
•\sun®
~ microsystems

Debugging Tools

Part Number: 800-1775-10
Revision A, of 9 May 1988

Sun Workstation® and Sun Microsystems® are registered trademarks of Sun
Microsystems, Inc.

SunViewTM, SunOSTM, and the combination of Sun with a numeric suffix are
trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright© 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other­
wise, without prior explicit written permission from Sun Microsystems.

Contents

Chapter 1 Introduction .. 3

1.1. Three Debuggers .. 3

dbx ... 3

dbxtool.. 3

adb ... 3

Chapter 2 dbx and dbxtool Compared ... 7

2.1. Debugging Modes of dbx and dbxtool .. 7

2.2. Common Features of dbx and dbxtool .. 8

Filenames .. 8

Expressions ... 8

dbx and FORTRAN .. 9

dbx Scope Rules... 10

Chapter 3 dbxtool .. 13

3.1. dbxtool Options .. 13

3.2. dbxtool Subwindows ... 14

3.3. Scrolling ···A+~~) ~.;;;];(~ii,~······ 15
3.4. The Source Window ... ~.,.:: .. &;:::~.:.l;;;;~:!j;;. .)L 15

3.5. Constructing Commands .. ,;;&!;;~,.,ii~:.:::~.i\ti[[l ,.;;[:;: i\15

3.6. Command Buttons ... &;:~.Ji.~::: .. d..::;;]]L !.i .. ~.E.i.. i}())
··=:=:=::::::::::.· .-:=}~{::::.· _.;:}~{::::.· .-:=:::=::::::::: .. ··=:::::::::::=:=·· .-:=:{{::::.· .·: ;:::::::.·

3.7. Choosing Your Own Buttons :&E~;;:::t~ .. J.L.m;~,;,.:df. : i1
3.8. The Display Window ... ~::.:.:.;~::~:!:;;(;~_)[i;;: ... !it);;;. } 17

3.9. Editing in the Source Window ... ::::]][@ .. :.!;;;;: :....... 17

c
-iii-

Contents- Continued

/'"""\
' '

3.10. Controlling the Environment .. A 18 ~./)

3.11. Other Aspects of dbxtool .. . 18

too~env 18

button .. . 19

unbutton .. . 19

:menu 19

un:menu .. . 19

3.12. Bugs 19

Chapter 4 dbx .. . 23
4.1. Preparing Files for dbx .. . 24

4.2. Invoking dbx .. . 24

4.3. dbx Options .. . 24

4.4. Listing Source Code .. . 25

4.5. Listing Active Procedures 25

4.6. Naming and Displaying Data 26

4.7. Setting Breakpoints

4.8. Running and Tracing Programs .. .

27 ()
29 _j

4.9. Accessing Source Files and Directories .. . 31

4.10. Machine-Level Commands .. . 32

4.11. Miscellaneous Commands .. . 35

4.12. Debugging Processes that Fork .. . 36

4.13. dbx FPA Support .. . 37

4.14. Example ofFPA Disassembly .. . 38

4.15. Examples ofFPARegisterUse 39

Chapter 5 adb Tutorial 43

5.1. A Quick Survey 43

Starting adb 43

Current Address .. . 44

Formats .. . 44

General Command Meanings 45

5.2. Debugging C Programs 46

/~
__)

-iv-

Contents- Continued

Debugging A Core Image .. 46

Setting Breakpoints ... 49

Advanced Breakpoint Usage .. 52

Other Breakpoint Facilities ... 53

5.3. File Maps .. 55

407 Executable Files ... 55

410 Executable Files... 56

413 Executable Files ... ,.~..;.............. 57

Variables ... ""............... 57

5.4. Advanced Usage ... ~......................... 58

Formatted Dump ... ;..................... 58

Accounting File Dump .. 60

Converting Values .. 60

5.5. Patching ... 61

5.6. Anomalies .. 62

c Chapter 6 Sun386i a db Tutorial .. 65

6.1. A Quick Survey.. 65

Starting adb .. 65

Current Address ... 66

Formats... 66

General Request Meanings .. 67

6.2. Debugging C Programs on Sun386i ... 68

Debugging A Core Image .. 68

Setting Breakpoints ... 71

Advanced Breakpoint Usage .. 74

Other Breakpoint Facilities ... 75

6.3. File Maps .. 77

407 Executable Files ... 77

410 Executable Files... 78

413 Executable Files .. 79

Variables .. 80

6.4. Advanced Usage ... 80

-v-

Contents- Continued

0
Fonnatted Dump .. . 80

\._j

Accounting File Dump 82

Converting Values 82

6.5. Patching .. . 83

6.6. Anomalies 84

Chapter 7 a db Reference .. . 87

7.1. adb Options .. . 87

7.2. Using adb .. . 87

7 .3. a db Expressions 88

Unary Operators 89

Binary Operators .. . 89

7.4. adb Variables 90

7.5. adb Commands 90

adb Verbs .. . 90

? , I,@, and= Modifiers 91

? and I Modifiers .. . 93 10
: Modifiers .. . 93 '"._,)

$ Modifiers .. . 94

7 .6. a db Address Mapping .. . 96

7.7. See Also 96

7.8. Diagnostic Messages from adb 96

7.9. Bugs .. . 97

7.10. Sun-3 FPA Support in adb .. . 97

7 .11. Examples of FP A Disassembly .. . 98

7.12. Examples ofFPARegisterUse ~ .. . 99

Chapter 8 Debugging SunOS Kernels with adb 103

8.1. Introduction .. . 103

Getting Started .. :: 103

Establishing Context .. . 104

8.2. adb Command Scripts ··-··· 104

Extended Fonnatting Facilities .. . 104

01
_. /'

-vi-

Contents- Continued

Traversing Data Structures .. 107

Supplying Parameters ... 109

Standard Scripts ... 110

8.3. Generating adb Scripts with adbgen ... 111

8.4. Summary.. 111

Chapter 9 Generating a db Scripts with adbgen ... 115

9.1. Example of adbgen ... 116

9.2. Diagnostic Messages from adbgen .. 116

9.3. Bugs in adbgen .. 116

Index... 117

-vii-

Tables

Table 2-1 Operators Recognized by dbx ... 8

Table 2-2 Operator Precedence and Associativity ... 9

Table 3-1 Attribute-Value Pairs for dbxtool ... 18

Table 4-1 db:x: Functions ... 23

Table 4-2 Tracing and its Effects .. 30

Table 5-l Some a db Format Letters ... 45

Table 5-2 Some adb Commands .. 45

Table 6-1 Some a db Format Letters ... 67

Table 6-2 Some adb Commands .. 67

Table 8-1 Standard Command Scripts.. 110

-ix-

'~
_ .. /

0

Figures

Figure 3-1 Five dbxtool Subwindows .. 14

Figure 5-1 Executable File Type 407 .. 55

Figure 5-2 Executable File Type 410 .. 56

Figure 5-3 Executable File Type 413 .. 57

Figure 6-1 Executable File Type 407 .. 77

Figure 6-2 Executable File Type 410 .. 78

Figure 6-3 Executable File Type 413 .. 79

-xi-

Introduction

Introduction .. .

1.1. Three Debuggers

dbx .. .

dbxtool

adb .. .

c

1

3

3

3

3

3

0

1.1. Three Debuggers

dbx

dbxtool

a db

1
Introduction

This manual describes three debuggers available on Sun Workstations™: dbx,
dbxtool, and adb. This document is intended for competent C, assembler,
FOR1RAN, Modula-2, or Pascal programmers.

dbx is an interactive, line-oriented, source-level, symbolic debugger. It lets you
determine where a program crashed, view the values of variables and expres­
sions, set breakpoints in the code, and run and trace a program. In addition,
machine-level and other commands are available to help you debug code. A
detailed description of how to use dbx is found in Chapter 4.

dbxtool is a window-based interface to dbx. Debugging is easier because you
can use the mouse to enter most commands from redefinable buttons on the
screen. You can use any of the standard dbx commands in the command win­
dow. A detailed description of how to use dbxtool is found in Chapter 3.

adb is an interactive, line-oriented, assembly-level debugger. It can be used to
examine core files to determine why they crashed, and provides a controlled
environment for program execution. Since it dates back to UNIXt Version 7, it is
likely to be available on UNIX systems everywhere. Chapters 5 and 6 are tutorial
introductions to adb for the Sun-2 and -3 and the Sun386i, respectively, and
Chapter 7 is a reference manual for it

This manual begins with material about the debuggers of choice, dbxtool and
dbx. They are much easier to use than a db, and are sufficient for almost all
debugging tasks. adb is most useful for interactive examination of binary files
without symbols, patching binary files or object code, debugging programs when
the source code is not at hand, and debugging the kernel.

Some programs produce core dumps when an internal bug causes a system fault.
You can usually produce a core dump by typing [CTRL-\1 while a process is run­
ning. If a process is in the background, or originated from a different process
group, you can get it to dump core by using the gcore(l) utility.

t UNIX is a registered trademarlc of AT&T.

sun
microsystems

3 Revision: A of May 9, 1988

2
dbx and dbxtool Compared

dbx and dbxtool Compared.. 7

2.1. Debugging Modes of dbx and dbxtool .. 7

2.2. Common Features of dbx and dbxtool .. 8

Filenames .. 8

Expressions ... 8

dbx and FORTRAN" .. 9

dbx Scope Ru1es .. . 10

c

2.1. Debugging Modes of
dbx and dbxtool

NOTE

2
dbx and dbxtool Compared

Both dbx and dbxtool support five distinct types of debugging: post-mortem,
live-process, multiple-process, and kernel debugging. References to dbx below
apply to dbxtool as well.

You can do post-mortem debugging on a program that has created a core file.
Using the core file as its image of the program, dbx retrieves the values of
variables from it. The most useful operations in post-mortem debugging are get­
ting a stack trace with where, and examining the values of variables with
print. Operations such as setting breakpoints, suspending and continuing exe­
cution, and calling procedures, are not supported with post-mortem debugging.

In live-process debugging, a process is started under control of dbx. From there,
the user can:

o set the process' starting point

o set and clear breakpoints

o restart a stopped process.

The most useful operations are getting a stack trace with where, examining the
values of variables with print and display, setting breakpoints with stop,
and continuing execution with next, step, and cont.

Multiple-process debuggingjs most useful when debugging the interaction
between two tightly coupled programs. For example, in a networking situation it
is common to have server and client processes that use some style of inter­
process communication (remoteprocedure calls, for example). To debug both
the client and the server simultaneously, each process must have its own instance
of dbx. When using dbx for multiple-process debugging, it is advisable to
begin each dbx in a separate window. This gives you a way to debug one pro­
cess without without losing the context of the other debugging session.

This does not mean that either dbx or dbxtool supports remote debugging.
You can debug only processes running on your machine.

Kernel debugging is a special form of post-mortem debugging. Start kernel
debugging by specifying the -k option on the dbx or dbxtool command line
(or with the debug command). When debugging the kernel, dbx uses page
maps in the kernel's core image to map addresses. The proc command specifies

sun
microsystems

7 Revision: A of May 9, 1988

8 Debugging Tools

2.2. Common Features of
dbx and dbxtool

Filenames

Expressions

Table 2-1

which process' user structure is mapped into the kernel's u area. The .where
command displays the kernel stack associated with the process currently mapped
into the u area.

The following symbols and conventions apply to both dbx and dbxtool; as
before, references to dbx apply to dbxtool as well.

Filenames within dbx may include shell metacharacters. The shell used for pat­
tern matching is detennined by the SHELL environment variable.

Expressions in dbx are combinations of variables, constants, procedure calls,
and operators. Hexadecimal constants begin with "Ox" and octal constants with
"0". Character constants must be enclosed in single quotes. Expressions cannot
involve literal strings, structures, or arrays, although elements of structures and
arrays may be used. However, the print and display commands do accept
structures or arrays as arguments and, in these cases, print the entire contents of
the structure or array. The call command accepts literal strings as arguments,
and passes them according to the calling conventions of the language of the rou­
tine being called.

Operators Recognized by dbx

Operators Recognized by db x

+ add
- subtract

* multiply
I divide
div integer divide
% remainder
<< left shift
>> right shift
& bitwise and
I bitwise or

A exclusive or
- bitwise complement
& address of

* contents of
< less than
> greater than
<= less than or equal to
>= greater than or equal to
-- equal to
!= not equal to
! not
&& logical and
I I logical or
sizeof size of a variable or type
(type) type cast

Revision: A of May 9, 1988

Table 2-1

Table 2-2

dbx and FORTRAN

Chapter 2- dbx and dbxtool Compared 9

Operators Recognized by dbx- Continued

Operators Recognized by dbx

-> I
structure field reference
pointer to structure field reference

The operator"." can be used with pointers to records, as well as with records
themselves, making the C operator"->" unnecessary (though it is supported).

Precedence and associativity of operators are the same as in C, and are described
in Table 2-2 below. Parentheses can be used for grouping.

Operator Precedence and Associativity

Operator Associativity
-> left to right

- ! (type) * & sizeof right to left

* I % div left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

~ left to right

I left to right

&& left to right

II left to right

?: right to left

Of course, if the program being debugged is not active and there is no core file,
you may only use expressions containing constants. Procedure calls also require
that the program be active.

Note the following when using dbx with FORTRAN programs:

1) Array elements must be referenced with square brackets [and] rather than
with parentheses. So use print var [3] instead of print var (3).

2) The main routine is referenced as MAIN (as distinguished from main). All
other names in the source file that have upper case letters in them will be
lower case in dbx, unless the program was compiled with £7 7 -u. For
more information, see the section on dbxenv case under Miscellaneous
Commands in Chapter 4 .

3) When referring to the value of a logical type in an expression, use the value
0 or 1 rather than . false. or . true., respectively.

Revision: A of May 9, 1988

10 Debugging Tools

dbx Scope Rules dbx uses two variables to resolve scope conflicts: file and func (s~ Section
4.9). The values of file and func change automatically as files and routines
are entered and exited during execution of the user program. They can also be
changed by the user. Changing func also changes the value of file; however,
changing file does not change fun c.

The func variable is used for name resolution, as in the command print
grab where grab may be defined in two different routines. The search order is:

1) Search for grab in the routine named by fun c.

2) If grab is not found in the routine named by func, search the file contain­
ing the routine named by fun c.

3) Finally, search the outer levels- the whole program in the case of C and
FORTRAN, and the outer lexical levels (in order outward) in the case of Pas­
cal- for grab.

Clearly, if grab is local to a different routine than the one named by func, or is
a static variable in a different file than is the routine named by func, it won't be
found. Note, however, that print a. grab is allowed, as long as routine a
has been entered but not yet exited. Note that the file containing the routine a
might have to be specified when the file name (minus its suffix) is the same as a
routine name. For example, if routine a is found in module a. c, then print
a. grab would not be enough- you would have to use print a .a .grab.
If in doubt as to how to specify a name, use the wherei s command, as in 0.
whereis grab to display the full qualifications of all instances of the \._)
specified name- in this case grab.

The variable file is used to:

1) Resolve conflicts when setting func- for example, when a C program has
two static routines with the same name.

2) Detennine which file to use for commands that take only a source line
number-forexample, stop at 55.

3) Detennine which file to use for commands such as edit, which has
optional arguments or no arguments at all.

When dbx begins execution, the initial values of file and func are deter­
mined by the presence or absence of a core file or process ID. If there is a core
file or process ID, file and fun c are set to the point of tennination. If there is
no core file or process ID, func is set to main (or MAIN for FORTRAN) and
file is set to the file containing main or (MAIN).

Note that changing func doesn't affect the place where dbx continues execu­
tion when the program is restarted.

Revision: A of May 9, 1988

c

3
dbxtool

dbxtool ... 13

3.1. dbxtool Options.. 13

3.2. dbxtool Subwindows ... 14

3.3. Scrolling .. 15,

3.4. The Source Window

3.5. Constructing Commands .. .

3.6. Command Buttons

3.7. Choosing Your Own Buttons

3.8. The Display Window .. .

15

15

16

17

17

3.9. Editing in the Source Window... 17

3.10. Controlling the Environment... 18

3.11. Other Aspects of dbxtool ... 18

tool.env .. 18

button... 19

unbutton ... 19

:menu.. 19

unxnenu ... 19

3.12. Bugs ,... 19

0 I I

_j

NOTE

1.1. dbxtool Options

1

dbxtool

dbxtoo1 [-i.] [-k] [-I dir] [-kbd] [objectfile [corefile I process!D]]

dbxtool is a source-level debugger with a window and mouse-based user inter­
face, accepting dbx's, commands with a more convenient user interface. Using
the mouse, one can set breakpoints, examine variable values, control execution,
browse source files, and so on. There are subwindows for viewing source code,
entering commands, and several other uses. This debugger functions in the sun­
tools(l) environment, so that the standard tool manager actions, such as moving,
resizing, mving to the front or back, and so on can be applied to it.

In the usage above, objectfile is an object file produced by cc, £7 7, or pc, or a
combination thereof, with the -g flag specified to produce the appropriate sym­
bol information. If no objectfile is specified, one may use the debugger's debug
command to specify the program to be debugged. The object file contains a sym­
bol table which includes the names of all the source files translated by the com­
piler to create it. These files are available for perusal while using the debugger.

Every stage of the compilation process, including the loading phase, must
include the -g option.

dbxtool can be used to examine the state of the program when it faulted if a
file named core exists in the current directory, or a corefile is specified on the
command line or in the debug command.

Giving a process!D instead of a corefile, halts the process and begins debugging
it. Detaching the debugger from the process lets it continue.

Debugger commands in the file . dbxini t are executed immediately after the
symbolic information is read, if that file exists in the current directory, or in the
user's home directory if it isn't there.

-k Kernel debugging.

-1 dir
Add dir to the list of directories searched when looking for a source file.
Normally dbxtoollooks for source files in the directory where objectfile is
located, and if the source files can't be found there or in the current direc­
tory, the user must tell todbxtool where -I option or else set the directory
search path with the use command. Multiple -1 options may be given.

13

14

1.2. dbxtool Subwindows

Figure 1-1

A dbxtool window consists of five subwindows. From top to bottom they are:

status Gives the overall status of debugging, including the location where
execution is currently stopped, and a description of lines displayed
in the source subwindow.

source Displays source text of the program being debugged, and allows you
to move around in the source file.

buttons Contains buttons for frequently used commands; picking a button
with the mouse invokes the corresponding command.

command Provides a typing interface to supplement the buttons sub window.
Also, most command output appears in this subwindow.

display Display output appears here.

Five dbxtool Subwindows

.. ..
Await1ng Execution
File Displayed: ,/example.c Lines: 13-32

" •I ...

I
struct few few2 s { 3, 4, NULL, "world" } ;
struct few fewl -{ 1, 2, &few2, "hello" } ;

I* .. write a main program to use the structures

)~~
*I
main()
{

I*
* declare the variable *fewp
* to p[oint to a few-type structure
*I

struct few *fewp;
I* .. print out a message
*I

! for (fewp -&fewl; fewp I= NULL; •= fewp -> next) {
pri ntf("~.s " fewp -> message); ' }

" } ...
I print)(print ;)(next)(step)(stop at)(cont)(stop in)(clear)(where)

(up)(down)(run l
; Reading symbolic: information ...
~: Read 155 symbols
;\ (dbxtool) run
~;:Running: example
1} hello world
Y execution c:omp 1 eted, exit c:ode is a
} program exited with a
;%~ (dbxtool) stop at "example.c:":29
} (2) stop at "example.c:":29
l (dbxtool) print fewp
:f: "fewp" is not active
" (dbxtool) ...

~
" ...

;~
'

J

3.3. Scrolling

(3.4. The Source Window
"'-··'"'

3.5. Constructing
Commands

Chapter3-dbxtool 15

The source, command, and display windows have scroll bars to facilit~te brows­
ing their contents. The scroll bar is at the left edge of each window. The bar is a
medium gray background with a darker gray area superimposed over it indicating
the portion of the source file, command transcript, or display currently visible in
the window. Note that the size of the darker gray area corresponds to the number
of characters visible in the source window, not the number of lines.

Within the scroll bar, the mouse buttons have the following functions:

left

middle

right

Scroll forward, moving towards the end of the file.

Scroll to absolute position in the text

Scroll backwards, moving towards the beginning of the file.

Positioning the cursor within the scroll bar next to a given line and clicking the
left button causes the line to move to the top of the window. Clicking the right
button causes the top line in the window to move to the position of the cursor.
The middle button treats the scroll bar as a thumb bar~ The top of the thumb bar
represents the beginning of the text, and the bottom represents the end of the text.
Clicking the middle button in the scroll bar picks a point within the text relative
to its entire size. This point is then displayed at the top of the window.

See Windows and Window-Based Tools: Beginner's Guide for a more complete
description of scroll bars.

The source window displays the text of the program being debugged. Initially, it
displays text from either the main routine, if there is no core file, or the point at
which execution stopped, if there is a core file. Whenever execution stops during
a debugging session, it displays the point at which it stopped. The f i 1 e com­
mand can be used to switch the source window to another file; the focus of atten­
tion moves to the beginning of the new file. Similarly, the func command can
be used to switch the source window to another function; the new focus of atten­
tion is the first executable line in the function.

Breakpoints are indicated in the source window by a solid stop sign at the begin­
ning of the line. The point at which execution is currently stopped is marked by
either a rightward pointing outlined or hollow arrow.

One can either type commands to dbxtool, in the command window or con­
struct commands with the selection and button mechanism (if a button is. pro­
vided for the command), but typing and buttons cannot be combined to build a
command.

The command window is a text subwindow and so uses the text selection facility
described in Windows and Window-Based Tools: Beginner's Guide.

The software buttons operate in a postfix manner. That is, one first selects the
argument, and then clicks the software button with the left mouse button. Each
command interprets the selection as appropriate for that command.

Revision: A of May 9, 1988

16 Debugging Tools

3.6. Command Buttons

There are five ways that dbxtool may interpret a selection:

literal

expand

line no

A selection may be interpreted as exactly representing selected
material.

A selection may be interpreted as exactly representing selected
material, except that it is expanded if either the first or last character
of the selection is an alphanumeric character or underscore. It is
expanded to the longest enclosing sequence of alphanumeric charac­
ters or underscores. Selections made outside of dbxtool cannot be
expanded and are interpreted as exactly the selected text.

A selection in the source window may be interpreted as representing
the (line number of the) first source line containing all or some of the
selection.

command A selection in the command window may be interpreted as represent­
ing the command containing the selection.

ignore Buttons may ignore a selection.

The standard set of command buttons in the buttons window is as follows:

print Print the value of a variable or expression. Since this button expands
the selection, identifiers can be printed by selecting only one charac­
ter.

print * Print the value of all variables or expressions. Since this button
expands the selection, identifiers can be printed by selecting only
one character.

next

step

Execute one source statement and then stop execution, except that if
the statement contains a procedure or function call, execute through
the called routine before stopping. The next button ignores the
selection.

Execute one source line and then stop execution again. If the current
source line contains a procedure or function call, stop at the first exe­
cutable line within the procedure or function. The step button
ignores the selection.

stop at Set a breakpoint at a given source line. Interpret a selection in the
source window as representing the line number associated with the
first line of the selection.

cont Resume execution from the point where it is currently stopped. The
cont button ignores the selection.

stop in Set a breakpoint at the first line of a given function or procedure.

clear

sun
microsystems

Since this button expands the selection, identifiers may be printed by
selecting only one character.

Clear all breakpoints at the currently selected point. <lineno>
clear clears all breakpoints at the specified line number.

Revision: A of May 9, 1988

(~
·_, ..)

~'

~-.. -

NOTE

3.7. Choosing Your Own
Buttons

3.8. The Displa_y Window

3.9. Editing in the Source
Window

where

up

down

Chapter 3 - dbxtool 17

Prints a procedure traceback. <number> where printsnumber
top procedures in the traceback.

Moves up the call stack one level. <number> up moves the call
stack up number levels.

Moves the call stack down one level. <number> down moves the
call stack down number levels.

run Begins execution of the program. <arguments> run begins
execution of the program with new arguments.

The second form cannot be entered in its standard form with the run button,
only by typing the command.

The button command defines buttons in the buttons window. It can be used in
. dbxini t to define buttons not otherwise displayed, or during a debugging ses­
sion to add new buttons. The first argument to button is the selection interpre­
tation for the button, and the remainder is the command associated with it. The
default set of buttons can be replicated by the sequence

button expand print
button expand print *
button ignore next
button ignore step
button lineno stop at
button ignore cont
button expand stop in
button ignore clear
button ignore where
button ignore up
button ignore down
button ignore run

The unbutton command may be used in . dbxini t to remove a default but­
ton from the buttons window, or during a debugging session to remove an exist­
ing button. The argument to unbutton is the command associated with the
button.

The display window provides continual feedback of the values of selected vari­
ables. The display command specifies variables to appear in the display win­
dow, and undisplay removes them. Each time execution of the program
being debugged stops, the values of the displayed variables are updated.

The source window is a standard text subwindow (see Windows and Window­
Based Tools: Beginner's Guide for details). Initially dbxtool puts the source
subwindow in browse mode, meaning that editing capabilities are suppressed.
dbxtool adds a "start editing" entry to the standard text subwindow menu in
the source window. When this menu item is selected, the file in the source win­
dow becomes editable, the menu item changes to "stop editing", and any annota­
tions (stop signs and arrows) are removed. The "stop editing" menu item is a

Revision: A of May 9, 1988

18 Debugging Tools

3.10. Controlling the
Environment

3.11. Other Aspects of
dbxtool

tool.env

Table 3-1

If\
pull-right menu with two options: "save changes" and "ignore changes". Select- \._j
ing either of these menu items disables editing, changes the menu item back to
"start editing", and causes the annotations to return.

After editing a source file, it is advisable to rebuild the program, as the source file
no longer reflects the executable program.

The toolenv command provides control over several facets of dbxtool's
window environment, including the font, the vertical size of the source, com­
mand, and display windows, the horizontal size of the tool, and the minimum
number of lines between the top or bottom of the source window and the arrow.
These are chiefly useful in the . dbxini t file to control initiaJ.ization of the
tool, but may be issued at any time.

The commands, expression syntax, scope rules, etc. of dbxtool are identical to
those of dbx. Three of the commands, toolenv, button, and unbutton
affect only dbxtool, so they are described below. See Chapter 4 for descrip­
tions of the others.

toolenv [attribute value]

Set or print attributes of the dbxt o o l window. This command has no effect in
dbx. ,The possible attribute-value pairs and their interpretations are as follows:

Attribute-Value Pairs for dbxtool

Attribute-Value Description
fontfontfile change the font to that found infontfile; default is taken

from the DEFAULT FONT shell variable. -

width nchars change the width of the tool window to nchars charac-
ters; default is 80 characters.

srclines nlines make the source subwindow nlines high; default is 20
lines.

cmdlines nlines make the command subwindow nlines high; default is 12
lines.

displines nlines make the display subwindow nlines high; default is 3
lines.

topmargin nlines keep the line with the arrow at least nlines from the top
of the source subwindow; default is 3 lines.

botmargin nlines keep the line with the arrow on it at least nlines from the
bottom of the source subwindow; default is 3 lines.

The toolenv command with no arguments prints the current values of all the
attributes.

Revision: A of May 9, 1988

!"'\
! J

_j

button

unbutton

menu

unmenu

3.12. Bugs

Chapter3 -dbxtool 19

button selection command-name

Associate a button in the buttons window with a command in dbxtool. This
command has no effect in dbx. The argument selection may be any of
literal, expand, lineno, command and ignore, as described in Section
3.5. The command_name argument may be any sequence of words correspond­
ing to a dbxtool command.

unbutton command-name

Remove a button from the buttons window. The first button with a matching
command-name is removed.

The menu command defines the menu list in the buttons window. It can be used
in . dbxini t to define menu items not otherwise displayed, or during a debug­
ging session to add new menu items. The first argument to menu is the selection
interpretation for the menu, and the remainder is the command associated with it.
The default set of menus can be replicated by the sequence

menu expand display
menu expand undisplay
menu expand file
menu expand func
menu ignore status
menu lineno cant at
menu ignore make
menu ignore kill
menu expand list
menu ignore help

The unmenu command may be used in . dbxini t to remove a default menu
from the menus window, or during a debugging session to remove an existing
menu item. The argument to unmenu is the menu to be removed.

The interaction between scrolling in the source subwindow and dbx's regular
expression search commands is wrong. Scrolling should affect where the next
search begins, but it does not.

Revision: A of May 9, 1988

4
dbx

dbx .. 23

4.1. Preparing Files for dbx ... 24

4.2. Invoking dbx ... 24

4.3. dbx Options ... 24

4.4. Listing Source Code... 25

4.5. Listing Active Procedures .. 25

4.6. Naming and Displaying Data.. 26

4.7. Setting Breakpoints .. 27

4.8. Running and Tracing Programs ... 29

4.9. Accessing Source Files and Directories ... 31

4.10. Machine-Level Commands... 32

4.11. Miscellaneous Commands... 35

4.12. Debugging Processes that Fork... 36

4.13. dbx FPA Support... 37

4.14. Example ofFPA Disassembly... 38

4.15. Examples ofFPARegisterUse .. 39

'~ i
/

Table4-1

4
dbx

dbx [-r] [-k] [-kbd] [-I dir] [objectfile [corefile I processiD]]

dbx is a tool for source-level debugging and execution of programs, that accepts
the same commands as dbxtool, but has a line-oriented user interface, which
does not use the window system. It is useful when you can't run Sunview. (See
also dbx(l).)

dbx Functions

dbx Functions

Function Commands
list active procedures down, proc, up, where

name, display, and set variables assign, display, dump,
print, set, set81,
undisplay, whatis, whereis,
which

set breakpoints catch, clear, delete,
ignore, status, stop,
trace, when

run and trace program call, cont, next, rerun,
run, step

access source files & directories cd, edit, file, func, list,
pwd, use, /, ?

process manipulation debug, detach, kill

miscellaneous commands alias, dbxenv, help, sh,
source, quit, setenv

machine-level commands nexti, stepi, stopi, tracei

Although dbx provides a wide variety of commands, there are a few that you
will execute most often. You will probably want to

o find out where an error occurred,

o display and change the values of variables,

23 Revision: A of May 9, 1988

24 Debugging Tools

4.1. Preparing Files for
dbx

WARNING

WARNING

4.2. Invoking dbx

4.3. dbx Options

o display the values of constants,

o set breakpoints,

o and run and trace your program.

When compiling programs with cc, f 7 7, or pc, you must specify the -g option
on the command line, so that symbolic information is produced in the object file.
Every step of compilation (including linking) must include this option.

dbx won't correctly debug library modules whose names are more than 14
characters long. While ar emits a warning at the time the library is being
created that the name of the file is being truncated, dbx will offer no warning
that there is a problem, other than not working correctly as you attempt to
debug the offending module.

lfyou use ld's -r option when compiling your program, attempts to debug the
final load module with dbx will oftenfail. This is because ld -r modifies the
symbol table and the resultant load module.

To invoke dbx, type:

(% db:x options objftle coreftle

~

dbx begins execution by printing:

Reading symbolic information ...
Read nnn symbols
(dbx)

To exit dbx and return to the command level, type:

(~dbx) quit

The options to dbx are:

J

]
-r Execute objjile immediately. Parameters follow the object filename (redirec­

tion is handled properly). If the program terminates successfully, dbx exits.
Otherwise, dbx reports the reason for termination and waits for your
response. When -r is specified and standard input is not a terminal, dbx
reads from /dev /tty.

-k Kernel debugging: dbx uses page maps within the kernel's core image to
map addresses. \

-kbd.
Debugs a program that sets the keyboard into up/down translation mode.
This flag is necessary if the program you are debugging uses up/down
encoding.

sun
microsystems

Revision: A of May 9, 1988

~' I ,
\ '
\,._/

c

4.4. Listing Source Code

4.5. Listing Active
Procedures

Chapter 4- dbx 25

-Idir
Add dir to the list of directories searched when looking for a source file.
Normally, dbx looks for source files in the directory where objfile is located,
and if the source files can't be found there or in the current directory, the
user must tell dbx where to find the source files; either with the -I option or
else set the directory search path with the use command.

The objfile contains compiled object code. If it is not specified, one can use the
debug command to specify the program to be debugged. The object file con­
tains a symbol table, which includes the names of all the source files the compiler
translated. These files are available for perusal while using the debugger.

If a file named core exists in the current directory, or a corefile is specified,
dbx can be used to examine the state of the program when it faulted. If a pro­
cess/D is given instead, dbx halts the process and begins debugging it. If you
later detach the debugger from the it, the process continues to execute.

Debugger commands in the file . dbxin it are executed immediately after the
symbolic information is read if that file exists in the current directory, or in the
user's home directory if it is not found in the current directory.

If you invoked dbx on an objfile, you can list portions of your program, and
·associated line numbers in the program's source file. For example, consider the
program example. c, which you can see by typing:

{dbx) list 1,12
1 41:include <stdio.h>
2
3 main ()
4 {

5 printf("goodbye world!\n");
6 dumpcore();
7
8
9 dumpcore ()

10 {

11 abort() ;
12

If the range of lines starts past the end of file, dbx will tell you the program has
only so many lines; if the range of lines goes past the end of file, dbx will print
as many lines as it can, without complaining. You can also list just a single pro­
cedure by typing its name instead of a range oflines; for example l.ist main
prints ten lines starting near the top of the main () procedure.

If your program fails to execute properly, you probabiy want to find out the pro­
cedures that were active when the program crashed. Use the where command,
like this:

[where [n])
Revision: A of May 9, 1988

26 Debugging Tools

4.6. Naming and
Displaying Data

where displays a list of the top n active procedures and functions on the stack,
and associated sourcefile line number (if available). If n is not specified, all
active procedures are displayed.

When debugging a post-mortem dump of the example .. c program above, dbx
prints the following:

(dbx) where
abort() at Ox80e5
dumpcore(), line 12 in "example.c"
main(Oxl, Oxfffd84, Oxfffd8c), line 7 in "example.c"
(dbx)

Three other commands useful for viewing the stack are:

up [n]
Move up the call stack (towards main) n levels. If n is not specified, the
default is one. This command allows you to examine the local variables in
functions other than the current one. In dbxtool, the line containing the
call that passes from the nth outer level to the (n-1)this highlighted for one
second.

down [n]
Move down the call stack (towards the current stopping point) n levels. If n
is not specified, the default is one.

proc [process_id]
Specify for kernel debugging which user process is mapped into the u area
and hence has its kernel stack displayed by the where command. If no
argument is given, proc reports the process_id of the process currently
mapped into the u area .

print expression[, expression ...]
Print the values of specified expressions. An expression may involve func­
tion calls if you are debugging an active process. If execution of a function
encounters a breakpoint, execution halts and the dbx command level is re­
entered. A stack trace with the where command shows that the call ori­
ginated from the dbx command level.

Variables having the same name as one in the current function may be refer­
enced as funcname. variable, or filename june name. variable. The filename is
required ifjuncname occurs in several files or is identical to a filename. For
example, to access variable i inside routine a, which is declared inside
module a. c, you would have to use print a. a. i to make the name a
unambiguous. Use where is to determine the fully qualified name of an
identifier. See dbx Scope Rules in Chapter 2 for more details.

display [expression[, expression ...]]
Display the values of the expressions each time execution of the debugged
program stops. The name qualification rules for print apply to display ~~
as well. With no arguments, the display command prints a list of the _)
expressions currently being displayed, and a display number associated with

Revision: A of May 9, 1988

c

4.7. Setting Breakpoints

Chapter 4- dbx 27

each expression. In dbxtool, the variable names and values are, shown in
the display subwindow; in dbx they are printed automatically whenever
execution stops.

undisplay expression[, expression ...]
Stop displaying the expressions and their values each time execution of the
program being debugged stops. The name qualification rules for print
apply to undisplay as well. A numeric expression is intetpreted as a
display number and the corresponding expression is deleted from the
display.

whatis identifier
whatis type

Print the declaration of the given identifier or type. The identifier may be
qualified with block names as above. The type argument is useful to print all
the members of a structure, union, or enumerated type.

which identifier
Print the fully qualified form of the given identifier; that is, the outer blocks
with which the identifier is associated.

whereis identifier
Print the fully qualified form of all symbols whose names match the given
identifier. The order in which the symbols are displayed is not meaningful.

assign variable= expression
set variable= expression

Assign th.e value of the expression to the variable. Currently no type conver­
sion takes place if operands are of different types.

set81 fpreg =word] word2 word3
Treat the 96-bit value gotten by concatenating wordl, word2, and word3 as
an IEEE floating-point value, and assign it to the named MC68881 floating­
point register fpreg. Note that MC68881 registers can also be set with the
set command, but that the value is treated as double-precision and con­
verted to extended precision. This command applies to Sun-3 systems
only.

dump [jUne]
Display the names and values of all the local variables and parameters in
june. If not specified, the current function is used.

Breakpoints are set with the stop and when commands, which have the follow­
ing forms:

stop at source-line-number [if condition]
Stop execution at the given line number whenever the condition is true. If
condition is not specified, stop every time the line is reached.

sun
microsystems

Revision: A of May 9, 1988

28 Debugging Tools

stop in procedure/function [if condition]
Stop execution at the first line of the given procedure or function whenever
the condition is true. If condition is not specified, stop every time the line is
reached.

stop variable [if condition]
Stop execution whenever the value of variable changes and condition is true.
If condition is not specified, stop every time the value of variable changes.
This command performs interpretive execution, and thus is significantly
slower than most other commands.

stop if condition
Stop execution whenever condition becomes true. This command performs
interpretive execution, and thus is significantly slower than most other com­
mands.

when in procedure/function { command; ••• }
Execute the given dbx command(s) whenever the specified procedure or
function is entered.

when at source-line-number {command; ••• }
Execute the given dbx command(s) whenever the specified source-line­
number is reached.

when condition { command; ••• }
Execute the given dbx c·ommand(s) whenever the condition is true before a 0.
statement is executed. This command performs interpretive execution, and \....)
thus is significantly slower than most other commands.

NOTE In the when commands, the braces and the semicolons between commands are
required.

The following commands can be used to view and change breakpoints:

status [>filename]
Display the currently active trace, stop, and when commands. A
command-number is listed for each command. The filename argument
causes the output of status to be sent to that file.

delete command-number [,command-number ...]
delete all

Remove the trace, when, and/or stop commands corresponding to the
given command-numbers, or all of them. The status command explained
above displays numbers associated with these commands.

clear source-line-number
Clear all breakpoints at the given source line number. If no source-line­
number is given, the current stopping point is used.

Two additional commands can be used to set a breakpoint when a signal is
detected by the program, rather than a condition or location.

catch [number [,number ...]]
1
0

Start trapping the signals with the given number(s) before they are sent to \._w)

the program being debugged. This is useful when a program handles signals

Revision: A of May 9, 1988

c

4.8. Running and Tracing
Programs

Chapter 4- dbx 29

such as interrupts. Initially all signals are trapped except SIGHUP,
SIGCONT,SIGCHILD,SIGALRM,SIGKILL,SIGSTP,andSIGWINCH.
If no number is given, list the signals being caught.

ignore [number [, number . ..]]
Stop trapping the signals with the given number(s) before they are sent to the
program being debugged. This is useful when a program handles signals
such as interrupts. If no number is given, list the signals being ignored.

You can run and trace your code using the following commands:

run [args] [<filename] [>filename] [>>filename]
Start executing obj.file, specified on the dbx command line (or with the most
recent debug command), passing args as command-line arguments;<,>,
and>> can be used to redirect input or output in the usual manner. Other­
wise, all characters in args are passed through unchanged. If no arguments
are specified, the argument list from the last run command (if any) is used.
If objfile has been written since the last time the symbolic information was
read in, dbx reads the new information before beginning execution.

rerun [args] [<filename] [>filename] [>>filename]
Identical to run, except in the case where no arguments are specified. In
that case run runs the program with the same arguments as on the last invo­
cation, whereas rerun runs it with no arguments at all.

cont [at source-line-number] [sig sig-number]
Continue execution from where it stopped, or, if the clause at source-line­
number is given, at that line number. The sig-number causes execution to
continue as if that signal had occurred. The source-line-number is evaluated
relative to the current file and must be within the current procedure/function.
Execution cannot be continued if the process has finished (that is, has called
the standard procedure exit). dbx captures control when the process
attempts to exit, thereby letting the user examine the program state.

trace source-line-number [if condition]
trace procedure/function [if condition]
trace [in procedure/function] [if condition]
trace expression at source-line-number [if condition]
trace variable [in procedure/function] [if condition]

Display tracing information when the program is executed. A number is
associated with the trace command, and can be used to tum the tracing off
(see the delete command).

If no argument is specified, each source line is displayed before it is exe­
cuted. Execution is substantially slower during this form of tracing.

The clause in procedure/function restricts tracing information to 1:;>e
displayed only while executing inside the given procedure or function. Note
that the procedure/function traced must be visible in the scope in which the
trace command is issued- see the func command.

The condition is a Boolean expression evaluated before displaying the trac­
ing information; the information is displayed only if condition is true.

~~sun ~ microsystems
Revision: A of May 9, 1988

30 Debugging Tools

Table 4-2

The first argument describes what is to be traced. The effects of different
kinds of arguments are described below:

Tracing and its Effects

source-line-number Display the line immediately before executing it.
Source line numbers in a file other than the
current one must be preceded by the name of the
file in quotes and a colon, for example,
"mumble. p": 17.

procedure/function Every time the procedure or function is called,
display information telling what routine called it,
from what source line it was called, and what
parameters were passed to it. In addition, its
return is noted, and if it is a function, the return
value is also displayed.

expression The value of the expression is displayed whenever
the identified source line is reached.

variable The name and value of the variable are displayed
whenever the value changes. Execution is sub-
stantially slower during this form oftracing.

Tracing is turned off whenever the function in which it was turned on is
exited. For instance, if the program is stopped inside some procedure and
tracing is invoked, the tracing will end when the procedure is exited. To
trace the whole program, tracing must be invoked before a run command is
issued.

When using conditions with trace, stop, and when, remember that variable
names are resolved with respect to the scope current at the time the command is
issued (not the scope of the expression inside the trace, stop, or when com­
mand). For example, if you are currently stopped in function foo () and you
issue the command

[stop in bar if x==S

the variable x refers to the x in function foo (),not in bar (). The func com­
mand can be used to change the scope before issuing a trace, stop, or when
command, or the name can be qualified, for example, bar . x== 5. '

step [n]

J

Execute through the next n source lines and then stop. If n is not specified, it
is taken to be one. Step into procedures and functions.

next [n]
Execute through the next n source lines and then stop, counting functions as
single statements.

Revision: A of May 9, 1988

0

4.9. Accessing Source Files
and Directories

Chapter 4- dbx 31

call procedure (parameters)
Execute the named procedure (orfunction), with the given parameters. If
any breakpoints are encountered, execution halts and the dbx command
level is reentered. A stack trace with the where command shows that the
call originated from the dbx command level.

If the source file in which the routine is defined was compiled with the -g
flag, the number and types of parameters must match. However, if C rou­
tines are called that are not compiled with the -g flag, dbx does no parame­
ter checking. The parameters are simply pushed on the stack as given in the
parameter list. Currently, FORTRAN alternate return points are not passed
properly.

These commands let you access source files and directories without exiting dbx:

edit [filename]
edit procedure/function

Invoke an editor onfilename (or on the current source file if none is
specified). If a procedure or function name is specified, the editor is invoked
on the file that contains it. The default editor invoked is vi. Set the
environment variable EDITOR to the name of a preferred editor to override
the default. For dbxtool, the editor comes up in a new window.

file [filename]
Change the current source file to filename, or print the name of the current
source file if no filename is specified.

func [procedure I function I objfile]
Change the current function, or print the name of the current function if none
is specified. Changing the current function implicitly changes the current
source file variable file to the one that contains the function; it also
changes the current scope used for name resolution. If the global scope is
desired, the argument should be the objfile.

list [source-line-number [,source-line-number]]
list procedure/function

List the lines in the current source file from the first line number through the
second. If no lines are specified, the next 10 lines are listed. If the name of a
procedure or function is given, lines n-5 to n+5 are listed, where n is the
first statement in the procedure or function. If the list command's argu­
ment is a procedure or function, the scope for further listing is changed to
that ll)Utine- use the file command to change it back. In dbxtool, the
region of the file is shown in the source window and extends from the first
line number to the end ofthe window.

use [directory ...]
Set the list of directories to search when looking for source files. If no direc­
tory is given, print the current list of directories. Supplying a list of direc­
tories replaces the current (possibly default) list. The list is searched from
left to right.

Revision: A of May 9, 1988

32 Debugging Tools

4.10. Machine-Level
Commands

cd [dirname]
Change dbx's notion of the current directory to dirname. With no argu­
ment, use the value of the HOME environment variable.

pwd
Print dbx's notion of the current directory.

I string[!]
Search downward in the current file for the regular expression string. The
search begins with the line immediately after the current line and, if neces­
sary, continues until the end of the file. The matching line becomes the
current line. In dbxtool, the matching line is highlighted for one second.

?string[?]
Search upward in the current file for the regular expression string. The
search begins with the line immediately before the current line and, if neces­
sary, continues until the top of the file. The matching line becomes the
current line. In dbxtool, the matching line is highlighted for one second.

When dbx searches for a source file, the value of file and the use directory
search path are used. The value of file is appended to each directory in the
use search path until a matching file is found. This file becomes the current file.

dbx knows the same filenames as were given to the compilers. For instance, if a
file is compiled with the command

(~:% __ c_c __ -_c __ -_g __ ._._;_m_i_p_/_s_c_a_n_.c ________________________________ ~] ~
then dbx knows the filename .. /mip/ scan. c, but not scan. c.

These commands are used to debug code at the machine level:

tracei [address] [if cond]
tracei [variable] [at address] [if cond]

Tum on tracing of individual machine instructions.

stopi [variable] [if cond]
stopi [at address] [if cond]

Set a breakpoint at the address of a machine instruction.

stepi
nexti

Single step as in step or next, but do a single machine instruction rather
than a line of source.

address, address I [mode]
address I [count] [mode]

+I [count] [mode]
Display the contents of memory starting at the first address and continuing
up to the second address, or until count items have been displayed. If a + is
specified, the address following the one displayed most recently is used. ~~
The mode specifies how memory is displayed; if omitted, the last specified ~j

sun
microsystems

Revision: A of May 9, 1988

Mode

i
d
D

0

0
X

X
b
c
s
f
g
E

Register

$d0-$d7
$a0-$a7

$fp
$sp
$pc
$ps

Register

$fp0-$fp7
$fpc
$fps
$£pi
$fpf
$fpg

Chapter4-clbx 33

mode is used. The initial mode is X. The following modes are supported:

Does

display as a machine instruction
display as a halfword in decimal
display as a word in decimal
display as a halfword in octal
display as a word in octal
display as a halfword in hexadecimal
display as a word in hexadecimal
display as a byte in octal
display a byte as a character
display as a string of characters terminated by a null byte
display as a single-precision real number
display as a double-precision real number
display as an extended-precision real number

Symbolic addresses used in this context are specified by preceding a name with
an ampersand&. Registers are denoted by preceding a name with a dollar sign$.
Here is a list of MC680x0 register names:

Name

data registers
address registers
frame pointer (same as $a6)
stack pointer (same as $a 7)
program counter
program status

The following registers apply only to Sun-3s:

Name

Md58881 data registers
MCi58881 control register
Mq58881 status register
MC!58881 instruction address register
MCI58881 flags (unused, idle, busy)
MCi58881 floating-point signal type

For example, to print the contents pf the data and address registers in hex on a
Sun-2 or Sun-3, type & $dO I 16X ~" & $dO, & $a 7 /X. To print the contents of
register dO, type print $dO (oqe cannot specify a range with print).
Addresses may be expressions ma~le up of other addresses and the operators +
(plus),- (minus), *(multiply), andl indirection (unary*). The address may be a
+ alone, which causes the next location to be displayed.

See the SPARC Architecture Reference Manual and the Sun-4 Assembly
Language Reference Manual for information about Sun-4 registers and address­
ing.

Revision: A of May 9, 1988

34 Debugging Tools

Here is the list of Sun386i registers:

Register Name

$ss stack segment register
$ef1ags flags

$cs code segment register
$eip instruction pointer
$eax general register
$ebx general register
$ecx general register
$edx general register
$esp stack pointer
$ebp frame pointer
$esi source index register
$edi destination index register
$ds data segment register
$es ~ alternate data segment register
$fs alternate data segment register
$gs alternate data segment register

On the Sun386i, to print the contents of the data and address registers in hex,
type &$eax/16X or &$eax, & $edi/X. To print the contents of register
eax,type print $eax. ~

You can also access parts of the Sun386i registers. Specifically, the lower halves
(16 bits) of these registers have separate names, as follows:

Register Name

$ax general register
$ex general register
$dx general register
$bx general register
$sp stack pointer
$bp frame pointer
$si source index register
$di destination index register
$ip instruction pointer, lower 16 bits

$flags flags, lower 16 bits

Furthermore, the first four of these 16 bit refisters can be split into two 8-bit
parts, as follows:

Revision: A of May 9, 1988

0

4.11. Miscellaneous
Commands

Chapter 4- dbx 35

Register Name

$al lower (right) half of register $ax
$ah higher (left) half of register $ax
$cl lower (right) half of register $ex
$ch higher (left) half of register $ex
$dl lower (right) half of register $dx
$dh higher (left) half of register $dx
$bl lower (right) half of register $bx
$bh higher (left) half of register $bx

The registers for the Sun386i math coprocessor are the following:

Register Name

$fctrl control register
$£stat status register
$£tag tag register
$fip instruction pointer offset
$fcs code segment selector

$fopoff operand pointer offset
$fopsel operand pointer selector

$st0 - $st7 data registers

sh command-line
Pass the command line to the shell for execution. The SHELL environment
variable determines which shell is used.

alias new-command-name character-sequence
Respond to new-command-name as though it were character-sequence. Spe­
cial characters occurring in character-sequence must be enclosed in double
quotation marks. Alias substitution as in the C shell also occurs. For exam­
ple, ! : 1 refers to the first argument. The command

(alias mem "print (!: 1) ->meml->mern2" J
.._____ _____ _

creates a mem command that takes an argument, evaluates its meml->mem2
field, and prints the result.

help [command]
help

Print a short message explaining command. If no argument is given, display
a synopsis of all dbx commands.

source filename
Read dbx commands from the given filename. This is especially useful
when that file was created by redirecting a status command from an ear­
lier debugging session.

Revision: A of May 9, 1988

36 Debugging Tools

4.12. Debugging Processes
that Fork

quit
Exit dbx.

dbxenv
dbxenv stringlen num
dbxenv case [sensitive I insensitive]
dbxenv speed seconds

Set dbx attributes. The dbxenv command with no argument prints the
attributes and their current values. The keyword string len controls the
maximum number of characters printed for a char * variable in a C pro­
gram (default 512). The keyword case controls whether upper and lower
case letters are considered different. The default is sensitive; insen­
sitive is most useful for debugging FORTRAN programs. The keyword
speed determines the interval between execution of source statements dur­
ing tracing (default 0.5 seconds).

debug [-k] [objfile [corefile I process-id]]
Terminate debugging of the current program (if any), and begin debugging
the one found in objfile with the given corefile or live process, without incur­
ring the overhead ofreinitializing dbx. If no arguments are specified, the
name of the program currently being debugged and its arguments are
printed. The -k flag specifies kernel debugging. You must have both the
objfile and corefile or live process available to perform debugging.

kill
Terminate debugging of the current process and kill the process, but leave
dbx ready to debug another. This can eliminate remains of a window pro­
gram you were debugging without exiting the debugger, or allow the object
file to be removed and remade without incurring a "text file busy" error mes­
sage.

detach
Detach a process from dbx and let it continure to execute. The process is no
longer under the control of dbx.

setenv name string
Set the environment variable name to the value of string. (See csh(l)).

Debugging a process that creates a new process (usingfork(2)) introduces unique
problems. dbx uses ptrace(2) to fetch from and store into the program being
debugged.

After a fork, there are two processes sharing the same text (code) space. The ker­
nel does not allow ptrace () to write into a text space that is being used by
more than one process. This means that the debugged program must not
encounter any breakpoints while the child of the fork is still sharing its text
space. In most cases, the child of the fork spawns a new program almost
immediately, using exec(2). After the exec () , it is safe for the debugged pro­
gram to encounter breakpoints. Therefore, it is recommended that a sleep(2) of
two or three seconds be placed in the debugged code immediately after the fork.
This gives the child of the fork time to execute a new program and get out of the
way.

Revision: A of May 9, 1988

4.13. dbx FPA Support

Chapter4-clbx 37

Release of the floating Point Accelerator (FPA) for Sun-3 systems al&o necessi­
tated some changes to dbx, in order to support debugging of programs that use
the FP A. Here are changes made to dbx in Release 3.1 and later:

1. There is a new fpaasm debugger variable to control disassembly of FP A
instructions. This variable may be set or displayed using the dbxenv com­
mand, for which the syntax is:

(~----db __ x_e_n_v __ f_p_a_a_s_m __ <_o_n_l_o_f_f_> ______________________________ -Jl

If the value of fpaasm is off, all FPA instructions are disassembled as
moves. If the value is on, FPA instructions are disassembled with FPA
assembler mnemonics. Defaults: on a machine with an FPA, fpaasm is ini­
tially set to on; on machines without an FPA, it is initially set to off.

2. The fpabase debugger variable has been added. It designates a 68020
address register for FP A instructions that use base+ short displacement
addressing to address the FPA. The syntax is:

[dbxenv fpabase <a[0-7] !off>

IfFPA disassembly is disabled (if fpaasm is off) its value is ignored.
Otherwise, its value is interpreted as follows:

value in [aO .. a 7]:

J

Long move instructions that use the designated address register in
base+short. displacement mode are assumed to address the FP A, and are
disassembled using FP A assembler mnemonics. Note that this is
independent of the actual run-time value of the register.

value= offO:
All based-mode FPA instructions are disassembled
and single-stepped as move instructions.

The default value of fpabase is off, which designates no FPA base regis­
ter.

3. The FPA registers $fpa0 .. $fpa31 are recognized and can be used in
arithmetic expressions or modified in set commands. This extension only
applies on a machine with an FP A. Note that if an FP A register is used in an
expression or assignment, its type is assumed to be double precision.

4. FPA registers can be displayed in single precision using the /f display for­
mat. Double precision values are displayed using the /F display format.

NOTE Note that FPA support does not apply to the Sun386i.

sun
microsystems

Revision: A of May 9, 1988

38 Debugging Tools

4.14. Example of FP A
Disassembly

Consider the following simple FORTRAN program:

program example
print *,f(l.O,l.O)
end

function f(x,y)
f = atan(x/y)
return
end

Assume that this program has been compiled with the -g option into the file
example. On a Sun-3 with an FPA, we could disassemble the function f as
shown below. Note that the FORTRAN intrinsic ATAN is directly supported by
the FP A instruction set and the FORTRAN compiler.

% dbxa.out
(dbx) stop in f
(1) stop in f
(dbx) run
Running: a.out
stopped in f at line 5 in file "example.f"

5 f = atan(x/y)
(dbx) &$pc/8i
f+Oxl2:
f+Oxl6:
f+Oxlc:
f+Ox20:
f+Ox26:
f+Ox2e:
f+Ox36:
f+Ox40:

movl a6@(0xc),a0
fpmoves aO@,fpaO
movl a6@(0x8),a0
fprdivs aO@,fpaO
fpmoves fpaO,a6@(-0xc)
fpmoves a6@(-0xc),fpal
fpatans fpal,fpal
fpmoves fpal,a6@(-0x8)

FP A disassembly can be disabled by setting the debugger variable fpaasm to
off. This causes dbx to disassemble FPA instructions as long moves to
addresses on the FP A page:

(dbx) dbxenv fpaasm off
(dbx) &f+Oxl2/10i
f+Oxl2: movl
f+Oxl6: movl
f+Oxlc:
f+Ox20:
f+Ox26:
f+Ox2e:
f+Ox36:
f+Ox40:

movl
movl
movl
movl
movl
movl

a6@(0xc),a0
aO@,OxeOOOOcOO:l
a6@(0x8),a0
a0@,0xe0000600:1
Oxe0000eOO:l,a6@(-0xc)
a6@(-0xc),Oxe0000c08:1
#Ox4l,Oxe0000818:1
Oxe0000e08:l,a6@(-0x8)

Revision: A of May 9, 1988

c

4.15. Examples of FPA
Register Use

Chapter 4- dbx 39

When tracing a more complex program, one may occasionally want to step into a
routine that has been compiled with optimization on. In such routines, it is often
the case that the compiled code addresses the FP A page by using base+ short
offset addressing. Such code can be difficult to recognize unless it is known
ahead of time that a particular address register is being used to address the FP A.
This situation can be identified by the presence of an instruction that loads the
address of the FP A page (OxeOOOOOOO) into an address register before doing any
floating-point arithmetic.

For example, here is a disassembly of the beginning of an optimized FORTRAN
routine compiled with the -0 and -ffpa options:

(dbx) &ddot_/7i
ddot : link
ddot +Ox4: moveml
ddot +Ox8: lea
ddot +Oxe: movl
ddot +Oxi4: movl
ddot +Oxla: movl
ddot +Ox20: movl

a6,#-0x2a0
#<d2,d3,d4,d5,d6,d7,a2,a3,a4,a5>,sp@
e0000000:l,a2
a2@(0xe20),a6@(-0x278)
a2@(0xe24),a6@(-0x274)
a2@(0xe28),a6@(-0x270)
a2@(0xe2c),a6@(-0x26c)

dbx does not know which register (if any) is being used to address the FPA in a
given sequence of machine code. However, you may set the dbxenv variable
fpabase to designate an MC68020 address register as an FPA base register. In
this example, we note that the compiler has loaded the address of the FP A page
into register a2, and so we designate a2 as the FPA base register to obtain the
following:

(dbx) dbxenv fpabase a2
(dbx) &ddot_/7i
ddot : link a6,#-0x2a0
ddot +Ox4: moveml #<d2,d3,d4,d5,d6,d7,a2,a3,a4,a5>,sp@
ddot +Ox8: lea e0000000:l,a2
ddot +Oxe: fpmoved@2 fpa4,a6@(-0x278)
ddot +Oxla: fpmoved@2 fpa5,a6@(-0x270)
ddot +Ox26: fpmoved@2 204ce:l,fpa5
ddot +Ox36: fpmoved@2 204ce:l,fpa4

FP A data registers can be displayed using a syntax similar to that used for the
MC68881 co-processor registers. Note that unlike the MC68881 registers, FP A
registers may contain either single-precision (32-bit) or double-precision (64-bit)
values; MC68881 registers always contain an extended-precision (96-bit) value.

For example, if fpaO contains the single-precision value 2.718282, we may
display it as follows:

Revision: A of May 9, 1988

40 Debugging Tools

(dbx) &$fpa0/f
fpaO Ox402df855 +2.718282e+OO

Note that the value is displayed in hexadecimal as well as in floating point nota­
tion.

A double-precision value may be displayed using the IF format. For example, if
fpaO contains the double-precision value 2.718281828, we may display it as
follows:

(dbx) &$fpa0/F
fpaO Ox4005bf0a Ox8b04919b +2.7182818Z800000e+OO

Note that it is important to use the correct display format; attempting to display a
double-precision value in single precision (and vice versa) will usually produce
meaningless results.

FPA registers can also be used in set commands and in arithmetic expressions.
Since dbx cannot tell whether the value in an FP A register is single or double
precision, dbx provides two sets of names to refer to FP A registers. The names
{ $fpa0 .. $fpa31} always cause the contents of the register to be interpreted
as a double precision value; the names { $ fpa 0 s .. $ fpa31 s} cause interpre­
tation as a single precision value. Thus, the commands

[

(dbx) set $fpa0s ~ 1.0 1
_ (dbx) set $fpa0 = 1.0 _

cause different bit patterns to be stored in fpaO.

~~sun ~ microsystems
Revision: A of May 9, 1988

0

5
adb Tutorial

adb Tutorial ... ;... 43

5.1. A Quick SuiVey .. 43

Starting adb .. 43

Current Address ... 44

Formats... 44

General Command Meanings .. 45

c 5 .2. Debugging C Programs .. 46

Debugging A Core Image .. 46

Setting Breakpoints ... 49

Advanced Breakpoint Usage .. 52

Other Breakpoint Facilities ... 53

5.3. File Maps .. 55

407 Executable Files ... 55

410 Executable Files... 56

413 Executable Files ... 57

Variables .. 57

5.4. Advanced Usage... 58

Formatted Dump ... 58

Accounting File Dump .. 60

Converting Values .. 60

5.5. Patching... 61

5.6. Anomalies.. 62

5
adb Tutorial

5.1. A Quick Survey Available on most UNIX systems, adb is a debugger that permits you to examine
core files resulting from aborted programs, display output in a variety of for­
mats, patch files, and run programs with embedded breakpoints. This document
provides examples of the more useful features of a db. The reader is expected to
be familiar with basic Sun OS commands, and with the C language.

Starting adb

NOTE This chapter describes adb use on Sun-2, -3, and Sun-4s only. Chapter 6
describes adb use on the Sun386i.

Start adb with a shell command of the form

(% adb [objectfile] [core.file]] l
where objectfile is an executable SunOS file and corefile is a core dump file. If
the object file is named a. out, then the invocation is

If you place object files into a named program, then the invocation is

(% adb pro gram l
The filename minus (-) means ignore the argument, as in:

(% adb - core l
This is for examining the core file without reference to an object file. The a db
program provides requests for examining locations in either file: ? examines the
contents of objectfile, while I examines the contents of corefile. The general
form of these requests is:

(address ? format

or

l

43 Revision: A of May 9, 1988

44 Debugging Tools

Current Address

Formats

[address I format

a db maintains a current address, called dot. When an address is entered, the
current address is set to that location, so that

)

[0126?i)

sets dot to octa1126 and displays the instruction at that address. The request

[.,10/d)

displays 10 decimal numbers starting at dot. Dot ends up referring to the address
of the last item displayed. When used with the ? or I requests, the current
address can be advanced by typing newline; it can be decremented by typing ~.

Addresses are represented by expressions. Expressions are made up of decimal
integers, octal integers, hexadecimal integers, and symbols from the program
under test. These may be combined with the operators+ (plus), - (minus), *
(multiply), %(integer divide), & (bitwise and), 1 (bitwise inclusive or),# (round
up to the next multiple), and - (not). All arithmetic within adb is 32 bits. When
typing a symbolic address for a C program, you can type name. On a Sun-2,
Sun-3, or Sun-4 you could alternatively type L _name; adb recognizes both
forms on these systems, only the first on Sun386i.

To display data, specify a collection ofletters and characters to describe the for­
mat of the display. Formats are remembered, in the sense that typing a request
without a format displays the new output in the previous format. Here are the
most commonly.used format letters:

sun
microsystems

Revision: A of May 9, 1988

./

Table 5-1

General Command Meanings

Chapter 5- a db Tutorial 45

Some adb Format Letters

Letter Description
_,

b one byte in octal
B one byte in hex
c one byte as a character
0 one word in octal
d one word in decimal
f one long word in single-precision floating point
i MC68000 instruction on Sun-2 and Sun-3,

SPARC instuction on Sun-4, and 80386 instruc-
tion on Sun386i.

s a null terminated character string
a the value of dot
u one word as an unsigned integer
n print a newline
r print a blank space
A backup dot (not really a format)
+ advance dot (not really a format)

Format letters are also available for long values: for example, D for long
decimal, and F for double-precision floating point. Since integers are long-words
on the Sun-2 and Sun-3, capital letters are used more often then not. For other
formats see Chapter 7 .

The general form of a command is:

(
[address [,count]] command [modifier] J

'----· _____ _____..

which sets dot to address and executes command count times. The following
table illustrates some general adb command meanings:

Table 5-2 Some adb Commands

Some adb Commands
Command Meaning

? Print contents from a.out file
I Print contents from core file
= Print value of "dot"
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

Since a db catches signals, a user cannot use a quit signal to exit from a db. The
request $q or $Q (or I CTRL-D)) must be used to exit from adb.

Revision: A of May 9, 1988

46 Debugging Tools

5.2. Debugging C
Programs

Debugging A Core Image

If you use adb because you are accustomed to it, you will want to cornpile pro­
grams with the -go or -g option, to produce old-style symbol tables. This will
make debugging proceed according to expectations. If you don't compile pro­
grams with -go (or -g), and the -0 option is set, the object code will be optim­
ized, and may not so readily be understood as the same thing that was written in
the source file.

Consider the C program below, which illustrates a common error made by C pro­
grammers. The object of the program is to change the lower case t to an upper
case Tin the string pointed to by ch, and then write the character string to the
file indicated by the first argument.

#include <stdio.h>

char *cp "this is a sentence.";

main(argc, argv)
int argc;
char **argv;
{

FILE *fp;
char c;

if (argc == 1) {
fprintf(stderr, "usage: %s file\n", argv[O]);
exit(l);

if ((fp = fopen(argv[l], "w"))
perror(argv[l]);
exit(2);

cp = 'T';
while (c = *cp++)

putc(c, fp);
fclose(fp);
exit(O);

NULL) {

The bug is that the character T is stored in the pointer cp instead of in the string
pointed to by cp. Compile the program as follows:

% cc -go examplel.c
% a.out junk
Segmentation fault (core dumped)

Executing the program produces a core dump caused by an illegal memory
reference. Now invoke a db by typing:

%adb
core file = core -- program "a.out"
memory fault

Revision: A of May 9, 1988

r\
I ~
\.._ .. /

(~ --

Chapter 5- a db Tutorial 47

Commonly the first debugging request given is

[~~in[B074](2,fffd7c,fffdBB) + 92 ~ l
which produces a C backtrace through the subroutines called. The output from
adb tells us that only one function- main- was called, and the arguments
argc and argvhavethehexadecimal values 2 and fffd7c respectively. Both
these values look reasonable - 2 indicates two arguments, and f f f d 7 c equals
the stack address of the parameter vector. The next request:

$C
_main[8074] (2,fffd7c,fffd88) + 92

fp: 10468
c: 104

generates a C backtrace plus an interpretation of all the local variables in each
function, and their values in hexadecimal. The value of the variable c looks
incorrect since it is outside the ASCII range. The request

$r
dO 54 frame+24
dl 77 frame+47
d2 2 manl
d3 0 exp
d4 0 exp
dS 0 exp
d6 0 exp
d7 0 exp
aO 54 frame+24
al 0 exp
a2 0 exp
a3 fffd7c
a4 fffd88
aS 0 exp
a6 fffd64
sp fffdSc
pc 8106 main+92
ps 0 exp

main+92: ???

displays the registers, including the program counter, and an interpretation of the
instruction at that location. The request

$e
environ: fffd88

_sys_nerr: 48
__ ctype_: 202020

exit nhandlers: -- -
exit tnames: -- -

0
9b06

Revision: A of May 9, 1988

48 Debugging Tools

lastbuf: 10684
root: 0
lbound: 0
ubound: 0

curbrk: 12dd4
__ d_pot: 8000
__ d_big_pot: 8000
__ d_r_pot: 8000
__ d_r_big_pot: 8000
errno: 0
end: 0

displays the values of all external variables.

A map exists for each file handled by a db. The map for a. out files is refer­
enced by? whereas the map for core files is referenced by/. Furthermore, a
good rule of thumb is to use ? for instructions and I for data when looking at
programs. To display information about maps, type:

$m
bl = 2000 el bOOO fl 800
b2 = 10000 e2 11000 f2 3800
I map 'core'
b1 10000 e1 13000 fl 1800
b2 = fffOOO e2 1000000 f2 4800

This produces a report of the contents of the maps. More about these maps later.

In our example, we might want to see the contents of the string pointed to by cp.
We would want to see the string pointed to by cp in the core file:

55·
[

*cp/s

~a~a address not found l
Because the pointer was set to ' T ' (hex 54) and then incremented, it now equals
hex 55. On the Sun-2 and Sun-3, there are no symbols below address 2000 (8000
on a Sun-2), so the data address 55 cannot be found. We could also display
information about the arguments to a function. To get the decimal value of the
argc argument to main, which is a long integer, type:

[

main.arqc/D
.fffd6c: 2

To display the hex values of the three consecutive cells pointed to by argv in
the function main, type:

]

(\
~ ..)

()

[
-in.arq-.,3/X] r~

._f_f_f_d_7_c_: _____ f_f_f_d_c_o _____ f_f_f_d_c_6 ______ o ____ _,. _ /

Revision: A of May 9, 1988

Setting Breakpoints

#include <stdio.h>

#define MAXLIN 80
#define YES 1
#define NO 0
#define TABSP 8

int tabs[MAXLIN];

main()
{

int *ptab, col, c;

Chapter 5 - adb Tutorial 49

Note that these values are the addresses of the arguments to main. Therefore,
typing these hex values should yield the command-line arguments:

[~ffdcO/s .fffdcO:

The request:

[.=

a.out

fffdcO

l
l

displays the current address (not its contents) in hex, which has been set to the
address of the first argument. The current address, dot, is used by a db to
remember its current location. It allows the user to reference locations relative to
the current address. For example

(~~-f-f_d_c_6_= _________ z_z_z ______________________________________)

prints the first command-line argument.

Set breakpoints in a program with the : b instruction, which has this form:

(address : b [request]

Consider the C program below, which changes tabs into blanks, and is adapted
from Software Tools by Kernighan and Plauger, pp. 18-27.

)

ptab = tabs;
set tab (ptab); I* set initial tab stops */
col = 1;
while ((c = getchar()) != EOF)

switch (c) {
case '\t':

while (tabpos(col) !=YES) {
putchar(' ');
col++;

putchar (' ') ;

Revision: A of May 9, 1988

50 Debugging Tools

col++;
break;

case '\n':
putchar('\n');
col = 1;
break;

default:
putchar(c);
col++;

exit(O);

tabpos(col) /* return YES if col is a tab stop, NO if not */
int col;

if (col > MAXLIN)
return(YES);

else
return(tabs[col]);

settab(tabp)
int *tabp;

/* set initial tab stops every TABSP spaces */

int i;

for (i
(i

0; i <= MAXLIN; i++)
% TABSP) ? (tabs[i] =NO) (tabs [i] YES);

Run the program under the control of adb, and then set four breakpoints as fol­
lows:

[% adb a.out -
settab:b
tabpos:b

This sets breakpoints at the start of the two functions. Sun compilers generate
statement labels only with the -g option, which is incompatible with a db.
Therefore it is impossible to plant breakpoints at locations other than function
entry points using a db. To display the location of breakpoints, type:

$b
breakpoints
count bkpt
1 ...:....tabpos
1 'settab

command

]

Revision: A of May 9, 1988

/~
r I

\._j

{~
'~ .. /

c

Chapter 5 - adb Tutorial 51

A breakpoint is bypassed count-1 times before causing a stop. The command
field indicates the adb requests to be executed each time the breakpoint is
encountered. In this example no command fields are present.

Display the instructions at the beginning of function set tab () in order to
observe that the breakpoint is set after the link assembly instruction:

settab,S?ia
settab:
set tab:
settab:
settab+a:
settab+e:
settab+12:
settab+la:

link
addl
moveml
clrl
cmpl

a6,f0
f-4,a7
f<>,sp@
a6@ (-4)
f50,a6@(-4)

This request displays five instructions starting at set tab with the address of
each location displayed. Another variation is

settab,S?i
settab:
settab: link

addl
moveml
clrl
cmpl

a6,f0
f-4,a7
f<>,sp@
a6@ (-4)
f50,a6@(-4)

which displays the instructions with only the starting address. Note that we
accessed the addresses from a. out with-the? command. In general, when ask­
ing for a display of multiple items, a db advances the current address the number
of bytes necessary to satisfy the request; in the above example, five instructions
were displayed and the current address was advanced 26 bytes.

To run the program, type:

:r

To delete a breakpoint, for instance the entry to the function tabpos (),type:

(~~-a-b_p_o_s_:_d--~)
Once the program has stopped, in this case at the breakpoint for set tab (),
a db requests can be used to display the contents of memory. To display a stack
trace, for example, type:

$c
_settab[8250] (10658) + 4
_main[8074] (l,fffd84,fffd8c) + la

Revision: A of May 9, 1988

52 Debugging Tools

Advanced Breakpoint Usage

And to display three lines of eight locations each from the array calleq tabs,
type:

tabs,3/8X
tabs:
tabs: 0

0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

At this time (at location set tab) the tabs array has not yet been initialized. If
you just deleted the breakpoint at tabpos, put it back by typing:

(tabpos:b J
'----_____ _____.

To continue execution of the program from the breakpoint type:

[.___:c x ___ ____..]

You will need to give the a. out program a line of data, as in the figure above.
Once you do, it will encounter a breakpoint at tabpos+4 and stop again.
Examine the tabs array once more: now it is initialized, and has a one set in
every eighth location:

tabs,3/8X
tabs:
tabs: 1

1
1

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

You will have to type : c eight more times in order to get your line of output,
since there is a breakpoint at every input character. Type I CTRL-D I to terminate
the a. out process; you are back in command-level of adb.

The quit and interrupt signals act on a db itself, rather than on the program being
debugged. If such a signal occurs, then the program being debugged is stopped
and control is returned to a db. The signal is saved by a db and passed on to the
test program if you type:

(:c 0)
Now let's reset the breakpoint at set tab () and display the instructions located
there when we reach the breakpoint. This is accomplished by:

Revision: A of May 9, 1988

0

c
WARNING

Other Breakpoint Facilities

settab+4:b settab,S?ia
:r
set tab:
settab:
settab+4:
settab+a:
settab+e:
settab+12:
settab+1a:

link
addl
moveml
clrl
cmpl

breakpoint settab+4:

Chapter 5 - a db Tutorial 53

a6,f0
#-4,a7
f<>,sp@
a6@ (-4)
f50,a6@(-4)

addl f-4,a7

It is possible to stop every two breakpoints, if you type , 2 before the breakpoint
command. Variables can also be displayed at the breakpoint, as illustrated
below:

tabpos+4,2:b main.col?X
:c

X

fffd64:
fffd64:
breakpoint

1
2
_tabpos+4: addl f0,a7

This shows that the local variable col changes from 1 to 2 before the occurrence
of the breakpoint.

Setting a breakpoint causes the value of dot to be changed. However, execut­
ing the program under a db does not change the value of dot.

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:

settab+4:b main.ptab/X; main.c/X
:r
fffd68:
fffd60:
breakpoint

10658
0

settab+4: addl f-4,a7

The semicolon is used to separate multiple adb requests on a single line.

Arguments and change of standard input and output are passed to a program as
follows. This request kills any existing program under test and starts a. out
afresh:

(: r argl arg2 ... <infile >out.file J
"--· -----~

The program being debugged can be single stepped as follows. If necessary, this
request starts up the program being debugged and stops after executing the first
instruction:

Revision: A of May 9, 1988

54 Debugging Tools

:s

You can enter a program at a specific address by typing:

[address:r

The count field can be used to skip the first n breakpoints, as follows:

[,n:r
This request may also be used for skipping the first n breakpoints when continu­
ing a program:

A program can be continued at an address different from the breakpoint by:

[address:c

The program being debugged runs as a separate process, and can be killed by:

:k

)

)

)

)

Revision: A of May 9, 1988

Chapter 5 - adb Tutorial 55

5.3. File Maps SunOS supports several executable file formats. Executable type 407 is gen­
erated by the cc (or ld) flag -N. Executable type 410 is generated by the flag
-n. An executable type 413 is generated by the flag -z; the default is type 413.
adb interprets these different file fonnats, and provides access to the different
segments through a set ofmaps. To display the maps, type $mfrom inside adb.

407 Executable Files In 407-fonnat files, instructions and data are intermixed. This makes it impossi­
ble for adb to differentiate data from instructions, but adb will display in either
fonnat. Furthermore, some displayed symbolic addresses look incorrect (for
example, data addresses as offsets from routines). Here is a picture of 407-
fonnat files:

Figure 5-1 Executable File Type 407

a. out! ._h_d_.rl.___ ___ te_x_t_+_da_t_a ___ __.

core l.____h_dr_----~... ____ te_x_t_+_d_a_ta ___ ___J.[. :: .. ::: ... 1'-___ s_t_ac_k ___~
Here are the maps and variables for 407-fonnat files:

$m
? map 'a.out'
b1 = 2000
b2 = 8000
I map 'core'
b1 = 8000
b2 = fffOOO
$v
variables
b = 0100000
d = 03070
e = 0407
m = 0407
s = 010000
t = 07450

e1
e2

8f28
9560

e1 = b800
e2 = 1000000

f1
f2

f1
f2

20
20

1800
5000

Revision: A of May 9, 1988

56 Debugging Tools

410 Executable Files In 410-format files (pure executable), instructions are separate from data. The ?
command accesses the data part of the a. out file, telling adb to use the second
part of the map in that file. Accessing data in the core file shows the data after
it was modified by the execution of the program. Notice also that the data seg­
ment may have grown during program execution. Here is a picture of 410-format
files:

Figure 5-2 Executable File Type 410

a.outl Lh_d_riL_ ______ re_x_t ______ ~----------d-a-ta ________ ~

core
L__h_d_r _..J...._ _____ d_at_a ____ ___J,L:::::.·:J~;... ___ s_ta_c_k ___ _J

Here are the maps and variables for410-format files:

$m
? map
b1 = 2000
b2 = 10000
I map
b1 = 10000
b2 = fffOOO
$v
variables
b = 0200000
d = 03070
e = 0410
m = 0410
s = 010000
t = 07450

sun
microsystems

'a.out'
e1 8f28
e2 10638

'core'
e1 12800
e2 1000000

______ j __ _

f1
f2

f1
f2

20
f48

1800
4000

.Revision: A of May 9, 1988

f"..,
:)
\..._ ..

r
_ ..

Chapter 5 - adb Tutorial 57

413 Executable Files In 413-fonnat files (pure demand-paged executable) the instructions and data are
also separate. However, in this case, since data is contained in separate pages,
the base of the data segment is also relative to address zero. In this case, since
the addresses overlap, it is necessary to use the ? * operator to access the data
space of the a. out file. In both 410 and 413-fonnat files the corresponding
core file does not contain the program text. Here is a picture of 413-fonnat
files:

Figure 5-3 Executable File Type 413

a.out ILh-d~rl ________ re_x_t ______ ~---------d-a-ta--------~
core ~...-__ h_d_r --..1-.--------d-a-ta ________ ___..[: ·: :. ::::: :1 ______ s_t_ac_k ______ _.

The only difference between a 410 and a 413-fonnat file is that 413-fonnat seg­
ments are rounded up to page boundaries. Here are the maps and variables for
413-fonnat files:

$m
? map 'abort'
b1 = 2000 e1 9000 f1 800
b2 = 10000 e2 10800 f2 1800
I map 'core'
b1 = 10000 e1 12800 f1 1800
b2 = fffOOO e2 1000000 f2 4000
$v
variables
b = 0200000
d = 04000
e = 0413
m = 0413
s = 010000
t = 010000

NOTE In the example above, bl = 2000 would be bl = 8000/ora Sun-2.

Variables The b, e, and f fields are used to map addresses into file addresses. The fl field
is the length of the header at the beginning of the file- 020 bytes for an a. out
file and 02000 bytes for a core file. The f2 field is the displacement from the
beginning of the file to the data. For a 407-fonnat file with mixed text and data,
this is the same as the length of the header, for 410-fonnat and 413-fonnat files,
this is the length of the header plus the size of the text portion. The b and e fields
are the starting and ending locations for a segment. Given the address A, the
location in the file (either a. out or core) is calculated as:

Revision: A of May 9, 1988

58 Debugging Tools

5.4. Advanced Usage

Formatted Dump

bl<A<el file address = (A-bl) +fl
b2<A<e2 file address = (A-b2) +f2

You can access locations by using the adb-defined variables. The $v request
displays the variables initialized by adb:

b base address of data segment,

d length of the data segment,

s length of the stack,

t length of the text,

m execution type (407, 410, 413).

Those variables not presented are zero. Use can be made of these variables by
expressions such as

in the address field. Similarly, the value of a variable can be changed by an
assignment request such as

(02000>b

which sets b to octal 2000. These variables are useful to know if the file under
examination is an executable or core image file.

)

)

The adb program reads the header of the core image file to find the values for
these variables. Ifthe second file specified does not seem to be a core file, or if it
is missing, then the header of the executable file is used instead.

One of the uses of a db is to examine object files without symbol tables since
dbx cannot handle this kind of task.

With adb, you can combine fonnatting requests to provide elaborate displays.
Several examples are given below.

The following a db command line displays four octal words followed by their
ASCII interpretation from the data space of the core file:

(<b,-1/4o4~8Cn J
..._____, __________ _____..

Broken down, the various requests mean:

<b The base address of the data segment

<b, -1 Print from the base address to the end-of-file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition (\
(like end-of-file) is detected. .J

Revision: A of May 9, 1988

c

Chapter 5 - adb Tutorial 59

The fonnat 4o4 ~ 8Cn is broken down as follows:

4o Print 4 octal locations.

4 ~ Back up the current address 4locations (to the original start of the
field).

8C Print 8 consecutive characters using an escape convention; each char­
acter in the range 0 to 037 is displayed as followed by the correspond­
ing character in the range 0140 to 0177. An @ is displayed as @@.

n Print a newline.

The following request could have been used instead to allow the displaying to
stop at the end of the data segment. (The request <d provides the data segment
size in bytes.)

(<b, <d/ 404 ~ 8Cn

Because adb can read in scripts, you can use fonnatting requests to produce
image dump scripts. Invoke adb as follows:

(% adb a.out core< dump

This reads in a script file, dump, containing fonnatting requests. Here is an
example of such a script:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
0$s
=3n"Data Segment"
<b,-1/Sona

The request 120$w sets the width of the outputto 120 characters (nonnally, the
width is 80 characters). adb attempts to display addresses as:

(symbol + offset

The request 4 0 9 5 $ s increases the maximum pennissible offset to the nearest
symbolic address from the default 255 to 4095. The request= can be used to
display literal strings. Thus, headings are provided in this dump program with
requests of the fonn:

)

)

)

Revision: A of May 9, 1988

60 Debugging Tools

Accounting File Dump

Converting Values

[=3n"C Stack Backtrace" J
This spaces three lines and displays the literal string. The request $v displays all
non-zero a db variables. The request 0 $ s sets the maximum offset for symbol
matches to zero, thus suppressing the display of symbolic labels in favor of octal
values. Note that this is only done for displaying the data segment. The request

(
<b,-1/Bona J

......__. _____ ____..

displays a dump from the base of the data segment to the end-of-file with an octal
address field and 8 octal numbers per line.

As another illustration, consider a set of requests to dump the contents
I etc I u tmp or Ius r I adml wtmp, both of which are composed of 8-character
terminal names, 8-character login names, 16-character host names, and a 4-byte
integer representing the login time.

% adb /etc/utmp -
O,-l?cccccccc8tcccccccc8tccccccccccccccccl6tYn

The c format is repeated 8 times, 8 times, and 16 times. The 8t means go to O ..
align on an 8-character-position boundary, and 16t means to align on a 16- /
character-position boundary. Y causes the 4-byte integer representing the login
time to print in ctime(3) format.

You can use adb to convert values from one representation to another. For
example, to print the hexadecimal number f f in octal, decimal, and hexade­
cimal, type:

[

££ = odz
. 072 58 Ba l
The default input radix of adb is hexadecimal. Formats are remembered, so that
typing subsequent numbers will display them in the same format. Character
values may be converted as well:

a

This technique may also be used to evaluate expressions, but be warned that all
binary operators have the same precedence, which is lower than for unary opera­
tors.

J

Revision: A of May 9, 1988

~--__., _______ 1.__]~------"'-_;;:;->!1!! llnb•---~--~liiii"".-;<MhMJ_I ___ izt---~--dll-::a:IL!ZIRti'!&SlL:st 1-~i'll•--------------

5.5. Patching

Chapter 5 -a db Tutorial 61

Patching files with a db is accomplished with the write requests w or w. This is
often used in conjunction with the locate requests 1 or L. In general, the syntax
for these requests is as follows:

(?1 value l
The 1 matches on two bytes, whereas L matches four bytes. The w request writes
two bytes, whereas w writes four bytes. The value field in either locate or write
requests is an expression. Either decimal and octal numbers, or character strings,
are permitted.

In order to modify a file, a db must be invoked as follows:

(% adb -w file] file2

When invoked with this option,filel andfile2 are created if necessary, and
opened for both reading and writing.

Note: The $W command has the same effect during an adb session as the-w
option used on the command line.

For example, consider the following C program, zen. c: We will change the
word "Thys" to "This" in the executable file.

char str1[] = "Thys is a character string";
int one = 1;
int number 456;
long lnum = 1234;
float fpt = 1.25;
char str2[] ="This is the second character string";

main()
{

one 2;

Use the following requests:

[% adb -uen-
<b?l 'Th'
?W 'This'

The request <b? 1 starts at the start of the data segment and stops at the first
match of"Th", having set dot to the address of the location found. Note the use
of? to write to the a. out file. The form?* would be used for a410-format
file.

More frequently the request is typed as:

(? 1 'Th'; ?s

l

l

l
sun
microsystems

Revision: A of May 9, 1988

62 Debugging Tools

5.6. Anomalies

which locates the first occurrence of"Th", and display the entire string. Execu­
tion of this adb request sets dot to the address of those characters in the string.

NOTE Be careful when using the ? 1 or ? L cammands of gaps in the address range that
you want to search.

As another example of the utility of the patching facility, consider a C program
that has an internal logic flag. The flag could be set using a db, before running
the program. For example:

% adb a.out -
:s argl arg2
flag/w 1
:c

The : s request is normally used to single step through a process or start a pro­
cess in single step mode. In this case it starts a. out as a subprocess with argu­
ments argl and arg2. If there is a subprocess running, adb writes to it rather
than to the file so the w request caused flag to be changed in the memory of the
subprocess.

Below is a list of some strange things that users should be aware of.

0

1) When displaying addresses, a db uses either text or data symbols from the ~
(\

a . out file. This sometimes causes unexpected symbol names to be _")
displayed with data (for example, savr5+022). This does not happen if?
is used for text (instructions) and I for data.

2) The a db debugger cannot handle C register variables in the most recently
activated function.

Revision: A of May 9, 1988

6
Sun386i adb Tutorial

Sun386i adb Tutorial ... 65

6.1. A Quick Survey.. 65

Starting adb .. 65

Current Address ... 66

Fonnats ... 66

General Request Meanings .. 67

6.2. Debugging C Programs on Sun386i ... 68

Debugging A Core Image .. 68

Setting Breakpoints ... 71

Advanced Breakpoint Usage .. 74

Other Breakpoint Facilities ... 75

6.3. File Maps .. 77

407 Executable Files ... 77

410 Executable Files ... 78

413 Executable Files .. 79

Variables .. 80

6.4. Advanced Usage... 80

Fonnatted Dump ... 80

Accounting File Dump .. 82

Converting Values .. 82

6.5. Patching ... 83

6.6. Anomalies .. 84

0

6.1. A Quick Survey

Starting adb

c

r-' \ __

6
Sun386i adb Tutorial

Available on most UNIX systems, adb is a debugger that permits you to examine
core files resulting from aborted programs, display output in a variety of for­
mats, patch files, and run programs with embedded breakpoints. This document
provides examples of the more useful features of a db. The reader is expected to
be familiar with basic SunOS commands, and with the C language.

Start adb with a shell command like

[% adb objectftle coreftle)
where objectfile is an executable SunOS file and corefile is a core dump file. If
you leave object files in a. out, then the invocation is simple:

)
If you place object files into a named program, then the invocation is a bit
harder:

[% adb program)
The filename minus(-) means ignore the argument, as in:

[% adb- core

This is for examining the core file without reference to an object file. The a db
program provides requests for examining locations in either file: ? examines the
contents of objectfile, while I examines the contents of corefile. The general
form of these requests is:

[address ? format

or

[address I format

]

)

)

()~!,!! 65 Revision: A of May 9, 1988

66 Debugging Tools

Current Address

Formats

adb maintains a current address, called dot. When an address is entered, the
current address is set to that location, so that

[0126?i)

sets dot to octal126 and displays the instruction at that address. The request

[.,10/d)

displays 10 decimal numbers starting at dot. Dot ends up referring to the address
of the last item displayed. When used with the ? or I requests, the current
address can be advanced by typing newline; it can be decremented by typing -.

Addresses are represented by expressions. Expressions are made up of decimal
integers, octal integers, hexadecimal integers, and symbols from the program
under test. These may be combined with the operators+ (plus), - (minus), *
(multiply),% (integer divide), & (bitwise and), 1 (bitwise inclusive or),# (round
up to the next multiple), and - (not). All arithmetic within a db is 32 bits. When
typing a symbolic address for a C program, you can type name. On a Sun-2,
Sun-3, or Sun-4 you could alternatively type_ name; a db recognizes both forms
on these systems, only the first on Sun386i.

To display data, specify a collection ofletters and characters to describe the for­
mat of the display. Formats are remembered, in the sense that typing a request
without a format displays the new output in the previous format. Here are the
most commonly used format letters:

Revision: A of May 9, 1988

c

Table 6-1

General Request Meanings

Chapter 6 - Sun386i a db Tutorial 67

Some adb Format Letters

Letter Description
b one byte in octal
B one byte in hex
c one byte as a character
0 one word in octal
d one word in decimal
f . one long word in single-precision floating point
i MC68000 instruction on Sun-2 and Sun-3,

SPARC instuction on Sun-4, and Sun386i
instruction on Sun386i.

s a null terminated character string
a the value of dot
u one word as an unsigned integer
n print a newline
r print a blank space
A backup dot (not really a format)
+ advance dot (not really a format)

Format letters are also available for long values: for example, D for long
decimal, and F for double-precision floating point. Since integers are long-words
on the Sun, capital letters are used more often then not. For other formats see the
Chapter 5.

The general form of a request is:

[address, count command modifier

which sets dot to address and executes command count times. The following
table illustrates some general adb command meanings:

l

Table 6-2 Some adb Commands

Some adb Commands
Command Meaning

? Print contents from a.out file
I Print contents from core file
= Print value of expression
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

Since adb catches signals, a user cannot use a quit signal to exit from a db. The
request $q or $Q (or I CTRL-D I) must be used to exit from adb.

sun
microsystems

Revision: A of May 9, 1988

68 Debugging Tools

6.2. Debugging C
Programs on Sun386i

Debugging A Core Image

If you use a db because you are accustomed to it, you will want to compile pro­
grams with the -go option, to produce old-style symbol tables. This will make
debugging proceed according to expectations.

Consider the C program below, which illustrates a common error made by C pro­
grammers. The object of the program is to change the lower case t to an upper
case Tin the string pointed to by ch, and then write the character string to the
file indicated by the first argument.

*include <stdio.h>

char *cp "this i~ a sentence.";

main(argc, argv)
int argc;
char **argv;
{

FILE *fp;
char c;

if (argc == 1) {
fprintf(stderr, "usage: %s file\n", argv[O]);
exit(l);

if ((fp = fopen(argv[l], "w"))
perror(argv[l]);
exit(2);

cp = 'T';
while (c = *cp++)

putc(c, fp);
fclose(fp);
exit(O);

NULL) {

The bug is that the character T is stored in the pointer cp instead of in the string
pointed to by cp. Compile the program as follows:

% cc -go examplel.c
% a.out junk
Segmentation fault (core dumped)

Executing the program produces a core dump because of an out-of-bounds
memory reference. Now invoke adb by typing:

% adb
core file = core -- program "a.out"
memory fault

Commonly the first debugging request given is

Revision: A of May 9, 1988

0

$r
gs OxfbffOOOO
fs OxfbffOOOO

("' es Oxfcff0083
ds Ox83 ,.....,._/
edi Ox30890
esi Ox28680
ebp Oxfbfffec8
esp Oxfcff97e0
ebx Ox2a0c0
edx Oxfbfffe6a
main+Ox10f: movb

Chapter 6 - Sun386i a db Tutorial 69

[~!-~_i_n_[_8_o_7_4_J_<_2_,_f_f_f_d_7_c_,_f_f_f_d_8_8_> __ + __ 92------------------------~l
which produces a C backtrace through the subroutines called. The output from
a db tells us that only one function- main- was called, and the arguments
argc and argv have the hexadecimal values 2 and fffd7c respectively. Both
these values look reasonable - 2 indicates two arguments, and f f f d 7 c equals
the stack address of the parameter vector. The next request:

$C
main [8074] (2, fffd7c, fffd88) + 92

fp: 10468
c: 104

generates a C backtrace plus an interpretation of all the local variables in each
function, and their values in hexadecimal. The value of the variable c looks
incorrect since it is outside the ASCII range. The request

ecx Ox28680
eax Ox54
retaddr Oxfc06e38e
trapno Oxe
err Ox4
eip Ox120b main+Ox10f
cs Ox7b
efl Ox10206 end+Ox7202
uesp OxfbfffecO
ss Ox83

(%eax),%al

displays the registers, including the program counter, and an interpretation of the
instruction at that location. The request

$e
cp: Ox 55
exit nhandlers: OxO
exit tnames: Ox35dc

ctype: Ox20202000
smbuf: Ox65c0
iob: OxO
mallinfo: OxO

root: OxO
lbound: OxO
ubound: OxO

curbrk: Ox9004
errno: OxO
environ: Oxfbfffef4
end: OxO

~~ S ll fl Revision: A of May 9, 1988
~ microsystems

70 Debugging Tools

displays the values of all external variables.

A map exists for each file handled by adb. The map for a. out files is refer­
enced by? whereas the map for core files is referenced by/. Furthermore, a
good rule of thumb is to use ? for instructions and I for data when looking at
programs. To display information about maps, type:

$m
b1 = 8000 e1 bOOO fl 800
b2 = 10000 e2 llOOO f2 3800
I map 'core'
b1 10000 e1 13000 fl 1800
b2 = fffOOO e2 1000000 f2 '= 4800

This produces a report of the contents of the maps. More about these maps later.

In our example, we might want to see the contents of the string pointed to by cp.
We would want to see the string pointed to by cp in the core file:

55·
[

*cp/s

da~a address not found]
Because the pointer was set to ' T' (hex 54) and then incremented, it now equals
hex 55. On the Sun386i, there is nothing mapped at this address, so the data at
address 55 cannot be found. We could also display information about the argu­
ments to a function. To get the decimal value of the argc argument to main,
which is a long integer, type:

[

main.argc/D]
fffd6c: 2
....___ ___ ______..

To display the hex values of the three consecutive cells pointed to by argv in
the function main, type:

[

-in. arqv, 3/X
fffd7c: fffdcO fffdc6 0

Note that these values are the addresses of the arguments to main. Therefore,
typing these hex values should yield the command-line arguments:

[

fffdeO/s

.fffdcO:

The request:

a.out

l

l
[.= fffdcO J
sun
microsystems

Revision: A of May 9, 1988

(\
~j

Chapter 6- Sun386i adb Tutorial 71

displays the current address (not its contents) in hex, which has been set to the
address of the first argument. The current address, dot, is used by a db to
remember its current location. It allows the user to reference locations relative to
the current address. For example

[
.+6/s]

~f-f_f_d_c __ 6_= __________ z_z_z--------------------------------------~
prints the first command-line argument.

Setting Breakpoints You set breakpoints in a program with the : b instruction, which has this form:

[address : b [request]

#include <stdio.h>

#define MAXLIN 80
#define YES 1
#define NO 0
#define TABSP 8

int tabs[MAXLIN];

main()
{

int *ptab, col, c;

ptab = tabs;

Consider the C program below, which changes tabs into blanks, and is adapted
from Software Tools by Kernighan and Plauger, pp. 18-27.

settab(ptab); /*set initial tab stops*/
col = 1;
while ((c = getchar()) != EOF)

switch (c) {
case '\t':

while (tabpos(col) !=YES) {
putchar(' ');
col++;

putchar(' ');
col++;
break;

case '\n':
putchar('\n');
col = 1;
break;

default:
putchar(c);
col++;

exit(O);

l

Revision: A of May 9, 1988

72 Debugging Tools

tabpos(col) /*return YES if col is a tab stop, NO if not*/
int col;

if (col > MAXLIN)
return(YES);

else
return(tabs[col]);

settab(tabp)
int *tabp;

int i;

/* set initial tab stops every TABSP spaces */

for (i
(i

0; i <= MAXLIN; i++)
% TABSP) ? (tabs[i] =NO) (tabs [i] YES);

Run the program under the control of adb, and then set two breakpoints as fol­
lows:

[

% adb a.out - 1
settab+S:b
tabpos+S:b ~
'---------------------- _")
This sets breakpoints at the start of the two functions. Sun compilers generate
statement labels only with the -g option, which is incompatible with a db. In
a db, you can set breakpoints anywhere, but you can only refer to a breakpoint as
a function entry point plus an offset. To display the location of breakpoints,
type:

$b
breakpoints
count bkpt
1 tabpos+5
1 settab+5

command

A breakpoint is bypassed count-1 times before causing a stop. The command
field indicates the adb requests to be executed each time the breakpoint is
encountered. In this example no command fields are present.

Display the instructions at the beginning of function set tab () in order to
observe that the breakpoint is set after the link assembly instruction:

Revision: A of May 9, 1988

Chapter 6 - Sun386i a db Tutorial 73

settab,S?ia
settab:
settab:
settab+5:
settab+Oxc:
settab+Oxll:
settab+Oxl4:
settab+Oxl9:

jmp
movl
jmp
movl
movl

settab+Ox58
$0,-4(%ebp)
settab+Ox48
-4(%ebp),%eax
$8,%ecx

This request displays five instructions starting at set tab with the address of
each location displayed. Another variation is

settab,S?i
settab:
settab:

movl
jmp
movl
movl

jmp settab+Ox58
$0,-4(%ebp)
settab+Ox48
-4(%ebp),%eax
$8,%ecx

which displays the instructions with only the starting address. Note that we
accessed the addresses from a. out with the? command. In general, when ask­
ing for a display of multiple items, adb advances the current address the number
of bytes necessary to satisfy the request; in the above example, five instructions
were displayed and t he current address was advanced 26 bytes.

To run the program, type:

:r

To delete a breakpoint, for instance the entry to the function tabpos (),type:

[tabpos:d

Once the program has stopped, in this case at the breakpoint for set tab (),
adb requests can be used to display the contents of memory. To display a stack
trace, for example, type:

$c
settab [8250] (10658) + 4
main[8074] (l,fffd84,fffd8c) + la

J

Revision: A of May 9, 1988

74 Debugging Tools

Advanced Breakpoint Usage

And to display three lines of eight locations each from the array called tabs,
type:

tabs,3/8X
tabs:
tabs: 0

0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

At this time (at location set tab) the tabs array has not yet been initialized. If
you just deleted the breakpoint at tabpos, put it back by typing:

[tabpos:b

To continue execution of the program from the breakpoint type:

:X:

You will need to give the a. out program a line of data, as in the figure above.
Once you do, it will encounter a breakpoint at tabpos+4 and stop again.

J

l
Examine the tabs array once more: now it is initialized, and has a one set in ('. ..
every eighth location: 1 I

'-j

tabs,3/8X
tabs:
tabs: 1

1
1

0
0
0

0

0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

You will have to type : c eight more times in order to get your line of output,
since there is a breakpoint at every input character. Type I C1RL-D I to terminate
the a. out process; you are back in command-level of adb.

The quit and interrupt signals act on a db itself, rather than on the program being
debugged. If such a signal occurs, then the program being debugged is stopped
and control is returned to adb. The signal is saved by a db and passed on to the
test program if you type:

(:c 0 J
Now let's reset the breakpoint at set tab () and display the instructions located
there when we reach the breakpoint. This is accomplished by:

Revision: A of May 9, 1988

c
WARNING

Other Breakpoint Facilities

Chapter 6-Sun386i a db Tutorial 75

settab+S:b settab,S?ia
:r
settab,S?ia
settab:
settab:
settab+S:
settab+Oxc:
settab+Ox11:
settab+Oxl-4:
settab+Ox19:
breakpoint

jmp settab+Ox58
movl $0,-4(%ebp)
jmp settab+Ox48
movl . -4(%ebp),%eax
movl $8,%ecx

settab+S: movl $0,-4(%ebp)

It is possible to stop every two breakpoints, if you type , 2 before the breakpoint
command. Variables can also be displayed at the breakpoint, as illustrate<!
below:

tabpos+4,2:b main.col?X
:c

:X:

fffd64:
fffd64:
breakpoint

1
2
tabpos+S: movl $0x50,%eax

This shows that the local variable col changes from 1 to 2 before the occurrence
of the breakpoint.

Setting a breakpoint causes the value of dot to be changed. Howev~r, execut­
ing the program under a db does not change the value of dot.

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:

settab+4:b main.ptab/X; main.c/X
:r
fffd68:
fffd60:
breakpoint

10658
0
settab+S: movl $0,-4(%ebp)

The semicolon is used to separate multiple adb requests on a single line.

Arguments and change of standard input and output are passed to a program as
follows. This request kills any existing program under test and starts a . out
afresh:

(: r argl arg2 ... <infile >outftle

The program being debugged can be single stepped as follows. If necessary, this
request starts up the program being debugged and stops after executing the first
instruction:

l

sun
microsystems

Revision: A of May 9, 1988

76 Debugging Tools

:s

You can enter a program at a specific address by typing:

[address: r

The count field can be used to skip the first n breakpoints, as follows:

[,n:r
This request may also be used for skipping the first n breakpoints when continu­
ing a program:

[,n:c
A program can be continued at an address different from the breakpoint by:

[address:c

The program being debugged runs as a separate process, and can be killed by:

:k

J

J

l

J

sun Revision: A of May 9, 1988
microsysterns

n .,_,,,/

~··

~-~

Chapter 6- Sun386i a db Tutorial 77

6.3. File Maps Sun SunOS supports several executable file formats.

NOTE On the Sun386i, all executable files are COFF files. An additional COFF header
precedes the a.out header; this a. out header is slightly different than the Sun-
2, Sun-3, or Sun-4 a. out header. However, the executable file types are identi­
cal.
Executable type 407 is generated by the cc (or ld) flag -N. Executable type 410
is generated by the flag -n. An executable type 413 is generated by the flag -z;
the default is type 413. adb interprets these different file formats, and provides
access to the different segments through a set of maps. To display the maps, type
$m from inside adb.

407 Executable Files In 407-format files, instructions and data are intermixed. This makes it impossi­
ble for adb to differentiate data from instructions, but adb will happily display
in either format. Furthermore, some displayed symbolic addresses look incorrect

(for example, data addresses as offsets from routines). Here is a picture of 407-

format files:

a.out

core

Figure 6-1 Executable File Type 407

lhdrl text+ data

hdr text+ data stack

I

r ,
.__ ___ _.__ __________ -J: _______ __,

Here are the maps and variables for 407-format files:

$m
? map
b1 = 8000
b2 = 8000
I map
b1 8000
b2 = fffOOO
$v
variables
b 0100000
d = 03070
e = 0407
m = 0407
s 010000
t = 07450

sun
microsystems

'a.out'
e1 8f28
e2 9560

'core'
e1 b800
e2 1000000

f1
f2

f1
f2

20
20

1800
5000

Revision: A of May 9, 1988

78 Debugging Tools

410 Executable Files In 410-format files (pure executable), instructions are separate from data. The?
command accesses the data part of the a. out file, telling adb to use the second
part of the map in that file. Accessing data in the core file shows the data after
it was modified by the exe~ution of the program. Notice also that the data seg­
ment may have grown during program execution. Here is a picture of 410-format
files:

Figure 6-2 Executable File Type 410

a.out ~~h-d~r~~------te_x_t ______ ~----------d-a-ta ________ ~
core

............... !
~...-__ h_d_r __ ...~-_________ d_a_t_a ________ ___~.L.__ ---'----s-ta_c_k _____~

Here are the maps and variables for410-format files:

$m
? map
b1 = 8000
b2 = 10000
I map
b1 10000
b2 = fffOOO
$v
variables
b 0200000
d = 03070
e = 0410
m= 0410
s = 010000
t = 07450

I

~~sun ~'f/11 microsystems

'a.out'
e1 8f28
e2 10638

'core'
e1 12800
e2 1000000

fl
f2

fl
f2

20
f48

1800
4000

Revision: A of May 9, 1988

Chapter 6 - Sun386i a db Tutorial 79

413 Executable Files In 413-fonnat files (pure demand-paged executable) the instructions and data are
also separate. However, in this case, since data is contained in separate pages,
the base of the data segment is also relative to address zero. In this case, since
the addresses overlap, it is necessary to use the ? * operator to access the data
space of the a. out file. In both 410 and 413-fonnat files the corresponding
core file does not contain the program text. Here is a picture of 413-fonnat
files:

Figure 6-3 Executable File Type 413

a.out ~~h-d~r~~------re_x_t ______ ~----------d-a_t_a ________ ~
core

.............. !
~--h-d_r ---'-----------d-at_a ________ ---JI ~.....: ______ s_t_ac_k ______ ._.j

The only difference between a 410 and a 413-fonnat file is that 413 segments are
rounded up to page boundaries. Here are the maps and variables for413-fonnat
files:

$m
? map \
b1 = 8000
b2 = 10000

'abort'

I map 'core'
b1 = 10000
b2 = fffOOO
$v
variables
b 0200000
d = 04000
e = 0413
m = 0413
s = 010000·
t = 010000

e1
e2

e1
e2

9000
10800

12800
1000000

f1
f2

f1
f2

800
1800

1800
4000

Revision: A of May 9, 1988

80 Debugging Tools

Variables

6.4. Advanced Usage

Formatted Dump

The b, e, and f fields are used to map addresses into file addresses. 'I)le fl field
is the length of the header at the beginning of the file- 020 bytes for an a. out
file and 02000 bytes for a core file. The £2 field is the displacement from the
beginning of the file to the data. For a 407-format file with mixed text and data,
this is the same as the length of the header; for 410 and 413-format files, this is
the length of the header plus the size of the text portion. The b and e fields are
the starting and ending locations for a segment. Given the address A, the location
in the file (either a. out or core) is calculated as:

bl<A<el file address = (A-bl) +fl
b2<A<e2 file address = (A-b2) +f2

You can access locations by using the adb-defined variables. The $v request
displays the variables initialized by adb:

b base address of data segment,

d length of the data segment,

s length of the stack,

t length of the text,

m execution type (407, 410, 413).

Those variables not presented are zero. Use can be made of these variables by 0
expressions such as _)

<b

in the address field. Similarly, the value of a variable can be changed by an
assignment request such as

[02000>b J
which sets b to octal2000. These variables are useful to know if the file under
examination is an executable or core image file.

The adb program reads the header of the core image file to find the values for
these variables. If the second file specified does not seem to be a core file, or if it
is missing, then the header of the executable file is used instead.

One of the uses of adb is to examine object files without symbol tables; dbx
cannot handle this kind of task. With adb, you can even combine formatting
requests to provide elaborate displays. Several examples are given below.

The following a db command line displays four octal words followed by their
ASCII interpretation from the data space of the core file:

(
<b,-1/4o4A8Cn J

...._____ _ ____ ______..

Revision: A of May 9, 1988

Chapter 6 - Sun386i adb Tutorial 81

Broken down, the various requests mean:

<b The base address of the data segment

<b, -1 Print from the base address to the end-of-file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition
(like end-of-file) is detected.

The format 4o4 ~ 8Cn is broken down as follows:

4o Print 4 octal locations.

4 ~ Back up the current address 4locations (to the original start of the
field).

8 C Print 8 consecutive characters using an escape convention; each char­
acter in the range 0 to 037 is displayed as followed by the correspond­
ing character in the range 0140 to 0177. An @ is displayed as @@.

n Print a newline.

The following request could have been used instead to allow the displaying to
stop at the end of the data segment.

(<b, <d/ 404 ~ 8Cn

The request <d provides the data segment size in bytes. Because a db can read
in scripts, you can use formatting requests to produce image dump scripts.
Invoked adb as follows:

(% adb a. out core < dump

This reads in a script file, dump, containing formatting requests. Here is an
· example of such a script:

120$w
4095$s
$v
=3n
$m

=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
O$s
=3n"Data Segment"
<b,-1/Bona

The request 12 0 $w sets the width of the output to 120 characters (normally, the
~idth is 80 characters). adb attempts to display addresses as:

)

Revision: A of May 9, 1988

82 Debugging Tools

Accounting File Dump

Converting Values

[symbol + offset

The request 4 0 9 5 $ s increases the maximum permissible offset to the nearest
symbolic address from the default 255 to 4095. The request= can be used to
display literal strings. Thus, headings are provided in this dump program with
requests of the form:

[=3n"C Stack Backtrace"

l

)
This spaces three lines and displays the literal string. The request $v displays all
non-zero a db variables. The request 0 $ s sets the maximum offset for symbol
matches to zero, thus suppressing the display of symbolic labels in favor of octal
values. Note that this is only done for displaying the data segment. The request

[<b,-1/Sona)
displays a dump from the base of the data segment to the end-of-file with an octal
address field and 8 octal numbers per line.

As another illustration, consider a set of requests to dump the contents
/etc/utmp or /usr/ adm/wtmp, both of which are composed of8-character
terminal names, &-character login names, 16-character host names, and a 4-byte
integer representing the login time.

% adb /etc/utmp -
0,-1?cccccccc8tcccccccc8tcccccccccccccccc16tYn

The c format is repeated 8 times, 8 times, and 16 times. The 8t means go to the
8th tab stop, and 16t means to to the 16th tab stop. Y causes the 4-byte integer
representing the login time to print in ctime(3) format.

You can use adb to convert values from one representation to another. For
example, to print the hexadecimal number f f in octal, decimal, and hexade­
cimal, type:

[

ff = odx

_ 072.58 Ba]
The default input radix of adb is hexadecimal. Formats are remembered, so that
typing subsequent numbers will display them in the same format. Character
values may be converted as well:

[~·-a_'_~-1~-~----a------------------------------~] r-\
~)

Revision: A of May 9, 1988

6.5. Patching

Chapter 6 - Sun386i a db Tutorial 83

This technique may also be used to evaluate expressions, but be warned that all
binary operators have the same precedence, which is lower than for unary opera­
tors.

Patching files with a db is accomplished with the write requests w or w. This is
often used in conjunction with the locate requests 1 or L. In general, the syntax
for these requests is as follows:

(?1 value J
The 1 matches on two bytes, whereas L matches four bytes. The w request writes
two bytes, whereas w writes four bytes. The value field in either locate or write
requests is an expression. Either decimal and octal numbers, or character strings,
are permitted.

In order to modify a file, a db must be invoked as follows:

(% adb -w filel file2 J
'-------· ----------
When invoked with this option,filel andfile2 are created if necessary, and
opened for both reading and writing.

For example, consider the following C program, zen. c: We will change the
word "Thys" to "Thys" in the executable file.

char str1[] = "Thys is a character string";
int one = 1;
int number 456;
long lnum = 1234;
float fpt = 1.25;
char str2[] ="This is the second character string";

main()
{

one 2;

Use the following requests:

[% adb -w zen -
?1 'Th'
?W 'This'

The request ? 1 starts a dot and stops at the first match of "Th", having set dot to
the address of the location found. Note the use of ? to write to the a . out file.
The form ? * would be used for a 411 file.

l

·~r!!t!! Revision: A of May 9, 1988

84 Debugging Tools

6.6. Anomalies

More frequently the request is typed as:

[? 1 'Th'; ?s
which locates the first occurrence of "Th", and display the entire string. Execu­
tion of this adb request sets dot to the address of those characters in the string.

As another example of the utility of the patching facility, consider a C program
that has an internal logic flag. The flag could be set using a db, before running
the program. For example:

% adb a.out -
:s argl arg2
flag/w 1
:c

The : s request is normally used to single step through a process or start a pro­
cess in single step mode. In this case it starts a. out as a subprocess with argu­
ments argl and arg2. If there is a subprocess running, adb writes to it rather
than to the file so the w request caused flag to be changed in the memory of the
subprocess.

Below is a list of some strange things that users should be aware of.

)

1) When displaying addresses, a db uses either text or data symbols from the
a . out file. This sometimes causes unexpected symbol names to be
displayed with data (for example, savr 5+022). This does not happen if?
is used for text (instructions) and I for data.

2) The a db debugger cannot handle C register variables in the most recently
activated function.

Revision: A of May 9, 1988

7
adb Reference

adb Reference .. 87

7.1. adb Options ... 87

7.2. Using adb ... 87

7.3. adb Expressions.. 88

Unary Operators .. 89

Binary Operators ... 89

7.4. adb Variables.. 90

7.5. adb Commands.. 90

adb Verbs... 90

? , I, @,and= Modifiers.. 91

? and I Modifiers ... 93

: Modifiers ... 93

$ Modifiers ... 94

7 .6. a db Address Mapping ... 96

7.7. See Also .. 96

7.8. Diagnostic Messages from adb .. 96

7.9. Bugs... 97

7.10. Sun-3 FPA Support in adb ... 97

7 .11. Examples of FP A Disassembly ... 98

7.12. Examples ofFPA Register Use .. 99

7.1. adb Options

7.2. Using adb

7
adb Reference

adb [-w] [-k] [-I dir] [objectfile [corefile]]

adb is an interactive, general-purpose, assembly-level debugger, that examines
files and provides a controlled environment for executiilg Sun OS programs.

Nonnally objectfile is an executable program file, preferably containing a symbol
table. If the file does not contaiil a symbol table, it can still be examined, but the
symbolic features of a db cannot be used. The default objectfile is a. out.

The corefile is assumed to be a core image file produced after executing objectfile
and having a problem causing the core image to be dumped to the file core. The
default corefile is core.

-w Create both objectfile and corefile if necessary and open them for reading
and writing so they can be modified using adb.

-k Do SunOS kernel memory mapping; should be used when corefile is a
SunOS crash dump or I dev lmem.

-1 Specifies a directory where files to be read with$< or$<< (see below) will
be sought; the default is Ius r I 1 ib I a db.

adb reads commands from the standard input and displays responses on the stan­
dard output, ignoring QUIT signals. An INTERRUPT signal returns to the next
adb command.

adb saves and restores tenninal characteristics when running a sub-process. This
makes it possible to debug programs that manipulate the screen. See tty(4).

In general, requests to adb are of the fonn

[address] [, count] [command] [;]

The symbol dot (.) represents the current location. It is initially zero. If address
is present, then dot is set to address. For most commands count specifies how
many times the command will be executed. The default count is 1 (one). Both
address and count may be expressions.

87 Revision: A of May 9, 1988

88 Debugging Tools

7.3. adb Expressions
The value of dot.

+ The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

& The last address typed; this used to be ".

integer
A number. The prefixes Oo and 00 (zero oh) force interpretation in octal
radix; the prefixes 0 t and 0 T force interpretation in decimal radix; the
prefixes Ox and OX force interpretation in hexadecimal radix. Thus Oo20=
Ot16= OxlO= sixteen. If no prefix appears, then the def(!-ult radix is used;
see the $d command. The default radix is initially hexadecimal. Hexade­
cimal digits are 012345678 9abcdefABCDEF with the obvious values.
Note that if a hexadecimal number starts with a letter, but does not duplicate
a defined symbol, it is accepted as a hexadecimal value. To enter a hexade­
cimal number that is the same as a defined symbol, precede it by 0, Ox, or
ox.

'ecce'
The ASCII value of up to 4 characters. A backslash (\)may be used to
escape a'.

<name
The value of name, which is either a variable name or a register name; a db f\1
maintains a number of variables (see VARIABLES) named by single letters _j
or digits. If name is a register name, then the value of the register is
obtained from the system header in corefile. The register names are those
printed by the $ r command.

symbol
A symbol is a sequence of upper or lower case letters, underscores or digits,
not starting with a digit. The backslash character (\) may be used to escape
other characters. The value of the symbol is taken from the symbol table in
objectfile. An initial_ will be prepended to symbol if needed.

_symbol
In C, the true name of an external symbol begins with underscore U. It
may be necessary to use this name to distinguish it from internal or hidden
variables of a program.

NOTE _symbol applies only to Sun-2, Sun-3, and Sun-4. It is not used on Sun386i.

routine.name

es

The address of the variable name in the specified C routine. Both routine
and name are symbols. If name is omitted the value is the address of the
most recently activated C stack frame corresponding to routine. Works only
if the program has been compiled using the -go flag. See cc(l).

Sun386i only. Likes, but steps over subroutine calls instead of into
them.

~sun Revision: A of May 9, 1988
microsystems

Unary Operators

Binary Operators

Chapter 7- adb Reference 89

' (expr) The value of the expression expr.

*expression
The contents of the location addressed by exp in corefile.

%expression
The contents of the location addressed by exp in objectfile (used to be@).

-expression
Integer negation.

-expression
Bitwise complement.

#expression
Logical negation.

AFexpression
(Control-f) Translates program addresses into source file addresses. Works
only if the program has been compiled using the -go flag. See cc(l).

A Aexpression
(Control-a) Translates source file addresses into program addresses. Works
only if the program has been compiled using the -go flag. See cc(l).

'name
(Back-quote) Translates a procedure name into a source file address. Works
only if the program has been compiled using the -go flag. See cc(l).

"filename"
A filename enclosed in quotation marks (for instance, main. c) produces
the source file address for the z-ero-th line of that file. Thus to reference the
third line of the file main.c, we say: "main. c"+3. Works only ifthe pro­
gram has been compiled using the -go flag. See cc(l).

Binary operators are left associative and are less binding than unary operators.

expression-] + expression-2
Integer addition.

expression-1-expression-2
Integer subtraction.

expression-] * expression-2
Integer multiplication.

expression-] % expression-2
Integer division.

expression-] & expression-2
Bitwise conjunction.

expression-] I expression-2
Bitwise disjunction.

sun
microsystems

Revision: A of May 9, 1988

90 Debugging Tools

7.4. adb Variables

7.5. adb Commands

adb Verbs

expression-] # expression-2
Expression] rounded up to the next multiple of expression2.

a db provides several variables. Named variables are set initially by a db but are
not used subsequently~ Numbered variables are reserved for communication as
follows:

0 The last value printed.

1 The last offset part of an instruction source.

2 The previous value of variable 1.

9 The count on the last $ < or $ < < command.

On entry the following are set from the system header in the corefile. If corefile
does not appear to be a core file then these values are set from objectftle.

b The base address of the data segment.

d The data segment size.

e The entry point.

m The 'magic" number (0407, 0410 or 0413), depending on the file"s type.
(See Section 5.3 .)

s The stack segment size.

t The text segment size.

Commands to a db commands consist of a verb followed by a modifier or list of
modifiers.

The verbs are:

? Print locations starting at address in objectfile.

I Print locations starting at address in corefile.

Print the value of address itself.

@ Interpret address as a source file address, and print locations in objectfile or
lines of the source text. Works only if the program has been compiled using
the -go flag. See cc(l).

Manage a subprocess.

$ Execute miscellaneous commands.

> Assign a value to a variable or register.

RETURN
Repeat the previous command with a count of 1. Dot is incremented by its
current increment.

Call the shell to execute the following command.

4}~sun
• microsystems

Revision: A of May 9, 1988

? , I, @, and = Modifiers

Chapter 7 - adb Reference 91

Each verb has a specific set of modifiers, these are described below.
---'

The first four verbs described above take the same modifiers, which specify the
fonnat of command output. Each modifier consists of a fonnat letter (jletter)
preceded by an optional repeat count (rcount). Verb can take one or more
modifiers.

{ ? , I, @, = } [[rcount] jietter ...]

Each modifier specifies a fonnat that increments dot by a certain amount, which
is given below. If a command is given without a modifier, the last specified for­
mat is used to display output. The following table shows the fonnat letters, the
amount they increment dot, and a description of what each letter does. Note that
all octal numbers output by adb are preceded by 0.

Format Dot+= Description

0 2 Print 2 bytes in octal.

0
'- 4 Print 4 bytes in octal.

~

q 2 Print in signed octal.

Q 4 Print long signed octal.

d 2 Print in decimal.

D 4 Print long decimal.

X 2 Print 2 bytes in hexadecimal.

X 4 Print 4 bytes in hexadecimal.

h 2 Sun386i only. Print 2 bytes in hexadecimal in reverse
order.

H 4 Sun386i only. Print 4 bytes in hexadecimal in reverse
order.

u 2 Print as an unsigned decimal number.

u 4 Print long unsigned decimal.

f 4 Print the 32 bit value as a floating point number.

F 8 Print double floating point.

b 1 Print the addressed byte in octal.

B 1 Sun386i only. Print the addressed byte in hexadecimal.

c 1 Print the addressed character.

c 1 Print the addressed character using the standard escape
convention. Print control characters as Ax and the delete
character as A ? .

Revision: A of May 9, 1988

92 Debugging Tools

Format Dot+= Description

s n Print the addressed characters until null character is
reached; n is the length of the string including its zero ter­
minator.

s

y

i

M

z

I

a

p

A

p

t

r

n

" "

~~sun ~ microsystems

n

4

n

n

n

0

0

4

0

4

0

0

0

0

Print string using the escape conventions of c; n is the
length of the string including its zero terminator.

Print 4 bytes in ctime(3) format.

Print as machine instructions; n is the number of bytes
occupied by the instruction. In this format, variables 1
and 2 are set to the offset parts of the source and destina­
tion respectively.

Sun386i only. Print as machine instructions along with
machine code; n is the number of bytes occupied by the
instruction. In this format, variables 1 and 2 are set to the
offset parts of the source and destination, respectively.

Print as machine instructions with MC68010 instruction
timings; n is the number of bytes occupied by the instruc­
tion. In this format, variables 1 and 2 are set to the offset
parts of the source and destination respectively.

Print the source text line specified by dot(@ command),
or most closely corresponding to dot (? command).

Print the value of dot in symbolic form. Symbols are
checked to ensure that they have an appropriate type as
indicated below.
I local or global data symbol
? local or global text symbol
= local or global absolute symbol

Print the addressed value in symbolic form using the
same rules for symbol lookup as with a.
Print the value of dot in source file symbolic form, that is:
"file "+nnn. Works only if the program has been
compiled with the -go flag. See cc(1).

Print the addressed value in source file symbolic form,
that is: ''file"+nnn. Works only if the program has been
compiled using the -go flag. See cc(1).

When preceded by an integer, tabs to the next appropriate
tab stop. For example, 8t moves to the next 8-space tab
stop.

Print a space.

Print a newline.

Print the enclosed string.

Revision: A of May 9, 1988

(\
\,.)

0

? and I Modifiers

: Modifiers

Chapter 7 - a db Reference 93

Format Dot+= Description
A 0 Dot decremented by current increment; nothing is printed.

+ 0 Dot incremented by 1; nothing is printed.

- 0 Dot decremented by 1; nothing is printed.

Only the verbs ? and I take the following modifiers:

[? I] 1 value mask
Words starting at dot are masked with mask and compared to value
until a match is found. If the command is L instead of l, the match is
for 4 bytes at a time instead of 2. If no match is found dot is
unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

? I] w value ...
Write the 2-byte value into the addressed location. If the command is
w instead of w, write 4 bytes instead of 2. If the command is v, write
only 1 byte. Odd addresses are not allowed when writing to the sub­
process address space.

? I] m bl el fl [? I]
New values for (bl,el,fl) arerecorded. Iffewerthanthree
expressions are given, then the remaining map parameters are left
unchanged. If the ? or I is followed by *, then the second segment
(b2, e2,j2) of the address mapping is changed (see Address Mapping
below). If the list is terminated by ? or I, then the file, objectfile or
corefile respectively, is used for subsequent requests. For example,
lm? causes I to refer to objectfile.

Only the verb : takes the following modifiers:

a cmd Sun386i only. Bet a data access breakpoint at address. Like b except
that the breakpoint is hit when the program reads or writes to address.

b cmd Set breakpoint at address. The breakpoint is executed count-l times
before causing a stop. Each time the breakpoint is encountered the
command cmd is executed. If this command is omitted or sets dot to
zero, then the breakpoint causes a stop.

w Sun386i only. Set a data write breakpoint at address. Like b except
that the breakpoint is hit when the program writes to address.

B Like b but takes a source file address. Works only if the program has
been compiled using the -go flag. See cc(1).

d Delete breakpoint at address.

D Liked but takes a source file address. Works only if the program has
been compiled using the -go flag. See cc(l).

~) S ll fl Revision: A of May 9, 1988
~ microsystems

94 Debugging Tools

$Modifiers

z Sun386i only. Delete all breakpoints.

r Run objectfile as a subprocess. If address is given explicitly, then the
program is entered at this point; otherwise, the program is entered at its
standard entry point. An optional count specifies how many break­
points are to be ignored before stopping. Arguments to the subprocess
may be supplied on the same line as the command. An argument start­
ing with < or > causes the standard input or output to be established for
the command. All signals are enabled on entry to the subprocess.

c s The subprocess is continued with signal s; see sigvec(2). If address is
given then the subprocess is continued at this address. If no signal is
specified, then the signal that caused the subprocess to stop is sent.
Breakpoint skipping is the same as for r.

s s Same as for c except that the subprocess is single stepped count times.

s

u

If there is no current subprocess, then objectfile is run as a subprocess
as for r. In this case no signal can be sent; the remainder of the line is
treated as an argument list for the subprocess.

Like s but single steps by source lines, rather than by machine instruc­
tions. This is achieved by repeatedly single-stepping machine instruc­
tions until the corresponding source file address changes. Thus pro­
cedure calls cause stepping to stop. Works only if the program has
been compiled using the -go flag. See cc(l).

Sun386i only. Continue uplevel, stopping after the current routine has
returned. Should only be given after the frame pointer has been pushed
on the stack.

i Add the signal specified by address to the list of signals that are passed
directly to the subprocess with the minimum of interference. Nor­
mally, a db intercepts all signals destined for the subprocess, and the
: c command must be issued to continue the process with the signal.
Signals on this list are handed to the process with an implicit : c com­
mands as soon as they are seen.

t Remove the signal specified by address from the list of signals that are
implicitly passed to the subprocess.

k Terminate (kill) the current subprocess, if any.

A Sun386i only. Attach the process whose process ID is given by
address. The PID is generally preceded by Ot so that it will be inter­
preted in decimal.

R Sun386i only. Release (detach) the current process.

Only the verb $ takes the following modifiers:

<file Read commands from file. If this command is executed in a file,
further commands in the file are not seen. If file is omitted, the current
input stream is terminated. If a count is given, and it is zero, the

~~ S ll fi Revision: A of May 9, 1988
.... microsysterns

Chapter 7 -a db Reference 95

command will be ignored. The value of the count will be placed in
variable 9 before the first command in file is executed.

<<file Similar to <, but can be used in a file of commands without closing the
file. Variable 9 is saved during the execution of this command, and
restored when it completes. There is a small, finite limit to the number
of<< files that can be open at once.

>file Append output to file, which is created if it does not exist. If file is
omitted, output is returned to the terminal.

? Print the process id, the signal that stopped the subprocess, and the
registers. Produces the same response as $ used without any modifier.

r Print the general registers and the instruction addressed by pc; dot is
set to pc.

b Print all breakpoints and their associated counts and commands.

c C stack backtrace. If address is given, it is taken as the address of the
current frame instead of the contents of the frame-pointer register. If
count is given, only the first count frames are printed.

c Similar to c, but in addition prints the names and 32-bit values of all
automatic and static variables for each active function. Works only if
the program has been compiled using the -go flag. See cc(l).

d Set the default radix to address and report the new value. Note that
address is interpreted in the (old) current radix. Thus 1 0 $ d never
changes the default radix. To make the default radix decimal, use
Ot10$d.

e Print the names and values of external variables.

w Set the page width for output to address (default 80).

s Set the limit for symbol matches to address (default 255).

o Regard all input integers as octal.

q Exit adb.

v Print all non-zero variables in octal.

m Print the address map.

f Print a list of known source file names.

p Print a list of known procedure names.

p For kernel debugging. Change the current kernel memory mapping to
map the designated user structure to the address given by the symbol
_u. The address argument is the address of the user"s proc structure.

i Show which signals are passed to the subprocess with the minimum of
a db interference. Signals may be added to or deleted from this list
using the : i and : t commands.

S ll fi Revision: A of May 9, 1988
microsysterns

96 Debugging Tools

7.6. adb Address Mapping

7.7. See Also

7 .8. Diagnostic Messages
from adb

w Re-open objectfile and corefile for writing, as though the-W,
command-line argument had been given.

1 Sun386i only. Set the length in bytes (1, 2, or4) of the object refer­
enced by :a and : w to address. Default is 1.

The interpretation of an address depends on its context. If a subprocess is being
debugged, addresses are interpreted in the usual way (as described below) in the
address space of the subprocess. If the operating system is being debugged,
either post-mortem or by using the special file I dev lmem to interactively exam­
ine and/or modify memory, the maps are set to map the kernel virtual addresses,
which start at zero. For some commands, the address is not interpreted as a
memory address at all, but as an ordered pair representing a file number and a
line number within that file. The @ command always takes such a source file
address, and several operators are available to convert to and from the more cus­
tomary memory locations.

The address in a file associated with a written address is determined by a map­
ping associated with that file. Each mapping is represented by two triples (bl,
el ,fl) and (b2, e2,j2), and the file address corresponding to a written address
is calculated as follows.

bl ::;; address < el => file address = address + fl - bl

otherwise

b2 ::;; address < e2 => file address = address + t2 - b2

Otherwise, the requested address is not legal. If a ? or I request is followed by
an *, only the second triple is used.

The initial setting of both mappings is suitable for nonnal a . out and core
files. If either file is not of the kind expected then, for that file, bl is set to 0, el
is set to the maximum file size, andfl is set to 0. This way, the whole file can be
examined with no address translation.

For more infonnation, read dbx(l), ptrace(2), a.out(5), and core(5) in the man­
pages.

After startup, the only prompt adb gives is

when there is no current command or fonnat. On the other hand, a db supplies
comments about inaccessible files, syntax errors, abnormal tennination of com­
mands, etc. Exit status is 0, unless the last command failed or returned non-zero
status.

)

Revision: A of May 9, 1988

(\,
') \....,_

7.9. Bugs

7 .10. Sun-3 FPA Support
in adb

Chapter 7 - adb Reference 97

There is no way to clear all breakpoints with a single command, except on the
Sun386i.

Since no shell is invoked to interpret the arguments of the : r command, the cus­
tomary wildcard and variable expansions cannot occur.

Since there is little type checking on addresses, using a source file address in an (
inappropriate context may lead to unexpected results.

Release of the floating point accelerator (FPA) for the Sun-3 required some
changes to a db, in order to support assembly language debugging of programs
that use the FP A. Here are changes made to a db in Release 3.1 and later:

1. The new debugger variables A through z are reserved for special use by
a db. They should not be used in a db scripts.

2. The FPA registers fpaO through fpa31 are recognized and can be used or
modified in debugger commands. This extension only applies to a machine
withanFPA.

3. The debugger variable F governs FP A disassembly. This is equivalent to the
dbx environment variable fpaasm. A value ofO indicates that all FPA
instructions are to be treated as move instructions. A nonzero value is used
to indicate that FP A instruction sequences are to be disassembled and single
stepped using FP A assembler mnemonics. On a machine with an FP A, the
default value is 1; on other machines, the default value is 0.

4. The debugger variable B is used to designate an FP A base register. This is
equivalent to the dbx environment variable fpabase. IfFPA disassembly
is disabled (the F flag= 0) its value is ignored. Otherwise, its value is inter­
preted as follows:

Othrough 7:
Based-mode FP A instructions that use the corresponding address regis­
ter in [a 0 . . a 7 J to address the FP A are also disassembled using FP A
assembler mnemonics. Note that this is independent of the actual run­
time value of the register.

otherwise:
All based-mode FP A instructions are disassembled and single-stepped
as move instructions.

The default value of the FPA base register number is -1, which designates
no FP A base register.

5. The command $x has been added to display the values ofFPA registers
fpaO through fpal5, along with FPA control registers and the current con­
tents of the FPA instruction pipeline. All registers are displayed in the for­
mat:

<low word> <high word> <double precision> <single precision>

This verbose display is used because FP A registers are tweless; in

sun
microsysterns

Revision: A of May 9, 1988

98 Debugging Tools

7.11. Examples ofFPA
Disassembly

particular, they may contain either single or double precision floating point
values. If a single precision value is stored, it is always stored in the high­
order word. Machines without an FP A display the message "no FP A .

6. The command $X is similar to $x, but displays the FPA registers fpa16
through fpa31 instead of fpaO through fpalS. This is done as a separate
command because a db cannot display the contents of all FP A registers in a
single standard-size window.

7. The command $R displays the contents of the data and control registers of
the standard mc68881 floating point coprocessor. Note: this is a change
from release 3.0.

As an example, consider the following assembly source fragment:

% cat foo.s
foo:
fpadds dO,fpaO
fpadds@O dO,fpaO
fpadds@S dO,fpaO
%

On machines without an FP A, the default mode is to disassemble all FP A
instructions as moves. For the example program, the following output is pro­
duced (except the parenthesized comments addoed here for explanation):

% as foo.s -o foo.o
% adb foo.o
<F=d

(default value of "F" on a machine without FPA) 0
foo?ia
foo: movl dO,Oxe0000380 (normal disassembly)

FP A disassembly can be enabled by setting the debugger variable F to 1. For
example:

% adb foo.o
l>F
<F=d

1
foo?ia
foo:

(new value of "F")

fpadds dO,fpaO (FPA disassembly)

On machines with an FP A, FP A disassembly is on by default, so the above out­
put is produced without having to set the value of F.

Some FP A instructions may address the FP A using a base register in
[aO .. a 7 J. In practice, only [aO .. aS J are used by the compilers.

adb does not know which register (if any) is being used to address the FPA in a
given sequence of machine code. However, another debugger variable (B) may

sun
microsystems

Revision: A of May 9, 1988

7 .12. Examples of FP A
Register Use

Chapter 7 - ad.b Reference 99

be set by the user to designate a register as an FP A base register. By default, this
variable has the value -1, which means that no register should be assumed to
point at the FP A, so only instructions that access the FP A using absolute address­
ing are recognized as FP A instructions.

For the example program, a machine with an FP A produces the following output:

% adb foo.o
<F=d

1

<B=d
-1

foo,3?ia
foo:
Ox6:
Oxa:
Oxe:

(default value of "F" on a machine wi,th FPA)

(default value of "B")

fpadds dO,fpaO (FPA disassembly)
movl dO,a0@(0x380) (normal disassembly)
movl dO,a5@(0x380) (normal disassembly)

Note that the second and third instructions are still disassembled as moves, since
adb cannot assume that they access the FP A. Continuing this example, if the
FP A base register number is set to 5, the following output is produced:

% adb foo.o
S>B
<B=d

5
foo,3?ia
foo:
Ox6:
Oxa:
Oxe:

fpadds dO,fpaO (FPA disassembly)
movl dO,a0@(0x380) (normal disassembly)
fpadds@S dO,fpaO (FPA disassembly)

Note that the second instruction is still disassembled as a move, since aS, the
register designated as the FP A base, is not used.

FP A data registers can be displayed using a syntax similar to that used for the
68881 co-processor registers. Note that unlike the 68881 registers, FPA registers
may contain either single precision (32-bit) or double precision (64-bit) values;
68881 registers always contain an extended precision (96-bit) value.

For example, if fpaO contains the value 2.718282, we may display it as follows:

[<fpaO~f
fpa3 Ox402df855 +2.718282e+OO

Note that the value is displayed in hexadecimal as well as in floating point nota­
tion. Unfortunately, an FPA register can only be set to a hexadecimal value. To
set fpaO to 1.0, for example, you must know that this is represented as
0 x 3 f 8 0 0 0 0 0 in IEEE single-precision format:

l

~~sun ~ microsysterns
Revision: A of May 9, 1988

100 Debugging Tools

Ox3f800000>fpa0
<fpaO=X

3f800000
<fpaO=f

+l.OOOOOOOe+OO

Revision: A of May 9, 1988

8
Debugging SunOS Kernels with adb

Debugging SunOS Kernels with adb ... 103

8.1. Introduction... 103

Getting Started .. 103

Establishing Context ... 104

8.2. adb Command Scripts... 104

Extended Formatting Facilities... 104

Traversing Data Structures .. 107

Supplying Parameters... 109

Standard Scripts ... 110

8.3. Generating adb Scripts with adbgen ... 111

8.4. Summary.. 111

(\ 8.1. Introduction
~

Getting Started

8
Debugging SunOS Kernels with adb

This document describes the use of extensions made to the SunOS debugger a db
for the purpose of debugging the Sun OS kernel. It discusses the changes made to
allow standard a db commands to function properly with the kernel and intro­
duces the basics necessary for users to write a db command scripts that may be
used to augment the standard a db command set. The examination techniques
described here may be applied to running systems, as well as the post-mortem
dumps automatically created by savecore(8) after a system crash. The reader is
expected to have at least a passing familiarity with the debugger command
language.

Modifications have been made to the standard UNIX debugger adb to simplify
examination of the post-mortem dump generated automatically following a sys­
tem crash. These changes may also be used when examining SunOS in its nor­
mal operation. This document serves as an introduction to the use of these facili­
ties, but should not be construed as a description of how to debug the kernel.

Use the -k option of adb when you want to examine the SunOS kernel:

(~~-o_a_db ___ -_k __ /_vm __ un ___ ix ___ ld_e_v __ /mem------------------------------------~J
The -k option makes adb partially simulate the Sun virtual memory manage­
ment unit when accessing the core file. In addition, the internal state maintained
by the debugger is initialized from data structures maintained by the SunOS ker­
nel explicitly for debugging. t A post-mortem dump may be examined in a simi­
lar fashion:

[% adb -k v.munix.? v.mcore.?

Supply the appropriate version of the saved operating system image, and its core
dump, in place of the question mark.

t If the -k flag is not used when invoking a db, the user must explicitly calculate virtual addresses. With
the -k option, a db interprets page tables to automatically perform virtual to physical address translation.

J

103 Revision: A of May 9, 1988

104 Debugging Tools

Establishing Context

8.2. a db Command Scripts

Extended Formatting
Facilities

•

During initialization adb attempts to establish the context of the currently active
process by examining the value of the kernel variable panic_regs. This
structure contains the register values at the time of the call to the panic () rou­
tine. Once the stack pointer has been located, this command generates a stack
trace:

)
An alternate method may be used when a trace of a particular process is required;
see Section 6.3 for details.

This section supplies details about writing a db scripts to debug the kernel.

Once the process context has been established, the complete a db command set is
available for interpreting data structures. In addition, a number of a db scripts
have been created to simplify the structured printing of commonly referenced
kernel data structures. The scripts normally reside in the directory
/usr I lib/ a db, and are invoked with the $<operator. Standard scripts are
listed below in Table 6-1.

As an example, consider the listing that starts on the next page. The listing con­
tains a dump of a faulty process"s state.

% adb -k vmunix.3 vmcora.3

sbr S0030 slr S1e

physmem 3c0

$c
_panic[10fec] (S234d) + 3c
_ialloc[16ea8] (d44a2,2,dff) + c8

_maknode[1d476] (dff) + 44

_copen[1c480] (602,-1) + 4e

_creat () + 16

_syscall[2ea0a] () + 1Se
levelS () + 6c

5234d/a
_nldisp+17S: ialloc: dup alloc

u$<u
u:
u: pc

4be0

u+4: d2 d3 d4
13b0 0 0

u+14: d6 d7

0 2604
u+1c: a2 a3 a4

0

0 c7800 Sa9S8

u+2c: a6 a7
3e62 3e48

u+34: sr
27000000

u+38: pObr pOlr p1br

sun
microsystems

dS

aS
d7160

p1lr

Revision: A of May 9, 1988

Chapter 8- Debugging SunOS Kernels with a db 105

106 Debugging Tools

0 0 0 0 0 0 0 0
0 0 0 0

u+4c8: cdir ~dir ttyp ttyd cmask
d44a2 0 5c6c0 0 12

ru & cru
u+4d8: utime stime

0 0 0 35b60
u+4e8: maxrss ixrss idrss isrss

9 35 43
u+4f8: minflt majflt nswap

0 5 0
u+504: inblock oublock msgsnd msgrcv

3 7 0 0
u+514: nsignals nvcsw nivcsw

0 12 4
u+520: utime stime

0 0 0 0
u+530: maxrss ixrss idrss isrss

0 0 0
u+540: minflt majflt nswap

0 0 0
u+54c: inblock oublock msgsnd msgrcv

0 0 0 0
u+55c: nsignals nvcsw nivcsw ("'\

0 0 0 _j
Od7160$<proc
d7160: link rlink addr

590e0 0 1057£4
d716c: upri pri cpu stat time nice slp

066 024 020 03 01 024 0
d7173: cursig sig

0 0
d7178: mask ignore catch

0 0 0
d7184: flag uid pgrp pid ppid

8001 31 2f 2f 23
d7190: xstat ru poip szpt tsize

0 0 0 1 7
d719e: dsize ssize rssize maxrss

1b 2 5 fffff
d71ae: swrss swaddr wchan textp

0 0 0 d8418
d71be: pObr xlink ticks

105000 0 15
d71c8: %cpu ndx idhash pptr

0 6 2 d70d4
d7ld4: real itimer

0 0 0 0
d71e4: quota ctx

0 5£236 (~,
Od8418$<text "-) d8418: daddr

() sun Revision: A of May 9, 1988
microsystems

. /"daddr"nl2Xn\

Chapter 8 -Debugging Sun OS Kernels with a db 107

284 0 0 0
0 0 0 0

0 0 0 0

ptdaddr size caddr iptr
184 7 d7160 d47e0

rssize swrss count ccount flag slptim poip
4 0 01 01 042 0 0

The cause ofthe crash was a panic (see the stack trace) due to a duplicate
inode allocation detected by the ialloc () routine. The majority of the
dump was done to illustrate the use of command scripts used to format kernel
data structures. The u script, invoked by the command u$<u, is a lengthy series
of commands to pretty-print the user vector. Likewise, proc and text are
scripts to format the obvious data structures. Let"s quickly examine the text
script, which has been broken into a number oflines for readability here; in actu­
ality it is a single line of text .

"ptdaddr"l6t"size"l6t"caddr"l6t"iptr"n4Xn\
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx

./"daddr"nl2Xn

The first line produces the list of disk block addresses associated with a swapped
out text segment. The n format forces a newline character, with 12 hexadecimal
integers printed immediately after. Likewise, the remaining two lines of the
command format the remainder of the text structure. The expression 16t tabs to
the next column which is a multiple of 16.

The majority of the scripts provided are of this nature. When possible, the for­
/ matting scripts print a data structure with a single format to allow subsequent

reuse when interrogating arrays of structures. That is, the previous script could
have been written:

+/"ptdaddr"l6t"size"l6t"caddr"l6t"iptr"n4Xn
+/"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n2x4bx

Traversing Data Structures

But then, reuse of the format would have invoked only the last line of the format.

The adb command language can be used to traverse complex data structures.
One such data structure, a linked list, occurs quite often in the kernel. By using
a db variables and the normal expression operators it is a simple matter to con­
struct a script which chains down the list, printing each element along the way.

For instance, the queue of processes awaiting timer events, the callout queue, is
printed with the following two scripts:

Revision: A of May 9, 1988

108 Debugging Tools

callout:
ca11todo/"time"16t"arg"16t"func"
*(.+Ot12)$<ca11out.nxt

callout.nxt:
./D2p
*+>1
,#<1$<
<1$<ca11out.nxt

The first line of the script callout starts the traversal at the global symbol
calltodo and prints a set of headings. It then skips the empty portion of the
structure used as the head of the queue. The second line then invokes the script
callout. nxt moving dot to the top of the queue-*+ performs the indirec­
tion through the link entry of the structure at the head of the queue. The script
callout. nxt prints values for each column, then performs a conditional test
on the link to the next entry. This test is performed as follows:

*+>1

r0
_j

This means to place the value of the link in the adb variable <1. Next: ('>

(~~--------------------~]~ ~<1$< -

This means if the value stored in <1 is non-zero, then the current input stream
(from the script callout. nxt) is terminated. Otherwise, the expression #<1
is zero, and the$< operator is ignored. That is, the combination of the logical
negation operator#, adb variable <1, and operator$<, in effect, creates a state­
ment of the form:

[if (! l~nk)
ex~t;

The remaining line of callout. nxt simply reapplies the script on the next
element in the linked list. A sample callout dump is shown below:

l

sun Revision: A of May 9, 1988
microsystems

Supplying Parameters

c

Chapter 8- Debugging SunOS Kernels with a db 109

% adb -k /v.munix /dev/mem
sbr 50030 s1r 51e
physmem 3c0
$<callout
ca11todo:
ca11todo: time arg

d9fc4: 5 0
d9f94: 1 0
d9fd4: 1 0
d9fa4: 3 0
d9fe4: 0 0
d9fb4: 15 0
d9ff4: 12 0
da044: 736 d7390
da004: 206 d6fbc
da024: 649 d741c

func
roundrobin
if s1owtimo -

_schedcpu
_pffasttimo
_schedpaging
_pfs1owtimo
_arptimer

_rea1ite.xpire
_rea1itexpire
_rea1itexpire

da034: 176929 d7304 _rea1itexpire

A command script may use the address and count portions of an a db command
as parameters. An example of this is the setproc script, used to switch to the
context of a process with a known process ID:

(Ot99$<setproc

The body of setproc is:

.>4
*nproc>1
*proc>f
$<setproc.nxt

The body of setproc. nxt is:

(*(<f+Ot42)&0xffff)="pid "D
,#(((*(<f+Ot42)&0xffff))-<4)$<setproc.done
<1-1>1
<f+Ot140>f
,#<1$<
$<setproc.nxt

J

The process ID, supplied as the parameter, is stored in the variable < 4, the
number of processes is placed in <1, and the base of the array of process struc­
tures in <f. Then setproc. nxt performs a linear search through the array
until it matches the process ID requested, or until it runs out of process structures
to check. The script setproc. done simply establishes the context of the pro­
cess, then exits.

sun
microsystems

Revision: A of May 9, 1988

110 Debugging Tools

Standard Scripts Here are the command scripts currently available in /usr I lib/adb,:

Table 8-1 Standard Command Scripts

Standard Command Scripts

Name Use Description

buf addr$<bu£ format block I/0 buffer
callout $<cal.l.out print timer queue
clist addr$<cl.i.st format character I/0 linked list
dino addr$<di.no format directory inode
dir addr$<di.r format directory entry

file addr$<£i.l.e format open file structure
filsys addr$<fi.l.sys format in-core super block structure
findproc pid$<£ i.ndproc find process by process id
if net addr$<i.fnet format network interface structure
in ode addr$<i.node format in-core inode structure

inpcb addr$<i.npcb format internet protocol control block
iovec addr$<i.ovec format a list of iov structures
ipreass addr$<i.preas s format an ip reassembly queue
mact addr$<mact show active list ofmbuf's
mbstat $<mbstat show mbuf statistics

mbuf addr$<mbu£ show next list of mbuf's
mbufs addr$<mbufs show a number ofmbuf's
mount addr$<mount format mount structure
pcb addr$<pcb format process context block
proc addr$<proc format process table entry

protosw addr$<protosw format protocol table entry
rawcb addr$<rawcb format a raw protocol control block
rtentry addr$<rtentry format a routing table entry
rusage addr$<rusage format resource usage block
setproc pid$<setproc switch process context to pid

socket addr$<socket format socket structure
stat addr$<stat format stat structure
tcpcb addr$<tcpcb format TCP control block
tcpip addr$<tcpi.p format a TCP/IP packet header
tcpreass addr$<tcpreass show a TCP reassembly queue

text addr$<text format text structure
traceall $<traceal.l. show stack trace for all processes
tty addr$<tty format tty structure
u addr$<u format user vector, including pcb
uio addr$<ui.o format uio structure
vtimes addr$<vti.mes format vtimes structure

«~sun
• microsystems

Revision: A of May 9, 1988

II':
\....,, j

I~
\ I_j

I~
/

8.3. Generating adb
Scripts with adbgen

8.4. Summary

Chapter 8 -Debugging SunOS Kernels with a db 111

You can use the adbgen program to write the scripts presented earlier in a way
that does not depend on the structure member offsets of referenced items. For
example, the text script given above depends on all printed members being
located contiguously in memory. Using adbgen, the script could be written as
follows (again it is really on one line, but broken apart for ease of display):.PL,
FULL

#include "sys/types.h"
#include "sys/text.h"

text
./"daddr"n{x_daddr,12X}n\
"ptdaddr"16t"size"16t"caddr"16t"iptr"n\
{x_ptdaddr,X}{x_size,X}{x_caddr,X}{x_iptr,X}n\
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptirn"8t"poip"n\
{x_rssize,x}{x_swrss,x}{x_count,b}{x_ccount,b}\
{x_flag,b}{x_slptirne,b}{x_poip,x}{END}

The script starts with the names of the relevant header files, while the braces del­
imit structure member names and their formats. This script is then processed
through adbgen to get the a db script presented in-the previous section. See
Chapter 7 of this manual for a complete description of how to write adbgen
scripts. The real value of writing scripts this way becomes apparent only with
longer and more complicated scripts (the u script for example). When scripts are
written this way, they can be regenerated if a structure definition changes,
without requiring people to calculate the offsets.

The extensions made to a db provide basic support for debugging the SunOS ker­
nel by eliminating the need for a user to carry out virtual-to-physical address
translation. A collection of scripts has been written to format the major kernel
data structures, and aid in switching between process contexts. This was carried
out with only minimal changes to the debugger.

Revision: A of May 9, 1988

;-\
/

9
Generating adb Scripts with adbgen

Generating adb Scripts with adbgen .. 115

9.1. Example of adbgen ... 116

9.2. Diagnostic Messages from adbgen .. 116

9.3. Bugs in adbgen .. 116

0

----------1--J·~ ~---------------@-·.-·---

9
Generating adb Scripts with adbgen

/usr/l.ib/adb/adbgen file.adb ...

This program makes it possible to write a db scripts that do not contain hard­
coded dependencies on structure member offsets. After generating a C program
to determine structure member offsets and sizes, adbgen proceeds to generate
an adb script.

The input to adbgen is a file named file. adb containing adbgen header infor­
mation, then a null line, then the name of a structure, and finally an a db script.
The adbgen program only deals with one structure per file; all member names
occurring in a file are as~umed to be in this structure. The output of adbgen is
an adb script injile (without the . a db suffix).

The header lines, up to the null line, are copied verbatim into the generated C
program. These header lines often have #include statements to read in header
files containing relevant structure declarations.

The second part ofjile.adb specifies a structure.

The third part contains an a db script with any valid a db commands (see
Chapter 6 of this manual), and may also contain adbgen requests, each enclosed
in braces. Request types are:

1) Print a structure member. The request form is {member,format} where
memberis a member name of the s t ru ct ur e given earlier, and format is
any valid adb format request. For example, to plint the p _pid field of the
proc structure as a decimal number, say {p_pid, d}.

2) Reference a structure member. The request form is { *member, base}
where member is the member name whose value is wanted, and base is an
a db register name containing the base address of the structure. For exam­
ple, to get the p _pid field of the proc structure, get the proc structure
address in an adb register, such as <f, and say { *p _pid, <f}.

3) Tell adbgen that the offset is OK. The request form is {OFFSETOK}.
This is useful after invoking another a db script which moves the adb dot.

4) Get the size of the structure. The request form is {SIZEOF}; adbgen
simply replaces this request with the size of the structure. This is useful for
incrementing a pointer to step through an array of structures.

sun
microsystems

115 Revision: A of May 9, 1988

116 Debugging Tools

9.1. Example of adbgen

9.2. Diagnostic Messages
from adbgen

9.3. Bugs in adbgen

5) Get the offset to the end of the structure. The request form is { END } . This
is useful at the end of a structure to get a db to align dot for printing the next
structure member.

By keeping track of the movement of dot, adbgen emits adb code to move for­
ward or backward as necessary before printing any structure member in a script.
The model of dot''s behavior is simple: adbgen assumes that the first line of the
script is of the form struct _address I adb text and that subsequent lines are of the
form +I adb text. This causes dot to move in a sane fashion. Unfortunately,
adbgen does not check the script to ensure that these limitations are met. How­
ever, adbgen does check the size of the structure member against the size of the
adb format code, and warns you if they are not equal.

If there were an include file x . h like this,

struct x
char *x_cp;
char x_c;
int x_i;

} ;

then the adbgen file (call it script. adb) to print it would be:

#include "x.h"

X

./"x_cp"l6t"x_c"8t"x_i"n{x_cp,X}{x_c,C}{x_i,D}

After running adbgen, the output file script would contain:

(~_-l_'_'x ___ c_p_'_'l_6_t_"_x ___ c_"_B_t_"_x ___ i_"_n_x_c_+D ____________________________ ~)
To invoke the script, type:

(x$<script

The adbgen program generates warnings about structure member sizes not
equal to a db format items, and complaints about badly formatted requests. The
C compiler complains if you reference a non-existent structure member. It also
complains about & before array names; these complaints may be ignored.

Structure members that are bit fields cannot be handled, because C will not give
the address of a bit field; the address is needed to determine the offset.

)

Revision: A of May 9, 1988

.~
\.... .. ./

.~
)

c

Index

Special Characters
! adb verb, 90
$ adb verb, 90
I a db verb, 90
I dbx command, 32
: a db verb, 90
= adb verb, 90
> a db verb, 90
? a db verb, 90
@ a db verb, 90

0
0 a db variable -last value printed, 90

1
1 adb variable -last offset, 90

2
2 a db variable- previous value of 1, 90

9
9 a db variable -count on last read, 90

A
a db address mapping, 96
adb commands, 90 thru 96
a db expressions, 88 thru 90
a db variables, 90

0 -last value printed, 90
1 -last offset, 90
2 -previous value of 1, 90
9 - count on last read, 90
b -data segment base, 90
d - data segment size, 90
e - entry point, 90
m- magic number, 90
s - stack segment size, 90
t - text segment size, 90

a db verbs, 90 thru 91
!,90
$,90
1,90
:,90
=,90
>,90
?,90

-117-

a db verbs, continued
@,90
IIETURN, 90

address mapping in a db, 96
assign dbx command, 27

B
b a db variable- data segment base, 90
breakpoints in dbx, 27 thru 29
buttons subwindow in dbxtool, 14

c
call dbx command, 31
catch dbx command, 28
clear command button in dbxtool, 16
clear dbx command, 28
command buttons in dbxtool, 16 thru 17

clear, 16
cont, 16
down, 17
next, 16
print, 16
print*, 16
run, 17
step, 16
stop at, 16
stop in, 16
up, 17
where, 17

command subwindow in dbxtool, 14
commands in a db, 90 thru 96
cent, 7
cent command button in dbxtool,
cent dbx command, 29
core, 7

D
d a db variable- data segment
dbx, 1
dbx commands

1,32
assign, 27
call, 31
catch, 28
clear, 28
cent, 29

Index- Continued

dbx commands, continued
dbxenv, 36
delete all, 28
detach, 36
display,26
dump,27
help,35
ignore, 29
kill,36
next,30
nexti, 32
quit,36
rerun,29
run,29
set, 27
set81, 27
setenv, 36
sh, 35
source, 35
status, 28
step,30
stop at,27
stop if, 28
stop in, 28
stop, 28
stopi, 32
trace,29
tracei, 32
undisplay, 27
whatis,27
when at, 28
when in, 28
whereis, 27
which, 27

dbx machine-level commands, 32 thru 33
dbx miscellaneous commands, 35 thru 36
dbxenv dbx command, 36
. dbxini t, 13
dbxtool, 7
dbxtool command buttons, 16 thru 17

clear, 16
cont, 16
down, 17
next, 16
print, 16
print*, 16
run, 17
step, 16
stop at, 16
stop in, 16
up, 17
where, 17

dbxtool options, 13
dbxtool subwindows

buttons, 14
command, 14
display, 14
source, 14
status, 14

delete all dbx command, 28
detach dbx command, 36
display, 7.
display data in dbx, 26 thru 27

-118-

display dbx command, 26
display subwindow in dbxtool, 14
down command button in dbxtool, 17
dump dbx command, 27

E
e a db variable- entry point, 90
expressions in a db, 88 thru 90

H
help dbx command, 35

I
ignore dbx command, 29

K
kill dbx command, 36

M
m a db variable- magic number, 90
machine-level dbx commands, 32 thru 33
miscellaneous dbx commands, 35 thru 36

N
name data in dbx, 26 thru 27
next,?
next command button in dbxtool, 16
next dbx command, 30
nexti dbx command, 32

0
options

dbxtool, 13

p
print, 7
print command button in dbxtool, 16
print dbx command, 26

Q
quit dbx command, 36

R
rerun dbx command, 29
RETURN a db verb, 90
run command button in dbxtool, 17
run dbx command, 29
running programs in dbx, 29 thru 31

s
s a db variable- stack segment size, 90
scrolling in dbxtool, 15
set dbx command, 27
set81 dbxcommand, 27
setenv dbx command, 36
setting breakpoints in dbx, 27 thru 29
sh dbx command, 35
source dbx command, 35

c source subwindow in dbxtool, 14
status dbx command, 28
status subwindow in dbxtool, 14
step, 7
step command button in dbxtool, 16
step dbx command, 30
stop, 7
stop at command button in dbxtool, 16
stop at dbx command, 27
stop dbx command, 28
stop if dbx command, 28
stop in command button in dbxtool, 16
stop in dbx command, 28
stopi dbx command, 32

T
t a db variable -text segment size, 90
trace dbx command, 29
tracei dbx command, 32
tracing programs with dbx, 29 thru 31

u
undisplay dbx command, 27
up command button in dbxtool, 17

v
variables in a db, 90

0 -last value printed, 90
1 -last offset, 90
2 -previous value of 1, 90
9 - count on last read, 90
b -data segment base, 90
d- data segment size, 90
e - entry point, 90
m- magic number, 90
s - stack segment size, 90
t - text segment size, 90

verbs in a db, 90 thru 91
!,90
$,90
/,90
:,90
=,90
>,90
?,90
@,90
RETURN, 90

w
what is dbx command, 27
when at dbx command, 28
when in dbx command, 28
where, 7
where command button in dbxtool, 17
wherei s dbx command, 27
which dbx command, 27

Index- Continued

-119-

	Title Page

	Contents

	Tables

	Figures

	1. Introduction

	2. dbx and dbxtool Compared

	3. dbxtool

	4. dbx

	5. adb Tutorial

	6. Sun386i adb Tutorial

	7. adb Reference

	8. Debugging SunOS Kernels with adb

	9. Generating adb Scripts with adbgen

	Index

