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Network Services 

This guide gives an oveiview of the network seivices available in the Sun 4.0 
release. To appreciate the design of these seivices, it's necessary to see that 
SunOS is structurally a network UNIX system, and is designed to evolve as net­
work technology changes. 

SunOS originally diverged from the 4.2BSD UNIX system, a system that already 
strained at the limits of the UNIX system's original simplicity of design. It was 
with 4.2BSD that many of the network seivices found in SunOS were first intro­
duced. Fortunately, the Berkeley designers found alternatives to wedging every­
thing into the kernel. They implemented network services by offloading certain 
jobs to specialized daemons (seiver processes) working in close cooperation with 
the kernel, rather than by adding all new code to the kernel itself. SunOS has 
continued this line of development. Its expanding domain of network seivices is 
unifonnly built upon a daemon (seiver) based architecture. This is true of the 
most fundamental network seivices - the Network File System (NFS)1 and the 
portmapper - as well as of basic system seivices like the network naming ser­
vice (The Yellow Pages: YP), the Remote Execution Facility (REX), the Net­
work Lock Manager, and the Status Monitor. 

A machine that provides resources to the network is called a "server", while a 
machine that employs these resources is called a "client". A machine may be 
both a server and a client, and when NFS resources (files and directories) are at 
issue, often is. A person logged in on a client machine is a "user", while a pro­
gram or set of programs that run on a client is an "application". There is a dis­
tinction between the code implementing the operations of a filesystem, ( called 
''filesystem operations") and the data making up the filesystem' s structure and 
contents ( called ''filesystem data"). 

Network seivices are added to SunOS by means of seiver processes that are 
based upon Sun's RPC (Remote Procedure Call) mechanism. These seivers are 
executed on all machines that provide the seivice. Each seiver communicates 
with the kernel proper and with its fellows on other machines as necessary to get 
its job done. Sun daemons differ significantly from those that were inherited 
from Berkeley in that they are all based on RPC. As a consequence, they 
automatically benefit from the seivices provided by RPC, and the External Data 

1 The NFS is somewhat of a special case here because-at least in SunOS-much of its code is in the 
kernel. 

3 Revision A, of 9 May 1988 



4 Network Programming 

The Major Network Services 

Representation (XOR) that it, in turn, is built upon - for example, the data por­
tability provided by XOR and RPC's authentication system. 

Anything built with RPC/XDR is automatically a network application, as is any­
thing that stores data in NFS files, even if it doesn't use RPC. Furthermore, 
insofar as network applications can presume the functionality of other network 
applications and call upon their services, all network applications are network 
services as well. The XDR/RPC/NFS environment then, is inherently extensible. 
New network services can be easily added by building upon the foundation 
already in place. In SunOS, then, network services are analogous to UNIX com­
mands - anyone can add one, and when they do they are effectively extending 
the "system". 

The Remote Procedure Call (RPC) facility is a library of procedures that provide 
a means whereby one process (the caller process) can have another process (the 
server process) execute a procedure call, as if the caller process had executed the 
procedure call in its own address space (as in the local model of a procedure 
call). Because the caller and the server are now two separate processes, they no 
longer have to live on the same physical machine. 

The External Data Representation (XDR)is a specification for the portable data 
transmission standard. Together with RPC, it provides a kind of standard 1/0 
library for interprocess communication. Thus programmers now have a stand­
ardized access to sockets without having to be concerned about the low-level 

n , v 

details of socket-based IPC. n 
The Network File System (NFS), is an operating system-independent service 
which allows users to mount directories, even root directories, across the net-
work, and then to treat those directories as if they were local. There is also an 
option for a secure mount involving DES authentication of user and host-for 
more information about it, see the Secure Networking Features chapter of Secu-
rity Features Guide. 

The portmapper is a utility service that all other services use. It's a kind of regis­
trar that keeps track of the correspondence between ports (logical communica­
tions channels) and services on a machine, and provides a standard way for a 
client to look up the port number of any remote program supported by the server. 

Sun's Yellow Pages (YP) is a network service designed to ease the job of admin­
istering the large networks that NFS encourages. The YP is a replicated, read­
only, database service. Network file system clients use it to access network-wide 
data in a manner that is entirely independent of the relative locations of the client 
and the server. The YP database typically provides password, group, network, 
and host information. 

As part of its System V compatibility program, Sun now supports System-V 
(SVID) compatible advisory file and record locking for both local and NFS 
mounted files. User programs simply issue lock£ () and fcntl () system 
calls to set and test file locks - these calls are then processed by Network Lock 
Manager daemons, which maintain order at the network level, even in the face of 
multiple machine crashes. n 
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The lock-manager daemons are able to manage machine crashes because they are 
based upon a general purpose Network Status Monitor. This monitor provides a 
mechanism by which network applications can detect machine reboots and 
trigger application-specific recovery mechanisms. NFS is therefore equipped 
with a flexible fault-tolerant recovery capability. 

There are other network services - NeWS and REX2 are two obvious examples 
- and there are many others that are certainly services in the broad sense. This 
section, however, is intended as an introduction, and it covers only the funda­
mental services noted above. 

This release is the first that supports diskless Sun workstations entirely by way of 
the NFS protocol. Previous releases depended on Sun's proprietary ND protocol 
to support diskless machines. 

The elimination of ND made a number of improvements possible: 

o Network administration is easier. It's no longer necessary to guess at the 
disk utilization appropriate to a diskless client when installing or 
reconfiguring it. 

o For this same reason, and because diskless clients now have root file systems 
on their servers, rather than ND partitions, individual systems can be more 
easily tuned for maximum efficiency. 

o The system provides better support for heterogeneity. Because all client 
filesystem resources - the root filesystem, swap, and home directories -
exist on the server as normal directories and files, the server can more easily 
support clients with different architectures. 

o The network software no longer contains proprietary code. 

In order to serve diskless clients, NFS servers now allow client root processes 
access to the client rootfile systems. 

This Network Programming manual is divided into three parts. 

PART ONE, which you are now reading, focuses on Sun's network programming 
mechanisms. It includes: 

o This Network Services overview, which attempts to introduced the funda­
mental network services without dealing with any protocol or implementa­
tion related issues. 

o The rpcgen Programming Guide, which introduces the rpcgen protocol 
compiler and the C-like language that it uses to specify RPC applications 
and define network data. In almost all cases, rpcgen will allow network 
applications developers to avoid the use of lower-level RPC mechanisms. 

2 These, however, are not fundamental network services, in the same sense as RPC or the NFS. REX, for 
example, cannot be guaranteed to be portable to a non-UNIX environment. This is true because the 
executability of a program depends on many environmental factors - from machine architecture to operating­
system services - that are not universally available. 
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1.2. Sun's Network File 
System 

D The Remote Procedure Call Programming Guide, is intended for program­
mers who wish to understand the lower-level RPC mechanisms. Readers are 
assumed to be familiar with the C language and to have a working 
knowledge of network theory. 

o The External Data Representation: Sun Technical Notes, which introduces 
XOR and explains the justification for its "canonical" approach to network 
data interchange. This section also gives Sun implementation information 
and a few examples of advanced XOR usage. 

PART TWO includes a number of number of protocol specifications. One of 
these, the External Data Representation Protocol Specification, has been 
accepted (as of the date of this printing) as an ARPA RFC (Request for Com­
ments). These protocol specifications include: 

o The External Data Representation Protocol Specification, which includes a 
complete specification of XOR data types, a discussion of the XOR approach 
and a number of examples of XOR usage. 

o The Remote Procedure Call Protocol Specification, which includes a discus­
sion of the RPC model, a detailed treatment of the RPC authentication facili­
ties and a complete specification of the portmapper Protocol. 

o The Network File System: Version 2 Protocol Specification, which includes 
a complete specification of the Mount Protocol, as well as the NFS 
specification itself. 

PART THREE documents Berkeley style, socket-Based Inter-Process Communi­
cations. In includes: 

o A Socket-Based Interprocess Communications Tutorial, which assumes little 
more that basic networking concepts and introduces socket-based IPC. 
Includes many examples. 

o An Advanced Socket-Based Interprocess Communications Tutorial, which 
takes up where the Tutorial leaves off. 

o Berkeley-Style /PC Implementation Notes, which describes the low-level 
networking primitives (e.g. accept(), bind () and select()) which ori­
ginated with the 4.2BSO UNIX system. This document is of interest pri­
marily to system programmers and aspiring UNIX gurus. 

Sun's Network File System is a facility for sharing files in a heterogeneous 
environment of machines, operating systems, and networks. Sharing is accom­
plished by mo-qnting a remote filesystem, then reading or writing files in place. 
The NFS is open-ended, and users are encouraged to interface it with other sys­
tems. 

The NFS was not designed by extending Sun OS onto the network - such an 
approach was considered unacceptable because it would mean that every com­
puter on the network would have to run SunOS. Instead, operating-system 

n 

n 

independence was taken an an NFS design goal, along with machine indepen- r""\ .. • 
dence, crash recovery, transparent access and high performance. The NFS was \ } 
thus designed as a network services, and not as a distributed operating system. 
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As such, it is able to support distributed applications without restricting the net­
work to a single operating system. 

Sun's implementation of the NFS is integrated with the Sun OS kernel for reasons 
of efficiency, although such close integration is not strictly necessary. Other ven­
dors will make different choices, as dictated by their operating environments and 
applications. And because of NFS' s open design, all these applications will be 
able to work together on a single network. 

The traditional timesharing environment looks like this: 

terminal! 

Mainframe 

terminal3 

terminal4 
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Example NFS usage 

The major problem with this environment is competition for CPU cycles. The 
workstation environment solves that problem, but requires more disk drives. A 
network environment looks like this: 

workstation2 workstation3 workstation4 

Network 

workstation I server 

printer 

Sun's goal with NFS was to make all disks available as needed. Individual 
workstations have access to all infonnation residing anywhere on the network. 
Printers and supercomputers may also be available somewhere on the network. 

This section gives three examples of NFS usage. 

Example 1: Mounting a Remote 
Filesystem 

Suppose your machine name is client, that you want to read some on-line 
manual pages, and that these pages are not available on your server machine, 
named server, but are available on another machine named docserv. Mount 
the directory containing the manuals as follows: 

client# /usr/etc/mount docserv:/usr/man /usr/man 

Note that you have to be superuser in order to do this. Now you can use the man 
command whenever you want. Try running the mount -p command (on 
client) after you've mounted the remote filesystem. Its output will look 
something like this: 

server:/roots/client I nfs rw,hard 0 0 
server:/usr /usr nfs ro 0 0 
server:/home/server /home/server nfs rw,bg 0 0 
server:/usr/local /usr/local nfs ro,soft,bg 0 0 
docserv:/usr/man /usr/man nfs ro,soft,bg 0 0 

You can remote mount not only filesystems, but also directory hierarchies inside 
filesystems. In this example, /usr /man is not a filesystem mount point-it's 
just a subdirectory within the /us r filesystem. Here's a diagram showing a few 

n 

n 
' ) 

key directories of the three machines involved in this example. Ellipses n 
represent machines, and NFS-mounted filesystems are shown boxed. There are 

1

\ ) 
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U five such boxed directories, corresponding to the five lines shown in the 

u 

u 

mount -p output above. The docserv: /usr/man directory is shown 
mounted as the /usr /man directory on client, as it would be by the mount 
command given above. 

Figure 1-1 An Example NFS Filesystem Hierarchy 

/lib 

Example 2: Exporting a 
Filesystem 

/usr /etc /lib /usr 

/usr/bin /usr/man 
I 

/usr/bin /usr/local /usr/man 

Suppose that you and a colleague need to work together on a programming pro­
ject. The source code is on your machine, in the directory /usr/proj. It 
doesn't matter whether your workstation is a diskless node or has a local disk. 
Suppose that after creating the proper directory your colleague tried to remote 
mount your directory. Unless you have explicitly exported the directory, your 
colleague's remote mount will fail with a "permission denied" message. 

To export a directory, first become superuser and then edit the/ etc/ exports 
file. If your colleague is on a machine named cohort, then you need to run 
exportf s ( 8) (after putting this line in/ etc/ exports): 

/usr/proj -access=cohort 

If no explicit access is given for a directory, then the system allows anyone on 
the network to remote mount your directory. By giving explicit access to 
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Example 3: Administering a 
Server Machine 

NFS Architecture 

Transparent Information Access 

Different Machines and 
Operating Systems 

cohort, you have denied access to others. (For more details about the 
/etc/exports, see the exports ( 5) man page). The NFS mount request 
servermountd (see The NFS Interface, below) reads the /etc/xtab file 
whenever it receives a request for a remote mount. Now your cohort can remote 
mount the source directory by issuing this command: 

cohort# /etc/mount client:/usr/proj /usr/proj 

This, however, isn't the end of the story, since NFS requests are also checked at 
request time. If you do nothing, the accesses that you've established in your 
/etc/exports file will stay in effect, but you (and your programs) are free to 
change them at any time with the exportfs command and system call. 

Since both you and your colleague will be able to edit files on /usr /pro j, it 
would be best to use the s cc s source code control system for concurrency con­
trol. 

System administrators must know how to set up the NFS server machine so that 
client workstations can mount all the necessary filesystems. You export filesys­
tems (that is, make them available) by placing appropriate lines in the 
I etc/ exports file. Here is a sample/ etc/ exports file for a typical 
server machine: 

I 
/exec 
/usr 
/home/server 
/home/local.sun2 
/home/local.sun3 

-access=systems 
-access=engineering:joebob:shilling 
-access=engineering 
-access=engineering 
-access=engineering:athena 
-access=engineering 

Machine names ornetgroups, such as staff (see netgroup(5)) may be 
specified after the filesystem, in which case remote mounts are limited to 
machines that are a member of this netgroup. For the complete syntax of the 
/etc/exports file, see exports ( 5). At any time, the system administrator 
can see which filesystems are remote mounted by executing the showmount 
command. 

Users are able to get directly to the files they want without knowing the network 
address of the data. To the user, all NFS-mounted filesystems look just like 
private disks. There's no apparent difference between reading or writing a file on 
a local disk, and reading or writing a file on a disk in the next building. Informa­
tion on the network is truly distributed. 

No single vendor can supply tools for all the work that needs to get done, so 
appropriate services must be integrated on a network. NFS provides a flexible, 
operating system-independent platform for such integration. 
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A distributed system must have an architecture that allows integration of new 
software technologies without disturbing the extant software environment. Since 
the NFS network-seivices approach does not depend on pushing the operating 
system onto the network, but instead offers an extensible set of protocols for data 
exchange, it supports the flexible integration of new software. 

The administration of large networks can be complicated and time-consuming, 
yet they should (ideally) be at least as easy to administer as a set oflocal filesys­
tems on a timesharing system. The UNIX system has a convenient set of mainte­
nance commands developed over the years, and the Yellow Pages (YP), a NFS­
based network database seivice, has allowed them to be adapted and extended for 
the pmpose of administering a network of machines. The YP also allows certain 
aspects of network administration to be centralized onto a small number of file 
seivers, e.g. only seiver disks must be backed up in networks of diskless clients. 
An overview of the YP facility is presented in the The Yellow Pages Database 
Service section of this manual. 

The YP interface is implemented using RPC and XOR, so it is available to non­
UNIX operating systems and non-Sun machines. YP seivers do not inteipret 
data, so it is easy for new databases to be added to the YP seivice without modi­
fying the seivers. 

NFS's reliability derives from the robustness of the 4.2BSD filesystem, from the 
stateless NFS protocol3, and from the daemon-based methodology by which net­
work services like file and record locking are provided .. See The Network Lock 
Manager for more details on locking. In addition, the file seiver protocol is 
designed so that client workstations can continue to operate even when the seiver 
crashes and reboots. Sun achieves continuation after reboot without making 
assumptions about the reliability of the underlying seiverhardware. 

The major advantage of a stateless seiver is robustness in the face of client, 
seiver, or network failures. Should a client fail, it is not necessary for a seiver 
( or human administrator) to take any action to continue normal operation. 
Should a seiver or the network fail, it is only necessary that clients continue to 
attempt to complete NFS operations until the seiver or network gets fixed. This 
robustness is especially important in a complex network of heterogeneous sys­
tems, many of which are not under the control of a disciplined operations staff, 
and which may be running untested systems often rebooted without warning. 

The flexibility of the NFS allows configuration for a variety of cost and perfor­
mance trade-offs. For example, configuring seivers with large, high-performance 
disks, and clients with no disks, may yield better performance at lower cost than 
having many machines with small, inexpensive disks. Furthermore, it is possible 
to distribute the filesystem data across many seivers and get the added benefit of 
multiprocessing without losing transparency. In the case of read-only files, 
copies can be kept on several seivers to avoid bottlenecks. 

3 The NFS protocol is stateless because each transaction stands on its own. The server doesn't have to 

remember anything - about clients or files - between transactions. 
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The Sun NFS Implementation 

Sun has also added several performance enhancements to the NFS, such as "fast 
paths" for key operations, asynchronous seivice of multiple requests, disk-block 
caching, and asynchronous read-ahead and write-behind. The fact that caching 
and read-ahead occur on both client and seiver effectively increases the cache 
size and read-ahead distance. Caching and read-ahead do not add state to the 
seiver; nothing ( except performance) is lost if cached information is thrown 
away. In the case of write-behind, both the client and seiver attempt to flush crit­
ical information to disk whenever necessary, to reduce the impact of an unantici­
pated failure; clients do not free write-behind blocks until the seiver confirms 
that the data is written. 

In the Sun NFS implementation, there are three entities to be considered: the 
operating system interface, the virtual file system (VFS), interface, and the net­
work file system (NFS) interface. The UNIX operating system interface has been 
preseived in the Sun implementation of the NFS, thereby insuring compatibility 
for existing applications. 

The VFS is best seen as a layer that Sun has wrapped around the traditional 
UNIX filesystem. This traditional filesystem is composed of directories and files, 
each of which has a corresponding in ode (index node), containing administra­
tive information about the file, such as location, size, ownership, permissions, 
and access times. Inodes are assigned unique numbers within a filesystem, but a 
file on one filesystem could have the same number as a file on another filesystem. 

n 

This is a problem in a network environment, because remote filesystems need to r-'\ 
be mounted dynamically, and numbering conflicts would cause havoc. To solve 1,. ) 
this problem, Sun designed the VFS, which is based on a data structure called a 
vnode. In the VFS, files are guaranteed to have unique numerical designators, 
even within a network~ Vnodes cleanly separate filesystem operations from the 
semantics of their implementation. Above the VFS interface, the operating sys-
tem deals in vnodes; below this interface, the filesystem may or may not imple-
ment inodes. The VFS interface can connect the operating system to a variety 
of filesystems (for example, 4.2 BSD or MS-DOS). A local VFS connects to 
filesystem data on a local device. 

n 
\ ,/ 
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The remote VFS defines and implements the NFS interface on the basis of the 
RPC and XDR mechanisms. The figure below shows the flow of a request from 
a client (at the top left) to a collection of filesystems. 

sys calls 

VFS 
interface 

4.2 
VFS 

NFS 
client 

RPC/ 
XDR 

Network 

NFS 
server 

RPC/ 
XDR 

VFS 

4.2BSD 
UFS 

In the case of access through a local VFS, requests are directed to filesystem data 
on devices connected to the client machine. In the case of access through a 
remote VFS, the request is passed through the RPC and XDR layers onto the net. 
In the current implementation, Sun uses the UDP/IP protocols and the Ethernet. 
On the server side, requests are passed through the RPC and XDR layers to an 
NFS server, the server uses vnodes to access one of its local VFSs and service 
the request. This path is retraced to return results. 

Sun's implementation of the NFS provides five types of transparency: 

1. Filesystem Type: The vnode, in conjunction with one or more local VFSs 
(and possibly remote VFSs) pennits an operating system (hence client and 
application) to interface transparently to a variety of filesystem types. 

2. Filesystem Location: Since there is no differentiation between a local and a 
remote VFS, the location of filesystem data is transparent. 

3. Operating System Type: The RPC mechanism allows interconnection of a 
variety of operating systems on the network, and makes the operating system 
type of a remote server transparent. 

4. Machine Type: The XDR definition facility allows a variety of machines to 
communicate on the network and makes the machine type of a remote server 
transparent. 
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The NFS Interface 

The NFS and the Mount 
Protocol 

More precisely, NFS never inJerprets 
pathnames. Some NFS procedures 
take pathname arguments, but they 
are just strings to NFS. 

5. Network Type: RPC and XOR can be implemented for a variety of transport 
protocols, thereby making the network type transparent. 

Simpler NFS implementations are possible at the expense of some advantages of 
the Sun version. In particular, a client (or server) may be added to the network 
by implementing one side of the NFS interface. An advantage of the Sun imple­
mentation is that the client and server sides are identical; thus, it is possible for 
any machine to be client, server, or both. Users at client machines with disks can 
arrange to share over the NFS without having to appeal to a system administrator 
or configure a different system on their workstation. 

As mentioned in the preceding section, a major advantage of the NFS is the abil­
ity to mix filesystems. In keeping with this, Sun encourages other vendors to 
develop products to interface with Sun network services. RPC and XOR have 
been placed in the public domain, and serve as a standard for anyone wishing to 
develop applications for the network. Furthermore, the NFS interface itself is 
open and can be used by anyone wishing to implement an NFS client or server 
for the network. 

The NFS interface defines traditional filesystem operations for reading direc­
tories, creating and destroying files, reading and writing files, and reading and 
setting file attributes. The interface is designed so that file operations address 
files with an uninterpreted identifier called a.filehandle, a starting byte address, 
and a length in bytes. NFS never deals with pathnames, only with filehandles. It 
gets those filehandles from mount. 

Given a filehandle for a directory, a client program can use NFS procedures to 
get other filehandles and thereby navigate throughout the directories and files of a 
filesystem. A client must, however, get its first filehandle for a filesystem by 
using RPC to call the mount server. Mount will return a filehandle that grants 
access to the filesystem. Figure 1-2 shows the interaction between a client pro­
gram, a mount server, and an NFS server. Note that the only interface between a 
mount server and an NFS server is a common filehandle. 
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Figure 1-2 Mount and NFS Servers 
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Filehandle i-----~ 

Mount 
Server 

NFS 
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Legend: 1 Client sends pathnarre to rrount server 
2. Mount server returns corresponding filehandle 
3. Client sends f ilehandle to NFS server 

Pathname Parsing 

Although many operating systems have analogs to the hierarchical NFS directory 
and file structure, the conventions used by operating systems to formulate path­
names vary considerably. To accommodate the many possible path naming con­
ventions, the mount procedure is not defined in the NFS protocol but in a 
separate mount protocol. At present, there is one mount protocol, the UNIX 
mount protocol, but others can be defined as necessary. The mount procedure in 
the UNIX mount protocol converts a UNIX pathname into a filehandle. If local 
pathnames can be reasonably mapped to UNIX pathnames, an NFS server 
developer may wish to implement the UNIX mount protocol, even though the 
server runs on a different operating system. This approach makes the server 
immediately usable by clients that use the UNIX protocol and eliminates the 
need to develop a new mount command for UNIX-based clients. Alternatively, 
a server developer can obtain a new remote program number from Sun and define 
a new mount protocol. For example, the mount procedure in a VMS Mount 
protocol would take a VMS file specification rather than a UNIX pathname. 
Mount protocols are not mutually exclusive; a server could, for example, support 
the UNIX protocol for UNIX clients and a Multics protocol for Multics clients. 
Both protocols would return filehandles defined by the NFS implementation on 
their server. 

The mount protocols remove pathname parsing from the NFS protocol, so that a 
single NFS protocol can work with multiple operating systems. This means that 
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users and client programs need to know the details of a server's path naming con­
ventions only when mounting a filesystem. Different server path naming con-
ventions therefore typically have little impact on users. 

Because mounts are relatively infrequent operations, mount servers can be imple­
mented outside of operating system kernels without materially affecting overall 
file system performance. Because user-level code is easier to write and far easier 
to debug than kernel code, mount servers are fairly simple to put together. 

Export and Mount Lists 

Technically, a mount protocol needs to define only a mount procedure that 
bootstraps the first filehandle for a filesystem. (By convention, a mount protocol 
should also define a NULL procedure). However, adding other procedures can 
simplify network management. As a convenience to clients, a mount protocol 
might provide a procedure that returns a list of filesystems exported by a server. 
Another useful item is a mount list, a list of clients and the pathnames they have 
mounted from the server. The UNIX mount protocol defines a mount list and a 
procedure called readmount () that returns the list. With the help of read­
mountO, an administrator can notify the clients of a server that is about to be 
shutdown. 

n 

Note that a mount list makes a mount server stateful. Recall, however, that the 
business of a mount server is to translate pathnames into filehandles; the state 
represented by a mount list does not affect a server's ability to operate correctly. 
Nafteither servhersMnor clients need takhe anuldy actiond ttho update or redbuild a 

1
~ount list n 

er a eras . ount server users s o regali e mount an export 1sts pro- · 
vided by a mount server as "accessories" that are usually, ,but not necessarily, 
accurate. 

UNIX Mount Protocol Procedures 

The mount protocol consists of the six remote procedures listed in Table 1-1. 
The mount () procedure transforms a UNIX pathname into a filehandle which 
the client can then pass to the associated NFS server. The pathname passed to 
the mount procedure usually refers to a directory, often the root directory of a 
filesystem, but it can name a file instead. In addition to returning the filehandle, 
mount adds the client's host name and the pathname to its mount list. The 
readmount () procedure returns the server's mount list. unmount () 
removes an entry from the server's mount list and unmount all () removes all 
of a client's mount list entries. The reade:Kport () procedure returns the 
server's export list. 

~~sun ~~ microsystems 
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Table 1-1 Mount Remote Procedures, Version 1 

Number Name Description 
0 null Do nothing 
1 mount Return filehandle for pathname 
2 readmount Return mount list 
3 unmount Remove mount list entry 
4 unmount all Clear mount list 
5 readexport Return export list 

A Stateless Protocol The NFS interface is defined so that·a server can be stateless. This means that a 
server does not have to remember from one transaction to the next anything 
about its clients, transactions completed or files operated on. For example, there 
is no open () operation, as this would imply state in the server; of course, the 
UNIX interface uses an open ( ) operation, but the infonnation in the UNIX 
operation is remembered by the client for use in later NFS operations. 

An interesting problem occurs when a UNIX application unlinks an open file. 
This is done to achieve the effect of a temporary file that is automatically 
removed when the application tenninates. If the file in question is served by the 
NFS, the call to unlink () will remove the file, since the server does not 
remember that the file is open. Thus, subsequent operations on the file will fail. 
In order to avoid state on the server, the client operating system detects the situa­
tion, renames the file rather than unlinking it, and unlinks the file when the appli­
cation tenninates. In certain failure cases, this leaves unwanted "temporary" files 
on the server; these files are removed as a part of periodic filesystem mainte­
nance. 

Another example of the advantages gained by having the NFS interface to the 
UNIX system without introducing state is the mount command. A UNIX client 
of the NFS "builds" its view of the filesystem on its local devices using the 
mount command; thus, it is natural for the UNIX client to initiate its contact 
with the NFS and build its view of the filesystem on the network with an 
extended mount command. This mount command does not imply state in the 
server, since it only acquires infonnation for the client to establish contact with a 
server. The mount command may be issued at any time, but is typically exe­
cuted as a part of client initialization. The corresponding umount command is 
only an infonnative message to the server, but it does change state in the client 
by modifying its view of the filesystem on the network. 

The major advantage of a stateless server is robustness in the face of client, 
server or network failures. Should a client fail, it is not necessary for a server ( or 
human administrator) to take any action to continue nonnal operation. Should a 
server or the network fail, it is only necessary that clients continue to attempt to 
complete NFS operations until the server or network is fixed. This robustness is 
especially important in a complex network of heterogeneous systems, many of 
which are not under the control of a disciplined operations staff and may be 
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Note: Network access to devices 
such as tape drivers is a good idea, 
but it is best implemented as a 
separate network service whose 
requirement for stateful operation is 
kept separate from network access 
to files. 

running untested systems and/or may be rebooted without warning. 

An NFS server can be a client of another NFS server. However, a server will not 
act as an intennediary between a client and another server. Instead, a client may 
ask what remote mounts the server has and then attempt to make similar remote 
mounts. The decision to disallow intennediary servers is based on several fac-
tors. First, the existence of an intennediary will impact the perfonnance charac-
teristics of the system; the potential perfonnance implications are so complex 
that it seems best to require direct communication between a client and server. 
Second, the existence of an intennediary complicates access control; it is much 
simpler to require a client and server to establish direct agreements for service. 
Finally, disallowing intermediaries prevents cycles in the service arrangements; 
Sun prefers this to detection or avoidance schemes. 

The NFS currently implements UNIX file protection by making use of the 
authentication mechanisms built into RPC. This retains transparency for clients 
and applications that make use of UNIX file protection. Although the RPC 
definition allows other authentication schemes, their use may have adverse 
effects on transparency. 

Note that the NFS, although very UNIXlike, is not a UNIX filesystem per se -
there are cases in which its behavior differs from that which would be expected 
of the UNIX system proper: 

o The guaranteed APPEND _MODE is the most striking of these differences, 

() 

for it simply is not supported by NFS. n 
o The "special file" device abstraction - inherently stateful as it is - is sup­

ported for remote mounts only when both the client and the server are run­
ning system software release 3.2 or later. In other cases, devices are imple­
mented in a local/ dev virtual file system. 

o There are also minor incompatibilities between NFS and UNIX file-system 
interfaces that are dictated by the very nature of remote NFS mounts. For 
example, a local NFS daemon simply can't tell that a remote disk partition is 
full until the remote NFS daemon tells it so. Rather than wait for a positive 
confinn on every write - a strategy that would impose unacceptable perfor­
mance problems - the local NFS code caches writes and returns to its 
caller. If a remote error occurs, it gets reported back as soon as possible, but 
not as immediately as would a local disk. 

File locking and other inherently stateful functionality has been omitted from the 
base NFS definition. In this way, Sun has been able to preserve a simple, general 
interface that can be implemented by a wide variety of customers. File locking 
has been provided as a NFS-compatible network service, and Sun is considering 
doing the same for other other features that inherently imply state and/or distri­
buted synchronization. These features, too, will be kept separate from the base 
NFS definition. In any case, the open nature of the RPC and NFS interfaces 
means that customers and users who need stateful or complex features can imple­
ment them "beside" or "within" the NFS. 
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Sun supports a small number of non-NFS networking operations that are useful 
for temporary inter-host connections, isolated file transfers, and access to non­
UNIX systems (e.g. TOPS-10 machines on the Arpanet). These operations 
include rep, rlogin, rsh, ftp, telnet, and tftp. 

o rep is a re~ote copy utility program that uses BSD networking facilities to 
copy files from one machine to another. The rep user supplies the path 
name of a file on a remote machine, and receives a stream of bytes in return. 
Access control is based on the client's login name and host name. 

The major problem with rep is that it's not transparent to the user, who 
winds up with a redundant copy of the transferred file. With the NFS, by 
contrast, only one copy of the file is necessary. Another problem is that rep 
does nothing but copy files. To use it a a model for additional network ser­
vices would be to introduce a remote command for every regular command: 
for example, rdif f to perfonn differential file comparisons across 
machines. By providing for the sharing of filesystems, NFS makes this 
unnecessary. 

o r login allows the user to log into a remote machine, directly accessing 
both its processor and its mounted file systems. It remains useful in NFS­
based networks because, with it, users can directly execute commands on 
remote machines over the network. 

o rsh allows the user to execute a command on a remote machine. Ifno com­
mand is specified, rsh is equivalent to rlogin. Unlike the REX-based on 
command, rs h does not make a great effort to copy the users local environ­
ment to the remote machine before executing the command. 

o ftp is very much like rep, in that it supports file copying between 
machines. However, ftp is more general that rep, and is not restricted to 
copies between two UNIX systems. 

o telnet communicates with another host using the TELNET protocol. It 
isn't used much because rlogin is the standard mechanism for local inter­
host communication. 

o tftp is like ftp, expect that it is simpler and less reliable. This is because 
tftp's transfer protocol is very simple; it is less robust that ftp's protocol, 
and offers fewer options. 

Client programs need a way to find server programs; that is, they need a way to 
look up and find the port numbers of server programs.4 Network transport ser­
vices do not provide such a service; they merely provide process-to-process mes­
sage transfer across a network. A message typically contains a transport address 
which contains a network number, a host number, and a port number. (A port is a 
logical communications channel in a host - by waiting on a port, a process 
receives messages from the network). 

4 The naming of services by way of the port-nwnber segment of their IP address is mandated by the Internet 
protocols. Given this, clients face the problem of determining which ports are associated with the services they 
wish to use. 
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Port Registration 

How a process waits on a port varies from one operating system to the next, but 
all provide mechanisms that suspend a process until a message arrives at a port. 
Thus, messages are not sent across networks to receiving processes, but rather to 
the ports at which receiving processes wait for messages. Ports are valuable 
because the allow message receivers to be specified in a way that is independent 
of the conventions of the receiving operating system. The portmapper protocol 
defines a network service that provides a standard way for clients to look up the 
port number of any remote program supported by a server. Because it can be 
implemented on any transport that provides the equivalent of ports, it provides a 
single solution to a general problem that works for all clients, all servers and all 
networks. 

Every portmapper on every host is associated with port number 111. The port­
mapper is the only network service that must have such a well-known (dedicated) 
port. Other network services can be assigned port numbers statically or dynami­
cally so long as they register their ports with their host's portmapper. For exam­
ple, a server program based on Sun's RPC library typically gets a port number at 
run time by calling an RPC library procedure. Note that a given network service 
can be associated with port number 256 on one server and with port number 885 
on another; on a given host, a service can be associated with a different port 
every time its server program is started. Delegating port-to-remote program 
mapping to portmappers also automates port number administration. Statically 
mapping ports and remote programs in a file duplicated on each client would 
red quidre updating allk m(Thappaling file~ whefnelve~ a nthew remote program was i~tro- . n 
uce to a networ . e temative o p acmg e port-to-program mappmgs m 

a shared NFS file would be too centralized, and if the fileserver went down the 
whole network would go down with it). 

The port-to-program mappings which are maintained by the portmapper server 
are called a portmap. The portmapper is started automatically whenever a 
machine is booted. As shown in the Typical Portmapping Sequence figure, 
below, both server programs and client programs call portmapperprocedures.s 
As part of its initialization, a server program calls its host's portmapper to create 
a portmap entry. Whereas server programs call portmappers to update portmap 
entries, clients call portmappers to query portmap entries. To find a remote 
program's port, a client sends and RPC call message to a server's portmapper; if 
the remote program is supported on the server, the portmapper returns the 
relevant port number in an RPC reply message. The client program can then 
send RPC call messages to the remote program's port. A client program can 
minimize its portmapper calls by caching the port numbers of recently called 
remote programs. 

NOTE Note that the portmapper provides and inherently stateful service because a port­
map is a set of associations between registrants and ports. 

5 Although client and server programs and client and server machines are usually distinct, they need not be. 
A server program can also be a client program, as when an NFS server calls a portmapper server. Likewise, 
when a client program directs a "remote" procedure call to its own machine, the machine acts as both client and 
server. 
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Typical Portmapping Sequence 

Client Machine Network Server Machine 

Client ® 
Program ffl Port rra pper 

G) 
® Server 

Program 

Legend: 1 Server registers with portrrapper 

2. Client gets server's port from portrrapper 

3. Client calls server 

The portmapper protocol (for details, see the Port Mapper Program Protocol 
section of the Remote Procedure Calls: Protocol Specification chapter) provides 
a procedure, calli t(), by which the portmapper can assist a client in making a 
remote procedure call. A client program passes the target procedure's program 
number, version number, procedure number (for a discussion of these numbers, 
see the Remote Procedure Call Programming Guide chapter) and arguments in 
an RPC call message. callit () looks up the target procedure's port number 
in the portmap and sends an RPC call message to the target procedure including 
in it the arguments received from the client. When the target procedure returns 
results to calli t(), calli t () returns the results to the client program; also 
returned is the target procedure's port number so the client can subsequently call 
the target procedure directly 

Note that, because every instance of a remote program can be mapped to a dif­
ferent port on every server, a client has no way to broadcast a remote procedure 
call directly. However, the portmapper callit () procedure can be used to 
broadcast a remote procedure call indirectly, since all portmappers are associated 
with port number 111. One way for a client to find a server running a remote 
program is to broadcast a call to callit(), asking it to call procedure O of the 
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1.4. The Yell ow Pages 
Database Service 

What Are The Yellow Pages? 

Yellow Pages Maps 

desired remote program. If this call is broadcast to all seivers, the first reply 
received is likely to be from the seiver with the lightest workload. 

The Sun RPC library provides an interface to all portmapper procedures. Some 
of the RPC library procedures also call portmappers automatically on behalf of 
client and seiver programs. 

This chapter explains Sun's network database mechanism, th~ Yellow Pages 
(YP). Although it is not intended exclusively for system administrators, it leans 
towards their concerns. The Yellow Pages permit password information and host 
addresses for an entire network to be held in a single database, and, by so doing, 
greatly ease system and network administration. 

The Yellow Pages constitute a distributed network lookup seivice: 

o YP is a lookup seivice: it maintains a set of databases for querying. Pro­
grams can ask for the value associated with a particular key, or all the keys, 
in a database. 

o YP is a network seivice: programs need not know the location of data, or 
how it is stored. Instead, they use a network protocol to communicate with a 
database seiver that knows those details. 

o YP 'is distributed: databases are fully replicated on several machines, known 
as YP seivers. Seivers propagate updated databases among themselves, 
ensuring consistency. At steady state, it doesn't matter which server 
answers a request; the answer is the same everywhere. 

The Yellow Pages seive information stored in YP maps. Each map contains a set 
of keys and associated values. For example, the hosts map contains (as keys) 
all host names on a network, and (as values) the corresponding Internet 
addresses. Each YP map has a mapname, used by programs to access data in the 
map. Programs must know the format of the data in the map. Most maps are 
derived from ASCII files formerly found in/ etc/pas swd, /etc/group, 
/etc/hosts, /etc/networks, and other files in/ etc. The format of data 
in the YP map is in most cases identical to the format of the ASCII file. Maps 
are implemented by dbm ( 3X) files located in subdirectories of /etc/ yp on YP 
seiver machines. 

The relationship between a YP map and the standard UNIX/ etc file which it 
relates to varies from map to map. Some files (e.g. /etc/hosts, are replaced 
by their corresponding YP maps, while some (e.g. / etc/passwd are merely 
augmented. For more information, see the Yellow Pages section of Network 
Programming. 

Maps sometimes have nicknames. Although the ypca t command is a general 
YP database print program, it knows about the standard files in the YP. Thus 
ypcat hosts is translated into ypcat hosts .byaddr, since there is no 
file called hosts in the YP. The command ypcat -x furnishes a list of 
expanded nicknames. 
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A YP domain is a named set of YP maps. Taken together, these maps define a 
distinct network namespace and locate a distinct area of administrative control. 
YP domains differ from both Internet domains and send.mail domains, which 
define similar kinds of administrative loci in their respective (IP and electronic 
mail) networks. A given host will typically fall within all three domains, but 
these domains will not typically coincide. A YP domain is implemented as a 
directory in /etc/ yp containing a set of maps. 

You can determine your YP domain by executing the domainname command. 
A domain name is required for retrieving data from a YP database. For instance, 
if your YP domain is sun and you want to find the Internet address of host 
db server, you must ask YP for the value associated with the key dbserver 
in the map hosts. byname within the YP domain sun. Each machine on the 
network belongs to a default domain, which is set at boot time. Diskfull 
machines have their default domains set by a call to the domainname command 
made from /etc/re. local. Diskless clients have it set as the result of a con­
sultation with the boot par ams ( 5) server. 

A YP server holds all the maps of a YP domain in a subdirectory of /etc/yp, 
named after the domain. In the example above, maps for the sun domain would 
be held in/ etc/yp/ sun. A given host can contain maps for more than one 
YPdomain. 

Servers provide resources, while clients consume them. The terms "server" and 
"client" do not necessarily indicate machines. Consider both the NFS (network 
file system), and the YP: 

NFS The NFS allows client machines to mount remote filesystems and access 
files in place, provided a server machine has exported the filesystem. 
However, a server that exports filesystems may also mount remote filesys­
tems exported by other machines, thus becoming a client. So a given 
machine may be both server and client, or client only, or server only. 

YP The YP server, by contrast, is a process rather than a machine, A process 
can request information out of the YP database, obviating the need to have 
such information on every machine. All processes that make use of YP 
services are YP clients. Sometimes clients are served by YP servers on the 
same machine, but other times by YP servers running on another machine. 
If a remote machine running a YP server process crashes, client processes 
can obtain YP services from another machine. Thus, the network YP ser­
vice will remain available even if an individual YP host machine goes 
down. 

YP servers containing copies of the same databases can be spread throughout a 
network. When an arbitrary machine wants information in one of the YP data­
bases, it makes an RPC call to one of the YP servers to get it. For any YP map, 
one YP server is designated as the master - the only one whose database may 
be modified. The other YP servers are slaves, and they are automatically updated 
from time to time to keep their information in sync with that of the master. 

Revision A, of 9 May 1988 



24 Network Programming 

Naming 

Data Storage 

Servers 

All changes to a YP map should be made on the machine which is the master YP 
server for that map. The changes will then propagate to the slaves. A newly 
built map is timestamped internally when it's created by makedbm. If you build 
a YP map on a slave server, you will temporarily break the YP update algorithm, 
and will have to get all versions in synch manually. Moral: after you decide 
which server is the master, do all database updates and builds there, not on 
slaves. 

A given server may even be master with regard to one map, and slave with regard 
to another. This can get confusing quickly. Thus, its recommended that a single 
server be master for all maps created by ypini t in a single domain. Here we 
are assuming this simple case, in which one server is the master for all maps in a 
database. 

Imagine a company with two different networks, each of which has its own 
separate list of hosts and passwords. Within each network, user names, numeri­
cal user IDs, and host names are unique. However, there is duplication between 
the two networks. If these two networks are ever connected, chaos could result. 
The host name, returned by the hostname command and the gethost-
name ( ) system call, may no longer uniquely identify a machine. Thus a new 
command and system call, domainname and getdomainname () have been 
added. In the example above, each of the two networks could be given a dif­
ferent domain name. However, it is always simpler to use a single domain when­
ever possible. 

The relevance of domains to YP is that data is stored in /etc/ yp / domainname. 
In particular, a machine can contain data for several different domains. 

The data in YP maps is stored as dbm format databases. (See dbm(3X)). Thus 
the database hosts .byname for the domain sun is stored as 
/etc/yp/sun/hosts.byname.pagand 
I etc/yp/ sun/hosts. byname. dir. The command makedbm takes an 
ASCII file such as /etc/hosts and converts it into a dbm file suitable for use 
by the YP. However, system administrators normally use the makefile in 
I etc/yp to create new dbm files (read on for details). This makefile in tum 
calls makedbm. 

To become a server, a machine must contain the YP databases, and must also be 
running the YP daemon ypserv. The ypini t command invokes this daemon 
automatically. It also takes a flag saying whether you are creating a master or a 
slave. When updating the master copy of a database, you can force the change to 
be propagated to all the slaves with the yppush command. This pushes the 
information out to all the slaves. Conversely, from a slave, the ypxfr command 
gets the latest information from the master. The makefile in /etc/ yp first exe­
cutes makedbm to make a new database, and then calls yppush to propagate 
the change throughout the network. 
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Remember that a client machine (which is not a seiver) does not access local 
copies of /etc files, but rather makes an RPC call to a YP server each time it 
needs information from a YP database. The ypbind daemon remembers the 
name of a server. When a client boots, ypbind broadcasts asking for the name 
of the YP server. Similarly, ypbind broadcasts asking for the name of a new 
YP server if the old server crashes. The ypwhich command gives the name of 
the server that ypbind currently points at. 

Since client machines don't have entire copies of files in the YP, the commands 
ypcat and ypmatch have been provided. As you might guess, ypcat 
passwd is equivalent to cat / etc/passwd. To look for someone's pass­
word entry, searching through the password file no longer suffices; you have to 
issue one of the following commands 

\. 

example% ypcat passwd I grep username 
example% ypmatch username passwd 

where you replace username with the login name you're searching for. 

By default, Sun workstations have a number of files from / etc in their YP: 
/etc/passwd,/etc/group,/etc/hosts,/etc/networks, 
/etc/services,/ etc/protocols, and/ etc/ ethers. In addition, 
there is the net group ( 5) , file, which defines network wide groups, and used 
for permission checking when doing remote mounts, remote logins, and remote 
shells. 

Library routines such as getpwent(), getgrent(), and gethostent () 
have been rewritten to take advantage of the YP. Thus, C programs that call 
these library routines will have to be relinked in order to function correctly. 

The hosts file is stored as two different YP maps. The first, hosts. byname, is 
indexed by hostname. The second, hosts . byaddr, is indexed by Internet 
address. Remember that this actually expands into four files, with suffixes 
.pag, and . dir. When a user program calls the library routine gethost­
byname(), a single RPC call to a server retrieves the entry from the 
hosts. byname file. Similarly, gethostbyaddr () retrieves the entry from 
the hosts. byaddr file. If the YP is not running (which is caused by com­
menting ypbind out of the /etc/re file), then gethostbyname () will 
read the /etc/hosts files,just as it always has. 

Normally, the hosts file for the YP will be the same as the /etc/hosts file on 
the machine serving as a YP master. In this case, the makefile in /etc/ yp will 
check to see if/ etc/hosts is newer than the dbm file. If it is, it will use a 
simple sed scriptto recreate hosts .byname and hosts .byaddr, run them 
through makedbm and then call yppush See ypmake for details. 

Revision A, of 9 May 1988 



26 Network Programming 

Passwd 

Others 

Changing your passwd 

1.5. The Network Lock 
Manager 

The passwd·file is similar to the hosts file. It exists as two separate files, 
passwd. byname and passwd. byuid. The ypcat program prints it, and 
ypmake updates it. However, if getpwent always went directly to the YP as 
does gethostent, then everyone would be forced to have an identical pass­
word file. Consequently, getpwent reads the local / etc/pas swd file, just as 
it always did. But now it intetprets "+" entries in the password file to mean, 
inteipolate entries from the YP database. If you wrote a simple program using 
getpwent to print out all the entries from your password file, it would print out 
a virtual password file: rather than printing out + signs, it would print out what­
ever entries the local password file included from the YP database. 

Of the other files in/ etc,/ etc/ group is treated like/ etc/passwd, in that 
getgrent () will only consult the YP if explicitly told to do so by the 
/etc/group file. The files /etc/networks, /etc/services, 
/etc/protocols,/ etc/ ethers, and/ etc/netgroup are treated like 
/etc/hosts: for these files, the library routines go directly to the YP, without 
consulting the local files. 

To change data in the YP, the system administrator must log into the master 
machine, and edit databases there; ypwhich -m tells where the master server 
is. However, since changing a password is so commonly done, the yppasswd 
command has been provided to change your YP password. It has the same user 
interface as the pas swd command. This command will only work if the 
yppa s s wdd server has been started up on the YP master server machine. 

SunOS includes a NFS-compatible Network Lock Manager (see the lockd(BC) 
man page for more details) that supports the lockf () / fcntl (), System V 
style of advisory file and record locking over the network. System V locks are 
generally considered superior to 4.3BSD locks, implemented with the flock () 
system call, for they provide record level, and not merely file level, locking. 
Record level locking is essential for database systems. Sun does support 
flock () for use on individual machines, but flock () is not intended to be 
used across the network. flock () locks exclude only other processes on the 
same machine. There is no interaction between flock () and lockf (). 

Locking prevents multiple processes from modifying the same file at the same 
time, and allows cooperating processes to synchronize access to shared files. The 
user interfaces with Sun's network locking service by way of the standard 
lockf () system-call interface, and rarely requires any detailed knowledge of 
how it works. The kernel maps user calls to flock () and f cnt 1 ( ) into 
RPC-based messages to the local lock manager (or, if the files in question are on 
RPS-mounted filesystems, into calls to RFS6 ). The fact that the file system may 
be spread across multiple machines is really not a complication - until a crash 
occurs. 

All computers crash from time to time, and in an NFS environment, where multi­
ple machines can have access to the same file at the same time, the process of 

n 

n 

6 RFS is AT&T's Retnbte File Sharing. A Sun-compatible version is available as an unbundled product. n 
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recovering from a crash is necessarily more complex than in a non-network 
environment. Furthermore, locking is inherently stateful. If a server crashes, 
clients with locked files must be able to recover their locks. If a client crashes, 
its servers must have the sense to hold the client's locks while it recovers. And, 
to preserve NFS' s overall transparency, the recovery of lost locks must not 
require the intervention of the applications themselves. This is accomplished as 
follows: 

o Basic file access operations, such as read and write, use a stateless protocol 
(the NFS protocol). All interactions between NFS servers and clients are 
atomic - the server doesn't remember anything about its clients from one 
interaction to the next. In the case of a server crash, client applications will 
will simply sleep until it comes back up and their NFS operations can com­
plete. 

o Stateful services (those that require the server to maintain client information 
from one transaction to the next) such as the locking service, are not part of 
the NFS per se. They are separate services that use the status monitor (see 
The Network Status Monitor) to ensure that their implicit network state 
information remains consistent with the real state of the network. There are 
two specific state-related problems involved in providing locking in a net­
work context: 

1) if the client has crashed, the lock can be held forever by the server 

2) if the server has crashed, it loses its state (including all its lock infor­
mation) when it recovers. 

The Network Lock Manager solves both of these problems by cooperating 
with the Network Status Monitor to ensure that it's notified of relevant 
machine crashes. Its own protocol then allows it to recover the lock infor­
mation it needs when crashed machines recover. 

The lock manager and the status monitor are both network-service daemons -
they run at user level, but they are essential to the kernel's ability to provide fun­
damental network services, and they are therefore run on all network machines. 
Like other network "'.service daemons - which provide, for example, remote­
execution services (rexd) and remote-login services (rlogind)-they are 
best seen as extensions to the kernel which, for reasons of space, efficiency and 
organization, are implemented as daemons. Application programs that need a 
network service can either call the appropriate daemon directly with RPC/XDR, 
or use a system call (like lock£()) to call the kernel. In this later case, the ker­
nel will use RPC to call the daemon. The network daemons communicate among 
themselves with RPC (see The Locking Protocol for some details of the lock 
manager protocol). It should be noted that the daemon-based approach to net­
work services allows for tailoring by users who need customized services. It's 
possible, for example, for users to alter the lock manager to provide locking in a 
different style. 

The following figure depicts the overall architecture of the locking service. 
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Figure 1-4 Architecture of the Locking Service 
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At each seiver site, a lock manager process accepts ~ock requests, made on behalf 
of client processes by a remote lock manager, or on behalf of local processes by 
the kernel. The client and seiver lock managers communicate with RPC calls. 
Upon receiving a remote lock request for a machine that it doesn't already hold a 
lock on, the lock manager registers its interest in that machine with the local 
status monitor, and waits for that monitor to notify it that the machine is up. The 
monitor continues to watch the status of registered machines, and notifies the 
lock manager is one of them is rebooted (after a crash). If the lock request is for 
a local file, the lock manager tries to satisfy it, and communicates back to the 
application along the appropriate RPC path. 

The crash recovery procedure is very simple. If the failure of a client is detected, 
the seiver releases the failed client's locks, on the assumption that the client 
application will request locks again as needed. If the recovery (and, by implica­
tion, the crash) of a seiver is detected, the client lock manager retransmits all 
lock requests previously granted by the recovered seiver. This retransmitted­
infonnation is used by the seiver to reconstruct its locking state. See below for 
more details. 

n 

The locking seivice, then, is essentially stateless. Or to be more precise, its state 
infonnation is carefully circumscribed within a pair of system daemons that are 
set up for automatic, application-transparent crash recovery. If a seiver crashes, 
and thus loses its state, it expects that its clients will be be notified of the crash 
and send it the infonnation that it needs to reconstruct its state. The key in this 
approach is the status monitor, which the lock manager uses to detect both client r-\ 
and seiver failures. 

1

\ ) 
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The lock style implemented by the network lock manager is that specified in the 
AT&T System V Interface Definition, (see the lockf (2) and fcntl (2) man 
pages for details). There is no interaction between the lock manager's locks and 
flock (} -style locks, which remain supported, but which should be used for 
non-network applications only. 

Locks are presently advisory only, on the (well supported) assumption that 
cooperating processes can do whatever they wish without mandatory locks. 
Besides, mandatory locks pose serious security problems-if/ etc/passwd is 
locked against reading, the whole system freezes. (See the fen t 1 ( 2 ) man page 
for more information about advisory locks). 

There are four basic kernel to Lock Manager requests: 

KLM LOCK 
Lock the specified record. 

KLM UNLOCK 
Unlock the specified record. 

KLM TEST 
Test if the specified record is locked. 

KLM CANCEL 
Cancel an outstanding lock request. 

Despite the fact that the network lock managers adheres to the 
lockf (} / fcntl () semantics, there are a few subtle points about its behavior 
that deserve mention. These arise directly from the nature of the network: 

CJ The first and most important of these has to do with crashes. When an 
NFS-client goes down, the lock managers on all of its servers are notified by 
their status monitors, and they simply releases its locks, on the assumption 
that it will request them again when it wants them. When a server crashes, 
however, matters are different: the clients will wait for it to come back up, 
and when it does, its lock manager will give the client lock managers a grace 
period to submit lock reclaim requests, and during this period will accept 
only reclaim requests. The client status monitors will notify their respective 
lock managers when the server recovers. The default grace period is 45 
seconds. 

CJ It is possible that, after a server crash, a client will not be able to recover a 
lock that it had on a file on that server. This can happen for the simple rea­
son that another process may have beaten the recovering application process 
to the lock. In this case the s IGLOST signal will be sent to the process (the 
default action for this signal is to kill the application). 

CJ The local lock manager does not reply to the kernel lock request until the 
server lock manager has gotten back to it. Further, if the lock request is on a 
server new to the local lock manager, the lock manager registers its interest 
in that server with the local status monitor and waits for its reply. Thus, if 
either the status monitor or the server's lock manager are unavailable, the 
reply to a lock request for remote data is delayed until it becomes available. 
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1.6. The Network Status 
Monitor 

The Network Status Monitor (see the statd(8C) man page for more details) was 
introduced with the lock manager, which relies heavily on it to maintain the 
inherently statefullocking service within the stateless NFS environment. How-
ever, the status monitor is very general, and can also be used to support other 
kinds of stateful network services and applications. Normally, crash recovery is 
one of the most difficult aspects of network application development, and 
requires a major design and installation effort. The status monitor makes it more 
or less routine. 

It is anticipated that, in the future, new network services, some of them stateful, 
will be introduced into the Sun system. These services will use the status moni­
tor to keep up with the state of the network and to cope with machine crashes. 

The status monitor works by providing a general framework for collecting net­
work status information. Implemented as a daemon that runs on all network 
machines, it implements a simple protocol which allows applications to easily 
monitor the status of other machines. Its use improves overall robustness, and 
avoids situations in which applications running of different machines ( or even on 
the same machine) come to disagree about the status of a site- a potentially 
dangerous situation that can lead to inconsistencies in many applications. 

Applications using the status monitor do so by registering with it the machines 
that they are interested in. The monitor then tracks the status of those machines, 
and when one of them crashes 7 it notifies the interested applications to that 

n 
\ / 

effect, and they then take whatever actions are necessary to reestablish a con- ~ 

sistent state. 1"' } 

There are several major advantages to this approach: 

o Only applications that use stateful services must pay the overhead - in time 
and in code - of dealing with the status monitor. 

o The implementation of stateful network applications is eased, since the 
status monitor shields application developers from the complexity of the net­
work. 

7 Actually, when one of them recovers from a crash. 
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The details of programming applications to use Remote Procedure Calls can be 
overwhelming. Perhaps most daunting is the writing of the XOR routines neces­
sary to convert procedure arguments and results into their network format and 
vice-versa. 

Fortunately, rpcgen ( 1) exists to help programmers write RPC applications 
simply and directly. rpcgen does most of the dirty work, allowing program­
mers to debug the main features of their application, instead of requiring them to 
spend most of their time debugging their network interface code. 

rpcgen is a compiler. It accepts a remote program interface definition written 
in a language, called RPC Language, which is similar to C. It produces a C 
language output which includes stub versions of the client routines, a server 
skeleton, XDR filter routines for both parameters and results, and a header file 
that contains common definitions. The client stubs interface with the RPC 
library and effectively hide the network from their callers. The server stub simi­
larly hides the network from the server procedures that are to be invoked by 
remote clients. rpcgen 's output files can be compiled and linked in the usual 
way. The developer writes server procedures-in any language that observes 
Sun calling conventions-and links them with the server skeleton produced by 
rpcgen to get an executable server program. To use a remote program, a pro­
grammer writes an ordinary main program that makes local procedure calls to the 
client stubs produced by rpcgen. Linking this program with rpcgen's stubs 
creates an executable program. (At present the main program must be written in 
C). rpcgen options can be used to suppress stub generation and to specify the 
transport to be used by the server stub. 

Like all compilers, rpcgen reduces development time that would otherwise be 
spent coding and debugging low-level routines. All compilers, including 
rpcgen, do this at a small cost in efficiency and flexibility. However, many 
compilers allow escape hatches for programmers to mix low-level code with 
high-level code. rpcgen is no exception. In speed-critical applications, hand­
written routines can be linked with the rpcgen output without any difficulty. 
Also, one may proceed by using rpcgen output as a starting point, and then 
rewriting it as necessary. (If you need a discussion ofRPC programming without 
rpcgen, see the next chapter, the Remote Procedure Call Programming Guide). 
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Converting Local Procedures 
into Remote Procedures 

Assume an application that runs on a single machine, one which we want to con­
vert to run over the network. Here we will demonstrate such a conversion by 
way of a simple example-a program that prints a message to the console: 

I* 
* printmsg .c: print a message on the console 
*I 
#include <stdio.h> 

main(argc, argv) 
int argc; 
char *argv[]; 

char *message; 

if (argc != 2) 
fprintf(stderr, "usage: %s <message>\n", argv[O]); 
exit(l); 

message= argv[l]; 

if (!printmessage(message)) 
fprintf(stderr, "%s: couldn't print your message\n", 

argv[O]); 

I* 

exit(l); 

printf("Message Delivered!\n"); 
exit(O); 

* Print a message to the console. 
* Return a boolean indicating whether the message was actually printed. 
*I 
printmessage(msg) 

char *msg; 

FILE *f; 

f = fopen("/dev/console", "w"); 
if (f == NULL) { 

return (0); 

fprintf(f, "%s\n", msg); 
fclose(f); 
return(l); 

And then, of course: 
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example% cc printmsg.c -o printmsg 
example% printmsg "Hello, there." 
Message delivered! 
example% 

If printmessage () was turned into a remote procedure, then it could be 
called from anywhere in the network. Ideally, one would just like to stick a key­
word like remote in front of a procedure to tum it into a remote procedure. 
Unfortunately, we have to live within the constraints of the C language, since it 
existed long before RPC did. But even without language support, it's not very 
difficult to make a procedure remote. 

In general, it's necessary to figure out what the types are for all procedure inputs 
and outputs. In this case, we have a procedure printmessage () which takes 
a string as input, and returns an integer as output. Knowing this, we can write a 
protocol specification in RPC language that describes the remote version of 
printmessage(). Here it is: 

I* 
* msg.x: Remote message printing protocol 
*! 

program MESSAGEPROG { 
version MESSAGEVERS 

int PRINTMESSAGE(string) 
} = 1; 
99; 

1; 

Remote procedures are part of remote programs, so we actually declared an 
entire remote program here which contains the single procedure PRINTMES­
SAGE. This procedure was declared to be in versio11 1 of the remote program. 
No null procedure (procedure 0) is necessary becaus~ rpcgen generates it 
automatically. 

Notice that everything is declared with all capital letters. This is not required, 
but is a good convention to follow. 

Notice also that the argument type is "string" and not "char*". This is because a 
"char*" in C is ambiguous. Programmers usually intend it to mean a null­
tenninated string of characters, but it could also represent a pointer to a single 
character or a pointer to an array of characters. In RPC language, a null­
tenninated string is unambiguously called a "string". 

There are just two more things to write. First, there is the remote procedure 
itself. Here's the definition of a remote procedure to implement the 
PRINTMES SAGE procedure we declared above. 

~~sun ~~ microsystems 
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I* 
* msg_proc.c: implementation of the remote procedure "printmessage" 
*I 

I* always needed * I 
#include <stdio.h> 
#include <rpc/rpc.h> 
#include "msg.h" I* msg.h will be generated by rpcgen * I 

I* 
* Remote verson of "printmessage" 
*I 
int* 
printmessage_l(msg) 

char **msg; 

static int result;/* mustbestatic! *I 
FILE *f; 

f = fopen("/dev/console", "w"); 

if (f == NULL) { 
result= 0; 
return (&result); 

fprintf(f, "%s\n", *msg); 
fclose(f); 
result= 1; 
return (&result); 

Notice here that the declaration of the remote procedure printmessage_l () 
differs from that of the local procedure printmessage () in three ways: 

1. It takes a pointer to a string instead of a string itself. This is true of all 
remote procedures: they always take pointers to their arguments rather than 
the arguments themselves. 

2. It returns a pointer to an integer instead of an integer itself. This is also gen­
erally true of remote procedures: they always return a pointer to their results. 

3. It has an "_I" appended to its name. In general, all remote procedures called 
by rpcgen are named by the following rule: the name in the program 
definition (here PRINTMESSAGE) is converted to all lower-case letters, an 
underbar ("_") is appended to it, and finally the version number (here 1) is 
appended. 

The last thing to do is declare the main client program that will call the remote 
procedure. Here it is: 

I* 
* rprintmsg.c: remote version of "printmsg.c" 
*I 
#include <stdio.h> 
#include <rpc/rpc.h> I * always needed */ 
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#include "msg.h" 

main(argc, argv) 
int argc; 
char *argv[]; 

I* msg.h will be generated by rpcgen * I 

CLIENT *cl; 
int *result; 
char *server; 
char *message; 

if (argc != 3) 
fprintf(stderr, 
"usage: %s host message\n", argv[O]); 
exit(l); 

I* 
* Save values of command line arguments 
*I 
server= argv[l]; 
message= argv[2]; 

I* 
* Create client "handle" used/or calling MESSAGEPROG on the 
* server designated on the command line. We tell the RPC package 
* to use the "tcp" protocol when contacting the server. 
*I 
cl= clnt_create(server, MESSAGEPROG, MESSAGEVERS, 

"tcp") ; 
if (cl== NULL) { 

I* 

I* 
* Couldn't establish connection with server. 
* Print error message and die. 
*I 
clnt_pcreateerror(server); 
exit(l); 

* Call the remote procedure ''printmessage" on the server 
*I 
result= printmessage_l(&message, cl); 
if (result== NULL) { 

I* 

I* 
* An error occurred while calling the server. 
* Print error message and die. 
*I 
clnt_perror(cl, server); 
exit(l); 

* Okay, we successfully called the remote procedure. 
*I 
if (*result== 0) { 
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I* 
* Server was unable to print our message. 
* Print error message and die. 
*I 

fprintf(stderr, "%s: %s couldn't pr~nt your message\n", 
argv[O], server); 
exit(l); 

I* 
* The message got printed on the server's console 
*I 
printf("Message delivered to %s!\n", server); 
exit(O); 

There are two things to note here: 

1. First a client "handle" is created using the RPC library routine 
clnt_createO. This client handle will be passed to the stub routines 
which call the remote procedure. 

2. The remote procedure printmessage_l () is called exactly the same 
way as it is declared in msg_proc. c except for the inserted client handle 
as the first argument. 

Here's how to put all of the pieces together: 
r 

example% rpcgen msg.x 
example% cc rprintmsg.c msg_clnt.c -o rprintmsg 
example% cc msg_proc.c msg_svc.c -o msg_server 

Two programs were compiled here: the client program rpr intmsg and the 
server program msg_server. Before doing this though, rpcgen was used to 
fill in the missing pieces. 

Here is what rpcgen did with the input file msg. x: 

1. It created a header file called msg. h that contained #define 's for MES­
SAGEPROG, MESSAGEVERS and PRINTMESSAGE for use in the other 
modules. 

2. It created client "stub" routines in the msg_ clnt. c file. In this case there 
is only one, the printmessage_l () that was referred to from the 
printmsg client program. The name of the output file for client stub rou­
tines is always formed in this way: if the name of the input file is FOO . x, 
the client stubs output file is called FOO_clnt. c. 

3. It created the server program which calls printmessage_ 1 () in 
msg_proc. c. This server program is named msg_ svc. c. The rule for 

n 

n 

naming the server output file is similar to the previous one: for an input file ;-'\··. .· 
called FOO. x, the output server file is named FOO_svc. c. \. ) 
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Now we're ready to have some fun. First, copy the seIVerto a remote machine 
and run it. For this example, the machine is called "moon". SeIVer processes are 
run in the background, because they never exit. 

[ moon% msg_server & 

Then on our local machine ("sun") we can print a message on "moon"s console. 

[ sun% rprintmsg moon "Hello, moon." 

The message will get printed to "moon"s console. You can print.a message on 
anybody's console (including your own) with this program if you are able to 
copy the server to their machine and run it. 

] 

] 

The previous example only demonstrated the automatic generation of client and 
seIVerRPC code. rpcgen may also be used to generate XDR routines, that is, 
the routines necessary to convert local data structures into network fonnat and 
vice-versa. This example presents a complete RPC service-a remote directory 
listing service, which uses rpcgen not only to generate stub routines, but also to 
generate the XDR routines. Here is the protocol description file. 

!* 
* dir.x: Remote directory listing protocol 
*I 
canst MAXNAMELEN = 255; I* maximum length of a directory entry * I 

typedef string nametype<MAXNAMELEN>; 

typedef struct namenode *namelist; 

!* 
*Anode in the directory listing 
*I 

I* a directory entry * I 

I * a link in the listing * I 

struct namenode { 
nametype name; 
namelist next; 

I* name of directory entry * I 
I * next entry * I 

} ; 

!* 
* The result of a READ DIR operation. 
*I 
union readdir_res switch (int errno) { 
case 0: 

namelist list; / * no error: return directory listing * I 
default: 

void; I* error occurred: nothing else to return * I 
} ; 

I* 
* The directory program definition 
*I 
program DIRPROG { 

version DIRVERS 
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readdir res 
READDIR(nametype) 

} = 1; 
76; 

1; 

NOTE Types (like readdir res in the example above) can be defined using the 
"struct", "union" and "enum" keywords, but those keywords should not be used 
in subsequent declarations of variables of those types. For example, if you define 
a union ''Joo", you should declare using only ''Joo" and not "unionfoo". In 
fact, rpcgen compiles RPC unions into C structures and it is an error to 
declare them using the "union" keyword. 
Running rpcgen on dir . x creates four output files. Three are the same as 
before: header file, client stub routines and server skeleton. The fourth are the 
XDR routines necessary for converting the data types we declared into XDR for­
mat and vice-versa. These are output in the file dir_xdr. c. 

Here is the implementation of the READD IR procedure. 

I* 
* dir _proc.c: remote readdir implementation 
*I 
#include <rpc/rpc.h> 
#include <sys/dir.h> 
#include "dir.h" 

extern int errno; 
extern char *malloc(); 
extern char *strdup(); 

readdir res* 
readdir_l(dirname) 

nametype *dirname; 

DIR *dirp; 
struct direct *d; 
namelist nl; 
namelist *nlp; 
static readdir res res; /* must be static! * / 

I* 
* Open directory 
*I 
dirp = opendir(*dirname); 
if (dirp == NULL) { 

res.errno = errno; 
return (&res); 

I* 
* Free previous result 
*I 
xdr_free(xdr_readdir_res, &res); 
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!* 
* Collect directory entries. 
* Memory allocated here will be freed by xdr _free 
* next time readdir 1 is called 
*I 
nlp = &res.readdir_res_u.list; 
while (d = readdir(dirp)) { 

nl = *nlp = (namenode *) malloc(sizeof(namenode)); 
nl->name = strdup(d->d_name); 
nlp = &nl->next; 

*nlp = NULL; 

I* 
* Return the result 
*I 
res.errno = 0; 
closedir(dirp); 
return (&res); 

Finally, there is the client side program to call the server: 

I* 
* rls.c: Remote directory listing client 
*I 

I* always need this * I 
#include <stdio.h> 
#include <rpc/rpc.h> 
#include "dir.h" I* will be generated by rpcgen * I 

extern int errno; 

main(argc, argv) 
int argc; 
char *argv[]; 

CLIENT *cl; 
char *server; 
char *dir; 
readdir_res *result; 
namelist nl; 

if ( a rgc ! = 3) 
fprintf(stderr, "usage: %s host directory\n", 

argv[O]); 
exit(l); 

I* 
* Remember what our command line arguments refer to 
*! 
server= argv[l]; 
dir = argv[2]; 

!* 
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r 
* Create client "handle" used/or calling MESSAGEPROG on the 
* server designated on the command line. We tell the RPC package 
* to use the "tcp" protocol when contacting the server. 
*I 
cl= clnt_create(server, DIRPROG, DIRVERS, "tcp"); 
if (cl== NULL) { 

I* 

I* 
* Couldn't establish connection with server. 
* Print error message and die. 
*I 
clnt_pcreateerror(server); 
exit(l); 

* Call the remote procedure readdir on the server 
*I 
result= readdir_l(&dir, cl); 
if (result== NULL) { 

!* 

I* 
* An error occurred while calling the server. 
* Print error message and die. 
*I 
clnt_perror(cl, server); 
exit(l); 

* Oko,y, we successfully called the remote procedure. 
*I 
if (result->errno != 0) { 

I* 

!* 
* A remote system error occurred. 
* Print error message and die. 
*I 
errno = result->errno; 
perror(dir); 
exit(l); 

* Successfully got a directory listing. 
* Print it out. 
*I 
for (nl = result->readdir_res u.list; nl != NULL; 

nl = nl->next) { 
printf("%s\n", nl->name); 

exit(O); 

Compile everything, and run. 
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sun% rpcgen dir.x 
sun% cc rls.c dir_clnt.c dir xdr.c -o rls 
sun% cc dir svc.c dir_proc.c dir xdr.c -o dir svc 

sun% dir svc & 

moon% rls sun /usr/pub 

ascii 
eqnchar 
greek 
kbd 
marg8 
tabclr 
tabs 
tabs4 
moon% 

A final note about rpcgen: The client program and the server procedure can be 
tested together as a single program by simply linking them with each other rather 
than with the client and server stubs. The procedure calls will be executed as 
ordinary local procedure calls and the program can be debugged with a local 
debugger such as dbxtool. When the program is working, the client program 
can be linked to the client stub produced by rpcgen and the server procedures 
can be linked to the server stub produced by rpcgen. 

If you do this, you may want to comment out calls to RPC library routines, and 
have client-side routines call server routines directly. 

~ 

The C-preprocessor is run on all input files before they are compiled, so all the 
preprocessor directives are legal within a ".x" file. Four symbols may be defined, 
depending upon which output file is getting generated. The symbols are: 

Symbol 

RPC HDR 
RPC XDR 
RPC SVC 
RPC CLNT 

Usage 

for header-file output 
for XDR routine output 
for server-skeleton output 
for client stub output 

Also, rpcgen does a little preprocessing of its own. Any line that begins with a 
percent sign is passed directly into the output file, without any interpretation of 
the line. Here is a simple example that demonstrates the preprocessing features. 
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rpcgen Programming Notes 

Timeout Changes 

Handling Broadcast on the 
Server Side 

I* 
* time.x: Remote time protocol 
*I 
program TIMEPROG { 

version TIMEVERS 

} = 1; 
} = 44; 

#ifdef RPC SVC 
%int* 
%timeget_l () 
%{ 

unsigned int TIMEGET(void) 1; 

% static int thetime; 
% 

% thetime = time(O); 
% return (&thetime); 
%} 
#endif 

The'%' feature is not generally recommended, as there is no guarantee that the 
compiler will stick the output where you intended. 

RPC sets a default timeout of25 seconds forRPC calls when clnt_create () 
is used. This timeout may be changed using clnt_control (). Here is a 
small code fragment to demonstrate use of clnt _ control(): 
r 

struct timeval tv; 
CLIENT *cl; 

cl= clnt_create("somehost", SOMEPROG, SOMEVERS, "tcp"); 
if (cl== NULL) { 

exit(l); 

tv. tv_sec = 60; /* change timeout to 1 minute * I 
tv.tv_usec = O; 
clnt_control(cl, CLSET_TIMEOUT, &tv); 

When a procedure is known to be called via broadcast RPC, it is usually wise for 
the server to not reply unless it can provide some useful infonnation to the client. 
This prevents the network from getting flooded by useless replies. 

To prevent the server from replying, a remote procedure can return NULL as its 
result, and the server code generated by rpcgen will detect this and not send out 
a reply. 

Here is an example of a procedure that replies only if it thinks it is an NFS 
server: 

4}~sun 
~ microsystems 
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Other Information Passed to 
Server Procedures 

r 

void* 
reply_if_nfsserver() 
{ 

char notnull; 

Chapter 2 - rpcgan Programming Guide 4 7 

I* just here so we can use its address * I 

if (access("/etc/exports", F_OK) < 0) { 

return (NULL); /* preventRPCfromreplying *I 

I* 
* return non-null pointer so RPC will send out a reply 
*I 
return ((void *)&notnull); 

Note that if procedure returns type "void*", they must return a non-NULL 
pointer if they want RPC to reply for them. 

Server procedures will often want to know more about an RPC call than just its 
arguments. For example, getting authentication information is important to pro­
cedures that want to implement some level of security. This extra information is 
actually supplied to the server procedure as a second argument. Here is an exam­
ple to demonstrate its use. What we've done here is rewrite the previous 
printmessage_l () procedure to only allow root users to print a message to 
the console. 
r 

int* 
printmessage_l(msg, rq) 

char **msg; 
struct svc_req *rq; 

static in result; 
FILE *f; 

I* Must be static * I 

struct suthunix_parms *aup; 

aup = (struct authunix_parms *)rq->rq_clntcred; 
if (aup->aup_uid != 0) { 

result= 0; 
return (&result); 

I* 
* Same code as before. 
*I 
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RPC Language 

Definitions 

Structures 

RPC language is an extension of XOR language. The sole extension is the addi­
tion of the program type. For a complete description of the XOR language 
syntax, see the External Data Representation Standard: Protocol Specification 
chapter. For a description of the RPC extensions to the XOR language, see the 
Remote Procedl!,re Calls: Protocol Specification chapter. 

However, XOR language is so close to C that if you know C, you know most of 
it already. We describe here the syntax of the RPC language, showing a few 
examples along the way. We also show how the various RPC and XOR type 
definitions get compiled into C type definitions in the output header file. 

An RPC language file consists of a series of definitions. 

definition-list: 
definition";" 
definition";" definition-list 

It recognizes five types of definitions. 

definition: 
enum-definition 
struct-definition 
union-definition 
typedef-definition 
canst-definition 
program-definition 

An XOR struct is declared almost exactly like its C counterpart. It looks like the 
following: 

struct-definition: 
"struct" struct-ident "{" 

declaration-list 
"}" 

declaration-list: 
declaration";" 
declaration";" declaration-list 

As an example, here is an XOR structure to a two-dimensional coordinate, and 
the C structure that it gets compiled into in the output header file. -' 

struct coord 
int x; 
int y; 

} ; 

--> 
struct coord 

int x; 
int y; 

} ; 

typedef struct coord coord; 

The output is identical to the input, except for the added typedef at the end of 
the output. This allows one to use "coord" instead of "struct coord" when declar­
ing items. 
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XDR unions are discriminated unions, and look quite different from C unions. 
They are more analogous to Pascal variant records than they are to C unions. 

union-definition: 
"union" union-ident "switch""(" declaration")""{" 

case-list 
" } " 

case-list: 
"case" value":" declaration";" 
"default"":" declaration";" 
"case" value":" declaration";" case-list 

Here is an example of a type that might be returned as the result of a "read data" 
operation. If there is no error, return a block of data. Otherwise, don't return 
anything. 

union read result switch (int errno) { 
case 0: 

opaque data[1024]; 
default: 

void; 
} ; 

It gets compiled into the following: 

struct read result 
int errno; 

} ; 

union { 
char data[1024]; 

.} read_result_u; 

typedef struct read_result. read_result; 

Notice that the union component of the output struct has the name as the type 
name, except for the trailing "_u". · 

XDR enumerations have the same syntax as C enumerations. 

enum-definition: 
"enum" enum-ident "{" 

enum-value-list 
" } " 

enum-value-list: 
en um-value 
enum-value "," enum-value-list 

enum-value: 
enum-value-ident 
enum-value-ident "=" value 

Here is a short example of an XOR enum, and the C enum that it gets compiled 
into. 

•\sun ~ microsystems 
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Typedef 

Cpnstants 

Programs 

enum colortype { 
RED = 0, 
GREEN = 1, 
BLUE= 2 

enum colortype { 
RED = 0, 

} ; 

--> GREEN= 1, 
BLUE= 2, 

} ; 

typedef enum colortype colortype; 

XOR typedefs have the same syntax as C typedefs. 

typedef-definition: 
"typedef" declaration 

Here is an example that defines a f name_ type used for declaring file name 
strings that have a maximum length of 255 characters. 

typedef string fname_type<255>; --> typedef char *fname_type; 

XOR constants symbolic constants that may be used wherever a integer constant 
is used, for example, in array size specifications. 

canst-definition: 
"canst" const-ident "=" integer 

For example, the following defines a constant DO ZEN equal to 12. 

canst DOZEN= 12; --> #define DOZEN 12 

RPC programs are declared using the following syntax: 

program-definition: 
"program" program-ident "{" 

version-list 
"}" "=" value 

version-list: 
version " . " ' 
version";" version-list 

version: 
"version" version-ident "{" 

procedure-list 
"}" "=" value 

procedure-list: 
procedure";" 
procedure";" procedure-list 

procedure: 
type-ident procedure-ident "(" type-ident ")""="value 

For example, here is the time protocol, revisited: 
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I* 
* time.x: Get or set the time. Time is represented as number of seconds 
* since 0:00, January 1, 1970. 
*I 
program TIMEPROG { 

version TIMEVERS 
unsigned int TIMEGET(void) 1; 
void TIMESET(unsigned) = 2; 

} = 1; 
} = 44; 

This file compiles into #defines in the output header file: 

#define TIMEPROG 44 
#define TIMEVERS 1 
#define TIMEGET 1 
#define TIMESET 2 

In XDR, there are only four kinds of declarations. 

declaration: 
simple-declaration 
fixed-array-declaration 
variable-array-declaration 
pointer-declaration 

1) Simple declarations are just like simple C declarations. 

simple-declaration: 
type-ident variable-ident 

Example: 

colortype color; --> colortype color; 

2) Fixed-length Array Declarations are just like C array declarations: 

fixed-array-declaration: 
type-ident variable-ident "["value"]" 

Example: 

colortype palette[8]; --> colortype palette[8]; 

3) Variable-Length Array Declarations have no explicit syntax in C, so XDR 
invents its own using angle-brackets. 

variable-array-declaration: 
type-ident variable-ident "<"value">" 
type-ident variable-ident "<" ">" 

The maximum size is specified between the angle brackets. The size may be 
omitted, indicating that the array may be of any size. 

int heights<12>; 
int widths<>; 

I * at most 12 items * I 
I * any number of items * I 

Since variable-length arrays have no explicit syntax in C, these declarations are 
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Special Cases 

actually compiled into "struct"s. For example, the "heights" declaration gets 
compiled into the following struct: 

struct { 
u_int heights_len; 
int *heights_val; 

heights; 

I* # of items in array * I 
I* pointer to array * I 

Note that the number of items in the array is stored in the "_len" component and 
the pointer to the array is stored in the "_ val" component. The first part of each 
of these component's names is the same as the name of the declared XOR vari­
able. 

4) Pointer Declarations are made in XOR exactly as they are in C. You can't 
really send pointers over the network, but you can use XOR pointers for sending 
recursive data types such as lists and trees. The type is actually called 
"optional-data", not "pointer", in XDR language. 

pointer-declaration: 
type-ident "*" variable-ident 

Example: 

listitem *next; --> listitem *next;. 

There are a few exceptions to the rules described above. 

Booleans: Chas no built-in boolean type. However, the RPC library does a 
boolean type called bool _ t that is either TRUE or FALSE. Things declared as 
type bool in XDR language are compiled into bool _tin the output header 
file. 

Example: 

bool married; --> bool_t married; 

Strings: Chas no built-in string type, but instead uses the null-terminated "char 
*" convention. In XOR language, strings are declared using the "string'' key­
word, and compiled into "char *"s in the output header file. The maximum size 
contained in the angle brackets specifies the maximum number of characters 
allowed in the strings (not counting the NULL character). The maximum size 
may be left off, indicating a string of arbitrary length. 

Examples: 

string name<32>; 
string longname<>; 

--> char *name; 
--> char *longname; 

Opaque Data: Opaque data is used in RPC and XOR to describe untyped data, 
that is, just sequences of arbitrary bytes. It may be declared either as a fixed or 
variable length array. 
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Examples: 
opaque diskblock[512]; --> char diskblock[512]; 

opaque filedata<1024>; --> struct { 
u_int filedata_len; 
char *filedata_val; 

filedata; 

Voids: In a void declaration, the variable is not named. The declaration is just 
"void" and nothing else. Void declarations can only occur in two places: union 
definitions and program definitions (as the argument or result of a remote pro­
cedure). 
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Guide 

This document assumes a working knowledge of network theory. It is intended 
for programmers who wish to write network applications using remote procedure 
calls (explained below), and who want to understand the RPC mechanisms usu­
ally hidden by the rpcgen ( 1) protocol compiler. rpcgen is described in 
detail in the previous chapter, the rpcgen Programming Guide. 

NOTE Before attempting to write a network application, or to convert an existing non­
network application to run over the network, you may want to understand the 
material in this chapter. However,for most applications, you can circumvent the 
need to cope with the details presented here by using rpcgen. The Generating 
XDR Routines section of that chapter contains the complete source for a working 
RPC service-a. remote directory listing service which uses rpcgen to generate 
XDR routines as well as client and server stubs. 

What are remote procedure calls? Simply put, they are the high-level communi­
cations paradigm used in Sun0S. RPC presumes the existence oflow-level net­
working mechanisms (such as TCP/IP and UDP/IP), and upon them it imple­
ments a logical client to server communications system designed specifically for 
the support of network applications. With RPC, the client makes a procedure 
call to send a data packet to the server. When the packet arrives, the server calls 
a dispatch routine, perfonns whatever service is requested, sends back the reply, 
and the procedure call returns to the client. 

The RPC interface can be seen as being divided into three layers.8 

The Highest Layer: The highest layer is totally transparent to the operating sys­
tem, machine and network upon which is is run. It's probably best to think of 
this level as a way of using RPC, rather than as a part ofRPC proper. Program­
mers who write RPC routines should (almost) always make this layer available to 
others by way of a simple C front end that entirely hides the networking. 

To illustrate, at this level a program can simply make a call to rnusersO, a C 
routine which returns the number of users on a remote machine. The user is not 
explicitly aware of using RPC - they simply call a procedure, just as they would 
call malloc (). 

8 For a complete specification of the routines in the remote procedure call Library, see the rpc (3N) manual 

page. 

57 Revision A, of 9 May 1988 



58 Network Programming 

The Middle Layer: The middle layer is really "RPC proper." Here, the user 
doesn't need to consider details about sockets, the UNIX system, or other low­
level implementation mechanisms. They simply make remote procedure calls to 
routines on other machines. The selling point here is simplicity. It's this layer 
that allows RPC to pass the "hello world" test - simple things should be simple. 
The middle-layer routines are used for most applications. 

RPC calls are made with the system routines registerrpc (), callrpc () 
and svc_runO. The first two of these are the most fundamental: 
registerrpc () obtains a unique system-wide procedure-identification 
number, and callrpc () actually executes a remote procedure call. At the 
middle level, a call to rnusers () is implemented by way of these two rou­
tines. 

The middle layer is unfortunately rarely used in serious programming due to its 
inflexibility (simplicity). It does not allow timeout specifications or the choice of 
transport. It allows no UNIX process control or flexibility in case of errors. It 
doesn't support multiple kinds of call authentication. The programmer rarely 
needs all these kinds of control, but one or two of them is often necessary. 

The Lowest Layer: The lowest layer does allow these details to be controlled by 
the programmer, and for that reason it is often necessary. Programs written at 
this level are also most efficient, but this is rarely a real issue- since RPC 
clients and seivers rarely generate heavy network loads. 

Although this document only discusses the interface to C, remote procedure calls 
can be made from any language. Even though this document discusses RPC 
when it is used to communicate between processes on different machines, it 
works just as well for communication between different processes on the same 
machine. 
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The RPC Paradigm Here is a diagram of the RPC paradigm: 

Figure 3-1 Network Communication with the Remote Procedure Call 
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Imagine you're writing a program that needs to know how many users are logged 
into a remote machine. You can do this by calling the RPC library routine 
rnusers (), as illustrated below: 
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Table 3-1 

#include <stdio.h> 

main(argc, argv) 
int argc; 
char **argv; 

int num; 

if (argc != 2) { 
fprintf(stderr, "usage: rnusers hostname\n"); 
exit(l); 

if ((num = rnusers(argv[l])) < 0) { 
fprintf(stderr, "error: rnusers\n"); 
exit(-1); 

printf("%d users on %s\n", num, argv[l]); 
exit(O); 

RPC library routines such as rnusers (} are in the RPC services library 
librpc svc. a. Thus, the program above should be compiled with 

example% cc program.c -lrpcsvc 

rnusersO, like the otherRPC library routines, is documented in section 3R of 
the System Services Overview, the same section which documents the standard 
Sun RPC services. See the intro (3R} manual page for an explanation of the 
documentation strategy for these services and their RPC protocols. 

Here are some of the RPC service library routines available to the C programmer: 

RPC Service Library Routines 

Routine 

rnusers 
rusers 
havedisk 
rstats 
rwall 
yppasswd 

Description 

Return number of users on remote machine 
Return information about users on remote machine 
Determine if remote machine has disk 
Get performance data from remote kernel 
Write to specified remote machines 
Update user password in Yellow Pages 

Other RPC services-for example ether (), mount, rquota (), and spray 
- are not available to the C programmer as library routines. They do, however, 
have RPC program numbers so they can be invoked with callrpc (}, which 
will be discussed in the next section. Most of them also have compilable 
rpcgen ( 1) protocol description files. (The rpcgen protocol compiler radi­
cally simplifies the process of developing network applications. See the 
rpcgen Programming Guide chapter for detailed information about rpcgen 
and rpcgen protocol description files). 
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The simplest interface, which explicitly makes RPC calls, uses the functions 
callrpc () and registerrpc (). Using this method, the number ofremote 
users can be gotten as follows: 
r 

#include <s.tdio. h> 
#include <rpc/rpc.h> 
#include <utmp.h> 
#include <rpcsvc/rusers.h> 

main(argc, argv) 
int argc; 
char **argv; 

unsigned long nusers; 
int stat; 

if (argc != 2) { 
fprintf(stderr, "usage: nusers hostname\n"); 
exit(-1); 

if (stat= callrpc(argv[l], 
RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, 
xdr_void, O, xdr_u_long, &nusers) != 0) 

clnt_perrno(stat); 
exit(l); 

printf("%d users on %s\n", nusers, argv[l]); 
exit(O); 

Each RPC procedure is uniquely defined by a program number, version number, 
and procedure number. The program number specifies a group of related remote 
procedures, each of which has a different procedure number. Each program also 
has a version number, so when a minor change is made to a remote seivice 
(adding a new procedure, for example), a new program number doesn't have to 
be assigned. When you want to call a procedure to find the number of remote 
users, you look up the appropriate program, version and procedure numbers in a 
manual, just as you look up the name of a memory allocator when you want to 
allocate memory. 

The simplest way of making remote procedure calls is with the the RPC library 
routine callrpc (). It has eight parameters. The first is the name of the 
remote seiver machine. The next three parameters are the program, version, and 
procedure numbers-together they identify the procedure to be called. The fifth 
and sixth parameters are an XDR filter and an argument to be encoded and 
passed to the remote procedure. The final two parameters are a filter for decod­
ing the results returned by the remote procedure and a pointer to the place where 
the procedure's results are to be stored. Multiple arguments and results are han­
dled by embedding them in structures. If callrpc () completes successfully, it 
returns zero; else it returns a nonzero value. The return codes ( of type cast into 
an integer) are found in <rpc/ clnt. h>. 
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Since data types may be represented differently on different machines, 
callrpc () needs both the type of the RPC argument, as well as a pointer to 
the argument itself (and similarly for the result). For RUSERSPROC _ NUM, the 
return value is an unsigned long, so callrpc () has xdr u long () as 
its first return parameter, which says that the result is of type unsigned long, 
and &nusers as its second return parameter, which is a pointer to where the 
long result will be placed. Since RUSERSPROC _ NUM takes no argument, the 
argument parameter of callrpc () is xdr_ void(). 

After trying several times to deliver a message, if callrpc () gets no answer, it 
returns with an error code. The delivery mechanism is UDP, which stands for 
User Datagram Protocol. Methods for adjusting the number of retries or for 
using a different protocol require you to use the lower layer of the RPC library, 
discussed later in this document. The remote server procedure corresponding to 
the above might look like this: 
r 

char* 
nuser(indata) 

char *indata; 

unsigned long nusers; 

I* 
* Code here to compute the number of users 
* and place result in variable nusers. 
*I 
return((char *)&nusers); 

It takes one argument, which is a pointer to the input of the remote procedure call 
(ignored in our example), and it returns a pointer to the result. In the current ver­
sion of C, character pointers are the generic pointers, so both the input argument 
and the return value are cast to char *. 
Normally, a seIVer registers all of the RPC calls it plans to handle, and then goes 
into an infinite loop waiting to service requests. In this example, there is only a 
single procedure to register, so the main body of the server would look like this: 

\. 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <utmp.h> 
#include <rpcsvc/rusers.h> 

char *nuser(); 

main () 
{ 

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, 
nuser, xdr_void, xdr_u_long); 

svc _ run () ; / * Never returns * I 
fprintf (stderr, "Error: svc run returned! \n"); 
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exit(l); 

The registerrpc () routine registers a C procedure as corresponding to a 
given RPC procedure number. The first three parameters, RUSERPROG, 

RUSERSVERS, and RUSERSPROC_NUM are the program, version, and pro­
cedure numbers of the remote procedure to be registered; nuser () is the name 
of the local procedure that implements the remote procedure; and xdr_ void (} 
and xdr_u_long () are the XOR filters for the remote procedure's arguments 
and results, respectively. (Multiple arguments or multiple results are passed as 
structures). 

Only the UDP transport mechanism can use registerrpc () ; thus, it is 
always safe in conjunction with calls generated by callrpc (). 

Warning: the UDP transport mechanism can only deal with arguments and 
results less than BK bytes in length. 

After registering the local procedure, the seiver program's main procedure calls 
svc_run(), the RPC library's remote procedure dispatcher. It is this function 
that calls the remote procedures in response to RPC call messages. Note that the 
dispatcher talces care of decoding remote procedure arguments and encoding 
results, using the XOR filters specified when the remote procedure was 
registered. 

Program numbers are assigned in groups of Ox 2 0 0 0 0 0 0 0 according to the fol­
lowing chart: 

OxO - Oxlfffffff Defined by Sun 
Ox20000000 - Ox3fffffff Defined by user 
Ox40000000 - Ox5fffffff Transient 
Ox60000000 - Ox7fffffff Reserved 
Ox80000000 - Ox9fffffff Reserved 
OxaOOOOOOO - Oxbfffffff Reserved 
OxcOOOOOOO - Oxdfffffff Reserved 
OxeOOOOOOO - Oxffffffff Reserved 

J 

,) 

Sun Microsystems administers the first group of numbers, which should be ident­
ical for all Sun customers. If a customer develops an application that might be of 
general interest, that application should be given an assigned number in the first 
range. The second group of numbers is reserved for specific customer applica­
tions. This range is intended primarily for debugging new programs. The third 
group is reseived for applications that generate program numbers dynamically. 
The final groups are reseived for future use, and should not be used. 

To register a protocol specification, send a request by network mail to rpc@sun, 
or write to: 
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RPC Administrator 
Sun Microsystems 
2550 Garcia Ave. 
Mountain View, CA 94043 

Please include a compilable rpcgen ".x" file describing your protocol. You 
will be given a unique program number in return. 

The RPC program numbers and protocol specifications of standard Sun RPC ser­
vices can be found in the include files in /usr / include/ rpcsvc. These ser­
vices, however, constitute only a small subset of those which have been 
registered. The complete list of registered programs, as of the time when this 
manual was printed, is: 

RPC Number Program Descripdon 

100000 PMAPPROG portmapper 
100001 RSTATPROG remote stats 
100002 RUSERSPROG remote users 
100003 NFSPROG nfs 
100004 YPPROG Yellow Pages 
100005 MOUNTPROG mount demon 
100006 DBXPROG remote dbx 
100007 YPBINDPROG yp binder 
100008 WALLPROG shutdown msg 
100009 YPPASSWDPROG yppasswd server 
100010 ETHERSTATPROG ether stats 
100011 RQUOTAPROG disk quotas 
100012 SPRAYPROG spray packets 
100013 IBM3270PROG 3270 mapper 
100014 IBMRJEPROG RJEmapper 
100015 SELNSVCPROG selection service 
100016 RDATABASEPROG remote database access 
100017 REXECPROG remote execution 
100018 ALICEPROG Alice Office Automation 
100019 SCHEDPROG scheduling service 
100020 LOCKPROG local lock manager 
100021 NETLOCKPROG network lock manager 
100022 X25PROG x.25 inr protocol 
100023 STATMONlPROG status monitor 1 
100024 STATMON2PROG status monitor 2 
100025 SELNLIBPROG selection library 
100026 BOOTPARAMPROG boot parameters service 
100027 MAZEPROG mazewars game 
100028 YPUPDATEPROG yp update 
100029 KEYSERVEPROG key server 
100030 SECURECMDPROG secure login 
100031 NETFWDIPROG nfs net forwarder init 
100032 NETFWDTPROG nfs net forwarder trans 
100033 SUNLINKMAP PROG sunlinkMAP 
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RPC Service Library Routines- Continued 

RPC Number Program Description 
100034 NETMONPROG network monitor 
100035 DBASEPROG lightweight database 
100036 PWDAUTHPROG password authorization 
100037 TFSPROG translucent file svc 
100038 NSEPROG nse server 
100039 NSE ACTIVATE PROG nse activate daemon 

150001 PCNFSDPROG pc passwd authorization 

200000 PYRAMIDLOCKINGPROG Pyramid-locking 
200001 PYRAMIDSYS5 Pyramid-sys5 
200002 CADDS IMAGE CV cadds _image 

300001 ADT RFLOCKPROG ADT file locking 

In the previous example, the RPC call passes a single unsigned long. RPC 
can handle arbitrary data structures, regardless of different machines' byte orders 
or structure layout conventions, by always converting them to a network standard 
called External Data Representation (XOR) before sending them over the wire. 
The process of converting from a particular machine representation to XOR for­
mat is called serializing, and the reverse process is called deserializing. The type 
field parameters of callrpc () and registerrpc () can be a built-in pro­
cedure like xdr _ u _ long () in the previous example, or a user supplied one. 
XOR has these built-in type routines: 

xdr_int () 
xdr_long () 
xdr_short () 
xdr_char () 

xdr_u_int () 
xdr_u_long () 
xdr_u_short () 
xdr_u_char () 

xdr_enum() 
xdr_bool () 
xdr_wrapstring () 

Note that the routine xdr_string () exists, but cannot be used with 
callrpc () and registerrpcO, which only pass two parameters to their 
XOR routines. xdr_wrapstring () has only two parameters, and is thus OK. 
It calls xdr_stringQ. 

As an example of a user-defined type routine, if you wanted to send the structure 

struct simple 
int a; 
short b; 

simple; 

then you would call callrpc () as 
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callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, 
xdr_simple, &simple ... ); 

where xdr _ simple (} is written as: 

#include <rpc/rpc.h> 

xdr_simple(xdrsp, simplep) 
XDR *xdrsp; 
struct simple *simplep; 

if (!xdr_int(xdrsp, &simplep->a)) 
return (0); 

if (!xdr_short(xdrsp, &simplep->b)) 
return (O); 

return (1); 

An XDR routine returns nonzero (true in the sense of C) if it completes success­
fully, and zero otherwise. A complete description of XDR is in the XDR Proto­
col Specification section of this manual, only few implementation examples are 
given here. 

In addition to the built-in primitives, there are also the prefabricated building 
blocks: 

xdr_array () 
xdr _ vector () 
xdr_string () 

xdr_bytes () 
xdr _ union ( ) 
xdr _ opaque ( ) 

xdr_ reference () 
xdr_pointer () 

To send a variable array of integers, you might package them up as a structure 
like this 

struct varintarr 
int *data; 
int arrlnth; 

arr; 

and make an RPC call such as 

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, 
xdr_varintarr, &arr ... ); 

with xdr_ varintarr (} defined as: 

•\sun 
• microsystems 
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xdr_varintarr(xdrsp, arrp) 
XDR *xdrsp; 
struct varintarr *arrp; 

return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, 
MAXLEN, sizeof(int), xdr_int)); 

This routine takes as parameters the XDR handle, a pointer to the array, a pointer 
to the size of the array, the maximum allowable array size, the size of each array 
element, and an XDR routine for handling each array element. 

If the size of the array is known in advance, one can use xdr_ vector(), which 
serializes fixed-length arrays. 

int intarr[SIZE]; 

xdr_intarr(xdrsp, intarr) 
XDR *xdrsp; 
int intarr[]; 

inti; 

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int), 
xdr_int)); 

XDR always converts quantities to 4-byte multiples when serializing. Thus, if 
either of the examples above involved characters instead of integers, each charac­
ter would occupy 32 bits. That is the reason for the XDR routine 
xdr_bytes (), which is like xdr_array () except that it packs characters; 
xdr_bytes () has four parameters, similar to the first four parameters of 
xdr_array(). Fornull-tenninated strings, there is also the xdr_string () 
routine, which is the same as xdr _bytes ( ) without the length parameter. On 
serializing it gets the string length from str len(), and on deserializing it 
creates a null-tenninated string. 

Here is a final example that calls the previously written xdr _ simple () as well 
as the built-in functions xdr_string () and xdr_reference(), which 
chases pointers: 
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3.2. Lowest Layer of RPC 

More on the Server Side 

struct finalexample { 
char *string; 
struct simple *simplep; 

finalexample; 

xdr_finalexample(xdrsp, finalp) 
XDR *xdrsp; 
struct finalexample *finalp; 

if ( !xdr_string (xdrsp, &finalp->string, MAXSTRLENH 
return (0); 

if (!xdr_reference(xdrsp, &finalp->simplep, 
sizeof(struct simple), xdr_simple); 

return (0); 
return (1); 

Note that we could as easily call xdr _ simple () here instead of 
xdr _ ref erenceQ. 

In the examples given so far, RPC takes care of many details automatically for 
you. In this section, we'll show you how you can change the defaults by using 
lower layers ofthe RPC library. It is assumed that you are familiar with sockets 
and the system calls for dealing with them. If not, consult the /PC Primer sec­
tion of this manual. 

-, 

There are several occasions when you may need to use lower layers of RPC. 
First, you may need to use TCP, since the higher layer uses UDP, which restricts 
RPC calls to 8K bytes of data. Using TCP permits calls to send long streams of 
data. For an example, see the TCP section below. Second, you may want to 
allocate and free memory while serializing or deserializing with XOR routines. 
There is no call at the higher level to let you free memory explicitly. For more 
explanation, see the Memory Allocation with XDR section below. Third, you 
may need to perform authentication on either the client or server side, by supply­
ing credentials or verifying them. See the explanation in the Authentication sec­
tion below. 

The server for the nus er s ( ) program shown below does the same thing as the 
one using registerrpc () above, but is written using a lower layer of the 
RPC package: 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <utmp.h> 
#include <rpcsvc/rusers.h> 

main() 
{ 

SVCXPRT *transp; 
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int nuser(); 

transp = svcudp_create(RPC_ANYSOCK); 
if (transp == NULL) { 

fprintf(stderr, "can't create an RPC server\n"); 
exit(l); 

pmap_unset(RUSERSPROG, RUSERSVERS); 
if (!svc_register(transp, RUSERSPROG, RUSERSVERS, 

nuser, IPPROTO_UDP)) { 
fprintf(stderr, "can't register RUSER service\n"); 
exit(l); 

svc _ run () ; / * Never returns * I 
fprintf(stderr, "should never reach this point\n"); 

nuser(rqstp, transp) 
struct svc_req *rqstp; 
SVCXPRT *transp; 

unsigned long nusers; 

switch (rqstp->rq_proc) 
case NULLPROC: 

if (!svc_sendreply(transp, xdr_void, 0)) 
fprintf(stderr, "can't reply to RPC call\n"); 

return; 
case RUSERSPROC NUM: 

I* 
* Code here to compute the number of users 
* and assign it to the variable nus.ers 
*I 
if (!svc_sendreply(transp, xdr_u_long, &nusers)) 

fprintf(stderr, "can't reply to RPC call\n"); 
return; 

default: 
svcerr_noproc(transp); 
return; 

First, the server gets a transport handle, which is used for receiving and replying 
to RPC messages. registerrpc () uses svcudp _ create () to get a UDP 
handle. If you require a more reliable protocol, call svctcp_create () 
instead. If the argument to svcudp_create () is RPC_ANYSOCK, the RPC 
library creates a socket on which to receive and reply to RPC calls. Otherwise, 
svcudp _ create () expects its argument to be a valid socket number. If you 
specify your own socket, it can be bound or unbound. If it is bound to a port by 
the user, the port numbers of svcudp_create () and clnttcp_create () 
(the low-level client routine) must match. 
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If the user specifies the RP c _ ANYS OCK argument, the RPC library routines will 
open sockets. Otherwise they will expect the user to do so. The routines 
svcudp_create () and clntudp_create () will cause the RPC library 
routines to bind () their socket if it is not bound already. 

A service may choose to register its port number with the local portmapper ser­
vice. This is done is done by specifying a non-zero protocol number in 
svc_register(). Incidently, a client can discover the server's port number by 
consulting the portmapper on their server's machine. This can be done automati­
cally by specifying a zero port number in clntudp_create () or 
clnttcp _ create(). 

After creating an SVCXPRT, the next step is to call pmap _ unset () so that if 
the nusers () server crashed earlier, any previous trace of it is erased before 
restarting. More precisely, pmap _ unset () erases the entry for RUSERSPROG 
from the port mapper's tables. 

Finally, we associate the program number for nusers () with the procedure 
nuser(). The final argument to svc_register (} is nonnally the protocol 
being used, which, in this case, is IPPROTO _UDP. Notice that unlike 
registerrpc(), there are no XOR routines involved in the registration pro­
cess. Also, registration is done on the program, rather than procedure, level. 

The user routine nuser () must call and dispatch the appropriate XOR routines 
based on the procedure number. Note that two things are handled by nuser () 
that registerrpc () handles automatically. The first is that procedure 
NULLPROC (currently zero) returns with no results. This can be used as a simple 
test for detecting if a remote program is running. Second, there is a check for 
invalid procedure numbers. If one is detected, svcerr _ noproc () is called to 
handle the error. 

The user service routine serializes the results and returns them to the RPC caller 
via svc_sendreply (). Its first parameter is the SVCXPRT handle, the 
second is the XOR routine, and the third is a pointer to the data to be returned. 
Not illustrated above is how a server handles an RPC program that receives data. 
As an example, we can add a procedure RUSERSPROC _ BOOL, which has an 
argument nusers(), and returns TRUE or FALSE depending on whether there 
are nusers logged on. It would look like this: 

case RUSERSPROC_BOOL: { 
int bool; 
unsigned nuserquery; 

if (!svc_getargs(transp, xdr u int, &nuserquery) { 
svcerr_decode(transp); 
return; 

!* 
* Code to set nusers = number of users 
*! 
if (nuserquery == nusers) 

bool = TRUE; 
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else 
bool = FALSE; 

if (!svc_sendreply(transp, xdr_bool, &bool)) { 
fprintf(stderr, "can't reply to RPC call\n"); 
return (1); 

return; 

The relevant routine is svc _getargs () , which takes an SVCXPRT handle, the 
XDR routine, and a pointer to where the input is to be placed as arguments. 

XDR routines not only do input and output, they also do memory allocation. 
This is why the second parameter of xdr _array () is a pointer to an array, 
rather than the array itself. Ifit is NULL, then xdr_array () allocates space 
for the array and returns a pointer to it, putting the size of the array in the third 
argument. As an example, consider the following XDR routine 
xdr _ chararrl (), which deals with a fixed array of bytes with length SIZE: 

xdr_chararrl(xdrsp, chararr) 
XOR *xdrsp; 
char chararr[]; 

char *p; 
int len; 

p = chararr; 
len = SIZE; 
return (xdr_bytes(xdrsp, &p, &len, SIZE)); 

If space has already been allocated in chararr, it can be called from a server like 
this: 

char chararr[SIZE]; 

svc_getargs(transp, xdr_chararrl, chararr); 

If you want XDR to do the allocation, you would have to rewrite this routine in 
the following way: 
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The Calling Side 

xdr_chararr2(xdrsp, chararrp) 
XDR *xdrsp; 
char **chararrp; 

int len; 

len = SIZE; 
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE)); 

Then the RPC call might look like this: 

char *arrptr; 

arrptr = NULL; 
svc_getargs(transp, xdr_chararr2, &arrptr); 
I* 
* Use the result here 
*I 
svc_freeargs(transp, xdr_chararr2, &arrptr); 

Note that, after being used, the character array can be freed with 

n 
/ 

svc _ freeargs () . svc _ freeargs () will not attempt to free any memory ~ 
if the variable indicating it is NULL. For example, in the the routine ! 1 
xdr_finalexample(), given earlier, if finalp->string was NULL, then 
it would not be freed. The same is true for f inalp->simplep. 

To summarize, each XDR routine is responsible for serializing, deserializing, and 
freeing memory. When an XDR routine is called from callrpc (), the serial­
izing part is used. When called from svc _getargs () , the deserializer is used. 
And when called from svc_freeargs (), the memory deallocator is used. 
When building simple examples like those in this section, a user doesn't have to 
worry about the three modes. See the External Data Representation: Sun Techn­
ical Notes chapter for examples of more sophisticated XDR routines that deter­
mine which of the three modes they are in and adjust their behavior accordingly. 

When you use callrpc (), you have no control over the RPC delivery 
mechanism or the socket used to transport the data. To illustrate the layer of 
RPC that lets you adjust these parameters, consider the following code to call the 
nusers service: 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <utmp.h> 
#include <rpcsvc/rusers.h> 
#include <sys/socket.h> 
#include <sys/time.h> 
#include <netdb.h> 

main(argc, argv) 
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int argc; 
char **argv; 

struct hostent *hp; 
struct timeval pertry_timeout, total_timeout; 
struct sockaddr_in server_addr; 
int sock= RPC_ANYSOCK; 
register CLIENT *client; 
enum clnt_stat clnt_stat; 
unsigned long nusers; 

if ( a rgc ! = 2 ) { 
fprintf(stderr, "usage: nusers hostnaine\n"); 
exit(-1); 

if ((hp= gethostbyname(argv[l])) == NULL) { 
fprintf(stderr, "can't get addr for %s\n",argv[l]); 
exit(-1); 

pertry_timeout.tv_sec = 3; 
pertry_timeout.tv_usec = O; 
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, 

hp->h_length); 
server_addr.sin_family = AF_INET; 
server_addr.sin__port = 0; 
if ((client= clntudp_create(&server_addr, RUSERSPROG, 

RUSERSVERS, pertry_timeout, &sock)) == NULL) { 
clnt__pcreateerror("clntudp_create"); 
exit(-1); 

total timeout.tv_sec = 20; 
total_timeout.tv_usec = 0; 
clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void, 

O, xdr_u_long, &nusers, total_timeout); 
if (clnt_stat != RPC_SUCCESS) { 

clnt__perror(client, "rpc"); 
exit(-1); 

clnt_destroy(client); 
close(sock); 
exit(O); 

The low-level version of callrpc () is clnt _ call () , which takes a 
CLIENT pointer rather than a host name. The parameters to clnt _ call () are 
a CLIENT pointer, the procedure number, the XDR routine for serializing the 
argument, a pointer to the argument, the XDR routine for deserializing the return 
value, a pointer to where the return value will be placed, and the time in seconds 
to wait for a reply. 

The CLIENT pointer is encoded with the transport mechanism. callrpc () 
uses UDP, thus it calls clntudp_create () to get a CLIENT pointer. To get 
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3.3. Other RPC Features 

Select on the Server Side 

TCP (Transmission Control Protocol), you would use clnttcp_create (). 

The parameters to clntudp_create () are the server address, the program 
number, the version number, a timeout value (between tries), and a pointer to a 
socket. The final argument to clnt_call () is the total time to wait for a 
response. Thus, the number of tries is the clnt_ call() timeout divided by 
the clntudp_create () timeout. 

Note that the clnt_destroy () call always deallocates the space associated 
with the CLIENT handle. It closes the socket associated with the CLIENT han­
dle, however, only if the RPC library opened it. It the socket was opened by the 
user, it stays open. This makes it possible, in cases where there are multiple 
client handles using the same socket, to destroy one handle without closing the 
socket that other handles are using. 

To make a stream connection, the call to clnt udp _ ere ate ( ) is replaced 
with a call to clnttcp_createQ. 

clnttcp_create(&server_addr, prognum, versnum, &sock, 
inputsize, outputsize); 

There is no timeout argument; instead, the receive and send buffer sizes must be 
specified. When the clnttcp_create () call is made, a TCP connection is 
established. All RPC calls using that CLIENT handle would use this connection. 
The server side of an RPC call using TCP has svcudp _create() replaced by n 
svctcp_create (). 

transp = svctcp_create(RPC_ANYSOCK, 0, 0); 

The last two arguments to svctcp_create () are send and receive sizes 
respectively. If 'O' is specified for either of these, the system chooses a reason­
able default. 

This section discusses some other aspects of RPC that are occasionally useful. 

Suppose a process is processing RPC requests while performing some other 
activity. If the other activity involves periodically updating a data structure, the 
process can set an alarm signal before calling s vc _ run ( ) . But if the other 
activity involves waiting on a a file descriptor, the svc _ run () call won't work. 
The code for svc_run () is as follows: 

void 
svc_run () 
{ 

fd set readfds; 
int dtbsz = getdtablesize(); 

for (;;) { 
readfds = svc_fds; 
switch (select(dtbsz, &readfds, NULL,NULL,NULL)) { 
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case -1: 
if (errno == EINTR) 

continue; 
perror("select"); 
return; 

case 0: 
break; 

default: 
svc_getreqset(&readfds); 

You can bypass svc _ run () and call svc _getreqset () yourself. All you 
need to know are the file descriptors of the socket(s) associated with the pro­
grams you are waiting on. Thus you can have your own select () that waits 
on both the RPC socket, and your own descriptors. Note that s vc _ f ds ( ) is a 
bit mask of all the file descriptors that RPC is using for services. It can change 
everytime that any RPC library routine is called, because descriptors are con­
stantly being opened and closed, for example for TCP connections. 

The portmapper is a daemon that converts RPC program numbers into DARPA 
protocol port numbers; see the portmap man page. You can't do broadcast 
RPC without the portmapper. Here are the main differences between broadcast 
RPC and nonnal RPC calls: 

1. Nonnal RPC expects one answer, whereas broadcast RPC expects many 
answers (one or more answer from each responding machine). 

2. Broadcast RPC can only be supported by packet-oriented (connectionless) 
transport protocols like UPD/IP. 

3. The implementation of broadcast RPC treats all unsuccessful responses as 
garbage by filtering them out. Thus, if there is a version mismatch between 
the broadcaster and a remote service, the user of broadcast RPC never 
knows. 

4. All broadcast messages are sent to the portmap port. Thus, only services 
that register themselves with their portmapper are accessible via the broad­
cast RPC mechanism. 

5. Broadcast requests are limited in size to the MTU (Maximum Transfer Unit) 
of the local network. For Ethernet, the MTU is 1500 bytes. 
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Broadcast RPC Synopsis 

Batching 

#include <rpc/pmap_clnt.h> 

enum clnt stat clnt_stat; 

clnt_stat = clnt_broadcast(prognum, versnum, procnum, 
inproc, in, outproc, out, eachresult) 

u_long prognum; /* programnumber *I 
u_long versnum; /* versionnumber *I 
u _ long procnum; / * procedure number * I 
xdrproc_t inproc; /* xdr routine/or args * I 
caddr t in; / * pointer to args * I 
xdrproc_t outproc; /* xdr routine/or results * I 
caddr t out; / * pointer to results * I 
bool t (*eachresult)();/* callwitheachresultgotten *I 

The procedure eachresul t () is called each time a valid result is obtained. It 
returns a boolean that indicates whether or not the user wants more responses. 

bool_t done; 

done= eachresult(resultsp, raddr) 
caddr_t resultsp; 
struct sockaddr_in *raddr; /* Addrofrespondingmachine *I 

If done is TRUE, then br9adcasting stops and clnt_broadcast () returns 
successfully. Otherwise, the routine waits for another response. The request is 
rebroadcast after a few seconds of waiting. If no responses come back, the rou­
tine returns with RPC TIME DO UT. 

The RPC architecture is designed so that clients send a call message, and wait for 
servers to reply that the call succeeded. This implies that clients do not compute 
while servers are processing a call. This is inefficient if the client does not want 
or need an acknowledgement for every message sent. It is possible for clients to 
continue computing while waiting for a response, using RPC batch f~cilities. 

RPC messages can be placed in a "pipeline" of calls to a desired server; this is 
called batching. Batching assumes that: 1) each RPC call in the pipeline requires 
no response from the server, and the server does not send a response message; 
and 2) the pipeline of calls is transported on a reliable byte stream transport such 
as TCP/IP. Since the server does not respond to every call, the client can gen­
erate new calls in parallel with the server executing previous calls. Furthermore, 
the TCP/IP implementation can buffer up many call messages, and send them to 
the server in one write () system call. This overlapped execution greatly 
decreases the interprocess communication overhead of the client and server 
processes, and the total elapsed time of a series of calls. 

n 

~ 
i\ ) 

Since the batched calls are buffered, the client should eventually do a nonbatched () 
call in order to flush the pipeline. \ 1 
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A contrived example of batching follows. Assume a string rendering service 
(like a window system) has two similar calls: one renders a string and returns 
void results, while the other renders a string and remains silent. The service 
(using the TCP/IP transport) may look like: 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <suntool/windows.h> 

void windowdispatch(); 

main() 
{ 

SVCXPRT *t:r;ansp; 

transp = svctcp_create(RPC_ANYSOCK, 0, 0); 
if (transp == NULL) { 

fprintf(stderr, "can't create an RPC server\n"); 
exit(l); 

pmap_unset(WINDOWPROG, WINDOWVERS); 

void 

if (!svc_register(transp, WINDOWPROG, WINDOWVERS, 
windowdispatch, IPPROTO_TCP)) { 

fprintf(stderr, "can't register WINDOW service\n"); 
exit(l); 

svc_run () ; /* Never returns * I 
fprintf(stderr, "should never reach this point\n"); 

windowdispatch(rqstp, transp) 
struct svc_req *rqstp; 
SVCXPRT *transp; 

char *s = NULL; 

switch (rqstp->rq_proc) 
case NULLPROC: 

if (!svc_sendreply(transp, xdr_void, 0)) 
fprintf(stderr, "can't reply to RPC call\n"); 

return; 
case RENDERSTRING: 

+!!!.!! 

if (!svc_getargs(transp, xdr_wrapstring, &s)) { 
fprintf(stderr, "can't decode arguments\n"); 
I* 

I* 

* Tell caller he screwed up 
*I 
svcerr_decode(transp); 
break; 

* Code here to render the string s 
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*I 
if (!svc_sendreply(transp, xdr_void, NULL)) 

fprintf(stderr, "can't reply to RPC call\n"); 
break; 

case RENDERSTRING BATCHED: 
if (!svc_getargs(transp, xdr_wrapstring, &s)) { 

fprintf(stderr, "can't decode arguments\n"); 
I* 

I* 

*Weare silent in the face of protocol errors 
*I 
break; 

* Code here to render strings, but send no reply! 
*I 
break; 

default: 
svcerr_noproc(transp); 
return; 

I* 
* Now free string allocated while decoding arguments 
*I 
svc_freeargs(transp, xdr_wrapstring, &s); 

Of course the service could have one procedure that takes the string and a 
boolean to indicate whether or not the procedure should respond. 

In order for a client to take advantage of batching, the client must perform RPC 
calls on a TCP-based transport and the actual calls must have the following attri­
butes: 1) the result's XOR routine must be zero (NULL), and 2) the RPC call's 
timeout must be zero. 

Here is an example of a client that uses batching to render a bunch of strings; the 
batching is flushed when the client gets a null string (EOF): 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <sys/socket.h> 
#include <sys/time.h> 
#include <netdb.h> 
#include <suntool/windows.h> 

main(argc, argv) 
int argc; 
char **argv; 

struct hostent *hp; 
struct timeval pertry_timeout, total_timeout; 
struct sockaddr_in server_addr; 
int sock= RPC_ANYSOCK; 
register CLIENT *client; 

, 
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enum clnt_stat clnt_stat; 
char buf[lOOO], *s = buf; 

if ((client= clnttcp_create(&server_addr, 
WINDOWPROG, WINDOWVERS, &sock, O, 0)) == NULL) { 

perror("clnttcp_create"); 
exit(-1); 

total_timeout.tv_sec = 0; 
total_timeout.tv_usec = O; 
while (scanf ("%s", s) ! = EOF) 

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED, 
xdr_wrapstring, &s, NULL, NULL, total_timeout); 

if (clnt_stat != RPC_SUCCESS) { 
clnt_perror(client, "batched rpc"); 
exit(-1); 

I* Now flush the pipeline * I 

total_timeout.tv_sec = 20; 
clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL, 

xdr_void, NULL, total_timeout); 
if (clnt_stat != RPC_SUCCESS) { 

clnt_perror(client, "rpc"); 
exit(-1); 

clnt_destroy(client); 
exit(O); 

Since the server sends no message, the clients cannot be notified of any of the 
failures that may occur. Therefore, clients are on their own when it comes to 
handling errors. 

The above example was completed to render all of the (2000) lines in the file 
I etc/ termcap. The rendering service did nothing but throw the lines away. The 
example was run in the following four configurations: 1) machine to itself, regu­
lar RPC; 2) machine to itself, batched RPC; 3) machine to another, regular RPC; 
and 4) machine to another, batched RPC. The results are as follows: 1) 50 
seconds; 2) 16 seconds; 3) 52 seconds; 4) 10 seconds. Running f scant () on 
/ etc/termcap only requires six seconds. These timings show the advantage 
of protocols that allow for overlapped execution, though these protocols are often 
hard to design. 

In the examples presented so far, the caller never identified itself to the server, 
and the server never required an ID from the caller. Clearly, some network ser­
vices, such as a network filesystem, require stronger security than what has been 
presented so far. 
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UNIX Authentication 

In reality, every RPC call is authenticated by the RPC package on the seiver, and 
similarly, the RPC client package generates and sends authentication parameters. 
Just as different transports (TCP/IP or UDP/IP) can be used when creating RPC 
clients and seivers, different fonns of authentication can be associated with RPC 
clients; the default authentication type used as a default is type none. 

The authentication subsystem of the RPC package is open ended. That is, 
numerous types of authentication are easy to support. 

The Client Side 

When a caller creates a new RPC client handle as in: 

clnt = clntudp_create(address, prognum, versnum, 
wait, sockp) 

the appropriate transport instance defaults the associate authentication handle to 
be 

[ clnt->cl_auth = authnone_create(); 

The RPC client can choose to use UNIX style authentication by setting 
c 1 nt->cl _au th after creating the RPC client handle: 

clnt->cl_auth = authunix_create_default(); 

This causes each RPC call associated with clnt to carry with it the following 
authentication credentials structure: 

I* 
* UNIX style credentials. 
*I 
struct authunix_parms 

u_long aup_time; 
char *aup_machname; 
int aup_uid; 
int aup_gid; 
u int aup_len; 
int *aup_gids; 

} ; 

I* credentials creation time * I 
I* host name where client is * I 
I* client's UNIX effective uid * I 
I* client's current group id * I 
I * element length of aup _gids * I 
I * array of groups user is in * I 

These fields are set by authunix_create_default () by invoking the 
appropriate system calls. Since the RPC user created this new style of authenti­
cation, the user is responsible for destroying it with: 

( auth_destroy(clnt->cl_auth); 

This should be done in all cases, to conseive memory. 

) 

) 
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The Server Side 

Service implementors have a harder time dealing with authentication issues since 
the RPC package passes the service dispatch routine a request that has an arbi­
trary authentication style associated with it. Consider the fields of a request han­
dle passed to a service dispatch routine: 
r 

!* 
* An RPC Service request 
*! 
struct svc_req { 

u _ long rq_prog; / * service program number * I 
u_long rq_vers; /* serviceprotocolversnum */ 
u _ long rq_proc; / * desired procedure number * I 
struct opaque_auth rq_cred; /* rawcredentialsfromwire *I 
caddr t rq_clntcred; /* credentials (read only) * I 

} ; 

The rq_ cred is mostly opaque, except for one field of interest: the style or 
flavor of authentication credentials: 

!* 
* Authentication info. Mostly opaque to the programmer. 
*! 
struct opaque_auth { 

enum t oa_flavor; 
caddr_t oa_base; 
u int oa_length; 

} ; 

I * style of credentials * I 
I* address of more auth stuff * I 
I* nottoexceedMAX_AUTH_BYTES *I 

The RPC package guarantees the following to the service dispatch routine: 

1. That the request's rq_ cred is well fonned. Thus the service implementor 
may inspect the request's rq_cred. oa_flavor to determine which style 
of authentication the caller used. The service implementor may also wish to 
inspect the other fields of rq_ cred if the style is not one of the styles sup­
ported by the RPC package. 

2. That the request's rq_ clntcred field is either NULL or points to a well 
fonned structure that corresponds to a supported style of authentication 
credentials. Remember that only unix style is currently supported, so 
(currently) rq_ clntcred could be cast to a pointer to an 
authunix_parms structure. If rq_clntcred is NULL, the service 
implementor may wish to inspect the other (opaque) fields of rq_cred in 
case the service knows about a new type of authentication that the RPC 
package does not know about. 

Our remote users service example can be extended so that it computes results for 
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all users except UID 16: 

nuser(rqstp, transp) 
struct svc_req *rqstp; 
SVCXPRT *transp; 

struct authunix_parms *unix_cred; 
int uid; 
unsigned long nusers; 

I* 
* we don't care about authentication for null proc 
*I 
if (rqstp->rq_proc == NULLPROC) { 

if (!svc_sendreply(transp, xdr_void, 0)) { 
fprintf(stderr, "can't reply to RPC call\n"); 
return (1); 

return; 

I* 
* now get the uid 
*! 
switch (rqstp->rq_cred.oa_flavor) 
case AUTH UNIX: 

unix cred = 
(struct authunix_parms *)rqstp->rq_clntcred; 

uid = unix_cred->aup_uid; 
break; 

case AUTH NULL: 
default: 

svcerr_weakauth(transp); 
return; 

switch (rqstp->rq_proc) 
case RUSERSPROC NUM: 

I* 
* make sure caller is allowed to call this proc 
*I 
if (uid == 16) { 

svcerr_systemerr(transp); 
return; 

I* 
* Code here to compute the number of users 
* and assign it to the variable nusers 
*I 
if (!svc_sendreply(transp, xdr_u_long, &nusers)) { 

fprintf(stderr, "can't reply to RPC call\n"); 
return (1); 

return; 
default: 
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svcerr_noproc(transp); 
return; 

A few things should be noted here. First, it is customary not to check the authen­
tication parameters associated with the NULLPROC (procedure number zero). 
Second, if the authentication parameter's type is not suitable for your seIVice, 
you should call svcerr_weakauth (). And finally, the seIVice protocol itself 
should return status for access denied; in the case of our example, the protocol 
does not have such a status, SO We call the SeIVice primitive 
svcerr_systemerr () instead. 

The last point underscores the relation between the RPC authentication package 
and the seIVices; RPC deals only with authentication and not with individual ser­
vices' access control. The seIVices themselves must implement their own access 
control policies and reflect these policies as return statuses in their protocols. 

UNIX authentication is quite easy to defeat. Instead of using 
authunix_create_defaultO, one can call authunix_create () and 
then modify the RPC authentication handle it returns by filling in whatever user 
ID and hostname they wish the seIVer to think they have. DES authentication is 
thus recommended for people who want more security than UNIX authentication 
offers. 

The details of the DES authentication protocol are complicated and are not 
explained here. See the Remote Procedure Calls: Protocol Specification section 
for the details. 

In order for DES authentication to work, the key serv ( 8 c) daemon must be 
running on both the seIVer and client machines. The users on these machines 
need public keys assigned by the network administrator in the pub-
1 i ckey ( 5} database. And, they need to have decrypted their secret keys 
using their login password. · This automatically happens when one logs in 
using login ( 1) , or can be done manually using key login ( 1) . The Net­
work Services chapter of Network Programming explains more how to setup 
secure networking. 

Client Side 

If a client wishes to use DES authentication, it must set its authentication handle 
appropriately. Here is an example: 

cl->cl auth = 
authdes_create(servername, 60, &server_addr, NULL); 

The first argument is the network name or "netname" of the owner of the seIVer 
process. Typically, seIVer processes are root processes and their netname can be 
derived using the following call: 
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char servername[MAXNETNAMELEN]; 

host2netname(servername, rhostname, NULL); 

Here, rhostname is the hostname of the machine the server process is running on. 
host2netname (} fills in servername to contain this root process's netname. 
If the server process was run by a regular user, one could use the call 
user2netname (} instead. Here is an example for a server process with the 
same user ID as the client: 

char servername[MAXNETNAMELEN]; 

user2netname(servername, getuid(), NULL); 

The last argument to both of these calls, user2netname (} and 
host2netname(), is the name of the naming domain where the server is 
located. The NULL used here means "use the local domain name." 

The second argument to authdes_create () is a lifetime for the credential. 
Here it is set to sixty seconds. What that means is that the credential will expire 
60 seconds from now. If some mischievous user tries to reuse the credential, the 
server RPC subsystem will recognize that it has expired and not grant any 
requests. If the same mischievous user tries to reuse the credential within the 
sixty second lifetime, he will still be rejected because the server RPC subsystem 
remembers which credentials it has already seen in the near past, and will not 
grant requests to duplicates. 

The third argument to authdes_create () is the address of the host to syn­
chronize with. In order for DES authentication to work, the server and client 
must agree upon the time. Here we pass the address of the server itself, so the 
client and server will both be using the same time: the server's time. The argu­
ment can be NULL, which means "don't bother synchronizing." You should only 
do this if you are sure the client and server are already synchronized. 

'I 

The final argument to authdes_create (} is the address of a DES encryption 
key to use for encrypting timestamps and data. If this argument is NULL, as it is 
in this example, a random key will be chosen. The client may find out the 
encryption key being used by consulting the ah_ key field of the authentication 
handle. 

Server Side 

The server side is a lot simpler than the client side. Here is the previous example 
rewritten to use AUTH DES instead of AUTH UNIX: 

#include <sys/time.h> 
#include <rpc/auth_des.h> 

nuser(rqstp, transp) 
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struct svc_req *rqstp; 
SVCXPRT *transp; 

struct authdes cred *des_cred; 
int uid; 
int gid; 
int gidlen; 
int gidlist[lO]; 
!* 
* we don't care about authentication for null proc 
*! 

if (rqstp->rq_proc 
same as before * I 

!* 
* now get the uid 
*! 

NULLPROC) { /* 

switch (rqstp->rq_cred.oa_flavor) 
case AUTH DES: 

des cred = 
(struct authdes_cred *) rqstp->rq_clntcred; 

if (! netname2user(des_cred->adc_fullname.name, 
&uid, &gid, &gidlen, gidlist)) 

fprintf(stderr, "unknown user: %s0, 
des_cred->adc_fullname.name); 

svcerr_systemerr(transp); 
return; 

break; 
case AUTH NULL: 
default: 

svcerr_weakauth(transp); 
return; 

!* 
* The rest is the same as be/ ore 
*! 

Note the use of the routine netname2user0, the inverse of 
netname2user(): it takes a network ID and converts to a unix ID. 
netname2user () alsp supplies the group IDs which we don't use in this 
example, but which may be useful to other UNIX programs. 
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Usinglnetd 

3.4. More Examples 

Versions 

An RPC server can be started from inetd. The only difference from the usual 
code is that the service creation routine should be called in the following fonn: 
r 

transp 
transp 
transp 

svcudp_create(O); /* For UDP *I 
svctcp_create (0, 0, 0); /* For listener TCP sockets *I 
svcfd_create(0,0,0); /* ForconnectedTCPsockets */ 

since inet passes a socket as file descriptor 0. Also, svc_register () 
should be called as 

svc_register(transp, PROGNUM, VERSNUM, service, 0); 

with the final flag as 0, since the program would already be registered by inetd. 
Remember that if you want to exit from the server process and return control to 
inet, you need to explicitly exit, since svc _ run () never returns. 

The fonnat of entries in/ etc/ inetd. conf forRPC services is in one of the 
following two forms: 

p_name/version dgram rpc/udp wait/nowait user server args 
p_name/version stream rpc/tcp wait/nowait user server args 

where p _ name is the symbolic name of the program as it appears in rpc ( 5) , 
server is the program implementing the server, and program and version are the 
program and version numbers of the service. For more information, see 
inetd. conf (5). 

If the same program handles multiple versions, then the version number can be a 
range, as in this example: 

rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd 

By convention, the first version number of program PROG is PROGVERS _ ORIG 

and the most recent version is PROGVERS. Suppose there is a new version of the 
user program that returns an unsigned short rather than a long. If we 
name this version RUSERSVERS_SHORT, then a server that wants to support 
both versions would do a double register. 

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG, 
nuser, IPPROTO_TCP)) { 

fprintf(stderr, "can't register RUSER service\n"); 
exit (1); 

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT, 
nuser, IPPROTO_TCP)) { 

fprintf(stderr, "can't register RUSER service\n"); 
exit(l); 
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Both versions can be handled by the same C procedure: 

\. 

nuser(rqstp, transp) 
struct svc_req *rqstp; 
SVCXPRT *transp; 

unsigned long nusers; 
unsigned short nusers2; 

switch (rqstp->rq__proc) 
case NULLPROC: 

if (!svc_sendreply(transp, xdr_void, 0)) { 
fprintf(stderr, "can't reply to RPC call\n"); 
return (1); 

return; 
case RUSERSPROC NUM: 

I* 
* Code here to compute the number of users 
* and assign it to the variable nusers 
*I 

nusers2 = nusers; 
switch (rqstp->rq_vers) 
case RUSERSVERS ORIG: 

if (!svc_sendreply(transp, xdr_u_long, 
&nusers)) { 

fprintf(stderr,"can't reply to RPC call\n"); 

break; 
case RUSERSVERS SHORT: 

if (!svc_sendreply(transp, xdr_u_short, 
&nusers2) ) { 

fprintf(stderr,"can't reply to RPC call\n"); 

break; 

default: 
svcerr_noproc(transp); 
return; 

Here is an example that is essentially rep. The initiator of the RPC snd call 
takes its standard input and sends it to the server rev, which prints it on standard 
output. The RPC call uses TCP. This also illustrates an XDR procedure that 
behaves differently on serialization than on deserialization. 

I* 
* The xdr routine: 
* 
* 

on decode, read from wire, write onto fp 
on encode, readfromfp, write onto wire 
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*I 
#include <stdio.h> 
#include <rpc/rpc.h> 

xdr_rcp(xdrs, fp) 
XDR *xdrs; 
FILE *fp; 

unsigned long size; 
char buf[BUFSIZ], *p; 

if (xdrs->x_op 
return 1; 

while (1) { 

XDR_FREE)/* nothing to free*/ 

if (xdrs->x_op == XDR_ENCODE) { 
if ((size= fread(buf, sizeof(char), BUFSIZ, 

fp)) == 0 && ferror(fp)) { 
fprintf(stderr, "can't fread\n")f 
return (1); 

p buf; 
if (!xdr_bytes(xdrs, &p, &size, BUFSIZ)) 

return 0; 
if (size == 0) 

return 1; 
if (xdrs->x_op == XDR_DECODE) { 

if (fwrite(buf, sizeof(char), size, 
fp) ! = size) { 

fprintf(stderr, "can't fwrite\n"); 
return (1); 

I* 
* The sender routines 
*I 
#include <stdio.h> 
#include <netdb.h> 
#include <rpc/rpc.h> 
#include <sys/socket.h> 
#include <sys/time.h> 

main(argc, argv) 
int argc; 
char **argv; 

int xdr_rcp(); 
int err; 
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if (argc < 2) 
fprintf(stderr, "usage: %s servername\n", argv[O]); 
exit(-1); 

if ((err= callrpctcp(argv[l], RCPPROG, RCPPROC, 
RCPVERS, xdr_rcp, stdin, xdr_void, 0) != 0)) { 

clnt_perrno(err); 
fprintf(stderr, "can't make RPC call\n"); 
exit(l); 

exit(O); 

callrpctcp(host, prognllffl, procnum, versnum, 

I* 

inproc, in, outproc, out) 
char *host, *in, *out; 
xdrproc_t inproc, outproc; 

struct sockaddr_in server_addr; 
int socket= RPC_ANYSOCK; 
enum clnt_stat clnt_stat; 
struct hostent *hp; 
register CLIENT *client; 
struct timeval total_timeout; 

if ((hp= gethostbyname(host)) == NULL) 
fprintf(stderr, "can't get addr for '%s'\n", host); 
return (-1); 

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, 
hp->h_length); 

server_addr.sin_family = AF_INET; 
server_addr.sin_port = 0; 
if ((client= clnttcp_create(&server_addr, prognum, 

versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) { 
perror("rpctcp_create"); 
return (-1); 

total_timeout.tv_sec = 20; 
total_timeout.tv_usec = 0; 
clnt_stat = clnt_call(client, procnum, 

inproc, in, outproc, out, total_timeout); 
clnt_destroy(client); 
return (int)clnt_stat; 

* The receiving routines 
*I 
#include <stdio.h> 
#include <rpc/rpc.h> 

sun Revision A, of 9 May 1988 
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main() 
{ 

register SVCXPRT *transp; 
int rcp_service (), xdr_rcp (); 

if ((transp = svctcp_create(RPC_ANYSOCK, 
BUFSIZ, BUFSIZ)) == NULL) { 

fprintf("svctcp_create: error\n"); 
exit(l); 

pmap_unset(RCPPROG, RCPVERS); 
if ( ! svc_register (transp, ,.. 

RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP)) 
fprintf(stderr, "svc_register: error\n"); 
exit(l); 

svc _ run () ; / * never returns * I 
fprintf(stderr, "svc run should never return\n"); 

rcp_service(rqstp, transp) 
register struct svc_req *rqstp; 
register SVCXPRT *transp; 

switch (rqstp->rq_proc) 
case NULLPROC: 

if (svc_sendreply(transp, xdr_void, 0) == 0) 
fprintf(stderr, "err: rcp_service"); 
return (1); 

return; 
case RCPPROC FP: 

if (!svc_getargs(transp, xdr_rcp, stdout)) { 
svcerr_decode(transp); 
return; 

if (!svc_sendreply(transp, xdr_void, 0)) 
fprintf(stderr, "can't reply\n"); 
return; 

return (0); 
default: 

svcerr_no~roc(transp); 
return; 
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Occasionally, it is useful to have a server beco~e a client, and make an RPC call 
back to the process which is its client. An example is remote debugging, where 
the client is a window system program, and the server is a debugger running on 
the remote machine. Most of the time, the user clicks a mouse button at the 
debugging window, which converts this to a debugger command, and then makes 
an RPC call to the server (where the debugger is actually running), telling it to 
execute that command. However, when the debugger hits a breakpoint, the roles 
are reversed, and the debugger wants to make an rpc call to the window program, 
so that it can infonn the user that a breakpoint has been reached. 

In order to do an RPC callback, you need a program number to make the RPC 
call on. Since this will be a dynamically generated program number, it should be 
in the transient range, Ox40000000 - OxSfffffff. The routine get­
transient () returns a valid program number in the transient range, and regis­
ters it with the portmapper. It only talks to the portmapper running on the same 
machine as the get transient () routine itself. The call to pmap_set () is 
a test and set operation, in that it indivisibly tests whether a program number has 
already been registered, and if it has not, then reserves it. On return, the sockp 
argument will contain a socket that can be used as the argument to an 
svcudp_create () or svctcp_create () call. 

#include <stdio.h> 
#include <rpc/rpc.h> 
tinclude <sys/socket.h> 

gettransient(proto, vers, sockp) 
int proto, vers, *sockp; 

static int prognum = Ox40000000; 
int s, len, socktype; 
struct sockaddr in addr; 

switch(proto) { 
case IPPROTO UDP: 

socktype = SOCK_DGRAM; 
break; 

case IPPROTO TCP: 
socktype SOCK_STREAM; 
break; 

default: 
fprintf(stderr, "unknown protocol type\n"); 
return O; 

if (*sockp == RPC_ANYSOCK) { 

else 

if ((s = socket(AF_INET, socktype, 0)) < 0) { 
perror("socket"); 
return (0); 

*sockp = s; 

s = *sockp; 
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addr.sin_addr.s_addr = O; 
addr.sin_family = AF_INET; 
addr.sin_port = O; 
len = sizeof(addr); 
I* 
* may be already bound, so don't check for error 
*I 
bind(s, &addr, len); 
if (getsockname(s, &addr, &len)< 0) { 

perror("getsockname"); 
return (0); 

while (!pmap_set(prognum++, vers, proto, 
ntohs(addr.sin_port))) continue; 

return (prognum-1); 

NOTE The call to ntohs () is necessary to ensure that the port number in 
addr . sin _port, which is in network byte order, is passed in host byte order 
(as pmap_set () expects). This works on all Sun machines. See the 
byteorder (3N) manpagefor more details on the conversion of network 
addresses from network to host byte order. 
The following pair of programs illustrate how to use the get transient () 
routine. The client makes an RPC call to the seiver, passing it a transient pro- n 
gram number. Then the client waits around to receive a callback from the seiver \. / 
at that program number. The seiver registers the program EXAMPLEPROG, so 
that it can receive the RPC call informing it of the callback program number. 
Then at some random time (on receiving an ALRM signal in this example), it 
sends a callback RPC call, using the program number it received earlier. 

I* 
* client 
*I 
#include <stdio.h> 
#include <rpc/rpc.h> 

int callback(); 
char hostname[256]; 

main() 
{ 

int x, ans, s; 
SVCXPRT *xprt; 

gethostname(hostname, sizeof(hostname)); 
s = RPC_ANYSOCK; 
x = gettransient(IPPROTO_UDP, 1, &s); 
fprintf(stderr, "client gets prognum %d\n", x); 
if ((xprt = svcudp_create(s)) == NULL) { 

fprintf(stderr, "rpc_server: svcudp_create\n"); 
exit(l); 
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I* protocol is O - get transient does registering *I 
(void)svc_register(xprt, x, 1, callback, 0); 
ans= callrpc(hostname, EXAMPLEPROG, EXAMPLEVERS, 

EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0); 
if ((erium clnt_stat) ans != RPC_SUCCESS) { 

fprintf(stderr, "call: "); 
clnt_perrno(ans); 
fprintf(stderr, "\n"); 

svc_run (); 
fprintf(stderr, "Error: svc run shouldn't return\n"); 

callback(rqstp, transp) 
register struct svc_req *rqstp; 
register SVCXPRT *transp; 

switch (rqstp->rq_proc) 
case 0: 

if ( ! svc_sendreply (transp, xdr_ void, 0)) 
fprintf(stderr, "err: exampleprog\n"); 
return (1); 

I* 
* server 
*I 

return (0); 
case 1: 

if ( ! svc_getargs (transp, xdr void, 0) ) 
svcerr_decode(transp); 
return (1); 

fprintf(stderr, "client got callback\n"); 
if (!svc_sendreply(transp, xdr_void, 0)) { 

fprintf(stderr, "err: exampleprog"); 
return (1); 

#include <stdio.h> 
#include <rpc/rpc.h> 
#include <sys/signal.h> 

char *getnewpr9g(); 
char hostname[256]; 
int docallback(); 
int pnum; / * program number for callback routine * I 

main() 

sun 
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gethostname(hostname, sizeof(hostname)); 
registerrpc(EXAMPLEPROG, EXAMPLEVERS, 

EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void); 
fprintf(stderr, "server going into svc_run\n"); 
signal(SIGALRM, docallback); 
alarm(lO); 
svc_run(); 
fprintf(stderr, "Error: svc run shouldn't return\n"); 

char* 
getnewprog(pnump) 

char *pnump; 

pnum *(int *)pnump; 
return NULL; 

docallback () 
{ 

int ans; 

ans= callrpc(hostname, pnum, 1, 1, xdr_void, 0, 
xdr_void, O); 

if (ans != 0) { 

•\sun 
• microsystems 

fprintf(stderr, "server: "); 
clnt_perrno(ans); 
fprintf(stderr, "\n"); 
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External Data Representation: Sun 

Technical Notes 

This chapter contains technical notes on Sun's implementation of the External 
Data Representation (XOR) standard, a set of library routines that allow a C pro­
grammer to describe arbitrary data structures in a machine-independent fashion. 
For a fonnal specification of the XOR standard, see the External Data Represen­
tation Standard: Protocol Specification. XDR is the backbone of Sun's Remote 
Procedure Call package, in the sense that data for remote procedure calls is 
transmitted using the standard. XOR library routines should be used to transmit 
data that is accessed (read or written) by more than one type of machine. 9 

This chapter contains a short tutorial overview of the XOR library routines, a 
guide to accessing currently available XDR streams, and infonnation on defining 
new streams and data types. XDR was designed to work across different 
languages, operating systems, and machine architectures. Most users (particu­
larly RPC users) will only need the infonnation in the Number Filters, Floating 
Point Filters, and Enumeration Filters sections. Programmers wishing to imple­
ment RPC and XDR on new machines will be interested in the rest of the 
chapter, as well as the External Data Representation Standard: Protocol 
Specification, which will be their primary reference. 

NOTE rpcgen can be used to write XDR routines even in cases where no RPC calls 
are being made. 

On Sun systems, C programs that want to use XOR routines must include the file 
<rpc/rpc. h>, which contains all the necessary interfaces to the XDR system. 
Since the C library libc. a contains all the XDR routines, compile as nonnal. 

( example% cc program. c ] 

9 For a compete specification of the system External Data Representation routines, see the xdr ( 3 N) manual 
page. 
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Justification Consider the following two programs, writer: 

#include <stdio.h> 

main() 
{ 

long i; 

I* writer.c * I 

for (i = O; i < 8; i++) { 
if (fwrite((char *)&i, sizeof(i), 1, stdout) != 1) { 

fprintf (stderr, "failed! \n"); 
exit (1); 

exit(O); 

and reader: 

#include <stdio.h> 

main () / * reader.c * I 
{ 

long i, j; 

for (j = O; j < 8; j++) { 
if (fread((char *)&i, s~zeof (i), 1, stdin) != 1) { 

fprintf(stderr, "failed!\n"); 
exit (1); 

printf("%ld ", i); 

printf("\n"); 
exit(O); 

The two programs appear to be portable, because (a) they pass lint checking, 
and (b) they exhibit the same behavior when executed on two different hardware 
architectures, a Sun and a VAX. 

Piping the output of the writer program to the reader program gives identi­
cal results on a Sun or a VAX. 
, 

sun% writer I reader 
0 1 2 3 4 5 6 7 
sun% 

vax% writer reader 
0 1 2 3 4 5 6 7 
vax% 

n 

0 

With the advent of local area networks and 4.2BSD came the concept of "net- n 
work pipes" - a process produces data on one machine, and a second process · · 
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consumes data on another machine. A network pipe can be constructed with 
writer and reader. Here are the results if the first produces data on a Sun, 
and the second consumes data on a VAX. 

sun% writer I rsh vax reader 
0 16777216 33554432 50331648 67108864 83886080 100663296 
117440512 
sun% 

Identical results can be obtained by executing writ er on the VAX and 
reader on the Sun. These results occur because the byte ordering of long 
integers differs between the VAX and the Sun, even though word size is the 
same. Note that 16777216 is 224 

- when four bytes are reversed, the 1 winds up 
in the 24th bit. 

Whenever data is shared by two or more machine types, there is a need for port­
able data. Programs can be made data-portable by replacing the read () and 
write () calls with calls to an XOR library routine xdr _ long () , a filter that 
knows the standard representation of a long integer in its external form. Here are 
the revised versions of writer: 

#include <stdio.h> 
#include <rpc/rpc.h> I * xdr is a sub-library of rpc * I 
main() 
{ 

I * writer.c * I 

XDR xdrs; 
long i; 

xdrstdio_create(&xdrs, stdout, XDR_ENCODE); 
for (i = 0; i < 8; i++) { 

if (!xdr_long(&xdrs, &i)) { 
fprintf(stderr, "failed!\n"); 
exit(l); 

exit(O); 

and reader: 
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A Canonical Standard 

#include <stdio.h> 
#include <rpc/rpc.h> 

main () 
{ 

I* reader.c * I 

XDR xdrs; 
long i, j; 

I* xdr is a sub-library of rpc * I 

xdrstdio_create(&xdrs, stdin, XDR_DECODE); 
for (j = 0; j < 8; j++) { 

if (!xdr_long(&xdrs, &i)) 
fprintf(stderr, "failed!\n"); 
exit(l); 

printf("%ld ", i); 

printf("\n"); 
exit(O); 

The new programs were executed on a Sun, on a VAX, and from a Sun to a 
VAX; the results are shown below. 
, 

sun% writer I reader 
0 1 2 3 4 5 6 7 
sun% 

vax% writer I reader 
0 1 2 3 4 5 6 7 
vax% 

sun% writer I rsh vax reader 
0 1 2 3 4 5 6 7 
sun% 

NOTE Integers are just the tip of the portable-data iceberg. Arbitrary data structures 
present portability problems, particularly with respect to alignment and pointers. 
Alignment on word boundaries may cause the size of a structure to vary from 
machine to machine. And pointers, which are very convenient to use, have no 
meaning outside the machine where they are defined. 

XDR 's approach to standardizing data representations is canonical. That is, 
XDR defines a single byte order (Big Endian), a single floating-point representa­
tion (IEEE), and so on. Any program running on any machine can use XDR to 
create portable data by translating its local representation to the XDR standard 
representations; similarly, any program running on any machine can read port­
able data by translating the XOR standard representaions to its local equivalents. 
The single standard completely decouples programs that create or send portable 
data from those that use or receive portable data. The advent of a new machine 
or a new language has no effect upon the community of existing portable data 
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creators and users. A new machine joins this community by being "taught" how 
to convert the standard representations and its local representations; the local 
representations of other machines are irrelevant. Conversely, to existing pro­
grams running on other machines, the local representations of the new machine 
are also irrelevant; such programs can immediately read portable data produced 
by the new machine because such data conforms to the canonical standards that 
they already understand. 

There are strong precedents for XDR's canonical approach. For example, 
TCP/IP, UDP/IP, XNS, Ethernet, and, indeed, all protocols below layer five of 
the ISO model, are canonical protocols. The advantage of any canonical 
approach is simplicity; in the case of XOR, a single set of conversion routines is 
written once and is never touched again. The canonical approach has a disadvan­
tage, but it is unimportant in real-world data transfer applications. Suppose two 
Little-Endian machines are transferring integers according to the XDR standard. 
The sending machine converts the integers from Little-Endian byte order to XDR 
(Big-Endian) byte order, the receiving machine performs the reverse conversion. 
Because both machines observe the same byte order, their conversions are 
unnecessary. The point, however, is not necessity, but cost as compared to the 
alternative. 

The time spent converting to and from a canonical representation is insignificant, 
especially in networking applications. Most of the time required to prepare a 
data structure for transfer is not spent in conversion but in traversing the elements 
of the data structure. To transmit a tree, for example, each leaf must be visited 
and each element in a leaf record must be copied to a buffer and aligned there; 
storage for the leaf may have to be deallocated as well. Similarly, to receive a 
tree, storage must be allocated for each leaf, data must be moved from the buffer 
to the leaf and properly aligned, and pointers must be constructed to link the 
leaves together. Every machine pays the cost of traversing and copying data 
structures whether or not conversion is required. In networking applications, 
communications overhead-the time required to move the data down through the 
sender's protocol layers, across the network and up through the receiver's proto­
col layers--dwarfs conversion overhead. 

The XDR library not only solves data portability problems, it also allows you to 
write and read arbitrary C constructs in a consistent, specified, well-documented 
manner. Thus, it can make sense to use the library even when the data is not 
shared among machines on a network. 

The XOR library has filter routines for strings (null-terminated arrays of bytes), 
structures, unions, and arrays, to name a few. Using more primitive routines, you 
can write your own specific XDR routines to describe arbitrary data structures, 
including elements of arrays, arms of unions, or objects pointed at from other 
structures. The structures themselves may contain arrays of arbitrary elements, 
or pointers to other structures. 

Let's examine the two programs more closely. There is a family of XDR stream 
creation routines in which each member treats the stream of bits differently. In 
our example, data is manipulated using standard 1/0 routines, so we use 
xdrstdio_create(). The parameters to XOR stream creation routines vary 
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according to their function. In our example, xdrstdio_create (} takes a 
pointer to an XOR structure that it initializes, a pointer to a FILE that the input 
or output is performed on, and the operation. The operation may be 
XDR_ENCODE for serializing in the writer program, or XDR_DECODE for 
deserializing in :the reader program. 

Note: RPC users never need to create XOR streams; the RPC system itself 
creates these streams, which are then passed to the users. 

The xdr_long () primitive is characteristic of most XOR library primitives 
and all client XOR routines. First, the routine returns FALSE (0) if it fails, and 
TRUE (1) if it succeeds. Second, for each data type, xxx, there is an ~sociated 
XOR routine of the form: 

xdr_xxx(xdrs, xp) 
XDR *xdrs; 
XXX *xp; 

In our case, xxx is long, and the corresponding XOR routine is a primitive, 
xdr _ long () . The client could also define an arbitrary structure xxx in which 
case the client would also supply the routine xdr _ xxxO, describing each field 
by calling XOR routines of the appropriate type. In all cases the first parameter, r-'\ 
xdr s can be treated as an opaque handle, and passed to the primitive routines. 1\" ) 

XOR routines are direction independent; that is, the same routines are called to 
serialize or deserialize data. This feature is critical to software engineering of 
portable data. The idea is to call the same routine for either operation - this 
almost guarantees that serialized data can also be deserialized. One routine is 
used by both producer and consumer of networked data. This is implemented by 
always passing the address of an object rather than the object itself-only in the 
case of deserialization is the object modified. This feature is not shown in our 
trivial example, but its value becomes obvious when nontrivial data structures are 
passed among machines. If needed, the user can obtain the direction of the XOR 
operation. See the XDR Operation Directions section of this chapter for details. 

Let's look at a slightly more complicated example. Assume that a person's gross 
assets and liabilities are to be exchanged among processes. Also assume that 
these values are important enough to warrant their own data type: 

struct gnumbers { 
long g_assets; 
long g_liabilities; 

} ; 

The corresponding XOR routine describing this structure would be: 
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bool t /* TRUE is success, FALSE isfailure * I 
xdr_gnumbers(xdrs, gp) 

XDR *xdrs; 
struct gnumbers *gp; 

if (xdr_long(xdrs, &gp->g_assets) && 
xdr_long(xdrs, &gp->g_liabilities)) 
return(TRUE); 

return(FALSE); 

Note that the parameter xdr s is never inspected or modified; it is only passed on 
to the subcomponent routines. It is imperative to inspect the return value of each 
XOR routine call, and to give up immediately and return FALSE if the subrou­
tine fails. 

This example also shows that the type boo l _ t is declared as an integer whose 
only values are TRUE (1) and FALSE (0). This document uses the following 
definitions: 

#define bool t int 
#define TRUE 1 
#define FALSE 0 

Keeping these conventions in mind, xdr_gnurnbers ( L can be rewritten as fol­
lows: 

xdr_gnumbers(xdrs, gp) 
XDR *xdrs; 
struct gnumbers *gp; 

return(xdr_long(xdrs, &gp->g_assets) && 
xdr_long(xdrs, &gp->g_liabilities)); 

This document uses both coding styles. 

This section gives a synopsis of each XDR primitive. It starts with basic data 
types and moves on to constructed data types. Finally, XDR utilities are dis­
cussed. The interface to these primitives and utilities is defined in the include file 
<rpc/xdr. h>, automatically included by <rpc/rpc. h>. 

The XDR library provides primitives to translate between numbers and their 
corresponding external representations. Primitives cover the set of numbers in: 

[signed, unsigned] * [short, int, long] 
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Floating Point Filters 

Specifically, the eight primitives are: 
, 
bool_t xdr_char(xdrs, cp) 

XDR *xdrs; 
char *cp; 

bool_t xdr_u_char(xdrs, ucp) 
XDR *xdrs; 
unsigned char *ucp; 

bool_t xdr_int(xdrs, ip) 
XDR *xdrs; 
int *ip; 

bool_t xdr_u_int(xdrs, up) 
XDR *xdrs; 
unsigned *up; 

bool_t xdr_long(xdrs, lip) 
XDR *xdrs; 
long *lip; 

bool_t xdr_u_long(xdrs, lup) 
XDR *xdrs; 
u_long *lup; 

bool_t xdr_short(xdrs, sip) 
XDR *xdrs; 
short *sip; 

bool_t xdr_u_short(xdrs, sup) 
XDR *xdrs; 
u_short *sup; 

The first parameter, xdr s, is an XOR stream handle. The second parameter is 
the address of the number that provides data to the stream or receives data from 
it. All routines return TRUE if they complete successfully, and FALSE other­
wise. 

The XDR library also provides primitive routines for C's floating point types: 

bool_t xdr_float(xdrs, fp) 
XDR *xdrs; 
float *fp; 

bool_t xdr_double(xdrs, dp) 
XDR *xdrs; 
double *dp; 

n 

n 

The first parameter, xdr s is an XDR stream handle. The second parameter is 
the address of the floating point number that provides data to the stream or 
receives data from it. Both routines return TRUE if they complete successfully, 
and FALSE otherwise. n 

•\sun ~ microsysterns 
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Note: Since the numbers are represented in IEEE floating point, routines may fail 
when decoding a valid IEEE representation into a machine-specific representa­
tion, or vice-versa. 

The XDR library provides a primitive for generic enumerations. The primitive 
assumes that a C en um has the same representation inside the machine as a C 
integer. The boolean type is an important instance of the enum. The external 
representation of a boolean is always TRUE (1) or FALSE (0). 

#define bool t int 
#define FALSE 0 
#define TRUE 1 

#define enum t int 

bool_t xdr_enum(xdrs, ep) 
XOR *xdrs; 
enum t *ep; 

bool_t xdr_bool(xdrs, bp) 
XOR *xdrs; 
bool t *bp; 

\. 

The second par~eters ep and bp are addresses of the associated type that pro­
vides data to, or receives data from, the stream xdrs. 

Occasionally, an XDR routine must be supplied to the RPC system, even when 
no data is passed or required. The library provides such a routine: 

bool t xdr _void() ; / * always returns TRUE * I 

Constructed or compound data type primitives require more parameters and per­
fonn more complicated functions then the primitives discussed above. This sec­
tion includes primitives for strings, arrays, unions, and pointers to structures. 

.J 

Constructed data type primitives may use memory management. In many cases, 
memory is allocated when deserializing data with XDR_ DECODE. Therefore, the 
XDR package must provide means to deallocate memory. This is done by an 
XDR operation, XDR_FREE. To review, the three XDR directional operations 
are XDR_ENCODE, XDR_DECODE, and XDR_FREE. 

In C, a string is defined as a sequence of bytes tenninated by a null byte, which is 
not considered when calculating string length. However, when a string is passed 
or manipulated, a pointer to it is employed. Therefore, the XDR library defines a 
string to be a char *, and not a sequence of characters. The external represen­
tation of a string is drastically different from its internal representation. Exter­
nally, strings are represented as sequences of ASCII characters, while internally, 
they are represented with character pointers. Conversion between the two 
representations is accomplished with the routine xdr_stringQ: 
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Keep maxlength small. If it is too 
big you can blow the heap, since 
xdr string () will call malloc () 
for space. 

Byte Arrays 

\. 

bool_t xdr_string(xdrs, sp, maxlength) 
XOR *xdrs; 
char **sp; 
u_int maxlength; 

The first parameter xdr s is the XOR stream handle. The second parameter sp 
is a pointer to a string (type char * *). The third parameter maxlength 
specifies the maximum number of bytes allowed during encoding or decoding. 
its value is usually specified by a protocol. For example, a protocol specification 
may say that a file name may be no longer than 255 characters. 

The routine returns FALSE if the number of characters exceeds maxlength, 
and TRUE if it doesn't. 

The behavior of xdr _string (} is similar to the behavior of other routines dis­
cussed in this section. The direction XDR ENCODE is easiest to understand. The 
parameter sp points to a string of a certain length; if the string does not exceed 
maxlength, the bytes are serialized. 

The effect of deserializing a string is subtle. First the length of the incoming 
string is detennined; it must not exceed maxlength. Next sp is dereferenced; 
if the the value is NULL, then a string of the appropriate length is allocated and 
* sp is set to this string. If the original value of* sp is non-null, then the XOR 
package assumes that a target area has been allocated, which can hold strings no 
longer than max length. In either case, the string is decoded into the target 
area. The routine then appends a null character to the string. 

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the 
string is not NULL, it is freed and * sp is set to NULL. In this operation, 
xdr_string (} ignores the maxlength parameter. 

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ 
from strings in the following three ways: 1) the length of the array (the byte 
count) is explicitly located in an unsigned integer, 2) the byte sequence is not ter­
minated by a null character, and 3) the external representation of the bytes is the 
same as their internal representation. The primitive xdr_bytes (} converts 
between the internal and external representations of byte arrays: 

bool_t xdr_bytes(xdrs, bpp, lp, maxlength) 
XOR *xdrs; 
char **bpp; 
u int *lp; 
u_int maxlength; 

The usage of the first, second and fourth parameters are identical to the first, 
second and third parameters of xdr _ string(), respectively. The length of the 
byte area is obtained by dereferencing 1 p when serializing; * 1 p is set to the byte 
length when deserializing. 
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The XOR library package provides a primitive for handling arrays of arbitrary 
elements. The xdr_bytes () routine treats a subset of generic arrays, in which 
the size of array elements is known to be 1, and the external description of each 
element is built-in. The generic array primitive, xdr_array () requires param­
eters identical to those of xdr _ bytes (} plus two more: the size of array ele­
ments, and an XOR routine to handle each of the elements. This routine is called 
to encode or decode each element of the array. 
, 

bool t 
xdr_array(xdrs, ap, lp, maxlength, elementsiz, xdr_element) 

XDR *xdrs; 
char **ap; 
u_int *lp; 
u_int maxlength; 
u_int elementsiz; 
bool_t (*xdr_element) (); 

The parameter a p is the address of the pointer to the array. If * ap is NULL 
when the array is being deserialized, XOR allocates an array of the appropriate 
size and sets *ap to that array. The element count of the array is obtained from 
* lp when the array is serialized; * lp is set to the array length when the array is 
deserialized. The parameter max length is the maximum number of elements 
that the array is allowed to have; elementsiz is the byte size of each element 
of the array (the C function sizeof () can be used to obtain this value). The 
xdr _ element () routine is called to serialize, deserialize, or free each element 
of the array. 

Before defining more constructed data types, it is appropriate to present three 
examples. 

Example A: 
A user on a networked machine can be identified by (a) the machine name, such 
as krypton: see the gethostname man page; (b) the user's UIO: see the 
geteuid man page; and (c) the group numbers to which the user belongs: see 
the get groups man page. A structure with this information and its associated 
XOR routine could be coded like this: 
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\.. 

struct netuser { 

} ; 

char 
int 
u int 
int 

*nu_machinename; 
nu_uid; 
nu_glen; 
*nu_gids; 

#define NLEN 255 
#de.fine NGRP S 2 0 

I* machine names < 256 chars * I 
I* user can't be in > 20 groups * I 

bool t 
xdr_netuser(xdrs, nup) 

XDR *xdrs; 
struct netuser *nup; 

return(xdr_string(xdrs, &nup->nu_machinename, NLEN) && 
xdr_int(xdrs, &nup->nu_uid) && 
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, 
NGRPS, sizeof (int), xdr_int)); 

ExampleB: 
A party of network users could be implemented as an array of net user struc­
ture. The declaration and its associated XDR routines are as follows: 

\.. 

struct party { 
u_int p_len; 
struct netuser *p_nusers; 

} ; 

#define PLEN 500 /* max number of users in a party * I 

bool t 
xdr_party(xdrs, pp) 

XDR *xdrs; 
struct party *pp; 

return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN, 
sizeof (struct netuser), xdr_netuser)); 

Example C: 
The well-known parameters to main, argc and argv can be combined into a 
structure. An array of these structures can make up a history of commands. The 
declarations and XDR routines might look like: 
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struct cmd { 
u_int c_argc; 
char **c_argv; 

} ; 

#define ALEN 1000 
#define NARGC 100 

I* args cannot be > 1000 chars * I 
I* commands cannot have > 100 args * I 

struct hi.story { 
u_int h_len; 
struct cmd *h_cmds; 

} ; 

#define NCMDS .7 5 /* history is no more than 75 commands * / 

bool t 
xdr_wrap_string(xdrs, sp) 

XDR *xdrs; 
char **sp; 

return(xdr_string(xdrs, sp, ALEN)); 

bool t 
xdr_cmd(xdrs, cp) 

XOR *xdrs; 
struct cmd *cp; 

return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC, 
sizeof (char*), xdr_wrap_string)); 

bool t 
xdr_history(xdrs, hp) 

XOR *xdrs; 
struct history *hp; 

return(xdr_array(xdrs, &hp->h cmds, &hp->h_len, NCMDS, 
sizeof (struct cmd), xdr_cmd)); 

The most confusing part of this example is that the routine 
xdr_wrap_string (} is needed to package the xdr_string (} routine, 
because the implementation of xdr _array (} only passes two parameters to 
the array element description routine; xdr_wrap_string (} supplies the third 
parameter to xdr_stringQ. 

By now the recursive nature of the XDR library should be obvious. Let's con­
tinue with more constructed data types. 

In some protocols, handles are passed from a server to client. The client passes 
the handle back to the server at some later time. Handles are never inspected by 
clients; they are obtained and submitted. That is to say, handles are opaque. The 
xdr _ opaque ( } primitive is used for describing fixed sized, opaque bytes. 
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Fixed Sized Arrays 

Discriminated Unions 

bool_t xdr_opaque(xdrs, p, len) 
XDR *xdrs; 
char *p; 
u int len; 

The parameter pis the location of the bytes; len is the number of bytes in the 
opaque object. By definition, the actual data contained in the opaque object are 
not machine portable. 

The XOR library provides a primitive, xdr _ vectorO, for fixed-length arrays. 

#define NLEN 255 
#define NGRPS 20 

I* machine names must be < 256 chars * I 
I* user belongs to exactly 20 groups * I 

struct netuser { 
char *nu_machinename; 
int nu_uid; 
int nu_gids[NGRPS]; 

} ; 

bool t 
xdr_netuser(xdrs, nup) 

XDR *xdrs; 
struct netuser *nup; 

inti; 

if (!xdr_string(xdrs, &nup->nu_machinename, NLEN)) 
return(FALSE); 

if (!xdr_int(xdrs, &nup->nu_uid)) 
return(FALSE); 

if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int), 
xdr_int)) { 

return(FALSE); 

return(TRUE); 

The XOR library supports discriminated unions. A discriminated union is a C 
union and an enum t value that selects an "arm" of the union. 
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struct xdr_discrim { 
enum t value; 
bool t ( *proc) () ; 

} ; 

bool_t xdr_union(xdrs, dscmp, unp, arms, defaultarm) 
XOR *xdrs; 
enum_t *dscmp; 
char *unp; 
struct xdr_discrim *arms; 
bool_t (*defaultarm) (); /* mayequalNULL */ 

First the routine translates the discriminant of the union located at *dscmp. The 
discriminant is always an enum_ t. Next the union located at *unp is 
translated. The parameter arms is a pointer to an array of xdr _dis er im 
structures. Each structure contains an ordered pair of [value, proc]. If the 
union's discriminant is equal to the associated value, then the proc is called to 
translate the union. The end of the xdr_discrim structure array is denoted by 
a routine of value NULL (0). If the discriminant is not found in the arms array, 
then the default arm procedure is called if it is non-null; otherwise the routine 
returns FALSE. 

Example D: Suppose the type of a union may be integer, character pointer (a 
string), or a gnumbers structure. Also, assume the union and its current type 
are declared in a structure. The declaration is: 

enum utype { INTEGER=l, STRING=2, GNUMBERS=3 }; 

struct u_tag { 
enum utype utype; 
union { 

I* the union's discriminant * I 

} ; 

int ival; 
char *pval; 
struct gnumbers gn; 

uval; 

The following constructs and XOR procedure ( de )serialize the discriminated 
union: 
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Pointers 

struct xdr_discrim u_tag_arms[4] 
INTEGER, xdr_int }, 
GNUMBERS, xdr_gnumbers } 
STRING, xdr_wrap_string }, 
~dontcare~, NULL} 

I * always terminate arms with a NULL xdr _proc * I 

bool t 
xdr_u_tag(xdrs, utp) 

XOR *xdrs; 
struct u_tag *utp; 

return(xdr_union(xdrs, &utp->utype, &utp->uval, 
u_tag_arms, NULL)); 

The routine xdr_gnumbers () was presented above in the The XDR Library 
section. xdr_wrap_string () was presented in example C. The default arm 
parameter to xdr _ union () (the last parameter) is NULL in this example. 
Therefore the value of the union's discriminant may legally take on only values 
listed in the u _ tag_ arms array. This example also demonstrates that the ele­
ments of the ann 's array do not need to be sorted. 

n 

It is worth pointing out that the values of the discriminant may be sparse, though n 
in this example they are not. It is always good practice to assign explicitly · 
integer values to each element of the discriminant's type. This practice both 
documents the external representation of the discriminant and guarantees that dif­
ferent C compilers emit identical discriminant values. 

Exercise: Implement xdr _ union () using the other primitives in this section. 

In C it is often convenient to put pointers to another structure within a structure. 
The xdr _reference () primitive makes it easy to serialize, deserialize, and 
free these referenced structures. 

bool_t xdr_reference(xdrs, pp, size, proc) 
XOR *xdrs; 
char **pp; 
u_int ssize; 
bool_t (*proc) (); 

Parameter pp is the address of the pointer to the structure; parameter s size is 
the size in bytes of the structure (use the C function sizeof () to obtain this 
value); and proc is the XOR routine that describes the structure. When decod­
ing data, storage is allocated if *pp is NULL. 

There is no need for a primitive xdr _st ru ct ( ) to describe structures within 
structures, because pointers are always sufficient. n 

/ 
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Exercise: Implement xdr_reference () using xdr_arrayO. Warning: 
xdr _ reference () and xdr _array () are NOT interchangeable external 
representations of data. 

Example E: Suppose there is a structure containing a person's name and a pointer 
to a gnumbers structure containing the person's gross assets and liabilities. 
The construct is: 

struct pgn { 
char *name; 
struct gnumbers *gnp; 

} ; 

The corresponding XOR routine for this structure is: 

bool t 
xdr_pgn(xdrs, pp) 

XDR *xdrs; 
struct pgn *pp; 

if (xdr_string(xdrs, &pp->name, NLEN) && 
xdr_reference(xdrs, &pp->gnp, 
sizeof(struct gnumbers), xdr_gnumbers)) 

return(TRUE); 
return(FALSE); 

Pointer Semantics and XDR 

In many applications, C programmers attach double meaning to the values of a 
pointer. Typically the value NULL (or zero) means data is not needed, yet some 
application-specific interpretation applies. In essence, the C programmer is 
encoding a discriminated union efficiently by overloading the interpretation of 
the value of a pointer. For instance, in example E a NULL pointer value for gnp 
could indicate that the person's assets and liabilities are unknown. That is, the 
pointer value encodes two things: whether or not the data is known; and if it is 
known, where it is located in memory. Linked lists are an extreme example of 
the use of application-specific pointer interpretation. 

The primitive xdr_reference (} _fannot and does not attach any special 
meaning to a null-value pointer during serialization. That is, passing an address 
of a pointer whose value is NULL to xdr _ reference () when serialing data 
will most likely cause a memory fault and, on the UNIX system, a core dump. 

xdr _pointer () correctly handles NULL pointers. For more information 
about its use, see Linked Lists. 

Exercise: After reading the section on Linked Lists, return here and extend exam­
ple E so that it can correctly deal with NULL pointer values. 

Exercise: Using the xdr _ union(), xdr_ reference () and xdr_ void () 
primitives, implement a generic pointer handling primitive that implicitly deals 

Revision A, of 9 May 1988 



114 Network Programming 

Non-filter Primitives 

XDR Operation Directions 

XDR Stream Access 

Standard 1/0 Streams 

with NULL pointers. That is, implement xdr_pointer(). 

XOR streams can be manipulated with the primitives discussed in this section. 

u_int xdr_getpos(xdrs) 
XDR *xdrs; 

bool_t xdr_setpos(xdrs, pos) 
XDR *xdrs; 
u_int pos; 

xdr_destroy(xdrs) 
XDR *xdrs; 

The routine xdr _get po s ( ) returns an unsigned integer that describes the 
current position in the data stream. Warning: In some XOR streams, the returned 
value of xdr _get po s ( ) is meaningless; the routine returns a -1 in this case 
(though-I should be a legitimate value). 

The routine xdr_setpos () sets a stream position to pos. Warning: In some 
XOR streams, setting a position is impossible; in such cases, xdr_setpos () 
will return FALSE. This routine will also fail if the requested position is out-of­
bounds. The definition of bounds varies from stream to stream. 

The xdr_destroy () primitive destroys the XOR stream. Usage of the stream 

n 

after calling this routine is undefined. n 
At times you may wish to optimize XOR routines by taking advantage of the 
direction of the operation-XDR_ENCODE, XDR_DECODE, or XDR_FREE. 
The value xdr s - >x _ op always contains the direction of the XOR operation. 
Programmers are not encouraged to take advantage of this information. There-
fore, no example is presented here. However, an example in the Linked Lists sec-
tion, below, demonstrates the usefulness of the xdrs->x_op field. 

An XOR stream is obtained by calling the appropriate creation routine. These 
creation routines take arguments that are tailored to the specific properties of the 
stream. 

Streams currently exist for (de)serialization of data to or from standard 1/0 FILE 
streams, TCP/IP connections and UNIX files, and memory. 

XOR streams can be interfaced to standard 1/0 using the 
xdrstdio_create () routine as follows: 
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#include <stdio.h> 
#include <rpc/rpc.h> 

void 

I* xdr streams part of rpc * I 

xdrstdio_create(xdrs, fp, x_op) 
XDR ·*xdrs; 
FILE *fp; 
enum xdr_op x_op; 

The routine xdrstdio _ create (} initializes an XOR stream pointed to by 
xdrs. The XOR stream interfaces to the standard 1/0 library. Parameter fp is 
an open file, and x _ op is an XDR direction. 

Memory streams allow the streaming of data into or out of a specified area of 
memory: 

#include <rpc/rpc.h> 

void 
xdrmem_create(xdrs, addr, len, x_op) 

XDR *xdrs; 
char *addr; 
u_int len; 
enum xdr_op x_op; 

The routine xdrmem_ create (} initializes an XOR stream in local memory. 
The memory is pointed to by parameter addr; parameter len is the length in 
bytes of the memory. The parameters xdr s and x _ op are identical to the 
corresponding parameters ofxdrstdio_create(). Currently, the UDP/IP 
implementation of RPC uses xdrmem _create(). Complete call or result mes­
sages are built in memory before calling the sendto (} system routine. 

A record stream is an XOR stream built on top of a record marking standard that 
is built on top of the UNIX file or 4.2 BSD connection interface. 
, 

#include <rpc/rpc.h> I* xdr streams part of rpc * I 

xdrrec_create(xdrs, 
sendsize, recvsize, iohandle, readproc, writeproc) 

XDR *xdrs; 
u_int sendsize, recvsize; 
char *iohandle; 
int (*readproc) (), (*writeproc) (); 

The routine xdrrec_create (} provides an XOR stream interface that allows 
for a bidirectional, arbitrarily long sequence of records. The contents of the 
records are meant to be data in XOR form. The stream's primary use is for inter­
facing RPC to TCP connections. However, it can be used to stream data into or 
out of normal UNIX files. 
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The parameter xdr s is similar to the corresponding parameter described above. 
The stream does its own data buffering similar to that of standard 1/0. The 
parameters sendsize and recvsize detennine the size in bytes of the output 
and input buffers, respectively; if their values are zero (0), then predetennined 
defaults are used. When a buffer needs to be filled or flushed, the routine read­
proc () or writeproc () is called, respectively. The usage and behavior of 
these routines are similar to the UNIX system calls read () and writeQ. 
However, the first parameter to each of these routines is the opaque parameter 
iohandle. The other two parameters (buf and nbytes) and the results (byte 
count) are identical to the system routines. If xxx is readproc () or wr i­
teprocO, then it has the following fonn: 

I* 
* returns the actual number of bytes transferred. 
* -1 is an error 
*I 
int 
xxx(iohandle, buf, len) 

char *iohandle; 
char *buf; 
int nbytes; 

, 

n 

The XDR stream provides means for delimiting records in the byte stream. The 
implementation details of delimiting records in a stream are discussed in the n 
Advanced Topics section, below. The primitives that are specific to record , .• 
streams are as follows: 
r 

bool t 
xdrrec_endofrecord(xdrs, flushnow) 

XDR *xdrs; 
bool_t flushnow; 

bool t 
xdrrec_skiprecord(xdrs) 

XDR *xdrs; 

bool t 
xdrrec_eof(xdrs) 

XDR *xdrs; 

The routine xdrrec _ endof record () causes the current outgoing data to be 
marked as a record. If the parameter flushnow is TRUE, then the stream's 
writeproc will be called; otherwise, writeproc will be called when the 
output buffer has been filled. 

The routine xdrrec _ skiprecord () causes an input stream's position to be 
moved past the current record boundary and onto the beginning of the next 
record in the stream. 

If there is no more data in the stream's input buffer, then the routine 
xdrrec _ eof () returns TRUE. That is not to say that there is no more data in 
the underlying file descriptor. 
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This section provides the abstract data types needed to implement new instances 
of XOR streams. 

The following structure defines the interface to an XOR stream: 

enum xdr_op { XDR_ENCODE=O, XDR_DECODE=l, XDR_FREE=2 }; 

typedef struct { 
enum xdr_op x_op; 
struct xdr_ops { 

I* operation;fast added param * I 

bool t 
bool t 
bool t 
bool t 
u int 
bool t 
caddr t 
VOID 

*x_ops; 

( *x_getlong) () ; 
~ ( *x _put long) () ; 

(*x_getbytes) (); 
(*x_putbytes) (); 
( *.x_getpostn) () ; 
( *x_setpostn) () ; 
(*x_inline) (); 
(*x_destroy) (); 

I* get long from stream * I 
I * put long to stream * I 
I * get bytes from stream * I 
I* put bytes to stream * I 
I* return stream offset * I 
I* reposition offset * I 
I * ptr to buffered data * I 
I* free private area * I 

caddr_t x_public; 
caddr't x_private; 
caddr t x_base; 

I* users' data * I 

int x_handy; 
XOR; 

I* pointer to private data * I 
I * private for position info * I 
I* extra private word * I 

The x _ op field is the current operation being perfonned on the stream. This 
field is important to the XOR primitives, but should not affect a stream's imple­
mentation. That is, a stream's implementation should not depend on this value. 
The fields x_private, x_base, and x_handy are private to the particular 
stream's implementation. The field x _public is for the XOR client and should 
never be used by the XOR stream implementations or the XOR primitives. 
x_getpostn (), x_setpostn (), and x_destroy (), are macros for 
accessing operations. The operation x_ inline () takes two parameters: an 
XOR *, and an unsigned integer, which is a byte count. The routine returns a 
pointer to a piece of the stream's internal buffer. The caller can then use the 
buffer segment for any pmpose. From the stream's point of view, the bytes in 
the buffer segment have been consumed or put. The routine may return NULL if 
it cannot return a buffer segment of the requested size. (The x _ inline () rou­
tine is for cycle squeezers. Use of the resulting buffer is not data-portable. Users 
are encouraged not to use this feature.) 

The operations x_getbytes () and x_putbytes () blindly get and put 
sequences of bytes from orto the underlying stream; they return TRUE if they are 
successful, and FALSE otherwise. The routines have identical parameters 
(replace xxx): 
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4.2. Advanced Topics 

Linked Lists 

bool t 
xxxbytes(xdrs, buf, bytecount) 

XDR *xdrs; 
char *buf; 
u_int bytecount; 

The operations x_getlong () and x_putlong () receive and put long 
numbers from and to the data stream. It is the responsibility of these routines to 
translate the numbers between the machine representation and the (standard) 
external representation. The UNIX primitives htonl () and ntohl () can be 
helpful in accomplishing this. The higher-level XDR implementation assumes 
that signed and unsigned long integers contain the same number of bits, and that 
nonnegative integers have the same bit representations as unsigned integers. The 
routines return TRUE if they succeed, and FALSE otherwise. They have identi­
cal parameters: 

bool t 
xxxlong(xdrs, lp) 

XOR *xdrs; 
long *lp; 

Implementors of new XDR streams must make an XDR structure (with new 
operation routines) available to clients, using some kind of create routine. n 
This section describes techniques for passing data structures that are not covered 
in the preceding sections. Such structures include linked lists (of arbitrary 
lengths). Unlike the simpler examples covered in the earlier sections, the follow-
ing examples are written using both the XDR C library routines and the XDR 
data description language. The External Data Representation Standard: Proto-
col Specification chapter of this Network Programming manual describes this 
language in complete detail. 

The last example in the Pointers section presented a C data structure and its asso­
ciated XDR routines for a individual's gross assets and liabilities. The example 
is duplicated below: 

4}\sun 
~ microsystems 
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struct gnumbers { 
long g_assets; 
long g_liabilities; 

} ; 

bool t 
xdr_gnumbers(xdrs, gp) 

XDR *xdrs; 
struct gnumbers *gp; 

if (xdr_long(xdrs, &(gp->g_assets))) 
return(xdr_long(xdrs, &(gp->g_liabilities))); 

return(FALSE); 

Now assume that we wish to implement a linked list of such information. A data 
structure could be constructed as follows: 
r 

struct gnumbers_node { 
struct gnumbers gn_numbers; 
struct gnumbers_node *gn_next; 

} ; 

typedef struct gnumbers_node *gnumbers_list; 

The head of the linked list can be thought of as the data object; that is, the head is 
not merely a convenient shorthand for a structure. Similarly the gn_ next field 
is used to indicate whether or not the object has terminated. Unfortunately, if the 
object continues, the gn _ next field is also the address of where it continues. 
The link addresses carry no useful information when the object is serialized. 

The XDR data description of this linked list is described by the recursive declara­
tion of gnumbers_list: 
r 

struct gnumbers { 
int g_assets; 
int g_liabilities; 

} ; 

struct gnumbers_node { 
gnumbers gn_numbers; 
gnumbers_node *gn_next; 

} ; 

In this description, the boolean indicates whether there is more data following it. 
If the boolean is FALSE, then it is the last data field of the structure. If it is 
TRUE, then it is followed by a gnumbers structure and (recursively) by a 
gnumbers_list. Note that the C declaration has no boolean explicitly 
declared in it (though the gn _ next field implicitly carries the information), 
while the XDR data description has no pointer explicitly declared in it. 
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Hints for writing the XDR routines for a gnumbers_list follow easily from 
the XDR description above. Note how the primitive xdr _pointer () is used 
to implement the XDR union above. 

bool t 
xdr_gnumbers_node(xdrs, gn) 

XDR *xdrs; 
gnumbers_node *gn; 

return(xdr_gnumbers(xdrs, &gn->gn_numbers) && 
xdr_gnumbers_list(xdrs, &gp->gn_next)); 

bool t 
xdr_gnumbers_list(xdrs, gnp) 

XDR *xdrs; 
gnumbers_list *gnp; 

return(xdr_pointer(xdrs, gnp, 
sizeof(struct gnumbers_node), 
xdr_gnumbers_node)); 

n 

The unfortunate side effect ofXDR'ing a list with these routines is that the C n 
stack grows linearly with respect to the number of node in the list. This is due to \ / 
the recursion. The following routine collapses the above two mutually recursive 
into a single, non-recursive one. 

n 
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bool t 
xdr_gnumbers_list(xdrs, gnp) 

XOR *xdrs; 
gnumbers_list *gnp; 

bool_t more_data; 
gnumbers_list *nextp; 

for (;;) { 
more_data = (*gnp != NULL); 
if (!xdr_bool(xdrs, &more_data)) 

return (FALSE.); 

if ( ! more_data) 
break; 

if (xdrs->x_op == XDR_FREE) { 
nextp = &(*gnp)->gn_next; 

if (!xdr_reference(xdrs, gnp, 
sizeof(struct gnumbers_node), xdr_gnumbers)) { 

return(FALSE); 
} 

gnp = (xdrs->x_op == XDR_FREE) ? 

nextp: &(*gnp)->gn_next; 

*gnp NULL; 
return(TRUE); 

The first task is to find out whether there is more data or not, so that this boolean 
infonnation can be serialized. Notice that this statement is unnecessary in the 
XDR_DECODE case, since the value ofmore_data is not known until we deserial­
ize it in the next statement. 

The next statement XOR's the more_data field of the XOR union. Then if there 
is truly no more data, we set this last pointer to NULL to indicate the end of the 
list, and return TRUE because we are done. Note that setting the pointer to NULL 
is only important in the XDR_DECODE case, since it is already NULL in the 
XDR ENCODE and XOR_FREE cases. 

Next, if the direction is XDR_FREE, the value of nextp is set to indicate the 
location of the next pointer in the list. We do this now because we need to 
dereference gnp to find the location of the next item in the list, and after the next 
statement the storage pointed to by gn p will be freed up and no be longer valid. 
We can't do this for all directions though, because in the XDR_DECODE direc­
tion the value of gnp won't be set until the next statement. 

Next, we XOR the data in the node using the primitive xdr referenceO. 
xdr _ reference () is like xdr _pointer () which we used before, but it 
does not send over the boolean indicating whether there is more data. We use it 
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instead of xdr _pointer () because we have already XDR'd this infonnation 
ourselves. Notice that the xdr routine passed is not the same type as an element 
in the list. The routine passed is xdr_gnumbers(), for XDR'ing gnumbers, but 
each element in the list is actually of type gnumbers_node. We don't pass 
xdr_gnumbers_node () because it is recursive, and instead use 
xdr_gnurnbers () which XDR's all of the non-recursive part. Note that this 
trick will work only if the gn _ n urnbe rs field is the first item in each element, 
so that their addresses are identical when passed to xdr _reference(). 

Finally, we update gnp to point to the next item in the list. If the direction is 
XDR_FREE, we set it to the previously saved value, otheIWise we can derefer­
ence gnp to get the proper value. Though harder to understand than the recursive 
version, this non-recursive routine is far less likely to blow the C stack. It will 
also run more efficiently since a lot of procedure call overhead has been 
removed. Most lists are small though (in the hundreds of items or less) and the 
recursive version should be sufficient for them. 
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External Data Representation Standard: 

Protocol Specification 

Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others 
are using. It has been designated RFC1014 by the ARPA Network Information 
Center. 

XOR is a standard for the description and encoding of data. It is useful for 
transferring data between different computer architectures, and has been used to 
communicate data between such diverse machines as the Sun Workstation, VAX, 
IBM-PC, and Cray. XOR fits into the ISO presentation layer, and is roughly 
analogous in purpose to X.409, ISO Abstract Syntax Notation. The major differ­
ence between these two is that XOR uses implicit typing, while X.409 uses expli­
cit typing. 

XOR uses a language to describe data formats. The language can only be used 
only to describe data; it is not a programming language. This language allows 
one to describe intricate data formats in a concise manner. The alternative of 
using graphical representations (itself an informal language) quickly becomes 
incomprehensible when faced with complexity. The XOR language itself is 
similar to the C language [ 1], just as Courier [ 4] is similar to Mesa. Protocols 
such as Sun RPC (Remote Procedure Call) and the NFS (Network File System) 
use XOR to describe the format of their data. 

The XOR standard makes the following assumption: that bytes (or octets) are 
portable, where a byte is defined to be 8 bits of data. A given hardware device 
should encode the bytes onto the various media in such a way that other 
hardware devices may decode the bytes without loss of meaning. For example, 
the Ethernet standard suggests that bytes be encoded in "little-endian" style [2], 
or least significant bit first. 

The representation of all items requires a multiple of four bytes (or 32 bits) of 
data. The bytes are numbered O through n-1. The bytes are read or written to 
some byte stream such that byte m always precedes byte m+l. If then bytes 
needed to contain the data are not a multiple of four, then the n bytes are fol­
lowed by enough (0 to 3) residual zero bytes, r, to make the total byte count a 
multiple of 4. 

We include the familiar graphic box notation for illustration and comparison. In 
most illustrations, each box ( delimited by a plus sign at the 4 comers and vertical 
bars and dashes) depicts a byte. Ellipses( ... ) between boxes show zero or more 
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5.3. XDR Data Types 

Integer 

Unsigned Integer 

additional bytes where required. 

A Block 

+--------+--------+ ... +--------+--------+ ... +--------+ 
I byte O I byte 1 I ... !byte n-11 O I ... I O I 
+--------+--------+ ... +--------+--------+ ... +--------+ 
l<-----------n bytes---------->l<------r bytes------>! 
l<-----------n+r (where (n+r) mod 4 = 0)>----------->I 

Each of the sections that follow describes a data type defined in the XOR stan­
dard, shows how it is declared in the language, and includes a graphic illustration 
of its encoding. 

For each data type in the language we show a general paradigm declaration. 
Note that angle brackets ( < and >) denote variable length sequences of data and 
square brackets ([and]) denote fixed-length sequences of data. "n", "m" and "r" 
denote integers. For the full language specification and more formal definitions 
of terms such as "identifier" and "declaration", refer to The XDR La.nguage 
Specification, below. 

For some data types, more specific examples are included. A more extensive 
example of a data description is in An Example of an XDR Data Description, 
below. 

An XOR signed integer is a 32-bit datum that encodes an integer in the range [-
2147483648,2147483647]. The integer is represented in two's complement nota­
tion. The most and least significant bytes are O and 3, respectively. Integers are 
declared as follows: 

Integer 

(MSB) (LSB) 

+-------+-------+-------+-------+ 
!byte O lbyte 1 lbyte 2 lbyte 3 I 
+-------+-------+-------+-------+ 
<------------32 bits------------> 

An XOR unsigned integer is a 32-bit datum that encodes a nonnegative integer in 
the range [0,4294967295]. It is represented by an unsigned binary number whose 
most and least significant bytes are O and 3, respectively. An unsigned integer is 
declared as follows: 

Unsigned Integer 

(MSB) (LSB) 

+-------+-------+-------+-------+ 
lbyte O lbyte 1 lbyte 2 lbyte 3 I 
+-------+-------+-------+-------+ 
<------------32 bits------------> 
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U Enumeration Enumerations have the same representation as signed integers. Enumerations are 
handy for describing subsets of the integers. Enumerated data is declared as fol­
lows: 

( ' 

V 

u 

Boolean 

enum {name-identifier= constant, ... } identifier; 

For example, the three colors red, yellow, and blue could be described by an 
enumerated type: 

enum {RED= 2, YELLOW= 3, BLUE= 5 } colors; 

It is an error to encode as an enum any other integer than those that have been 
given assignments in the enum declaration. 

Booleans are important enough and occur frequently enough to warrant their own 
explicit type in the standard. Booleans are declared as follows: 

bool identifier; 

This is equivalent to: 

enum {FALSE= 0, TRUE= 1 } identifier; 

Hyper Integer and Unsigned 
Hyper Integer 

The standard also defines 64-bit (8-byte) numbers called hyper integer and 
unsigned hyper integer. Their representations are the obvious extensions of 
integer and unsigned integer defined above. They are represented in two's com­
plement notation. The most and least significant bytes are O and 7, respectively. 
Their declarations: 

Floating-point 

Hyper Integer 
Unsigned Hyper Integer 

(MSB) (LSB) 
+-------+-------+-------+-------+-------+-------+-------+-------+ 
!byte O lbyte 1 lbyte 2 lbyte 3 !byte 4 !byte 5 lbyte 6 lbyte 7 I 
+-------+-------+-------+-------+-------+-------+-------+-------+ 
<----------------------------64 bits----------------------------> 

The standard defines the floating-point data type "float" (32 bits or 4 bytes). The 
encoding used is the IEEE standard for normalized single-precision floating­
point numbers [3]. The following three fields describe the single-precision 
floating-point number: 

S: The sign of the number. Values O and 1 represent positive and negative, 
respectively. One bit. 

E: The exponent of the number, base 2. 8 bits are devoted to this field. 
The exponent is biased by 127. 

F: The fractional part of the number's mantissa, base 2. 23 bits are 
devoted to this field. 

Therefore, the floating-point number is described by: 
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Double-precision Floating­
point 

(-l)**S * 2**(E-Bias) * 1.F 

It is declared as follows: 

Single-Precision Floating-Point 

+-------+-------+-------+-------+ 
!byte O !byte 1 !byte 2 !byte 3 I 
SI E I F I 
+-------+-------+-------+-------+ 
11<- 8 ->l<-------23 bits------>! 
<------------32 bits------------> 

Just as the most and least significant bytes of a number are O and 3, the most and 
least significant bits of a single-precision floating- point number are O and 31. 
The beginning bit (and most significant bit) offsets of S, E, and Fare 0, 1, and 9, 
respectively. Note that these numbers refer to the mathematical positions of the 
bits, and NOT to their actual physical locations (which vary from medium to 
medium). 

The IEEE specifications should be consulted concerning the encoding for signed 
zero, signed infinity (overflow), and denormalized numbers (underflow) [3]. 
According to IEEE specifications, the "NaN" (not a number) is system dependent 
and should not be used externally. 

The standard defines the encoding for the double-precision floating- point data 
type "double" (64 bits or 8 bytes). The encoding used is the IEEE standard for 
normalized double-precision floating-point numbers [3]. The standard encodes 
the following three fields, which describe the double-precision floating-point 
number: 

S: The sign of the number. Values O and 1 represent positive and negative, 
respectively. One bit. 

E: The exponent of the number, base 2. 11 bits are devoted to this field. 
The exponent is biased by 1023. 

F: The fractional part of the number's mantissa, base 2. 52 bits are 
devoted to this field. 

Therefore, the floating-point number is described by: 

(-l)**S * 2**(E-Bias) * 1.F 

It is declared as follows: 

Double-Precision Floating-Point 

+------+------+------+------+------+------+------+------+ 
lbyte Olbyte llbyte 21byte 31byte 41byte Slbyte 61byte 71 
SI E I F I 
+------+------+------+------+------+------+------+------+ 

0 ,, / 

() 
/ 

11<--11-->l<-----------------52 bits------------------->I 
<-----------------------64 bits-------------------------> (y 

' / 

Just as the most and least significant bytes of a number are O and 3, the most and 
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least significant bits of a double-precision floating- point number are O and 63. 
The beginning bit (and most significant bit) offsets of S, E, and Fare 0, 1, and 
12, respectively. Note that these numbers refer to the mathematical positions of 
the bits, and NOT to their actual physical locations (which vary from medium to 
medium). 

The IEEE specifications should be consulted concerning the encoding for signed 
zero, signed infinity (overflow), and denormalized numbers (underflow) [3]. 
According to IEEE specifications, the "NaN" (not a number) is system dependent 
and should not be used externally. 

At times, fixed-length uninterpreted data needs to be passed among machines. 
This data is called ''opaque" and is declared as follows: 

opaque identifier[n]; 

where the constant n is the (static) number of bytes necessary to contain the 
opaque data. Ifn is not a multiple of four, then then bytes are followed by 
enough (0 to 3) residual zero bytes, r, to make the total byte count of the opaque 
object a multiple of four. 

Fixed-Length Opaque 

0 1 
+--------+--------+ ... +--------+--------+ ... +--------+ 
I byte O I byte 1 I ... lbyte n-11 O I ... I O I 
+--------+--------+ ... +--------+--------+ ... +--------+ 
l<-----------n bytes---------->l<------r bytes------>I 
l<-----------n+r (where (n+r) mod 4 = 0)------------>I 

The standard also provides for variable-length (counted) opaque data, defined as 
a sequence of n (numbered O through n-1) arbitrary bytes to be the number n 
encoded as an unsigned integer (as described below), and followed by then bytes 
of the sequence. 

Byte m of the sequence always precedes byte m+l of the sequence, and byte O of 
the sequence always follows the sequence's length (count). enough (0 to 3) resi­
dual zero bytes, r, to make the total byte count a multiple of four. Variable­
length opaque data is declared in the following way: 

opaque identifier<m>; 

or 

opaque identifier<>; 

The constant m denotes an upper bound of the number of bytes that the sequence 
may contain. If m is not specified, as in the second declaration, it is assumed to 
be (2**32) - 1, the maximum length. The constant m would normally be found 
in a protocol specification. For example, a filing protocol may state that the max­
imum data transfer size is 8192 bytes, as follows: 

opaque filedata<8192>; 

This can be illustrated as follows: 
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String 

Fixed-length Array 

Variable-Length Opaque 

0 1 2 3 4 5 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
I length n lbyteOlbytell ... I n-1 I O I ... I O I 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
l<-------4 bytes------->l<------n bytes------>l<---r bytes--->I 
l<----n+r (where (n+r) mod 4 = 0)---->I 

It is an error to encode a length greater than the maximum described in the 
specific_ation. 

The standard defines a string ofn (numbered O through n-1) ASCII bytes to be 
the number n encoded as an unsigned integer (as described above), and followed 
by the n bytes of the string. Byte m of the string always precedes byte m+ 1 of 
the string, and byte O of the string always follows the string's length. Ifn is not a 
multiple of four, then the n bytes are followed by enough (0 to 3) residual zero 
bytes, r, to make the total byte count a multiple of four. Counted byte strings are 
declared as follows: 

string object<m>; 

or 

string object<>; 

The constant m denotes an upper bound of the number of bytes that a string may 
contain. If m is not specified, as in the second declaration, it is assumed to be 
(2**32)- 1, the maximum length. The constant m would normally be found in a 
protocol specification. For example, a filing protocol may state that a file name 
can be no longer than 255 bytes, as follows: 

string filename<255>; 

Which can be illustrated as: 

A String 

0 1 2 3 4 5 

+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
I length n lbyteOlbytell .. ~ I n-1 I O I ... I O I 
+-----+-----+-----+-----+-----+-----+ ... +-----+-----+ ... +-----+ 
l<-------4 bytes------->l<------n bytes------>l<---r bytes--->I 
l<----n+r (where (n+r) mod 4 = 0)---->I 

It is an error to encode a length greater than the maximum described in the 
specification. 

Declarations for fixed-length arrays of homogeneous elements are in the follow­
ing fonn: 

type-name identifier[n]; 

Fixed-length arrays of elements numbered O through n-1 are encoded by 
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individually encoding the elements of the array in their natural order, O through 
n-1. Each element's size is a multiple of four bytes. Though all elements are of 
the same type, the elements may have different sizes. For example, in a fixed­
length array of strings, all elements are of type "string", yet each element will 
vary in its length. 

Fixed-Length Array 

+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
I element O I element 1 I ... I element n-1 I 
+---+---+---+---+---+---+---+---+ ... +---+---+---+---+ 
l<--------------------n elements------------------->! 

Counted arrays provide the ability to encode variable-length arrays of homogene­
ous elements. The array is encoded as the element count n (an unsigned integer) 
followed by the encoding of each of the array's elements, starting with element 0 
and progressing through element n- 1. The declaration for variable-length arrays 
follows this form: 

type-name identifier<m>; 

or 

type-name identifier<>; 

The constant m specifies the maximum acceptable element count of an array; if 
mis not specified, as in the second declaration, it is assumed to be (2**32) - 1. 

Counted Array 

0 1 2 3 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+ 

n I element O I element 1 I ... !element n-11 
+--+--+--+--+--+--+--+--+--+--+--+--+ ... +--+--+--+--+ 
l<-4 bytes->l<--------------n elements------------->! 

It is an error to encode a value of n that is greater than the maximum described in 
the specification. 

Structures are declared as follows: 

struct { 
component-declaration-A; 
component-declaration-B; 

identifier; 

The components of the structure are encoded in the order of their declaration in 
the structure. Each component's size is a multiple of four bytes, though the com­
ponents may be different sizes. 
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Discriminated Union 

Void 

Structure 

+-------------+-------------+ .. . 
I component A I component B I .. . 
+--------- ---+-------------+ .. . 

A discriminated union is a type composed of a discriminant followed by a type 
selected from a set of prearranged types according to the value of the discrim­
inant. The type of discriminant is either "int", "unsigned int", or an enumerated 
type, such as "bool". The component types are called 11 anns" of the union, and 
are preceded by the value of the discriminant which implies their encoding. 
Discriminated unions are declared as follows: 

union switch (discriminant-declaration) 
case discriminant-value-A: 
arm-declaration-A; 
case discriminant-value-B: 
arm-declaration-B; 

default: default-declaration; 
identifier; 

Each "case" keyword is followed by a legal value of the discriminant. The 
default arm is optional. If it is not specified, then a valid encoding of the union 
cannot take on unspecified discriminant values. The size of the implied arm is 
always a multiple of four bytes. 

The discriminated union is encoded as its discriminant followed by the encoding 
of the implied arm. 

Discriminated Union 

0 1 2 3 
+---+---+---+---+---+---+---+---+ 
I discriminant I implied arm I 
+---+---+---+---+---+---+---+---+ 
l<---4 bytes--->I 

An XDR void is a 0-byte quantity. Voids are useful for describing operations 
that take no data as input or no data as output. They are also useful in unions, 
where some arms may contain data and others do not. The declaration is simply 
as follows: 

void; 

Voids are illustrated as follows: 

++ 
I I 
++ 
--><-- 0 bytes 
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The data declaration for a constant follows this form: 

const name-identifier= n; 

"const" is used to define a symbolic name for a constant; it does not declare any 
data. The symbolic constant may be used anywhere a regular constant may be 
used. For example, the following defines a symbolic constant DOZEN, equal to 
12. 

const DOZEN= 12; 

"typedef' does not declare any data either, but serves to define new identifiers for 
declaring data. The syntax is: 

typedef declaration; 

The new type name is actually the variable name in the declaration part of the 
typedef. For example, the following defines a new type called "eggbox" using an 
existing type called "egg": 

typedef egg eggbox[DOZEN]; 

Variables declared using the new type name have the same type as the new type 
name would have in the typedef, if it was considered a variable. For example, 
the following two declarations are equivalent in declaring the variable 
"fresheggs": 

eggbox 
egg 

fresheggs; 
fresheggs[DOZEN]; 

When a typedef involves a struct, enum, or union definition, there is another (pre­
ferred) syntax that may be used to define the same type. In general, a typedef of 
the following form: 

typedef <<struct, union, or enum definition>> identifier; 

may be converted to the alternative form by removing the lftypedef' part and 
placing the identifier after the "struct", "union", or "enum" keyword, instead of at 
the end. For example, here are the two ways to define the type "bool": 

typedef enum { 
FALSE= 0, 
TRUE= 1 
} bool; 

enum bool { 
FALSE= 0, 
TRUE= 1 
} ; 

I * using typedef * I 

I* pref erred alternative * I 

The reason this syntax is preferred is one does not have to wait until the end of a 
declaration to figure out the name of the new type. 
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Optional-data Optional-data is one kind of union that occurs so frequently that we give it a spe­
cial syntax of its own for declaring it. It is declared as follows: 

type-name *identifier; 

This is equivalent to the following union: 

union switch (bool opted) 
case TRUE: 
type-name element; 
case FALSE: 
void; 

} . identifier; 

It is also equivalent to the following variable-length array declaration, since the 
boolean "opted" can be interpreted as the length of the array: 

type-name identifier<l>; 

Optional-data is not so interesting in itself, but it is very useful for describing 
recursive data-structures such as linked-lists and trees. For example, the follow­
ing defines a type "stringlist" that encodes lists of arbitrary length strings: 

struct *stringlist { 
string item<>; 
stringlist next; 

} ; 

It could have been equivalently declared as the following union: 

union stringlist switch (bool opted) { 

} ; 

case TRUE: 
struct { 

string item<>; 
stringlist next; 

element; 
case FALSE: 

void; 

or as a variable-length array: 

struct stringlist<l> 
string item<>; 
stringlist next; 

} ; 

Both of these declarations obscure the intention of the stringlist type, so the 
optional-data declaration is preferred over both of them. The optional-data type 
also has a close correlation to how recursive data structures are represented in 
high-level languages such as Pascal or C by use of pointers. In fact, the syntax is 
the same as that of the C language for pointers. 
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The XOR standard lacks representations for bit fields and bitmaps, since the stan­
dard is based on bytes. Also missing are packed (or binary-coded) decimals. 

The intent of the XOR standard was not to describe every kind of data that peo­
ple have ever sent or will ever want to send from machine to machine. Rather, it 
only describes the most commonly used data-types of high-level languages such 
as Pascal or C so that applications written in these languages will be able to com­
municate easily over some medium. 

One could imagine extensions to XOR that would let it describe almost any 
existing protocol, such as TCP. The minimum necessary for this are support for 
different block sizes and byte-orders. The XOR discussed here could then be 
considered the 4-byte big-endian member of a larger XOR family. 

There are many advantages in using a data-description language such as XOR 
versus using diagrams. Languages are more formal than diagrams and lead to 
less ambiguous descriptions of data. Languages are also easier to understand and 
allow one to think of other issues instead of the low-level details of bit-encoding. 
Also, there is a close analogy between the types of XOR and a high-level 
language such as C or Pascal. This makes the implementation of XOR encoding 
and decoding modules an easier task. Finally, the language specification itself is 
an ASCII string that can be passed from machine to machine to perform on-the­
fly data interpretation. 

Supporting two byte-orderings requires a higher level protocol for determining in 
which byte-order the data is encoded. Since XOR is not a protocol, this can't be 
done. The advantage of this, though, is that data in XOR format can be written 
to a magnetic tape, for example, and any machine will be able to interpret it, 
since no higher level protocol is necessary for determining the byte-order. 

Yes, it is unfair, but having only one byte-order means you have to be unfair to 
somebody. Many architectures, such as the Motorola 68000 and IBM 370, sup­
port the big-endian byte-order. 

There is a tradeoff in choosing the XOR unit size. Choosing a small size such as 
two makes the encoded data small, but causes alignment problems for machines 
that aren't aligned on these boundaries. A large size such as eight means the data 
will be aligned on virtually every machine, but causes the encoded data to grow 
too big. We chose four as a compromise. Four is big enough to support most 
architectures efficiently, except for rare machines such as the eight-byte aligned 
Cray. Four is also small enough to keep the encoded data restricted to a reason­
able size. 
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Why must Variable-Length 
Data be Padded with Zeros? 

Why is there No Explicit 
Data-Typing? 

5.5. The XDR Language 
Specification 

Notational Conventions 

It is desirable that the same data encode into the same thing on all machines, so 
that encoded data can be meaningfully compared or checksummed. Forcing the 
padded bytes to be zero ensures this. 

Data-typing has a relatively high cost for what small advantages it may have. 
One cost is the expansion of data due to the inserted type fields. Another is the 
added cost of interpreting these type fields and acting accordingly. And most 
protocols already know what type they expect, so data-typing supplies only 
redundant information. However, one can still get the benefits of data-typing 
using XOR. One way is to encode two things: first a string which is the XOR 
data description of the encoded data, and then the encoded data itself. Another 
way is to assign a value to all the types in XOR, and then define a universal type 
which takes this value as its discriminant and for each value, describes the 
corresponding data type. 

This specification uses an extended Backus-Naur Form notation for describing 
the XOR language. Here is a brief description of the notation: 

1. The characters I , (, ) , [, ] , , and * are special. 

2. Terminal symbols are strings of any characters surrounded by double quotes. 

3. Non-terminal symbols are strings of non-special characters. 

4. Alternative items are separated by a vertical bar I). ( 

5. Optional items are enclosed in brackets. 

6. Items are grouped together by enclosing them in parentheses. 

7. A * following an item means O or more occurrences of that item. 

For example, consider the following pattern: 

"a" "very" (", "" very")* ["cold" "and"] "rainy" ("day" I "night") 

Lexical Notes 

An infinite number of strings match this pattern. A few of them are: 

"a very rainy day" 
"a very, very rainy day" 
"a very cold and rainy day" 
"a very, very, very cold and raiqy night" 

1. Comments begin with'/*' and terminate with'*/'. 

2. White space serves to separate items and is otherwise ignored. 

3. An identifier is a letter followed by an optional sequence of letters, digits or 
underbar (' _'). The case of identifiers is not ignored. 
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4. A constant is a sequence of one or more decimal digits, optionally preceded 
by a minus-sign (' -'). 

declaration: 
type-specifier identifier 
I type-specifier identifier"[" value"]" 
I type-specifier identifier"<" [ value ">" 
I "opaque" identifier"[" value"]" 
I "opaque" identifier "<" [ value ">" 
I "string" identifier "<" [ value ">" 
I type-specifier"*" identifier 
I "void" 

value: 
constant 
I identifier 

type-specifier: 
[ "unsigned" 
[ "unsigned" 
"float" 
"double" 
"bool" 

"int" 
"hyper" 

en um-type-spec 
struct-type-spec 
union-type-spec 
identifier 

enum-type-spec: 
"enum" enum-body 

enum-body: 
" { " 
(identifier"=" value) 
(","identifier"=" value)* 
" } ') 

struct-type-spec: 
"struct" struct-body 

struct-body: 
" { " 
( declaration 
( declaration 
" } " 

" . " , 
";" )* 

union-type-spec: 
"union" union-body 

union-body: 
"switch""(" declaration")""{" 

"case" value"·" declaration";" 
"case" value"·" declaratipn ";" )* 

sun 
microsystems 
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Syntax Notes 

[ "default" 
" } " 

constant-def: 

"·" declaration " • 1, 
' 

"canst" identifier"=" constant";" 

type-def: 
"typedef" declaration";" 

"enum" identifier enum-body ";" 
"struct" identifier struct-body ";" 
"union" identifier union-body";" 

definition: 
type-def 
I constant-def 

specification: 
definition* 

1. The following are keywords and cannot be used as identifiers: "bool", 
"case", "const", "default", "double", "enum", "float", "hyper", "opaque", 
"string", "struct", "switch", "typedef', "union", "unsigned" and "void". 

2. Only unsigned constants may be used as size specifications for arrays. If an 
identifier is used, it must have been declared previously as an unsigned con­
stant in a "const" definition. 

3. Constant and type identifiers within the scope of a specification are in the 
same name space and must be declared uniquely within this scope. 

4. Similarly, variable names must be unique within the scope of struct and 
union declarations. Nested struct and union declarations create new scopes. 

5. The discriminant of a union must be of a type that evaluates to an integer. 
That is, "int", "unsigned int", "bool", an enumerated type or any typedefed 
type that evaluates to one of these is legal. Also, the case values must be 
one of the legal values of the discriminant. Finally, a case value may not be 
specified more than once within the scope of a union declaration. 
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Here is a short XOR data description of a thing called a "file", which might be 
used to transfer files from one machine to another. 

const MAXUSERNAME = 32; 
const MAXFILELEN 65535; 
const MAXNAMELEN = 255; 

!* 
* Types of files: 
*! 

I* max length of a user name * I 
I* max length of a file * l 
I* max length of a file name * I 

enum filekind 
TEXT 0, 
DATA 1, 
EXEC 2 

I* ascii data * I 
I * raw data * I 
I* executable * I 

} ; 

I* 
* File information, per kind of file: 
*! 

union filetype switch (filekind kind) { 
case TEXT: 

void; 
case DATA: 

I* no extra information * I 

string creator<MAXNAMELEN>; 
case EXEC: 

I * data creator *I 

string interpretor<MAXNAMELEN>; /* program interpretor */ 
} ; 

!* 
* A complete file: 
*! 

struct file { 

} ; 

string filename<MAXNAMELEN>; /* name of file* I 
filetype type; /* infoaboutfile */ 
string owner<MAXUSERNAME>; /* owner of file *I 
opaque data<MAXFILELEN>; l*filedata *I 

Suppose now that there is a user named "john" who wants to store his lisp pro­
gram "sillyprog" that contains just the data "(quit)". His file would be encoded as 
follows: 
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5. 7. References 

Offset Hex Bytes ASCII Description 
0 00 00 00 09 .... Length of filename = 9 
4 73 69 6c 6c sill Filename characters 
8 79 70 72 6£ ypro ... and more characters ... 

12 67 00 00 00 g ... ... and 3 zero-bytes of fill 
16 00 00 00 02 .... Filekind is EXEC = 2 
20 00 00 00 04 .... Length of interpretor = 4 
24 6c 69 73 70 lisp Interpretor characters 
28 00 00 00 04 .... Length of owner= 4 
32 6a 6£ 68 6e john Owner characters 
36 00 00 00 06 .... Length of file data = 6 
40 28 71 75 69 (qui File data bytes ... 
44 74 29 00 00 t) .. ... and 2 zero-bytes of fill 

[1] Brian W. Kernighan & Dennis M. Ritchie, "The C Programming Language", 
Bell Laboratories, Murray Hill, New Jersey, 1978. 

[2] Danny Cohen, "On Holy Wars and a Plea for Peace", IEEE Computer, 
October 1981. 

[3] "IEEE Standard for Binary Floating-Point Arithmetic", ANSI/IEEE Standard 
754-1985, Institute of Electrical and Electronics Engineers, August 1985. 

[4] "Courier: The Remote Procedure Call Protocol", XEROX Corporation, XSIS 
038112, December 1981. 
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Remote Procedure Calls: Protocol 

Specification 

Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others 
are using. It has been submitted to the ARP A-Internet for consideration as an 
RFC. 

This chapter specifies a message protocol used in implementing Sun's Remote 
Procedure Call (RPC) package. (The message protocol is specified with the 
External Data Representation (XOR) language. See the External Data Represen­
tation Standard: Protocol Specification for the details. Here, we assume that the 
reader is familiar with XOR and do not attempt to justify it or its uses). The 
paper by Birrell and Nelson [1] is recommended as an excellent background to 
and justification of RPC. 

This chapter discusses seivers, seivices, programs, procedures, clients, and ver­
sions. A seiver is a piece of software where network seivices are implemented. 
A network seivice is a collection of one or more remote programs. A remote· 
program implements one or more remote procedures; the procedures, their 
parameters, and results are documented in the specific program's protocol 
specification (see the Port Mapper Program Protocol, below, for an example). 
Network clients are pieces of software that initiate remote procedure calls to ser­
vices. A seiver may support more than one version of a remote program in order 
to be forward compatible with changing protocols. 

For example, a network file seivice may be composed of two programs. One 
program may deal with high-level applications such as file system access control 
and locking. The other may deal with low-level file IO and have procedures like 
"read" and "write". A client machine of the network file seivice would call the 
procedures associated with the two programs of the seivice on behalf of some 
user on the client machine. 

The remote procedure call model is similar to the local procedure call model. In 
the local case, the caller places arguments to a procedure in some well-specified 
location (such as a result register). It then transfers control to the procedure, and 
eventually gains back control. At that point, the results of the procedure are 
extracted from the well-specified location, and the caller continues execution. 

The remote procedure call is similar, in that one thread of control logically winds 
through two processes--one is the caller's process, the other is a seiver's 
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process. That is, the caller process sends a call message to the server process and 
waits (blocks) for a reply message. The call message contains the procedure's 
parameters, among other things. The reply message contains the procedure's 
results, among other things. Once the reply message is received, the results of 
the procedure are extracted, and caller's execution is resumed. 

On the server side, a process is dormant awaiting the arrival of a call message. 
When one arrives, the server process extracts the procedure's parameters, com­
putes the results, sends a reply message, and then awaits the next call message. 

Note that in this model, only one of the two processes is active at any given time. 
However, this model is only given as an example. The RPC protocol makes no 
restrictions on the concurrency model implemented, and others are possible. For 
example, an implementation may choose to have RPC calls be asynchronous, so 
that the client may do useful work while waiting for the reply from the server. 
Another possibility is to have the server create a task to process an incoming 
request, so that the server can be free to receive other requests. 

The RPC protocol is independent of transport protocols. That is, RPC does not 
care how a message is passed from one process to another. The protocol deals 
only with specification and inteipretation of messages. 

It is important to point out that RPC does not try to implement any kind of relia­
bility and that the application must be aware of the type of transport protocol 
underneath RPC. If it knows it is running on top of a reliable transport such as 
TCP/IP[6], then most of the work is already done for it. On the other hand, ifit 
is running on top of an unreliable transport such as ·uDP/IP[7], it must implement 
is own retransmission and time-out policy as the RPC layer does not provide this 
service. 

Because of transport independence, the RPC protocol does not attach specific 
semantics to the remote procedures or their execution. Semantics can be inferred 
from (but should be explicitly specified by) the underlying transport protocol. 
For example, consider RPC running on top of an unreliable transport such as 
UDP/IP. If an application retransmits RPC messages after short time-outs, the 
only thing it can infer if it receives no reply is that the procedure was executed 
zero or more times. If it does receive a reply, then it can infer that the procedure 
was executed at least once. 

A server may wish to remember previously granted requests from a client and not 
regrant them in order to insure some degree of execute-at-most-once semantics. 
A server can do this by taking advantage of the transaction ID that is packaged 
with every RPC request. The main use of this transaction is by the client RPC 
layer in matching replies to requests. However, a client application may choose 
to reuse its previous transaction ID when retransmitting a request. The server 
application, knowing this fact, may choose to remember this ID after granting a 
request and not regrant requests with the same ID in order to achieve some 
degree of execute-at-most-once semantics. The server is not allowed to examine 
this ID in any other way except as a test for equality. 

n 

On the other hand, if using a reliable transport such as TCP/IP, the application n 
can infer from a reply message that the procedure was executed exactly once, but 
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if it receives no reply message, it cannot assume the remote procedure was not 
executed. Note that even if a connection-oriented protocol like TCP is used, an 
application still needs time-outs and reconnection to handle seiver crashes. 

There are other possibilities for transports besides datagram- or connection­
oriented protocols. For example, a request-reply protocol such as VMTP[2] is 
perhaps the most natural transport for RPC. 

NOTE At Sun, RPC is currently implemented on top of both TCP/IP and UDP/IP tran­
sports. 

Binding and Rendezvous 
Independence 

Authentication 

6.3. RPC Protocol 
Requirements 

The act of binding a client to a seivice is NOT part of the remote procedure call 
specification. This important and necessary function is left up to some higher­
level software. (The software may use RPC itself-see the Port Mapper Pro­
gram Protocol, below). 

Implementors should think of the RPC protocol as the jump-subroutine instruc­
tion ("JSR") of a network; the loader (binder) makes JSR useful, and the loader 
itself uses JSR to accomplish its task. Likewise, the network makes RPC useful, 
using RPC to accomplish this task. 

The RPC protocol provides the fields necessary for a client to identify itself to a 
seivice and vice-versa. Security and access control mechanisms can be built on 
top of the message authentication. Several different authentication protocols can 
be supported. A field in the RPC header indicates which protocol is being used. 
More infonnation on specific authentication protocols can be found in the 
Authentication Protocols, below. 

The RPC protocol must provide for the following: 

1. Unique specification of a procedure to be called. 

2. Provisions formatching response messages to request messages. 

3. Provisions for authenticating the caller to seivice and vice-versa. 

Besides these requirements, features that detect the following are worth support­
ing because of protocol roll-over errors, implementation bugs, user error, and net­
work administration: 

1. RPC protocol mismatches. 

2. Remote program protocol version mismatches. 

3. Protocol errors (such as misspecification of a procedure's parameters). 

4. Reasons why remote authentication failed. 

5. Any other reasons why the desired procedure was not called. 
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The RPC call message has three unsigned fields: remote program number, remote 
program version number, and remote procedure number. The three fields 
uniquely identify the procedure to be called. Program numbers are administered 
by some central authority (like Sun). Once an implementor has a program 
number, he can implement his remote program; the first implementation would 
most likely have the version number of 1. Because most new protocols evolve 
into better, stable, and mature protocols, a version field of the call message 
identifies which version of the protocol the caller is using. Version numbers 
make speaking old and new protocols through the same server process possible. 

The procedure number identifies the procedure to be called. These numbers are 
documented in the specific program's protocol specification. For example, a file 
service's protocol specification may state that its procedure number 5 is "read" 
and procedure number 12 is "write". 

Just as remote program protocols may change over several versions, the actual 
RPC message protocol could also change. Therefore, the call message also has 
in it the RPC version number, which is always equal to two for the version of 
RPC described here. 

The reply message to a request message has enough information to distinguish 
the following error conditions: 

1. The remote implementation of RPC does speak protocol version 2. The 
lowest and highest supported RPC version numbers are returned. 

2. The remote program is not available on the remote system. 

3. The remote program does not support the requested version number. The 
lowest and highest supported remote program version numbers are returned. 

4. The requested procedure number does not exist. (This is usually a caller side 
protocol or programming error.) 

5. The parameters to the remote procedure appear to be garbage from the 
server's point of view. (Again, this is usually caused by a disagreement 
about the protocol between client and service.) 

Provisions for authentication of caller to seivice and vice-versa are provided as a 
part of the RPC protocol. The call message has two authentication fields, the 
credentials and verifier. Tpe reply message has one authentication field, the 
response verifier. The RPC protocol specification defines all three fields to be the 
following opaque type: 
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enum auth_flavor { 
AUTH NULL 0, 
AUTH UNIX 1, 
AUTH SHORT 2, 
AUTH DES 3 
I* and more to be defined * I 

} ; 

struct opaque_auth { 
auth_flavor flavor; 
opaque body<400>; 

} ; 

In simple English, any opaque_auth structure is an auth_flavor enumera­
tion followed by bytes which are opaque to the RPC protocol implementation. 

The inteipretation and semantics of the data contained within the authentication 
fields is specified by individual, independent authentication protocol 
specifications. (See Authentication Protocols, below, for definitions of the vari­
ous authentication protocols.) 

If authentication parameters were rejected, the response message contains infor­
mation stating why they were rejected. 

Program numbers are given out in groups of O x2 0 0 O O O O O ( decimal 
536870912) according to the following chart: 

Program Numbers Description 

0 - lfffffff Defined by Sun 
20000000 - 3fffffff Defined by user 
40000000 - Sfffffff Transient 
60000000 - 7fffffff Reserved 
80000000 - 9fffffff Reserved 
aOOOOOOO - bfffffff Reserved 
cOOOOOOO - dfffffff Reserved 
eOOOOOOO - ffffffff Reserved 

The first group is a range of numbers administered by Sun Microsystems and 
should be identical for all sites. The second range is for applications peculiar to a 
particular site. This range is intended primarily for debugging new programs. 
When a site develops an application that might be of general interest, that appli­
cation should be given an assigned number in the first range. The third group is 
for applications that generate program numbers dynamically. The final groups 
are reseived for future use, and should not be used. 

The intended use of this protocol is for calling remote procedures. That is, each 
call message is matched with a response message. However, the protocol itself is 
a message-passing protocol with which other (non-RPC) protocols can be imple­
mented. Sun currently uses, or perhaps abuses, the RPC message protocol for the 
following two (non-RPC) protocols: batching (or pipelining) and broadcast RPC. 
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Batching 

Broadcast RPC 

6.4. The RPC Message 
Protocol 

These two protocols are discussed but not defined below. 

Batching allows a client to send an arbitrarily large sequence of call messages to 
a server; batching typically uses reliable byte stream protocols 0-ike TCP/IP) for 
its transport. In the case of batching, the client never waits for a reply from the 
server, and the server does not send replies to batch requests. A sequence of 
batch calls is usually terminated by a legitimate RPC in order to flush the pipe­
line (with positive acknowledgement). 

In broadcast RPC-based protocols, the client sends a broadcast packet to the net­
work and waits for numerous replies. Broadcast RPC uses unreliable, packet­
based protocols 0-ike UDP/IP) as its transports. Servers that support broadcast 
protocols only respond when the request is successfully processed, and are silent 
in the face of errors. Broadcast RPC uses the Port Mapper RPC service to 
achieve its semantics. See the Port Mapper Program Protocol, below, for more 
information. 

"This section defines the RPC message protocol in the XDR data description 
language. The message is defined in a top-down style. 

enum msg_type { 
CALL 0, 
REPLY= 1 

} ; 

!* 
* A reply to a call message can take on two forms: 
* The message was either accepted or rejected. 
*! 
enum reply_stat { 

MSG ACCEPTED 0, 
MSG DENIED 1 

} ; 

!* 
* Given that a call message was accepted, the following is the 
* status of an attempt to call a remote procedure. 
*! 
enum accept_stat 

SUCCESS 0 , I* RPC executed successfully * I 

} ; 

!* 

PROG UNAVAIL 
PROG MISMATCH 
PROC UNAVAIL 
GARBAGE ARGS 

1, / * remote hasn't exported program * I 
2, I* remote can't support version# * I 
3, I* program can't support procedure * I 
4 / * procedure can't decode params * I 

* Reasons why a call message was rejected: 
*! 
enum reject_stat 

RPC MISMATCH 
AUTH ERROR 1 

0 , I * RPC version number ! = 2 * I 
I* remote can't authenticate caller * I 
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} ; 

I* 
* Why authentication failed: 
*I 
enum auth_stat { 

AUTH BADCRED 1, I* bad credentials * I 
AUTH REJECTEDCRED 
AUTH BADVERF 
AUTH_REJECTEDVERF 
AUTH TOOWEAK 

2, /* client must begin new session * I 
3, /* bad verifier * I 
4, I* verifier expired or replayed * I 
5 I* rejected for security reasons * I 

} ; 

!* 
* The RPC message: 
* All messages start with a transaction identifier, xid, 
* followed by a two-armed discriminated union. The union's 
* discriminant is a msg_ type which switches to one of the two 
* types of the message. The xid of a REP LY message always 
* matches that of the initiating CALL message. NB: The xid 
* field is only used for clients matching reply messages with 
* call messages or for servers detecting retransmissions; the 
* service side cannot treat this id as any type of sequence 
* number. 
*! 
struct rpc_msg { 

unsigned int xid; 

} ; 

I* 

union switch (msg_type mtype) 
case CALL: 

call_body cbody; 
case REPLY: 

reply_body rbody; 
body; 

* Body of an RPC request call: 
*Inversion 2 of the RPC protocol specification, rpcvers must 
* be equal to 2. The fields prog, vers, and proc specify the 
* remote program, its version number, and the procedure within 
* the remote program to be called. After these fields are two 
* authentication parameters: cred ( authentication credentials) 
* and verf ( authentication verifier). The two authentication 
* parameters are followed by the parameters to the remote 
* procedure, which are specified by the specific program 
* protocol. 
*I 
struct call_body 

unsigned int rpcvers; /* must be equal to two (2) * I 
unsigned int prog; 
unsigned int vers; 
unsigned int proc; 
opaque_auth cred; 
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opaque_auth verf; 
I* procedure specific parameters start here * I 

} ; 

I* 
* Body of a reply to an.RPC request: 
* The call message was either accepted or rejected. 
*I 
union reply_body switch (reply_stat stat) { 

case MSG ACCEPTED: 
accepted_reply areply; 

case MSG DENIED: 
rejected_reply rreply; 

reply; 

I* 
* Reply to an RPC request that was accepted by the server: 
* there could be an error even though the request was accepted. 
* The first field is an authentication verifier that the server 
* generates in order to validate itself to the caller. It is 
* followed by a union whose discriminant is an enum 
* accept_stat. The SUCCESS arm of the union is protocol 
* specific. The PROG_UNAVAIL, PROC_UNAVAIL, and GARBAGE_ARGP 
* arms of the union are void. The PROG_MISMATCH arm specifies 
* the lowest and highest version numbers of the remote program 
* supported by the server. 
*I 
struct accepted_reply 

opaque_auth verf; 
union switch (accept_stat stat) 

case SUCCESS: 
opaque results[O]; 
I * procedure-specific results start here * I 

case PROG MISMATCH: 
struct { 

unsigned int low; 
unsigned int high; 

mismatch_info; 
default: 

I* 
* Void. Cases include PROG_UNAVAIL, PROC_UNAVAIL, 
* and GARBAGE ARGS. 
*I 
void; 

reply_data; 
} ; 

I* 
* Reply to an RPC request that was rejected by the server: 
* The request can be rejected for two reasons: either the 
* server is not running a compatible version of the RPC 
* protocol (RPC_MISMATCH), or the server refuses to 
* authenticate the caller (AUTH _ ERROR). In case of an RPC 
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* version mismatch, the server returns the lowest and highest 
* supported RPC version numbers. In case of refused 
* authentication.failure status is returned. 
*! 
union rejected_reply switch (reject_stat stat) { 

case RPC MISMATCH: 

} ; 

struct { 
unsigned int low; 
unsigned int high; 

mismatch_info; 
case AUTH ERROR: 

auth stat stat; 

As previously stated, authentication parameters are opaque, but open-ended to 
the rest of the RPC protocol. This section defines some "flavors" of authentica­
tion implemented at (and supported by) Sun. Other sites are free to invent new 
authentication types, with the same rules of flavor number assignment as there is 
for program number assignment. 

Often calls must be made where the caller does not know who he is or the server 
does not care who the caller is. In this case, the flavor value (the discriminant of 
the opaque_auth's union) of the RPC message's credentials, verifier, and 
response verifier is AUT H _NULL. The bytes of the opaque_auth 's body are 
undefined. It is recommended that the opaque length be zero. 

The caller of a remote procedure may wish to identify himself as he is identified 
on a UNIX system. The value of the credential's discriminant of an RPC call 
message is AUTH_UNIX. The bytes of the credential's opaque body encode the 
following structure: 

struct auth_unix { 

} ; 

unsigned int stamp; 
string machinename<255>; 
unsigned int uid; 
unsigned int gid; 
unsigned int gids<lO>; 

The stamp is an arbitrary ID which the caller machine may generate. The 
machinename is the name of the caller's machine Oike "krypton"). The uid is 
the caller's effective user ID. The gid is the caller's effective group ID. The 
gids is a counted array of groups which contain the caller as a member. The 
verifier accompanying the credentials should be of AUTH_NULL (defined above). 

The value of the discriminant of the response verifier received in the reply mes­
sage from the seivermay be AUTH_NULL or AUTH_SHORT. In the case of 
AUTH _SHORT, the bytes of the response verifier's string encode an opaque struc­
ture. This new opaque structure may now be passed to the seiver instead of the 
original AUTH _ UNIX flavor credentials. The seiver keeps a cache which maps 
shorthand opaque structures (passed back by way of an AUTH _ s HORT style 
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DES Authentication Verifiers 

response verifier) to the original credentials of the caller. The caller can save net­
work bandwidth and seiver cpu cycles by using the new credentials. 

The seiver may flush the shorthand opaque structure at any time. If this happens, 
the remote procedure call message will be rejected due to an authentication error. 
The reason for the failure will be AUTH _ REJECTEDCRED. At this point, the 
caller may wish to try the original AUTH _ UNIX style of credentials. 

UNIX authentication suffers from two major problems: 

1. The naming is too UNIX-system oriented. 

2. There is no verifier, so credentials can easily be faked. 

DES authentication attempts to fix these two problems. 

The first problem is handled by addressing the caller by a simple string of charac­
ters instead of by an operating system specific integer. This string of characters 
is known as the "netname" or network name of the caller. The seiver is not 
allowed to interpret the contents of the caller's name in any other way except to 
identify the caller. Thus, netnames should be unique for every caller in the inter­
net. 

It is up to each operating system's implementation of DES authentication to gen­
erate netnames for its users that insure this uniqueness when they call upon 
remote seivers. Operating systems already know how to distinguish users local :J 
to their systems. It is usually a simple matter to extend this mechanism to the ( ) · 
network. For example, a UNIX user at Sun with a user ID of 515 might be 
assigned the following netname: "unix.5l5@sun.com". This netname contains 
three items that seive to insure it is unique. Going backwards, there is only one 
naming domain called "sun.com" in the internet. Within this domain, there is 
only one UNIX user with user ID 515. However, there may be another user on 
another operating system, for example VMS, within the same naming domain 
that, by coincidence, happens to have the same user ID. To insure that these two 
users can be distinguished we add the operating system name. So one user is 
"unix.5l5@sun.com" and the otp.eris "vms.515@sun.com". 

The first field is actually a naming method rather than an operating system name. 
It just happens that today there is almost a one-to-one correspondence between 
naming methods and operating systems. If the world could agree on a naming 
standard, the first field could be the name of that standard, instead of an operating 
system name. 

Unlike UNIX authentication, DES authentication does have a verifier so the 
seiver can validate the client's credential (and vice-versa). The contents of this 
verifier is primarily an encrypted timestamp. The seiver can decrypt this times­
tamp, and if it is close to what the real time is, then the client must have 
encrypted it correctly. The only way the client could encrypt it correctly is to 
know the "conversation key" of the RPC session. And if the client knows the 
conversation key, then it must be the real client. 
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The conversation key is a DES [5] key which the client generates and notifies the 
seiver of in its first RPC call. The conversation key is encrypted using a public 
key scheme in this first transaction. The particular public key scheme used in 
DES authentication is Diffie-Hellman [3] with 192-bit keys. The details of this 
encryption method are described later. 

The client and the seiver need the same notion of the current time in order for all 
of this to work. If network time synchronization cannot be guaranteed, then 
client can synchronize with the seiver before beginning the conversation, perhaps 
by consulting the Internet Time Seiver (TIME[ 4 ]). 

The way a seiver determines if a client timestamp is valid is somewhat compli­
cated. For any other transaction but the first, the seiver just checks for two 
things: 

1. the timestamp is greater than the one previously seen from the same client. 

2. the timestamp has not expired. 

A timestamp is expired if the seiver' s time is later than the sum of the client's 
timestamp plus what is known as the client's "window". The "window" is a 
number the client passes ( encrypted) to the seiver in its first transaction. You can 
think of it as a lifetime for the credential. 

This explains everything but the first transaction. In the first transaction, the 
server checks only that the timestamp has not expired. If this was all that was 
done though, then it would be quite easy for the client to send random data in 
place of the timestamp with a fairly good chance of succeeding. As an added 
check, the client sends an encrypted item in the first transaction known as the 
"window verifier" which must be equal to the window minus 1, or the server will 
reject the credential. 

The client too must check the verifier returned from the server to be sure it is leg­
itimate. The seiver sends back to the client the encrypted timestamp it received 
from the client, minus one second. If the client gets anything different than this, 
it will reject it. 

After the first transaction, the seiver' s DES authentication subsystem returns in 
its verifier to the client an integer "nickname" which the client may use in its 
further transactions instead of passing its netname, encrypted DES key and win­
dow every time. The nickname is most likely an index into a table on the seiver 
which stores for each client its netname, decrypted DES key and window. 

Though they originally were synchronized, the client's and seiver's clocks can 
get out of sync again. When this happens the client RPC subsystem most likely 
will get back RPC _ AUTHERROR at which point it should resynchronize. 

A client may still get the RPC_ AUTHERROR error even though it is synchronized 
with the seiver. The reason is that the seiver' s nickname table is a limited size, 
and it may flush entries whenever it wants. A client should resend its original 
credential in this case and the seiver will give it a new nickname. If a seiver 
crashes, the entire nickname table gets flushed, and all clients will have to resend 
their original credentials. 
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DES Authentication Protocol 
(in XDR language) 

!* 
* There are two kinds of credentials: one in which the client uses 
* its full network name, and one in which it uses its nnickname" 
* ljust an unsigned integer) given to it by the server. The 
* client must use its fullname in its first transaction with the 
* server, in which the server will return to the client its 
* nickname. The client may use its nickname in all further 
* transactions with the server. There is no requirement to use the 
* nickname, but it is wise to use it for performance reasons. 
*! 
enum authdes namekind 

ADN FULLNAME 0, 
ADN NICKNAME= 1 

} ; 

!* 
* A 64-bit block of encrypted DES data 
*! 
typedef opaque des_block[8]; 

!* 
* Maximum length of a network user's name 
*! 
const MAXNETNAMELEN = 255; 

!* 
* Afullname contains the network name of the client, an encrypted 
* conversation key and the window. The window is actually a 
* lifetime for the credential. If the time indicated in the 
* verifier timestamp plus the window has past, then the server 
* should expire the request and not grant it. To insure that 
* requests are not replayed, the server should insist that 
* timestamps are greater than the previous one seen. unless it is 
* the first transaction. In the first transaction, the server 
* checks instead that the window verifier is one less than the 
* window. 
*! 
struct authdes_fullname { 
string name<MAXNETNAMELEN>; 
des_block key; 
unsigned int window; 
} ; 

!* 

I * name of client * I 
I* PK encrypted conversation key * I 
I * encrypted window * I 

* A credential is either a fullname or a nickname 
*! 
union authdes_cred switch (authdes_namekind adc_namekind) 

case ADN FULLNAME: 
authdes fullname adc_fullname; 

case ADN NICKNAME: 
unsigned int adc_nickname; 

} ; 

~!+ sun ~ microsystems 
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!* 
* A timestamp encodes the time since midnight, January 1, 1970. 
*I 
struct timestamp 

I * seconds * I unsigned int seconds; 
unsigned int useconds; I* and microseconds * I 

} ; 

I* 
* Verifier: client variety 
* The window verifier is only used in the first transaction. In 
* conjunction with afullname credential, these items are packed 
* into the following structure be/ ore being encrypted: 
* 
* struct { 
* 
* 

* 
* } 

adv_timestamp; --one DES block 
adc fullname. window; -- one half DES block 
adv_winverf; -- one half DES block 

* This structure is encrypted using CBC mode encryption with an 
* input vector of zero. All other encryptions of timestamps use 
* ECB mode encryption. 
*! 
struct authdes_verf_clnt { 

timestamp adv_timestamp; 
unsigned int adv_winverf; 

I* encrypted timestamp * I 
I* encrypted window verifier * I 

} ; 

I* 
* Verifier: server variety 
* The server returns ( encrypted) the same timestamp the client 
* gave it minus one second. It also tells the client its nickname 
* to be used in future transactions (unencrypted). 
*! 
struct authdes_verf_svr { 
timestamp adv_timeverf; 
unsigned int adv_nickname; 
} ; 

I* encrypted verifier * I 
I* new nickname for client * I 

In this scheme, there are two constants, BASE and MODULUS. The particular 
values Sun has chosen for these for the DES authentication protocol are: 

const BASE= 3; 
const MODULUS= "d4a0ba0250b6fd2ec626e7efd637df76c716e22d0944b 

The way this scheme works is best explained by an example. Suppose there are 
two people "A" and "B" who want to send encrypted messages to each other. So, 
A and B both generate "secret" keys at random which they do not reveal to any-
one. Let these keys be represented as SK(A) and SK(B). They also publish in a 
public directory their "public" keys. These keys are computed as follows: 
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PK(A) = (BASE** SK(A) ) mod MODULUS 
PK(B) = (BASE** SK(B) ) mod MODULUS 

The"**" notation is used here to represent exponentiation. Now, both A and B 
can arrive at the "common" key between them, represented here as CK(A, B), 
without revealing their secret keys. 

A computes: 

CK(A, B) = ( PK(B) ** SK(A)) mod MODULUS 

while B computes: 

CK(A, B) = ( PK(A) ** SK(B)) mod MODULUS 

These two can be shown to be equivalent: 

(PK(B) ** SK(A)) mod MODULUS= (PK(A) ** SK(B)) mod MODULUS 

We drop the "mod MODULUS" parts and assume modulo arithmetic to simplify 
things: 

PK(B) ** SK(A) = PK(A) ** SK(B) 

Then, replace PK(B) by what B computed earlier and likewise for PK(A). 

((BASE** SK(B)) ** SK(A) = (BASE** SK(A)) ** SK(B) 

which leads to: 

BASE** (SK(A) * SK(B)) =BASE** (SK(A) * SK(B)) 

This common key CK(A, B) is not used to encrypt the timestamps used in the 
protocol. Rather, it is used only to encrypt a conversation key which is then used 
to encrypt the timestamps. The reason for doing this is to use the common key· as 
little as possible, for fear that it could be broken. Breaking the conversation key 
is a far less serious offense, since conversations are relatively short-lived. 

The conversation key is encrypted using 56-bit DES keys, yet the common key is 
192 bits. To reduce the number of bits, 56 bits are selected from the common 
key as follows. The middle-most 8-bytes are selected from the common key, and 
then parity is added to the lower order bit of each byte, producing a 56-bit key 
with 8 bits of parity. 

When RPC messages are passed on top of a byte stream protocol (like TCP/IP), it 
is necessary, or at least desirable, to delimit one message from another in order to 
detect and possibly recover from user protocol errors. This is called record mark­
ing (RM). Sun uses this RM/fCP/IP transport for passing RPC messages on 
TCP streams. One RPC message fits into one RM record. 

A record is composed of one or more record fragments. A record fragment is a 
four-byte header followed by Oto (2**31) - 1 bytes of fragment data. The bytes 
encode an unsigned binary number; as with XDR integers, the byte order is from 
highest to lowest. The number encodes two values-a boolean which indicates 
whether the fragment is the last fragment of the record (bit value 1 implies the 
fragment is the last fragment) and a 31-bit unsigned binary value which is the 
length in bytes of the fragment's data. The boolean value is the highest-order bit 
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6.7. The RPC Language 

An Example Service 
Described in the RPC 
Language 
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of the header; the length is the 31 low-order bits. (Note that this record 
specification is NOT in XOR standard fonn!) 

Just as there was a need to describe the XOR data-types in a fonnal language, 
there is also need to describe the procedures that operate on these XOR data­
types in a fonnal language as well. We use the RPC Language for this purpose. 
It is an extension to the XOR language. The following example is used to 
describe the essence of the language. 

Here is an example of the specification of a simple ping program. 

!* 
* Simple ping program 
*! 
program PING_PROG 

I* Latest and greatest version * I 
version PING VERS PINGBACK 
void 
PINGPROC_NULL(void) = 0; 

!* 
* Ping the caller, return the round-trip time 
* (in microseconds). Returns -1 if the operation 
* timed out. 
*! 
int 
PINGPROC_PINGBACK(void) 1; 

} = 2; 

!* 
* Original version 
*! 
version PING_VERS_ORIG { 

void 
PINGPROC_NULL(void) 0; 
} = 1; 

} = 1; 

const PING_VERS = 2; I* latest version * I 

The first version described is PING_ VERS _PING BACK with two procedures, 
PINGPROC NULL and PINGPROC PINGBACK. PINGPROC NULL takes no - -
arguments and returns no results, but it is useful for computing round-trip times 
from the client to the server and back again. By convention, procedure O of any 
RPC protocol should have the same semantics, and never require any kind of 
authentication. The second procedure is used for the client to have the server do 
a reverse ping operation back to the client, and it returns the amount of time (in 
microseconds) that the operation used. The next version, PING_ VERS _ ORIG, 

is the original version of the protocol and it does not contain 
PINGPROC_PINGBACK procedure. It is useful for compatibility with old client 
programs, and as this program matures it may be dropped from the protocol 
entirely. 
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The RPC Language 
Specification 

Syntax Notes 

6.8. Port Mapper Program 
Protocol 

The RPC language is identical to the XOR language, except for the added 
definition of a program-def described below. 

program-def: 
"program" identifier"{" 

version-def 
version-def* 

" } " "=" constant 

version-def: 

" . ,, 
' 

"version" identifier"{" 
procedure-def 
procedure-def* 

" } " "=" constant 

procedure-def: 

" . " ' 

type-specifier identifier"(" type-specifier")" 
"=" constant " . " ' 

1. The following keywords are added and cannot be used as identifiers: "pro­
gram" and "version"; 

2. A version name cannot occur more than once within the scope of a program 
definition. Nor can a version number occur more than once within the scope 
of a program definition. 

Y. A procedure name cannot occur more than once within the scope of a ver­
sion definition. Nor can a procedure number occur more than once within 
the scope of version definition. 

4. Program identifiers are in the same name space as constant and type 
identifiers. 

5. Only unsigned constants can be assigned to programs, versions and pro­
cedures. 

The port mapper program maps RPC program and version numbers to transport­
specific port numbers. This program makes dynamic binding of remote pro­
grams possible. 

This is desirable because the range of reserved port numbers is very small and the 
number of potential remote programs is very large. By running only the port 
mapper on a reserved port, the port numbers of other remote programs can be 
ascertained by querying the port mapper. 

The port mapper also aids in broadcast RPC. A given RPC program will usually 
have different port number bindings on different machines, so there is no way to 
directly broadcast to all of these programs. The port mapper, however, does have 
a fixed port number. So, to broadcast to a given program, the client actually 
sends its message to the port mapper located at the broadcast address. Each port 

n 

n 

mapper that picks up the broadcast then calls the local service specified by the n 
client. When the port mapper gets the reply from the local service, it sends the ,, ,• 
reply on back to the client. 
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const PMAP PORT 111; I* portmapper port number * I 

!* 
* A mapping of (program, version, protocol) to port number 
*! 
struct mapping { 

unsigned int prog; 
unsigned int vers; 
unsigned int prot; 
unsigned int port; 

} ; 

!* 
* Supported values for the "prot'' field 
*! 
const IPPROTO TCP 
const IPPROTO UDP 

I* 
* A list of mappings 
*! 
struct *pmaplist 

mapping map; 
pmaplist next; 

} ; 

I* 
* Arguments to callit 
*I 

6; 
17; 

struct call_args 
unsigned int prog; 
unsigned int vers; 
unsigned int proc; 
opaque args<>; 

} ; 

!* 
* Results of callit 
*! 
struct call result 

unsigned int port; 
opaque res<>; 

} ; 

I* 
* Port mapper procedures 
*I 
program PMAP_PROG { 

version PMAP VERS 
void 
PMAPPROC_NULL(void) 

bool 

I* protocol number for TCP !IP * I 
I* protocol number for UDP/IP * I 

O; 
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PMAPPROC_SET(mapping) 1; 

bool 
PMAPPROC_UNSET(mapping) 2; 

unsigned int 
PMAPPROC_GETPORT(mapping) 3; 

pmaplist 
PMAPPROC_DUMP(void) 4; 

call result 
PMAPPROC_CALLIT(call_args) 5; 

} = 2; 
} = 100000; 

The portmapper program currently supports two protocols (UDP/IP and TCP/IP). 
The portmapper is contacted by talking to it on assigned port number 111 
(SUNRPC [8]) on either of these protocols. The following is a description of 
each of the portmapper procedures: 

PMAPPROC NULL: 
This procedure does no work. By convention, procedure zero of any proto­
col takes no parameters and returns no results. 

PMAPPROC SET: 
When a program first becomes available on a machine, it registers itself with 
the port mapper program on the same machine. The program passes its pro­
gram number "prog", version number "vers", transport protocol number 
"prot'', and the port "port" on which it awaits service request. The procedure 
returns a boolean response whose value is TRUE if the procedure success­
fully established the mapping and FALSE otherwise. The procedure refuses 
to establish a mapping if one already exists for the tuple "(prog, vers, prot)". 

PMAPPROC ONSET: 
When a program becomes unavailable, it should unregister itself with the 
port mapper program on the same machine. The parameters and results have 
meanings identical to those of PMAPPROC_SET. The protocol and port 
number fields of the argument are ignored. 

PMAPPROC GETPORT: 
Given a program number "prog", version number "vers", and transport proto­
col number "prot'', this procedure returns the port number on which the pro­
gram is awaiting call requests. A port value of zeros means the program has 
not been registered. The "port" field of the argument is ignored. 

PMAPPROC DUMP: 
This procedure enumerates all entries in the port mapper's database. The 
procedure takes no parameters and returns a list of program, version, proto­
col, and port values. 

PMAPPROC CALLIT: 
This procedure allows a caller to call another remote procedure on the same 
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machine without knowing the remote procedure's port number. It is 
intended for supporting broadcasts to arbitrary remote programs via the 
well-known port mapper's port. The parameters "prog", "vers", "proc", and 
the bytes of "args" are the program number, version number, procedure 
number, and parameters of the remote procedure. Note: 

1. This procedure only sends a response if the procedure was successfully 
executed and is silent (no response) otherwise. 

2. The port mapper communicates with the remote program using UDP/IP 
only. 

The procedure returns the remote program's port number, and the bytes of results 
are the results of the remote procedure. 
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7 
Network File System: Version 2 

Protocol Specification 

Note: This chapter specifies a protocol that Sun Microsystems, Inc., and others 
are using. It specifies it in standard ARP A RFC form. 

The Sun Network Filesystem (NFS) protocol provides transparent remote access 
to shared filesystems over local area networks. The NFS protocol is designed to 
be machine, operating system, network architecture, and transport protocol 
independent. This independence is achieved through the use of Remote Pro­
cedure Call (RPC) primitives built on top of an External Data Representation 
(XDR). Implementations exist for a variety of machines, from personal comput­
ers to supercomputers. 

The supporting mount protocol allows the server to hand out remote access 
privileges to a restricted set of clients. It perfonns the operating system-specific 
functions that allow, for example, to attach remote directory trees to some local 
file system. 

Sun's remote procedure call specification provides a procedure- oriented inter­
face to remote services. Each server supplies a program that is a set of pro­
cedures. NFS is one such "program". The combination of host address, program 
number, and procedure number specifies one remote service procedure. RPC 
does not depend on services provided by specific protocols, so it can be used with 
any underlying transport protocol. See the Remote Procedure Calls: Protocol 
Specification chapter of this manual. 

The External Data Representation (XOR) standard provides a common way of 
representing a set of data types over a network. The NFS Protocol Specification 
is written using the RPC data description language. For more infonnation, see 
the External Data Representation Standard: Protocol Specification chapter of 
this manual. Sun provides implementations of XDR and RPC, but NFS does not 
require their use. Any software that provides equivalent functionality can be 
used, and if the encoding is exactly the same it can interoperate with other imple­
mentations of NFS. 
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Stateless Servers 

7 .3. NFS Protocol 
Definition 

File System Model 

The NFS protocol is stateless. That is, a seiver does not need to maintain any 
extra state infonnation about any of its clients in order to function correctly. 
Stateless seivers have a distinct advantage over stateful seivers in the event of a 
failure. With stateless seivers, a client need only retry a request until the seiver 
responds; it does not even need to know that the seiver has crashed, or the net­
work temporarily went down. The client of a stateful seiver, on the other hand, 
needs to either detect a seiver crash and rebuild the seiver' s state when it comes 
back up, or cause client operations to fail. 

This may not sound like an important issue, but it affects the protocol in some 
unexpected ways. We feel that it is worth a bit of extra complexity in the proto­
col to be able to write very sim pie seivers that do not require fancy crash 
recovery. 

On the other hand, NFS deals with objects such as files and directories that 
inherently have state -- what good would a file be if it did not keep its contents 
intact? The goal is to not introduce any extra state in the protocol itself. Another 
way to simplify recovery is by making operations "idempotent" whenever possi­
ble (so that they can potentially be repeated). 

Seivers have been known to change over time, and so can the protocol that they 
use. So RPC provides a version number with each RPC request. This RFC 
describes version two of the NFS protocol. Even in the second version, there are 
various obsolete procedures and parameters, which will be removed in later ver­
sions. An RFC for version three of the NFS protocol is currently under prepara­
tion. 

NFS assumes a file system that is hierarchical, with directories as all but the 
bottom-level files. Each entry in a directory (file, directory, device, etc.) has a 
string name. Different operating systems may have restrictions on the depth of 
the tree or the names used, as well as using different syntax to represent the 
"pathname", which is the concatenation of all the "components" (directory and 
file names) in the name. A "file system" is a tree on a single seiver (usually a 
single disk or physical partition) with a specified "root". Some operating systems 
provide a "mount" operation to make all file systems appear as a single tree, 
while others maintain a "forest" of file systems. Files are unstructured streams of 
uninterpreted bytes. Version 3 of NFS uses a slightly more general file system 
model. 

NFS looks up one component of a pathname at a time. It may not be obvious 
why it does not just take the whole pathname, traipse down the directories, and 
return a file handle when it is done. There are several good reasons not to do 
this. First, pathnames need separators between the directory components, and 
different operating systems use different separators. We could define a Network 
Standard Pathname Representation, but then every pathname would have to be 
parsed and converted at each end. Other issues are discussed in NFS Implemen­
tation Issues below. 

n 
I 

() 

Although files and directories are similar objects in many ways, different pro- \n.. ' 

cedures are used to read directories and files. This provides a network standard 
fonnat for representing directories. The same argument as above could have 
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been used to justify a procedure that returns only one directory entry per call. 
The problem is efficiency. Directories can contain many entries, and a remote 
call to return each would be just too slow. 

Authentication 
The NFS setvice uses AUTH_UNIX, AUTH_DES, or AUTH_SHORT style 
authentication, except in the NULL procedure where AUT H_ NONE is also 
allowed. 

Transport Protocols 
NFS currently is supported on UDP/IP only. 

Port Number 
The NFS protocol currently uses the UDP port number 2049. This is not an 
officially assigned port, so later versions of the protocol use the "Portmap­
ping" facility of RPC. 

These are the sizes, given in decimal bytes, of various XOR structures used in the 
protocol: 

I* The maximum number of bytes of data in a READ or WRITE request * I 
canst MAXDATA = 8192; 

I* The maximum number of bytes in a pathname argument * I 
canst MAXPATHLEN = 1024; 

I* The maximum number of bytes in a file name argument * I 
canst MAXNAMLEN = 255; 

/ * The size in bytes of the opaque "cookie" passed by READ DIR * I 
canst COOKIESIZE = 4; 

I* The size in bytes of the opaque file handle * I 
canst FHSIZE = 32; 

The following XOR definitions are basic structures and types used in other struc­
tures described further on. 
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stat enum stat { 

} ; 

NFS OK = 0, 
NFSERR_PERM=l, 
NFSERR_NOENT=2, 
NFSERR_IO=S, 
NFSERR_NXI0=6, 
NFSERR_ACCES=l3, 
NFSERR_EXIST=17, 
NFSERR_N0DEV=19, 
NFSERR_NOTDIR=20, 
NFSERR_ISDIR=21, 
NFSERR_FBIG=27, 
NFSERR_NOSPC=28, 
NFSERR_ROFS=30, 
NFSERR_NAMETOOLONG=63, 
NFSERR_NOTEMPTY=66, 
NFSERR_DQUOT=69, 
NFSERR_STALE=70, 
NFSERR WFLUSH=99 

The stat () type is returned with every procedure's results. A value of 
NF s _ OK indicates that the call completed successfully and the results are valid. 
The other values indicate some kind of error occurred on the seiver side during 
the seivicing of the procedure. The error values are derived from UNIX error 
numbers. 

NFSERR PERM: 
Not owner. The caller does not have correct ownership to perform the 
requested operation. 

NFSERR NOENT: 
No such file or directory. The file or directory specified does not exist. 

NFSERR IO: 
Some sort of hard error occurred when the operation was in progress. This 
could be a disk error, for example. 

NFSERR NXIO: 
No such device or address. 

NFSERR ACCES: 
Permission denied. The caller does not have the correct permission to per­
form the requested operation. 

NFSERR EXIST: 
File exists. The file specified already exists. 

NFSERR NODEV: 
No such device. 

NFSERR NOTDIR: 
Not a directory. The caller specified a non-directory in a directory operation. 
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NF SERR :I SDJ:R: 
Is a directory. The caller specified a directory in a non- directory operation. 

NFSERR FBJ:G: 
File too large. The operation caused a file to grow beyond the server's limit. 

NFSERR NOSPC: 
No space left on device. The operation caused the server's filesystem to 
reach its limit. 

NFSERR ROFS: 
Read-only filesystem. Write attempted on a read-only filesystem. 

NFSERR NAMETOOLONG: 
File name too long. The file name in an operation was too long. 

NFSERR NOTEMPTY: 
Directory not empty. Attempted to remove a directory that was not empty. 

NFSERR _DQOOT: 
Disk quota exceeded. The client's disk quota on the server has been 
exceeded. 

NFSERR STALE: 
The "thandle" given in the arguments was invalid. That is, the file referred 
to by that file handle no longer exists, or access to it has been revoked. 

NFSERR WFLOSB: 
The server's write cache used in the WRITECACHE call got flushed to disk. 

enum ftype { 
NFNON = 0, 
NFREG = 1, 
NFDIR = 2, 
NFBLK 3, 
NFCHR 4, 
NFLNK 5 

} ; 

The enumeration ft ype gives the type of a file. The type NFNON indicates a 
non-file, NFREG is a regular file, NFDIR is a directory, NFBLK is a block-special 
device, NFCHR is a character-special device, and NFLNK is a symbolic link. 

typedef opaque fhandle[FHSIZE]; 

The £handle is the file handle passed between the server and the client. All 
file operations are done using file handles to refer to a file or directory. The file 
handle can contain whatever infonnation the server needs to distinguish an indi­
vidual file. 
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timeval 

fattr 

struct timeval { 

} ; 

unsigned int seconds; 
unsigned int useconds; 

The timeval structure is the number of seconds and microseconds since mid­
night January 1, 1970, Greenwich Mean Time. It is used to pass time and date 
infonnation. 

struct fattr 
ftype type; 
unsigned int mode; 
unsigned int nlink; 
unsigned int uid; 
unsigned int gid; 
unsigned int size; 
unsigned int blocksize; 
unsigned int rdev; 
unsigned int blocks; 
unsigned int fsid; 
unsigned int fileid; 
timeval atime; 
timeval mtime; 
timeval ctime; 

} ; 

The fattr structure contains the attributes of a file; "type" is the type of the 
file; "nlink" is the number of hard links to the file (the number of different names 
for the same file); "uid" is the user identification number of the owner of the file; 
"gid" is the group identification number of the group of the file; "size" is the size 
in bytes of the file; "blocksize" is the size in bytes of a block of the file; "rdev" is 
the device number of the file if it is type NFCHR or NFBLK; "blocks" is the 
number of blocks the file takes up on disk; "fsid" is the file system identifier for 
the filesystem containing the file; "fileid" is a number that uniquely identifies the 
file within its filesystem; "atime" is the time when the file was last accessed for 
either read or write; "mtime" is the time when the file data was last modified 
(written); and "ctime" is the time when the status of the file was last changed. 
Writing to the file also changes "ctime" if the size of the file changes. 

"mode" is the access mode encoded as a set of bits. Notice that the file type is 
specified both in the mode bits and in the file type. This is really a bug in the 
protocol and will be fixed in future versions. The descriptions given below 
specify the bit positions using octal numbers. 
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Bit Description 

0040000 This is a directory; "type" field should be NFDIR. 
0020000 
0060000 
0100000 

This is a character special file; "type" field should be NFCHR. 
This is a block special file; "type" field should be NFBLK. 
This is a regular file; "type" field should be NFREG. 

0120000 
0140000 
0004000 

This is a symbolic link file; "type II field should be NFLNK. 
This is a named socket; "type" field should be NFNON. 
Set user id on execution. 

0002000 
0001000 
0000400 
0000200 
0000100 
0000040 
0000020 
0000010 
0000004 
0000002 
0000001 

Notes: 

Set group id on execution. 
Save swapped text even after use. 
Read pennission for owner. 
Write permission for owner. 
Execute and search permission for owner. 
Read pennission for group. 
Write permission for group. 
Execute and search permission for group. 
Read pennission for others. 
Write permission for others. 
Execute and search permission for others. 

The bits are the same as the mode bits returned by the stat (2) system call 
in the UNIX system. The file type is specified both in the mode bits and in 
the file type. This is fixed in future versions. 

The "rdev" field in the attributes structure is an operating system specific 
device specifier. It will be removed and generalized in the next revision of 
the protocol. 

struct sattr 
unsigned 
unsigned 
unsigned 
unsigned 
timeval 
timeval 

} ; 

int mode; 
int uid; 
int gid; 
int size; 

atime; 
mtime; 

The sat tr structure contains the file attributes which can be set from the client. 
The fields are the same as for fat tr above. A II size" of zero means the file · 
should be truncated. A value of -1 indicates a field that should be ignored. 

typedef string filename<MAXNAMLEN>; 

The type filename is used for passing file names or pathname components. 

typedef string path<MAXPATHLEN>; 

The type path is a pathname. The server considers it as a string with no internal 
structure, but to the client it is the name of a node in a filesystem tree. 

Revision A, of 9 May 1988 



17 4 Protocol Specifications 

attrstat 

diropargs 

diropres 

Server Procedures 

union attrstat switch (stat status) { 
case NFS OK: 

} ; 

fattr attributes; 
default: 

void; 

The at tr stat structure is a common procedure result. It contains a "status" 
and, if the call succeeded, it also contains the attributes of the file on which the 
operation was done. 

struct diropargs 
fhandle dir; 
filename name; 

} ; 

The diropargs structure is used in directory operations. The "fhandle" "dir" 
is the directory in which to find the file "name". A directory operation is one in 
which the directory is affected. 

union diropres switch (stat status) { 
case NFS OK: 

} ; 

struct { 
fhandle file; 
fattr 

diropok; 
default: 

void; 

attributes; 

The results of a directory operation are returned in a diropres structure. If the 
call succeeded, a new file handle "file" and the "attributes" associated with that 
file are returned along with the "status". 

The protocol definition is given as a set of procedures with arguments and results 
defined using the RPC language. A brief description of the function of each pro­
cedure should provide enough infonnation to allow implementation. 

All of the procedures in the NFS protocol are assumed to be synchronous. When 
a procedure returns to the client, the client can assume that the operation has 
completed and any data associated with the request is now on stable storage. For 
example, a client WRITE request may cause the server to update data blocks, 
filesystem infonnation blocks (such as indirect blocks), and file attribute infor­
mation (size and modify times). When the WRITE returns to the client, it can 
assume that the write is safe, even in case of a server crash, and it can discard the 
data written. This is a very important part of the statelessness of the server. If 
the server waited to flush data from remote requests, the client would have to 
save those requests so that it could resend them in case of a server crash. 
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I* 
* Remote file service routines 
*I 
program NFS_PROGRAM { 

version NFS VERSION 

void 

void NFSPROC_NULL(void) = 0; 
attrstat NFSPROC_GETATTR(fhandle)= 1; 
attrstat NFSPROC_SETATTR(sattrargs) 2; 
void NFSPROC_ROOT(void) = 3; 
diropres NFSPROC_LOOKUP(diropargs) 4; 
readlinkres NFSPROC_READLINK(fhandle) = 5; 
readres NFSPROC_READ(readargs) = 6; 
void NFSPROC_WRITECACHE(void) = 7; 
attrstat NFSPROC_WRITE(writeargs) = 8; 
diropres NFSPROC_CREATE (createargs) 9; 
stat NFSPROC_REMOVE(diropargs) = 10; 
stat NFSPROC_RENAME(renameargs) = 11; 
stat NFSPROC_LINK(linkargs) = 12; 
stat NFSPROC_SYMLINK(symlinkargs) = 13; 
diropres NFSPROC_MKDIR(createargs) = 14; 
stat NFSPROC_RMDIR(diropargs) = 15; 
readdirres NFSPROC_READDIR(readdirargs) 16; 
statfsres NFSPROC_STATFS(fhandle) = 17; 

} = 2; 
100003; 

NFSPROC_NULL(void) = 0; 

This procedure does no work. It is made available in all RPC services to allow 
server response testing and timing. 

attrstat 
NFSPROC GETATTR (fhandle) = 1; 

If the reply status is NFS_ OK, then the reply attributes contains the attributes for 
the file given by the input fhandle. 

struct sattrargs { 
fhandle file; 
sattr attributes; 
} ; 

attrstat 
NFSPROC SETATTR (sattr.args) = 2; 

The "attributes" argument contains fields which are either -1 or are the new value 
for the attributes of "file". If the reply status is NF s _ OK, then the reply attributes 
have the attributes of the file after the "SETA TTR" operation has completed. 

Note: The use of-1 to indicate an unused field in "attributes" is changed in the 
next version of the protocol. 
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void 
NFSPROC_ROOT(void) = 3; 

Obsolete. This procedure is no longer used because finding the root file handle 
of a filesystem requires moving pathnaines between client and server. To do this 
right we would have to define a network standard representation of pathnames. 
Instead, the function of looking up the root file handle is done by the 
MNTPROC _ MNT () procedure. (See the Mount Protocol Definition below for 
details). 

diropres 
NFSPROC_LOOKUP(diropargs) = 4; 

If the reply "status" is NF s _ OK, then the reply "file" and reply "attributes" are the 
file handle and attributes for the file "naine" in the directory given by "dir" in the 
argument. 

union readlinkres switch (stat status) { 
case NFS OK: 

path data; 
default: 

void; 
} ; 

readlinkres 
NFSPROC_READLINK(fhandle) = 5; 

If "status" has the value NFS_ OK, then the reply "data" is the data in the sym­
bolic link given by the file referred to by the fhandle argument. 

Note: since NFS always parses pathnames on the client, the pathnaine in a sym­
bolic link may mean something different (or be meaningless) on a different client 
or on the server if a different pathnaine syntax is used. 

struct readargs { 
fhandle file; 
unsigned offset; 
unsigned count; 
unsigned totalcount; 

} ; 

union readres switch (stat status) { 
case NFS OK: 

} ; 

fattr attributes; 
opaque data<NFS_MAXDATA>; 

default: 
void; 

readres 
NFSPROC_READ(readargs) = 6; 

Returns up to "count" bytes of "data" from the file given by "file", starting at 

•\sun 
• microsystems 
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"offset" bytes from the beginning of the file. The first byte of the file is at offset 
zero. The file attributes after the read takes place are returned in "attributes". 

Note: The argument "totalcount" is unused, and is removed in the next protocol 
revision. 

void 
NFSPROC_WRITECACHE(void) = 7; 

To be used in the next protocol revision. 

struct writeargs { 

} ; 

fhandle file; 
unsigned beginoffset; 
unsigned offset; 
unsigned totalcount; 
opaque data<NFS_MAXDATA>; 

attrstat 
NFSPROC_WRITE(writeargs) = 8; 

Writes "data" beginning "offset" bytes from the beginning of "file". The first 
byte of the file is at offset zero. If the reply "status" is NFS_OK, then the reply 
"attributes" contains the attributes of the file after the write has completed. The 
write operation is atomic. Data from this call to WRITE will not be mixed with 
data from another client's calls. 

Note: The arguments "beginoffset" and "totalcount" are ignored and are removed 
in the next protocol revision. 

struct createargs { 
diropargs where; 
sattr attributes; 

} ; 

diropres 
NFSPROC_CREATE(createargs) = 9; 

The file "name" is created in the directory given by "dir". The initial attributes of 
the new file are given by "attributes". A reply "status" of NFS_OK indicates that 
the file was created, and reply "file" and reply "attributes" are its file handle and 
attributes. Any other reply "status" means that the operation failed and no file 
was created. 

Note: This routine should pass an exclusive create flag, meaning "create the file 
only if it is not already there". 

stat 
NFSPROC_REMOVE(diropargs) = 10; 

The file "name" is removed from the directory given by "dir". A reply of 
NFS_ OK means the directory entry was removed. 
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Note: possibly non-idempotent operation. 

struct renameargs { 
diropargs from; 
diropargs to; 

} ; 

stat 
NFSPROC_RENAME(renameargs) = 11; 

The existing file "from.name" in the directory given by "from.dir" is renamed to 
"to.name" in the directory given by "to.dir". If the reply is NFS_OK, the file was 
renamed. The RENAME operation is atomic on the seiver; it cannot be inter­
rupted in the middle. 

Note: possibly non-idempotent operation. 

struct linkargs { 
fhandle from; 
diropargs to; 

} ; 

stat 
NFSPROC_LINK(linkargs) = 12; 

Creates the file "to.name" in the directory given by "to.dir", which is a hard link n 
to the existing file given by "from". If the return value is NFS_OK, a link was \ 
created. Any other return value indicates an error, and the link was not created. 

A hard link should have the property that changes to either of the linked files are 
reflected in both files. When a hard link is made to a file, the attributes for the 
file should have a value for "nlink" that is one greater than the value before the 
link. 

Note: possibly non-idempotent operation. 

struct symlinkargs { 
diropargs from; 
path to; 
sattr attributes; 

} ; 

stat 
NFSPROC_SYMLINK(symlinkargs) = 13; 

Creates the file "from.name" with ftype NFLNK in the directory given by 
"from.dir". The new file contains the pathname "to" and has initial attributes 
given by "attributes". If the return value is NFS_OK, a link was created. Any 
other return value indicates an error, and the link was not created. 

A symbolic link is a pointer to another file. The name given in "to" is not inter­
preted by the seiver, only stored in the newly created file. When the client refer­
ences a file that is a symbolic link, the contents of the symbolic link are normally 
transparently reinterpreted as a pathname to substitute. A READ LINK operation 
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returns the data to the client for inteipretation. 

Note: On UNIX servers the attributes are never used, since symbolic links always 
have mode 0777. 

diropres 
NFSPROC MKDIR (createargs) = 14; 

The new directory "where.name" is created in the directory given by "where.dir". 
The initial attributes of the new directory are given by "attributes". A reply 
"status" ofNFS_OK indicates that the new directory was created, and reply "file" 
and reply "attributes" are its file handle and attributes. Any other reply "status" 
means that the operation failed and no directory was created. 

Note: possibly non-idempotent operation. 

stat 
NFSPROC_RMDIR(diropargs) = 15; 

The existing empty directory "name" in the directory given by "dir" is removed. 
If the reply is NFS_OK, the directory was removed. 

Note: possibly non-idempotent operation. 

struct readdirargs { 
fhandle dir; 
nfscookie cookie; 
unsigned count; 

} ; 

struct entry 
unsigned fileid; 
filename name; 
nfscookie cookie; 
entry *nextentry; 

} ; 

union readdirres switch (stat status) { 
case NFS OK: 

} ; 

struct { 
entry *entries; 
bool eof; 

readdirok; 
default: 

void; 

readdirres 
NFSPROC READDIR (readdirargs) = 16; 

Returns a variable number of directory entries, with a total size ofup to "count" 
bytes, from the directory given by "dir". If the returned value of "status" is 
NF s _ OK, then it is followed by a variable number of "entry"s. Each "entry" con­
tains a "fileid" which consists of a unique number to identify the file within a 
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filesystem, the "name" of the file, and a "cookie" which is an opaque pointer to 
the next entry in the directory. The cookie is used in the next READDIR call to 
get more entries starting at a given point in the directory. The special cookie 
zero (all bits zero) can be used to get the entries starting at the beginning of the 
directory. The "fileid" field should be the same number as the "fileid" in the the 
attributes of the file. (See the Basic Data Types section.) The "eof' flag has a 
value of TRUE if there are no more entries in the directory. 

union statfsres (stat status) { 
case NFS OK: 

} ; 

struct { 
unsigned tsize; 
unsigned bsize; 
unsigned blocks; 
unsigned bfree; 
unsigned bavail; 

info; 
default: 

void; 

statfsres 
NFSPROC_STATFS(fhandle) = 17; 

n 

If the reply "status" is NF s _ OK, then the reply liinfo" gives the attributes for the ~ 
filesystem that contains file referred to by the input fhandle. The attribute fields 1, / 

contain the following values: 

tsize: 
The optimum transfer size of the server in bytes. This is the number of bytes 
the server would like to have in the data part of READ and WRITE requests. 

bsize: 
The block size in bytes of the filesystem. 

blocks: 
The total number of "bsize" blocks on the filesystem. 

bfree: 
The number of free "bsize" blocks on the filesystem. 

bavail: 
The number of "bsize" blocks available to non-privileged users. 

Note: This call does not work well if a filesystem has variable size blocks. 

The NFS protocol is designed to be operating system independent, but since this 
version was designed in a UNIX environment, many operations have semantics 
similar to the operations of the UNIX file system. This section discusses some of 
the implementation-specific semantic issues. 
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The NFS protocol is designed to allow servers to be as simple and general as pos­
sible. Sometimes the simplicity of the server can be a problem, if the client 
wants to implement complicated filesystem semantics. 

For example, some operating systems allow removal of open files. A process can 
open a file and, while it is open, remove it from the directory. The file can be 
read and written as long as the process keeps it open, even though the file has no 
name in the filesystem. It is impossible for a stateless server to implement these 
semantics. The client can do some tricks such as renaming the file on remove, 
and only removing it on close. We believe that the server provides enough func­
tionality to implement most file system semantics on the client. 

Every NFS client can also potentially be a server, and remote and local mounted 
filesystems can be freely intermixed. This leads to some interesting problems 
when a client travels down the directory tree of a remote filesystem and reaches 
the mount point on the server for another remote filesystem. Allowing the server 
to follow the second remote mount would require loop detection, server lookup, 
and user revalidation. Instead, we decided not to let clients cross a server's 
mount point. When a client does a LOOKUP on a directory on which the server 
has mounted a filesystem, the client sees the underlying directory instead of the 
mounted directory. A client can do remote mounts that match the server's mount 
points to maintain the server's view. 

There are a few complications to the rule that pathnames are always parsed on 
the client. For example, symbolic links could have different interpretations on 
different clients. Another common problem for non-UNIX implementations is 
the special interpretation of the pathname 11 

.. 
11 to mean the parent of a given direc­

tory. The next revision of the protocol uses an explicit flag to indicate the parent 
instead. 

The NFS protocol, strictly speaking, does not define the permission checking 
used by servers. However, it is expected that a server will do normal operating 
system permission checking using AUTH _ UNIX style authentication as the basis 
of its protection mechanism. The server gets the client's effective 11uid11

, effec­
tive II gid 11

, and groups on each call and uses them to check permission. There are 
various problems with this method that can been resolved in interesting ways. 

Using 11uid11 and 11gid11 implies that the client and server share the same 11uid11 list. 
Every server and client pair must have the same mapping from user to 11uid II and 
from group to II gid11

• Since every client can also be a server, this tends to imply 
that the whole network shares the same 11uid/gid11 space. AUTH _DES (and the 
next revision of the NFS protocol) uses string names instead of numbers, but 
there are still complex problems to be solved. 

Another problem arises due to the usually stateful open operation. Most operat­
ing systems check permission at open time, and then check that the file is open 
on each read and write request. With stateless servers, the server has no idea that 
the file is open and must do permission checking on each read and write call. On 
a local filesystem, a user can open a file and then change the permissions so that 
no one is allowed to touch it, but will still be able to write to the file because it is 

•\sun 
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open. On a remote filesystem, by contrast, the write would fail. To get around 
this problem, the server's pennission checking algorithm should allow the owner 
of a file to access it regardless of the pennission setting. 

A similar problem has to do with paging in from a file over the network. The 
operating system usually checks for execute permission before opening a file for 
demand paging, and then reads blocks from the open file. The file may not have 
read permission, but after it is opened it doesn't matter. An NFS server can not 
tell the difference between a nonnal file read and a demand page-in read. To 
make this work, the server allows reading of files if the "uid" given in the call has 
execute or read permission on the file. 

In most operating systems, a particular user ( on the user ID zero) has access to all 
files no matter what permission and ownership they have. This "super-user" per­
mission may not be allowed on the server, since anyone who can become super­
user on their workstation could gain access to all remote files. The UNIX server 
by default maps user id O to -2 before doing its access checking. This works 
except for NFS root filesystems, where super-user access cannot be avoided. 

Various file system parameters and options should be set at mount time. The 
mount protocol is described in the appendix below. For example, "Soft" mounts 
as well as "Hard" mounts are usually both provided. Soft mounted file systems 
return errors when RPC operations fail ( after a given number of optional 
retransmissions), while hard mounted file systems continue to retransmit forever. 
Clients and servers may need to keep caches of recent operations to help avoid 
problems with non-idempotent operations. 

The mount protocol is separate from, but related to, the NFS protocol. It pro­
vides operating system specific services to get the NFS off the ground -- looking 
up server path names, validating user identity, and checking access permissions. 
Clients use the mount protocol to get the first file handle, which allows them 
entry into a remote filesystem. 

The mount protocol is kept separate from the NFS protocol to make it easy to 
plug in new access checking and validation methods without changing the NFS 
server protocol. 

Notice that the protocol definition implies stateful servers because the server 
maintains a list of client's mount requests. The mount list infonnation is not crit­
ical for the correct functioning of either the client or the server. It is intended for 
advisory use only, for example, to warn possible clients when a server is going 
down. 

Version one of the mount protocol is used with version two of the NFS protocol. 
The only connecting point is the f handle structure, which is the same for both 
protocols. 
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Authentication 
The mount service uses AUTH _ UNIX and AUTH _ DES style authentication 
only. 

Transport Protocols 
The mountservice is currently supported on UDP/IP only. 

Port Number 
Consult the server's portmapper, described in the Remote Procedure Calls: 
Protocol Specification, to find the port number on which the mount service 
is registered. 

These are the sizes, given in de~imal bytes, of various XDR structures used in the 
protocol: 

I* The maximum number of bytes in a pathname argument * I 
const MNTPATHLEN = 1024; 

I* The maximum number of bytes in a name argument * I 
const MNTNAMLEN = 255; 

I * The size in bytes ofthe opaque file handle * I 
const FHSIZE = 32; 

This section presents the data types used by the mount protocol. In many cases 
they are similar to the types used in NFS. 

typedef opaque fhandle[FHSIZE]; 

The type £handle is the file handle that the seiver passes to the client. All file 
operations are done using file handles to refer to a file or directory. The file han­
dle can contain whatever infotmation the server needs to distinguish an indivi­
dual file. 

This is the same as the "thandle" XDR definition in version 2 of the NFS proto­
col; see Basic Data Types in the definition of the NFS protocol, above. 

union fhstatus switch (unsigned status) { 
case 0: 

} ; 

fhandle directory; 
default: 

void; 

The type fhstatus is a union. If a "status" of zero is returned, the call com­
pleted successfully, and a file handle for the "directory" follows. A non-zero 
status indicates some sort of error. In this case the status is a UNIX error 
number. 

typedef string dirpath<MNTPATHLEN>; 

The type dirpa th is a seiver pathname of a directory. 
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typedef string name<MNTNAMLEN>; 

The type name is an arbitrary string used for various names. 

The following sections define the RPC procedures supplied by a mount server. 

I* 
* Protocol description for the mount program 
*I 

program MOUNTPROG 
I* 
* Version 1 of the mount protocol used with 
* version 2 of the NFS protocol. 
*I 

version MOUNTVERS 
void MOUNTPROC_NULL(void) = 0; 
fhstatus MOUNTPROC_MNT(dirpath) = 1; 
mountlist MOUNTPROC_DUMP(void) = 2; 
void MOUNTPROC_UMNT(dirpath) = 3; 
void MOUNTPROC_UMNTALL(void) = 4; 
exportlist MOUNTPROC_EXPORT(void) 5; 

} = 1; 
100005; 

void 
MNTPROC_NULL(void) = 0; 

This procedure does no work. It is made available in all RPC services to allow 
server response testing and timing. 

fhstatus 
MNTPROC_MNT(dirpath) = 1; 

If the reply "status" is 0, then the reply "directory" contains the file handle for the 
directory "dirname". This file handle may be used in the NFS protocol. This 
procedure also adds a new entry to the mount list for this client mounting "dir­
name". 

struct *mountlist { 

} ; 

name hostname; 
dirpath directory; 
mountlist nextentry; 

mount list 
MNTPROC_DUMP(void) = .2; 

Returns the list of remote mounted filesystems. The "mountlist" contains one 
entry for each "hostname" and "directory" pair. 
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void 
MNTPROC_UMNT(dirpath) = 3; 

Removes the mount list entry for the input "ditpath". 

void 
MNTPROC_UMNTALL(void) = 4; 

Removes all of the mount list entries for this client. 

struct *groups { 
name grname; 
groups•grnext; 

} ; 

struct *exportlist { 
dirpath filesys; 
groups groups; 
exportlist next; 

} ; 

export list 
MNTPROC_EXPORT(void) = 5; 

Returns a variable number of export list entries. Each entry contains a filesystem 
name and a list of groups that are allowed to import it. The filesystem name is in 
"filesys", and the group name is in the list "groups". 

Note: The exportlist should contain more information about the status of the 
filesystem, such as a read-only flag. 
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8 
A Socket-Based Interprocess 

Communications Tutorial 

This tutorial is intended as the first introduction to the socket-based interprocess 
communication (IPC) mechanisms. SunOS provides all these IPC mechanisms, 
as well as the STREAMS and remote procedure call (RPC) mechanisms. · 
STREAMS - not to be confused with the sorts of "streams" (sockets-based data 
streams) discussed here- are introduced in the Introduction to STREAMS sec­
tion of the Writing Device Drivers. Information about RPC - now the preferred 
foundation for Sun network applications - can be found in the Remote Pro­
cedure Call Programming Guide section of this manual. 

Various approaches are possible within the socket paradigm; this manual 
discusses them, and then illustrates them by way a series of example programs. 
These programs demonstrate in a simple way the use of pipes, socketpairs, and 
the use of datagram socket and stream socket communication. 

Unlike RPC-based networking (which presumes XDR) socket-based /PC does not 
contain a mechanism/or ensuring architecture independent code. Socket-based 
programs must make judicious use of the host-to-network byte-order conversion 
macros described in byteorder ( 3N) if they are to be portable. 

The intent of this chapter is to present a few simple example programs, not to 
describe the socket-based networking facilities in full. For more infonnation, see 
the next chapter, An Advanced Socket-Based Interprocess Communications 
Tutorial. 

Facilities for interprocess communication (IPC) and networking were a major 
addition to the UNIX system - first introduced in 4.2BSD and available in all 
versions of SunOS. These facilities required major additions and some changes 
to the system interface. The basic idea of this interface is to make IPC similar to 
file 1/0. In the UNIX system a process has a set of 1/0 descriptors, from which 
one reads and to which one writes. Descriptors may refer to normal files, to dev­
ices (including terminals), or to communication channels. The use of a descrip­
tor has three phases: creation, use for reading and writing, and destruction. By 
using descriptors to write files, rather than simply naming the target file in the 
write call, one gains a surprising amount of flexibility. Often, the program that 
creates a descriptor will be different from the program that uses the descriptor. 
For example the shell can create a descriptor for the output of the 1 s command 
that will cause the listing to appear in a file rather than on a tenninal. Pipes are 
another fonn of descriptor that have been used in the UNIX system for some 
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time. Pipes allow one-way data transmission from one process to another, the 
two processes and the pipe must be set up by a common ancestor. 10 

The use of descriptors is not the only communication interface provided by the 
UNIX system. The signal mechanism sends a tiny amount of information from 
one process to another. The signaled process receives only the signal type, not 
the identity of the sender, and the number of possible signals is small. The signal 
semantics limit the flexibility of the signaling mechanism as a means of interpro­
cess communication. 

The identification of IPC with 1/0 is quite longstanding in the UNIX system and 
has proved quite successful. At first, however, IPC was limited to processes 
communicating within a single machine. With 4.2BSD (and consequently with 
Sun0S) this expanded to include IPC between machines. This expansion has 
necessitated some change in the way that descriptors are created. Additionally, 
new possibilities for the meaning of read and write have been admitted. Origi­
nally the meanings, or semantics, of these terms were fairly simple. When you 
wrote something it was delivered. When you read something, you were blocked 
until the data arrived. Other possibilities exist, however. One can write without 
full assurance of delivery if one can check later to catch occasional failures. 
Messages can be kept as discrete units or merged into a stream. One can ask to 
read, but insist on not waiting if nothing is immediately available. These new 
possibilities have been implemented in 4.3BSD and incorporated in SunOS. 

Socket-based IPC offers several choices. This chapter presents simple examples n 
that illustrate some of them. The reader is presumed to be familiar with the C \ J 

programming language, but not necessarily with UNIX system calls or processes 
and interprocess communication. The chapter reviews the notion of a process 
and the types of communication that are supported by the socket abstraction. A 
series of examples are presented that create processes that communicate with one 
another. The programs show different ways of establishing channels of commun-
ication. Finally, the calls that actually transfer data are reviewed. To clearly 
present how communication can take place, the example programs have been 
cleared of anything that might be construed as useful work. They can serve as 
models for the programmer trying to construct programs that are composed of 
cooperating processes. 

A process can be thought of as a single line of control in a program. Programs 
can have a point where control splits into two independent lines, an action called 
forking. In the UNIX system these lines can never join again. A call to the sys­
tem routine fork (} causes a process to split in this way. The result of this call 
is that two independent processes will be running, executing exactly the same 
code. Memory values will be the same for all values set before the fork, but, sub­
sequently, each version will be able to change only the value of its own copy of 
each variable. Initially, the only difference between the two will be the value 
returned by fork(). The parent will receive a process id for the child, the child 
will receive a zero. Calls to fork (} typically precede, or are included in, an if-

10 This common-ancestry restriction has been relaxed in named pipes (FIFOs ), which come from the AT&T n 
line of UNIX-system development. , , I 

Revision A, of 9 May 1988 



u 

8.3. Pipes 

(_) 

Figure 8-1 

u 

Chapter 8 - A Socket-Based Interprocess Communications Tutorial 193 

statement. 

A process views the rest of the system through a private table of descriptors. The 
descriptors can represent open files or sockets (sockets are the endpoints of com­
munications channels, as discussed below). Descriptors are referred to by their 
index numbers in the table. The first three descriptors are often known by special 
names, stdin, stdout, and stderr. These are the standard input, output, and error. 
When a process forks, its descriptor table is copied to the child. Thus, if the 
parent's standard input is being taken from a tenninal ( devices are also treated as 
files in the UNIX system), the child's input will be taken from the same tenninal. 
Whoever reads first will get the input. If, before forking, the parent changes its 
standard input so that it is reading from a new file, the child will take its input 
from the new file. It is also possible to take input from a socket, rather than from 
a file. 

Most users of the UNIX system know that they can pipe the output of a program 
progl, to the input of another, prog2, by typing the command 

example# progl I prog2 

This is called "piping" the output of one program to another because the mechan­
ism used to transfer the output is called a pipe. When the user types a command, 
the command is read by the shell, which decides how to execute it. If the com­
mand is simple, for example, 

example# progl 

the shell forks a process, which executes the program, progl, and then dies. 
The shell waits for this tennination and then prompts for the next command. If 
the command is a compound command, 

exam~le# progl I prog2 

the shell creates two processes connected by a pipe. One process runs the pro­
gram, progl, the other runs prog2, The pipe is an I/0 mechanism with two 
ends. Data that is written into one end can be read from the other. 

Since a program specifies its input and output only by the descriptor table 
indices, the input source and output destination can be changed without changing 
the text of the program. It is in this way that the shell is able to set up pipes. 
Before executing progl, the process can close whatever is at stdout and replace 
it with one end of a pipe. Similarly, the process that will execute prog2 can 
substitute the opposite end of the pipe for stdin. 

Now let's examine a program that creates a pipe for communication between its 
child and itself. A pipe is created by a parent process, which then forks. When a 
process forks, the parent's descriptor table is copied into the child's. 

Use of a Pipe 

#include <stdio.h> 

#define DATA "Bright star, would I .. " 
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I* 
* This program creates a pipe, then forks. The child communicates to the 
* parent over the pipe. Notice that a pipe is a one-way communications 
* device. I can write to the output socket (sockets [ 1], the second 
* socket of the array returned by pipe) and readfrom the input 
* socket (sockets [ 0] ), but not vice versa. 
*I 

main() 
{ 

int sockets[2], child; 

I* Create a pipe * I 
if (pipe(sockets) < 0) { 

perror("opening stream socket pair"); 
exit(lO); 

if ((child= fork()) -1) 
perror("fork"); 

else if (child) { 
char buf[1024]; 

I* This is still the parent. It reads the child's message. * I 
close(sockets[l]); 
if (read(sockets[O], buf, 1024) < 0) 

perror("reading message"); 
printf("-->%s\n", buf); 
close(sockets[O]); 

else { 
I* This is the child. It writes a message to its parent. * I 
close(sockets[O]); 
if (write(sockets[l], DATA, sizeof(DATA)) < 0) 

perror("writing message"); 
close(sockets[l]); 

exit(O); 

Here the parent process makes a call to the system routine pipeQ. This routine 
creates a pipe and places descriptors for the sockets for the two ends of the pipe 
in the process's descriptor table. pipeQ. is passed an array into which it places 
the index numbers of the sockets it creates. The two ends are not equivalent. 
The socket whose index is returned in the first word of the array is opened for 
reading only, while the socket in the second word is opened only for writing. 
This corresponds to the fact that the standard input is the first descriptor of a 
process's descriptor table and the standard output is the second. After creating 
the pipe, the parent creates the child with which it will share the pipe by calling 
forkO. 
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The following figure illustrates the effect of such a call to for kQ. The parent 
process's descriptor table points to both ends of the pipe. After the fork, both 
parent's and child's descriptor tables point to the pipe. The child can then use 
the pipe to send a message to the parent. 

Sharing a Pipe between Parent and Child 

Parent 

c ) ~ pipe ) 

Parent Child 

Q Q 

c __ );......__.....;(~ __ ____.p~ip:;.;;:;e;......._ ___ ) 

Just what is a pipe? It is a one-way communication mechanism, with one end 
opened for reading and the other end for writing. Therefore, parent and child 
need to agree on which way to tum the pipe, from parent to child or the other 
way around. Using the same pipe for communication both from parent to child 
and from child to parent would be possible (since both processes have references 
to both ends), but very complicated. If the parent and child are to have a two­
way conversation, the parent creates two pipes, one for use in each direction. (In 
accordance with their plans, both parent and child in the example above close the 
socket that they will not use. It is not required that unused descriptors be closed, 
but it is good practice.) A pipe is also a stream communication mechanism; that 
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8.4. Socketpairs 

Figure 8-3 

is, all messages sent through the pipe are placed in order and reliably delivered. 
When the reader asks for a certain number of bytes from this stream, it is given 
as many bytes as are available, up to the amount of the request. Note that these 
bytes may have come from the same call to write ( ) or from several calls to 
write ( ) that were concatenated. 

SunOS provides a slight generalization of pipes. A pipe is now a pair of con­
nected sockets for one-way stream communication. One may obtain a pair of 
connected sockets for two-way stream communication by calling the routine 
socketpairQ. The program in figure 8-3, below, calls socket pair () to 
create such a connection. The program uses the link for communication in both 
directions. Since socketpairs are an extension of pipes, their use resembles that 
of pipes. Figure 8-4 illustrates the result of a fork following a call to socket­
pair(). 

socket pair () takes as arguments a specification of a communication 
domain, a style of communication, and a protocol. These are the parameters 
shown in the example. Domains and protocols will be discussed in the next sec­
tion. Briefly, a domain specifies a socket name space and implies a set of con­
ventions for manipulating socket names. Currently, socketpairs have only been 
implemented for the UNIX domain. The UNIX domain uses UNIX path names 
for naming sockets. It only allows communication between sockets on the same 
machine. 

n 
' / 

Note that the header files <sys/ socket. h> and <sys/types. h>. are n 
required in this program. The constants AF_UNIX and SOCK_STREAM are 
defined in <sys/ socket. h>, which in tum requires the file 
<sys/types. h> for some of its definitions. 

Use of a Socketpair 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <stdio.h> 

#define DATAl "In Xanadu, did Kublai Khan .. 
#define DATA2 "A stately pleasure dome decree 

!* 
* This program creates a pair of connected sockets then forks and 

" 
" 

* communicates over them. This is very similar to communication with pipes, 
* however, socketpairs are two-way communications objects. Therefore I can 
* send messages in both directions. 
*! 

main () 
{ 

int sockets[2], child; 
char buf[1024]; 

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) < 0) { 
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perror("opening stream socket pair"); 
exit(l); 

if ((child= fork()) == -1) 
perror("fork"); 

else if ( child) { / * This is the parent * I 
close(sockets[OJ); 
if (read(sockets[l], buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
if (write(sockets[l], DATA2, sizeof(DATA2)) < 0) 

perror("writing stream message"); 
close(sockets[l]); 

else { / * This is the child * I 
close(sockets[l]); 
if (write(sockets[O], DATAl, sizeof(DATAl)) < 0) 

perror("writing stream message"); 
if (read(sockets[O], buf, 1024, 0) < 0) 

perror("reading stream message"); 
printf("-->%s\n", buf); 
close(sockets[O]); 

exit(O); 
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Figure 8-4 Sharing a Socketpair between Parent and Child 

8.5. Domains and Protocols 

Parent 

0--~ 0 
Parent Child 

Q Q 

0--~ 0 
Pipes and socketpairs are a simple solution for communicating between a parent 
and child or between child processes. What if we wanted to communicate 
between processes that have no common ancestor. Neither standard UNIX pipes 
nor socketpairs are the answer here, since both mechanisms require a common 
ancestor to set up the communication. We would like to have two processes 
separately create sockets and then have messages sent between them. This is 
often the case when providing or using a service in the system. This is also the 
case when the communicating processes are on separate machines. 

n 

() 

Sockets created by different programs use names to refer to one another, names 
generally must be translated into addresses for use. The space from which an 
address is specified by a domain. There are several such domains for sockets. 
Two that will be used in the examples here are the UNIX domain (or AF_ UNIX, 
for Address Format UNIX) and the Internet domain (or AF_ INET). In the UNIX n 
domain, a socket is given a path name within the file system name space. A file ·... -
system node is created for the socket and other processes may then refer to it by 
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giving its pathname. UNIX domain names, thus, allow communication between 
any two processes that reside on the same machine and that are able to access the 
socket pathnames. The Internet domain is the UNIX implementation of the 
DARPA Internet standard protocols IP /TCP /UDP. Addresses in the Internet 
domain consist of a machine network address and an identifying number, called a 
port. Internet domain names allow communication between separate machines. 

Communication follows some particular "style." Currently, communication is 
either through a stream socket or by datagram. Stream communication implies a 
connection. The communication is reliable, error-free, and, as in pipes, no mes­
sage boundaries are kept. Reading from a stream may result in reading the data 
sent from one or several calls to write () or only part of the data from a single 
call, if there is not enough room for the entire message, or if not all the data from 
a large message has been transferred. The protocol implementing such a style 
will retransmit messages received with errors. It will also return error messages 
if one tries to send a message after the connection has been broken. Datagram 
communication does not use connections. Each message is addressed individu­
ally. If the address is correct, it will generally be received, although this is not 
guaranteed. Often datagrams are used for requests that require a response from 
the recipient. If no response arrives in a reasonable amount of time, the request 
is repeated. The individual datagrams will be kept separate when they are read, 
that is, message boundaries are preserved. 

The difference in perfonnance between the two styles of communication is gen­
erally less important than the difference in semantics. The perfonnance gain that 
one might find in using datagrams must be weighed against the increased com­
plexity of the program, which must now concern itself with lost or out of order 
messages. If lost messages may simply be ignored, the quantity of traffic may be 
a consideration. The expense of setting up a connection is best justified by fre­
quent use of the connection. Since the perfonnance of a protocol changes as it is 
tuned for different situations, it is best to seek the most up-to-date infonnation 
when making choices for a program in which performance is crucial. 

A protocol is a set of rules, data fonnats, and conventions that regulate the 
transfer of data between participants in the communication. In general, there is 
one protocol for each socket type (stream, datagram, etc.) within each domain. 
The code that implements a protocol keeps track of the names that are bound to 
sockets, sets up connections, and transfers data between sockets, perhaps sending 
the data across a network. This code also keeps track of the names that are 
bound to sockets. It is possible for several protocols, differing only in low level 
details, to implement the same style of communication within a particular 
domain. Although it is possible to select which protocol should be used, for 
nearly all uses it is sufficient to request the default protocol. This has been done 
in all of the example programs. 

One specifies the domain, style and protocol of a socket when it is created. For 
example, in figure 8-6 the call to socket () causes the creation of a datagram 
socket with the default protocol in the UNIX domain. 

•\sun ~ microsystems 
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8.6. Datagrams in the 
UNIX Domain 

Figure 8-5 

Let us now look at two programs that create sockets separately. The programs in 
Figures 8-5 and 8-6 use datagram communication rather than a stream. The 
structure used to name UNIX domain sockets is defined in the file 
<sys/un. h>. The definition has also been included in the example for clarity. 

Each program creates a socket with a call to socket 0. These sockets are in the 
UNIX domain. Once a name has been decided upon it is attached to a socket by 
the system call bindO. The program in Figure 8-5 uses the name "socket", 
which it binds to its socket. This name will appear in the working directory of 
the program. The routines in Figure 8-6, use the socket only for sending mes­
sages. They do not create a name for the socket because no other process has to 
refer to it. 

Reading UNIX Domain Datagrams 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

I* 
* The include.file <sys/un .h> defines sockaddr_un asfollows: 
*struct sockaddr_un { 
* 

* 
* } ; 
*I 

short 
char 

sun_family; 
sun_path[108]; 

#define NAME "socket" 

I* 
* This program creates a UNIX domain datagram socket, binds a name to it, 
* then reads from the socket. 
*I 
main() 
{ 

int sock, length; 
struct sockaddr un name; 
char buf[1024]; 

I* Create socket from which to read. * I 
sock= socket(AF_UNIX, SOCK_DGRAM, O); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit(l); 

I * Create name . * I 
name.sun_family = AF_UNIX; 
strcpy(name.sun_path, NAME); 
if (bind(sock, (struct sockaddr *)&name, 

sizeof(struct sockaddr_un)) < 0) { 
perror("binding name to datagram socket"); 
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exit(l); 

printf("socket -->%s\n", NAME); 
I* Readfrom the socket. * I 
if (read(sock, buf, 1024) < 0) 

perror("receiving datagram packet"); 
printf("-->%s\n", buf); 
close(sock); 
unlink(NAME); 
exit(O); 

Note that, in the call to bind () above, the &name parameter is cast to a 
( struct sockaddr *). In writing networking code, one invariably has to 
cast such address arguments to network-related system calls, since the system­
call routines must be able to handle a variety of address formats, yet each indivi­
dual call will use a specialization of the general format. It is poor programming 
style to omit these casts, a fact which lint will be only to glad to remind you 
of. 

Sending a UNIX Domain Datagrams 
r 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

#define DATA "The sea is calm, the tide is full .. 

I* 
* Here I send a datagram to a receiver whose name I get from the command 
* line arguments. The form of the command line is udgramsend pathname. 
*I 

main(argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr_un name; 

I* Create socket on which to send. * I 
sock= socket(AF_UNIX, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit(l); 

I* Construct name of socket to send to . * I 
name.sun_family = AF_UNIX; 
strcpy(name.sun_path, argv[l]); 
I* Send message . * I 

" 
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if (sendto(sock, DATA, sizeof(DATA), 0, 
(struct sockaddr *)&name, 
sizeof(struct sockaddr_un)) < 0) { 

perror("sending datagram message"); 

close(sock); 
exit(O); 

Names in the UNIX domain are path names. Like file path names they may be 
either absolute (e.g. "/dev/imaginary") or relative (e.g. "socket"). Because these 
names are used to allow processes to rendezvous, relative path names can pose 
difficulties and should be used with care. When a name is bound into the name 
space, a file (vnode) is allocated in the file system. If the vnode is not deallo­
cated, the name will continue to exist even after the bound socket is closed. This 
can cause subsequent runs of a program to find that a name is unavailable, and 
can cause directories to fill up with these objects. The names are removed by 
calling unlink () or using the rm ( 1) command. Names in the UNIX domain 
are only used for rendezvous. They are not used for message delivery once a 
connection is established. Therefore, in contrast with the Internet domain, 
unbound sockets need not be (and are not) automatically given addresses when 
they are connected. 

n 

There is no established means of communicating names to interested parties. In n 
the example, the program in Figure 8-6 gets the name of the socket to which it 
will send its message through its command line arguments. Once a line of com­
munication has been created, one can send the names of additional, perhaps new, 
sockets over the link. 
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Reading Internet Domain Datagrams 
r 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 

I* 
* The include file <netinet/ in. h> defines sockaddr_in as follows: 
*struct sockaddr_in { 
* 
* 
* 

* 
* } ; 
* 

short sin_family; 
u_short sin_port; 
struct in_addr sin_addr; 
char sin_zero[8]; 

* This program creates a datagram socket, binds a name to it, then reads 
* from the socket. 
*I 
main() 
{ 

int sock, length; 
struct sockaddr in name; 
char buf[1024]; 

I* Create socket from which to read. * I 
sock= socket(AF_INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

perror("opening datagram socket"); 
exit(l); 

I* Create name with wildcards. * I 
name.sin_family = AF_INET; 
name.sin_addr.s_addr = INADDR_ANY; 
name.sin_port = O; 
if (bind(sock, (struct sockaddr *)&name, 

sizeof name) < 0) { 
perror("binding datagram socket"); 
exit(l); 

I* Find assigned port value and print it out. * I 
length= sizeof(name); 
if (getsockname(sock, (struct sockaddr *)&name, 

&length) < 0) { 
perror("getting socket name"); 
exit(l); 

printf("Socket port #%d\n", ntohs(name.sin_port)); 
I* Read from the socket . * I 
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Figure 8-8 

if (read(sock, buf, 1024) < 0) 
perror("receiving datagram packet"); 

printf("-->%s\n", buf); 
close(sock); 
exit(O); 

The examples in Figure 8-7 and 8-8 are very close to the previous examples 
except that the socket is in the Internet domain. The structure of Internet domain 
addresses is defined in the file <netinet/ in. h>. Internet addresses specify a 
host address (a 32-bit number) and a delivery slot, or port, on that machine. 
These ports are managed by the system routines that implement a particular pro­
tocol. Unlike UNIX domain names, Internet socket names are not entered into 
the file system and, therefore, they do not have to be unlinked after the socket has 
been closed. When a message must be sent between machines it is sent to the 
protocol routine on the destination machine, which intetprets the address to 
determine to which socket the message should be delivered. Several different 
protocols may be active on the same machine, but, in general, they will not com­
municate with one another. As a result, different protocols are allowed to use the 
same port numbers. Thus, implicitly, an Internet address is a triple including a 
protocol as well as the port and machine address. An association is a temporary 
or permanent specification of a pair of communicating sockets. An association is 

n 

thus identified by the tuple <protocol, local machine address, local port, remote r-'\ 
machine address, remote port>. An association may be transient when using 1

\ ) 

datagram sockets; the association actually exists during a send () operation. 

Sending an Internet Domain Datagram 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdio.h> 

#define DATA "The sea is calm, the tide is full .. " 

I* 
* Here I send a datagram to a receiver whose name I get from the command 
* line arguments. The form of the command line is: 
*dgramsend hostname portnumber 
*! 

main(argc, argv) 
int argc; 
char *argv[]; 

int sock; 
struct sockaddr_in name; 
struct hostent *hp, *gethostbyname(); 
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I* Create socket on which to send. * I 
sock= socket(AF_INET, SOCK_DGRAM, 0); 
if (sock < 0) { 

I* 

perror("opening datagram socket"); 
exit(l); 

* Construct name, with no wildcards, of the socket to send to. 
* gethostbyname returns a structure including the network address 
* of the specified host. The port number is taken from the command 
* line. 
*I 
hp= gethostbyname(argv[l]); 
if (hp== 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l]); 
exit(2); 

bcopy((char *)hp->h_addr, (char *)&name.sin_addr, 
hp->h_length); 

name.sin_family = AF_INET; 
name.sin_port = htons(atoi(argv[2])); 
I* Send message . * I 
if (sendto(sock, DATA, sizeof DATA, 0, 

(struct sockaddr *)&name, sizeof name) < 0) 
perror("sending datagram message"); 

close(sock); 
exit(O); 

The protocol for a socket is chosen when the socket is created. The local 
machine address for a socket can be any valid network address of the machine, if 
it has more than one, or it can be the wildcard value INADDR _ANY. The wild­
card value is used in the program in Figure 8-7. If a machine has several network 
addresses, it is likely that messages sent to any of the addresses should be 
deliverable to a socket. This will be the case if the wildcard value has been 
chosen. Note that even if the wildcard value is chosen, a program sending mes­
sages to the named socket must specify a valid network address. One can be wil­
ling to receive from "anywhere," but one cannot send a message "anywhere." 
The program in Figure 8-8 is given the destination host name as a command line 
argument. To detennine a network address to which it can send the message, it 
looks up the host address by the call to gethostbyhameQ. The returned struc­
ture includes the host's network address, which is copied into the structure speci­
fying the destination of the message. 

The port number can be thought of as the number of a mailbox, into which the 
protocol places one's messages. Certain daemons, offering certain advertised 
seivices, have reseived or "well-known" port numbers. These fall in the range 
from 1 to 1023. Higher numbers are available to general users. Only seivers 
need to ask for a particular number. The system will assign an unused port 
number when an address is bound to a socket. This may happen when an explicit 

· bind {) call is made with a port number of 0, or when a connect {) or 
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8.8. Connections 

send () is perfonned on an unbound socket. Note that port numbers are not 
automatically reported back to the user. After calling bindQ, asking for port 0, 
one may call getsockname () to discover what port was actually assigned. 
The routine getsockname () will not work for names in the UNIX domain. 

The fonnat of the socket address is specified in part by standards within the Inter­
net domain. The specification includes the order of the bytes in the address. 
Because machines differ in the internal representation they ordinarily use to 
represent integers, printing out the port number as returned by getsockname may 
result in a misinterpretation. To print out the number, it is necessary to use the 
routine ntohs () (for network to host: short) to convert the number from the 
network representation to the host's representation. On some machines, such as 
68000-based machines, this is a null operation. On others, such as VAXes, this 
results in a swapping of bytes. Another routine exists to convert a short integer 
from the host format to the network fonnat, called ht on s (); similar routines 
exist for long integers. For further infonnation, see byteorder ( 3) . 

To send data between stream sockets (having communication style 
SOCK_ s TREAM), the sockets must be connected. Figures 8-9 and 8-10 show 
two programs that create such a connection. The program in 8-9 is relatively 
simple. To initiate a connection, this program simply creates a stream socket, 
then calls connect 0, specifying the address of the socket to which it wishes its 
socket connected. Provided that the target socket exists and is prepared to handle 
a connection, connection will be complete, and the program can begin to send 
messages. Messages will be delivered in order without message boundaries, as 
with pipes. The connection is destroyed when either socket is closed (or soon 
thereafter). If a process persists in sending messages after the connection is 
closed, a SIGPIPE signal is sent to the process by the operating system. Unless 
explicit action is taken to handle the signal (see the signal (3) or 
sigvec ( 3) man pages) the process will terminate. 

Figure 8-9 Initiating an Internet Domain Stream Connection 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdio.h> 

#define DATA "Half a league, half a league .. " 

I* 
* This program creates a socket and initiates a connection with the socket 
* given in the command line. One message is sent over the connection and 
* then the socket is closed, ending the connection. The form of the command 
* line is: streamwrite hostname portnumber 
*I 

main(argc, argv) 
int argc; 
char *argv[]; 
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int sock; 
struct sockaddr in server; 
struct hostent *hp, *gethostbyname(); 
char buf[1024]; 

I* Create socket . * I 
sock= socket(AF_INET, SOCK_STREAM, 0); 
if ( sock < 0) { 

perror("opening stream socket"); 
exit(l); 

I* Connect socket using name specified by command line. * I 
server.sin_family = AF_INET; 
hp= gethostbyname(argv[l]); 
if (hp == 0) { 

fprintf(stderr, "%s: unknown hostO, argv[l]); 
exit(2); 

bcopy((char *)hp->h_addr, (char *)&server.sin_addr, 
hp->h_length); 

server.sin_port = htons(atoi(argv[2])); 

if (connect(sock, 
(struct sockaddr *)&server, sizeof server) < 0) { 

perror("connecting stream socket"); 
exit(l); 

if (write(sock, DATA, sizeof DATA) < 0) 
perror("writing on stream socket"); 

close(sock); 
exit(O); 

Forming a connection is asymmetrical; one process, such as the program in Fig­
ure 8-9 requests a connection with a particular socket, the other process accepts 
connection requests. Before a connection can be accepted a socket must be 
created and an address bound to it. This situation is illustrated in the top half of 
Figure 8-12. Process 2 has created a socket and bound a port number to it. Pro­
cess 1 has created an unnamed socket. The address bound to process 2 's socket 
is then made known to process 1 and, perhaps to several other potential commun­
icants as well. If there are several possible communicants, this one socket might 
receive several requests for connections. As a result, a new socket is created for 
each connection. This new socket is the endpoint for communication within this 
process for this connection. A connection may be destroyed by closing the · 
corresponding socket. 

The program in Figure 8-10 is a rather trivial example of a seiver. It creates a 
socket to which it binds a name, which it then advertises. (In this case it prints 
out the socket number.) The program then calls listen () for this socket 
Since several clients may attempt to connect more or less simultaneously, a 
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queue of pending connections is maintained in the system address space. 
listen () marks the socket as willing to accept connections and initializes the 
queue. When a connection is requested, it is listed in the queue. If the queue is 
full, an error status may be returned to the requester. The maximum length of 
this queue is specified by the second argument of listen(); the maximum 
length is limited by the system. Once the listen call has been completed, the pro­
gram enters an infinite loop. On each pass through the loop, a new connection is 
accepted and removed from the queue, and, hence, a new socket for the connec­
tion is created. The bottom half of Figure 8-12 shows the result of Process 1 con­
necting with the named socket of Process 2, and Process 2 accepting the connec­
tion. After the connection is created, the service, in this case printing out the 
messages, is perfonned and the connection socket closed. The accept () call 
will take a pending connection request from the queue if one is available, or 
block waiting for a request. Messages are read from the connection socket. 
Reads from an active connection will nonnally block until data is available. The 
number of bytes read is returned. When a connection is destroyed, the read call 
returns immediately. The number of bytes returned will be zero. 

The program in Figure 8-11 is a slight variation on the server in Figure 8-10. It 
avoids blocking when there are no pending connection requests by calling 
select () to check for pending requests before calling accept(). This stra­
tegy is useful when connections may be received on more than one socket, or 
when data may arrive on other connected sockets before another connection 
request. 

The programs in Figures 8-13 and 8-14 show a program using stream socket 
communication in the UNIX domain. Streams in the UNIX domain can be used 
for this sort of program in exactly the same way as Internet domain streams, 
except for the fonn of the names and the restriction of the connections to a 
machine. There are some differences, however, in the functionality of streams in 
the two domains, notably in the handling of out-of-band data (discussed briefly 
below). These differences are beyond the scope of this chapter. 

Figure 8-10 Accepting an Internet Domain Stream Connection 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdio.h> 
#define TRUE 1 

I* 
* This program creates a socket and then begins an infinite loop. Each time 
* through the loop it accepts a connection and prints out messages from it. 
* When the connection breaks, or a termination message comes through, the 
* program accepts a new connection. 
*I 

main() 
{ 
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int sock, length; 
struct sockaddr in server; 
int msgsock; 
char buf[l024]; 
int rval; 
inti; 

I* Create socket . * I 
sock= socket(AF_INET, SOCK STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

I* Name socket using wildcards. * I 
server.sin_family = AF_INET; 
server.sin_addr.s_addr = INADDR_ANY; 
server.sin_port = 0; 
if (bind(sock, (struct sockaddr *)&server, 

sizeof server) < 0) { 
perror("binding stream socket"); 
exit(l); 

I * Find out assigned port number and print it out. * I 
length= sizeof server; 
if (getsockname(sock, (struct sockaddr *)&server, 

&length) < 0) { 
perror("getting socket name"); 
exit(l); 

printf("Socket port :/f:%d\n", ntohs(server.sin_port)); 

I* Start accepting connections. * I 
listen(sock, 5); 
do { 

msgsock = accept(sock, 
(struct sockaddr *)O, (int *)0); 

if (msgsock == -1) 
perror("accept"); 

else do { 
bzero(buf, sizeof buf ); 
if ((rval = read(msgsock, buf, 1024)) < 0) 

perror("reading stream message"); 
i = O; 
if (rval == 0) 

printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval != O); 

close(msgsock); 
while (TRUE) ; 

!* 
* Since this program has an infinite loop, the socket "sock" is 
* never explicitly closed. However, all sockets will be closed 
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Figure 8-11 

* automatically when a process is killed or terminates normally. 
*! 
exit(O); 

Using select () to Check/or Pending Connections 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/time.h> 
#include <netinet/in.h> 
#include <netdb.h> 
#include <stdio.h> 
#define TRUE 1 

I* 
* This program uses select to check that someone is trying to connect 
* before calling accept. 
*I 

main() 
{ 

int sock, length; 
struct sockaddr in server; 
int msgsock; 
char buf[1024]; 
int rval; 
fd set ready; 
struct timeval to; 

I* Create socket . * I 
sock= socket(AF_INET, SOCK STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

I* Name socket using wildcards. * I 
server.sin_family = AF_INET; 
server.sin_addr.s_addr = INADDR_ANY; 
server.sin_port = O; 
if (bind(sock, (struct sockaddr *)&server, 

sizeof server) < 0) { 
perror("binding stream socket"); 
exit(l); 

I* Find out assigned port number and print it out. * I 
length= sizeof server; 
if (getsockname(sock, (struct sockaddr *)&server, 

&length) < 0) { 
perror("getting socket name"); 
exit(l); 
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printf("Socket port :/f:%d\n", ntohs(server.sin_port)); 

I* Start accepting connections. * I 
listen(sock, 5); 
do { 

FD_ZERO (&ready); 
FD_SET(sock, &ready); 
to.tv_sec = 5; 
if (select(sock + 1, &ready, (fd_set *)0, 

(fd_set *) 0, &to) < 0) { 
perror("select"); 
continue; 

if (FD_ISSET(sock, &ready)) { 
msgsock = accept(sock, (struct sockaddr *)O, 

(int *)0); 
if (msgsock == -1) 

perror("accept"); 
else do { 

bzero(buf, sizeof buf); 

211 

if ((rval = read(msgsock, buf, 1024)) < 0) 
perror("reading stream message"); 

else if (rval == 0) 
printf("Ending connection\n"); 

else 
printf("-->%s\n", buf); 

while (rval > 0); 
close(msgsock); 

else 
printf("Do something else\n"); 

while (TRUE) ; 
exit(O); 
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Figure 8-12 Establishing a Stream Connection 

Figure 8-13 

Process 1 

Q 

0 
Process 1 

Q 

Initiating a UNIX Domain Stream Connection 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

Process 2 

Q 

Process 2 

Q 

#define DATA "Half a league, half a league .. " 

I* 
* This program connects to the socket named in the command line and sends a 
* one line message to that socket. The form of the command line is: 
*ustreamwrite pathname 
*! 
main(argc, argv) 
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int argc; 
char *argv(]; 

int sock; 
struct sockaddr un server; 
char buf[1024]; 

I * Create socket . * I 
sock= socket(AF_UNIX, SOCK STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

I* Connect socket using name specified by command line . * I 
server.sun_family = AF_UNIX; 
strcpy(server.sun_path, argv[l]); 

if (connect(sock, (struct sockaddr *)&server, 
sizeof(struct sockaddr_un)) < 0) { 

close(sock); 
perror("connecting stream socket"); 
exit(l); 

if (write(sock, DATA, sizeof(DATA)) < 0) 
perror("writing on stream socket"); 

exit(O); 

Accepting a UNIX Domain Stream Connection 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <sys/un.h> 
#include <stdio.h> 

#define NAME "socket" 

I* 
* This program creates a socket in the UNIX domain and binds a name to it. 
* After printing the socket's name it begins a loop. Each time through the 
* loop it accepts a connection and prints out messages from it. When the 
* connection breaks, or a termination message comes through, the program 
* accepts a new connection. 
*I 
main() 
{ 

int sock, msgsock, rval; 
struct sockaddr un server; 
char buf[1024]; 

I* Create socket . * I 
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sock= socket(AF_UNIX, SOCK_STREAM, 0); 
if (sock < 0) { 

perror("opening stream socket"); 
exit(l); 

I* Name socket using file system name. * I 
server.sun_family = AF_UNIX; 
strcpy(server.sun_path, NAME); 
if (bind(sock, (struct sockaddr *)&server, 

sizeof(struct sockaddr_un)) < 0) { 
perror("binding stream socket"); 
exit(l); 

printf("Socket has name %s\n", server.sun_path); 
I* Start accepting connections. * I 
listen(sock, 5); 
for (;;) { 

!* 

msgsock = accept(sock, (struct sockaddr *)O, 
( int *) 0) ; 

if (msgsock == -1) 
perror("accept"); 

else do { 
bzero(buf, sizeof buf); 
if ((rval = read(msgsock, buf, 1024)) < 0) 

perror("reading stream message"); 
else if (rval == 0) 

printf("Ending connection\n"); 
else 

printf("-->%s\n", buf); 
while (rval > 0); 

close(msgsock); 

* The following statements are not executed, because they follow an 
* infinite loop. However, most ordinary programs will not run 
* forever. In the UNIX domain it is necessary to tell the file 
* system that one is through using NAME. In most programs one uses 
* the call unlink as below. Since the user will have to kill this 
* program, it will be necessary to remove the name by a command from 
* the shell. 
*! 
close(sock); 
unlink(NAME); 
exit(O); 

SunOS has several system calls for reading and writing information. The sim­
plest calls are read () and write(). write () takes as arguments the index 
of a descriptor, a pointer to a buffer containing the data, and the size ofthe data. 
The descriptor may indicate either a file or a connected socket. "Connected" can 
mean either a connected stream socket (as described in the Connections section 
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below, or a datagram socket for which a connect(3) call has provided a default 
destination. read () also takes a descriptor that indicates either a file or a 
socket. write ( ) requires a connected socket since no destination is specified 
in the parameters of the system call. read () can be used for either a connected 
or an unconnected socket. These calls are, therefore, quite flexible and may be 
used to write applications that make no assumptions about the source of their 
input or the destination of their output. There are variations on read () and 
write ( ) that allow the source and destination of the input and output to use 
several separate buffers, while retaining the flexibility to handle both files and 
sockets. These are readv () and writev(), for read and write vector. 

It is sometimes necessary to send high priority data over a connection that may 
have unread low priority data at the other end. For example, a user interface pro­
cess may be interpreting commands and sending them on to another process 
through a stream socket connection. The user interface may have filled the 
stream with as yet unprocessed requests when the user types a command to can­
cel all outstanding requests. Rather than have the high priority data wait to be 
processed after the low priority data, it is possible to send it as out-of-band 
(OOB) data. The notification of pending OOB data results in the generation of a 
s I GURG signal, if this signal has been enabled ( see the s i gna 1 ( 3 ) and 
sigvec ( 3) man pages). See An Advanced Socket-Based Interprocess Com­
munications Tutorial for a more complete description of the OOB mechanism. 

There are a pair of calls similar to read () and write () that allow options, 
including sending and receiving OOB information; these are send () and 
recv(). These calls are used only with sockets; specifying a descriptor for a file 
will result in the return of an error status. These calls also allow peeking at data 
in a stream. That is, they allow a process to read data without removing the data 
from the stream. One use of this facility is to read ahead in a stream to determine 
the size of the next item to be read. When not using these options, these calls 
have the same functions as read () and write(). 

To send datagrams, one must be allowed to specify the destination. The call 
sendto () takes a destination address as an argument and is therefore used for 
sending datagrams. The call recvfrom () is often used to read datagrams, 
since this call returns the address of the sender, if it is available, along with the 
data. If the identity of the sender does not matter, one may use read () or 
recv (). 

Finally, there are a pair of calls that allow the sending and receiving of messages 
from multiple buffers, when the address of the recipient must be specified. These 
are sendmsg () and recvmsg (). These calls are actually quite general and 
have other uses, including, in the UNIX domain, the transmission of a file 
descriptor from one process to another. 

The various options for reading and writing, together with their parameters, are 
shown in Figure 8-15 below. The parameters for each system call reflect the 
differences in function of the different calls. In the examples given in this 
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Figure 8-15 

chapter, the calls read () and write () have been used whenever possible. 

Varieties of Read and Write Commands 

!* 
* The variable descriptor may be the descriptor of either a file 
* or of a socket. 
*I 
cc= read(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

!* 
* An iovec can include several source buffers. 
*! 
cc= readv(descriptor, iov, iovcnt) 
int cc, descriptor; struct iovec *iov; int iovcnt; 

cc= write(descriptor, buf, nbytes) 
int cc, descriptor; char *buf; int nbytes; 

cc= writev(descriptor, iovec, ioveclen) 
int cc, descriptor; struct iovec *iovec; int ioveclen; 

!* 
* The variable "sock" must be the descriptor of a socket. 
* Flags may include MSG_ OOB and MSG _PEEK. 

*! 
cc= send(sock, msg, len, flags) 
int cc, sock; char *msg; int len, flags; 

cc= sendto(sock, msg, len, flags, to, tolen) 
int cc, sock; char *msg; int len, flags; 
struct sockaddr *to; int tolen; 

cc= sendmsg(sock, msg, flags) 
int cc, sock; struct msghdr msg[]; int flags; 

cc= recv(sock, buf, len, flags) 
int cc, sock; char *buf; int len, flags; 

cc= recvfrom(sock, buf, len, flags, from, fromlen) 
int cc, sock; char *buf; int len, flags; 
struct sockaddr *from; int *fromlen; 

cc= recvmsg(sock, msg, flags) 
int cc, socket; struct msghdr msg[]; int flags; 

Note that the meaning assigned to the msg_accrights and 
msg_accrightslen fields of the msghdr structure used in the,recvmsg () 
and sendmsg () system calls is protocol-dependent. See the Scatter/Gather 
and Exchanging Access Rights section of the System Services Overview for 
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details about the msghdr structure. 

This chapter has presented examples of some of the fonns of communication 
supported by SunOS. These have been presented in an order chosen for ease of 
presentation. It is useful to review these options emphasizing the factors that 
make each attractive. 

Pipes have the advantage of portability, in that they are supported in all UNIX 
systems. They also are relatively simple to use. Socketpairs share this simplicity 
and have the additional advantage of allowing bidirectional communication. The 
major shortcoming of these mechanisms is that they require communicating 
processes to be descendants of a common process. They do not allow inter­
machine communication. 

The two communication domains, the UNIX domain and the Internet domain, 
allow processes with no common ancestor to communicate. Of the two, only the 
Internet domain allows communication between machines. This makes the Inter­
net domain a necessary choice for processes running on separate machines. 

The choice between datagrams and socket stream communication is best made 
by carefully considering the semantic and perfonnance requirements of the appli­
cation. Streams can be both advantageous and disadvantageous. One disadvan­
tage is that, since a process is only allowed a limited number of open file descrip­
tors (nonnally 64) there is a limit on the number of streams that a process can 
have open at any given time. This can cause problems if a single server must 
talk with a large number of clients. Another is that for delivering a short mes­
sage the stream setup and teardown time can be unnecessarily long. Weighed 
against this are the reliability built into the streams. This will often be the decid­
ing factor in favor of streams. 

Many of the examples presented here can serve as models for multiprocess pro­
grams and for programs distributed across several machines. In developing a 
new multiprocess program, it is often easiest to first write the code to create the 
processes and communication paths. After this code is debugged, the code 
specific to the application can be added. 

Further documentation of the socket-based IPC mechanisms can be found in An 
Advanced Socket-Based Interprocess Communications Tutorial. More detailed 
infonnation about particular calls and protocols is provided in the SunOS Refer­
ence Manual. 
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An Advanced Socket-Based 

Interprocess Communications Tutorial 

SunOS provides all of the socket-based inteiprocess communications mechan­
isms available in the Berkeley UNIX system. This chapter is intended to help 
programmers understand the fine points by supplementing the more introductory 
information given in A Socket-Based Interprocess Communications Tutorial. It 
does not discuss Sun OS's remote procedure call (RPC) mechanism, which is the 
preferred foundation for Sun network applications. For information about RPC, 
see the Remote Procedure Call Programming Guide section of this manual .. 

This chapter continues the discussion of socket-based IPC primitives that the 
Berkeley developers added to the system. The majority of the chapter considers 
the use of these primitives in developing network applications. The reader is 
expected to be familiar with the C programming language. 

Socket-based inteiprocess communication was first introduced in 4.2BSD and 
subsequently incoiporated into SunOS. The design of these facilities was the 
result of more than two years of discussion and research, and they incoiporated 
many ideas from then-current research, while maintaining the UNIX philosophy 
of simplicity and conciseness. The current release of SunOS includes the exten­
sions of the socket-based IPC facilities that were introduced in 4.3BSD. 

Prior to the 4.2BSD IPC facilities, the only standard mechanism that allowed two 
processes to communicate were pipes (the mpx files that were in Version 7 were 
experimental). Unfortunately, pipes are very restrictive in that the two communi­
cating processes must be related through a common ancestor. Further, the 
semantics of pipes makes them almost impossible to maintain in a distributed 
environment. 

Earlier attempts at extending the IPC facilities of the UNIX system have met 
with mixed reaction. The majority of the problems have been related to the fact 
that these facilities have been tied to the UNIX file system, either through nam­
ing or implementation. Consequently, the 4.3BSD IPC facilities were designed 
as a totally independent subsystem. They allow processes to rendezvous in many 
ways. Processes may rendezvous through a UNIX file system-like name space (a 
space where all names are path names) as well as through a network name space. 
In fact, new name spaces may be added at a future time with only minor changes 
visible to users. Further, the communication facilities have been extended to 
include more than the simple byte stream provided by a pipe. 
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9.1. Basics 

So~ket Types 

This chapter provides a high-level description of the socket-based IPC facilities 
and their use. It is designed to complement the manual pages for the IPC primi­
tives with examples of their use. After this initial description, come four more 
sections. The Basics section introduces the !PC-related system calls and the 
basic model of communication. The Library Routines section describes some of 
the supporting library routines that users may find useful in constructing distri­
buted applications. The Client/Server Model section is concerned with the 
client/server model used in developing applications and includes examples of the 
two major types of servers. The Advanced Topics section delves into advanced 
topics that sophisticated users are likely to encounter when using the these IPC 
facilities. 

The basic building block for communication is the socketO. A socket is an 
endpoint of communication to which a name may be bound. Each socket in use 
has a type and one or more associated processes. Sockets exist within communi­
cations domains. Domains are abstractions which imply both an addressing 
structure (address family) and a set of protocols which implement various socket 
types within the domain (protocol family). Communications domains are intro­
duced to bundle common properties of processes communicating through sock­
ets. One such property is the scheme used to name sockets. For example, in the 
UNIX domain sockets are named with UNIX path names; e.g. a socket may be 
named / dev / f oo. Sockets normally exchange data only with sockets in the 

n 
' / 

same domain (it may be possible to cross between communications domains, but n\. '' 
only if some translation process is performed). The 4.3BSD, and thus the . _ . 
socket-based SunOS IPC facilities support several separate communications 
domains: notably the UNIX domain, for on-system communication, and the 
Internet domain, which is used by processes that communicate using the the 
DARPA standard communication protocols. The underlying communication 
facilities provided by these domains have a significant influence on the internal 
system implementation as well as the interface to socket facilities available to a 
user. An example of the latter is that a socket operating in the UNIX domain 
sees a subset of the error conditions that are possible when operating in the Inter-
net, DECNET, X.25, or OSI domains. 

Sockets are typed according to the communication properties visible to a user. 
Processes are presumed to communicate only between sockets of the same type, 
although there is nothing that prevents communication between sockets of dif­
ferent types should the underlying communication protocols support this. 

There are several types of sockets currently available: 

o A stream socket provides for the bidirectional, reliable, sequenced, and 
unduplicated flow of data without record boundaries. Aside from the 
bidirectionality of data flow, a pair of connected stream sockets provides an 
interface nearly identical to that ofpipes11• 

11 In the UN1X domain, in fact, the semantics are identical and, as one might expect, pipes have been 
implemented internally as simply a pair of connected stream sockets. 
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o A datagram socket supports bidirectional flow of data that is not promised to 
be sequenced, reliable, or unduplicated. That is, a process receiving mes­
sages on a datagram socket may find messages duplicated, and, possibly, in 
an order different from the order in which they were sent. An important 
characteristic of a datagram socket is that record boundaries in data are 
preseIVed. Datagram sockets closely model the facilities found in many 
contemporary packet switched networks such as the Ethernet. 

o A raw socket provides users access to the underlying communication proto­
cols which support socket abstractions. These sockets are nonnally 
datagram oriented, though their exact characteristics are dependent on the 
interface provided by the protocol. Raw sockets are not intended for the 
general user; they have been provided mainly for those interested in 
developing new communication protocols, or for gaining access to some of 
the more esoteric facilities of an existing protocol. The use of raw sockets is 
considered in the Advanced Topics section below. 

Another potential socket type with interesting properties is the sequenced packet 
socket. Such a socket would have properties similar to those of a stream socket, 
except' that it would preseIVe record boundaries. There is currently no support 
for this type of socket. 

Another potential socket type which has interesting properties is the reliably 
delivered message socket. The reliably delivered message socket has similar 
properties to a datagram socket, but with reliable delivery. There is currently no 
support for this type of socket. 

To create a socket, the socket () system call is used: 

s = socket(domain, type, protocol); 

This call requests that the system create a socket in the specified domain and of 
the specified type. A particular protocol may also be requested. If the protocol is 
left unspecified (a value of 0), the system will select an appropriate protocol from 
those that comprise the domain and that may be used to support the requested 
socket type. The user is returned a descriptor (a small integer number) that may 
be used in later system calls that operate on sockets. The domain is specified as 
one of the manifest constants defined in the file <sys / socket . h>. For the 
UNIX domain the constant is 

AF _UNIX; for the Internet domain, it is AF_ INET12. The socket types are also 
defined in this file and one of SOCK_STREAM, SOCK_ DGRAM, or 
SOCK_ RAW must be specified. To create a stream socket in the Internet domain 
the following call might be used: 

s = socket(AF_INET~ SOCK_STREAM, 0); 

This call would result in a stream socket being created with the TCP protocol 

12 The manifest constants are named AF_ whatever as they indicate the "address format" to use in 

interpreting names. 
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providing the underlying communication support. To create a datagram socket 
for on-machine use the call might be: 

s = socket(AF_UNIX, SOCK_DGRAM, 0); 

The default protocol (used when the protocol argument to the socket () call is 
0) should be correct for most every situation. However, it is possible to specify a 
protocol other than the default; this will be covered in the Advanced Topics sec­
tion below. 

There are several reasons a socket call may fail. Aside from the rare occurrence 
oflack of memory (ENOBUFS), a socket request may fail due to a request for an 
unknown protocol (EPROTONOSUPPORT), or a request for a type of socket for 
which there is no supporting protocol (EPROTOTYPE). 

A socket is created without a name. Until a name is bound to a socket, processes 
have no way to reference it and, consequently, no messages may be received on 
it. Communicating processes are bound by an association. In the Internet 
domain, an association is composed of local and foreign addresses, and local and 
foreign ports, while in the UNIX domain, an association is composed of local and 
foreign path names (the phrase "foreign pathname" means a pathname created by 
a foreign process, not a pathname on a foreign system). In most domains, associ­
ations must be unique. In the Internet domain there may never be duplicate 

<protocol, local address, local port.foreign address.foreign port> 

tuples. UNIX domain sockets need not always be bound to a name, but when 
bound there may never be duplicate 

<protocol, local pathname.foreign pathname> 

tuples. Currently, the pathnames may not refer to files already existing on the 
system, though this may change in future releases. 

The bind () system call allows a process to specify half of an association, 

<local address, local port> ( or <local pathname>) 

while the connect () and accept () primitives are used to complete a 
socket's association. 

In the Internet domain, binding names to sockets can be fairly complex. For­
tunately, it is usually not necessary to specifically bind an address and port 
number to a socket, because the connect () and send () calls will automati­
cally bind an appropriate address if they are used with an unbound socket. 

The bind () system call is used as follows: 

bind(s, name, namelen); 

The bound name is a variable length byte string that is inteipreted by the support­
ing protocol(s). Its inteipretation may vary between communication domains 
(this is one of the properties that comprise a domain). As mentioned, Internet 
domain names contain an Internet address and port number. In the UNIX 
domain, names contain a path name and a family, which is always AF _UNIX. If 
one wanted to bind the name / tmp / f oo to a UNIX domain socket, the 
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following code would be used: 13 

#include <sys/un.h> 

struct sockaddr_un addr; 

strcpy(addr.sun_path, "/tmp/foo"); 
addr.sun_family = AF_UNIX; 
bind(s, (struct sockaddr *) &addr, strlen(addr.sun_path) + 

sizeof (addr.sun_family)); 

Note that in detennining the size of a UNIX domain address null bytes are not 
counted, which is why strlen (} is used. In the current implementation of 
UNIX domain IPC, the file name referred to in addr. sun_path is created as a 
socket in the system file space. The caller must, therefore, have write pennission 
in the directory where addr. sun_path is to reside, and this file should be 
deleted by the caller when it is no longer needed. Future versions may not create 
this file. 

In binding an Internet address things become more complicated. The actual call 
is similar, 

#include <sys/types.h> 
#include <netinet/in.h> 

struct sockaddr_in sin; 

bind(s, (struct sockaddr *) &sin, sizeof sin); 

but the selection of what to place in the address sin requires some discussion. 
We will come back to the problem offonnulating Internet addresses in the 
Library Routines section when the library routines used in name resolution are 
discussed. 

Connection establishment is usually asymmetric, with one process a client and 
the oilier a server. The server, when willing to offer its advertised services, binds 
a socket to a well-known address associated with the service and then passively 
listens on its socket. It is then possible for an unrelated process to rendezvous 
with the server. The client requests services from the server by initiating a con­
nection to the server's socket. On the client side the connect (} call is used to 
initiate a connection. Using the UNIX domain, this might appear as, 

13 Beware of the tendency to call the "addr" structure "sun", which collides with a symbol predefined by the 
C preprocessor. 
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struct sockaddr_un server; 

connect(s, (struct sockaddr *)&server, 
strlen(server.sun_path) + sizeof (server.sun_family)); 

while in the Internet domain, 

struct sockaddr in server; 

connect(s, (struct sockaddr *)&server, sizeof server); 

where server in the example above would contain either the UNIX pathname, or 
the Internet address and port number of the server to which the client process 
wishes to speak. If the client process's socket is unbound at the time of the con­
nect call, the system will automatically select and bind a name to the socket if 
necessary. See the Signals and Process Groups section below. This is the usual 
way that local addresses are bound to a socket. 

An error is returned if the connection was unsuccessful (however, any name 
automatically bound by the system remains). Otherwise, the socket is associated 
with the server and data transfer may begin. Some of the more common errors 
returned when a connection attempt fails are: 

ETIMEDOUT 
After failing to establish a connection for a period of time, the system 
decided there was no point in retrying the connection attempt any more. 
This usually occurs because the destination host is down, or because prob­
lems in the network resulted in transmissions being lost. 

ECONNREFUSED 
The host refused service for some reason. This is usually due to a server 
process not being present at the requested name. 

ENETDOWNorEHOSTDOWN 
These operational errors are returned based on status information delivered 
to the client host by the underlying communication services. 

ENETUNREACHorEHOSTUNREACH 
These operational errors can occur either because the network or host is un­
known (no route to the network or host is present), or because of status infor­
mation returned by intennediate gateways or switching nodes. Many times 
the status returned is not sufficient to distinguish a network being down from 
a host being down, in which case the system indicates the entire network is 
unreachable. 

For the server to receive a client's connection it must perfonn two steps after 
binding its socket. The first is to indicate a willingness to listen for incoming 
connection requests: 

listen(s, 5); 

The second parameter to the listen () call specifies the maximum number of 
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outstanding connections that may be queued awaiting acceptance by the server 
process; this number may be limited by the system. Should a connection be 
requested while the queue is full, the connection will not be refused, but rather 
the individual messages that comprise the request will be ignored. This gives a 
harried server time to make room in its pending connection queue while the 
client retries the connection request. Had the connection been returned with the 
ECONNREFUSED error, the client would be unable to tell if the server was up or 
not. As it is now it is still possible to get the ET IMEDOUT error back, though 
this is unlikely. The backlog figure supplied with the listen call is currently lim­
ited by the system to a maximum of 5 pending connections on any one queue. 
This avoids the problem of processes hogging system resources by setting an 
infinite backlog, then ignoring all connection requests. 

With a socket marked as listening, a server may accept () a connection: 

struct sockaddr_in from; 

sizeof from; fromlen 
newsock accept(s, (struct sockaddr *)&from, &fromlen); 

(For the UNIX domain,from would be declared as a struct sockaddr_un, 
but nothing different would need to be done as far asfromlen is concerned. In 
the examples that follow, only Internet routines will be discussed.) A new 
descriptor is returned on receipt of a connection (along with a new socket). If the 
server wishes to find out who its client is, it may supply a buffer for the client 
socket's name. The value-result parameter fromlen is initialized by the server to 
indicate how much space is associated with from, then modified on return to 
reflect the true size of the name. If the client's name is not of interest, the second 
parameter may be a null pointer. 

accept () nonnally blocks. That is, accept () will not return until a connec­
tion is available or the system call is interrupted by a signal to the process. 
Further, there is no way for a process to indicate it will accept connections from 
only a specific individual, or individuals. It is up to the user process to consider 
who the connection is from and close down the connection if it does not wish to 
speak to the process. If the server process wants to accept connections on more 
than one socket, or wants to avoid blocking on the accept call, there are alterna­
tives; they will be considered in the Advanced Topics section below. 

With a connection established, data may begin to flow. To send and receive data 
there are a number of possible calls. With the peer entity at each end of a con­
nection anchored, a user can send or receive a message without specifying the 
peer. As one might expect, in this case, then the nonnal read () and write () 
system calls are usable, 

write(s, buf, sizeof·buf); 
read(s, buf, sizeof buf); 

In addition to read () and write(), the calls send () and reqv () may be 
used: 
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send(s, buf, ~izeof buf, flags); 
recv(s, buf, sizeof buf, flags); 

While send () and recv () are virtually identical to read () and writeO, 
the extra.flags argument is important. The flags, defined in <sys/ socket. h>, 
may be specified as a non-zero value if one or more of the following is required: 

MSG OOB send/receive out of band data 
MSG PEEK look at data without reading 
MSG DONTROUTE send data without routing packets (internal only) 

Out of band data is a notion specific to stream sockets, and one that we will not 
immediately consider. The option to have data sent without routing applied to 
the outgoing packets is currently used only by the routing table management pro­
cess, and is unlikely to be of interest to the casual user. However, the ability to 
preview data is of interest. When MSG _PEEK is specified with a recv ( ) call, 
any data present is returned to the user, but treated as still "unread". That is, the 
next read () or recv () call applied to the socket will return the data previ­
ously previewed. 

Once a socket is no longer of interest, it may be discarded by applying a 
close () to the descriptor, 

close(s); 

n 

If data is associated with a socket that promises reliable delivery (e.g. a stream .n,\. . 

socket) when a close takes place, the system will continue to attempt to transfer . . 
the data. However, aftera fairly long period of time, if the data is still 
undelivered, it will be discarded. Should a user have no use for any pending 
data, it may perform a shutdown () on the socket prior to closing it. This call 
is of the form: 

shutdown(s, how); 

where how is O if the user is no longer interested in reading data, 1 if no more 
data will be sent, or 2 if no data is to be sent or received. 

To this point we have been concerned mostly with sockets that follow a connec­
tion oriented model. However, there is also support for connectionless interac­
tions typical of the datagram facilities found in contemporary packet switched 
networks. A datagram socket provides a symmetric interface to data exchange. 
While processes are still likely to be client and server, there is no requirement for 
connection establishment. Instead, each message includes the destination 
address. 

Datagram sockets are created as before. If a particular local address is needed, 
the bind () operation must precede the first data transmission. Otherwise, the 
system will set the local address and/or port when data is first sent. To send data, 
the sendto ( ) primitive is used, 

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen); 

The s, bu/, bujlen, and.flags parameters are used as before. The to and tolen (~ 
values are used to indicate the address of the intended recipient of the message. 
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When using an unreliable datagram interface, it is unlikely that any errors will be 
reported to the sender. When infonnation is present locally to recognize a mes­
sage that can not be delivered (for instance when a network is unreachable), the 
call will return -1 and the global value err no will contain an error number. 

To receive messages on an unconnected datagram socket, the recvfrom (} 
primitive is provided: 

recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, 
&fromlen); 

Once again, thefromlen parameter is handled in a value-result fashion, initially 
containing the size of the from buffer, and modified on return to indicate the 
actual size of the address from which the datagram was received. 

In addition to the two calls mentioned above, datagram sockets may also use the 
connect (} call to associate a socket with a specific destination address. In 
this case, any data sent on the socket will automatically be addressed to the con­
nected peer, and only data received from that peer will be delivered to the user. 
Only one connected address is pennitted for each socket at one time; a second 
connect will change the destination address, and a connect to a null address 
(domain AF_ UNSPEC) will disconnect. Connect requests on datagram sockets 
return immediately, as this simply results in the system recording the peer's 
address (as compared to a stream socket, where a connect request initiates estab­
lishment of an end to end connection). accept (} and listen () are not used 
with datagram sockets. 

While a datagram socket socket is connected, errors from recent send () calls 
may be returned asynchronously. These errors may be reported on subsequent 
operations on the socket, or a special socket option used with getsockopt, 
SO_ ERROR, may be used to interrogate the error status. A select () for read­
ing or writing will return true when an error indication has been received. The 
next operation will return the error, and the error status is cleared. Other of the 
less important details of datagram sockets are described in the Advanced Topics 
section below. 
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Input/Output Multiplexing One last facility often used in developing applications is the ability to multiplex 
i/o requests among multiple sockets and/or files. This is done using the 
select() call: 

#include <sys/time.h> 
#include <sys/types.h> 

fd set readmask, writemask, exceptmask; 
struct timeval timeout; 

select(nfds, &readmask, &writemask, &exceptmask, &timeout); 

select () takes as arguments pointers to three sets, one for the set of file 
descriptors on which the caller wishes to be able to read data, one for those 
descriptors to which data is to be written, and one for which exceptional condi­
tions are pending; out-of-band data is the only exceptional condition currently 
implemented by the socket abstraction. If the user is not interested in certain 
conditions (i.e., read, write, or exceptions), the corresponding argument to the 
select () should be a properly cast null pointer. 

Each set is actually a structure containing an array of long integer bit masks; the 
size of the array is set by the definition FD_ SETS I ZE. The array is long enough 
to hold one bit for each of FD_SETSIZE file descriptors. 

The macros FD_ SET (fd, &mask) and FD_ CLR lfd, &mask) have been pro­
vided for adding and removing file descriptor f din the set mask. The set should 
be zeroed before use, and the macro FD_ ZERO ( &mask) has been provided to 
clear the set mask. The parameter nfds in the select () call specifies the range 
of file descriptors (i.e. one plus the value of the largest descriptor) to be exam­
ined in a set. 

A timeout value may be specified if the selection is not to last more than a 
predetennined period of time. If the fields in timeout are set to 0, the selection 
takes the fonn of a poll, returning immediately. If the last parameter is a null 
pointer, the selection will block indefinitely14. select () nonnally returns the 
number of file descriptors selected; if the select () call returns due to the 
timeout expiring, then the value O is returned. If the select () tenninates 
because of an error or interruption, a -1 is returned with the error number in 
errno, and with the file descriptor masks unchanged. 

Assuming a successful return, the three sets will indicate which file descriptors 
are ready to be read from, written to, or have exceptional conditions pending. 
The status of a file descriptor in a select mask may be tested with the 
FD _ISSET (fd, &mask) macro, which returns a non-zero value if/dis a 
member of the set mask, and O if it is not. 

n 

,/\ 
. ) 

14 To be more specific, a return takes place only when a descriptor is selectable, or when a signal is received r,·.r'\ 
by the caller, interrupting the system call. ·. ) 

•\sun ~~ microsystems 
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To detennine if there are connections waiting on a socket to be used with an 
accept () call, select () can be used, followed by a FD_ IS SET (fd, 
&mask) macro to check for read readiness on the appropriate socket. If 
FD_ ISSET returns a non-zero value, indicating pennission to read, then a con­
nection is pending on the socket. 

As an example, to read data from two sockets, sl and s2 as it is available from 
each and with a one-second timeout, the following code might be used: 
, 

... 

finclude <sys/time.h> 
#include <sys/types.h> 

fd set read_template; 
struct timeval wait; 

for (; ; ) { 
wait.tv_sec = 1; 
wait.tv_usec = 0; 

I * one second * I 

FD_ZERO(&read_template); 

FD_SET(sl, &read_template); 
FD_SET(s2, &read_template); 

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, 
(fd_set *) 0, &wait); 

if (nb <= 0) { 
I* 

* An error occurred during the select, or 
* the select timed out. 
*I 

} 

if (FD_ISSET(sl, &read_template)) { 
I* Socket #1 is ready to be readfrom. * I 

if (FD_ISSET(s2, &read_template)) { 
/ * Socket #2 is ready to be read from. * I 

In previous versions of select(), its arguments were pointers to integers 
instead of pointers to f d _sets. This type of call will still work as long as the 
number of file descriptors being examined is less than the number of bits in an 
integer; however, the methods illustrated above should be used in all current pro­
grams. 

select () provides a synchronous multiplexing scheme. Asynchronous 
notification of output completion, input availability, and exceptional conditions 
is possible through use of the SIGIO and SIGURG signals described in the 
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9.2. Library Routines 

Advanced Topics section below. 

The discussion in the Basics section above indicated the possible need to locate 
and construct network addresses when using the interprocess communication 
facilities in a distributed environment. To aid in this task a number of routines 
have been added to the standard C run-time library. In this section we will con­
sider the new routines provided to manipulate network addresses. 

Locating a service on a remote host requires many levels of mapping before 
client and server may communicate. A service is assigned a name that is 
intended for human consumption; e.g. the login server on host monet. This 
name, and the name of the peer host, must then be translated into network 
addresses that are not necessarily suitable for human consumption. Finally, the 
address must then used in locating a physical location and route to the service. 
The specifics of these three mappings are likely to vary between network archi­
tectures. For instance, it is desirable for a network to not require hosts to be 
named in such a way that their physical location is known by the client host. 
Instead, underlying services in the network may discover the actual location of 
the host at the time a client host wishes to communicate. This ability to have 
hosts named in a location independent manner may induce overhead in connec­
tion establishment, as a discovery process must take place, but allows a host to be 
physically mobile without requiring it to notify its clientele of its current loca­
tion. 

n 

Standard routines are provided for mapping host names to network addresses, n 
network names to network numbers, protocol names to protocol numbers, and 
service names to port numbers and the appropriate protocol to use in communi-
cating with the server process. The file <netdb. h> must be included when 
using any of these routines. 

n 
~~sun ~~ microsystems 
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An Internet host name to address mapping is represented by the host en t struc­
ture: 

struct hostent { 

} ; 

char *h_name; 
char **h_aliases; 
int h_addrtype; 
int h_length; 
char **h_addr_list; 

I * official name of host * I 
I * alias list * I 
I* host address type (e.g., AF _]NET) * I 
I* length of address * I 
I* list of addresses, null terminated * I 

#define h_addr h addr list [OJ /* firstaddress,networkbyteorder */ 

The routine gethostbyname(3N) takes an Internet host name and returns a 
hostent structure, while the routine gethostbyaddr(3N) maps Internet 
host addresses into a hostent structure. The routine inet _ ntoa(3N) maps an 
Internet host address into an ASCII string for printing by log and error messages. 

The official name of the host and its public aliases are returned by these routines, 
along with the address type ( domain) and a null tenninated list of variable length 
addresses. This list of addresses is required because it is possible for a host to 
have many addresses, all having the same name. The h _ addr definition is pro­
vided for backward compatibility, and is defined to be the first address in the list 
of addresses in the hostent structure. 

The database for these calls is provided either by the Yellow Pages name lookup 
service (the preferred alternative), from the/ etc/hosts file (see hosts(5)), 
or by use of the res o 1 ve r ( 5) nameserver. Because of the differences in these 
databases and their access protocols, the infonnation returned may differ. When 
using the Yellow Pages on the host table version of gethostbynameO, only 
one address will be returned, but all listed aliases will be included. The 
nameserver version may return alternate addresses, but will not provide any 
aliases other than one given as argument. 

As for host names, routines for mapping network names to numbers, and back, 
are provided. These routines return a netent structure: 

I* 
* Assumption here is that a network number 
* fits in 32 bits -- probably a poor one. 
*I 
struct netent { 

char *n_name; /* 
char **n_aliases; I* 
int n_addrtype; I* 
int n_net; I* 

} ; 

official name of net * I 
alias list * I 
net address type *I 
network number, host byte order */ 

The routines getnetbyname ( 3N), getnetbynumber ( 3N), and 
getnetent (3N) are the network counterparts to the host routines described 
above. The routines extract their infonnation from the Yellow Pages maps 
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hosts .byname and hosts .byaddr or from /etc/networks. 

For protocols (which are defined in the Yellow-Pages protocols. byname 
map and/ etc/protocols) the protoent structure defines the protocol­
name mapping used with the routines getprotobyname(3N), 
getprotobynumber(3N), and getprotoent(3N): 

struct protoent { 

} ; 

char *p_name; 
char **p_aliases; 
int p_proto; 

I* official protocol name * I 
I * alias list * I 
I* protocol number * I 

Information regarding services is a bit more complicated. A service is expected 
to reside at a specific port and employ a particular communication protocol. This 
view is consistent with the Internet domain, but inconsistent with other network 
architectures. Further, a service may reside on multiple ports. If this occurs, the 
higher level library routines will have to be bypassed or extended. Services 
available are contained in the Yellow Pages services .byname map and the 
file/ etc/ services. (Actually, the name services .byname is a misno­
mer, since the map actually orders Internet ports by number and protocol).15 A 
service mapping is described by the servent structure: 

struct servent { 

} ; 

char *s_name; 
char **s_aliases; 
int s_port; 
char *s_proto; 

I* official service name * I 
I * alias list * I 
I* port number, network byte order * I 
I* protocol to use * I 

The routine getservbyname (3N) maps service names to a servent structure 
by specifying a service name and, optionally, a qualifying protocol. Thus the call 

sp = getservbyname("telnet", (char *) 0); 

returns the service specification for a telnet server using any protocol, while the 
call 

sp = getservbyname("telnet", "tcp"); 

returns only that telnet server which uses the TCP protocol. The routines 
getservbyport (3N) and getservent (3N) are also provided. The get­
servbyport () routine has an interface similar to that provided by get­
servbyname(); an optional protocol name may be specified to qualify lookups. 

15 For details about the association of RPC services with ports, see the Port Mapper Program Protocol 
section of the Network Services chapter. 
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With the support routines described above, an Internet application program 
should rarely have to deal directly with addresses. This allows services to be 
developed as much as possible in a network independent fashion. It is clear, 
however, that purging all network dependencies is very difficult. So long as the 
user is required to supply network addresses when naming services and sockets 
there will always some network dependency in a program. For example, the nor­
mal code included in client programs, such as the remote login program, is of the 
fonn shown in Figure 9-1. (This example will be considered in more detail in the 
Client/Server Model section below.) 

Aside from the address-related data base routines, there are several other routines 
available in the run-time library that are of interest to users. These are intended 
mostly to simplify manipulation of names and addresses. Table 9-1 summarizes 
the routines for manipulating variable length byte strings and handling byte 
swapping of network addresses and values. 

C Run-time Routines 

Call Synopsis 
bcmp (sl, s2, n) Compare byte-strings; 0 if same, not O otherwise 
bcopy(sl, s2, n) Copy n bytes from s 1 to s2 
bzero(base, n) Zero-fill n bytes starting at base 
htonl (val) 32-bit quantity from host into network byte order 
htons (val) 16-bit quantity from host into network byte order 
ntohl(val) 32-bit quantity from network into host byte o-rder 
ntohs (val) 16-bit quantity from network into host byte order 

The byte swapping routines are provided because the operating system expects 
addresses to be supplied in network order. On some architectures, such as the 
VAX, host byte ordering is different than network byte ordering. Consequently, 
programs are sometimes required to byte swap quantities. The library routines 
that return network addresses provide them in network order so that they may 
simply be copied into the structures provided to the system. This implies users 
should encounter the byte swapping problem only when interpreting network 
addresses. For example, if an Internet port is to be printed out the following code 
would be required: 

printf("port number %d\n", ntohs(sp->s_port)); 

On machines such as the Sun-3 and Sun-4, where these routines are unneeded, 
they are defined as null macros. 16 

16 Sun-4 (SP ARC) machines do have alignment restrictions which networlc programmers need to be aware 
of. See Porting Software to SPARC Systems. 
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Figure 9-1 Remote Login Client Code 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <stdio.h> 
#include <netdb.h> 

main(argc, argv) 
int argc; 
char *argv[]; 

struct sockaddr in server; 
struct servent *sp; 
struct hostent *hp; 
int s; 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

fprintf(stderr, 
"rlogin: tcp/login: unknown service\n"); 

exit(l); 

}· 

hp= gethostbyname(argv[l]); 
if (hp== NULL) { 

fprintf(stderr, 
"rlogin: %s: unknown host\n", argv(l]); 

exit(2); 

bzero((char *)&server, sizeof server); 
bcopy(hp->h_addr, (char *)&server.sin_addr, 

hp->h_length); 
server.sin_family = hp->h_addrtype; 
server.sin_port = sp->s_port; 
s = socket(AF_INET, SOCK_STREAM, 0); 
if ( s < 0) { 

perror("rlogin: socket"); 
exit(3); 

I* Connect does the bind for us * I 

if (connect(s, (struct sockaddr *)&server, 
sizeof server) < 0) { 

perror("rlogin: connect"); 
exit(S); 

exit(O); 
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U 9.3. Client/Server Model The most commonly used paradigm in constructing distributed applications is the 
client/seiver model. In this scheme client applications request seivices from a 
seiver process. This implies an asymmetry in establishing communication 
between the client and seiver that has been examined in the Basics section above. 
In this section we will look more closely at the interactions between client and 
seiver, and consider some of the problems in developing client and seiver appli­
cations. 

L) 

u 

The client and seiver require a well known set of conventions before seivice may 
be rendered (and accepted). This set of conventions comprises a protocol that 
must be implemented at both ends of a connection. Depending on the situation, 
the protocol may be symmetric or asymmetric. In a symmetric protocol, either 
side may play the master or slave roles. In an asymmetric protocol, one side is 
immutably recognized as the master, with the other as the slave. An example of 
a symmetric protocol is the TELNET protocol used in the Internet for remote ter­
minal emulation. An example of an asymmetric protocol is the Internet file 
transfer protocol, FfP. No matter whether the specific protocol used in obtaining 
a seivice is symmetric or asymmetric, when accessing a seivice there is a client 
process and a server process. We will first consider the properties of seiver 
processes, then client processes. 

A seiver process normally listens at a well known address for seivice requests. 
That is, the seiver process remains donnant until a connection is requested by a 
client's connection to the seiver's address. At such a time the seiver process 
"wakes up" and seivices the client, perfonning whatever appropriate actions the 
client requests of it. 

Alternative schemes that use a seivice seiver may be used to eliminate a flock of 
seiver processes clogging the system while remaining donnant most of the time. 
For Internet seivers, this scheme has been implemented via inetd, the so called 
"internet super-seiver." inetd listens at a variety of ports, detennined at start­
up by reading a configuration file. When a connection is requested to a port on 
which inetd is listening, inetd executes the appropriate seiver program to 
handle the client. With this method, clients are unaware that an intennediary 
such as inetd has played any part in the connection. inetd will be described 
in more detail in the Advanced Topics section below. 

Servers In SunOS most seivers are accessed at well known Internet addresses or UNIX 
domain names. The fonn of their main loop is illustrated by the following code 
form the remote-login seiver: 

Figure 9-2 Remote Login Server 

main(argc, argv) 
int argc; 
char *argv[]; 

int f; 
struct sockaddr_in from; 
struct sockaddr_in sin; 
struct servent *sp; 
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sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

fprintf(stderr, 
"rlogind: tcp/login: unknown service\n"); 

exit(l); 

:/1:ifndef DEBUG 
I* Disassociate server from controlling terminal . * I 

#endif 

sin.sin_port 
sin.sin addr 

sp->s _po rt; / * Restricted port * I 
INADDR_ANY; 

f = socket(AF_INET, SOCK_STREAM, 0); 

if (bind(f, (struct sockaddr *)&sin, sizeof sin) < 0) { 
\ 

listen(f, 5); 
for (;;) { 

int g, len = sizeof from; 

g = accept(f, (struct sockaddr *) &from, &len); 
if (g < 0) { 

if (errno != EINTR) 
syslog(LOG_ERR, "rlogind: accept: %m"); 

continue; 

if (fork() == 0) { 
close(f); 
doit(g, &from); 

close(g); 

exit(O); 

The first step taken by the server is look up its service definition: 

'-. 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

fprintf(stderr, 
"rlogind: tcp/lo~in: unknown service\n"); 

exit(l); 

n 

The result of the getservbyname () call is used in later portions of the code n 
to define the Internet port at which it listens for service requests (indicated by a 
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connection). Some standard port numbers are given in the file 
/usr/ include/netinet/ in. h for backward compatibility puiposes. 

Step two is to disassociate the server from the controlling terminal of its invoker: 
, 

for (i = getdtablesize()-1; i >= 0; --i) 
close(i); 

open("/dev/null", O_RDONLY); 
dup2(0, 1); 
dup2(0, 2); 

i = open("/dev/tty", O_RDWR); 
if (i >= 0) { 

ioctl(i, TIOCNOTTY, 0); 
close(i); 

This step is important as the server will likely not want to receive signals 
delivered to the process group of the controlling terminal. Note, however, that 
once a server has disassociated itself it can no longer send reports of errors to a 
terminal, and must log errors via syslogQ. 

Once a server has established a pristine environment, it creates a socket and 
begins accepting service requests. The bind () call is required to insure the 
server listens at its expected location. It should be noted that the remote login 
server listens at a restricted port number, and must therefore be run with a user-id 
of root. This concept of a "restricted port number" is covered in the Advanced 
Topics section below. 

The main body of the loop is fairly simple: 

for (;;) { 
int g, len = sizeof from; 

g = accept(f, (struct sockaddr *)&from, &len); 
if (g < 0) { 

if (errno != EINTR) 
syslog(LOG_ERR, "rlogind: accept: %m"); 

continue; 

if (fork() == 0) { /* Child * I 
close(f); 
doit (g, &from) ; 

close(g); I* Parent *I 

An accept () call blocks the server until a client requests service. This call 
could return a failure status if the call is interrupted by a signal such as 
SIGCHLD (to be discussed in the Advanced Topics section below.) Therefore, 
the return value from accept () is checked to insure a connection has actually 
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f"\ 
been established, and an error report _,,is logged via sys log { } if an error has 

1

• ) 

Clients 

occurred. 

With a connection in hand, the server then forks a child process and invokes the 
main body of the remote login protocol processing. Note how the socket used by 
the parent for queuing connection requests is closed in the child, while the socket 
created as a result of the accept (} is closed in the parent. The address of the 
client is also handed the doi t (} routine because it requires it in authenticating 
clients. 

The client side of the remote login service was shown earlier in Figure 9-1. One 
can see the separate, asymmetric roles of the client and server clearly in the code. 
The server is a passive entity, listening for client connections, while the client 
process is an active entity, initiating a connection when invoked. 

Let us consider more closely the steps taken by the client remote login process. 
As in the server process, the first step is to locate the service definition for a 
remote login: 
,. 

sp = getservbyname("login", "tcp"); 
if (sp == NULL) { 

fprintf ( stderr, 
"rlogin: tcp/login: unknown service\n"); 

exit(l); 

Next the destination host is looked up with a gethostbyname (} call: 
, 

hp= gethostbyname(argv[l]); 
if (hp== NULL) { 

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]); 
exit(2); 

With this accomplished, all that is required is to establish a connection to the 
server at the requested host and start up the remote login protocol. The address 
buffer is cleared, then filled in with the Internet address of the foreign host and 
the port number at which the login process resides on the foreign host: 

bzero((char *)&server# sizeof server); 
bcopy(hp~>h_addr, (char*) &server.sin_addr, hp->h_length); 
server.sin_family = hp->h_addrtype; 
server.sin_port = sp->s_port; 

A socket is created, and a connection initiated. Note that connect (} implicitly 
performs a bind (} call, since sis unbound. 

Revision A, of 9 May 1988 

n 
/ 

n 



( / 

'--"'! 

Connectionless Servers 

u 
Table 9-2 

u 

Chapter 9 - An Advanced Socket-Based Interprocess Communications Tutorial 241 

s = socket(hp->h_addrtype, SOCK_STREAM, 0); 
if ( s < 0) { 

perror("rlogin: socket"); 
exit(3); 

if (connect(s, (struct sockaddr *)&server, 
sizeof server) < 0) { 

perror("rlogin: connect"); 
exit(4); 

The details of the remote login protocol will not be considered here. 

While connection-based services are the nonn, some services are based on the 
use of datagram sockets. One, in particular, is the rwho service which provides 
users with status infonnation for hosts connected to a local area network. This 
service, while predicated on the ability to broadcast infonnation to all hosts con­
nected to a particular network, is of interest as an example usage of datagram 
sockets. 

A user on any machine running the rwho server may find out the current status of 
a machine with the rupt ime program. The output generated is illustrated in 
Figure 9-2. 

rupt ime Output 

arpa up 9:45, 5 users, load 1.15, 1.39, 1.31 
cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59 
calder up 10:10, 0 users, load 0.27, 0.15, 0.14 
dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65 
degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41 
ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56 
ernie down 0:24 
esvax down 17:04 
oz down 16:09 
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86 

Status infonnation for each host is periodically broadcast by rwho server 
processes on each machine. The same server process also receives the status 
infonnation and uses it to update a database. This database is then interpreted to 
generate the status infonnation for each host. Servers operate autonomously, 
coupled only by the local network and its broadcast capabilities. 

Note that the use of broadcast for such a task is fairly inefficient, as all hosts must 
process each message, whether or not using an rwho server. Unless such a ser­
vice is sufficiently universal and is frequently used, the expense of periodic 
broadcasts outweighs the simplicity. 
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Figure 9-3 

The rwho server, in a simplified form, is pictured below. It preforms two 
separate tasks. The first is to act as a receiver of status information broadcast by 
other hosts on the network. This job is carried out in the main loop of the pro­
gram. Packets received at the rwho port are interrogated to insure they've been 
sent by another .rwho server process, then are time stamped with their arrival time 
and used to update a file indicating the status of the host. When a host has not 
been heard from for an extended period of time, the database interpretation rou­
tines assume the host is down and indicate such on the status reports. This algo­
rithm is prone to error, as a server may be down while a host is actually up. 

rwho Server 

main() 
{ 

sp = getservbyname("who", "udp"); 
net= getnetbyname("localnet"); 
sin.sin_addr inet_makeaddr(INADDR_ANY, net); 
sin.sin_port = sp->s_port; 

s = socket(AF_INET, SOCK_DGRAM, 0); 

on= 1; 
if (setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, 
sizeof on) < 0) { 

syslog(LOG_ERR, "setsockopt SO BROADCAST: %m"); 
exit(l); 

bind(s, (struct sockaddr *) &sin, sizeof sin); 

signal(SIGALRM, onalrm); 
onalrm(); 
for (;;) { 

struct whod wd; 
int cc, whod, len = sizeof from; 

cc= recvfrom(s, (char *)&wd, sizeof (struct whod), 
O, (struct sockaddr *)&from, &len); 

if (cc <= 0) { 
if (cc< 0 && errno != EINTR) 

syslog(LOG_ERR, "rwhod: recv: %m"); 
continue; 

if (from.sin_port != sp->s_port) { 
syslog(LOG_ERR, "rwhod: %d: bad from port", 

ntohs(from.sin_port)); 
continue; 

if (!verify(wd.wd_hostname)) { 
syslog(LOG_ERR, "rwhod: bad host name from %x", 

ntohl(from.sin_addr.s_addr)); 
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continue; 

(void) sprintf(path, "%s/whod.%s", RWHODIR, 
wd.wd_hostname); 

whod = open(path, O_WRONLYIO_CREATIO_TRUNC, 0666); 

(void) time(&wd.wd_recvtime); 
(void) write(whod, (char *)&wd, cc); 
(void) close(whod); 

exit(O); 

The second task performed by the server is to supply information regarding the 
status of its host. This involves periodically acquiring system status information, 
packaging it up in a message and broadcasting it on the local network for other 
rwho servers to hear. The supply function is triggered by a timer and runs off a 
signal. Locating the system status information is somewhat involved, but unin­
teresting. Deciding where to transmit the resultant packet is somewhat prob­
lematic, however. 

Status information must be broadcast on the local network. For networks that do 
not support the notion of broadcast another scheme must be used to simulate or 
replace broadcasting. One possibility is to enumerate the known neighbors 
(based on the status messages received from other rwho servers). ·This, unfor­
tunately, requires some bootstrapping information, for a server will have no idea 
what machines are its neighbors until it receives status messages from them. 
Therefore, if all machines on a net are freshly booted, no machine will have any 
known neighbors and thus never receive, or send, any status information. This is 
the identical problem faced by the routing table management process in pro­
pagating routing status information. The standard solution, unsatisfactory as it 
may be, is to inform one or more servers of known neighbors and request that 
they always communicate with these neighbors. If each server has at least one 
neighbor supplied to it, status information may then propagate through a neigh­
bor to hosts that are not (possibly) directly neighbors. If the server is able to sup­
port networks that provide a broadcast capability, as well as those which do not, 
then networks with an arbitrary topology may share status information 17. 

It is important that software operating in a distributed environment not have any 
site-dependent information compiled into it. This would require a separate copy 
of the server at each host and make maintenance a severe headache. SunOS 
attempts to isolate host-specific information from applications by providing sys­
tem calls that return the necessary information 18. A mechanism exists, in the 
form of an i o ct 1 ( ) call, for finding the collection of networks to which a host 
is directly connected. Further, a local network broadcasting mechanism has been 

17 One must, however~be concerned about loops. That is, if a host is connected to multiple networks, it will 
receive status information from itself. This can lead to an endless, wasteful, exchange of information. 

18 An example of such a_ system call is the gethostname (2) call that returns the host's official name. 
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9.4. Advanced Topics 

Out Of Band Data 

implemented at the socket level. Combining these two features allows a process 
to broadcast on any directly connected local network which supports the notion 
of broadcasting in a site independent manner. This allows a solution to the prob­
lem of deciding how to propagate status information in the case of rwho, or 
more generally in broadcasting. Such status information is broadcast to con­
nected networks at the socket level, where the connected networks have been 
obtained via the appropriate ioctl () calls. The specifics of such broadcastings 
are complex, however, and will be covered in the Advanced Topics section 
below. 

A number of facilities have yet to be discussed. For most programmers, the 
mechanisms already described will suffice in constructing distributed applica­
tions. However, others will find the need to utilize some of the features that we 
consider in this section. 

The stream socket abstraction includes the notion of out of band data. Out of 
band data is a logically independent transmission channel associated with each 
pair of connected stream sockets. Out of band data is delivered to the user 
independently of normal data. The abstraction defines that the out of band data 
facilities must support the reliable delivery of at least one out of band message at 
a time. This message may contain at least one byte of data, and at least one mes­
sage may be pending delivery to the user at any one time. For communications 
protocols (such as TCP) that support only in-band signaling (i.e. the urgent data 
is delivered in sequence with the normal data), the system normally extracts the 
data from the normal data stream and stores it separately. This allows users to 
choose between receiving the urgent data in order and receiving it out of 

, sequence without having to buffer all the intervening data. It is possible to 
"peek" (via MSG_PEEK) at out of band data. If the socket has a process group, a 
SI GURG signal is generated when the protocol is notified of its existence. A pro­
cess can set the process group or process id to be informed by the s IGURG signal 
via the appropriate fcntl () call, as described below for SIGIO. If multiple 
sockets may have out of band data awaiting delivery, a select () call for 
exceptional conditions may be used to determine those sockets with such data 
pending. Neither the signal nor the select indicate the actual arrival of the out­
of-band data, but only notification that it is pending. 

In addition to the information passed, a logical mark is placed in the data stream 
to indicate the point at which the out of band data was sent. The remote login 
and remote shell applications use this facility to propagate signals between client 
and seiver processes. When a signal flushes any pending output from the remote 
process(es), all data up to the mark in the data stream is discarded. 

To send an out of band message the MSG_OOB flag is supplied to a send () or 
sendto () calls, while to receive out of band data MSG_OOB should be indi­
cated when performing a recvfrom () or recv () call. To find out if the read 
pointer is currently pointing at the mark in the data stream, the s I OCATMARK 
ioctl is provided: 

ioctl(s, SIOCATMARK, &yes); 

If yes is 1 on return, the next read will return data after the mark. Otherwise 
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( assuming out of band data has arrived), the next read will provide data sent by 
the client prior to transmission of the out of band signal. The routine used in the 
remote login process to flush output on receipt of an interrupt or quit signal is 
shown in the following example. This code reads the nonnal data up to the mark 
(to discard it), then reads the out-of-band byte. 

Flushing Terminal 110 on Receipt of Out Of Band Data 

\. 

#include <sys/ioctl.h> 
#include <sys/file.h> 

oob () 
{ 

int out= FWRITE; 
char waste[BUFSIZ], mark; 

I* flush local terminal output * I 
ioctl(l, TIOCFLUSH, (char *)&out); 
for (;;) { 

if (ioctl(rem, SIOCATMARK, &mark) < 0) { 
perror("ioctl"); 
break; 

if (mark) 
break; 

(void) read(rem, waste, sizeof waste); 

if (recv(rem, &mark, 1, MSG_OOB) < 0) { 
perror("recv"); 

A process may also read or peek at the out-of-band data without first reading up 
to the mark. This is more difficult when the underlying protocol delivers the 
urgent data in-band with the nonnal data, and only sends notification of its pres­
ence ahead of time (e.g., the TCP protocol used to implement socket streams in 
the Internet domain). With such protocols, the out-of-band byte may not yet 
have arrived when a recv (} is done with the MSG_ OOB flag. In that case, the 
call will return an error of EWOULDBLOCK. Worse, there may be enough in­
band data in the input buffer that normal flow control prevents the peer from 
sending the urgent data until the buffer is cleared. The process must then read 
enough of the queued data that the urgent data may be delivered. 

Certain programs that use multiple bytes of urgent data and must handle multiple 
urgent signals (e.g., telnet(lC)) need to retain the position of urgent data 
within the socket stream. This treatment is available as a socket-level option, 
SO_OOBINLINE; see setsockopt (2) for usage. With this option, the posi­
tion of urgent data (the "mark") is retained, but the urgent data immediately 
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Non-Blocking Sockets 

Interrupt Driven Socket 1/0 

follows the mark within the normal data stream returned without the MSG_ OOB 
flag. Reception of multiple urgent indications causes the mark to move, but no 
out-of-band data are lost. 

It is occasionally convenient to make use of sockets that do not block; that is, 1/0 
requests that cannot complete immediately and would therefore cause the process 
to be suspended awaiting completion are not executed, and an error code is 
returned. Once a socket has been created via the socket () call, it may be 
marked as non-blocking by fcntl () as follows: 

#include <fcntl.h> 

int s; 

s = socket(AF_INET, SOCK STREAM, 0); 

if (fcntl(s, F_SETFL, FNDELAY) < 0) 
perror("fcntl F_SETFL, FNDELAY"); 
exit(l); 

When performing non-blocking 1/0 on sockets, one must be careful to check for 
the error EWOULDBLOCK (stored in the global variable errno), which occurs 
when an operation would normally block, but the socket it was performed on is 
marked as non-blocking. In particular, accept 0, connect 0, sendO, 
recvO, readO, and write () can all return EWOULDBLOCK, and processes 
should be prepared to deal with such return codes. If an operation such as a 
send () cannot be done in its entirety, but partial writes are sensible (for exam­
ple, when using a stream socket), the data that can be sent immediately will be 
processed, and the return value will indicate the amount actually sent. 

The SIGIO signal allows a process to be notified via a signal when a socket (or 
more generally, a file descriptor) has data waiting to be read. Use of the SIGIO 
facility requires three steps: First, the process must set up a SIGIO signal 
handler by use of the signal () or sigvec () calls. Second, it must set the 
process id or process group id that is to receive notification of pending input to 
its own process id, or the process group id of its process group (note that the 
default process group of a socket is group zero). This can be accomplished by 
use of an fcntl () call. Third, it must enable asynchronous notification of 
pending I/0 requests with another fen t 1 ( ) call. Sample code to allow a given 
process to receive information on pending I/0 requests as they occur for a socket 
s is given in Figure 9-5. With the addition of a handler for s IGURG, this code 
can also be used to prepare for receipt of SIGURG signals. 
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u Figure 9-5 Use of Asynchronous Notification of 1/0 Requests 

LJ Signals and Process Groups 

/ u 

#include <fcntl.h> 

int io_handler(); 

signal(SIGIO, io_handler); 

I* Set the process receiving SIG/0/SIGURG signals to us. * / 

if (fcntl(s, F_SETOWN, getpid()) < 0) { 
perror("fcntl F_SETOWN"); 
exit(l); 

I* Allow receipt of asynchronous I/0 signals. * I 

if (fcntl(s, F_SETFL, FASYNC) < 0) { 
perror("fcntl F_SETFL, FASYNC"); 
exit(l); 

Due to the existence of the SIGURG and SIGIO signals each socket has an asso­
ciated process number, just as is done for terminals. This value is initialized to 
zero, but may be redefined at a later time with the F SETOWN fcntlO, such as 
was done in the code above for s IGIO. To set the socket's process id for sig­
nals, positive arguments should be given to the fcntl () call. To set the 
socket's process group for signals, negative arguments should be passed to 
fcntlO. Note that the process number indicates either the associated process id 
or the associated process group; it is impossible to specify both at the same time. 
A similar fcntl(), F _ GETOWN, is available for determining the current process 
number of a socket. 

Note that the receipt of SIGURG and SIGIO can also be enabled by using the 
ioctl () call to assign the socket to the user's process group: 

/* oobdata is the out-of-band data handling routine * I 
signal(SIGURG, oobdata); 

int pid = -getpid(); 

if (ioctl(client, SIOCSPGRP, (char *)&pid) < 0) { 
perror("ioctl: SIOCSPGRP"); 
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Figure 9-6 

Pseudo Terminals 

Another signal that is useful when constructing server processes is s I GCHLD. 
This signal is delivered to a process when any child processes have changed 
state. Nonnally servers use the signal to "reap" child processes that have exited 
without explicitly awaiting their tennination or periodically polling for exit 
status. For example, the remote login server loop shown in Figure 9-2 may be 
augmented as shown here: 

Use of the SIGCHLD Signal 

int reaper(); 

signal(SIGCHLD, reaper); 
listen(f, 5); 
for (;;) { 

int g, len = sizeof from; 

g = accept(f, (struct sockaddr *)&from, &len,); 
if (g < 0) { 

if (errno != EINTR) 
syslog(LOG_ERR, "rlogind: accept: %m"); 

continue; 

#include <wait.h> 
reaper () 
{ 

union wait status; 

while (wait3(&status, WNOHANG, 0) > 0) 
continue; 

If the parent server process fails to reap its children, a large number of zombie 
processes may be created. 

Many programs will not function properly without a terminal for standard input 
and output. Since sockets do not provide the semantics of tenninals, it is often 
necessary to have a process communicat-ing over the network do so through a 
pseudo-terminal. A pseudo-terminal is actually a pair of devices, master and 
slave, which allow a process to serve as an active agent in communication 
between processes and users. Data written on the slave side of a pseudo-tenninal 
are supplied as input to a process reading from the master side, while data written 
on the master side are processed as tenninal input for the slave. In this way, the 
process manipulating the master side of the pseudo-terminal has control over the 
infonnation read and written on the slave side as if it were manipulating the key­
board and reading the screen on a real tenninal. The puipose of this abstraction 
is to preserve tenninal semantics over a network connection- that is, the slave 
side appears as a nonnal terminal to any process reading from or writing to it. 
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For example, the remote login seIVer uses pseudo-terminals for remote login ses­
sions. A user logging in to a machine across the network is provided a shell with 
a slave pseudo-terminal. as standard input, output, and error. The setVer process 
then handles the communication between the programs invoked by the remote 
shell and the user's local client process. When a user sends a character that gen­
erates an interrupt on the remote machine that flushes terminal output, the 
pseudo-terminal generates a control message for the setVer process. The setVer 
then sends an out of band message to the client process to signal a flush of data at 
the real terminal and on the inteIVening data buffered in the network. 

The name of the slave side of a pseudo-terminal is of the form / dev / t t yxy, 
where xis a single letter starting at 'p' and continuing to 't'. y is a hexadecimal 
digit (i.e., a single character in the range O through 9 or 'a' through 'f'). The 
master side of a pseudo-terminal is / dev / pt yxy, where x and y correspond to 
the slave side of the pseudo-terminal. 

In general, the method of obtaining a pair of master and slave pseudo-terminals is 
to find a pseudo-terminal that is not currently in use. The master half of a 
pseudo-terminal is a single-open device; thus, each master may be opened in turn 
until an open succeeds. The slave side of the pseudo-terminal is then opened, 
and is set to the proper terminal modes if necessary. The process then fork () s; 
the child closes the master side of the pseudo-terminal, and exec () s the 
appropriate program. Meanwhile, the parent closes the slave side of the pseudo­
terminal and begins reading and writing from the master side. Sample code mak­
ing use of pseudo-terminals is given in the following example. This code 
assumes that a connection on a socket s exists, connected to a peer who wants a 
setVice of some kind, and that the process has disassociated itself from any previ­
ous controlling terminal. 

Creation and Use of a Pseudo Terminal 

gotpty = O; 
for (c = 'p'; !gotpty && c <= 's'; c++) 

line= "/dev/ptyXX"; 
line[sizeof "/dev/pty" -1] = c; 
line[sizeof "/dev/ptyp" -1] = '0'; 
if (stat(line, &statbuf) < 0) 

break; 
for (i = 0; i < 16; i++) 

line[sizeof "/dev/ptyp" -1] 
= "0123456789abcdef"[i]; 

master= open(line, O_RDWR); 
if (master>= 0) { 

gotpty = 1; 
break; 

if ( ! gotpty) 
syslog(LOG_ERR, "All network ports in use"); 
exit(l); 
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line[sizeof "/dev/" -1] = 't'; 
slave = open (line, O_RDWR); /* slave is now slave side * I 
if (slave< 0) { 

syslog(LOG_ERR, "Cannot open slave pty %s", line); 
exit(l); 

ioctl (slave, TIOCGETP, &b); /* Set slave tty modes * I 
b.sg_flags = CRMODIXTABSIANYP; 
ioctl(slave, TIOCSETP, &b); 

i = fork(); 
if (i < 0) { 

syslog(LOG_ERR, "fork: %m"); 
exit(l); 

else if (i) { /* Parent */ 
close(slave); 

else { /* Child * I 
close(s); 
close(master); 
dup2(slave, 0); 
dup2(slave, 1); 
dup2(slave, 2); 
if (slave> 2) 

close(slave); 

If the third argument to the socket () call is 0, socket () will select a default 
protocol to use with the returned socket of the type requested. The default proto­
col is usually correct, and alternate choices are not usually available. However, 
when using "raw" sockets to communicate directly with lower-level protocols or 
hardware interfaces, the protocol argument may be important for setting up 
demultiplexing. For example, raw sockets in the Internet domain may be used to 
implement a new protocol above IP, and the socket will receive packets only for 
the protocol specified. To obtain a particular protocol one determines the proto­
col number as defined within the protocol domain. For the Internet domain one 
may use one of the library routines discussed in the Library Routines section 
above, such as getprotobynameO: 

#include <sys/types.h> 
#include <sys/socket.h> 
#include <netinet/in.h> 
#include <netdb.h> 

pp= getprotobyname("newtcp"); 
s = socket(AF_INET, SOCK_STREAM, pp->p_proto); 

This would result in a socket s using a stream based connection, but with 
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protocol type of "newtcp" instead of the default "tcp." 

As was mentioned in the Basics section, binding addresses to sockets in the Inter­
net domain can be fairly complex. As a brief reminder, these associations are 
composed of local and foreign addre~ses, and local and foreign ports. Port 
numbers are allocated out of separate spaces, one for each system and one for 
each domain on that system. Through the bind () system call, a process may 
specify half of an association, the <local address, local port> part, while the 
connect () and accept () primitives are used to complete a socket's associa­
tion by specifying the <foreign address ,foreign port> part. Since the associa­
tion is created in two steps the association uniqueness requirement indicated pre­
viously could be violated unless care is taken. Further, it is unrealistic to expect 
user programs to always know proper values to use for the local address and local 
port since a host may reside on multiple networks and the set of allocated port 
numbers is not directly accessible to a user. 

To simplify local address binding in the Internet domain the notion of a wildcard 
address has been provided. When an address is specified as INADDR _ ANY (a 
manifest constant defined in <netinet/ in. h>), the system inteiprets the 
address as any valid address. For example, to bind a specific port number to a 
socket, but leave the local address unspecified, the following code might be used: 
r 

#include <sys/types.h> 
#include <netinet/in.h> 

struct sockaddr_in sin; 

s = socket(AF INET, SOCK_STREAM, 0); 
sin.sin_family = AF_INET; 
sin.sin_addr.s_addr = htonl(INADDR_ANY); 
sin.sin_port = htons(MYPORT); 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

Sockets with wildcarded local addresses may receive messages directed to the 
specified port number, and sent to any of the possible addresses assigned to a 
host. For example, if a host has addresses 128.32.0.4 and 10.0.0. 78, and a socket 
is bound as above, the process will be able to accept connection requests that are 
addressed to 128.32.0.4 or 10.0.0. 78. If a server process wished to only allow 
hosts on a given network connect to it, it would bind the address of the host on 
the appropriate network. 

In a similar fashion, a local port may be left unspecified (specified as zero), in 
which case the system will select an appropriate port number for it. For example, 
to bind a specific local address to a socket, but to leave the local port number 
unspecified: 
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hp= gethostbyname(hostname); 
if (hp== NULL) { 

bcopy(hp->h_addr, (char*) sin.sin_addr, hp->h_length); 
sin.sin_port = htons(O); 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

The system selects the local port number based on two criteria. The first is that 
Internet ports below IPPORT _RESERVED (1024) are reseived for privileged 
users (i.e., the super user); Internet ports above IP PORT_ USERRESERVED 
(50000) are reseived for non-privileged seivers. The second is that the port 
number is not currently bound to some other socket. In order to find a free Inter­
net port number in the privileged range the rresvport () library routine may 
be used as follows to return a stream socket in with a privileged port number: 

int lport 
int s; 

!PP.ORT RESERVED - 1; 

s = rresvport(&lport); 
if (s < 0) { 

if (errno == EAGAIN) 
fprintf(stderr, "socket: all ports in use\n"); 

else 
perror("rresvport: socket"); 

The restriction on allocating ports was done to allow processes executing in a 
"secure" environment to perform authentication based on the originating address 
and port number. For example, the r log in ( 1 ) command allows users to log 
in across a network without being asked for a password, if two conditions hold: 
First, the name of the system the user is logging in from is in the file 
/etc/hosts. equiv on the systems/he is logging in to (or the system name 
and the user name are inthe user's . rhosts file in the user's home directory), 
and second, that the user's rlogin process is coming from a privileged port on the 
machine from which s/he is logging in. The port number and network address of 
the machine from which the user is logging in can be determined either by the 
from result of the accept () call, or from the getpeername () call. 

In certain cases the algorithm used by the system in selecting port numbers is 
unsuitable for an application. This is because associations are created in a two 
step process. For example, the Internet file transfer protocol, FfP, specifies that 
data connections must always originate from the same local port. However, 
duplicate associations are avoided by connecting to different foreign ports. In 
this situation the system would disallow binding the same local address and port 
number to a socket if a previous data connection's socket still existed. To over-

n 

ride the default port selection algorithm, an option call must be performed prior ()/ 
to address binding: . . 
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int on= 1; 

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &on, sizeof on); 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

With the above call, local addresses may be bound that are already in use. This 
does not violate the uniqueness requirement as the system still checks at connect 
time to be sure any other sockets with the same local address and port do not 
have the same foreign address and port. If the association already exists, the 
error EADDRINUSE is returned. 

By using a datagram socket, it is possible to send broadcast packets on many net­
works connected to the system. The network itself must support broadcast; the 
system provides no simulation of broadcast in software. Broadcast messages can 
place a high load on a network since they force every host on the network to ser­
vice them. Consequently, the ability to send broadcast packets has been limited 
to sockets that are explicitly marked as allowing broadcasting. Broadcast is typi­
cally used for one of two reasons: it is desired to find a resource on a local net­
work without prior knowledge of its address, or important functions such as rout­
ing require that infonnation be sent to all accessible neighbors. 

To send a broadcast message, a datagram socket should be created: 

s = socket(AF_INET, SOCK_DGRAM, 0); 

The socket is marked as allowing broadcasting, 

int on= 1; 
setsockopt(s, SOL_SOCKET, SO_BROADCAST, &on, sizeof on); 

and at least a port number should be bound to the socket: 

sin.sin_family = AF_INET; 
sin.sin_addr.s_addr = htonl(INADDR_ANY); 
sin.sin_port = htons(MYPORT); 
bind(s, (struct sockaddr *) &sin, sizeof sin); 

The destination address of the message to be broadcast depends on the 
network(s) on which the message is to be broadcast. The Internet domain sup­
ports a shorthand notation for broadcast on the local network, the address 
INADDR _ BROADCAST (defined in <netinet /in. h>. To detennine the list 
of addresses for all reachable neighbors requires knowledge of the networks to 
which the host is connected. Since this infonnation should be obtained in a 
host-independent fashion and may be impossible to derive, Sun0S provides a 
method of retrieving this infonnation from the system data structures. The 
SIOCGIFCONF ioctl call returns the interface configuration of a host in the 
fonn of a single if conf structure; this structure contains a "data area" that is 
made up of an array of of ifreq structures, one for each address domain sup­
ported by each network interface to which the host is connected. These struc­
tures are defined in <net/ if . h> as follows: 
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struct ifconf { 
int ifc_len; 
union { 

} ; 

caddr_t ifcu_buf; 
struct ifreq *ifcu_req; 

ifc_ifcu; 

I* size of associated buff er * I 

#define ifc buf ifc_ifcu.ifcu_buf /* bufferaddress */ 
#define ifc_req ifc_ifcu. ifcu_req /* array of structures returned * I 

struct ifreq { 
#define IFNAMSIZ 16 

} ; 

char ifr_name[IFNAMSIZ]; 
union { 

I* if name, e.g. "enO" * I 

struct sockaddr ifru_addr; 
struct sockaddr ifru_dstaddr; 
char ifru_oname [IFNAMSIZ]; /* other if name *I 
short ifru_flags; 
char ifru_data[l]; 

ifr_ifru; 
I* interface dependent data * I 

#define ifr addr ifr_ifru.ifru_addr /* address */ 
#define ifr dstaddr ifr_ifru.ifru_dstaddr/* otherendoflink *I ,~ 
#define ifr oname ifr_ifru. ifru_oname /* other if name * I 
#define ifr_flags ifr_ifru.ifru_flags /*flags*/ 
#define ifr data ifr ifru. ifru data /* for use by interface *ll 

The actual call that obtains the interface configuration is 
, 

struct ifconf ifc; 
char buf[BUFSIZ]; 

ifc.ifc len = sizeof buf; 
ifc.ifc_buf = buf; 
if (ioctl(s, SIOCGIFCONF, (char*) &ifc) < 0) { 

After this call bu/will contain a list of ifreq structures, one for each network to 
which the host is connected. These structures will be ordered first by interface 
name and then by supported address families. if c. if c _ len will have been 
modified to reflect the number of bytes used by the ifreq structures. 

For each structure there exists a set of "interface flags" that tell whether the net­
work corresponding to that interface is up or down, point to point or broadcast, 
etc. The SIOCGIFFLAGS ioctl retrieves these flags for an interface 
specified by an ifreq structure as follows: 
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struct ifreq *ifr; 

ifr = ifc.ifc_req; 

for (n=ifc.ifc_len/sizeof (struct ifreq); 
--n >= 0; ifr++) { 
I* 
* We must be careful that we don't use an inteiface 
* devoted to an address domain other than those intended; 
* ifwe were interested in NS interfaces, the 
* AF_INET would be AF_NS. 
*I 
if (ifr->ifr_addr.sa_family != AF_INET) 

continue; 
if (ioctl (s, SIOCGIFFLAGS, (char *) ifr) < 0) { 

I* 
* Skip boring cases 
*I 

if ((ifr->ifr_flags & IFF_UP) == 0 I I 
(ifr->ifr_flags & IFF_LOOPBACK) I I 
(ifr->ifr_flags & 
(IFF_BROADCAST I IFF_POINTTOPOINT)) 0) 
continue; 

Once the flags have been obtained, the broadcast address must be obtained. In 
the case of broadcast networks this is done via the SIOCGIFBRDADDR 
ioctl, while for point-to-point networks the address of the destination host is 
obtained with SIOCGIFDSTADDR. 

struct sockaddr dst; 

if (ifr->ifr_flags & IFF_POINTTOPOINT) 
if (ioctl(s, SIOCGIFDSTADDR, (char*) ifr) < 0) { 

bcopy((char *) ifr->ifr_dstaddr, (char*) &dst, 
sizeof ifr->ifr_dstaddr); 

else if (ifr->ifr_flags & IFF_BROADCAST) 
if (ioctl(s, SIOCGIFBRDADDR, (char*) ifr) < 0) { 

bcopy((char *) ifr->ifr_broadaddr, (char*) &dst, 
sizeof ifr->ifr_broadaddr); 

After the appropriate ioctl ()shave obtained the broadcast or destination 
address (now in dst), the sendto () call may be used: 
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n 
sendto(s, buf, buflen, O, (struct sockaddr *)&dst, sizeof dst); 

Socket Options 

In the above loop one sendto () occurs for every interface to which the host is 
connected that supports the notion of broadcast or point-to-point addressing. If a 
process only wished to send broadcast messages on a given network, code similar 
to that outlined above would be used, but the loop would need to find the correct 
destination address. 

Received broadcast messages contain the sender's address and port, as datagram 
sockets are bound before a message is allowed to go out. 

It is possible to set and get a number of options on sockets via the set­
sockopt () and getsockopt () system calls. These options include such 
things as marking a socket for broadcasting, not to route, to linger on close, etc. 
The general forms of the calls are: 

setsockopt(s, level, optname, optval, optlen); 

and 

getsockopt(s, level, optname, optval, optlen); 

The parameters to the calls are as follows: s is the socket on which the option is 
to be applied. level specifies the protocol layer on which the option is to be 
applied; in most cases this is the "socket level", indicated by the symbolic con­
stant SOL_SOCKET, defined in <sys/ socket. h>. The actual option is 
specified in optname, and is a symbolic constant also defined in 
<sys/ socket. h>. optval and optlen point to the value of the option (in most 
cases, whether the option is to be turned on or off), and the length of the value of 
the option, respectively. For getsockopt(), optlen is a value-result parameter, 
initially set to the size of the storage area pointed to by optval, and modified 
upon return to indicate the actual amount of storage used. 

An example should help clarify things. It is sometimes useful to determine the 
type (e.g., stream, datagram, etc.) of an existing socket; programs invoked by 
inetd (described below) may need to perform this task. This can be accom­
plished as follows via the SO_TYPE socket option and the getsockopt () 
call: 
r 

#include <sys/types.h> 
#include <sys/socket.h> 

int type, size; 

size= sizeof (int); 

if (getsockopt(s, SOL_SOCKET, SO_TYPE, (char*) &type, 
&size) < 0) { 

After the getsockopt () call, type will be set to the value of the socket type, 
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as defined in <sys/ socket. h>. If, for example, the socket were a datagram 
socket, type would have the value corresponding to SOCK_ DGRAM. 

One of the daemons provided with SunOS is inetd, the so called "Internet 
super-server." inetd is invoked at boot time and determines from the file 
I etc/ inetd. conf the services for which it is to listen. Once this informa­
tion has been read and a pristine environment created, inetd proceeds to create 
one socket for each service it is to listen for, binding the appropriate port number 
to each socket. 

inetd then performs a select () on all these sockets for read availability, 
waiting for somebody wishing a connection to the service corresponding to that 
socket. inetd then performs an accept () on the socket in question, 
fork () s, dup () s the new socket to file descriptors O and 1 (stdin and stdout), 
closes other open file descriptors, and exec () s the appropriate server. 

Servers.making use of inetd are considerably simplified, as inetd takes care 
. of the majority of the IPC work required in establishing a connection. The server 
invoked by inetd expects the socket connected to its client on file descriptors 0 
and 1, and may immediately perform any operations such as read(), write(), 
send(), or recv(). Indeed, servers may use buffered 1/0 as provided by the 
"stdio" conventions, as long as as they remember to use ff lush () when 
appropriate. 

One call that may be of interest to individuals writing servers to be invoked by 
inetd is the getpeername () call, which returns the address of the peer (pro­
cess) connected on the other end of the socket. For example, to log the Internet 
address in "dot notation" (e.g., "128.32.0.4") of a client connected to a server 
under inetd, the following code might be used: 

struct sockaddr_in name; 
int namelen = sizeof name; 

if (getpeername(O, 
(struct sockaddr *)&name, &namelen) < 0) { 
syslog(LOG_ERR, "getpeername: %m"); 
exit(l); 

else 
syslog(LOG INFO, "~onnection from %s", 

inet_ntoa(name.sin_addr)); 

While the getpeername () call is especially useful when writing programs to 
run with inetd, it can be used under other circumstances. Be warned, however, 
that getpeername will fail on UNIX domain sockets. ". 
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Socket-Based IPC Implementation 

Notes 

This chapter describes the internal structure of the socket-based networking facil­
ities originally developed for the 4.2BSD version of the UNIX system and subse­
quently integrated into SunOS. These facilities are based on several central 
abstractions that structure and unify the external (user) view of network com­
munication as well as the internal (system) implementation. In addition, the 
implementation introduces a structure for network communications that may be 
used by system implementors in adding new networking facilities. The internal 
structure is not visible to the user, rather it is intended to aid implementors of 
communication protocols and network services by providing a framework that 
promotes code sharing and minimizes implementation effort. 

The reader is expected to be familiar with the C programming language and sys­
tem interface, as described in the System Services Overview. Basic understand­
ing of network communication concepts is assumed; where required any addi­
tional ideas are introduced. 

The remainder of this document provides a description of the system internals, 
avoiding, when possible, overlap with the interprocess communication tutorials. 

If we consider the International Standards Organization's (ISO) Open System 
Interconnection (OSI) model of network communication [IS081] [Zimmer­
mann80], the networking facilities described here correspond to a portion of the 
session layer, all of the transport and network layers, and some datalink layers. 

The network layer provides possibly imperfect data transport services with 
minimal addressing structure. Addressing at this level is normally host to host, 
with implicit or explicit routing optionally supported by the communicating 
agents. 

At the transport layer the notions of reliable transfer, data sequencing, flow con­
trol, and service addressing are normally included. Reliability is usually 
managed by explicit acknowledgement of data delivered. Failure to ack­
nowledge a transfer results in retransmission of the data. Sequencing may be 
handled by tagging each message handed to the network layer by a sequence 
number and maintaining state at the endpoints of communication to utilize 
received sequence numbers in reordering data that arrives out of order. 

The session layer facilities may provide forms of addressing that are mapped into 
formats required by the transport layer, service authentication and client 
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Goals 

10.1. Memory, Addressing 

Address Representation 

authentication, etc. Various systems also provide seivices such as data encryp­
tion and address and protocol translation. 

The following sections begin by describing some of the common data structures 
and utility routines, then examine the internal layering. The contents of each 
layer and its interface are considered. Certain of the interfaces are protocol 
implementation specific. For these cases examples have been drawn from the 
Internet [Cerf78] protocol family. Later sections cover routing issues, the design 
of the raw socket interface, and other miscellaneous topics. 

The networking system was designed with the goal of supporting multiple proto­
col families and addressing styles. This required infonnation to be "hidden" in 
common data structures that could be manipulated by all the pieces of the sys­
tem, but that required interpretation only by the protocols that "controlled" it. 
The system described here attempts to minimize the use of shared data structures 
to those kept by a suite of protocols (aprotocolfamily), and those used for ren­
dezvous between "synchronous" and "asynchronous" portions of the system (e.g. 
queues of data packets are filled at interrupt time and emptied based on user 
requests). 

A major goal of the system was to provide a framework within which new proto­
cols and hardware could be easily be supported. To this end, a great deal of 
effort has been extended to create utility routines that hide many of the more 

() 

complex and/or hardware dependent chores of networking. Later sections ~ 

describe the utility routines and the underlying data structures they manipulate. \,, ) 

Common to all portions of the system are two data structures. These structures 
are used to represent addresses and various data objects. Addresses are internally 
described by the sockaddr structure, 
r 

'-

struct-sockaddr { 

} ; 

short 
char 

sa_family; 
sa_data[14]; 

I * address family * I 
I * up to 14 bytes of direct address * I 

All addresses belong to one or more address families which define their fonnat 
and interpretation. The s a_ family field indicates the address family to which 
the address belongs, and the s a_ data field contains the actual data value. The 
size of the data field, 14 bytes, was selected based on a study of current address 
fonnats. Specific address fonnats use private structure definitions that define the 
fonnat of the data field. The system interface supports larger address structures, 
although address-family-independent support facilities, for example routing and 
raw socket interfaces, provide only 14 bytes for address storage. Protocols that 
do not use those facilities (e.g, the current UNIX domain) may use larger data 
areas.19 

l9 Later versions of the system may support variable length addresses. 
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A single structure is used for data storage-the memory buffer, or "mbuf'. 
There are three kinds of mbufs- "small", "cluster", and "loaned". They differ 
in the policies and mechanisms by which their associated storage is allocated and 
managed. 

Smallmbufs 
Small mbufs are the fundamental type and are used both on their own and as . 
building blocks for cluster and loaned mbufs. They contain their own 
storage in the array (see below) named m_dat. That array is defined as con­
taining 112 (MLEN) bytes, so that's all the data that a small mbuf can hold. 
Small mbufs are guaranteed to start on a 128-byte boundary. The dtom 
macro, described below, works correctly only with small mbufs - mistaken 
attempts to use dtom with cluster and loaned mbufs are a common source of 
insidious error. 

Cluster mbufs 
Cluster mbufs support the storage and sharing of larger amounts of data. 
They do so by dynamically allocating storage, as necessary, from a pool of 
fixed-sized buffers called clusters. These clusters, each of which is 
MCLBYTES (lK) in size, are managed by the mbuf system itself. The mbuf 
system uses a small mbuf to refer to a given cluster by setting its m _off 
field to refer to a location in the interior (most commonly, the beginning) of 
the cluster. This combination of a small mbuf and a cluster is what consti­
tutes a cluster mbuf. 

Cluster mbufs can be shared because clusters are reference-counted. The 
routine mcldup () arranges to share an existing clustermbufby increasing 
its reference count and attaching a new small mbuf to it. Cluster mbufs 
always have theirm_cltype field set to MCL_STATIC. 

Loaned mbufs 
Loaned mbufs provide for treating storage not directly managed by the mbuf 
system in the same way as nonnal mbufs. The mbuf system uses small 
mbufs to store bookkeeping infonnation about loaned mbufs, as it does with 
cluster mbufs. With loaned mbufs, however, storage is provided by the allo­
cator, who is ultimately responsible of freeing it as well. To allocate a 
loaned mbuf, one calls mclgetx(), which takes as arguments the address of 
the buffer to be loaned, its length, a pointer to a function, and an argument to 
be passed to that function when it's called. This function is called when the 
loaned mbuf is freed, and must do whatever is necessary to clean up the 
loaned buffer. Them_ cl fun and m _ clarg fields of the mbuf structure 
record the pointer to this function and its argument. Loaned mbufs have 
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theirm_cltype field set to MCL_LOANED. 

An mbuf structure has the form: 

#define MSIZE 128 
#define MMINOFF 12 
#define MTAIL 
#define MLEN 

4 

(MSIZE-MMINOFF-MTAIL) 

struct mbuf 
struct mbuf *m_next; 
u_long m_off; 

I* next buffer in cha.in * I 
I* offset of data * I 

short m_len; I* amount of data in this mbuf * I 
/* mbuftype (0 ==free) *I short m_type; 

union 

} m_un; 

u char mun_dat [MLEN]; /* data storage* I 
struct 

short mun_cltype; /* "cluster" type*/ 
int (*mun_clfun) (); 
int mun_clarg; 
int (*mun_clswp) (); 

mun_cl; 

struct mbuf *m_act; I* link in higher-level mbuf list * I 
#define m dat mun.mun dat 
#define m_cltype m un.mun_cl.mun_cltype 
#define m_clfun m_un.mun_cl.mun_clfun 
#define m_clarg m_un.mun_cl.mun_clarg 
} ; 

The m _ next field is used to chain mbufs together on linked lists, while the 
m _act field allows lists of mbuf chains to be accumulated. By convention, the 
mbufs common to a single object (for example, a packet) are chained together 
with the m_next field, while groups of objects are linked via the m_act field 
(possibly when in a queue). 

.... 

Them_ len field indicates the amount of data, while them_ off field is an offset 
to the beginning of the data from the base of the mbuf. Thus, for example, the 
macro mt o d(), which converts a pointer to an mbuf to a pointer to the data stored 
in the mbuf, has the form 

#define mtod(x,t) ( (t) ( (int) (x) + (x) ->m_off)) 

(note the t parameter, a C type cast, which is used to cast the resultant pointer for 
proper assignment). Since a small mbuf's data always resides in the mbuf's own 
m_dat array, its m_off value is always less thanMSIZE. On the other hand, 
storage for cluster and loaned mbufs is external to the mbufs themselves, so their 
m_off values are always at leastMSIZE. The M_HASCL macro distinguishes 
these two cases and is defined as 

#define M_HASCL(m) ((m)->m_off >= MSIZE) 

AS mentioned above, the dtommacro is safe to use only ifM_HASCL evaluates 
false. 

•\sun ~ microsystems 
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The following routines and macros may be used to allocate and free mbufs: 

m = m_get{wait, type}; 
MGET{m, wait, type}; 

The subroutine m_get {} and the macro MGET {) each allocate an mbuf, 
placing its address in m. The argument wait is either M _ WAIT or 
M _ DONTWAI T according to whether allocation should block or fail if no 
mbuf is available. The type is one of the predefined mbuf types for use in 
accounting of mbuf allocation. 

MCLGET {m); 

This macro attempts to allocate an mbuf cluster to associate with the mbuf 
m. If successful, the length of the mbuf is set to MCLSIZE. The routine 
mclget {} is similar, but returns success/failure. 

mclgetx{fun, arg, addr, len, wait) 

This routine wraps the storage defined by addr and Zen with an 
MCL _ LOANED mbuf. The fun argument gives a function to be called when 
the resulting loaned mbuf is freed, and arg is a value that will be supplied to 
that function as its argument. The argument wait is either M _ WAIT or 
M _DONTWAIT according to whether allocation should block or fail ifno 
mbuf is available. 

mcldup{m, n, off); 
A duplicator for cluster and loaned mbufs, which duplicates m into n. If m is 
a cluster mbuf, mcldup {) simply bumps its reference count and ignores 
off. But if m is a loaned mbuf, me 1 du p { ) allocates a chunk of memory and 
copies it, starting at offset off. 

n = m_free {m}; 
MFREE {m, n); 

The routine m _free {) and the macro MFREE {) each free a single mbuf, 
m, and any associated external storage area, placing a pointer to its successor 
in the chain it heads, if any, in n. 

m_freem{m); 
This routine frees an mbuf chain headed by m. 

By insuring that mbufs always reside on 128 byte boundaries, it is always possi­
ble to locate the mbuf associated with a data area by masking off the low bits of 
the virtual address. This allows modules to store data structures in mbufs and 
pass them around without concern for locating the original mbuf when it comes 
time to free the structure. Note that this works only with objects stored in the 
internal data buffer of the mbuf. The dtom macro is used to convert a pointer 
into an mbuf' s data area to a pointer to the mbuf, 

#define dtom(x) ( (struct mbuf *) ( (int) x & - (MSIZE-1))) 

Mbufs are used for dynamically allocated data structures such as sockets as well 
as memory allocated for packets and headers. Statistics are maintained on mbuf 
usage and can be viewed by users using the net stat {) program. The follow­
ing utility routines are available for manipulating mbuf chains: 

.sun 
~ microsystems 
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10.2. Internal Layering 

m = m copy(mO, off, len); 
Them Copy ( ) routine create a copy Of all, Or part, Of a list Of the mbufs in 
mO. Zen bytes of data, starting off bytes from the front of the chain, are 
copied. Where possible, reference counts are manipulated in preference to 
core to core copies. The original mbuf chain must have at least off+ Zen 
bytes of data. If Zen is specified as M_COPYALL, all the data present, offset 
as before, is copied. 

m_ cat (m, n) ; 
The mbuf chain, n, is appended to the end of m. Where possible, compac­
tion is perfonned. 

m_cpytoc(m, off, len, cp) 
Copies a part of the contents of the mbuf m to the contiguous memory 
pointed to by cp, skipping the first off bytes and copying the next Zen bytes. 
It returns the number of bytes remaining in the mbuf following the portion 
copied. m is left unaltered. 

m_adj (m, diff); 
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, 
diff bytes are shaved off the front of the mbuf chain. If diff is negative, the 
alteration is perfonned from back to front. No space is reclaimed in this 
operation; alterations are accomplished by changing the m _Zen and m _ off 
fields of mbufs. 

(:-) 

m = m_pullup(mO, size); (j 
After a successful call to m _pull up(), the mbuf at the head of the returned \ 
list, m, is guaranteed to have at least size bytes of data in contiguous memory 
within the data area of the mbuf (allowing access via a pointer, obtained 
using the mt od ( ) macro, and allowing the mbuf to be located from a 
pointer to the data area using dtom, defined below). If the original data was 
less than size bytes long, Zen was greater than the size of an mbuf data area 
(112 bytes), or required resources were unavailable, m is O and the original 
mbuf chain is deallocated. 

This routine is particularly useful when verifying packet header lengths on 
reception. For example, if a packet is received and only 8 of the necessary 
16 bytes required for a valid packet header are present at the head of the list 
of mbufs representing the packet, the remaining 8 bytes may be "pulled up" 
with a single m _pull up () call. If the call fails the invalid packet will 
have been discarded. 

The internal structure of the network system is divided into three layers. These 
layers correspond to the services provided by the socket abstraction, those pro­
vided by the communication protocols, and those provided by the hardware inter­
faces. The communication protocols are nonnally layered into two or more indi­
vidual cooperating layers, though they are collectively viewed in the system as 
one layer providing services supportive of the appropriate socket abstraction. 

The following sections describe the properties of each layer in the system and the r-\ 
interfaces to which each must confonn. 1. ) 
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The socket layer deals with the intetprocess communication facilities provided 
by the system. A socket is a bidirectional endpoint of communication which is 
"typed" by the semantics of communication it supports. For more infonnation 
about the system calls used to manipulate sockets, see A Socket-Based Interpro­
cess Communications Tutorial and An Advanced Socket-Based Interprocess 
Communications Tutorial, both sections of Network Programming. 

A socket consists of the following data structure: 

struct socket { 
so_type; 
so_options; 
so_linger; 
so_state; 
so_pcb; 

I* generic type, see socket.h * I 
I* from socket call * I 
I * time to linger while closing * I 
I* internal state flags SS _ *, below * I 
I* protocol control block * I 

short 
short 
short 
short 
caddr t 
struct protosw *so_proto; I* protocol handle * I 

I* 
* Variables for connection queueing. A socket where accepts occur is so_head 
* in all subsi£!iary sockets. If so_ head is 0, the socket is not related to an 
* accept. For head socket so_ qO queues partially completed connections, while 
* so_ q is a queue of connections ready to be accepted. If a connection is 
* aborted and it has so_ head set, then it has to be pulled out of either 
* so_ qO or so_ q. We allow connections to queue up based on current 
* queue lengths and limit on number of queued connections for this socket. 
*I 

struct 
struct 
struct 
short 
short 
short 
short 

socket *so_head; 
socket *so_qO; 
socket *so_q; 
so_qOlen; 
so_qlen; 
so_qlimit; 
so_timeo; 

u short so_error; 
short so_pgrp; 
u short so_oobmark; 

I* 
* Variables for socket buffering. 
*I 

struct sockbuf so_rcv; 
struct sockbuf so_snd; 

I* 
* Hooks for alternative wakeup strategies. 

I * back pointer to accept socket * I 
I * queue of partial connections * I 
I* queue of incoming connections * I 
I* partials on so _qO * I 
I* number of connections on so_ q * I 
I* max # of queued connections * I 
I* connection timeout * I 
I* error affecting connection * I 
I* pgrp for signals * I 
I* chars to oob mark * I 

I * receive buffer * I 
I* send buffer * I 

* These are used by kernel subsystems wishing to access the socket 
* abstraction. If so_ wupf unc is nonnull, it is called in place of 
* wakeup any time that wakeup would otherwise be called with an 
* argument whose value is an address lying within a socket structure. 
*I 

struct wupalt *so_wupalt; 
} ; 

struct wupalt { 
int (*wup_func) (); 
caddr t wup_arg; 

I * function to call instead of wakeup * I 
I* argument for so_ wupfunc * I 
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Socket State 

r 

} ; 

I* Other state information here, e.g.for a stream 
* connected to a socket 
*I 

Each socket contains two send and receive data queues, so_ rev and so_ snd 
(see below for a discussion), as well as protocol infonnation, private data, error 
infonnation and pointers to routines which provide supporting services. 

The type of the socket, so_type is defined at socket creation time and used in 
selecting those services that are appropriate to support it. The supporting proto­
col is selected at socket creation time and recorded in the socket data structure 
for later use. Protocols are defined by a table of procedures, the protosw struc­
ture, which will be described in detail later. A pointer to a protocol-specific data 
structure, the "protocol control block," is also present in the socket structure. 
Protocols control this data structure, which normally includes a back pointer to 
the parent socket structure to allow easy lookup when returning infonnation to a 
user(forexample, placing anerrornumberin the so_error field). Other 
entries in the socket structure are used in queuing connection requests, validating 
user requests, storing socket characteristics (e.g. options supplied at the time a 
socket is created), and maintaining a socket's state. 

Processes "rendezvous at a socket" in many instances. For instance, when a pro­
cess wishes to extract data from a socket's receive queue and it is empty, or lacks 
sufficient data to satisfy the request, the process blocks, supplying the address of 
the receive queue as a "wait channel' to be used in notification. When data 
arrives for the process and is placed in the socket's queue, the blocked process is 
identified by the fact it is waiting "on the queue." 

A socket's state is defined from the following: 
r 

#define SS NOFDREF OxOOl I* no file table ref any more * I 
#define SS ISCONNECTED Ox002 I* socket connected to a peer * I 
#define SS ISCONNECTING Ox004 I *in process of connecting to peer* I 
#define SS ISDISCONNECTING Ox008 I* in process of disconnecting * I 
#define SS CANTSENDMORE OxOlO I* can't send more data to peer * I 
#define SS CANTRCVMORE Ox020 I* can't take more data from peer * I 
#define SS RCVATMARK Ox040 I* at mark on input * I 
#define SS PRIV Ox080 I* privileged * I 
#define SS NBIO OxlOO I* non-blocking ops * I 
#define SS ASYNC Ox200 I* async ilo notify * I 

\.. 

The state of a socket is manipulated both by the protocols and the user (through 
system calls). When a socket is created, the state is defined based on the type of 
socket. It may change as control actions are perfonned, for example connection 
establishment. It may also change according to the type of input/output the user. 
wishes to perfonn, as indicated by options set with f cntl(). "Non-blocking" 
1/0 implies that a process should never be blocked to await resources. Instead, 
any call that would block returns prematurely with the error EWOULDBLOCK, or 
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the service request (e.g. a request for more data than is present) may be only par­
tially fulfilled. 

If a process requested "asynchronous" notification of events related to the socket, 
the SIGIO signal is posted to the process when such events occur. An event is a 
change in the socket's state; examples of such occurrences are space becoming 
available in the send queue, new data available in the receive queue, connection 
establishment or disestablishment, etc. 

A socket may be marked "privileged" if it was created by the super-user. Only 
privileged sockets may bind addresses in privileged portions of an address space 
or use "raw" sockets to access lower levels of the network. 

A socket's data queue contains a pointer to the data stored in the queue and other 
entries related to the management of the data. The structure of a data queue, 
struct sockbuf,~: 

" 

struct sockbuf 
u short sb_cc; I* actual chars in buffer * I 
u short sb_hiwat; I* max actual char count * I 
u short sb_mbcnt; I* chars of mbufs used* I 
u short sb_mbmax; I* max chars ofmbufs to use*/ 
u short sb_lowat; I* low water mark (not used yet) * I 
struct mbuf *sb_mb; I * the mbuf chain * I 
struct proc *sb_sel; I* process selecting read/write * I 
short sb_timeo; I* timeout (not used yet) * I 
short sb_flags; I* flags, see below * I 

so_rcv, so snd; -
, 

Data is stored in a queue as a chain of mbufs. The actual count of data characters 
as well as high and low water marks are used by the protocols in controlling the 
flow of data. The amount of buffer space (characters ofmbufs and associated 
data clusters) is also recorded along with the limit on buffer allocation. The 
socket routines cooperate in implementing the flow control policy by blocking a 
process when it requests to send data and the high water mark has been reached, 
or when it requests to receive data and less than the low water mark is present 
(assuming non-blocking 1/0 has not been specified).2o 

A socket queue has a number of flags used in synchronizing access to the data 
and in acquiring resources: 

#define SB MAX 65535 I* max chars in sockbuf * I 
#define SB LOCK OxOl I* lock on data queue (so_rcv only)* I 
#define SB WANT Ox02 I * someone is waiting to lock * I 
#define SB WAIT Ox04 I* someone is waiting for data! space * I 
#define SB SEL Ox08 I* buffer is selected * I 
#define SB COLL OxlO I* collision selecting * I 

20 The low-water mark is always presumed to be O in the current implementation. 

-.. 
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Socket Connection Queuing 

Protocol Layer(s) 

The last two flags are manipulated by the system in implementing the select 
mechanism. 

When a socket is created, the supporting protocol "reserves" space for the send 
and receive queues of the socket. The limit on buffer allocation is set somewhat 
higher than the limit on data characters to account for the granularity of buffer 
allocation. The actual storage associated with a socket queue may fluctuate dur­
ing a socket's lifetime, but it is assumed that this reservation will always allow a 
protocol to acquire enough memory to satisfy the high water marks. 

The timeout and select values are manipulated by the socket routines in imple­
menting various portions of the intetprocess communications facilities and will 
not be described here. 

Data queued at a socket is stored in one of two styles. Stream-oriented sockets 
queue data with no addresses, headers or record boundaries. The data are in 
mbufs linked through the m_next field. Buffers containing access rights may be 
present within the chain if the underlying protocol supports passage of access 
rights. Record-oriented sockets, including datagram sockets, queue data as a list 
of packets; the sections of packets are distinguished by the types of the mbufs 
containing them. The mbufs that comprise a record are linked through the 
m _next field; records are linked from the m _act field of the first mbuf of one 
packet to the first mbuf of the next. Each packet begins with an mbuf containing 
the "from" address if the protocol provides it, then any buffers containing access 
rights, and finally any buffers containing data. If a record contains no data, no 
data buffers are required unless neither address nor access rights are present. 

In dealing with connection oriented sockets (e.g. SOCK_ STREAM) the two ends 
are considered distinct. One end is tenned active, and generates connection 
requests. The other end is called passive and accepts connection requests. 

From the passive side, a socket is marked with SO_ ACCEPTCONN when a 
listen () call is made, creating two queues of sockets: so_ qO for connections 
in progress and so_ q for connections already made and awaiting user accep­
tance. As a protocol is preparing incoming connections, it creates a socket struc­
ture queued on so_ qO by calling the routine sonewconn(). When the connec­
tion is established, the socket structure is then transferred to so_ q, making it 
available for an accept(). 

If an SO_ ACCEPTCONN socket is closed with sockets on either so_ qO or so_ q, 
these sockets are dropped, with notification to the peers as appropriate. 

Each socket is created in a communications domain, which usually implies both 
an addressing structure (address family) and a set of protocols that implement 
various socket types within the domain (protocol family). Each domain is 
defined by the following structure: 
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struct domain 

int 
char 
int 
int 
int 
struct 
struct 

} ; 
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dom_family; l*PF_xxx*/ 
*dom_name; 
( * dom _ ini t) ( ) ; / * initialize domain structures * I 
( *dom_externalize) () ; /*externalize access rights* I 
(*dom_dispose) (); l*disposeofinternalizedrights*/ 
protosw *dom_protosw, *dom_protoswNPROTOSW; 
domain *dom_next; 

At boot time, each domain configured into the kernel is added to a linked list of 
domains. The initialization procedure of each domain is then called. After that 
time, the domain structure is used to locate protocols within the protocol family. 
It may also contain procedure references for externalization of access rights at the 
receiving socket and the disposal of access rights that are not received. 

Protocols are described by a set of entry points and certain socket-visible charac­
teristics, some of which are used in deciding which socket type(s) they may sup­
port. 

An entry in the "protocol switch" table exists for each protocol module 
configured into the system. It has the following form: 

struct protosw { 

} ; 

short pr_type; 
struct domain *pr_domain; 
short pr_protocol; 
short pr_flags; 
I* protocol-protocol hooks * I 
int (*pr_input) (); 
int (*pr_output) (); 
int (*pr_ctlinput) (); 
int (*pr_ctloutput) (); 
I* user-protocol hook * I 
int (*pr_usrreq) (); 
I * utility hooks * I 
int (*pr_init) (); 
int (*pr_fasttimo) O; 
int (*pr_slowtimo) (); 
int (*pr_drain) (); 

I* socket type used for * I 
I* domain protocol a member of* I 
I* protocol number * I 
I* socket visible attributes* I 

I* input to protocol (from below) * I 
I* output to protocol (from above) * I 
I* control input (from below) * I 

I * control output (from above)* I 

I* user request * I 

I* initialization routine * I 
I* fast timeout (200ms) * I 
I* slow timeout (500ms) * I 
I * flush any excess space possible * I 

A protocol is called through the pr_ ini t entry before any other. Thereafter it 
is called every 200 milliseconds through the pr_ fasttimo entry and every 
500 milliseconds through the. pr_slowtimo for timer based actions. The sys­
tem will call the pr_drain entry ifit is low on space and this should throw 
away any non-critical data. 

Protocols pass data between themselves as chains of mbufs using the 
pr_input (} and pr_output (} routines. pr_input () passes data up 
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Network-Interface Layer 

(towards the user) and pr_output () passes it down (towards the network); 
control information passes up and down on pr_ctlinput () and 
pr_ ctloutput(). The protocol is responsible for the space occupied by any 
of the arguments to these entries and must either pass it onward or dispose of it. 
(On output, the lowest level reached must free buffers storing the arguments; on 
input, the highest level is responsible for freeing buffers.) 

The pr_ usrreq () routine interfaces protocols to the socket code and is 
described below. 

The pr_flags field is constructed from the following values: 

#define PR ATOMIC OxOl I * exchange atomic messages only * I 
#define PR ADDR Ox02 I* addresses given with messages * I 
#define PR_CONNREQUIRED Ox04 I* connection required by protocol * I 
#define PR WANTRCVD Ox08 I* want PRU_ RCVD calls * I 
#define PR RIGHTS OxlO I* passes capabilities * I 

Protocols that are connection-based specify the PR_ CONNREQUIRED flag so 
that the socket routines will never attempt to send data before a connection has 
been established. If the PR_ WANTRCVD flag is set, the socket routines will 
notify the protocol when the user has removed data from the socket's receive 
queue. This allows the protocol to implement acknowledgement on user receipt, 
and also update windowing information based on the amount of space available 
in the receive queue. The PR_ ADDR field indicates that any data placed in the 
socket's receive queue will be preceded by the address of the sender. The 

, 

PR_ ATOMIC flag specifies that each user request to send data must be performed 
in a single protocol send request; it is the protocol's responsibility to maintain 
record boundaries on data to be sent. The PR_ RIGHTS flag indicates that the 
protocol supports the passing of capabilities; this is currently used only by the 
protocols in the UNIX protocol family. 

When a socket is created, the socket routines sc:an the protocol table for the 
domain looking for an appropriate protocol to support the type of socket being 
created. The pr_ type field contains one of the possible socket types (e.g. 
SOCK_ STREAM), while the pr_ domain is a back pointer to the domain struc­
ture. The pr_protocol field contains the protocol number of the protocol, 
normally a well-known value. 

n 
' I / 

n 
\ j 

Each network-interface configured into a system defines a path through which 
packets may be sent and received. Normally a hardware device is associated 
with this interface, though there is no requirement for this (for example, all sys­
tems have a software "loopback" interface used for debugging and performance 
analysis). In addition to manipulating the hardware device, an interface module 
is responsible for encapsulation and decapsulation of any link-layer header infor­
mation required to deliver a message to its destination. The selection of which 
interface to use in delivering packets is a routing decision carried out at a higher 
level than the network-interface layer. An interface may have addresses in one or 
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family, after verifying the operation through the device ioctl (} entry. 

An interface is defined by the following structure, 
r 

struct ifnet { 
char 
short 
short 
short 

*if_name; 
if_unit; 
if_mtu; 
if_flags; 

short if_timer; 

I* name, e.g. "en" or "lo" * I 
I* sub-unit for lower level driver * I 
I* maximum transmission unit * I 
/* up/down, broadcast, etc. * I 
I* time 'til if_ watchdog called * I 

u short if_promisc; 
int if_metric; 

I* # of requests for promiscuous mode * I 
I* routing metric ( external only) * I 
I* linked list of addresses per if* I struct ifaddr *if_addrlist; 

struct ifqueue { 
struct mbuf *ifq_head; 
struct mbuf *ifq_tail; 
int ifq_len; 
int ifq_maxlen; 
int ifq_drops; 

if_snd; 
I * procedure handles * I 

int (*if_init) (); 
int (*if_output) (); 
int (*if_ioctl) (); 
int (*if_reset) (); 
int (*if_watchdog) (); 

I * generic inter/ ace statistics * I 
int if_ipackets; 
int if_ierrors; 
int if_opackets; 
int if_oerrors; 
int if_collisions; 

I * end statistics * I 
struct ifnet *if_next; 
struct ifnet *if_upper; 
struct ifnet *if_lower; 
int (*if_input) (); 
int (*if_ctlin) (); 
int (*if_ctlout) (); 

:/tifdef sun 

I* output queue * I 

I* init routine * I 
I * output routine * I 
I* ioctl routine * I 
I * bus reset routine * I 
I * timer routine * I 

I * packets received on interface * I 
I* input errors on interface * I 
I * packets sent on interface * I 
I* output errors on interface * I 
I* collisions on csma interfaces * I 

I* next layer up * I 
I* next layer down * I 
I * input routine * I 
I* control input routine * I 
I* control output routine * I 

struct map *if _memmap; /* rmapfor interface specific memory * I 
:/tendif 

} ; 

Each interface address has the following fonn: 

struct ifaddr 
struct 
union { 

struct 
struct 

ifa_ifu; 

sockaddr ifa_addr; I* address of interface * I 

sockaddr ifu_broadaddr; 
sockaddr ifu_dstaddr; 
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} ; 

struct 
struct 

ifnet *ifa_ifp; 
ifaddr *ifa next; 

I* back-pointer to inter/ ace * I 
I * next address for interface * I 

#define ifa broadaddr ifa ifu.ifu broadaddr l*brdcastaddress*/ 
#define ifa=dstaddr ifa_ifu. ifu_d;taddr / *other end of link* I 

The protocol generally maintains this structure as part of a larger structure con­
taining additional information concerning the address. 

Each interface has a send queue and routines used for initialization (if_ ini t), 
input (if _input), and output (if _output). If the interface resides on a sys­
tem bus, the routine if_ reset will be called after a bus reset has been per­
formed. An interface may also specify a timer routine, if watchdog; if 
if _timer is non-zero, it is decremented once per second until it reaches zero, 
at which time the watchdog routine is called. 

The state of an interface and certain characteristics are stored in the if_flags 
field. The following values are possible: 

#define IFF UP Oxl I* interface is up * I 
#define IFF BROADCAST Ox2 I* broadcast is possible * I 
#define IFF DEBUG Ox4 I* turn on debugging * I 
#define IFF LOOPBACK Ox8 I * is a loopback net * I 
#define IFF POINTOPOINT OxlO I* interface is point-to-point link * I 
#define IFF NOTRAILERS Ox20 I* avoid use of trailers * I 
#define IFF RUNNING Ox40i I* resources allocated * I 
#define IFF NOARP Ox80 I* no address resolution protocol */ 
#define IFF PROMISC OxlOO I* receive all packets * I 
#define IFF ALLMULTI Ox200 I* receive all multicast packets * I 

If the interface is connected to a network that supports transmission of broadcast 
packets, the IFF _ BROADCAST flag will be set and the if a_ broadaddr field 
will contain the address to be used in sending or accepting a broadcast packet. If 
the interface is associated with a point-to-point hardware link (for example, 
Sunlink/INR), the IFF_POINTOPOINT flag will be set and ifa_dstaddr 
will contain the address of the host on the other side of the connection. These 
addresses and the local address of the interface, if_ addr, are used in filtering 
incoming packets. The interface sets IFF _ RUNNING after it has allocated sys­
tem resources and posted an iajtial read on the device it manages. This state bit 
is used to avoid multiple allocation requests when an interface's address is 
changed. The IFF _ NOTRAI LERS flag indicates the interface should refrain 
from using a trailer encapsulation on outgoing packets, or (where per-host nego­
tiation of trailers is possible) that trailer encapsulations should not be requested; 
trailer protocols are described in section 14. The IFF _ NOARP flag indicates the 
interface should not use an "address resolution protocol" in mapping internet­
work addresses to local network addresses. The IFF PROMISC bit is set when 
the interface is in promiscuous mode, indicating that it should receive all incom­
ing packets regardless of their intended destination. 

Various statistics are also stored in the interface structure. These may be viewed 
by users using the netstat (1) program. 
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The interface address and flags may be set with the s I ocs IF AD DR and s I oc­
S IFFLAGS ioctls. SIOCSIFADDR is used initially to define each 
interface's address; SIOGSIFFLAGS can be used to mark an interface down and 
perfonn site-specific configuration. The destination address of a point-to-point 
link is set with SIOCSIFDSTADDR. Corresponding operations exist to read 
each value. Protocol families may also support operations to set and read the 
broadcast address. The SIOCADDMULTI and SCIODELMULTI ioctls may 
be used to add and remove multicast addresses from the set that the interface 
accepts. In addition, the SIOCGIFCONF ioctl retrieves a list of interface 
names and addresses for all interfaces and address families on the host. 

The interface between the socket routines and the communication protocols is 
through the pr_ usrreq (} routine defined in the protocol switch table. The 
following requests to a protocol module are possible: 
r 

#define PRU ATTACH 0 I* attach protocol * I 
#define PRU DETACH 1 I* detach protocol * I 
#define PRU BIND 2 I* bind socket to address * I 
#define PRU LISTEN 3 I* listen for connection * I 
#define PRU CONNECT 4 I* establish connection to peer * I 
#define PRU ACCEPT 5 I* accept connection from peer * I 
#define PRU DISCONNECT 6 I* disconnect from peer * I 
#define PRU SHUTDOWN 7 I* won't send any more data * I 
#define PRU RCVD 8 I* have taken data; more room now * I 
#define PRU SEND 9 I * send this data * I 
#define PRU ABORT 10 I* abort (fast DISCONNECT, DETATCH) * I 
#define PRU CONTROL 11 I * control operations on protocol * I 
#define PRU SENSE 12 I * return status into m * I 
#define PRU RCVOOB 13 I* retrieve out of band data * I 
#define PRU SENDOOB 14 I* send out of band data * I 
tdefine PRU SOCKADDR 15 I* fetch socket's address * I 
#define PRU PEERADDR 16 I* fetch peer's address * I 
#define PRU CONNECT2 17 I* connect two sockets * I 
I* begin for protocol's internal use * I 
#define PRU FASTTIMO 18 I* 200ms timeout * I 
#define PRU SLOWTIMO 19 I* 500ms timeout * I 
#define PRU PROTORCV 20 I* receive from below * I 
#define PRU PROTOSEND 21 I* send to below * I 

A call on the user request routine is of the fonn, 

\. 

error= (*protosw[] .pr_usrreq) (so, req, m, addr, rights); 
int error; 
struct socket *so; int req; 
struct mbuf *m, *addr, *rights; 

The mbuf data chain m is supplied for output operations and for certain other 
operations where it is to receive a result. The address addr is supplied for 
address-oriented requests such as PRU_ BIND and PRU_ CONNECT. The rights 
parameter is an optional pointer to an mbuf chain containing user-specified 
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capabilities (see the sendmsg () and recvmsg () system calls). The protocol 
is responsible for disposal of the data mbuf chains on output operations. A non­
zero return value gives a UNIX error number that should be passed to higher 
level software. The following paragraphs describe each of the requests possible. 

PRU ATTACH· 
When a protocol is bound to a socket (with the socket () system call) the 
protocol module is called with this request. It is the responsibility of the 
protocol module to allocate any resources necessary. The "attach" request 
will always precede any of the other requests, and should not occur more 
than once. 

PRU DETACH 
This is the antithesis of the attach request, and is used at the time a socket is 
deleted. The protocol module may deallocate any resources assigned to the 
socket. 

PRU BIND 
When a socket is initially created it has no address bound to it. This request 
indicates that an address should be bound to an existing socket. The proto­
col module must verify that the requested address is valid and available for 
use. 

PRU LISTEN 
The "listen" request indicates the user wishes to listen for incoming connec­
tion requests on the associated socket. The protocol module should perfonn 
any state changes needed to carry out this request (if possible). A "listen" 
request always precedes a request to accept a connection. 

PRU CONNECT 
The "connect" request indicates the user wants to a establish an association. 
The addr parameter supplied describes the peer to be connected to. The 
effect of a connect request may vary depending on the protocol. Virtual cir­
cuit protocols, such as TCP [Postel81 b], use this request to initiate establish­
ment of a TCP connection. Datagram protocols, such as UDP [Postel80], 
simply record the peer's address in a private data structure and use it to tag 
all outgoing packets. There are no restrictions on how many times a connect 
request may be used after an attach. If a protocol supports the notion of 
multi-casting, it is possible to use multiple connects to establish a multi-cast 
group. Alternatively, an association may be broken by a 
PRU_DISCONNECT request, and a new association created with a subse­
quent connect request; all without destroying and creating a new socket. 

PRU ACCEPT 
Following a successful PRU_LISTEN request and the arrival of one or more 
connections, this request is made to indicate the user has accepted the first 
connection on the queue of pending connections. The protocol module 
should fill in the supplied address buffer with the address of the connected 
party. 

PRU DISCONNECT 
Eliminate an association created with a PRU_ CONNECT request. 
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PRU SHUTDOWN 
This call is used to indicate no more data will be sent and/or received (the 
addr parameter indicates the direction of the shutdown, as encoded in the 
soshutdown () system call). The protocol may, at its discretion, deallo­
cate any data structures related to the shutdown and/or notify a connected 
peer of the shutdown. 

PRU RCVD 
This request is made only if the protocol entry in the protocol switch table 
includes the PR_ WANTRCVD flag. When a user removes data from the 
receive queue this request will be sent to the protocol module. It may be 
used to trigger acknowledgements, refresh windowing information, initiate 
data transfer, etc. 

PRU SEND 
Each user request to send data is translated into one or more PRU_ SEND 
requests (a protocol may indicate that a single user send request must be 
translated into a single PRU_SEND request by specifying the PR_ATOMIC 
flag in its protocol description). The data to be sent is presented to the proto­
col as a list of mbufs, and an address is, optionally, supplied in the addr 
parameter. The protocol is responsible for preserving the data in the 
socket's send queue if it is not able to send it immediately, or ifit may need 
it at some later time (e.g. for retransmission). 

PRU ABORT 
This request indicates an abnormal termination of service. The protocol 
should delete any existing association(s). 

PRU CONTROL 
The "control" request is generated when a user performs a UNIX ioctl () 
system call on a socket (and the ioctl is not intercepted by the socket rou­
tines). It allows protocol-specific operations to be provided outside the 
scope of the common socket interface. The addr parameter contains a 
pointer to a static kernel data area where relevant infonnation may be 
obtained or returned. The m parameter contains the actual i o ct 1 ( ) 
request code (note the non-standard calling convention). The rights parame­
ter contains a pointer to an if net structure if the ioctl () operation per­
tains to a particular network interface. 

PRU SENSE 
The "sense" request is generated when the user makes an f stat () system 
call on a socket; it requests status of the associated socket. This currently 
returns a standard stat () structure. It typically contains only the optimal 
transfer size for the connection (based on buffer size, windowing informa­
tion and maximum packet size). Them parameter contains a pointer to a 
static kernel data area where the status buffer should be placed. 

PRU RCVOOB 
Any "out-of-band" data presently available is to be returned. An mbuf is 
passed to the protocol module, and the protocol should either place data in 
the mbuf or attach new mbufs to the one supplied if there is insufficient 
space in the single mbuf. An error may be returned if out-of-band data is not 
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(yet) available or has already been consumed. The addr parameter contains 
any options such as MSG_PEEK to examine data without consuming it. 

PRU SENDOOB 
Like PRU_SEND, but for out-of-band data. 

PRU SOCKADDR 
The local address of the socket is returned, if any is currently bound to it. 
The address (with protocol specific format) is returned in the addr parame­
ter. 

PRU PEERADDR 
The address of the peer to which the socket is connected is returned. The 
socket must be in a SS_ISCONNECTED state for this request to be made to 
the protocol. The address format (protocol specific) is returned in the addr 
parameter. 

PRU CONNECT2 
The protocol module is supplied two sockets and requested to establish a 
connection between the two without binding any addresses, if possible. This 
call is used in implementing the socket pair ( 2) system call. 

The following requests are used internally by the protocol modules and are never 
generated by the socket routines. In certain instances, they are handed to the 
pr_ usrreq routine solely for convenience in tracing a protocol's operation 
(e.g. PRU_ SLOWTIMO). 

PRU FASTTIMO 
A "fast timeout" has occurred. This request is made when a timeout occurs 
in the protocol's pr_ fast imo routine. The addr parameter indicates 
which timer expired. 

PRU SLOWTIMO 
A "slow timeout" has occurred. This request is made when a timeout occurs 
in the protocol's pr_ s lowt imo ( ) routine. The addr parameter indicates 
which timer expired. 

PRU PROTORCV 
This request is used in the protocol-protocol interface, not by the routines. It 
requests reception of data destined for the protocol and not the user. No pro­
tocols currently use this facility. 

PRU PROTOSEND 
This request allows a protocol to send data destined for another protocol 
module, not a user. The details of how data is marked "addressed to proto­
col" instead of "addressed to user" are left to the protocol modules. No pro­
tocols currently use this facility. 

The interface between protocol modules is through the pr_ usrreq(), 
pr_input(), pr_output(), pr_ctlinput(), and pr_ctloutput () rou­
tines. The calling conventions for all but the pr_ usrreq () routine are 
expected to be specific to the protocol modules and are not guaranteed to be con­
sistent across protocol families. We will examine the conventions used for some 
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of the Internet protocols in this section as an example. 

The Internet protocol UDP uses the convention, 

error= udp_output(inp, m); 
int error; 
struct inpcb *inp; 
struct mbuf *m; 

where the inp, "internet protocol control block", passed between modules con­
veys per connection state information, and the mbuf chain contains the data to be 
sent. UDP performs consistency checks, appends its header, calculates a check­
sum, etc. before passing the packet on. UDP is based on the Internet Protocol, IP 
[Postel8la], as its transport. UDP passes a packet to the IP module for output as 
follows: 

error= ip_output(m, opt, ro, flags); 
int error; 
struct mbuf *m, *opt; 
struct route *ro; int flags; 

The call to IP's output routine is more complicated than that for UDP, as befits 
the additional work the IP module must do. The m parameter i~ the data to be 
sent, and the opt parameter is an optional list of IP options which should be 
placed in the IP packet header. The ro parameter is is used in making routing 
decisions (and passing them back to the caller for use in subsequent calls). The 
final parameter, flags, contains flags indicating whether the user is allowed to 
transmit a broadcast packet and if routing is to be performed. The broadcast flag 
may be inconsequential if the underlying hardware does not support the notion of 
broadcasting. 

All output routines return O on success and a UNIX error number if a failure 
occurred that could be detected immediately (no buffer space available, no route 
to destination, etc.). 

Both UDP and TCP use the following calling convention, 

(void) (*protosw[] .pr_input) (m, ifp); 
struct mbuf *m; 
struct ifnet *ifp; 

Each mbuf list passed is a single packet to be processed by the protocol module. 
The interface from which the packet was received is passed as the second param­
eter. 

The IP input routine is a software interrupt level routine, and so is not called with 
any parameters. It instead communicates with network interfaces through a 
queue, ipintrq, which is identical in structure to the queues used by the net­
work interfaces for storing packets awaiting transmission. The software interrupt 
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pr_ct1input () 

pr_ct1output () 

is enabled by the network interfaces when they place input data on the input 
queue. 

This routine is used to convey "control" information to a protocol module (i.e. 
information that might be passed to the user, but is not data). 

The common calling convention for this routine is, 

(void) (*protosw[] .pr_ctlinput) (req, addr); 
int req; 
struct sockaddr *addr; 

The req parameter is one of the following, 

:/f:define PRC IFDOWN 0 I * inteif ace transition * I 
:/f:define PRC ROUTEDEAD 1 I* select new route if possible * I 
#define PRC_QUENCH 4 I* some said to slow down * I 
#define PRC MSGSIZE 5 I* message size forced drop * I 
#define PRC HOSTDEAD 6 I* normally from IMP * I 
#define PRC HOSTUNREACH 7 /*ditto* I 
#define PRC UNREACH NET 8 I* no route to network * I - -
#define PRC UNREACH HOST 9 I* no route to host * I - -
#define PRC UNREACH PROTOCOL 10 I* dst says bad protocol * I - -
#define PRC UNREACH PORT 11 I* bad port # * I - -
#define PRC UNREACH NEEDFRAG 12 I* IP _DF caused drop * I - -
#define PRC UNREACH SRCFAIL 13 I* source route failed * I - -
#define PRC REDIRECT NET 14 I* net routing redirect * I - -
#define PRC REDIRECT HOST 15 I * host routing redirect * I - -
#define PRC REDIRECT TOSNET 16 I* redirect for type & net * I - -
#define PRC REDIRECT TOSHOST 17 I* redirect for tos & host * I 
#define PRC TIMXCEED INTRANS 18 I * packet expired in transit * I 
:/f:define PRC TIMXCEED REASS 19 I* lifetime expired on reass q * I - -
#define PRC PARAMPROB 20 I * header incorrect * I 

while the addr parameter is the address to which the condition applies. Many of 
the requests have obviously been derived from ICMP (the Internet Control Mes­
sage Protocol [Postel81 c ]), and from error messages defined in the 1822 
host/IMP convention [BBN78]. Mapping tables exist to convert control requests 
to UNIX error codes that are delivered to a user. 

This is the routine that implements per-socket options at the protocol level for 
getsockopt () and setsockopt(). The calling convention is, 

\. 

error= (*protosw[] .pr_ctloutput) (op,so,level,optnarne,rnp); 
int op; 
struct socket *so; 
int level, optnarne; 
struct rnbuf **mp; 

where op is one of PRCO_SETOPT or PRCO_GETOPT, so is the socket whence 
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the call originated, and level and optname are the protocol level and option 
name supplied by the user. The results of a PRCO _ GETOPT call are returned in 
an mbufwhose address is placed in mp before return. On a PRCO_SETOPT call, 
mp contains the address of an mbuf containing the option data; the mbuf should 
be freed before return. 

The lowest layer in the set of protocols that comprise a protocol family must 
interface itself to one or more network interfaces in order to transmit and receive 
packets. It is assumed that any routing decisions have been made before handing 
a packet to a network interface; in fact this is absolutely necessary in order to 
locate any interface at all (unless, of course, one uses a single "hardwired" inter­
face). There are two cases with which to be concerned, transmission of a packet 
and receipt of a packet; each will be considered separately. 

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it 
transmits a fully fonnatted packet with the following call, 
r 

error= (*ifp->if_output) (ifp, m, dst) 
int error; 
struct ifnet *ifp; 
struct mbuf *m; 
struct sockaddr *dst; 

The output routine for the network interface transmits the packet m to the dst 
address, or returns an error indication (a UNIX error number). In reality 
transmission may not be immediate or successful; normally the output routine 
simply queues the packet on its send queue and primes an interrupt driven rou­
tine to actually transmit the packet. For unreliable media, such as the Ethernet, 
"successful" transmission simply means that the packet has been placed on the 
cable without a collision. On the other hand, an 1822 interface guarantees proper 
delivery or an error indication for each message transmitted. The model 
employed in the networking system attaches no promises of delivery to the pack­
ets handed to a network interface, and thus corresponds more closely to the Eth­
ernet. Errors returned by the output routine are only those that can be detected 
immediately, and are normally trivial in nature (no buffer space, address fonnat 
not handled, etc.). No indication is received if errors are detected after the call 
has returned. 

Each protocol family must have one or more "lowest level" protocols. These 
protocols deal with internetwork addressing and are responsible for the delivery 
of incoming packets to the proper protocol processing modules. In the PUP 
model [Boggs78] these protocols are tenned Level 1 protocols, in the ISO model, 
network layer protocols. In this system each such protocol module has an input 
packet queue assigned to it. Incoming packets received by a network interface 
are queued for the protocol module, and a software interrupt is posted to initiate 
processing. 

Three macros are available for queuing and dequeuing packets: 
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IF_ENQUEUE(ifq, m) 
This places the packet m at the tail of the queue if q. 

IF DEQUEUE(ifq, m) 
- This places a pointer to the packet at the head of queue if q in m and removes 

the packet from the queue. A zero value will be returned in m if the queue is 
empty. 

IF DEQUEUEIF(ifq, m, ifp) 
- Like IF _DEQUEUE, this removes the next packet from the head of a queue 

and returns it in m. A pointer to the interface on which the packet was 
received is placed in ifp, a (struct if net *). 

IF_PREPEND(ifq, m) 
This places the packet m at the head of the queue ifq. 

Each queue has a maximum length associated with it as a simple form of conges­
tion control. The macro IF _QFULL ( ifq) returns 1 if the queue is filled, in 
which case the macro IF _DROP (ifq) should be used to increment the count of 
the number of packets dropped, and the offending packet is dropped. For exam­
ple, the following code fragment is commonly found in a network interface's 
input routine, 

if (IF_QFULL(inq)) 
IF_DROP(inq); 
m_freem(m); 

else 
IF_ENQUEUE(inq, m); 

The system has been designed with the expectation that it will be used in an 
internetwork environment. The "canonical" environment was envisioned to be a 
collection of local area networks connected at one or more points through hosts 
with multiple network interfaces (one on each local area network), and possibly a 
connection to a long haul network (for example, the ARP ANET). In such an 
environment, issues of gatewaying and packet routing become very important. 
Certain of these issues, such as congestion control, have been handled in a 
simplistic manner or specifically not addressed. Instead, where possible, the net­
work system attempts to provide simple mechanisms upon which more involved 
policies may be implemented. As some of these problems become better under­
stood, the solutions developed will be incorporated into the system. 

This section will describe the facilities provided for packet routing. The simplis­
tic mechanisms provided for congestion control are described in the Buffering, 
Congestion Control section below. 

The network system maintains a set of routing tables for selecting a network 
interface to use in delivering a packet to its destination. These tables are of the 
form: 

4)\sun 
~ microsystems 
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struct rtentry { 
u_long rt_hash; 

} ; 

struct sockaddr rt_dst; 
struct 
short 
short 
u_long 
struct 

sockaddr rt_gateway; 
rt_flags; 
rt_refcnt; 
rt_use; 
ifnet *rt_ifp; 

I* hash key for lookups * I 
I* destination net or host * I 
I* forwarding agent * I 
I* see below* I 
I * # of references to structure * I 
I* packets sent using route * I 
I* interface to give packet to * I 

The routing information is organized in two separate tables, one for routes to a 
host and one for routes to a network. The distinction between hosts and networks 
is necessary so that a single mechanism may be used for both broadcast and 
multi-drop type networks, and also for networks built from point-to-point links. 

Each table is organized as a hashed set of linked lists. Two 32-bit hash values 
are calculated by routines defined for each address family; one based on the des­
tination being a host, and one assuming the target is the network portion of the 
address. Each hash value is used to locate a hash chain to search (by taking the 
value modulo the hash table size) and the entire 32-bit value is then used as a key 
in scanning the list of routes. Lookups are applied first to the routing table for 
hosts, then to the routing table for networks. If both lookups fail, a final lookup 
is made for a "wildcard" route (by convention, network 0). The first appropriate 
route discovered is used. By doing this, routes to a specific host on a network 
may be present as well as routes to the network. This also allows a "fall back" 
network route to be defined to a "smart" gateway which may then perform more 
intelligent routing. 

Each routing table entry contains a destination (the desired final destination), a 
gateway to which to send the packet, and various flags which indicate the route's 
status and type (host or network). A count of the number of packets sent using 
the route is kept, along with a count of "held references" to the dynamically allo­
cated structure to insure that memory reclamation occurs only when the route is 
not in use. Finally, a pointer to the a network interface is kept; packets sent using 
the route should be handed to this interface. 

Routes are typed in two ways: either as host or network, and as "direct" or 
"indirect". The host/network distinction determines how to compare the 
rt_dst field during lookup. If the route is to a network, only a packet's desti­
nation network is compared to the rt_dst entry stored in the table. If the route 
is to a host, the addresses must match bit for bit. 

The distinction between "direct" and "indirect" routes indicates whether the des­
tination is directly connected to the source. This is needed when performing 
local network encapsulation. If a packet is destined for a peer at a host or net­
work which is not directly connected to the source, the internetwork packet 
header wip. contain the address of the eventual destination, while the local net­
work header will address the inteivening gateway. Should the destination be 
directly connected, these addresses are likely to be identical, or a mapping 
between the two exists. The RTF_ GATEWAY flag indicates that the route is to an 
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Routing Table Interface 

"indirect" gateway agent, and that the local network header should be filled in 
from the rt_gateway field instead of from the final internetwork destination 
address. 

It is assumed that multiple routes to the same destination will not be present; 
only one of multiple routes, that most recently installed, will be used. 

Routing redirect control messages are used to dynamically modify existing rout­
ing table entries as well as dynamically create new routing table entries. On 
hosts where exhaustive routing information is too expensive to maintain (e.g. 
work stations), the combination of wildcard routing entries and routing redirect 
messages can be used to provide a simple routing management scheme without 
the use of a higher level policy process. Current connections may be rerouted 
after notification of the protocols by means of their pr_ ctlinput () entries. 
Statistics are kept by the routing table routines on the use of routing redirect mes­
sages and their affect on the routing tables. These statistics may be viewed using 
.net stat (1) 

Status information other than routing redirect control messages may be used in 
the future, but at present they are ignored. Likewise, more intelligent "metrics" 
may be used to describe routes in the future, possibly based on bandwidth and 
monetary costs. 

A protocol accesses the routing tables through three routines, one to allocate a 
route, one to free a route, and one to process a routing redirect control message. 
The routine rtalloc () performs route allocation; it is called with a pointer to 
the following structure containing the desired destination: 

struct route { 
struct rtentry *ro_rt; 
struct sockaddr ro_dst; 

} ; 

The route returned is assumed "held" by the caller until released with an 
rt free () call. Protocols which implement virtual circuits, such as TCP, hold 
onto routes for the duration of the circuit's lifetime, while connection-less proto­
cols, such as UDP, allocate and free routes whenever their destination address 
changes. 

The routine rtredirect () is called to process a routing redirect control mes­
sage. It is called with a destination address, the new gateway to that destination, 
and the source of the redirect. Redirects are accepted only from the current 
router for the destination. If a non-wildcard route exists to the destination, the 
gateway entry in the route is modified to point at the new gateway supplied. Oth­
erwise, a new routing table entry is inserted reflecting the information supplied. 
Routes to interfaces and routes to gateways which are not directly accessible 
from the host are ignored. 
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Routing policies implemented in user processes manipulate the kernel routing 
tables through two ioctl () calls. The commands SIOCADDRT and sroc­
DELRT add and delete routing entries, respectively; the tables are read through 
the /dev /kmem device. The decision to place policy decisions in a user process 
implies that routing table updates may lag a bit behind the identification of new 
routes, or the failure of existing routes, but this period of instability is nonnally 
very small with proper implementation of the routing process. Advisory infor­
mation, such as ICMP error messages and IMP diagnostic messages, may be read 
from raw sockets ( described in the next section). 

Several routing policy processes have already been implemented. The system 
standard "routing daemon" uses a variant of the Xerox NS Routing lnfonnation 
Protocol [Xerox82] to maintain up-to-date routing tables in our local environ­
ment. Interaction with other existing routing protocols, such as the Internet EGP 
(Exterior Gateway Protocol), has been accomplished using a similar process. 

A raw socket is an object that allows users direct access to a lower-level protocol. 
Raw sockets are intended for knowledgeable processes that wish to take advan­
tage of some protocol feature not directly accessible through the normal inter­
face, or for the development of new protocols built atop existing lower level pro­
tocols. For example, a new version of TCP might be developed at the user level 
by utilizing a raw IP socket for delivery of packets. The raw IP socket interface 
attempts to provide an identical interface to the one a protocol would have if it 
were resident in the kernel. 

The raw socket support is built around a generic raw socket interface, (possibly) 
augmented by protocol-specific processing routines. This section will describe 
the core of the raw socket interface. 

Every raw socket has a protocol control block of the following fonn: 

struct rawcb { 

} ; 

struct 
struct 
struct 
struct 
struct 
struct 
caddr t 
struct 
struct 
int 
int 
short 

rawcb *rcb_next; 
rawcb *rcb_prev; 
socket *rcb_socket; 
sockaddr rcb_faddr; 
sockaddr rcb_laddr; 
sockproto rcb_proto; 
rcb_pcb; 
mbuf *rcb_options; 
route rcb_route; 
rcb_cc; 
rcb_mbcnt; 
rcb_flags; 

I* doubly linked list * I 

I* back pointer to socket * I 
I* destination address * I 
I* socket's address * I 
I* protocol family, protocol* I 
I * protocol specific stuff* I 
I * protocol specific options * I 
I * routing information * I 
I* bytes of rawintr queued data* I 
I* bytes of rawintr queued mbufs* I 

All the control blocks are kept on a doubly linked list for perfonning lookups 
during packet dispatch. Associations may be recorded in the control block and 
used by the output routine in preparing packets for transmission. The 
rcb _proto structure contains the protocol family and protocol number with 
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Input Processing 

which the raw socket is associated. The protocol, family, and addresses are used 
to filter packets on input; this will be described in more detail shortly. If any 
protocol-specific infonnation is required, it may be attached to the control block 
using the rcb _pcb field. Protocol-specific options for transmission in outgoing 
packets may be stored in rcb_options. rcb_cc and rcb_mbcnt are used 
to keep track of the resources consumed by the raw socket. 

A raw socket interface is datagram oriented. That is, each send or receive on the 
socket requires a destination address. This address may be supplied by the user 
or stored in the control block and automatically installed in the outgoing packet 
by the output routine. Since it is not possible to detennine whether an address is 
present or not in the control block, two flags, RAW_ LADDR and RAW_FADDR, 

indicate if a local and foreign address are present. Routing is expected to be per­
fonned by the underlying protocol if necessary. 

Input packets are "assigned" to raw sockets based on a simple pattern matching 
scheme. Each network interface or protocol gives unassigned packets to the raw 
input routine with the call: 

raw_input(m, proto, src, dst) 
struct mbuf *m; 
struct sockproto *proto; 
struct sockaddr *src, *dst; 

The data packet then has a generic header prepended to it of the fonn 

struct raw_header { 

} ; 

struct sockproto raw_proto; 
struct sockaddr raw_dst; 
struct sockaddr raw_src; 

and it is placed in a packet queue for the "raw input protocol" module. Packets 
taken from this queue are copied into any raw sockets that match the header 
according to the following rules, 

1) The protocol family of the socket and header agree. 

2) If the protocol number in the socket is non-zero, then it agrees with that 
found in the packet header. 

3) If a local address is defined for the socket, the address fonnat of the local 
address is the same as the destination address's and the two addresses agree 
bit for bit. 

4) The rules of 3) are applied to the socket's foreign address and the packet's 
source address. 

A basic assumption is that addresses present in the control block and packet 
header ( as constructed by the network interface and any raw input protocol n 
module) are in a canonical fonn that may be "block compared". , , 
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On output the raw pr_ us r req ( ) routine passes the packet and a pointer to the 
raw control block to the raw protocol output routine for any processing required 
before it is deliverep to the appropriate network interface. The output routine is 
normally the only code required to implement a raw socket interface. 

One of the major factors in the performance of a protocol is the buffering policy 
used. Lack of a proper buffering policy can force packets to be dropped, cause 
falsified windowing information to be emitted by protocols, fragment host 
memory, degrade the overall host performance, etc. Due to problems such as 
these, most systems allocate a fixed pool of memory to the networking system 
and impose a policy optimized for "normal" network operation. 

The networking system developed for UNIX is little different in this respect. At 
boot time a fixed amount of memory is allocated by the networking system. At 
later times more system memory may be requested as the need arises, but at no 
time is memory ever returned to the system. It is possible to garbage collect 
memory from the network, but difficult. In order to perform this garbage collec­
tion properly, some portion of the network will have to be "turned off' as data 
structures are updated. The interval over which this occurs must kept small com­
pared to the average inter-packet arrival time, or too much traffic may be lost, 
impacting other hosts on the network, as well as increasing load on the intercon­
necting mediums. In out environment we have not experienced a need for such 
compaction, and thus have left the problem unresolved. 

The mbuf structure was introduced in the Memory, Addressing section, above. In 
this section a brief description will be given of the allocation mechanisms, and 
policies used by the protocols in performing connection level buffering. 

The basic memory allocation routines manage a private page map, the size of 
which determines the maximum amount of memory that may be allocated by the 
network. A small amount of memory is allocated at boot time to initialize the 
mbuf and mbuf cluster free lists. When the free lists are exhausted, more 
memory is requested from the system memory allocator if space remains in the 
map. If memory cannot be allocated, callers may block awaiting free memory, or 
the failure may be reflected to the caller immediately. The allocator will not 
block awaiting free map entries, however, as exhaustion of the resource map usu­
ally indicates that buffers have been lost due to a "leak." An array of reference 
counts parallels the cluster pool and is used when multiple references to a cluster 
are present. 

64 mbufs fit into a 8Kbyte page of memory. Data can be placed into a mbufby 
copying, or, better, the memory that contains that data can be treated as a tem­
porary ("loaned") mbuf. This second alternative is far more efficient than an 
actual copy. 

Protocols reserve fixed amounts of buffering for send and receive queues at 
socket creation time. These amounts define the high and low water marks used 
by the socket routines in deciding when to block and unblock a process. The 
reservation of space does not currently result in any action by the memory 
management routines. 
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Queue Limiting 

Packet Forwarding 

10.9. Out of Band Data 

Protocols that provide connection level flow control do this based on the amount 
of space in the associated socket queues. That is, send windows are calculated 
based on the amount of free space in the socket's receive queue, while receive 
windows are adjusted based on the amount of data awaiting transmission in the 
send queue. Care has been taken to avoid the "silly window syndrome" 
described in [Clark82] at both the sending and receiving ends. 

Incoming packets from the network are always received unless memory alloca­
tion fails. However, each Level l protocol input queue has an upper bound on 
the queue's length, and any packets' exceeding that bound are discarded. It is 
possible for a host to be overwhelmed by excessive network traffic (for instance a 
host acting as a gateway from a high bandwidth network to a low bandwidth net­
work). As a "defensive" mechanism the queue limits may be adjusted to throttle 
network traffic load on a host. Consider a host willing to devote some percentage 
of its machine to handling network traffic. If the cost of handling an incoming 
packet can be calculated so that an acceptable "packet handling rate" can be 
determined, then input queue lengths may be dynamically adjusted based on a 
host's network load and the number of packets awaiting processing. Obviously, 
discarding packets is not a satisfactory solution to a problem such as this (simply 
dropping packets is likely to increase the load on a network); the queue lengths 
were incmporated mainly as a safeguard mechanism. 

n 

When packets can not be forwarded because of memory limitations, the system n 
attempts to generate a "source quench" message. In addition, any other problems , / 
encountered during packet forwarding are also reflected back to the sender in the 
form of ICMP packets. This helps hosts avoid unneeded retransmissions. 

Broadcast packets are never forwarded due to possible dire consequences. In an 
early stage of network development, broadcast packets were forwarded and a 
"routing loop" resulted in network saturation and every host on the network 
crashing. 

Out of band data is a facility peculiar to the stream socket abstraction defined. 
Little agreement appears to exist as to what its semantics should be. TCP defines 
the notion of"urgent data" as in-line, while the NBS protocols [Burruss81] and 
numerous others provide a fully independent logical transmission channel along 
which out of band data is to be sent. In addition, the amount of the data which 
may be sent as an out of band message varies from protocol to protocol; every­
thing from 1 bit to 16 bytes or more. 

A stream socket's notion of out of band data has been defined as the lowest rea­
sonable common denominator (at least reasonable in our minds); clearly this is 
subject to debate. Out of band data is expected to be transmitted out of the nor­
mal sequencing and flow control constraints of the data stream. A minimum of 1 
byte of out of band data and one outstanding out of band message are expected to 
be supported by the protocol supporting a stream socket. It is a protocol's prero­
gative to support larger-sized messages, or more than one outstanding out of 
band message at a time. 
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Out of band data is maintained by the protocol and is usually not stored in the 
socket's receive queue. A socket-level option, SO_OOBINLINE, is provided to 
force out-of-band data to be placed in the nonnal receive queue when urgent data 
is received; this sometimes amelioriates problems due to loss of data when multi­
ple out-of-band segments are received before the first has been passed to the user. 
The PRU SENDOOB and PRU RCVOOB requests to the pr usrreq () routine - - -
are used in sending and receiving data. 

The internal structure of the system is patterned after the Xerox PUP architecture 
[Boggs79], while in certain places the Internet protocol family has had a great 
deal of influence in the design. The use of software interrupts for process invoca­
tion is based on similar facilities found in the VMS operating system. Many of 
the ideas related to protocol modularity, memory management, and network 
interfaces are based on Rob Gurwitz's TCP/IP implementation for the 4.1BSD 
version of the UNIX system [Gurwitz81]. 
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