trap,
- if any, is removed.

v (see Table A-2)

Summary of the .dt Request

diversion trap

.dt Nxx

Not applicable

Tum off diversion trap

Install a diversion trap at position Nin the current diversion to invoke macro
xx. Another . dt will redefine the diversion trap. If no arguments are
given, the diversion trap is removed.

D, v (see Table A-2)

Summary of the . it Request

input-line-count trap

.itNxx

Not applicable

Turnoff trap

Set an input-line.:count trap to invoke the macro xx.afterN limes of text input
have been read (control pr request lines don't count). The text may be in­
lrne text or text interpolated by in-line or trap-invoked macros.

E (see Table A-2)

4}\sun
• , microsystems Revisfon A. of9 May 1988

()

n

u

u

(_)

. em- Set the End of
Processing Trap

Mnemonic:

Form of Request:

- Initial Value~·

If No Argument:

Explanation,:

Summary of the . em Request

end macro

.em.xx

N0t applicable

Ne trap installed

Chapter 10-Macros, Diversions, and Traps 117

Call the macro xx when all input has ended. The effect is the same as if the
contents of xx had been at the end of the last file processed.

•\sun ~ microsystems
Revision: A, 0£ 9 May 1988

u
11

Number Registers

Number Registers ... 121

11.1. . nr - Set Number Registers.. 121

11.2. Auto-Increment Number Registers ... :................. 123

11.3. ArithmeticExpliessionswith Number Registers... 124

11 .4. . af - Specify Format of Number Registers .. 125

11.5. . rr - Remove Number Registers. ... 127

0

u

n
'-- ./

n

Q

u

11.1. . nr - Set Number
Registers

11
Number Registers

In a programmable text formatter such as troff, you need a facility foi: storing

numbers somewhere, retrieving the numbers, and for doing arithmetic on those
numbers. t.roff meets this need by pmviding things called number registers.

Number registers give you the ability to define variables where yon can place
numbers, retrieve the values of the variables, and do arithmetic on those values.
Number registers, like strings and macros, can be useful in setting up a documentJ

so it is easy to change later. And of course number registers serve for any solit of
arithmetic computation.

Number registers,just like strings, have one- or two-character names. They are

set by the . fir (number register) request, and are referenced anywhere by \n x

(one-character name) or \n (. xy(two-character name). When you access a

number register sO' that its value appears. in the printed text, the jargon says that
you have interpolated the value of the number register.

A variety of parameters. are available to the user as. predefined, named number:
registers (see Ap~ndix D). In addition, users may define their own named regis:­

ters~ Register names. are one or two characters long and do not conflict with
request:' macro, or string names. Except for certain predefined read-only regis~
ters, a number register can be read, written, automatically incremented or decre­
mented, and interpolated into the input in a variety of formats. One common use

of user-defined registers is to automatically number sections, paragraphs, lines,

etc. A number register may be used any time numerical input is expected or
desired and may be used in numerical expressions~

troff defines. ~everal pre-defined number registers listed in Appendix D.
Among them are % for the current page number, 111 for the current vertical posi ..

tion on the page, dy, mo, and y:u for the current day, month and year (see Table
D-1) for a complete list); and . s and . f for the current size and font - the font
is a number from 1 to 4. Any of these number registers can be used in computa~

tions like any other register, but some, like . sand . f,cannot bechanged with a
. nr request because they are "read only~'(see Table D-2) for a complete list).

You create and modify number registers. using the . nr (number register) request.

In its simplest form, the . nr request places a value into a number register - the

register is created if it doesn't already exist. The . fir request specifies the name
ofthenumber register, and also specifiestheinitial value to be placed in there.

So the request

121 Revision A, of 9 May 1988'

'122 Using nroff and troff

(_·_n_r __ P_n __ 1_.s_v __ J

would be a request to se! a register called PD (which we might know as 'Para­
graph Depth' if we were writing a macro package) to the value 1.5v (1.5 of
tr of f's vertical units).

As an example of the use of number registers, in the -ms macro package, most
significant parameters are defined in tenns of the values ~fa handful of number
registers (see the chapter "Formatting Documents with the -ms Macros" in For­
matting Documents). These include the point size for text, the vertical spacing, .
and the line and title lengths. T9 set the point size and vertical spacing for the
following paragraphs, for example, a user may say:

[-

.nr PS-10 ------'--__], • .. nr :VS 12 _

.

The paragraph macro . PP is defined (mughly) as follows:

.de pp

.ps \\n(PS \" reset size

.vs \\n(:VSp \" spacing

.ft R \" font

.sp 0.Sv \" ha.1.f a line

.ti +l-3m

This sets the font to R0man and the point size and line spacing to whatever
values are stored in the PS and vs number registers.

Why are there two backslashes? When troff originally reads the macro
definition, it peels off one backslash to see what's coming next. To ensure that
another is left in the definition when the macro is used, we have to put two
backslashes in the definition. If only one backslash is used, point size and verti­
cal spacing will be frozen at the time the macro is defined, not when the macro is
used.

Protecting by an extra layer of backslashes is only needed for \n, *,\$,and \
itself. Things like \ s, \ f, \}ii., \ :v, and so on do not need an extra backslash,
since they are converted by troff to an internal code immediately upon being
seen.

Revision A, of 9 May 1988

(~

n

u

u

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation·:

Notes:

11.2. Auto-Increment
Number Registers

Chapter H - Number Registers 123

Summary of the . nr Request

number register

.nr R-±N M

Not applicable

Ignored

Assign the value -±N to number register R, with respect to the previous
value, if any~ Set the increment for auto-incrementing to M.

u (see TableA-2)

When you set a number register with the . nr request, you can also specify am
additional number as an auto-increment value - that is, the number is added to
the number· register every time you access the number register. You specify the
auto-increment value with a request such as:

[.nr sn Q; 1

to specify a (hypothetical) section number register that starts off with the value 0
and is incremented by 1 every time you use it. This might be applicable (for
instance) to numbering the sections of a dC>cument automatically- something
you might expect a computer to do for you. You might also define a numbered
list macro that w0uld clock up the item number every time you added a new list
item.

Here's a very quick and dirty example of the use of auto-incrementing a number
register:

.nr en -1 2
' ...
· the odd numbers \n+ (en, \n+ (.en, \n+ (en, \n+ (en, \n+.(en, \n+ (en,
I

When we format the above sequence, we get the following:

... the odd numbers 1, 3, 5, 7, 9, 11, ...

]

The table below shows the effects of accessing the number registers x and xx
after a . nr request that sets them t0 the value N with an auto-increment value of
M.

Revision A, 0£ 9 May 1988

124 Using nroff and t·rof f

Table 11-1 Access Sequences for Auto-incrementing Number Registers

11.3. Arithmetic
Expressions with
Number Registers

!

Access Effect on
i

Value Request '

Sequence Register Interpolated

.nr xNM \nx !il.O!ile N
\n(xx

:

N .nr XX NM none
:

;

.nr x N M \n+x x incremented by M N+M :

.nr x N M \n-x x decremented by M N-M

.nr xx N M \n+ (XX xx incremented by M N+M

.nr xx N M \n-(xx xx decremented by M N-M
'

Arithmetic expressions can appear anywhere that a number is e~pected. As a
trivial example,

{. nr PS \\n (PS-2 J

decrements the value in the PS macro by 2.

Expressions can use the arithmetic operators and ,logical operators as shown in in... \
the table below. Parts of an expression can be surrounded by parentheses. . _

Table 11-2 Arithmetic Operators and Logical Operators for Expressions

Arithmetic Operator Meaning
'

+ Addition
: - Subtraction

'

I Division l
'

: * Multiplication
'

' % Modulo.
'

Logical Operator Meaning :

',

< Less than
' > Greater than

' Less than or equal to <=
! >= Greater than or e(}ual to ·.

or = Equal to i = =
:

& and
:

: or ';

Except where controlled by parentheses, evaluation of expressions is left-to-right
- there is no ·operator precedence. ()

/

/•\sun
• · microsystems Revisi0n A, 0f9 May 1988

u

u

11.4. . a f - Specify
Format of Number
Registers

Chapter 11 - Number Registers 125.

Although the arithmetic we have done so far has been straightforward, m0fe
complicate~ things. are somewhat tricky. First, number registers hold only
integers. troff arithmetic uses truncating integer division. Second, in the
absence of parentheses, evaluation is. done from left to right without any operatoli
precedence (including relational operators). Thus

7*~+3/13

becomes '-1 '. Number registers can occur anywhere in an expression, and so
can scale indicatorslikep, i,m,and so on (but no spaces). Although integer
division causes truncation, each number and its scale indicator is converted to
machine units (1/432 inch) before any arithmetic is done, so 1 i/2u evaluates to
0.5i correctly. ~

The scale indicator u often has to appear where you would not expect it - in
particular, when arithmetic is being done in a context that implies horizontal Of

vertical dimensions~ For example,

(. lli 7/2i]

would seem obvious enough - 3.5 inches. Sorry- remember that the default
units for horizontal parameters like the . 11 request are ems./ So that expliession
is.really '7 ems/2 inches', and when translated into machine units, it becomes
zero. How about

[. u 7i/2

Still no good - the '2' is '2 ems', so '7i{2' is. small, although not zero. You
must use

[. ll 7i/2u

So again, a safe rule is to attach a scale indicator to every number, even con­
stants.

]

]

For arithmetic done within a . nr request, there is no implication of h0rizontal oz;
vertical dimension, so the default units are 'units', and 7i/2 and 7i/2u mean the
same thing. Thus

[_:_~_· ~-~\-~n_7_<~_i_·.~ _______ __._ _____________ J
does just what you want, so long as you don't forget the u- on the . 11 request.

When you use a number' register as part of the text, the contents of the register
are said to be interpolated into the text at that point. For example, y0u co.uid use
the folle>wing sequence:

4}~sun
~ microsystems

RevisioniA, ofi 9 May 1'988

126 Using nroff and troff

Table 11-J

i

i

!

'

.nr xy 567

the vall.!le of the \fixy\fP number register is: \n (.xy.

and when you formatted that sequence, it would appear as:

... the value of the .xy number register is: 567. . ..

When interpolated, the value of the number register is read out as a decimal
number. You can change this format by using the . a f (assign format) request to
get things like Roman numerals or sequences ofletters. Here is the example of
the auto-incrementing section above, but with the interpolation format now set
for lower-case Roman numerals:

.nr en -1 2

.af en i

the odd Roman numerals \n+(.en, \n+(en, \n+(.en, \n+(en, \n+(en, \n+(en,

When we format the above sequence, we get the following:

... the odd Roman numerals i, iii, v, vii, ix, xi, ...

A decimal format having N digits specifies a field width of N digits.

Read-only number registers and the width function are always decimal.

The table below shows the different formats you can apply to a number register
when it is interpolated.

Interpolation Formats for Number Registers

Format Description Numbering
Sequence

1 decimal 0, 1., 2, 3, 4., 5, ...
1

0.01 decimal with leading zeros
•

000, 001, 002., 003, 004, 005, ...
:

i
i

·lower-case Roman numerals 0, i, ii, iii, iv, v, ...
I upper-case Roman numerals 0, I, II, Ill, IV, V, ...
a lower-case letters 0, a, b, c, ... aa, ab, ... aaa, ...
A

:

upper-case letters 0, A, B, C, ... AA, AB, ... AAA, ...
:

·,

Revision A, of 9 May 1988

()
\.. . ./

(' u

u

l)

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

11.5. . r r - Remove
Number Registers

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation:

Summary of the . af Request

assign fonnat

.af Re

Arabic

Ignored

Assign fonnat c to register R.

Chapter 11 - Number Registers 127

If you create many number registers. dynamically, you may have to rem0ve
number registers that you aren't using any more to recaprure internal storage
space for newer registers. You remove a number register with the . rr (remove
register) request:

(......__: .rr x_y ___________]

removes the xy number register from the list.

Summary of the . rr Request

remove register

. irr R

Not applicable

Ignored

Remove register R. If many registers are being created dynamically, it may
become necessary to removeno-longer-used registers to recapture internal
storage space for newer registers~

Revision A, 0£ 9 May 1988

n

Ir')
\ /

u

u

12
Drawing Lines and Characters

Drawing Lines and Charaeters ... 131

12.1. \ u and \d Functions - Half-Line Vertical Movements 131
12.2. Arbitrary Local Horizontal and Vertical Moti0ns 132

\ v Function - Arbitrary Vertical Motion .. 132
\ h Function - Arbitrary Horizontal Motion .. 133

12.3. \ O Function- Digit-Size Spaces·.. 134
12.4. '\ ' Function - Unpaddable Space.. 136
12.5. \ I and \'"' Functions -Thick and Thin Spaces 136
12.6. \&Function-Non-Printing Zero-Width Character.............................. 137

12. 7. \o Function - Overstriking Characters ... 138
12.8. \z Function - Zero Motion Characters .. 139
12.9. \w Function - Get Width of a String .. 140
12.10. \ k Function - Mark Current Horizontal Place 141
12.1 l. \b Function - Build Large Brackets ... 142
12.12. \r Function-Reverse Vertical Motions .. 143

. 12.B. Drawing Horizontal and Vertical Lines .. 143
\ l Function - Draw Horizontal Lines ... 143
\ L Function - Draw Vertical Lines· .. 144

Combining the Horizontal and Vertical Line Drawing
Functions. .. 145

12.14 .. m~-Place Charactersin theMargin .. 145

n

,r-'\
\, _)

u

0

u

12.1. \u and \ d Functions
-Half-Line Vertical
Movements

12
Drawing Lines and Characters

This section is a grab-bag of functions for moving to arbitrary places on the page
and for drawing things. This section covers. a number of useful topics:

o Local motions- how to move forward and backward and up and down on
the page to get special effects~

o Constructing whole characters. out of pieces of characters that are available
in the special font - these facilities. are for doing mathematical typesetting.

o Drawing horizontal and vertical lines. to make boxes and underlines and
such.

[J Various types of padding characters, zero-width characters, and functions for
obtaining the width of a character string.

Most of these commands are straightforward, but messy to read and tough to type
correctly.

If you can't or don't want to use eqn, subscripts and superscripts are then most
easily done with the half-line local motions \u (for up) and \d (for down). To
move up the page half a point, insert a \u at the desired place, and to go down
the page half a point, insert a \ d at the desired place. The \u and \din-line
functions should always be used in pairs, as. explained below. Thus if your input
consists of the following fragment:

· . . . area of a circle is 'Area = \ (*pr\u2\d' when calculating

the output when that fragment is formatted consists. of:

. . . area of a circle is 'Area= rel-' when calculating ...

This is a first approximation of what you want, but the superscript '2' istoo
large. To make the '2' smaller, bracket it with \s-2 ... \ sO. Thisreducesthe
point-size by two points before the superscript and restores the point-size to the
previous value after the superscript. This example input:

. . . area of a circle is 'Area = \ (*pr\u\s-22\sO\d' when calculating . .

when formatted, generates:

131 Revision A, 0£ 9 May 1988'

132 Using nroff and troff

. . . area ofa circle is 'Area = rrcr2' when calculating ...

Now the reason that the\ u and \cl :fimctions should always be correctly paired is
that they refer to the current vertical spacing, so you must be sure to put any
local motions either both inside or both outside any size changes, or you will get
an unbalanced vertical motion. Carrying this example further, the input could
100k like this:

. . . area of a circle is 'Area = \.(*pr\u\s....;22\d\sO' when calculating ...

We'll format that example ina larger point-size so that you can see the effect of
the baseline being out of whack. So when we format the above construct with
the motions incorrectly paired, we get this:

• • • area of a circle is 'Area = nr2' when calculating ...

12.2. Arbitrary Local
Horizontal and
Vertical Motions

\ v Function __..;... Arbitrary
Vertical Motion

As you can see, the baseline is higher after the incorrectly-displayed equation.

The next two sections describe the in-line \ v (vertical) and the \h (horizontal)
local motion functions. The general form of these functions is \v 'N ' for the
vertical motion function,. and \ h 'N ' for the horizontal motion function. The
argument Nin the functions is the distance to move. The distance N may be
negative - the positlve directions are to the right and down.

A local motion is one contained within a line. To avoid unexpected vertical
dislocations, it is necessary that the net vertical local motion within a word in
filled text, and otherwise within a line, be zero.

Sometimes the space given by \ u and \ d is not the right amount (usually too
much). The in-line \v function requests an arbitrary amount of vertical moticm.
The in-line \ v function

(\v ' amount

moves up or down the page by the amount specified in amount. For example,
here's how to get a large letter at the start of a verse:

.in +.3i

.ti -.3i
\v'l.0'\s36A\s0\v'-1.0'\h'-4p'wake! for Morning inthe Bowl of Night
\h'2p'Has flung the Stone that puts the Stars to Flight:
.in -.3i

' And Lo! the Hunter of the East has caught
The Sultan's Turret in a Noose of Light.

and when we format that verse we get:

)

Revision A, of 9 May 1988

(:)

()

(~

u

u

/ \

_)

\ h Function - Arbitrary
Horizontal Motion

Chapter 12 - lliawing Lines and Characte!ls 133

A wake! for Moming in the Bowl of Night
..t-\H:as flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has. caught
The Sultan's Turret in a Noose ofLight.3

The indent amount we used here (0.3. inch) was determined by fiddling aroumd
until it looked reasonable. Later we show another in-line funetion for measuring
the aetual width of something.

A minus sign means upward motion, while no sign or a plus sign means. m0ve
d0wn the page. Thus \v' -1' means. an upward vertical motion of one line space.

There are many other ways to specify the amount of motion. The foll0wing three
examples are all legal.

\v'O. li'

\v·'3p'
' \ I. . I. , v-0.Sm
i

Notiee that the scale specifier (i, p, or m) goes inside the qu0tes. Any character
can be used in plaee ofthe qu0tes; this.is also true of all other troff commands
described in this sectfon.

Since troff de:>es not take within-the,.line vertical motions.into account when
figuring out where it is. on the page, output lines can have unexpected positions if
the le ff and right ends aren't at the same vertieal position. Thus \ v, like \ u and
\d, should always balance upward vertical motion in a line with the same
amount in the downward direction.

Arbitrary horizontal motions are also available - \h is. quite analogous. to \ v,
except that the default scale faetor is ems instead of line spaces. As an example,

(\h'-0.li' J

causes a backward motion of a tenth of an inch. As. a practical matter, consider
printing the mathematical symbol '>> '. The standard spacing is too wide, so
eqn replaces this by

[>\h'-0. 3m' >

to produce ».

Frequently \ h is used with the width functiC:>n, \w, to generate me:>tions equal1 to
the width of some character string. The constructiC:>n

3 Omar:I<hayyami- the Rubaiyat

J

Revisicm A, of 9 May 1988

134 Using nroff ,and troff

12.3. \ O Function -
Digit-Size Spaces

[__w_' t_hz_·ng_' ____________________ __,]

is a number equal to the width of 'thing' in machine units {1/432 inch). All
troff computations are ultimately done in these units. To move horiz0ntally
the width of.an '.x', we can say

(\h'\w'x'u' J

As we mentioned above, the default scale factor for all horizontal dimensi0ns is
m (ems), so here we must have the u for machine units, or the motion produced
will be far too large. troff is quite happy with the nested quotes, by the way,
so long as you don't leave any out.

As a live example of this kind of 1construction, the re, re, CE, and.~ ligatures dis­
cussed in the section on ligatures in the chapter Fonts and Special Characters,
were constructed using the \h function to define the following strings:

.ds ae a\h'-(\w'a'u*4/10)'e

.ds Ae A\h'-(\w'A'u*4/10)'E

.ds oe o\h'-f\w'o'u*4/l.01) 'e
· .ds Oe O\h'-f\w'.O'u*4/l.0) 'E
' \..

and for any given one o:f those· strings, the mess is unscrambled like this:

Construct Explanation

· .ds ae Define a string called 'ae'.
Letter 'a' in the string. a

\h'-(\w'a'u*4/1D)'
e

Move backward 0:4 of the width of the letter 'a'.
Letter 'e' in the string.

The in-line \0 function is an unpaddable white space of the same width as ~a
digit. 'Unpaddable' means that it will never be widened or split across a line by
line justification and filling. You could use the digit space to get numerical
columns correctly lined up. For example, suppose you have this list of items:

•\sun ~ microsystems Revision.A, of9May1988

i~

u

u

G

Chapter 12 - lliawing Lines and Characters 135

'.nf
.ta Sn
Step Description
.sp Sp

1. 1 . Unpack . the handy dandy fuse blower.
1

2. Inspect for obvious shipping defects.

9. Find. a wall socket.
, 10. Insert handy dandy fuse blower in wall socket.
· 11. Push red button to blow all fuses .

. fi

When you format this list of operations, you get this. result:

Step Description

l. Unpack the handy dandy fuse blower.
2. Inspect for olDvious. shipli'ing defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses~

As you can see, the numbers do not line up at the decimal point, but instead alie
lined up on the left. Placing a space character in front of the digits in the input is
not sufficient measure to line up the digits at the decimal. A space is not the
same width as a digit (at least not in troff). A solution is to use the unpad­
dable digit-space character \ 0 in front of the single digits like this:

.nf

.ta Sn
\ODescription .step

.sp Sp
\01.
\02.

Unpack the handy dandy fuse blower.
Inspect for obvious shipping defects.

• \09. Find a wall socket.
10. Insert handy d.andy fuse blower in wall socket.
11. Push red button to blow all fuses.

: .fi

Now when you format the text, you get this result:

Revision1 A, 0£ 9 May 1988'

136 Using nroff and troff

12.4. '\ ' Function -
Unpaddable Space

12.5. \ I and \ "' Functions
- Thick and Thin
Spaces

Step Description

1. Unpack the handy dandy fuse blower.
2. Inspect for obvious shipping defects.

9. Find a wall socket.
10. Insert handy dandy fuse blower in wall socket.
11. Push red button to blow all fuses.

which looks better than the previous example.
,.

There is also the in-:Iine \ function, which is the \ character (backslash) followed
by a ·space character. This function is an unpaddable character the width of.a
space. You can use this to make sure that things don't get split across line boun­
da11ies, for instance if you want to see something like nroff -T1pmyfile in
the stream of text, with the command line set off like it was here and ensuring
that it all appears on one line, you would type it in as
\ \ \f .(LBnroff\ -Tlp\fP\ \fimyfile\fP\ \
in-line in the text.

In typography, there are times when you need spaces that are one"" sixth or one­
twelfth of the width of an em_;space. troff supplies the in-line \ I function
which is one-sixth of an em _;space wide - this is sometimes called a 'thick
space'. Where would you want such a thing? Well one place it could be used is
in making an ellipsis fook better. In general, an ellipsis in a proporticmal font
looks too cramped if you just string three dots together:

and the dots tend to look too spread out if you just place spaces between them:

and so the answer is often to use the thick space to get a more pleasing effect like
this:

which was actually achieved by typing:

(.\I.\ I.

Lastly, the in-line \"'function is one-twelfth of the width of an em_;space space.
This function is almost always used for a typographical application called italic
.correction. Consider an italic word followed by some punctuation such as do
telZ! Because the italic letters are slanted to the right, they foan slightly on the

J

+§!!,.!! Revisi0nA, 0f9 May Hl88

u

12.6. \& Function - Non­
Printing Zero-Width
Character

Chapter 12 - lliawing Lines and Chaliacte:rs 137

trailing punctuation, especially when the last letter is a tall one like the l in the
example. So, what typographers do is to apply the italic correction in the folilll of
a thin space just before the punctuation, so that the effect is now do tell! What
we actually typed here was

with the italic correction just before the exclamation mark.

Typing the italic correction. at every instance of adjacent Roman and italic text,
w0uld be a lot of work. S0me macro packages. construct special-purpose maeros
for applying the italic correction. For example, the-man macro package has a:

J

. IR macro. that joins alternating italic and Roman words together so that you can
italieize parts of words. or have italic text with trailing Roman punctuation. You
use the . IR macro like:

(.]R well spring

to get the composite effect of wellspring in your text. The . IR macro (some­
what simplified) looks like this:

.de IR
\.&\f!\\$1 \ A\fR\\$2\fI\\$3\ A\fR\\$4 \fl\ \$5\.A\fR\ \$6\fI\ \$7\ A\fR\ \$8\fI\\$9\ A\fR

and you can see the italic correction applied after every parameter that is set in
the italic font.

J

The \& function is a character that d0es not print, and does n0t take up any space
in the output text. You might wonder what use it is at all? One application of
the n0n-printing character used throughout this. manual is t<:> display examples of
text containing troff or nroff requests~ To print a t:irnff requestjustas.it
appears in the input, you have to distinguish it from a real troff request. You
cannot print an example whose input 10oksjust like this:

.in +O.Si indent· the text half an ineh

, lots of lines o.f text to be proeessed

.in -0.Si unindent the text half an inch

The . characters at the beginning of each line would be interpreted as troff
requests instead of text representing examples of requests. In such cases~ we
have to use the\ & function to stop troff or nroff from interpreting the . at
the start of the line as a control character. We would type the example like this:

~'

Revision A, 0£ 9 May 1988

138 Using nroff.andtroff

12. 7. \ o Function -
Overstriking
Characters

\& . in +0 . Si indent the text.half an inch
\&.
\&.
\&.

1lots of lines of text to be processed
\&.
\&.
\&.

\&.in -0.Si unindent the text half an inch

Another place where the \& function is useful is within some of the 0tller in-line
functions such as the \ 1 fimction. The \ 1 function draws lines and you type the
function like:

(~'_.i_' __ ·l-en_·g_m ___ c_ha_ri_a_ot_e_r_' _______________________________________ J

where length is the length of the line y0u want to draw, and character is the char­
acter to use. Sometimes, the character might look like a part of length, for
instance,

~ , :-:-:n-1.-~-:-:t-=y_' o-u-.-a-o-ne---in_c_h_l_in_e_o_f_= __ s1-. gn __ s_a_s _y-ou __ m_i_g-ht_e_x_pe __ c-t,-be--ca_u_· s_e_th_e_= __ _,J ()

sign lo0ks like an expression where you are trying to say that "l.Oi is equal to"
something else. When you enc~mnter this situation, type the \ l function like
this:

(__1_'_1_._o_i '_&_=_' ____________________ ~]
and the result is a one-inch line of =========== signs as you see here.

Aut0matically-centered overstriking of up to nine characters is possible with the
in-line \o (overstrike) function. The \o function looks like \o' string' where
the characters in.string are overprinted with their centers aligned. This means for
example, that you can print from one to nine differentcharacters superimposed
upon each other. troff detennines the width of this "character" y0u are creat­
ing to be the width of the widest character in your string. The superimposed
characters are then centered on the widest character. The string sh0uld not con­
tain local vertical motion. The in-line \o function is used like this:

{ '_o_·'_'s-~t_o_if_,c_ha_ri_a_ot-er_s_" ___________________________ J

This is useful for printing accents, as in

syst\o"e\ (ga"me t\o"e\ (aa·"l\o"e\ (aa"phonique

•\sun ~~ microsystems Re~ision A, of 9 May 1988

()
' ~/

u

u

/~ ', u

12.8. \z Function-·zero
Motion Characters

Chapter 12 - Drawing· Lines. and Ch0Iiacte11s 139

which produces

systeme telephonique

The accents are \ (ga (grave accent) and \. (aa (acute accent), or \' and \ ';
remember that each is just one character to troff.

produces

e
and

(_'_\o_"__cm_o__\ <._s_i '_' __________________ __.]

produces

f/..

You can make your own overstrikes with another special convention, \z, the
zero-motion command. \ z x sup~vesses. the normal horizontal motion after
printing the single character x, so another character can be laid on to~ ofit.
Although sizes can be changed within \o, troff centers the characters on the
widest of them, and there can be no horizontal or vertical motions, so \z may be
the only way to· get what you want:

is produced by

, .sp 2
\s8\z\ (ci \s14\z\ (c.i \s22\z\ (.ci \s36\z\ (ci

The . s p 2 line is needed to leave enough vertical space for the result.

As another example, an extra-heavy semicolon that looks like

; instead of ; or ;

can be constructed with a big comma and a big period above it:

[\s+6\z,\v'-0.25mf .\v'0.25m'\s0

where O . 25m is an empirical constant.

As.further examples, \z\ (ci \(pl pmduces

®

J

Revision A, 0£ 9 May 1988

!140 Using nroff and troff

12.9. \w Function - Get
Width of a String

and\ (br\ z\ r(rn\ .(uil..\ (br produces the smallest possible constructed box:

D
There is also a more general overstriking function for piling things up vertically
-this topic is discussed in the·section "\b Function- Build Large Brackets"
later in this chapter.

Back in the section on using tabs, we saw how we cc;mld set tab stops to vacicms
positions on the line and lay stuff out in columns based on the tab stops. Some­
times it is hard to figure out where the tab stops should go because you can't
always tell in advance how wide things are - this is especially true for propor­
tional fonts (by definition the characters aren't all the same size). Often what you
want is to set tab stops based on the width of an item. Then you can set tab stops
based on that width and remain independent of the size of the characters if you
decide to change point size.

The in..:line width function \w 'string ' generates the numerical width ofstring
(in basic units). For example, . ti -\w '1. 'u could be used to temporarily
indent leftward a distance equal to the size of the string ' 1 . '. Size and font
changes may be safely embedded in string, and do not affect the current environ­
ment.

In a previous example we showed how a large capital letter could be placed in a
verse with vertical motions and we played some games with indenting to get the
thing to come out more-or-less right. The problem with that approach is that we
had ,to measure the size of the character and arrive at the indent by trial and ermr
(actually, error and trial). Another pmblem is that the measured indent didn't
take the p<:>int-size into account - if we decide to change sizes, the measure­
ments are all wrong. The width function can measure the size of the thing
directly, so here's our example all over again using the\ w function:

.in +\w'\s36A\s0'u

.ti -\w'\s36A\s0'u
\v'l.0'\s36A\s0\v'-1.0'\h'-5p'wake! for Morning in the Bowl of Night
\h'lp'Has flung the Stone that puts the Stars to Flight:
.in -\w'\s36A\s0'u
And Lo! the Hunter of the East has caught

: The Sultan's Turret in a Noose of Light.
\.

and when we format that text we get this result:

A wake! for Morning in the Bowl of Night
..t-\. Has flung the Stone that puts the Stars to Hight:
And Lo! the Hunter of the East has caught
TheSultan"s Turret in a Noose of Light.

The width function also sets three number registers. The registers st (string top)
and sb (string bottom) are set respectively to the highest and lowest extent of
string relative to the baseline; then, forexample, the total height of the string is
\n (stu-\n (sbu. In troff the number register ct (character type) is,set to a
value between 0 and 3:

Revisfon A, 0f 9 May 1988

1(),

'.. .,

()

Q

u

u

Table 12-1

12.10. \ k Function -
Mark Current
Horizontal Place

Chapter 12 - lliawing Lines. and, ChaJ.iacte:lls 141

troff Width Function- ct Number Register Values

ct Number
Register

Value

0

1

2

3

Meaning

all of the characters in
string were short lower
case characters with0ut
descenders (like e)
at least one character has. a
descender (like y)
at least one character is tall
(likeH)
both tall characters and
characters with descenders
are pvesent.

The in-line \ kx function stoies the current h01izontal position in the in~ut line
into register x. As an example, we could get a bold italic effect by the construc­
tion:

[\.kxwo'd \h' I \nxu+2u 'wo•d J
---~~~~~~~~~~~~~~~~~~~~~~~~~~---

This emboldens word by backing up to its absolute (hence, the I} beginning
(\kxword\h'l\nxu}plus 2 machine units (+2u) and overpllinting it, resulting in.

word

Revisionr A, of 9 May 1988

142 Using nroff and troff

12.11. \b Function -
Build Large
Brackets

Table 12-2

The Special (mathematical) font contains a number of characters for c0nstrncting
large brackets out of pieces. The table below shows the escape~sequences far the
individual pieces, what they look like, and their names.

Pieces for Constructing Large Brackets

Escape
Character Description Sequence

\(lt (left top of big curly bracket

\.(lb l left bottom of big curly bracket

\(rt l rightit0p of big curly bracket

\(rb J right bottom of big curly bracket

\(lk ~ left center of big curly bracket

\(rk ~ right center of big curly bracket

\(bv I bold vertical

\(1f 1 left fio0r (left oottom of big square bracket)
:

\(rf J right floor (right b0ttom of big square bracket) '

\(le :r left ceiling (left top of big square bracket)

\(re ~ right ceiling (right top of big square bracket)

These pieces can be combined into vari0us styles and sizes of brackets and
braces by using the in-line \b (for bracketing) function. The \b functi0n is used
like this:

[__b_. '_s_tr-in-·g_' ________________________ J

to pile up the characters vertically in string with the first character on t0p and the
last on the botmm. The characters are vertically separated by one em and the
total pile is centered l/2~em above the current baseline (1f2..:line in nroff). For
example:

\x' -'0.Sm' \x'0.5m' \b' \(lc\r(lf'E\l\b' \(rc\(rf'

produces [EJ . As with previous examples, we should unscramble the whole

mess for y0u:

Revision A, 0f9 May 1988

n

u

()

(_)

12.12. \ r Function -
Reverse Vertical
Motions

12.13. Drawing Horizontal
and Vertical Lines

\ 1 Function - Draw
Horizontal Lines

Chapter 12 - Dliawing Lines and Characters 143

'

Escape
Sequence~

\b

\(le

i \ (lf

E

\b

:\(re

i'
\ (rf \

Character

r
L

l
J

Description

start bracketingfunction

left ceiling

left floor

letter E

start bracketingfunction·

right ceiling

right floor

Here's. another example of using bliaces and bmckets. You get this effect:

{[xJ})

by typing this:

\b '\ Clt \ (lk\ (lb' \b '\(le\ (lf' x \b '\(re\ (rf' \b '\(rt\ frk\ (rb'

The \r function makes a single reverse motion of one em upward in troff,
and one line upward in gr off.

Typesetting systems commonly have commands to draw horizontal am[vertkal
lines. Of course typographers. don't call them lines- they are called 'rules'
because once upon a time they were drawn with rulers. troff provides a con­
venient facility for drawing horizontal and vertical lines of arbitrary length with
arbitrary characters, and these facilities are described in the subsections follow­
ing.

The in-line \1 (lower-case ell) funetion draws a horizontal line. For example,
the funetion \ 1 ' 1 . 0 i ' draws a one-inch horizontal line like this
______ in the text.

The line is actually drawn using the baseline rule, charaeter in troff, and the
underline character in nroff, but you can in fact make the character that draws
the line any character you like by placing the character after the length designa:­
tion. For example, you could draw a two inches of tildes by using \ l' 2 . 0 i - ' to
get in the text. The construction \L is. entirely
analo.gcms, except that it draws. a vertical line instead ofhorizontal.

The general form of the \ 1 function is

[~'._1_'_l_en_g_th_.,_ch_a_r_a_ct-er_' ____________________________________ ~]

~\sun ~~ microsystems
Revision A, 0£ 9 May 1988

144 Using nroff and troff

\ L Function - Draw Vertical
Lines

where length is the length of the string of characters to be drawn, and character
is the character to use to draw the line. If character looks like a continuation of
length, you can insulate character fmm length with the zero-width\ & sequence.
If length is negative, a backward horizontal motion of size length is made before
drawing the string. Any space resulting fmm length/(size of character), having a
remainder is put at the beginning (left end) of the string. In the case of characters
that are designed to be connected such as baseline-rule (_), underrule (_), and
root-en C), the remainder space is covered by overlapping. If length is less than
the width of character, a single character is centered on a distance length. As an
example, here is a macro to underscore a string:

i ~ ~ $1 \ l ' 1.0 \ ((ul '
[.de us

and you use the . us macro like this:

{.us "underline'd words"

to yield underlined words in the stream of text. You could ,also write a macro to
draw a box around a string:

.de bx
\i(br\\$1\ (br\ l' I O\.(rn '\ l' I O\.(ul'

and so you can type:

l
]

f _.b_x_'_'w_o_r_d_,s_i_n_a_b_ox_" __________________ _,,,.]

to get some !Words in a bozj in the text stream.

'The in-line \L {upper-case ell) functicm draws a vertical line. As in the case of
the \ 1 function, the general fonn of the function is

[_'_L_'_k_n_~_m_c_h_a_ra_c_re_r_· _____________________ __,]

This draws a vertical line consisting of the (optional) character character stacked
vertically apart 1 em {1 line in nroff), with the first two characters overlapped,
if necessary, to fonna contim10us line. The default character is the box.rule,
I< \ (br); the other suitable character is the bold ·vertical I (\ .(bv). The line
is begun without any initial m0tion relative to the current base line. A positive
length specifies a line drawn downwara"and a negative length specifies a line
drawn upward. After the line is drawn no compensating m0tions are made; the

1

n.. .

instantane0us baseline is at the end of the line. , .

~\sun ~~ · microsystems Revisi0nA, 0f9May1988

u

u

(_)

Chapter 12 - lliawing· Lines. and Characters 145

Combining the Horizontal
and Vertical Line Drawing
Functions
The horizontal an<!l vertieal line drawing functions may be used in combination to produce large boxes~ The zem­
width box-rule and the 1/2-em wide underrule weredesigned to form comers when using one-em vertical spaeings~
For example the macro

.de eb

.sp -1 \"compensate for next automatic baseline spacing

.nf \"avoid possibly overflowing word buffer
\h '-.Sn' \L' I \\nzu-1 '\1 '\ \n (. lu+ln \ (ul '\L '-1. \\nzu+l '\l' I Ou-. Sn\ (ul'

\"draw box
.fi

draws a box aroun<!l some text whose beginning vertical place was saved in number register z (using . mk z) as done
for this paragraph.

12.14. . me - Place
Characters in the
Margin

Many types of documents require placing specifie characters in the margins. The
most common use ofthis is placing bars down the margins. to in<!licate what's
changed in a document from one revision of a document to the next. This parar­
graph and the remainder of the text in this section were pi:eceded by a

[.me \s12\ tbr\sO

request (that is, pl1ace a 12-point box-rule character in the margin) to tum on the
marginal bars, and followed by a simple

request to tum offthe marginal bars.

Currently, this request is not bug-free, an<!l the margin character only ap~ars to
the right of the right margin, but not in left margins~ Also, you '11 notice that the
marginal bars do not appear on incomplete lines, such as this one.

]

)

4}~sun
~ microsystems

Revision A, of 9 May 1988

146 Hsing nroff and troff

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

Summary of the . me Request

margin character

.mccN

Not applicable

Tum off margin characters

Specifies that a margin 1character c appear a distance N to the right of the
right margin after each non-empty text lime (except those produced by . tl).
If the output line is too long (as can happen in 111ofill mode) the character is
appended to the line. lfN iS'llot given, the previous N is used; the initial N
is 0.2 inches in nroff and 1 em in troff.

E, m (see Table A-2)

•\sun ~ · microsystems
Revisi0n A, 0f 9 May 1988

n

u
13

Character Translations

Charaeter Translations.. 149

13 .1. Input Charaeter Translati0ns .. 149
13.2. . ec and . e0 - Set Escape Charaeter or Stop Escapes 149

13.3. . cc and . c2 - Set Control, Characters .. 150

13.4 .. tr - Output Translation... 150

./ " u

()

u

0

0

13.1. Input Character
Translations

13.2. . ec and . e o - Set
Escape Character or
Stop Escapes

Mnemonic:

Form ofi Request:

Initial Value~:

If No Argument:

Explanation1:

Mnemonic:

Form of Request:

Initial Value~·

If No Argument:

Explanation·:

13
Character Translations

The newline delimits input lines. In additi0n, STX, ETX, ENQ, ACK, and BEL ave
accepted, and may be used as delimiters or translated into a graphic with a . tr
(translate J request (refer to the section entitled . tr ~ Output Translation). All
others are igmH:ed.

The escape character \ introduces escape sequences. - meaning the foll0wing
character is something else, or indicates some function. A complete list of such
sequences is. given in a later chapter. The \ character should not be confused
with the ASCII control character Esc· of the same name. The escape. character:
can be changed with an . e c (escape character) request, and all that has been said
at>out the default \ becomes true for the new escape character. \ e can be used to
pfint whatever the current escape character is~ If necessary or convenient, the
esca{)e mechanism can be turned off with an . e o (escape off) request and
restored with the . e c request.

Summary of the . ecRequest

escape character

.ec c

\

\

Set escape character to \, or to c, if given.

Summary of the . eoRequest

escape mechanism off

.eo

Escape mechanism is on

Tum escape mechanism off.

Tum escape mechanism off.

•\sun ~~ microsystems
149 Revisicmi A, 0£ 9 May 1988

150 Using nroff and troff

13.3. . cc and . c2 - Set
Control Characters

Mnemonic:

Form @f Request:

Initial Value:

If No Argument:

Explanation:

Mnemonic:

F@rm @f Request:

Initial Value:

If No Argument:

Explanation:

13.4. . tr - Output
Translation

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

B0th the c0ntrol character . and the no-break c0ntrol character ' may be
changed, if desired. Such a change must be c0mpatible with the design of.any
macros used in the span of the change, and particularly of any trap-inv0ked mac­
ros.

Summary of the . cc Request

c0ntrol /character

.CCC

Set the basic control character to c, or reset to ' . '.

Summary of the . ~2 Request

no.:break control character

.c2 c

Set the no-:break control character to c, or reset to ' ' '.

One character can be made a stand-in for an0ther character using the . tr
(translate) req_uest. All text processing (for instance, character c0mparis0ns)
takes place with the input (stand-in) character that appears to have the width of
the final character. The graphic translati0n occurs at the moment of output
(including diversion).

Summary of the . tr Request

translate

. tr abed

Not Applicable

No translation

Translate a into b, c into d, etc. If.an odd number of characters is given, the
last 0ne is mapped into the space character. To be c0nsistent, a particular
translation must stay in effect from input to output time.

0 (see Table A-2)

4}\sun
~~ microsystems

Revision A, 0f 9 May 1988

0 ,,,)

n

u
14

Automatic Line Numbering

Automatic Line Numbering .. 153

14.1. . nm - Number Output Lines,... 153

14.2 .. nn - Sto{i> Numbering, LineK ... 154

0

(_)

In, .. ,_

u

14.1. . nm- Number
Output Lines

3

6

9

0 12

Mnemonic:

Form oft Request:

Initial Value~·

If No Argument:

Explanation:

Notes~·

0

14
Automatic Line Numbering

Output lines may be numbered automatically via the . nm (number) request.
Refer to the foll0wing table for a summary of the . nm request. when in"-"
effect, a three-digit, Arabie number and a digit-spaee begins each line of
output text. The text lines are thus offset by four digit-spaces, and otherwise
retain their line length. To keep the right margin aligned with an earlier
margin, you may want to reduce the line length by the equivalent of four
digit spaees. Blank lines, other vertical spaces, and lines generated by . t 1
are not numbered. Numbering can be temporarily suspended with the . nn
(no number) request (see below), or with an . nm followed by a later . nm
+ 0. In addition, a line number inclent /, and the number-text separation. S
may be specified in digit-spaces. Further, it can be specified that onlythose
line numbers that are multiples. of some number M are to be printed (the oth­
ers. will apl'ear as blank number fields).

Summary of the . nm Request

numbering

.nm±NMSI

Line numbering turned off.

Line numbering turned off.

Tum on line numbering if ±N is given. The next output line numbered is
numbered±N. DefaultvaluesareM= l,S= 1, and/=0. Nistheline
number counter (or incrementer if you use ±N), Mis. the multiple of the
numbered lines to be printed on the page, S is the spaeing between line
numbers and text, and I is. the amount of indent for the line numbers.
Parameters corresponding to missing arguments are unaffected; a non­
numeric argument is. considered missing. In the absenee of all arguments,
numbering is turned off; the next line number is preserved for possible
further use in number register 1 n.

E (see Table A-2)

153 Revision A, of 9 May 1,9gg·

154 Using nroff and troff

14.2. . nn - Stop
Numbering Lines

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

Notes:

15

18

21

/

When y0u are using the . nm request to number lines (as discussed above), you
can temporarily suspend the numbering with the . nn (no number) request.

Summary of the . nn Request

no numbering

.nnN

Not applicable

N=l

The next N text output lines are not numbered.

E (see Table A-2)

As an example, the paragraph porti0ns of this chapter are numbered with
M = 3: . nm l 3 was placed at the beginning of the chapter; . nm was
placed at the end of the first paragraph; and . nm +O was placed in front of
this paragraph; and . nm finally placed at the end. Line lengths were also
changed (by \ w ' 0 0 .00 'u) to keep the right side .aligned.

Another example is

()

[_·_mm __ ~_: s_._s_. _x __ 3 __ __,,~
which turns on numbering with the line number of the next line to be 5
greater than the last-numbered line, M= 5, spacing Sis unt0uched, and with
the indent I set to 3.

Re~isfon A, 0f 9 May 1988

u
15

Conditional Requests

Conditional Requests• ... 157

15.1. . if - Conditional Request.. 157

15.2. . ie and . el - If-Else and Else Conditionals .. 160

15,.3 .. ig-Ign.ore Input Text.. 160

0

u

()

()

u

0

/ \ u

15.1. . if - Conditional
Request

15
Conditional Requests

Suppose we want the . s H macro to leave two extra inches of space just befo11e
section 1, but nowhere else. The cleanest way to do that is to test inside the . s H

macro whettier the section number is 1, and add some space if it is~ The . if
request provides. the conditional test that we can add just before the heading line
is output:

i .if \\n(SH=l .sp 2i \" first section only

The condition after the . if can be any arithmetic or logical expr:ession. If the
conditicm is fogically true, or arithmetically greater than zero, the rest of the line
is treated as. ifit were text - here a request. If the conditi0n is, false, or zero, or
negative, the rest of the line is skipped.

It is possible to perform more than one request if a conditi0n is. true. Suppose
several operati0ns are to be d0ne before section 1. One possibility is to define a
macro. . s 1 and invoke it if we are about to. do section 1 (as determined by a:
.if).

' .de S1
processing for section 1 ---

.de SH

'

: . if \ \n (SH=l . Sl

An altemate way ist0 use the extended foJ.illl of the . if,like this:

~ .if \\n(SH=l \{--- processing for section 1 ----\}

The br:aces \ { and \} must occur in the positions shown or you will get unex­
pected extra lines in your output. troff also pmvides an 'if-else' construction,
which we will n0t go. into here.

-.
A condition can be negated by pmceding it with ! ; we get the same effect as
above (but less clearly) by using

•\sun ~ microsystems
157 Revision A, 0£ 9 May 1988'

158 Using nroff and troff

f .if !\\n(SH>l .Sl]
There are a handful of other C<imditions that can be tested with . if. For exam­
ple, is the current page even or orld?

.if e .tl ''even page title''

.if o .tl ''odd page title''

gives facing pages different titles when used inside an appropriate new page
macro.

Two other conditions are t and n, which tell you whether the formatter is
troff or nroff.

f _: ~-: :_~-~-~-~_:_:_._:_~_~_:_:_:_:_: ____________________]
Finally, string comparisons maybe made in~an . if:

(.if 'stringl' string2' stuff

does 'stuff' if string 1 is the· same as string2. The ·character separating the strings
can be anything reasonable that is n0t contained in either string. The strings
themselves can reference strings with *,arguments with \ $, and so 0n.

In the following table, c is a one-character, built-in c0ndition name, ! signifies
not, N is a numerical expressi0n, string] and.string2 are strings delimited by any
n0n-blank, n0n-numeric character not in the strings, and anything represents
what is conditicmally accepted.

J

•\sun ~~ ·microsystems
Revision A, of9 May 1988

n
\, ,./

u

0

u

Mnemonic:Jif, if-else, else

Form of Request:

Initial Value":

If No Argument:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Exp.lanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Form of Request:

Explanation

Summary of the . if Requests

. if c anything

Not Applicable

Not Applicable

Chapter 1'5·- Conditicmal1 Requests 159

If condition c true, accept anything as input. In multi-line case use \{any­
thingV.

. if ! c anything

If condition c false, accept anything.

. if N anything

If expliession N > 0, accept anything.

. if !Nanything

If expression N ~ 0, accept anything .

. if 'string1 'string2' anything

If string 1 identical to string2, accept anything.

. if ! 'stringl 'string2' anything

If string 1 is not identical to string2, accept anything.

. ie c anything

Ifportion of if-else (like. above if forms)~

. el anything

Else porticm of if-else.

The built-in condition names are:

Table 15-1 Built-In Condition Namesfor Conditional Processing

I'
1 Condition,

Name True If

. 0 Current page number is odd

:
e Current page number is even
t :1 Formatter is troff

i n Fonnatter is· nroff

•\sun ~ microsyi;tems
Revision A, ofi 9 May 1988

11650 Using nroff and troff

15.2 .. ie and . el -If­
Else and Else
Conditionals

15.3 .. ig - Ignore Input
Text

If the condition c is true, or if the number N is greater than zero, or if the· strings
compare iidentically (including motions and character size and font), anything is
accepted as input. If a ! precedes the 'Condition, number, orstring comparison,
the sense of the acce}!Jtance is reversed.

Any spaces between the condition and the beginning of anything are SkiJ!Jped
over. The anything can be either a single input line .(text, macro, or whatever) or
a number of input lines. In the multi-line case, the first line must begin with a
left delimiter \ { and the last line must end with a right delimiter \ } .

The request . ie (if-else) is almost identical to . if ·exce}!Jt that the acceJ!Jtance
state is remembered. A subsequent and matching . el (else) request then uses
the reverse sense of that state .. ie - . el pairs may be nested. Refer to the
Summary of the . if Requests forsummaries of. ie and . el.

Some examples are:

I _· i_· f_e __ • t_i __ , _E_. v_e_n_· _P_· a_g_e_%_'_'_' _______________ ___.J

which outJ)uts a title if the page number is even; and

.ie \n%>1 \{\
'sp O.Si
. tl ' Page % ' ' '

• 'sp - 1. 2i \}
, .el .sp - .2.Si

which treats page 1 differently from other pages.

Another mechanism for conditionally accepting input text is via the . ig (ignore)
request. Basically, you place the . ig request before a block oftext you want to
ignore:

. ig start of irgnored block of text

block of1text you don't want 1to appear in the printed output

i •• end of ignore block.signalled with . .
'

The . ig request functions like a macro definition via the . de requestexce}!Jt
that the text between the . ig and the tenninating . . is discarded instead of
being processed for printing.

()

You can give the . ig requestanargurnent-that is, an ()

~~ S ll fl Revisi0n A, 0f 9May1988
~ , micro11ystems

0

0

u

Chapter 15 -CcmditicmalRequests 161

[___ • _.ig x_y ____ ____...)

request ign0res. all text up. to am[ineluding a line that reads

[____ · _.xy _____ ____,]

which looks just like a request:

I .ig ZZ
I

start ofi ignored bloek oft text

r bloek oft text you don!t want· to appear in· the printed output

. zz end ofi ignore bloek signalled with . z z

You can of course combine the . i g request with the other comditionals to igno11e
a block of text if a condition is satisfied. F0r example, you might want to omit
blocks of text if the printed pages are destined for different audiences:

.nr W 1 This manual is for Wizards only

further proeessing

.if \nW .ig WZ If the manua,l; is.for wizards

'

' Tutorial mat~r,ial: beneath the: attention1 oft wizards

i .wz end of ignored bloek ofi text

Revisicmi A, of 9 May 1988

162 Using nroff;and troff

Mnemonic:

Form tJf Request:

Initial Value:

If No Argument:

Explanation:

Summary of the . ig Request

ignore

.igyy

Not apwlicable

Ignore ,text up ,to a line starting with . .

Ignore input lines up to and including .a line starting with . yy - use . . if
no argument is specified on the request. . ig behaves exactly like the . de
(define macm) request except that the input is discarded. The input is read
in copy mode, and any auto-incremented number registers will be .affected.

Rev:isfon A, of 9 May 1988

CJ
16

Debugging Requests

Debugging Requests ... ,.................. 165

16.1. . pm-Display Names and Sizes of Defined Maeros 165

16.2. . f 1 - Flush Output Buffer .. 166

16.3. . ab - Abort .. 166

0

u

0

()

u

0

0

16.1. . pm - Display
Names and Sizes of
Defined Macros

Mnemonic:

Form of Request:

Initial Value,:

If NoArgument:

Explanation,:

16
Debugging Requests

troff and nroff resemble languages forpmgramming a typesetter ratherthaN
a mechanism to describe how a d0cument sh0uld be put together. There afe
times when you just can't figure out why things are going wrong and n0t generat­
ing results as advertised. The requests described here are for dyed-in-the-wool,
macro wizards~

The . pm: (print macros) request displays the names of all defined macros and
h0w big they are. Why would anybody want to do such a thing? Well, if y0u're
using a macro as a diversion, you might find out (by printing its size) that it is far
bigger than you expect (that it's swalfowing your entire file).

Summary of the . pm Request

print macros

.pmt

Not applicable

All

Print macros~ The names and sizes: of all of the defined macros and strings
are printed on the user'sterminal; if tis given, only the total of the sizesis
printed. The sizes are given in blocks. of 128 characters~

•~sun ~ microsystems
Revision A, ofi 9 May 1988

166 Using nroff and troff

16.2. . fl - Flush Output
Buffer

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

16.3. . ab - Abort

Mnemonic:

Form of Request:

Initial Value:

If No Argument:

Explanation:

The . fl (flush) request flushes the 0utput buffer - this can be used when y0u 'ire
using nroff interactively.

Summary of the . fl Request

flush

.fl

N0t applicable

adjusting is turned off

Flush 0utput buffer. Used in interactive debugging to farce 0utput.

A final useful request in the debugging category is the . ab (abort) request which
basically bails out and stops the formatting.

Summary of the . ab Request

abort

. ab text

N0t aJ!)J!)licable

No text is disJ!)layed

Displays text and tenni:nates without further prncessing. If text is missing,
'User Ab0rt' is displayed. Does n0t cause a break. The 0utput buffer is
flushed.

~\sun ~~ microsystems
Re~isi0n A, 0f 9 May 1988

()

u
17

Environments

Environments· ... 169

17.1. . ev- Switch Environment... 169

u

0

()

n

u

0 17 .1. . ev - Switch
Environment

17
Environments

As. we mentioned, there is a potential problem when going across a page boun.cl­
ary:- parameterslike size arn:!l font for a page title may well be different from
those inef:fect in the text when the page boundary occurs. troff pmvidesa
very general way to deal with this and similar situations~ There are six environ'."
ments, each of which has independently-settable versions. of many of the parame­
ters. associated with processing, including size, font, line and title lengths,
fill/m>fill mode, tab stops, and even partially-collected lines. Thus the titling
problem may be readily solved by processing the main text in one environment
ancl titles in a separate one with its own suitable parameters.

The commancl . ev n shifts to environment n; n must be in the range 0 through 2.
A . ev command with no argument returns to the previous. environment.
Environment names are maintained in a stack, so calls for different environ.men.ts
may be nested and unwound consistently.

When troff starts up, environment 0 is. the default environment, so in general,
the main text of your document is. processed in this environment in the absence
of any information to the contrary. Given this, we can modify the . NP (new
page) macro to process titles in environment 1 like this:

.de NP

.ev 1 \" shift to new environment

1

• lt 6i \" set parameters here
.ft R

1

.ps 10
any other processing

•· .ev \"' return to previous environment
! ••

It is also possible to initialize the parameters for an environment outside the . NP
macro, but the version shown keeps all the processing in one pl-ace and is. thus
easier to understand and change.

Another major application for environments. is for blocks. of text that must be
kept together.

A number of the parameters. that control the text processing are gathered together
into an environment, which can be switched by the user. The environment
parameters. are those associated with requests noting E in their Notes column; in

~\sun ~ microsystems
169 Revision A, 0£ 9 May 1988

170 Using nroff and troff

I

Mnemonic:

Form (l)f Request:

Initial Value:

If No Argument:

Explanation:

additi0n, partially-collected lines and words are in the environment. Everything
else is gl0bal; examples are page-ofiented parameters, diversi0n-oriented param­
eters, number registers, and macro and string definitions. All environments are
initialized with default° parameter values.

Summary of the . ev Request

envimnment

.evN

N=O

Switch back to previous environment

Switch to envirnnment N, where 0'5N~2. Switching is dcme in push..;down
fashion so that restoring a previous environment must be done with . ev
rather than specific reference.

~~sun
• . microsystems Revisi0n A, 0f 9 May 1988

()

n ' _,/

A
troff Request Summary

troff Request Summary... 173

u

u

0

u

u

:

!

u

. ab text

.ad e

.af R c

. am' xxyy

Table A-1

Request
Form

.as xx string,

.bd FN

.bd s FN

.bp ±N

.br

.c2 c

.cc c

A
troff Request Summary

This appendix is a quick-referenee summary of troff and nroff requests. In
the foll0wingtable, values separated by a: are for nroff and troff respec­
tively.

The n0tes in column four are explained at the end of this summary.

Summary of nroff andtroff Requests

Initial
Value,

none

adj1botfi,

Arabic

o£f

0£f

N=l

If No
Argument

User Abo:rt

adjust

.yy= ..

ignored

Notes

E

p

p

B:j:,v

B

E

E

Explanation,

Displays. text and terminates without
further processing; fh1sh output1 buffer.

Adjust: output1 lines. with1 mode c.from
. j.

Assign:format1 te> registerR (c= 1, i,
I, a,A);

Append to. a macro .

Append string to string· xx.

Embolden font· F by N-1 units. t

Embolden Special Font1 when cuiifent
font:isF.t

Eject culifent1 page. Next page is
numberN.

Break.

Seti no break conlliol1 chamcte:ri to c;

Set' conttoll chaiiacter to. c;

•~sun ~ microsystems
173 Revision A, 0£ 9 May 1988

174 Using nroff and troff

Table A-1 Summary of nroff and troff R:equ:ests-Continu:ed

.ce N

. ch xxN

.cs FNM

.cu N

.da xx

.de xxyy

.di xx

Request
Form

. ds xx.string

.dt Nxx

.ec c

. el anything

. em xx

. eo

.ev N

. ex

.fc ab

. . f i

.f l

1 .fp NF

\

on

Initial
Valu:e

N=O

0ff

ifiU

R,1,B,S

~\sun ~~ microsystems

If No
Argument

N=l

N=l

end

.yy= ..

end

ignmed

off

in one

previous

off

ign0red

Notes

B,E

v

p

E

D

D

D,v

B,E

B

Explanation

Center if allowing N iinpuMext lines.

Change. trap :location .

Constant character space (width) mode ·
(fontF).t

C0ntinu0us undeitline in nroff; ~like
. ul 1in troff.

r>ivertand append 1to xx.

Define·or redefine macro xx; end•at call
0fyy.

Divertoutput1to macro xx.

Define a string xx containing string.

Set a diversion.trap.

Set escape character.

Else p0rtion 0fif ~else.

End macro is xx .

'Jium off escape character mechanism .

Envirnnment switched (pushrdown).

EXiitfrom nroff/troff .

Setifield delimiter a and pad character
b .

Fill output 1lines.

Flush ou~put buffer.

Font 1named F m0unted on.physical
position 1~:54.

Revision A, of9 May 1988

0

n

u

u

Appendix.. A- troff Request Summacy 175

Table A-1 Summary of nroff and troff Requests-c-Continued

.ft F

Ii .fz SFN

. he e

Request
Form·

. hw wondl ...

. hy N

. ie c anything

. if c anything

. if ! c.anything

. if N anything·

. if !N anything

Initial
Value

Roman

none

\%

igno11ed

on

. if 'stringl 'string2 'anything

. if ! 'stringl 'string2 'anything· -

.ig yy

. in ±N N=O

.it Nxx

.le G

.lg N on

. ll -±N 6.5 in

.ls N N=l

•~sun ~ microsystems

If No
Notes Argument

p:r:evious E

\% E

p:r:evicms E

.yy= ..

previous B,E,m

off E

none E

on

previous E,m

previous E

Explanation·

Change to font1 F = x, xx, or 1 through
4. Also.\fx, \f(xx, \fN.

Forces. font1 F or S fo11 special characters ·
t0be insizeN .

Hyphenation indicator char:acter c;

Exception words .

Hyphenate. N = mode.

If po11ticm of if-else; all above forms
(like . if) .

If condition c true, accept anything· as
inpu4 fo11 mult~,.. line use \{anything V .

If condition c. false, accept anything ..

If expressionN > 0, accept anything ..

If expressiomN ~ O~ accept anything .

If sttingl identical', to string2, accept
anything ..

If str:ingl not identical1 t0 string2,
accept anything·.

Ignore until call ofl yy~

Indent.

Set an1 input-line count1 trap.

Leader repetiti0n character;.

Ligatu:r;e mode on if N>O~

Line length •

Output N-1 Vs a£ter each text cmtput
line ..

Revision A, of 9 May 1988

176 Using nroff and troff

Table A-1

Request
Form

.1t -±N

.me cN

.'mk R

.na

.ne N

, .nf

• .nh

.nm -±NMSI

. nn N

.nr R-±NM

.ns

. nx :filename

. OS

. pc c

. pi program

.pm t

.ps ±N

.p1 ±N

.pn -±N

. po -±N

Summary of nroff and troff Requests-- Continued

Initial If No
Value Argument

6.51in prev:ious

off

1intemal

adtjust

N=lV

1hyphenate

off

N=l

space

end..:df-ifile

%

previous

Hin

N=l ignored

0: 26/27:in previous

Notes

E1m

E1m

D

E

D,v

B,E

E

E

E

u

D

E

v

v

Explanation

Length ofllitle.

Setimargin charaoter c and separation
N.

Mark cun-ent vertical place 1in register
R.

No output:line:adjusting.

Need N veFtical space (V =vertical
spacing).

No 1:6illing or• adjusting of output !lines.

No 1hyphenati0n.

Number mode on or off,· set parameters.

Do not ,number 1next N ilines .

Define' and set number ·register R by
±N; auto..,increment by M.

Tum no-space mode on.

Nexti:file.

Output saved vertical distance .

Page number character .

:Ripe outputitoprogram (nroff only) .

Print,macro names and sizes. Ift

present, printonly1total of sizes.

Point size, also 's±N. t

Page 1length.

Next page number is N.

Page offset .

Revision A, of 9 May 1988

()

()

Appendix. A- troff Request Summaey 177
/

I u
Tab>le A-1 Summary of nroff and troff Requests-Continued

Request Initial If No
Notes Explanation Form Value Argument

. rd prompt, pnompt==BEL Read insertion,

.rn xxyy ignored Rename request, macro, 011 string xx to
yy.

. rm.xx ignored Remove reqµest, macm, 011 string .

I

. :izr R Remove register R .

.rs D Restore spacdng. Tu!inino,.space mode
off.

.rt ±N none intemali D,v Retumi (upwand only) to mar:ked verti-
'

cal: place .

. so filename Interpolate contents ofi source file name
when. so enoountered.

u .sp N N=lV B,v Space vertical1 distance N in, either
direction"

.SS N 12/36 em ignored E Space-ch0Iiacter size set1 toN/36,em,t

! .sv N N=IV v Save vertical1distanceN.

.ta Nt ... o:s: o:Sin1 E,m1 Tab settings: left type, unless !equals R ! none
(right), or C (centered).

.tc c space Iiemoved E Tab repetition character.

.ti ±N ignored B,E,m1 Temporaey indent'

'.tl 'left' center:'r:ight' Th!iee-part title.
'

• t.mi string newline Print string on terminal (to· standard
error)~

.tr abed none 0 Translate a into b~ c int(I) d, etc; on out-
puh

'.uf F Italic Italic Underline font set' to F (to. be switched
to.by • ul).

u .ul N off N=I E Underline N input: lines (italicize in
troff).

~~sun ~ microsystems
Revision A, of 9May1988

178 Using nroff and troff

.vs N

.wh Nxx

Table A-1

Request
Form

Summary of nroff andtroff Requests-Continued

Initial
Value

116in:12pts

I/No
Argumen,t

pre¥ious

Notes

v

Explanation

Vertical base line· spacing (V).

Setrloca1ii0n,t:rap. Negative is with
respect 1to page bott0m.

t P0int size changes have no effect in nroff.

:j: The use 0f ' as the c0ntrol character (instead of .) suppresses the break functicm.

Table A-2 Notes in the Tables

Note Explanation

B
D
E
0
p

v
p
m
u

Request normally causes a break.
Mode or relevant parameters associated with current diversion level.
Relevant parameters are a part of the current environment.
Must stay in effect until logical output.
Mode must be still or again in effect at the time of physical output.
Default scale indicator - if not specified, scale indicators are ignored.
Default scale indicator - if not specified, scale indicators are ignored.
Default ·scale indicator - if not specified, scale indicators are ignored.
Default scale indicator - if not specified, scale indicators are ignored.

Revision A, 0f 9 May 1988

u
B

Font and Character Examples

Font and Character Examples ... 181

B.1. Font Style Examples,... 181
B.2. Non-Ascn Characters aml minus on the Standard Fonts 182

B.3. NoD-ASCTI Characters and ', ', G, +, -, =, and * on the Special
Font... 182

u

u

u

B.1. Font Style Examples

u

B
Font and Character Examples

The following fonts are printed in 12-point, with a vertical spacing of 14-point,
and with non-alphanumeric characters separated by lA-em space. They are Times
Roman, Italic, Bold, and a special mathematical font.

Times Roman

abcdefghijklmno~qrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $%&()' '*+-. ,/: ;=?[]I
e []- - _ 1/4 lf2 o/,i fi fl ff ffi ffl o t ' ¢ @' @ TM

Times Italic

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
! $%& (J', * + - . , I:;= ?1 JI
e EJ- - _ 1f4 lh 3/4fiflffffiffl o t' ¢@@TM

Times Bold

abcdefghijklmnopqrstuvwxyz
ABCDEFGHUKLMNOPQRSTUVWXYZ
1234567890
! $ % & ()''*+-.,I:;=? C 1 I
• D- - - 114 ~ 314 fi fl ff ffi ffl 0 t ' ¢ ® ® TM

Special Mathematical Font

II"\" , _I<> {} #'@+-=*
a J3yBe~11 et x: 'Aµ v ~ o 1U pa c; tu <l>X 't' ro
rA e A E II 1: Y <1> '¥ n
v-";?. ~=-:::;:#=-? f- t J, x+±un:e::::> c::::>oo()
§V--,f oc 0e +=>¢=I Of Ll,J{ r I u n I

181 RevisionA, o£9.May 1988

182 Using nroff and troff

B.2. Non-Asen Characters
and minus on the
Standard Fonts

B.3. Non-Asen Characters
and',',_,+,-,=, and
*on the Special Font

Table B-1

Char

+

=
*
§

-
I
a

~
y
8
e
~

11
e
l

Input Character Input Character
Char Name Name Char Name Name

close qu0te fi \(fi fi
open quote fi \(fl fl

\'.(em 3/4 Em dash ff \(ff ff
hyJ!)hen or ffi \.(Fi f fi

\(hy hyphen ffl \{Fl ffl
\- current font minus 0 \,(de degree

• \ 1(bu bullet t \1(dg dagger
D \(sq square \(fm foot mark

\r(ru rule '¢ \(ct cent sign
% \(14 114 ® \·(rg registered
1/z \(12 1/2 © \(co copyright
% \(34 3/4

The ASCII characters @, .#, ", ', ', <, >, \ {, '}, -, ", and _ exist only on the special
font and are printed as a 1 -"em space if that font is not mounted. The following
characters exist only on the special font except for the upper case Greek letter
names followed by t which are mapped into upper case English letters in what­
ever font is mcmnted on font positicm one {default Times Roman). The special
math plus, minus, and equals are provi<lled to insulate the appearance of equaticn1s
from the choice of standard fonts.

Summary of troff Special Characters

Input Character Input Character
Name Name Char Name Name

\(pl math plus a \(*s sigma
\.(mi math minus <; \(ts terminal sigma
\(eq math equals ~ \(*t tau
\(** math star u \'(*u upsilon
\ '(sc section '<I> \i(*f phi
\ .(aa acute accent x \.(*x chi
\(ga grave accent 'ti \(*q psi
\.(ul underrule ro \(*w omega
\{sl slash (matching backslash) A \(*A Alphat
\.(*a alpha B \.(*B Betat
\(*b beta r \(*G Gamma
\(*g gamma ~ \ (*D Delta
\(*d delta E \{*E Epsilcmt
\ (*e epsilon z \(*Z Zetat
\ ·(*z zeta H \(*Y Etat
\ .(*y eta E> \(*H Theta
\(*h theta I \<(*I Io tat
\(*i i0ta K \(*K Kappat

~\sun ~~ microsystems
·Revision A, of 9 May 1988

n

()

Appendix B - Font1 and Character Examples 183

u
Table B-1 Summary of troff Special Characters.,- Continued

Input Character Input Character
Char Name Name Char Name Name

K: \(*k kappa A \ (*L Lambda
A. \(*l lambda M \ (*M Mut
µ \(*m mu N \ (*N Nut
v \(*n nu ,_,

\(*C Xi ~

~ \(*c xi 0 \ (.*O Omicron.t
0 \(*o omicron rr \(*P Pi
1tl \(*p pi p \(*R Rhot
p \(*r rho :E \(*S Sigma
T \ (*T Taut 00 \(if infinity
y \ (*U Upsilon a \(pd partial derivative
<I> \ (*F Phi v \(gr gradient
x \(*X Chit -, \(no not
'P \ (*Q Psi J \(is integral sign
n \(*W Omega oc \(pt pmportiomal to
...j \(sr square root 0 \(es empty set -

\(rn root en extender E \(mo member of
~ \(>= >= I \(br box vertical rule
$ \(<= <= :j: \(dd double dagger

u - \(== identically equal ~ \(rh right hand
::::: \ c-= approx= ~ \(lh left haml

\ (ap approximates I \(or or
:f::. \ (!= not equal 0 \ (ci circle
~ \ (-> right arrow r \Ht left top of big curly

bracket
~ \(<- left arrow L \(lb left bottom
t \(ua up arrow l \(rt right top
J, \ (da down arrow J \ (rb right bot
x \(mu multiply ~ \(lk left center of big

curly bvacket
+ \(di divide ~ \'erk right center of big

curly bracket
± \(+- plus-minus I \(bv bold vertical
u \(cu cup (union) L \ (lf left floor (left bottom

of big square bracket)
n \(ca cap (intersection) J \(rf right floor (right

bottom)
c \ (sb subset of r \(le left ceiling (left top)
:::::> \(sp superset of l \(re right ceiling (right top)
~ \(ib improper subset \ \e backslash (escape character~
~ \(ip improper superset

u
~~sun ~~ microsystems

Revision A, 0£ 9 May 1988

n

n

u
c

Escape Sequences

Escap,e Sequences ... , ... , 187

u

u

()
\ /

n '; /

(\

_)

u

u

Table C-1

c
Escape Sequences

Note: The escape sequences\\,\ . , \ ", \$,*,\a, \n, \t, and \(newline)
are interpreted in copy mode (see Chapter 10).

troff Escape Sequences

\\
\e
\'
\'
\-

Escape
Sequence

. \ .
\(.space)
\0

; \ I
\""

\&
\ !

I•\"
. \$N

\%

\ (XX

\ *X, *{XX

\a
1

\b' abc ... '
I \c

Meaning

\ (to prevent or delay the interpretation of\)
Printable version of the current escape character.
' (acute. accent); equivalent to \ (aa
' (grave accent); equivalent to \ (ga
- Minus sign in the current font

Period (dot) (see . de)
Unpaddable spaee-size space character
Digit-width space
1/6 em-narrow space character (zero width in nroff)
1/12-em half-narrow space character (zero width in
nroff)

Non-printing, zero width character
Transparent line indicator
Beginning of comment
Interpolate argument l:5;N:5;9
Default optional hyphenation character

Character named xx
Interpolate string x or xx
Non-interpreted leader character
Bracket building function
Interrupt text processing

\d Forward (down) 1/2-em vertical motion (1/2-line in
nroff)

\fx, \ f (xx, \fN Change to font named x or xx, or position N

187 Revision A, of19 May 1988'

188 Using nroff and troff

Table C-1 troff Escape Sequences- Continued

Escape
Sequence

\h'N'
\kx
\l' Ne'

\L'Nc'

\nx,\n (xx
· \o' abc ... '

\p
\r

\sN, \s±N
\t
\u
\v'N'

' \ w' string '

\x'N'

· \zc
\{
\}
\(newline)
\X

•~sun ~~ microsystems

Meaning

Local horizG>ntal m0tiGm; move right N {negative=foft)
Mark horiwntal input place in register x
Horizontal line drawing functi0n {default character is
baseline rule in troff 0r underline in nroff; 0pti0n­
ally with character c)

Vertical line drawing functkm {defaultcharaoter is box
rule; owtionally with character c)
Interpolate number register x or xx
Overstrike characters a, b, ic, ...
Break and spread ou1J1>ut line
Reverse one-em vertical motion (reverse line in nroff)

Point-"size change function
Non-interpreted horiwntal tab
Reverse (up) 1/2..:em vertical motion (1/2-line in nroff)
Local vertical m0tion; move down N (negative=up)
Interpolate width of string

Extra line-"space function. (negative before, positive
after)
Print c with zero width (without spacing)
Begin conditi0nal input
End c0nditional input
Concealed (ignored) newline
X, any character n0t listed above

Revision A, 0f9 May 1988

n

u
D

Predefined Number Registers

Predefined Number Registers ... 191

u

u

n
'- /

u

0

u

D
Predefined Number Registers

Table D-1 GeneralNumber Registers

Register
Name

c.
I: o

-0
11

·ct
dl
dn

dw
dy
hp
ln
mo

nl
,sb
' ·st
yr

Description1

Inwut line-number in current in]Dut file; same as . c.
Current page number.
Character type (set by width function).
Width (maximum) oflast completed diversion.
Height (vertical size) oflast completed diversion..

Current day ofthe week (1-7).
Current day ofthe mom.th (l-31).
Current horizontal place on in]Dut line.
Output line nwnber.
Curren.t month (1-12).

Vertical position of last p11inted text baseline.
Depth of string below base line (generated by width fum~tiom).
Height of string above base line (generated by width function).
Last two digits ofcurrent year.

Table D-2 Read'-Only Number Registers

Register
Name

. $

. A
I .H

: .L
. P

. T

. V

Description

Number of avguments available at the current macro level.
Set to 1 in troff, if-a option used; always 1 in nroff .
Available horizontal resoluti0n in basic units.
Current line-spacing parameter (. ls).

, 1 if current page is pITinted, otherwise zero .
(

Set to 1 in nroff, if-T optiion used; always 0 in troff .
Available vertical resolutiom in basic units .

. a Post-line extra line,.space most recently utilized using \ x' N '.

~~sun ~~ microsystems
191 Revision A., of 9 May 1988

i
;

192 Using nroff and troff

Table D-2 Read-0 nly Number Register~ Continued

Register
Name

. c
i .d

. f

. h

.i
j

. k

. 1

. n

.o

. p

. s

. t

. u

. v

. w

. x

. y

. z

Description

Number of lines read from current input file .
Current vertical place in current diversion; eciual to nl, if no
diversion.

Current font as physical quadrant (1 ~4) .
Text baseline high-water mark on current page or diversion .
Current indent.
Current adjustment mode and type.
Horizontal text portion size of current output line .

Current line length .
Length of text ponion on previous output line .
Current page offset.
Current page length .
Current point size .

Distance to the next trap .
Equal to 1 in fill mode and 0 in nofill mode .
Current vertical line spacing .
Width of previous character .
Reserved version-dependent register .

Reserved version-dependent register .
Name of current diversion (a string, not a number) .

,Revisi~.m A, 0f 9 May 1988

n

u
E

troff Output Codes

troff Oatput Codes .. 195

E.1. Codes O Oxxxxx.x - Flash Codes to Expose Characters J 96

E.2. Codes lx.n:x.:o:x - Escape Codes Specifying Horizontal
Motion ... """.. 197,

E.3. Codes 011.xxxxx-Lead Codes, Specifying Vertical Motion.............. 197

E.4. Codes OlOlx.n:x- Size Change Codes .. 197

0
E.5. Codes 01 OOxxxx - Control Codes,... 198

E.6. How Fonts are Selected ... ,.. 199

E.7'. Initial State of tlle C/A{f,... 199

u

n

('\ u

0

BIT

(_)

7
Major Code

Type

E
troff Output Codes

As we mentioned before, troff is. geared up to pmduce binary codes for a ph0-
totypesetter called a C/A[f. This appendix describes the codes for the C/Aff in.
detail. This information is. for people who want to translate C/Aff codes for
other purposes.

The basic mechanism of the C/ Aff typesetter is. a revolving drum divided into
four quadrants. On each quadrant of the drum you can mount a strip of film -
one strip of film corresponds to a font. Each font has 108 characters in it. Char­
acters are exposed on the final plwtographic paper by 'flashing' a light through
the appmpriate position of the film strip on the drum. The actual font to be used
is selected (as you will seelater) by a combination of 'rail', 'mag', and 'font­
half' - the terms 'rail' and 'mag' are hangovers from very old hot-lead typeset­
ting technology and have no place in electro-mechanical systems, but they were
carried over because typesetters. can't handle new things. Point size changes. are
handled in the C/Aff by a series of magnifying lenses.

The C/A{f 's basic unit oflength (machine unit) is 1/432 inch (there are six of
these units to a typesetter's 'point'). The quantum of horizontal motion is. one
unit. The quantum of vertical motion is three units (1/144 inch or half a point).
troff uses the same system of units in its internal computations~

The C/A{f phototypesetter is driven by sending it a sequence of one-byte (eight­
bit byte) codes.to specify characters, fonts, point sizes, and other information.
The encoding scheme used was obviously designed by someone wanting to send
the minimum amount of information across a communications channel at the
expense of doing vast amounts of work in the computer driving the typesetter.

A complete C/A/f file is supposed to start with an initialize code (described
later), followed by an escape-16 code, then the body of the text destined for the
C/A/f. The whole file ends.with 14 inches of trailer, followed by a stop code. In
practice, looking at troff's output file has generated disagreements on what the
file really looks like, but we don't have a C/A{f around to really try it out.

Bit 7 of a code byte classifies the byte into one oftwo major types:

6 5 4 3 2 1 0

Further Encodi:hg

+~!!! 195 Revision1 A, 0£ 9 May 1988

196 Using nroff and troff

BIT

7
Bit 7=1

iEscape Code

7

The t0p bit (bit 7) is encoded thus:

1 - An Escape Code, specifying horizcmtal motion, as described below.

6 5 4 3 2 1 0

One's Com,plementcof Amount of Motion

O - indicates that bits 7 and 6 are used to further encode the code byte, as fol­
lows:

6 5 4 3 2 1 0
Flash Code or

Contrdl Code
'Further Encoding

The two uwper bits have these meanings:

00 -A Flash Code, which selects a character m1t ofa f0nt, as described below.

BIT 7 6 5 4 3 2 1 0
Bits 6 and 7 = 100

Flash Gode
Character Numberito 1Flash Cl.....,63)

BIT 7

E.l. Codes O Oxx:o:xx -
Flash Codes to Expose
Characters

01 - A Control Code., which is then further encoded into 0ne of two categories
depending cm whether the nextbit is a 0ne or a zero:

6 5 4 3 2 1 0

Control Code 1Further Encoding

1 - This is a lead code., described below, or

0 - in which case the 'C0ntrol code is further encoded into cme of three
categories of:

o Initializati0n and 1tenninati0n.

o Selecting f0nts.

o Specifying the directi0n of m0tion for escapes and ;leading.

We have finally reached the end of this encoding scheme. The following secti0ns
discuss each type of code in detail.

A c0de with the bits six and seven equal to zero {O Oxxxxxx) is afl,ash code. A
flash code specifies flashing 0ne of 63 characters - the lower six bits of the flash
·code specify which,characterto flash. This is n0tenough character combinations
to select even all the characters within a single fcmt (there are 108 characters per
fant) and so there are c0ntrol codes (described later) to select the fomt and which
half of the f0nt. Given that a specific font is selected via the rail, mag, and (for
the eight-font C/Aff) the tilt·codes, y0u then select an upper-f0lilt.,half or a n
lower-f0nt.:half. The fower-font-half is the first 63 characters oft.he f0mt, am.d fue
uwper-font-half is the remaining 45 characters ofthe f<i>mt. A flash corle ofgreater

Re~ision A, of 9 May 1988

u

u

u

E.2. Codes lxx.n:ux -
Escape Codes
Specifying Horizontal
Motion

E.3. Codes O 1 lxxxxx -
Lead Codes Specifying
Vertical Motion

E.4. Codes o 1 o lxxxx -
Size Change Codes

Table E-1

··Point-Size
I•

! 6
1',

Ii 7
I 8 I

9
10

'

•
11

•'

12
14

Appendix.E-troff OutputiCodes 197'

than 46 in the upper-half of the font is considered illegal.

A code with bit seven equal to 1 (lxxxxxxx}isan escape code. An escape code
specifies horizontal motion. The C/Aff is. a boustrophedonic device - that is, it
can move in both directions, and so the direction of motion is specified by one of
the control codes described later on. The amount of horizontal motion is
specified by the one'scomplement ofthelower seven bitsoftheescape code.

A codes with the top three bits equal to 011 is a lead cmik A lead code' is. a
subset of the control codes in that the top three bits are 011. Such a code
specifies vertical motion. The amount of the vertical motion is specified by the
one's complement of the lower five bits, in vertical quanta. 'Lead' is a
typesetter's term deriving from the days of hot-lead machines.- the termin0logy
sticks with us because the industry moves slowly.

A byte with the top four bits equal to 01O1 is a size-change" code. Such a code
specifies movement of a lens turret and a doubler lens to change the point size of
the characters. The size-change codes. are as follows:

Size Change Codes

Binary Code Octal Code Point-Siw Binary Code Octal Code"

01011000 0130 16 01011001 0131
01010000 0120 18 01010110 0126
01010001 0121 20 01011010 0132
01010111 0127 22 01011011 0133 '

01010010 0122 24 01011100 0134
I•

01010011 0123 28 01011101 0135 I

01010100 0124 36 01011110 013@
01010101 0125

I•

Changes. in size using the doubler lens change the horizontal position OB the
page:

1

If you changefrom: Follow the change, with:

1

• Single to double A forward escape of 55 quanta

Double to single A reverse escape of 55 quanta

Revision A, of 9 May 1988

198 Using nroff and troff

Table E-2 Single P@int-Sizes versus Double Point-Sizes

E.5. Codes O 10 Oxxxx -
Control Codes

:

!

:

;

I

:

'

Single Double',

6 16
7 20

i

8 22 i

9 24
10 28

:

11 36
12
l4
18

A byte with the top four bits equal to 010 0 is a controlcode. Not ;all of the ccm­
trol codes have meaning to the typesetter. The control cocles are in three 'Classes,
namely:

o Initialization and terminati0n.

o Selecting f<!mts.

o Specifying the directi<!m of moti<!m for escapes and leading. The c0ntrol ()
codes and their meanings are:

Table E-3 C!AIT Control Codes and their Meanings

.

: Category Meaning Binary Code Octal C@de

: Initializing Initialize 01000000 0100
:

;

and Terminating St0p 01001001 0111
:

'

I

Upper Rail 01000010 0102
Lower Rail 01000001 0101
UpperM~g 01000011 0103

Selecting Fonts
Lower Mag 01000100 0104

' Tilt Up 0.1001110 0116
Tilt Down 0100 li1l 0117
Upper Font Half 01000110 01Q6
Lower Fcmt Half 01000101 0105

'

Specifying Direction Escape Forward 01000111 0107 ':

i

Escape Backward 01001000 0110 '

'

Of Motion Lead Forward 01001010 0112
Lead Backward 01001100 0114

~\sun ,~ microsystems
:Revision A, of 9 May 1988

u

u

E.6. How Fonts are
Selected

Appendix E - troff Output: Codes 199

Note that tilt up and tilt down are unimplemented op-codes on the four-fon.t
C/A{f. However, the illustrious haekersat Berkeley implemented apvogram
called rvcat to drive the Versatec or the Varian printJers, and they used the
01168 code to mean 'multiply the next lead'"code by 64' to avoid having enoIT­
mous runs of small lead-codes.

Fonts are selected by a combination of rail, mag, and tilt. The tilt codes exist
only on the eight-font C/Aff and this. is. the only difference between the tw0
maehines that is.visible to the user. The standard versi0n. oftroff de>esn't
know about the eight-font maehine - University of Illinoi1s is om~ of the places
that hacked over troff to make it understand the eight-font C/Aff. The
correspondence between rail, mag, and tilt codes. is shown in this table:

Table E-4 CorrespondeneeBetween· Rail, Mag, Tilt, and Font Number

E. 7. Initial State of the
C/A/T

I

Rail Mag Tilt Four-Font Eight-Font
I

I
Lower Up 1 1 I Lower

1 Lower Lower Down 1 2 I

Upper Lower Up 2 3
1: Upper Lower Down 2 4
1

• Lower Up{1)er Up 3 5
1
• Lower Up{1>er Down 3 6 i

1
Up{1)er Upper Up 4 7

.

1
1 Upper UpJDer Down 4 8

For th0se wishing to write QOStprocessors to hack over C/Aff codes, here is the
initial state of the beast:

Attribute Initial State·

:, Escape Forward
f: '

: Lead Forward

1

Font-Half Lower

1

Rail Lower

. Mag· Lower
1

Tilt Down

~\sun "'~ microsystems
Revision A:, of 9 May 1988

()
'' /

()

0

u

Index

Special1Characters
• $ (number 0£ wguments) number register, 109
\ .& (zem,. width., now-printing) funetion1 137
% (page-numberlnumber registe:r:, 42, 11211
\ (:unpaddable spaee) funeticm1 136
\A (thin space)functicm1136
\ I (thick spaee) funeticm1 136

0
\ 0 (digit-size space)· function1 134

A
\a (leader ehwaeter)function1 72
• a (post-line exl:ria space) number register, 52
. ab (abo:rrt) request, 166
access.format: for number registe11s, 125·
accessing strings, 98
. ad (adjust) request, 21
adjusting; 17

cente:rr,.21
flush left, :r:agged right, 21
flush: right, :rragged left, 2:11

justified, 21
. af (format 0£ numbe11 register) reqµest, 125
. am.(append to a macro) request, 112
append to.a

diversion1 114
macro,11:2
string;99

wguments to. macros, 109
aliithmetic expr:essions with: number registers, 124
• as (append to swing} request, 99
auto,.incr:ementing number registers, 123
automatic hyphenatfon1 24

B
\b (braeket)funetioni.142
backslash:- how to print it: in:trof f, 9
basic request1

, 8
• bd (boldfaee)request, 60
begin: page, 41

/ - "- blank lines, 1'9

U bold~~ace request, 60
box Imes, 145.
• bp (sta:rrt new page}request~ 41

• br (b:rreak lines) request,20, 19
br:acket dliawing function, 142
break reqµest, 1',9, 20

c
\c (~ontinuationline)function1 20
C/A[f codes

controli .196
escape, 196
file organization1 195
flash, 196, 196

• c2 (set no,. break control: character) request~ 150
• cc (set conl:riol: ch0Iiacter)\reqµest, 150
• ce (~enter lines)requ.est, 28, 27 thru 28'
centered tabs, 68
• ch (change position:o£ a l:riap)request, 116
change batis, 145
change position: 0£ a l:riap, 1116
ch0Iiacter t:r:anslation: (substitution), 15G
comments in: troff source files,.9
concealed new lines, 10
conditional1 page break, 42
conditiona11 processing 0£ input, 1:57
conditional 1 request

. el, 159

. ie, 159

. if, 157

. ig, 160

-201-

constant: chwacter space width: mode r:equest,
continuation lines, 10; 20
continuously underline request, 29
controli chwacter setting, 150
controli code, 196
controlilines in:troff, 8'
copy mode, 1112
c:rreating number registers,
• cs (set constant character
ct (chatiacter
. cu (continuously underline) request,

D
\d (move down~ function1131
• d (verticali place in: cmrent1 di;version~ number register, 114
• da (append to a diwersion) :r:equest:, 114
• de (define macro) request\ 105

'Index - Cominued

defining troff objects
macros; 105
number registers, 121
strings,98

deleting number registers, 127
device resolution. 10
. di (divertitext) request, 114
diversioM:raps, 1'14, 116
diversions, 113, 114
divert text, 114
dl (width of :last finished diversion) ,number register, 113
dn (height oflast :finished diversion) number register, 113
document preparation

fomnatters, 3 thru 13
nroff prngram, 3 thru 13
1textformatters, 3 1thru 13
troff prngram, 3thru13

drawing1in troff
boxes, 145
brackets, 142
;h0rizontal Jines, 143
vertical :lines, 143, 144

• ds .(define string) request, 98
. dt .(set a diversion trap) request, 116
dy (day of month) 1nun1ber register, 121

E
. ec (set esca,pe character) ,request, 149
. el (else conditional) request, 159
• em.(set the end--of-processing 'trap) request, 117
end-of-ifile, 19
end..:of-processing traps, 117
end-'0f-sentence, 18
em~ironment switching, 169
• eo .(set escape of{) request, 149
escape character, 149
escape code for C/A{f, 196
. ev (switch environment) request, 169
• ex (temninal message) request, 94
expressions with number registers, 124

F
. f (current font) number register, 62
• f c (set field,characters) request, 74
. f i (fill) request, 23

1field character, 74
fields, 74
·fill request, 23
filler character, 18
;filling, 17
. fl '.(flush buffer) request, 166
flash code, 196, 196
flush output buffer, 166
font positfon,request, 59
footers, 81, 85
force font size request, 59
. f p (change font position.) request, 59
. ft (set font) request, 58
. f z (force font size) request, 59

-202-

G
general ,number registers

%-,page-number, 42, 121
ct - character type, 141
dl - width of last !finished· diversion, 113
dn -,height of,}ast finished diversion, 113
dy - day of,month, 121
,mo -1month of year, 121
nl - vertical position oflast.baseline, 121, li13
sb - string depth below baseline, 140
st - string iheight above baseline, 140
yr -last two digits (i)f year, 121

'get vertical space request, 47

H
\h (horizontal motion) ,function, 133
• h/(text high--watermatk) number register, 18, 114
half em-space, 136
half ..:line 1motions

\ d ·(move down) ,function, 131
\u .(move1up) function, 131

,hanging 1indent, 39
1hard blank, 17
. he (hyphenation character) request, 26

1headers, '81, 85
ihorizontal 11ines, 143
ihorizontal motion, 133, 134, 136, 138
'horizontal place marker, 141
• hw Qiyphenate word) ,request, 25
. hy (hyphenate)request, 24, 25
hyphenation, ·24

auoomatic, 24
contrnl, 24
,indicaoor, 25
indicaoor character, 26
special cases, 25
specifying location, 25
tum on and off, 24

I
. i (cmrent :indent) number register, '38, 40
. ie '(if"'else conditional) request, 159
• if (conditional processing) request, 157
. ig (ignore 11ines) request. 160
ignoring 1inputlines, 160
. in (indent) request, 37

,in-iline functions
\ (unpaddable ·space) function, 136
\&(zero-width non-pllinting) function, 137
\" (thin space) fonction, 136
\ I (thick space) :function, 136
\0 (digit-size space) function, 134
\a ~leader character) function, 72
\b {bracket) function, 142
\c ·(continuation line) function, 20
\d.(move down) function, 131
\h (horizontal motion) ,function, 133
\k (markihorizontal position) function, 141
\ l (horizontal line) function, 143
\L (vertical 11ine) function, 144, 143
\ o (overstrike) functi'1m, 138

u

u

in-line functions, continued
\p (break and spread) function, 19
\r (reverseline) function, 143
\u (move up).function1131
\v (ve:rtical1 motion) function, .132
\w (width) function1140
\x (get extra line space) functfon1 52
\ z (zero motion) function1 139

include
from file, 89
from standard input~ 92

incrementing number registers, 1,23
indentation

first line 0£ paiiagraph, 38
permanent, 37
tempor:ar;y; 38

input>-line-c01mt1 tr:aps, 114, 116
interpolatmg number registers, 121, 125
interrupted line, 20
. it (set an1 input>-line-cmmt t:r:ap) request, 116
italic.correction, 136
itemized lists,.39

J
. j (current adjustment indicatoli)number register, 21

K
\k (mark horizontal.position) function,141

L
\1 (horizontal line) function; 143
\L (verticaliline)function, 144, 143
. l (line-length) number register, 36
larige boxes, 145
• le (set leader chaiiacter) request, 73
leaders and leader cha.Iiacters, 71, 72
left ma.Iigin, 35
length ofi title, 83
. 1 g (set ligarure mode) request, 63
ligatUlies, 63
line adjustment indicators

both, 21
center, 21
indentation, 37
lefit, 21
normal, 21
right~ 21

line diiawing
functions,.143, 144
holiizontal, 143
vertical1 143, 144

line numbering·
sWt, 153
suspend, 154

line spacing request, 51
line-length, 35
.11 (set line-length).request, 35
local1motions, 132

\. (unpaddable space)functicm, 136
\.& (zero-width1non printing) function1 137

local1 motions, contiinued·
\ ... (thin space) function1 .136
\ I 1 (thick space) function, 136
\0 (digit>-size space) function, 134
\b (bracket) function, 142
\d (:move down) function, 131
\h (horizontal1 motion) function, 133
\ l (horizontal line). function1. l 43
\L (vertical1 line)function, 144, 143
\o ·(overstrike) function, 138
\r (reverse line)function1143
\u (move up)function1 131
\v (vertical: motion) functioni.132
\z (zero.motion) function, 139

long lines, m
. ls (change line spacing) request, 51
. 1 t (set length' ofi title) request, 83

M
macros, 9, 105

append to, 112
3Iiguments. to, 109
copymode, 112
defining, .105
embedded blanks, lH
invoking, 105
print1 names and sizes, 165.
remove, 107
renaming, 108

mwgin, chaiiacter, 145
m81igins on a page

with: nroff and troff, 21, 35
mwk

horizontal1 position1 .1:41
vertical: position, 43, 114

• me (m81igin chaiiacter) request, 145
measme, 35
• mk (maiik verticalposition).request, 43, 114
mo (month ofi year;) number register, 121

N
• n (text length). number register, 18
. na (no adjust). request, 22
• ne (need space) request, 42
need space, 42
newpage,41
• nf (no fill) request, 23
. nh (no hyphenation) request, 25, 24

Index - Continued

n l (vertical position of last baseline) number register, 121, 1' 113

-203-

• nm1(number lines) request, 153
• nn (no number)reques4 154
no adjust request, 22
no fill request, 23
no hyphenationreqµest:, 24~. 25
no space mode request, 53
no-break control1 cha.Iiacter settmg, 150
non.printing· char;acter, 137
. nr (set number register) request:,.121
nroff command

exit from, 94
introduction' to, 3, 13

Index - Continued

. ns (no·spacemode) request, 53
number registers, 121

:access format, 125
auto..,incrementing, 123
creating, 121
expressions, 124
1inte1p0lating, 121
,remo~ing, 127
setting, 121

numbe11ing 1lines, 153, 1154
. nx (next 1fiile) 1request, 91

0
\ o (overstrrike) fonctfon, 138
. o (page-'offset) number register, 35
one-'twelfth em-space, 136
orphans,43
. os (<imtputsaved ·vertical space) request, 53
output saved vertical request, 53
overstriking, 138

p
(

\p (break and spread) function, 19
. p (page..,length) number register, 41 ~·

padding 1indicators, 7 4
page 1length changes, 41
pagenumber,42, 84
pagMraps, 114
page.;offset, 35
. pc ·(set page .number character) request, 84
. pi (pipeito program) request, 91
pipe1to program, 91
.pl .(set page 1length) request, 41
. pm(p:rrintmacrns) request, 165
. pn (set page ,number) 'request, 42
. po ,(set page-offset) 'request, 35
point size request, 49
predefined ,number registers

% -!page..,number, 42, 121
. $-inumberofarguments, 109
. a-!post-1line extra space, 52
• ct-vertical place in 1current diversion, 114
• f - current fant, 62
. h -1text high~water1mark, 18, 114
. i - cUlifent ,indent, 38, 40
. j -currentadjustment1indicator, 21
. 1 - iline-ilength, 36
. n - text :length, 18
. o - page-'offset, 35
. p - 1page..,length, 41
. s - point-size, 49
. t -distance to next 1trap, 113, 115
• u - fill mode 1indicator, 23
.v-vertical spacing, 51
. z -iname0fcurrentdiversion, 114
ct - character type, 141
dl -·w:idth 0flast finished diversion, 113
dn -height of last finished diversion, 113
dy - day of 1m0nth, 121
mo - month of year, 121
nl -vertical positi0n of fastbaseline, 121, 113

-204-

predetined1number registers, continued
sb - strring depth below baseline, 140
st - strring height above baseline, 140
yr -last two digits of year, 121

p11intmacros, 165
Frocirustean mold, 23
. ps (change p0intsize) request, 49

R
\ r (reverse 1line) function, 143
. rd (read standard 1input) ·request, 92
read-only number registers

. $ -,-number of arguments, 109

. a -post.J1ine extra space, 52

. d -vertical place 1in current diversion, 114

. f -current font, 62

. h -itext high..iwater mark, 18, 1'14

. i -current 1indent, 38, 40

. j -cu:rrent adjustment1indicator, 21

. 1 -1ine-:length, 36

. n -1text1length, 18

. o -:page-'offset, 35

. p - page~length, 41

. s - p0int-size, 49

.t -distanceitonexttrap, 1'13, HS

. u - 1.fill,mode 1indicator, 23

. v -vertical spacing, 51

. z -name ofcurrent diversion, 114
,reading :from standard 1input, 92
referencing strings, 98
remm~ing

1macro definitions, 107
number registers, 127
strring definitions, 107

renaming irnacrns and strings, 108
requests, 8

• ab - abort, 166
. ad-adjust, 21
. af -foliffiat ofnumber register, 125
. am - append 1to a macro, 112
. as -appendito strring, 99
. bd - break :line, 60
. bp - begin page, 41
. br - break .line, 20, 19
. c2 - set no..:break control character, 150
. cc - set 1control character, 150
. ce - center lines, 28, 27 thru 28
. ch - change position cf a trap, 116
• CS -'Constant spacing, 54
. cu - continmmsly ~underline, 29
. da - ~ppend to a diversion, 114
. de - define macro, 105
. di -divertitext, 114
. ds - define string, 98
. dt - set a diversion trap, 116
. ec - setescapecharacter, 149
. el - else(c0nditional, 159
. em - set 'the end.,of .. processing trap, 117
. eo - set escape off, 149
. ev - switch environment, 169
. ex-emtfrom nroff or troff, 94
. f c - set field characters, 7 4
. fi -1filll, 23

n
. /

0

CJ

0

req11ests, continued,
. fl - flushi buffer, 166
. f p - font position, 59
. ft ..;_setfont~.58
. f z - force font size, 59
• h<i: -hyphenati.onrcharacter, 26
• hw. - hyphenate word, 25
• hy-hyphenate, 24, 25
. ie -if~else conditi.cma11 159
. if - conditionalr processing, 157
• ig - ignoiie lines, 160
• in - indent, 37
. it -set anrinput>-line-counurap, 116
. le -set leader charracter, 73
. lg - sell ligature mode, 63
. 11 - set line-length, 35
. ls - line spacing, 51
. 1 t - set lengthr 0£ title, 83
. me -mwginrcharracter, 145
• mk - marrk vertical' posit!i.on, 43, 114:
. na - no adjust, 22
• ne - need space, 42
. nf -no.fill, 23
• nh - no hyphenation, 25, 24
. nm,- number lines, 153
. nn- no numbering, 154
. nr - set number register, 121
• ns -no space mode, 53
• nx - read next soUiice file, 91
. os - output saved vertical! space, 53
. pc - set page number chwacter, 84
. pi - pipe to progmm1 91
. pl -set, page length, 41
• pm- print macros, 165
• pn - setr page number, 42
• po - set page-offset, 35
. ps - point size, 49
. rd-readifromrstandwdinput,.92
removing, 107
renaming, 108
. rm- remove request~ macro, Oii string, 107
• rn - rename request, macro, Oii string, 108
. rr - remove number register, 127
. rs - restoy;e space mode, 53
• rt - return to position1 44, 114
• so - switch source file, 89
• sp - space, 47
. s s - set space size, 54
. sv-save verticalspace, 52
. ta - set tab stops, 67
. tc - set tab.charracter, 69
. ti - tempcmuy indentJ, 38
. t 1 - define title, 85
. tm - tenninal1 message, 94
. tr - ~anslate charracters, 150
• uf - underline font~ 29
. ul - underline, 28
. vs - vertical1 spacing, 51
. wh - when something, 115, 82

resolution, 10
resmre space mode reques4 53
Iietmn1m marked vertica11position1 1:14·
return m vertical' positi.on, 44

reverse line functicm, 143
revision bars, 145,
right--adjusted· tabs, 68'

Index- Continued,

. rm.(remove request~ macro, oy; string)reques4 107'

. rn (rename request~ macro, Oii slliing),reques4 108
• rr (remove number register}request, 127
• rs (restore space mode) reqµest, 53
. rt (retum to position~. request, 44, 114
rules

hornzonta11 143
vertical1 143, M4

running, headers and footeiis, 81, 85

s
. s (point>-size)number register, 49
save vertical1 space reques4 52
saving state, 169
sb (slling,depth·below baseline) number registeii, 140
sentence endings, 118
set· fontJ request~ 58
set ligature mode request, 63
set page number,.42
set space-chwacter size request, 54
setting line-length, 35
setting numbeii registers, 121
setting tabs, 67

-205-

skipping input lines, 1160
• so (switehrsource)request,89
• sp (get vertical1 space) reques4 47
space request\ 47
spaces, 19
. ss (set space-chwacter size) request~ 54
st (string, height' above baseline) number register, .140
standard inputr

reading troff input from~ 92
start line numbering; 1·53
staiit new page, 41
strings, 97

accessing, 98
appending m, 99
beginning with blanks, 98
defining,98
removing, 107
renaming, 108

substituting char:acters, 150
suspend line.numbering0.154
• sv (.save vertical1space) reqµest, 52
switeh1 source file, 89

T
. t. (distance to next trap) number register, 113, 115
. ta (set tab stops) request, 67
tabs

absolute, 68'
centered, 68'
relative, 68'
replacement characteli, 69
right>-adjusted, 68
setting,67

Index - Continued

. t c (set tab character) request, .69
rtemporary rindent of one line, 38
'lext;Jines

as troff input, 8
ignoring, 160
words 1in, 17

thick space, 136
thin &pace, 136
three..,parttitles, 85
. ti (temporary indent) request, 38
title length, 83
titles, 81
. tl (title) request, 85
• tm (terminal message) request, 94
. tr (translate characters) request, 150
translating characters, 150
transparent throughput, 10
tr(lps

dhange position of, 116
diversion, 116
end~0f-processing, 117
'input-1line-count, 116
page, 114

troff command
e~it from, 94
1introduction 1to, 3, 13

1tum escape mechanism on and off, :149

u
\ u (move u,p) function, 131
. u (fill mode .indicator) number register, 23
. u f (unde:dine font) request, 29
. u 1 (underline) ,request, 28

1under1ine font ,request, 29
:underline request, 28
units, TO
unpaddable space, 17

v
\ v (vertical ,motion) function, 132
. v (vertical spacing) number register, 51
vertical lines, 143, 144
vertical motion, 132
vertical position

mark, 43
return 1to, 44

vertical spacing ,request, 511
. vs (change vertical spacing) request, 51

w
\w.(width) function, 140
. .wh (when something) .request, 115, 82
when something request, 82, 115
width function, 140
word, 17

-206-

x
\x (get extra line space) 'function, 52

y
yr (last two digits 0fyear) number register, 121

z
\ z (zero moti~m) function, 139
. z (name of current diversion) number register, 114
zero motion function, 139
zero .. width character, 18, 137

_ __/

n

11)
. /

	Title Page
	Contents
	Tables
	Figures
	Preface
	1. Introduction
	2. Line Format
	3. Page Layout
	4. Line Spacing and Character Sizes
	5. Fonts and Special Characters
	6. Tabs, Leaders, and Fields
	7. Titles and Page Numbering
	8. troff Input and Output
	9. Strings
	10. Macros, Diversions, and Traps
	11. Number Registers
	12. Drawing Lines and Characters
	13. Character Translations
	14. Automatic Line Numbering
	15. Conditional Requests
	16. Debugging Requests
	17. Environments
	A. troff Request Summary
	B. Font and Character Examples
	C. Escape Sequences
	D. Predefined Number Registers
	E. troff Output Codes
	Index

