
sun®
microsystems

Pixrect Reference Manual

Part Number: 800-1785-10
Revision A, of 9 May 1988

Sun Microsystems® is a registered trademark of Sun ~icrosystems, Inc. Q
Sun™ is a trademark of Sun Microsystems, Inc.

Sun Workstation® is a registered trademark of Sun Microsystems, Inc.

SunOs™ is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

Copyright© 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other­
wise, without prior explicit written permission from Sun Microsystems.

0

Contents

Chapter 1 Introduction .. ,..................... 3

L Limitations .. 3

1.1. OveiView ···········'·· 3
1.2. Important Concepts .. 4

1.3. Using Pixrects .. 5

Primary Pixrect ... 5

Secondary Pixrect ... 6

Basic Example

Compiling , .. .

Pixrect lint Library .. .

1.4. Pixrect Data Structures .. .

6

6

7

7

Chapter 2 Portability Considerations ... 11

2.1. Byte Ordering ··························=··· 11
Byte Swapping and Bit Flipping .. 11

2.2. Flipping Pixrects .. --1.3

The pr_flip (} Routine 13

Guidelines for Sun386i Systems 14

Chapter 3 Pixrect Operations .. ,;;;;;,;;·; .. ,,, ,,,,,· ;"'''"""'"·''''''''''':;;.,.,

3.1. The pixrectops Structure ''""';

3.2. Callings Pixrect Procedures

Argument Conventions .. ''·+:'

Pixrect Errofs

-iii-

/

19

19

Contents - Continued

3.3. The Op Argument 19 0
Specifying a RasterOp Function 20

Specifying a Color 21

Controlling Clipping in a RasterOp .. . 21

Examples of Complete Op Argument Specification 21

3.4. Creation and Destruction of Pixrects ~ .. , 22

Create a Primary Display Pixrect 22

Getting Screen Parameters .. . 22

Create Secondary Pixrect .. . 23

Release Pixrect Resources .. . 24

3.5. Single-Pixel Operations .. . 24

Get Pixel Value ; 24

Set Pixel Value .. . 24

3.6. Multi-Pixel Operations , 25

RasterOp Source to Destination .. . 25

RasterOps through a Mask 25

Replicating the Source Pixrect

Multiple Source to the Same Destination .. .

26

0 27

Draw Vector .. . 28

Draw Textured Polygon 28

Draw Textured or Solid Lines with Width .. . 31

Draw Textured or Solid Polylines with Width 33

Draw Multiple Points .. . 34

3.7. Colormap Access .. . 34

Get Colormap Entries .. . 34

Set Colormap Entries 35

Inverted Video Pixrects .. . 35

3.8. 'Attributes for Bitplane Control 36

Get Plane Mask Attributes .. . 36

Put Plane Mask Attributes ... , , 36

3.9. Plane Groups .. ::·--······ 37

Determine Supported Plane Groups .. .
'

37
)

Get Current Plane Group 37

') '-'

-iv-

Contents- Continued

Set Plane Group and Mask .. 38
3.10. Double Buffering .. 38

Get Double Buffering Attributes ... 38
Set Double Buffering Attributes .. 39

3.11. Efficiency Considerations ::.. 40

Chapter 4 Text Facilities for Pixrects .. 43
4.1. Pixfonts and Pixchars .. 43
4.2. Operations onPixfonts ... 44

Load a Font·... 44
Load Private Copy of Font.. 45
Default Fonts ... :... 45
Qose Font.. 45

4.3. \ Text Functions ... 45
Pixrect Text Display .. 45
Transparent Text ... 45
Auxiliary Pixfont Procedures ... 46
Text Bounding Box ... 46
Unstructured Text... 46

4.4. Example .. 47

Chapter 5 Memory Pixrects .. 51
5.1. The mpr_data Structure.. 51

Example.. 52
5.2. Creating Memory Pixrects ... 53

Create Memory Pixrect ... 53
Create Memory Pixrect from an Image .. 53

Example ··'··· 54
5.3. Static Memory Pixrects ,... 54
5.4. Pixel Layout in Memory Pixrects .. 55

5.5. Using Memory Pixrects ... 55

Chapter 6 File I/0 Facilities for Pixrects .. 59

-v-

Contents- Continued

6.1. Writing and Reading Raster Files

(~
59 \..)

Run Length Encoding .. . 59

Write Raster File .. . 60

Read Raster File 62

6.2. Details of the Raster File Fonnat .. . 63

6.3. Writing Parts of a Raster File .. . 64

Write Header to Raster File 64

Initialize Raster File Header 65

Write Image Data to Raster File .. . 65

6.4. Reading Parts of a Raster File 65

Read Header from Raster File .. . 65

Read Colonnap from Raster File .. . 66

Read Image from Raster File .. . 66

Read Standard Raster File 66

Appendix A. Writing a Pixrect Driver 69

A.1. WhatYou'llNeed

A.2. Implementation Strategy

69

0 70

A.3. Files Generated 70

Memory Mapped Devices 71

A.4. Pixrect Private Data 71

A.5. Creation and Destruction .. . 72

Creating a Primary Pixrect , 72

Creating a Secondary Pixrect 75

Destroying a Pixrect ... :. .. . 76

The pr_makefun () Operations Vector 76

A.6. Pixrect Kernel Device Driver 77
~

Configurable Device Support 77

Open .. . 83

Mmap .. . 83

loctl : 84

Close 85

Plugging Your Driver into UNIX 86

0
-vi-

Contents- Continued

c
A.7. Access Utilities .. 86

A.8. Rop.. 87

A.9. Batchrop ... 87

A.10. Vector... 87

Importance of Proper Clipping ... 87

A.11. Colormap .. 87

Monochrome .. 87

A.12. Attributes ... ,.. 87

Monochrome ,.. 88

A.13. Pixel .. ~.. 88

A.14. Stencil... 88

A.15. Polygon .. ,... 88

Appendix B Pixrect Functions and Macros ... 91

B .1. Making Pixrects ... 91

B.2. Text... 92

B.3. Raster Files ... 94

B.4. Memory Pixrects ... 95

B.S. Colormaps and Bitplanes ... 96

B.6. Rasterops ... 98

B.7. Double Buffering.. 100

Appendix C Pixrect Data Structures ... 103

Appendix D Curved Shapes ... :...... 109

Index... 115

-vii-

\
\

0

0

("""'\
\.._I

c\

Tables

Table 1-1 Pixrect Header Files ... 7

Table2-1 Routinesthatcall pr_flip() ... 14

Table 3-1 Argument N arne Conventions ··~····························· 19

Table 3-2 Useful Combinations ofRasterOps ... 20

Table 3-3 pr_dbl_get () Attributes ... 39

c Table 3-4 pr_dbl_set ()Attributes... 40

Table B-1 Pixrects .. 91

Table B-2 Text ... 92

Table B-3 Raster Files ... 94

T~ble B-4 Memory Pixrects ... 95

Table B-5 Colormaps and Bitplanes .. 96

Table B-6 Rasterops ...•.. 98

Table B-7 Double Buffering... 100

Table C-1 Pixrect Data Structures

c
-ix-

0

---~~-------------------------------------

Figures

Figure 1-1 RasterOp Function ... 5

Figure 1-2 Basic Example Program... 6

Figure 2-1 Byte and Bit Ordering in the 80386, 680XO and SPARC 11

Figure 3-1 Structure of an op Argument.. 19

Figure 3-2 Example Program using pr_polygon _ 2 () 30

Figure3-3 FourPolygonsDrawnwith pr_polygon_2 () 31

Figure 4-1 Character and pc_pr Origins .. ,... 44

Figure 4-2 Example Program using Text .. 47

Figure 5-1 Example Program using Memory Pixrects .. 53

Figure 5-2 Example Program using Memory Pixrects .. 54

Figure 6-1 Example Program using pr_dump ()

Figure 6-2 Example Program using pr_load ()

Figure D-1 Typical Trapezon

Figure D-2 Some Figures Drawn by pr_traprop ()

Figure D-3 Trapezon with Clipped Falls

Figure D-4 Example Program using pr

-xi-

62

63

\

0

0

0

1
Introduction

Introduction ... 3

Limitations .. :... 3

1.1. Overview.. 3

1.2. Important Concepts .. 4

1.3. Using Pixrects ··'··::·· 5
Primary Pixrect ... 5

Secondary Pixrect. ... 6

Bas1c Example

Compiling

6

6

Pixrect lint Library ... 7

1.4. Pixrect Data Structures ... 7

0

c

C Limitations

1.1. Overview

c

1
Introduction

This document describes the Pixrect graphics library, a set of routines that mani­
pulate rectangular arrays of pixel values, on screen or in memory. These routines,
called RasterOps,, are common to all Sun workstations. With these routines,
application programs can manipulate the bit-mapped display on any Sun Works­
tation.

From a software perspective, the Pixrect graphics library is a low-level graphics
package, sitting on top of the display device drivers. For most applications, the
higher-level abstractions available in Sun View and the Sun graphic standards
libraries are more appropriate. For more information on these other packages,
see the preface of this manual for references.

The Pixrect library is intended only for accessing and manipulating two­
dimensional, rectangular regions of a display device in a device-independent
fashion.

Windows
The Pixrect library does not support overlapping windows. These can be
implemented with memory pixrects by the application, but the Sun View
package already offers a sophisticated, easy-to-::use programming interface
for this purpose.

Input Devices
The Pixrect library does not have input functions. An application can use
the input functions available in Sun View, or make system calls directly to the
raw input devices (see mouse(4) and kbd(4)).

This manual is divided into chapters that describe the major features of the Pix­
rect library. This chapter provides an introduction to the Pixrect library, defining
important terms and concepts, and describing the resources available to the pro­
grammer. Chapter 2 explains how to write Pixrect programs that can run on all
Sun systems. Chapter 3 covers the operations for opening and manipulating pix­
iects. Chapter 4 describes the text facilities in the Pixrect library. Chapter 5
discusses memory pixrects, rectangular regions of virtual memory that are mani­
pulated as pixrects. Chapter 6 explains the file 1!0 functions in the Pixrect
library. These functions can be used to store and retrieve pixrects from disk files.
Appendix A is a implementation guide for writing pixrect device drivers.
Appendix B is a list of the functions and macros in the Pixrect library. Appendix

3 Revision A of 9 May 1988

4 Pixrect Reference Manual

1.2. Important Concepts

0 X

1 ::::!::::l::::!::::j::::j::: : : : I ; ····=····:····=····:····:················ .. ··························
y ! i l ' ... l

= : : : : :

II !
II I

0
Cis a list of types and structures in the Pixrect library. Appendix D describes _)

the curve facilities in Pixrect .

This section describes some of the important concepts behind the Pixrect library.
It is not intended to be complete but rather to explain some features of the Pixrect

library that make it unique among graphics packages.

Screen Coordinates
The screen coordinate system is two dimensional; the origin is in the upper
left comer, with x andy increasing to the right and down. They coordinates
describing pixel locations in a pixrect are integers ranging from 0 to the
pixrect's width (for x) or height (for y) minus 1. The maximum value for x

andy is 32767.

Pixels
A pixel is the smallest individual picture element that can be displayed on
the screen. A pixel has an address (corresponding to an x and y coordinate)
used to specify it, and a value, which controls the color displayed. The pixel
address can be absolute (its screen coordinate) or relative to some rectangu­
lar sub-region of the screen. A pixel has a depth (the number of bits it con­
tains) which determines the range of colors it can display. A single bit pixel
can be only black or white, and are used in monochrome displays. Pixels

with more bits can display grayscale values or color. The most common
pixel depths are one, eight, sixteen, or twenty-four bits per pixel.

Bitmaps
A bitmap is a rectangular region of screen space. Each pixel on the screen
corresponds to some number of bits in the screen memory. The value of
these bits determines the color of the corresponding pixel. These groups are
arranged in an array that can be accessed using the x and y coordinates of the
corresponding pixel. A pixrect bitmap can be up to 32767 pixels wide, and
up to 32767 pixels high.

The word "bitmap" can describe the the type of display, indicating it uses

raster (rather than vector) display technology, or more commonly, to the
images stored in bitmap format. Examples of the second type of bitmap
include the screen image, window images, the cursor, or icons.

RasterOps
RasterOps ar~ the legal operations available for modifying pixrects. A
rasterop is an operation which takes two bitmaps as arguments: a sourcebit­

map, and the current state of the destination bitmap. The RasterOp then per­
forms a boolean operation using these arguments, pixel by pixel, writing the
final result to the destination bitmap. The source bitmap may be pattern, or
defined as a region of some constant value.

The pr _stencil () function is the only RasterOp that breaks this rule.
Along with the source and destination bitmaps, this function takes an addi­
tional argument, a texture bitmap, and combines the three in a boolean

0

operation. See Chapter 3 for a more detailed explanation of the RasterOp n
functions available in the Pixrect graphics library. _,J

sun
microsystems

Revision A of 9 May 1988

c
Figure 1-1

c

1.3. Using Pixrects

Primary Pixrect

c

RasterOp Function

Pixrects

Source
Before

Destination
Before

Destination
After

Chapter 1 -Introduction 5

r---------,
I I

: Texture :
I I

L - - - -- - - - - .J --

A pixrect is the graphics analogy to an instance of a class used in object­
oriented programming languages. It consists of bitmap data and the opera­
tions that can be performed on that data. The implementation of the opera­
tions and the data itself is hidden from the programmer (the only exception
is memory pixrects, whose bitmap data can be directly manipulated. See
Chapter 5 for details.) The pixrect is manipulated by using one of the func­
tions in the pixrect library valid for that pixrect (analogous to sending it a
message in object-oriented Programming.)

'
A pixrect object can reside on a variety of devices; including different types of
graphics displays, memory, and printers. Since the available operations are the
same regardless of the device the pixrect resides in, the programmer can ignore
device particularities while writing the application.

The general procedure for drawing pictures using pixrects takes three steps:

1. Open a pixrect object.

2. Draw a picture into the pixrect, using the set of valid operations:

pr_put (}

pr _vector ()

pr_rop ()

etc.

3. Close the pixrect.

If the pixrect resides on a display device, the result of each drawing operation
becomes visible immediately. Opening a display pixrect will not erase the previ­
ous contents of the display. Closing the pixrect also has no effect on the contents
of the display.

sun
microsystems

Revision A of 9 May 1988

6 Pixrect Reference Manual

Secondary Pixrect

Memory Pixrect

Basic Example

Figure 1-2

Compiling

A secondary pixrect is a proper subset of its parent pixrect. The results of draw­
ing operations to a secondary pixrect are displayed immediately, if the parent's
pixrect is visible. A secondary pixrect can simplify programming, by allowing
the programmer to isolate a section of a larger pixrect, sending drawing com­
mands relative to that pixrect, rather than to its parent. Pixrects can be nested to
any depth.

A memory pixrect allocates a section of memory in the workstation. Unlike a
primary or secondary pixrect, a memory pixrect does clear its bitmap to zeros
when opened. Operations done on memory pixrects don't show on the screen.
An image in a memory pixrect can be copied to a display pixrect, allowing a sim­
ple form of double buffering. A memory pixrect can also be used a buffer or
scratch pad, storing bitmaps for later use, or to save the results of previous opera­
tions.

The following example draws a diagonal line near the upper comer of the
workstation's default display.

Basic Example Program

#include <pixrect/pixrect_hs.h>

main()
{

Pixrect *screen;

screen= pr_open("/dev/fb");
pr_vector(screen, 10, 20, 70, 80, PIX_SET, 1);
pr_close(screen);

The header file <pixrect/pixrect_hs. h> #includes all of the header
files necessary for working with the functions, macros and data structures in the
Pixrect library.

The example program can be compiled as follows:

This command line compiles the program in line. c. The -lpixrect option
causes the C compiler to link the Pixrect library to the application program and
create an executable file named line.

The sample program can be executed by the SunOS C-shell:

A diagonal line will appear in the upper left hand comer of the screen.

sun
microsystems

Revision A of 9 May 1988

0

c\

c

Pixrect lint Library

1.4. Pixrect Data
Structures

Table 1-1

Chapter 1 - Introduction 7

Pixrect provides a lint(l) library, which allows lint to check your program
beyond the capabilities of the C compiler. Using the -lpixrect flag provides
lint with pixrect-specific information that prevents bogus error messages. You
could use lint to check a program called box. c with command like this:

Note that most of the error messages generated by lint are warnings, and may
not necessarily have any effect on the operation of the program. For a detailed
explanation of lint, see the discussion on lint in the C Programmer's Guide
manual.

All of the important Pixrect data structures are stored in the header files shown in
the table below. They can be found in the /usr I include/pixrect direc­
tory. Use these files to look up the exact definition of a function or macro you're
not sure about.

Pixrect Header Files

pixrect_hs.h
pixrect.h
memvar.h
pixfont.h
traprop.h
pr_line.h
pr_planegroups.h
pr util

#includes all pixrect files
most pixrect definitions
memory pixrects
text operations
traprop definitions
defines wide and textured vectors
frame buffers
internal definitions

Revision A of 9 May 1988

c
2

Portability Considerations

Portability Considerations :... 11

2.1. Byte Ordering .. 11

Byte Swapping and Bit Flipping .. 11

2.2. Flipping Pixrects .. 13

The pr_flip () Routine... 13

Guidelines for Sun386i Systems .. 14

c

c

0

c

c

2.1. Byte Ordering

Figure 2-1

Byte Swapping and Bit
Flipping

2
-- Portability Considerations

This chapter addresses Pixrect portability between different Sun architectures.
Since Pixrects is a low-level graphics library, it is not completely device
independent. Currently, the only Sun architecture that brings up porting issues is
Sun386i, the first Sunsystem to use the Intel 80386 processor. The pixrect
software has been designed to minimize porting difficulties; nevertheless, there
are some portability factors to take into consideration.

The sections below describe the portability problems caused by the Sun386i sys­
tem, and their solutions.

The 80386, 68020, and SP ARC are 32-bit processors. This means that all data read
or written by these processors pass through 32-bit wide registers. The order in
which the data- the bytes and bits- are arranged in the 80386's registers
differs from the 680XO and SPARC families. These differences are illustrated in
the figure below:

Byte and Bit Ordering in the 80386, 680XO and SPARC

80386
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1413 121110 09 08 07 06 05 04 03 02 01 00

Byte n+3 I Byte n+2 Byte n+l I Byte n
Word n+l Word n

Doubleword n

680XO and SPARC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 09 08 07 06 05 04 03 02 01 00

Byte n I Byte n+l Byte n+2 I Byte n+3
Word n Word n+l

Longword n

The Sun386i is based on the 80386 processor, which handles byte ordering dif­
ferently than 680XO and SPARC processors. This affects the Sun386i's interpreta­
tion of graphics :files - font files, icon files, cursor files, and screendumps -
generated by the other two architectures. Typically, frame buffers are accessed
as if they were word (i.e., 16-bit integer) devices, or as an array of words.
Because the byte ordering of words is different on the two architectures,

11 Revision A of 9 May 1988

12 Pixrect Reference Manual

'~
transferring a graphics file from one to the other will usually result in a garbled _/
picture.

On 680XO monochrome frame buffer, the bits are shifted out of the word starting
at the most significant bit, bit 15. The upper left-most pixel on the screen is bit
15, word 0 of the frame buffer memory. The next pixel, scanning from left to
right as you view the screen, is bit 14. The pixel to the right of the first 16 pixels
displayed comes from word 1, bit 15. When interpreted as integers, the most
significant and least significant bytes are:

680XO
MSB

word 0 15 14 13 12 1110 9 8

word 1 15 14 13 12 1110 9 8

word n 15 14 13 12 1110 9 8

LSB

76543210

76543210

76543210

For example, the integer (word) value Ox3 7 OD in word 0 would show up on the
680XO and SPARC monochrome frame buffer as the pixel sequence:

oo••o•••oooo••o•.
On the 80386 monochrome frame buffer, the bits are shifted out of the word from
the least significant bit, bit 0, to the most, bit 15:

wordO
word]

wordn

LSB

01234567

01234567

01234567

80386
MSB

8 9 10 1112 13 14 15

8 9 10 1112 13 14 15

8 9 10 1112 13 14 15

For example, the integer (word) value Ox37 ODin word 0 would show up on the
screen with the 80386 frame buffer as the pixel sequence:

•o••oooo•••o••oo.
The bytes are backward and the bits are in the opposite order. Because graphics
files are usually generated as an array of words, the bytes are backward for a typi­
cal 80386 frame buffer when handling files generated by 680XO and SP ARC
machines. Eight-bit color frame buffers represent each pixel as a byte of data, so
the bit order is already correct; conversion only requires byte swapping.

For monochrome frame buffers, each pixel is represented by a single bit; scan­
ning from right to left presents a bit flip and byte swap problem. The right-most
(low-order) bit of a bit field now represents the left-most pixel on the screen.

Because of the large number of existing files using it, the 680XO/SP ARC format is
the standard format for describing graphics images on all Sun systems. This
eliminates the need for two sets of files in a mixed-architecture network. Conse­
quently, if you are porting programs to the Sun386i from other Sun systems­
programs that access the frame buffer through Sun View and Pixrect- byte and

4}~sun
~ microsystems

Revision A of 9 May 1988

0

2.2. Flipping Pixrects

C',
-

The pr_flip () Routine

Chapter 2 -Portability Considerations 13

bit ordering is handled automatically at run time. The 680XO/SPARC format
images are converted to 80386 format.

Sun386i systems convert 680XO/SPARC format images into 8038~ format just
before they are used. The procedure that converts them is a new Pixrect routine,
pr _flip () , found only in the Sun386i version of Pixrect.

The internal data of a pixrect is referenced by its pr _data field.

typedef struct pixrect {
struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;
caddr t pr_data; /*pointer to mpr*/

Pixrect;

If its a memory pixrect, the structure referenced by pr_data is:

struct mpr_data
int
short
struct
short
short

} ;

md_linebytes;
*md_image;
pr_pos md_offset;
md_primary;
md_flags; /*flag bits*/

There are two new flag bits in the md _flags word, to control the operation of
pr_flip (). The flags MP_REVERSEVIDEO, MP_DISPLAY, and
MP_PLANEMASK are now followed by MP_I386 andMP_STATIC. If true,
MP _I 3 8 6 indicates that the pixrect in question is already in Sun386i (80386)
display format, i.e., it has already been modified by pr_ flip () . If
MP _STATIC is true, the pixrect in question is a static pixrect. (In practice, this
flag is sometimes set for other purposes as well.)

The pr _flip () routine operates on individual pixrects. It takes one argument,
a pointer to a pixrect structure, and returns void. When called, it first checks to
see if the pixrect has already been flipped (MP _I 3 8 6 == TRUE). If not, it flips
the image area, 16 bits at a time. First the bit order is reversed, then the bytes are
swapped. It will not flip a display pixrect or a secondary pixrect unless it is static
(MP_STATIC ==TRUE).

When a pixrect is modified by apr_ flip () call, the changes are limited to the
pixrect's image area and the state of the two new md_flags. The size of the
pixrect structures remains unaltered. The new md _flags are ignored by pro­
grams running under 680XO or SP ARC.

Pixrects are flipped as they are manipulated by any of the Pixrect routines listed
below. As an application runs, the rate ofpixrect flipping usually declines, since
most applications develop a "working set" of active pixrects. Pixrects that are

~~sun ~ microsystems
Revision A of 9 May 1988

14 Pixrect Reference Manual

Table 2-1

Guidelines for Sun386i
Systems

NOTE

not used are not flipped.

The routines listed contain checkpoints, where pixrects used in the routines'
arguments are examined and flipped (if necessary) by pr _flip () :

Routines that call pr _flip ()

mem_rop ()
mem_create ()
pr _region ()
pr _vector ()
pr_dump_init ()
pf_open()
pf_open_private()
pr_stencil ()
pr_batchrop ()
pr _ replrop ()
pr_get ()
pr_put ()
pr_load()
pr_dump()

icon_display ()
DEFINE ICON FROM IMAGE

Icons are either static or created with icon_load (). Static icons can be
created with DEFINE_ I CON_ FROM_ IMAGE Both of these Sunview features are
described in the Sun View 1 Programmer's Guide.

Fonts are converted by the pf_open () or pf_open_private () routines.
No other conversions are allowed. The libraries work only with the existing
standard font files.

1. Check code that draws manually into a pixrect. It may not work properly on
a Sun386i without modification. The modification required depends on the
particulars of the drawing operation.

2. Manual operations (not involving libpixrect routines) should be per­
formed on a pixrect before converting it to 80386 format.

3. mem _create () creates an 80386-format pixrect on Sun386i machines.

4. mem _point does not set the MP _I 3 8 6 flag. The pixrect is still marked
not flipped.

5. To create an icon, use mem_point () to make a pixrect connected to an
existing static image or an image that you have created dynamically.

6. Use DEFINE_ICON_FROM_IMAGE (SunView) to create static icons. All
static icons are initially created in 680XO/SPARC format. They are converted
to 80386 format when they are involved in a raster operation.

sun
microsystems

Revision A of 9 May 1988

0

r~
'_)

3
Pixrect Operations

Pixrect Operations ... 17

3.1. The pixrectops Structure ... 18

3.2. Callings Pixrect Procedures ... ~... 19

Argument Conventions.. 19

Pixrect Errors .. 19

3.3. The Op Argument... 19

Specifying a RasterOp Function .. 20 c Specifying a Color .. 21

Controlling Clipping in a RasterOp ···:····· 21

Examples of Complete Op Argument Specification 21

3.4. Creation and Destruction ofPixrects ... 22

Create a Primary Display Pixrect .. 22

Getting Screen Parameters ... 22

Create Secondary Pixrect ... 23

Release Pixrect Resources ... 24

3.5. Single-Pixel Operations ... 24

Get Pixel Value .. 24

Set Pixel Value ... 24

3.6. Multi-Pixel Operations ... 25

RasterOp Source to Destination ... 25

RasterOps through a Mask .. 25

Replicating the Source Pixrect .. 26

Multiple Source to the Same Destination ... 27

Draw Vector... 28

Draw Textured Polygon .. 28

Draw Textured or Solid Lines with Width ... 31

Draw Textured or Solid Polylines with Width .. 33

Draw Multiple Points ... 34

3.7. CololTilap Access... 34

Get CololTilap Entries ... 34

Set CololTilap Entries .. 35

Inverted Video Pixrects ... 35

3.8. Attributes for Bitplane Control .. 36

Get Plane Mask Attributes ... 36

Put Plane Mask Attributes ... 36

3.9. Plane Groups.. 37

DetelTiline Supported Plane Groups ... 37

Get Current Plane Group .. 37

Set Plane Group and Mask .. 38

3.10. Double Buffering.. 38

Get Double Buffering Attributes ... 38

Set Double Buffering Attributes .. 39

3 .11. Efficiency Considerations .. 40 0

0

--------------------------------------·.------------------~~--

3
Pixrect Operations

Pixrect objects contain procedures to perform the following operations:

o create or destroy a pi~rect (pr_open (), pr_region () and
pr_destroy ()).

o read and write the values of single pixels within a pixrect (pr get and
pr_put ()).

o use RasterOp functions to simultaneously affect multiple pixels within a pix­
rect:

pr_rop write from a source pixrect to a destination pixrect,

pr _stencil write from a source pixrect to a destination pixrect through
a mask pixrect,

pr _ replrop replicate a constant source pixrect pattern throughout a des­
tination pixrect,

pr_batchrop
write a batch of source pixrects to a sequence of locations
within a single destination pixrect,

pr_vector, pr_line
draw a straight line in a pixrect,

pr_polygon_2
draw a polygon in a pixrect.

o draw text (described in chapter 4, Text Facilities for Pixrects).

o read write the display's colormap (pr getcolormap () ,
pr_putcolormap())

o select particular bit-planes in a color pixrect's bitmap for manipulation
(pr_getattributes (), pr_putattributes ())

o control hardware double-buffering (pr _ dbl_get () and
pr_dbl_set (}).

From an object-oriented viewpoint, all pixrects contain both data and procedures
to manipulate its data. This allows pixrects to be device-independent; the pixrect
uses the function appropriate for its environment when asked to perform an
operation.

17 Revision A of 9 May 1988

18 Pixrect Reference Manual

3.1. The pixrectops
Structure

From the programmers point of view, pixrects are manipulated using procedure
calls embedded in application program. Internally, the pixrect procedures that
act the same for all pixrects are implemented by a single procedure for efficiency.
The device-dependent calls are macros that access the appropriate procedure
within the pixrect object. This is roughly equivalent to passing the pixrect object
a message, which causes the pixrect to invoke the appropriate method (pro­
cedure).

Each pixrect object includes an internal pointer to a pixrectops structure, that
holds the addresses of the particular device-dependent procedures appropriate to
that pixrect. Clients may access these procedures in a device-independent
fashion, by calling the procedure through the pixrectops structure, rather
than executing the procedure directly. To simplify this indirection, the Pixrect
library provides a set of macros which look like simple procedure calls to generic
operations, which expand to invocations of the corresponding procedure in the
pixrectops structure.

In this manual, the description of each operation will specify whether it is a true
procedure or a macro, since some of the arguments to macros are expanded mul­
tiple times, and could cause errors if the arguments contain expressions with side
effects. (In fact, there are two sets of parallel macros, which differ only in how
their arguments use the geometry data structures.)

struct pixrectops {
int (*pro_rop) ();

} ;

int (*pro_stencil) ();
int (*pro_batchrop) ();
int (*pro_nop) ();
int (*pro_destroy) ();
int (*pro_get) ();
int (*pro_put) ();
int (*pro_vector) ();
Pixrect *(*pro_region) ();
int (*pro_putcolormap) ();
int (*pro_getcolormap) ();
int (*pro_putattributes) ();
int (*pro_getattributes) ();

The pixrectops structure is a collection of pointers to the device-dependent
procedures for a particular device. All other operations are implemented by
device-independent procedures. From the object oriented view, this structure
provides the procedural interface to the pixrect object, translating messages to
methods. This structure is designed ,to allow expansion; additional functions
may be added in future releases.

Revision A of 9 May 1988

0

0

3.2. Callings Pixrect
Procedures

Argument Conventions

Table 3-1

Pixrect Errors

3.3. The Op Argument

Figure 3-1

Chapter 3 - Pixrect Operations 19

A Pixrect procedure normally expects a number of arguments. These arguments
can include: a pointer to the pixrect being manipulated, the dimensions and offset
of a subregion within a pixrect, an ops argument describing the operation to be
performed, among others. This section describes these arguments in detail, and
the results returned by the pixrect procedure.

In this manual, the conventions listed in Table 3-1 are used in naming the argu­
ments to pixrect operations.

Argument Name Conventions

Argument Meaning
dsuffix destination
ssuffix source
prefixx offset to left edge of pixrect
prefixy offset to top edge of pixrect
prefixw width ofpixrect (0 to 32767)
prefixh height of pixrect (0 to 32767)

The x and y values given to functions that operate on a pixrect must be within
the boundaries of that pixrect, and be in the range 0 to 32767.

Pixrect operations indicate an error condition in one of two ways, depending on
the type of value the operation normally returns. Pixrect operations which return
a pointer to a structure return NULL when they fail. For pixrect that return an
integer status code, a return value of PIX_ ERR (-1) indicates failure, while 0
indicates the procedure completed successfully. The section describing each pix­
rect procedure makes note of any exceptions to this convention.

The multi-pixel operations described in the next section all use a uniform
mechanism for specifying the operation which is to produce destination pixel
values. This operation is given in the op argument and includes several com­
ponents:

o A single constant source value may be specified as a color in bits 5-31 of
the op argument.

o A RasterOp function is specified inbits 1-4 ofthe op argument.

o The clipping which is normally performed by every pixrect operation may
be turned offby setting the PIX_DONTCLIP flag (bit 0) in the op.

Structure of an op Argument

color
opr ~~

31 15 5 1

sun
microsystems

Revision A of 9 May 1988

20 Pixrect Reference Manual

Specifying a RasterOp
Function

Table 3-2

Four bits of the opr are used to specify one of the 16 distinct logical functions
which combine monochrome source and destination pixels to give a mono­
chrome result. This encoding is generalized to pixels of arbitrary depth by speci­
fying that the function is applied to corresponding bits of the pixels in parallel.
Some functions are much more common than others; the most useful are
identified in Table 3-2.

A convenient and intelligible form of encoding the function into four bits is sup­
ported by the following definitions:

#define PIX SRC Ox18
#define PIX DST 0x14
#define PIX_NOT(op) (OxlE & (-(op)))

PIX_SRC and PIX_DST are defined constants, and PIX_NOT is a macro.
Together, they allow the desired function to be specified by performing the
corresponding logical operations on the appropriate constants. Note that
PIX _NOT must be used in all RasterOp operations; the ones complement C)
operator will not work.

A particular application of these logical operations allows definition of
PIX_SET and PIX_CLR operations. The definition of the PIX_SET operation
that follows is always true, and hence sets the result:

#define PIX_SET (PIX_SRC I PIX_NOT(PIX_SRC))

The definition of the PIX_ CLR operation is always false, and hence clears the
result:

#define PIX_CLR (PIX_SRC & PIX_NOT(PIX_SRC))

Other common RasterOp functions are defined in the following table:

Useful Combinations of RasterOps

Op with Value Result
PIX SRC write same as source argument -
PIX DST no-op same as destination argument
PIX SRC I PIX DST paint OR of source and destination -
PIX SRC & PIX DST mask AND of source and destination -
PIX_NOT(PIX_SRC) & PIX DST erase AND destination with source negation -
PIX_NOT(PIX_DST) invert area negate the existing values
PIX SRC A PIX DST inverting paint XOR of source and destination

sun
microsystems

Revision A of 9 May 1988

()

~------------------------------------·--------------~-.w-=-----0-~.~---~--------------~- ~-~------~=

('
\.~,..- Specifying a Color

Controlling Clipping in a
RasterOp

Examples of Complete Op
Argument Specification

Chapter 3 - Pixrect Operations 21

A single color value can be encoded in bits 5-31 ofthe op argument. The follow­
ing macro supports this encoding:

#define PIX_COLOR(color) ((color) << 5)

Another macro extracts the color field from an encoded op:

(#define PIX_OPCOLOR(op) ((op) >> 5)

Note that the color is not part of the function component of the op argument and
should never be part of an argument to PIX_NOT.

The specified color is used by pixrect functions in two situations:

J

1. If the source pixrect argument is NULL, the rasterop source operand is taken
to an infinite rectangle of pixels with the specified color.

2. If the source pixrect has a depth of 1 bit and the destination pixrect has a
greater depth, the rasterop source operand is the specified color for each "1"
source pixel and zero for each "0" source pixel. A color of zero is treated as
a special case; it is converted to the maximum pixel value for the destination
pixrect.

If the destination pixrect has a depth of 1 bit, any nonzero color value is treated
as 1; for other depths less significant bits of the color value are used. If the desti­
nation pixrect is 32 bits deep the encoded color is sign extended.

Pixrect operations normally clip to the bounds of the operand pixrects. Some­
times this can be done more efficiently by the client at a higher level. If the
client can guarantee that only pixels which ought to be visible will be written, it
may instruct the pixrect operation to bypass clipping· checks, thus speeding its
operation. This is done by setting the following flag in the op argument:

[
#define PIX_DONTCLIP Oxl J

'----· -----------,-..-----
The result of a pixrect operation is undefined and may cause a memory fault if
PIX_DONTCLIP is set and the operation goes out ofbounds.

Note that the PIX_ DONTCLIP flag is not part of the function component of
an op argument; it should never be part of an argument to PIx_ NOT.

A very simple op argument will specify that source pixels be written to a desti­
nation, clipping to both operands:

(~~-p __ = __ P_r_x ___ s_R_c_; ___)

A more complicated example could be used to flip the color of destination pixels
between two values wherever pixels in a 1 bit source pixrect are set, with clip­
ping disabled for maximum performance:

sun
microsystems

Revision A of 9 May 1988

22 Pixrect Reference Manual

3.4. Creation and
Destruction of Pixrects

Create a Primary Display
Pixrect

Getting Screen Parameters

op = (PIX_DST ~ PIX_SRC)
I PIX_DONTCLIP;

PIX_COLOR(colorl ~ color2) \

Pixrects are created by the procedures pr _open () and mem _create () , by
the procedures accessed by the macro pr _region () , and at compile-time by
the macro mpr static (). Pixrects are destroyed by the procedures accessed
bythemacrospr_destroy () andpr_close (). mem_create () and
mpr _static () are discussed in Chapter 5; the rest of these are described here.

Pixrect *pr_open(devicename)
char *devicename;

The properties of a non-memory pixrect depend on an underlying UNIX device.
Thus, when creating the first pixrect for a device you need to open it by a call to
pr _open () . The default device name for your display is I dev I fb (fb stands
for frame buffer). Any other device name may be used provided that it is a
display device, the kernel is configured for it, it exists in the I dev directory, and
it has pixrect support. For example; I dev lbwoneO, I dev lbwtwoO,
ldevlcgoneO or ldevl cgtwoO all can exist on a Sun Workstation, and can
be opened with pixrects.

pr _open () does not work for creating a pixrect whose pixels are stored in
memory; that function is served by the procedure mem _create () , discussed in (~
Chapter 5. \._J

pr _open () returns a pointer to a primary P ixrect structure which covers the
entire surface of the named device. If it cannot, it returns NULL, and prints a
message on the standard error output.

In order to write portable programs, it is important to read the screen characteris­
tics directly, rather than assuming them. The pixrect returned by pr _open ()
contains this information. The two most important values are the dimensions of
the screen, and the depth (number of bits) of each pixel. The code sample below
opens a screen pixrect, then extracts the width, height and depth (in bits) of the
screen.

sun
microsystems

Revision A of 9 May 1988

____ , ____________________________ L.,.,, ________ ~,_.....,.....,_,.,_""""'.....,..,.. _____ ~

c

Chapter 3 - Pixrect Operations 23

#include <pixrect/pixrect_hs. h> include the proper definitions
#include <stdio.h>

main()
{

Pixrect *screen, *pr open(); screenpointstoscreenpixrect
int height, width, depth; variables to make things clearer

screen

width
height
depth

pr _open ("I dev I fb") ; open the pixrect

screen->pr_size.x;
screen->pr_size.y;
screen->pr_depth;

extract the data in pr _size;
width and height are in pixels
get depth in bits

(void)printf("width = %d, height = %d, bits/pixel %dO,
width, height, depth); display result

(void)pr_close(screen); close the pixrect

Create Secondary Pixrect #define Pixrect *pr_region(pr, x, y, w, h)
Pixrect *pr;
int x, y, w, h;

#define Pixrect *prs_region Csubreg)
struct pr_subregion subreg;

Given an existing pixrect, it is possible to create another pixrect which refers to
some or all of the pixels in the parent pixrect. This secondary pixrect is created
by a call to the procedures invoked by the macros pr_region () and
prs_region ().

The existing pixrect is addressed by pr; it may be a pixrect created by
pr_open (), mem_create () ormpr_static () (a primary pixrect); or it
may be another secondary pixrect created by a previous call to a region opera­
tion. The rectangle to be included in the new pixrect is described by x, y, w and
h in the existing pixrect; (x, y) in the existing pixrect will map to (0, 0) in the
new one. prs_ region () does the same thing, but has all its argument values
collected into the single structure subreg. Each region procedure returns a
pointer to the new pixrect. If it fails, it returns NULL.

If an existing secondary pixrect is provided in the call to the region operation, the
result is another secondary pixrect referring to the underlying primary pixrect;
there is no further connection between the two secondary pixrects. Generally, the
distinction between primary and secondary pixrects is not important; however,
no secondary pixtect should ever be used after its primary pixrect is destroyed.

~\sun ~ microsystems Revision A of 9 May 1988

24 Pixrect Reference Manual

Release Pixrect Resources

3.5. Single-Pixel
Operations

Get Pixel Value

Set Pixel Value

#define pr_close (pr)
Pixrect *pr;

#define pr_destroy (pr)
Pixrect *pr;

#define prs_destroy (pr)
Pixrecit *pr;

The macros pr_close (), pr_destroy () and prs_destroy () invoke
device-dependent procedures to destroy a pixrect, freeing resources that belong

to it. The procedure returns 0 if successful, PIX_ ERR if it fails. It may be

applied to either primary or secondary pixrects. If a primary pixrect is destroyed

before secondary pixrects which refer to its pixels, those secondary pixrects are

invalidated; attempting any operation but pr _destroy () on them is an error.

The three macros are identical; they are all defined for reasons of history and
stylistic consistency.

The next two operations manipulate the value of a single pixel.

#define pr_get(pr, x, y)
Pixrect *pr;
int x, y;

#define prs_get(srcprpos)
struct pr_prpos srcprpos;

The macros pr_get and prs_get invoke device-dependent procedures to

retrieve the value of a single pixel. pr indicates the pixrect in which the pixel is

to be found; x andy are the coordinates of the pixel. For prs_get, the same

arguments are provided in the single struct srcprpos. The value of the pixel is

returned as a 32-bit integer; if the procedure fails, it returns PIX _::ERR.

#define pr_put(pr, x, y, value)
Pixrect *pr;
int x, y, value;

#define prs_put(dstprpos, value)
struct pr_prpos dstprpos;
int value;

The macros pr _put () and prs _put () invoke device-dependent procedures

to store a value in a single pixel. pr indicates the pixrect in which the pixel is to
be found; x and y are the coordinates of the pixel. For pr s _put () , the same

arguments are provided in the single struct dstprpos. value is truncated on
the left if necessary, and stored in the indicated pixel. If the procedure fails, it
returns PI X ERR.

~~sun ~flf$ microsystems
Revision A of 9 May 1988

3.6. Multi-Pixel Operations

RasterOp Source to
Destination

RasterOps through a Mask

Chapter 3 - Pixrect Operations 25

The following operations all apply to multiple pixels at one time: pr_rop (),
pr_stencil(),pr_replrop(),pr_batchrop(),pr_polygon_2(),
and pr_ vector (). With the exceptions ofpr_ vector() and
pr _polygon_ 2 (),they refer to rectangular areas of pixels. They all use a
common mechanism, the op argument described in the previous section, to
specify how pixels are to be set in the destination. Appendix D. describes the
pr_traprop () curve rendering function.

#de(ine pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
Pixrect *dpr, *spr;
int dx, dy, dw, dh, op, sx, sy;

#define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregion;
int ·op;
struct pr_prpos srcprpos;

The pr _ rop () and pr s _ rop () macros invoke device-dependent procedures
that perform the indicated raster operation from a source to a destination pixrect.
dpr addresses the destination pixrect, whose pixels will be affected; (dx, dy) is
the origin (the upper-left pixel) of the affected rectangle; dw and dh are the
width and height of that rectangle. spr specifies the source pixrect, and
(sx, sy) an origin within it. spr may be NULL, to indicate a constant source
specified in the op argument, as described previously; in this case sx and sy are
ignored. The op argument specifies the operation which is performed; its con­
struction is described in preceding sections.

pr _ rop () is the only pixrect function that can have its source and destination
be overlapping areas of the same pixrect. Doing this with any other operation
generates an error.

Forprs_rop (),the dpr, dx, dy, dw and dh arguments are all collected in a
pr_subregion structure.

Raster operations are clipped to the source dimensions, if those are smaller than
the destination size given. pr _ rop () procedures return PIX_ ERR if they fail,
0 if they succeed.

Source and destination pixrects generally must be the same depth. The only
exception allows monochrome pixrects to be sources to a destination of any
depth. In this case, source pixels = 0 are interpreted as 0 and source pixels = 1
are written as the color value from the op argument. If the color value in the op
argument is 0, source pixels = 1 are written as the maximum value which can be
stored in a destination pixel.

See the example program in Figure 5-2 for an illustration of pr _ rop () .

Revision A of 9 May 1988

26 Pixrect Reference Manual

#define pr_stencil(dpr, dx, dy, dw, dh, op,

stpr, stx, sty, spr, sx, sy)
Pixrect *dpr, *stpr, *spr;
int dx, dy, dw, dh, op, stx, sty, sx, sy;

#define prs_stencil(dstregion, op, stenprpos, srcprpos)

struct pr_subregion dstregion;
int op;
struct pr_prpos stenprpos, srcprpos;

The pr stencil and pr s stencil macros invoke device-dependent pro­

cedures that perform the indicated raster operation from a source to a destination

pixrect only in areas specified by a third (stencil) pixrect. pr _stencil () is

identical to pr _ rop () except that the source pixrect is written through a stencil

pixrect which functions as a spatial write-enable mask. The stencil pixrect must

be a monochrome memory pixrect. The indicated raster operation is applied only

to destination pixels where the stencil pixrect is non-zero. Other destination pix­

els remain unchanged. The rectangle from (sx, sy) in the source pixrect spr is

aligned with the rectangle from (stx, sty) in the stencil pixrect stpr, and

written to the rectangle at (dx, dy) with width dw and height dh in the destina­

tion pixrect dpr. The source pixrect spr may be NULL, in which case the color

specified in op is painted through the stencil. Clipping restricts painting to the

intersection of the destination, stencil and source rectangles. pr stencil ()

procedures return PIX_ERR if they fail, 0 if they succeed.

Replicating the Source Pixrect pr_replrop(dpr, dx, dy, dw, dh, op,. spr, sx, sy)

Pixrect *dpr, *spr;
int dx, dy, dw, dh, op, sx, sy;

#define prs_replrop(dsubreg, op, sprpos)
struct pr_subregion dsubreg;
struct pr_prpos sprpos;

Often the source for a raster operation consists of a pattern that is used repeat­

edly, or replicated to cover an area. If a single value is to be written to all pixels

in the destination, the best way is to specify that value in the color component

of a pr _ rop () operation. But when the pattern is larger than a single pixel, a

mechanism is needed for specifying the basic pattern, and how it is to be laid

down repeatedly on the destination.

The pr_ replrop () procedure replicates a source pattern repeatedly to cover a

destination area. dpr indicates the destination pixrect. The area affe~ted is

described by the rectangle defined by dx, dy, dw, dh. spr indicates the source

pixrect, and the origin within it is given by (sx, sy). The corresponding

prs_replrop () macro generates a call to pr_replrop (),expanding its

dsubreg into the five destination arguments, and sprpos into the three source

arguments. op specifies the operation to be performed, as described above in

Section 3.3, The Op Argument.

The effect of pr _ replrop () is the same as though an infinite pixrect were

constructed using copies of the source pixrect laid immediately adjacent to each

other in both dimensions, and then a pr_rop () was performed from that source

~~sun ~ microsystems
Revision A of 9 May 1988

c\

c

Multiple Source to the Same
Destination

Chapter 3 - Pixrect Operations 27

to the destination. For instance, a standard gray pattern may be painted across a
portion of the screen by constructing a pixrect that contains exactly one tile of the
pattern, and by using it as the source pixrect.

The alignment of the pattern on the destination is controlled by the source origin
given by (sx, sy). If these values are 0, then the pattern will have its origin
aligned with the position in the destination given by (dx, dy). Another common
method 'of alignment preserves a global alignment with the destination, for
instance, in order to repair a portion of a gray. In this case, the source pixel
which should be aligned with the destination position is the one which has the
same coordinates as that destination pixel, modulo the size of the source pixrect.
pr replrop () will perform this modulus operation for its clients, so it
suffices in this case to simply copy the destination position (dx: dy) into the
source position (sx, sy).

pr _ replrop () returns PIX_ ERR if it fails, or 0 if it succeeds. Internally
pr _ replrop () may use pr _ rop () procedures. In this case, pr _ rop ()
errors are detected and returned by pr _ replrop () .

#define pr_batchrop(dpr, dx, dy, op, items, n)
Pixrect *dpr;
int dx, dy, op, n;
struct pr_prpos items[];

#define prs_batchrop(dstpos, op, items, n)
struct pr_prpos dstpos;
int op, n;
struct pr_prpos items[];

Applications such as displaying text perform the same operation from a number
of source pixrects to a single destination pixrect in a fashion that is amenable to
global optimization.

The pr _bat chrop and pr s _ ba tchrop macros invoke device-dependent
procedures that perform raster operations on a sequence of sources to successive
locations in a common destination pixrect. it ems is an array of pr _prpo s
structures used by apr_ batchrop () procedure as a sequence of source pix­
rects. Each item in the array specifies a source pixrect and an advance in x and
y. The whole of each source pixrect is used, unless it needs to be clipped to fit
the destination pixrect. The advance is used to update the destination position,
not as an origin in the source pixrect.

pr _bat chrop () procedures take a destination, specified by dpr, dx and dy,
or by dstpos in the case ofprs_ batchrop ();an operation specified in op,
as described in Section 3.3. and an array of pr _prpo s addressed by the argu­
ment items, and whose length is given in the argument n.

The destination position is initialized to the position given by dx and dy . Then,
for each it em, the offsets given in po s are added to the previous destination
position, and the operation specified by op is performed on the source pixrect
and the corresponding rectangle whose origin is at the current destination posi­
tion. Note that the destination position is updated for each item in the batch, and
these adjustments are cumulative.

~~sun ~ microsystems Revision A of 9 May 1988

28 Pixrect Reference Manual

Draw Vector

Draw Textured Polygon

The most common application ofpr_batchrop () procedures is in painting

text; additional facilities to support this application are described in Chapter 4.

Note that the definition ofpr _ batchrop () procedures supports variable-pitch

and rotated fonts, and non-Roman writing systems, as well as simpler text.

pr _bat chrop () procedures return PIX_ ERR if they fail, 0 if they succeed.

Internally pr_batchrop () may use pr_rop () procedures. In this case,

pr_rop () errors are detected and returned by pr _batchrop ().

#define pr_vector(pr, xO, yO, xl, yl, op, value)

Pixrect *pr;
int xO, yO, xl, yl, op, value;

#define prs_vector(pr, posO, posl, op, value)

Pixrect *pr;
struct pr_pos posO, posl;
int op, value;

The pr_vector and prs_vector macros invoke device-dependent pro­

cedures that draw a vector one unit wide between two points in the indicated pix­

rect. pr _vector () procedures draw a vector in the pixrect indicated by pr,

with endpoints at (xO, yO) and (xl, yl), or at posO and posl in the case of

prs_ vector (). Portions of the vector lying outside the pixrect are clipped as

long as PIX_DONTCLIP is 0 in the op argument. The op argument is con­

structed as described in Section 3.3. and value specifies the resulting value of

pixels in the vector. If the color in op is non-zero, it takes precedence over the

value argument.

Any vector that is not vertical, horizontal or 45 degree will contain jaggies. This

phenomenon, known as aliasing, is due to the digital nature of the bitmap screen.

It can be visualized by imagining a vertical vector. Displace one endpoint hor­

izontally by a single pixel. The resulting line will have to jog over a pixel at

some point in the traversal to the other endpoint. Balancing the vector guaran­

tees that the jog will occur in the middle of the vector. pr _vector () draws

balanced vectors. (The technique used is to balance the Bresenham error term).

The vectors are balanced according to their endpoints as given and not as

clipped, so that the same pixels will be drawn regardless of how the vector is

clipped.

See the example program in Figure 1-2 for an illustration ofpr _vector ().

pr_polygon_2(dpr, dx, dy, nbnds, npts, vlist, op, spr, sx, sy)

Pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[];
struct pr_pos *vlist;
int op, sx, sy;

0

The pr _polygon_ 2 () function performs a raster operation on a polygonal

area of the destination pixrect. The source can be a pattern or a constant color

value. 0
sun
microsystems

Revision A of 9 May 1988

c

tt t-

Chapter 3 - Pixrect Operations 29

The destination polygon is described by nbnds, npts and vlist. nbnds is
the number of individual closed boundaries (vertex lists) in the polygon. A com­
plex polygon may have one boundary for its exterior shape and several boun­
daries delimiting interior holes. The boundaries may intersect themselves or
each other. Only those destination pixels having an odd winding number are
painted. That is, if any line connecting a pixel to infinity crosses an odd number
of boundary edges, the pixel will be painted.

For each of the nbnds boundaries, npt s specifies the number of points in the
boundary. The vlist array contains the boundary points for all of the boun­
daries, in order. The total number of points in vlist is equal to the sum of the
nbnds elements in the npts array. pr _polygon_ 2 () automatically joins the
last point and first point to close each boundary. If any boundary has fewer than
3 points, pr _polygon_ 2 () returns PIX_ ERR.

The destination coordinates dx, and dy are added to each point in vlist, so the
same vlist can be used to draw polygons in different destination locations.

If the source pixrect spr is non-null, it is replicated in the x andy directions to
cover the entire destination area. The point (sx, sy) in this extended source
pixrect is aligned with the point (dx, dy) in the destination pixrect.

Polygons drawn by pr_polygon_2 () are semi-open in the sense that on some
of the edges, pixels are not drawn where a vector drawn with same coordinates
would go. The reason is to allow identical polygons (same size and orientation)
to exactly tile the destination pixrect with no gaps and no overlaps.

In Figure 3-3 the edges AB and DA are drawn, whereas edges BC and CD aren't.

~)sun
~ microsystems Revision A of 9 May 1988

30 Pixrect Reference Manual

Figure 3-2 Example Program using pr _polygon_ 2 ()

#include <pixrectlpixrect_hs.h>

#define CENTERX(pr) ((pr)->pr_size.x I 2)

#define NULLPR ((Pixrect *) 0)

static struct pr_pos
I* 45 degrees *I
vlist0[4] = { {0,
I* 30 degrees *I
vlist1[4] = { {0,
I* 0 degrees *I
vlist2[4] = { {0,
I* -30 degrees *I
vlist3[4]

main()
{

=

Pixrect *pr;

{ {0,

0}, 71,

0}, 87,

0}, {100,

0}, { 87,

static int npts[1] = { 4 };

-71},

-50},

0},

50},

if (! (pr = pr_open("ldevlfb")))
exit(l);

{141,

{137,

{100,

{ 37,

0}, 71,

37}, 50,

100}, 0,

137}, {-50,

pr_polygon_2(pr, CENTERX(pr), 100, 1, npts, vlistO,

PIX_SET, NULLPR, 0, 0);

pr_polygon_2(pr, CENTERX(pr), 300, 1, npts, vlist1,

PIX_SET, NULLPR, 0, 0);

pr_polygon_2(pr, CENTERX(pr), 500, 1, npts, vlist2,

PIX_SET, NULLPR, 0, 0);

pr_polygon_2(pr, CENTERX(pr), 700, 1, npts, vlist3,

PIX_SET, NULLPR, 0, 0);

pr_close(pr);
exit(O);

sun
microsystems

71}

87}

100}

87}

} ,

} ,

} ,

} ;

0

Revision A of 9 May 1988

c
Figure 3-3

Draw Textured or Solid Lines
with Width

If the brush pointer is NULL, or if
the width is 0 or 1, a single width
vector is drawn.

Chapter 3 - Pixrect Operations 31

Four Polygons Drawn with pr_polygon_ 2 ()

B

4~o---b~G--
~

D

30° ~-· -- 0-v.------

•

· o- edge drawn • -edge not drawn

#define pr_line(pr, xO, yO, xl, yl, brush, tex, op)
Pixrect *pr;
int xO, yO, xl, yl;
struct pr_brush *brush;
struct pr_texture *tex;
int op;

The pr_line macro draws a textured line based on the Bresenham line drawing
algorithm, using a pen-up, pen-down approach. The programmer can define an
pattern (of arbitrary length), or use a predefined default pattern (dash-dot, dotted,
etc.). All pattern segments (and their corresponding offsets) can automatically
adjust, according to the angle at which the line is drawn.

The line is drawn in the pixrect indicated by pr, with endpoints at (xO, yO)
and (xl, yl). The brush field is a pointer to a structure of type pr_ brush
which holds the width of the line segments to be rendered. The pr_brush
structure is defined in the header file <pixrect/pr_line. h> as follows:

sun
microsystems Revision A of 9 May 1988

32 Pixrect Reference Manual

typedef struct pr_brush
int width;

Pr_brush;

If the t ex pointer is NULL, a solid vector is drawn. The t ex field is a pointer

to a structure of type pr_texture. The pr_texture structure is defined in

the header file <pixrect/pr _line. h> as follows (fields that begin with the

prefix res_ are reserved for program internals, and are not user-definable):

typedef struct pr_texture
short *pattern;
short offset;
struct pr_texture_options

unsigned startpoint 1,
endpoint : 1,
balanced : 1,
givenpattern 1,
res_fat : 1,
res_poly: 1,
res mvlist : 1,
res_right 1,
res_close : 1;

options;
short res_polyoff;
short res_oldpatln;
short res_fatoff;

Pr_texture;

pattern is a pointer to an array of short integers which contain the length of

each segment in the pattern. The lengths are in units of pixels. If the line is

drawn at an angle, the lengths drawn are automatically adjusted (if the given­

pattern field set toO) to correspond to the length of the pattern if a horizontal

or vertical line was drawn. This array must be null-terminated. The first seg­

ment of the pattern array is assumed to be pen-down, and following segments

alternate.

The addresses of the following predefined pattern arrays may be stored in the

pattern field of the texture structure as well:

extern short pr_tex_dotted[];
extern short pr_tex_dashed[];
extern short pr_tex_dashdot[];
extern short pr_tex_dashdotdotted[];
extern short pr_tex_longdashed[];

The programmer-defined elements of the pat tern array are not altered within

the routine, allowing multiple calls using the same pattern. offset is an ~

integer offset into the pattern, specified in pixels. Since the first segment of the V
pattern array is assumed to be pen-down, you must specify an offset to

sun
microsystems

Revision A of 9 May 1988

Draw Textured or Solid
· Polylines withWidth

c

Chapter 3 - Pixrect Operations 33

start on a pen-up segment. offset is adjusted according to the angle at which
the line is drawn if the original pattern was adjusted (dependent upon the
gi venpat tern bit, described later). Because of integer approximation, the
adjusted offset could vary plus or minus one pixel from the exact adjusted
offset.

In the options bit fields, if start point is set, the first point is always drawn,
and if endpoint is set, the last point is drawn; if these are not specified, the
line will be drawn with no extra pixels set. The balanced bit field effectively
centers the pattern within the line by computing an offset into the pattern. If the
gi venpat tern bit is set, the pattern is drawn without true length correction, at
any angle; this increases performance. However, the pattern of radiating lines
from a common center will form concentric squares instead of circles. If the
gi venpat tern bit is not set, the segment length of each element of the pattern
is adjusted according to the angle at which the line is drawn. The true (angle­
dependent) segment lengths are computed for one period of the pattern, using an
incremental algorithm which approximates the formula:

angle_yattern_length = given_yattern_length *cos (angle)
where all units are in pixels, and angle is measured from the positive x-axis.
Since the algorithm angle-corrects for one period of the pattern, the longer its
period, the more exact the results are.

The op argument specifies the raster operations used to produce destination pixel
values and color.

pr_polyline(dpr, dx, dy, npts, ptlist, mvlist, brush, tex, op)
Pixrect *dpr;
int dx, dy, npts;
struct pr_pos *ptlist;
u char *mvlist;
struct pr_brush *brush;
struct pr_texture *tex;
int op;

pr _polyline draws a polyline, or a series of disjoint polylines, using the
features available in pr _line. The polyline is drawn in the destination pixrect
indicated by dpr, with dx and dy being the offset into the destination pixrect
for vertices to be translated in x andy, respectively. npt s is the number of ver­
tices in the polyline (which is always the number oflines plus 1). The ptlist
field is an array of npts structures of type pr_pos (which hold vertices). The
mv list field is a pointer to an array of npt s elements in which if any element
after the first is non-zero, a segment is not drawn to that vertex. The first element
of the mvlist array controls whether the polyline(s) are automatically closed; if
set, each continuous polyline is closed. If disjoint polylines are not desired (no
mvlist is specified), the constants.POLY CLOSE and POLY DONTCLOSE
determine this behavior. POLY_ CLOSE and POLY DONTCLOSE are defined as
follows:

#define POLY CLOSE ((u_char *) 1)
#define POLY DONTCLOSE ((u_char *) 0)

Revision A of 9 May 1988

34 Pixrect Reference Manual

Draw Multiple Points

3. 7. Colormap Access

Get Colormap Entries

The brush field is a pointer to a structure of type pr_brush, and the tex field
is a pointer to a structure oftype pr_texture. If the tex pointer is null, a
solid vector is drawn. If the brush structure is null, single-width vectors are

drawn. op specifies the raster operations used to produce destination pixel
values and color. brush and tex are described in detail under pr line.

pr_polypoint(dpr, dx, dy, npts, ptlist, op)
Pixrect *dpr;
int dx, dy, npts;
struct pr_pos *ptlist;
int op;

The pr_polypoint routine draws an array ofpoints on the screen under the

control of the op argument. The array of points is drawn in the destination pix­

rect dpr, with an offset specified by the arguments dx and dy. Npt s is the
number of points to be rendered, and ptlist is a pointer to an array of struc­

tures of type pr_pos, which hold the vertices for each point. Color is encoded
in the op argument. Portions of the array outside the pixrect are clipped unless
the PIX_DONTCLIP flag is set in the op argument.

A colormap is a table which translates a pixel value into 8-bit intensities in red,

green, and blue. For a pixrect of depth n, the corresponding colormap will have
2n entries. The two most common cases are monochrome (two entries) and color
(256 entries). Memory pixrects do not have colormaps.

Sun grayscale workstations normally use the red video signal to drive the moni­
tor. However, when writing an application to run on a grayscale workstation it is

a good idea to load the red, green, and blue components of each colormap entry

with the same value. This will ensure that the application will also run properly
on a color workstation.

#define pr_getcolormap(pr, index, count, red, green, blue)

Pixrect '*pr;
int index, count;
unsigned char red[], green[], blue[];

#define prs_getcolormap(pr, index, count, red, green, blue)

P ixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

The macros pr_getcolormap and prs_getcolormap invoke device­
dependent procedures to read all or part of a colormap into arrays in memory.

These two macros have identical definitions; both are defined to allow consistent
use of one set of names for all operations.

pr identifies the pixrect whose colormap is to be read; the count entries start­
ing at index (zero origin) are read into the three arrays.

For monochrome pixrects the same value is read into corresponding elements of
the red, green and blue arrays. These array elements will have their bits
either all cleared, indicating black, or all set, indicating white. By default,

~~sun
• microsystems

Revision A of 9 May 1988

J

Set Colormap Entries

Inverted Video Pixrects

c

Chapter 3 - Pixrect Operations 35

the Oth (background) element is white, and the 1st (foreground) element is black.
Colormap procedures return (-1) if the index or count are out of bounds, and 0 if
they succeed.

#define pr_putcolormap(pr, index, count, red, green, blue)
P ixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

#define prs_putcolormap(pr, index, count, red, green, blue)
Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

The macros pr_putcolormap and prs_putcolormap invoke device­
dependent procedures to store from memory into all or part of a colormap. These
two macros have identical definitions; both are defined to allow consistent use of
one set of names for all operations. The count elements starting at index
(zero origin) in the colormap for the pixrect identified by pr are loaded from
corresponding elements of the three arrays. For monochrome pixrects, the only
value considered is red [0] . If this value is 0, then the pixrect will be set to a .
dark background and light foreground. If the value is non-zero, the foreground
will be dark, e.g. black-on-white. Monochrome pixrects are dark-on-light by
default.

Note: Full functionality of the colormap is not supported for monochrome pix­
. rects. Colormap changes to monochrome pixrects apply only to subsequent
operations whereas a colormap change to a color device instantly changes all
affected pixels on the display surface.

pr_blackonwhite(pr, min, max)
Pixrect *pr;
int min, max;

pr_whiteonblack(pr, min, max)
Pixrect *pr;
int min, max;

pr_reversevideo(pr, min, max)
Pixrect *pr;
int min, max;

Video inversion is accomplished by manipulation of the colormap of a pixrect.
The colormap of a monochrome pixrect has two elements. The procedures
pr_blackonwhite, pr_whiteonblack andpr_reversevideo pro­
vide video inversion control. These .procedures are ignored for memory pixrects.

In each procedure, pr identifies the pixrect to be affected; min is the lowest
index in the colormap, specifying the background color, and max is the highest
index, specifying the foreground color. These will most often be 0 and 1 for
monochrome pixrects; the more general definitions allow colormap-sharing
schemes.

~\sun
• microsystems

Revision A of 9 May 1988

36 Pixrect Reference Manual

3.8. Attributes for Bitplane
Control

Get Plane Mask Attributes

Put Plane Mask Attributes

"Black-on-white" means that zero (background) pixels will be painted at full
intensity, which is usually white. pr _ blackonwhi te () sets all bits in the
entry for colormap location min and clears all bits in colormap location max.

''White-on-black'' means that zero (background) pixels will be painted at
minimum intensity, which is usually black. pr _ whi teonblack () clears all
bits in colormap location min and sets all bits in the entry for colormap location
max.

pr _rever sevideo () exchanges the min and max color intensities.

Note: These procedures are intended for global foreground/background control,
not for local highlighting. For monochrome frame buffers, subsequent opera­
tions will have inverted intensities. For color frame buffers, the colormap is
modified immediately, which affects everything in the display.

In a color pixrect, it is often useful to define bitplanes which may be manipulated
independently; operations on one plane leave the other planes of an image unaf­
fected. This is normally done by assigning a plane to a constant bit position in
each pixel. Thus, the value of the i tli bit in all the pixels defines the i th bitplane
in the image. It is sometimes beneficial to restrict pixrect operations to affect a
subset of a pixrect's bitplanes. This is done with a bitplane mask. A bitplane
mask value is stored in the pixrect's private data and may be accessed by the
attribute operations.

#define pr_getattributes(pr, planes)
Pixrect *pr;
int *planes;

#define prs_getattributes(pr, planes)
Pixrect *pr;
int *planes;

The macros pr_getatt~ibutes () and prs_getattributes () invoke
device-dependent procedures that retrieve the mask which controls which planes
in a pixrect are affected by other pixrect operations. pr identifies the pixrect; its
current bitplanes mask is stored into the word addressed by planes. If
planes is NULL, no operation is performed.

The two macros are identically defined; both are provided to allow consistent use
of the same style of names.

#define pr_putattributes(pr, planes)
Pixrect *pr;
int *planes;

#define prs_putattributes(pr, planes)
Pixrect *pr;
int *planes;

0

The macros pr_putattributes (Land prs_putattributes () invoke (\,
device-dependent procedures that manipulate a mask which controls which '\...._)
planes in a pixrect are affected by other pixrect operations. The two macros are

sun
microsystems

Revision A of 9 May 1988

c

c

c

3.9. Plane Groups

Determine Supported Plane
Groups

Get Current Plane Group

Chapter 3 - Pixrect Operations 37

identically defined; both are provided to allow consistent use of the same style of
names.

pr identifies the pixrect to be affected. The planes argument is a pointer to a
bitplane write-enable mask. Only those planes correspending to mask bits hav­
ing a value of 1 will be affected by subsequent pixrect operations. If planes is
NULL, no operation is performed.

Note: If any planes are masked offby a call to pr_putattributes (),no
further write access to those planes is possible until a subsequent call to
pr_putattributes () unmasks them. However, these planes can still be
read.

A plane group is a subset of a frame buffer pixrect. Each plane group is a collec­
tion of one or more related bit planes with stored state (plane mask, color map,
etc.). Each pixrect has a current plane group which is the target of attribute,
color map, and rendering operations.

A plane group is described by a small constant in the header file
<pixrect/pr_planegroups. h>:

#define PIXPG CURRENT 0
#define PIXPG MONO 1
#define PIXPG 8BIT COLOR 2
#define PIXPG OVERLAY ENABLE 3 - -
#define PIXPG OVERLAY 4

Plane group 0 is the currently active plane group for the pixrect.

A plane group is encoded as a 7-bit field in the pixrect attribute word.

ngroups = pr_available_plane_groups(pr, maxgroups, groups);
Pixrect *pr;
int maxgroups;
char groups[maxgroups]

pr_available_plane_groups provides a means by which you determine
which plane groups are supported by the machine you are working on.
pr _available _plane _groups fills the character array groups with true
(1) values for the plane groups implemented by the pixrect pr. The entry for the
current plane group~(groups [0]) array is always set to false (0). The size of
groups is passed to the function as maxgroups to avoid overwriting the end
of the array.

pr_available_plane_groups returns the index of the highest-numbered
implemented plane group plus one.

I

group:.= pr_get_plane_group (pr);
Pixrect *pr;

pr_get_plane_group returns the current plane group number for the pixrect
pr. If the current plane group is unknown, the function returns
PIXPG! CURRENT.

~\sun ~ microsystem8
Revision A of 9 May 1988

38 Pixrect Reference Manual

Set Plane Group and Mask

3.10. Double Buffering

Get Double Buffering
Attributes

void pr_set_plane_group(pr, group);
Pixrect *pr;
int group;

void pr_set_planes(pr, group, planes)
Pixrect *pr;
int group;
int planes;

pr _set _plane _group sets the current plane group for the pixrect pr to the
value given by group. If this plane group is P IXPG _CURRENT or unimple­
mented, pr _set _plane _group does nothing.

The pr_set_planes function is equal to a pr_set_plane_group (pr,
group) followed by pr_putattributes (pr, &planes). planes
contains a bitplane write-enable mask. Only those planes corresponding to mask
bits having a value of 1 will be affected by subsequent pixrect operations. How­
ever, the other planes can still be read.

Some frame buffers have double buffering support implemented in hardware.
Two pixrect commands, pr _ dbl_get (),and pr _ dbl_ set () allow you to
inquire about and control a double-buffered display device. The pixrect interface
assigns two names to the buffers in the display; PR _DBL _A for one, and
PR DBL B for the other.

0

A buffer can be displayed, read, or written. When a buffer is displayed, its 0
stored image is shown on the screen. If the software requests that the other
buffer be displayed, the hardware doesn't switch to the new buffer until the next
vertical retrace of the screen. This prevents any flicker from showing on the
screen during the change between buffers. A buffer can be read or written, using
pixrect commands, at any time.

state= pr_dbl_get(pr, attribute)
Pixrect *pr;
int attribute;

This function shows the current attributes of the double buffer. You can inquire
about the state of the display device by executing pr _ dbl_get with a particu­
lar attribute value, then examining the function's return value. The legal attri­
butes are listed below:

#define PR DBL AVAIL 1
#define PR DBL DISPLAY 2
#define PR DBL WRITE 3
#define PR DBL READ 4

The PR _DBL_ AVAIL returns PR _DBL _EXISTS if display device has hardware
double buffering capacity; otherwise, it returns NULL. The other attributes indi-
cate which buffer on the device is being displayed, which can be written to, etc. ,1"-'\
The possible state values for these attributes is given below: 0

Revision A of 9 May 1988

('
_

Set Double Buffering
Attributes

Table 3-3

Chapter 3 - Pixrect Operations 39

#define PR DBL A 2
#define PR DBL B 3
#define PR DBL BOTH 4
#define PR DBL NONE 5

Not all return values are possible with each attribute. The values that can be
returned for a given attribute a shown in the table below:

pr _ dbl_get () Attributes

Attribute Possible Values Returned
PR DBL AVAIL PR DBL EXISTS - -
PR DBL DISPLAY PR_DBL_A, PR DBL B - - - -
PR DBL WRITE PR_DBL_A, PR_DBL_B, PR_DBL_BOTH, - -
PR DBL READ PR DBL A, PR DBL B

void pr_dbl_set(pr, attribute_list)
Pixrect *pr;
int *attribute_list;

j

PR DBL NONE

The pr _ dbl_ set () function changes the state of the double buffering display.
It controls the buffer being displayed, and selects the buffer(s) affected by pixrect
reads and writes. The possible attributes for pr _ dbl_ set () are given below:

#define PR DBL DISPLAY 2
#define PR DBL WRITE 3
#define PR DBL READ 4 - -
#define PR DBL DISPLAY DONTBLOCK 5

An attribute list is an integer array consisting of pairs of attributes and the value
the attribute should be set to. The last element of the array should be zero. If the
display is already in the state requested, the function simply returns.

If the PR_DBL _DISPLAY attribute is in the list, then the function may block for
up to a single video frame's time (15 ms), waiting for the next vertical retrace.
This insures that the next pixrect operation won't alter the buffer while it's still
being displayed. Applications that won't write to the buffer for at least 15 ms
after changing the displayed buffer, and who need maximum throughput can use
PR_DBL_DISPLAY_DONTBLOCK. This attribute changes the display without
blocking the process until the next vertical retrace.

NOTE Programmers should use PR_DBL_DISPLAY_DONTBLOCK with caution. If
the application starts writing too early, it will modify the buffer while it is still
being displayed.

The values that can be paired with the attributes are shown below:

~~sun ~~ microsystems
Revision A of 9 May 1988

40 Pixrect Reference Manual

Table 3-4

3.11. Efficiency
Considerations

#define PR DBL A 2
#define PR DBL B 3
#define PR DBL BOTH 4

Not all of the values can be paired with all of the attributes; the allowed pairings
are shown in the table below:

pr_dbl_set () Attributes

Attribute Possible Values to Set
PR DBL WRITE PR_DBL_A, PR_DBL_B, PR DBL~BOTH - - - -
PR DBL READ PR_DBL_A, PR DBL B - - - -
PR DBL DISPLAY DONTBLOCK PR_DBL_A, PR DBL B - - - - -
PR DBL DISPLAY PR DBL A, PR DBL B

For maximum execution speed, remember the following points when you write
pixrect programs:

o pr_get and pr_put () are relatively slow. For fast random access of pix­
els it is usually faster to read an area into a memory pixrect and address the
pixels directly.

o pr_ rop () is fast for large rectangles.

o pr _vector () is fast.

o functions run faster when clipping is turned off. Do this only if you can
guarantee that all accesses ate within the pixrect bounds.

o pr_rop () is three to five times faster than pr_stencil ().

o pr_batchrop () cuts down the overhead ofpainting many small pixrects.

o For small standard shapes pr _ rop () should be used instead of
pr_polygon_2 ().

o pr_polyline () is an efficient way to draw a series of vectors.

o pr _polypoint () is faster than a series of pr _puts () or single pixel
pr _ rops () . It is useful for implementing new primitives such as curves.

o The PR_DBL_DISPLAY_DONTBLOCK attribute ofpr_dbl_set (),if
used appropriately, can speed up animation sequences.

Revision A of9 May 1988

~~
I I
_j

c
4

Text Facilities for Pixrects

Text Facilities for Pixrects .. 43

4.1. Pixfonts and Pixchars .. 43

4.2. Operations onPixfonts ... 44

Load a Font ... 44

Load Private Copy of Font.. 45

Default Fonts ... 45

Close Font ... 45

c 4.3. Text Functions ... 45

Pixrect Text Display .. 45

Transparent Text ... 45

Auxiliary Pixfont Procedures ... 46

Text Bounding Box ... 46

Unstructured Text ... 46

4.4. Example .. 47

0

4.1. Pixfonts and Pixchars

c

c

4
Text Facilities for Pixrects

The Pixrect library contains higher-level facilities for displaying text.. These
facilities fall into two main categories: a standard format for describing fonts and
character images, including routines for processing them; and a set of routines
that take a string of text and a font, and handle various parts of painting that
string in a pixrect.

struct pixchar

} ;

struct pixrect *pc_pr;
struct pr_pos pc_home;
struct pr_pos pc_adv;

The pixchar structure defines the format of a single character in a font. The
actual image of the character is a pixrect (a separate pixrect for each character)
addressed by pc _pr. The entire pixrect gets painted. Characters that do not
have a displayable image will have NULL in their entry in pc _pr. pc _home is
the origin of pixrect pc _pr (its upper left comer) relative to the character origin.
A character's origin is the leftmost end of its baseline, that is the lowest point on
characters without descenders. Figure 4-1 illustrates the pc _pr origin and the
character origin.

The leftmost point on a character is normally its origin, but kerning or mandatory
letter spacing may move the origin right or left of that point. pc _ adv is the
amount the destination position is changed by this character; that is, the amounts
in pc _ adv added to the current character origin will give the origin for the next
character. While normal text only advances horizontally, rotated fonts may have
a vertical advance. Both are provided for in the font.

typedef struct pixfont {
struct pr_size pf_defaultsize;
struct pixchar pf_char[256];

Pixfont;

The Pixfont structure contains an array ofpixchars, indexed by the charac­
ter code; it also contains the size (in pixels) of its characters when they are all the
same. If the size of a font's characters varies in one dimension, that value in
pf_defaultsize will not have anything useful in it; however, the other may

~~sun ~ microsystems
43 Revision A of 9 May 1988

44 Pixrect Reference Manual

Figure 4-1

4.2. Operations on Pixfonts

Load a Font

still be useful. Thus, for non-rotated variable-pitch fonts,
pf_defaultsize. y will still indicate the unleaded interline spacing for that
font.

Character and pc _pr Origins

character
origin

pc_pr origin

character
baseline

pixrect

The commands listed below allow you to load a font to display. A font must be
loaded before using a text operation.

Pixfont *pf_open(name)
char *name;

pf _open () returns a pointer to a shared copy of a font in virtual memory. A
NULL is returned if the font cannot be opened. The path name of the font file
should be specified, for example:

myfont = pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.7"};

name should be in the format described in vfont(5): the file is converted to pix­
font format, allocating memory for its associated structures and reading in the
data for it from disk. The utility fontedit(l) is a font editor for designing
pixel fonts in vfont(5) format.

0

The data from a small selection of commonly used fonts is compiled into the pix-
rect library. The names of these built-in fonts are checked against the last com- n
ponent of the name. To guarantee that the font is loaded from the disk file _..}

sun
microsystems

Revision A of 9 May 1988

Load Private Copy of Font

Default Fonts

Close Font

4.3. Text Functions

c\ Pixrect Text Display

Transparent Text

Chapter 4-Text Facilities for Pixrects 45

instead, use pf_open_private () instead ofpf_open ().

Pixfont *pf_open_private(name)
char *name;

pf open () returns a pointer to a private copy of a font in virtual memory. A
NULL is returned if the font cannot be opened. '

Pixfont *pf_default()

The procedure p f _default performs the same function for the system default
font, normally a fixed-pitch, 16-point sans seriffont with upper-case letters 12
pixels high. Ifthe environment parameter DEFAULT_FONT is set, its value will
be taken as the name of the font file to be opened by pf default ().

- I

pf _close (pf)
Pixfont *pf;

When a client is finished with a font, it should call p f _close () to free the
memory associated with it. pf should be a font handle returned by a previous
call to pf_open () orpf_default ().

The following functions manage various tasks involved in displaying text.

pf_text(where, op, font, text)
struct pr_prpos where;
int op;
Pixfont *font;
char *text;

Characters are written into a pixrect with the pf _text () procedure. where is
the destination for the start of the text (nominal left edge, baseline; see Section
4.1) op is the raster operation to be used in writing the text, as described in Sec­
tion 3.3, The Op Argument; font is a pointer to the font in which the text is to
be displayed; .and text is the actual null-terminated string to be displayed. The
color specified in the op specifies the color of the ink. The background of the
text is painted 0 (background color).

pf_ttext(where, op, font, text)
struct pr_prpos where;
int op;
Pixfont *font;
char *text;

pf _ t text paints ''transparent'' text: it doesn't disturb destination pixels in
blank areas of the character's image~ The arguments to this procedure are the
same as for pf _text () . The characters' bitmaps are used as a stencil, and the
color specified in op is painted through the stencil.

For monochrome pixrects, the same effect can be achieved by using PIX_ SRC
I PIX _DST as the function in the op; this procedure is for color pixrects.

sun
microsystems

Revision A of9 May 1988

46 Pixrect Reference Manual

Auxiliary Pixfont Procedures

Text Bounding Box

Unstructured Text

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr_prpos where[];
int *lengthp;
Pixfont *font;
char *text;

struct pr_size pf_textwidth(len, font, text)
int lem;
Pixfont *font;
char *text;

pf textbatch () is used internally by pf _text (); it constructs an array of
pr _po s structures and records its length, as required by bat chrop (see Sec­
tion 3.6). where should be the address of the array to be filled in, and
lengthp should point to a maximum length for that array. text addresses the
null-terminated string to be put in the batch, and font refers to the Pixfont to
be used to display it. When the function returns, lengthp will refer to a word
containing the number of pr _po s structures actually used for text. The
pr_size returned is the sum of the pc_adv fields in their pixchar struc­
tures.

pf_textwidth () returns a pr_size that is computed by taking the product
of len, is the number of characters, and pc_adv, the width of each character.

pf_textbound(bound, len, font, text)
struct pr_subregion *bound;
int len;
Pixfont *font;
char *text;

pf_textbound may be used to find the boun~ing box for a string of characters
in a given font. bound->po s is the top-left comer of the bounding box,
bound->size. xis the width, and bound->size. y is the height.
bound->pr is not modified. bound->pos is computed relative to the loca­
tion of the character origin (base point) of the first character in the text.

pr_text(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pr_ttext(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

These unstructured text functions correspond to the Pixwin functions
pw_text () and pw_ttext (). prs_text () and prs_ttext () macros

0

are also provided, although they are identical to p f _text () and r')
pf_ttext (),respectively. _./

sun
microsystems

Revision A of 9 May 1988

c

:M:L ttsil!ll!tib&Lb&JZii1kZ!X'&iL

Chapter 4-Text Facilities for Pixrects 4 7

4.4. Example Here is an example program that writes te}Ct on the display surface with pixel
fonts. ·

Figure 4-2 Example Program using Text

#include <pixrect/pixrect_hs.h>

main()
{

P ixrect *pr;
Pixfont *pf;

if (! (pr = pr_open("/dev/fb")) II
! (pf = pf_open("/usr/lib/fonts/fixedwidthfonts/screen.r.12")))
exit(l);

pr_text(pr, 400, 400, PIX_SET, pf, "This is a string.");

pr_close(pr);
pf_close(pf);
exit(O);

' '

Revision A of 9 May 1988

0

\ 5
Memory Pixrects

Memory Pixrects .. ~.. 51

5.1. The mpr_data Structure.. 51

Example .. ~~.............................. 52

5.2. Creating Memory Pixrects ... 53

Create Memory Pixrect ... ~. 53

Create Memory Pixrect from an Image ... 53

c Example.. 54

5.3. Static Memory Pixrects .. 54

5.4. Pixel Layout in Memory Pixrects .. 55

5.5. Using Memory Pixrects ... 55

c

()

0

C'

c

5.1. The mpr data
Structure-

i'JJlJAdtrllll~-------------------~~~!"""""""

5
Memory Pixrects

Memory pixrects store their pixels in memory, instead of displaying them on
some display, are similar to other pixrects but have several special properties.
Like all other pixrects, their dimensions are visible in the pr _ 8 iz e and
pr_depth elements of their Pixrect structure, and the device-dependent
operations appropriate to manipulating them are available through their
pr _ op8. Beyond this, however, the format of the data which describes the par­
ticular pixrect is also public: pr _data will hold the address of an mpr _data
struct described below. Thus, a client may construct and manipulate memory
pixrects using non-pixrect operations. There is also a public procedure,
mem_create (),which dynamically allocates a new memory pixrect, and a
macro, mpr_8tatic (),which can be used to generate an initialized memory
pixrect in the code of a client p-rogram.

struct mpr_data {
int md_linebytes;
short *md_image;
struct pr_pos md_offset;
short md_primary;
short md_flags;

} ;

#define MP REVERSEVIDEO 1
#define MP DISPLAY 2
#define MP PLANEMASK 4
#define MP I386 8
#define MP STATIC 16

I* used only on Sun386i, *I
I* ignored on all others. *I

The pr_data element of a memory pixrect points to an mpr_data struct,
which contains the information needed to deal with a memory pixrect.

linebyte8 is the number of bytes stored in a row of the primary pixrect. This
is the difference in the addresses between two pixels at the same x-coordinate,
one row apart. Because a secondary pixrect may not include the full width of its
primary pixrect, this quantity cannot be computed from the width of the pixrect
- see Section 3.4. The actual pixels of a memory pixrect are stored someplace
else in memory, usually an array, which md _image points to; the format of that
area is described in the next section. The creator of the memory pixrect must
ensure that md _image contains an even address. md _off 8 et is the x,y

sun
microsystems

51 Revision A of9 May 1988

52 Pixrect Reference Manual

Example

position of the first pixel of this pixrect in the array of pixels addressed by
md _image. md _primary is 1 if the pixrect is "primary and had its image allo­
cated dynamically (e.g. by.mem _create ()). In this case, md _image will
point to an area not referenced by any other primary pixrect. Tllis flag is interro­
gated by the pr_destroy () routine: if it is 1 when that routine is called, the
pixrect's image memory will be freed.

The MP~DISPLAYbit will be set inmd_flags if the memory pixrect is actually
a memory mapped frame buffer. The MP _REVERSEVIDEO bit will be set if
reversevideo is currently in effect for the pixrect (this is only valid if the pixrect
depth is 1 bit). The MP _3861 bit is non-zero if the pixrect image data is in 80386
format.

NOTE This flag is ignored on 680XO based machines.
The MP _STATIC is non-zero if the pixrect is static.

NOTE This flag is ignored on 680XO based machines.
md _flags is present to support memory-mapped display devices like the
Sun-2 monochrome video device, and the bit flipping necessary for Sun386i
machines. See Chapter 2 for details on 80386 format, and the MP _386I and
MP _STATIC flags.

Several useful macros are defined in <pixrect/memvar. h>. These macros
will greatly increase the productivity of the programmer using memory pixrects,
as well as the reliability of the code. Two commonly used macros are described
here; see the others in memvar . h.

To access a memory pixrect's bitmap and functions, use the mpr _ d () macro. It
generates a pointer to the private data of a memory pixrect:

#define mpr_d(pr) ((struct mpr_data *) (pr)->pr_data)

The mpr_linebytes macro computes the bytes per line of a primary memory
pixrect given its width in pixels and the bits per pixel. This includes the padding
to word bounds. It is useful for incrementing pixel addresses in they direction,
or calculating line padding in the bitmap.

#define mpr_linebytes(width, depth)
(((pr_product(width, depth)+15)>>3) &-1)

Here is an example program that uses a memory pixrect to do bit manipulations
on the screen. It opens the frame buffer and copies th~ bitmap to a memory pix­
rect of the same size. It then goes through each byte of the memory pixrect, left­
shifting each byte. Finally, it copies the modified memory pixrect back into the
screen pixrect.

Note how the mpr _linebytes macro is used to find the number of bytes used
to hold a line of the memory pixrect. The mpr _ d () macro is also used to sim­
plify access to the image area of the memory pixrect.

sun
microsystems

Revision A of 9 May 1988

~~
: I
\._)

c
Chapter 5 -Memory Pixrects 53

Figure 5-1 Example Program using Memory Pixrects

#include <pixrect/pixrect_hs.h>
#include <stdio.h>
main ()
{

Pixrect *scrn, *mem;
int ht,wid;
char *start, *ptr;
scrn = pr_open("/dev/fb");
wid = scrn->pr_size.x;
ht = scrn->pr_size.y;
mem = me~create(wid,ht,l);

pr_rop(mem,O,O,wid,ht,PIX_SRC,scrn,O,O);
start = (char *) mpr_d(mem)->md_image;
for(ptr = start;ptr <start+ mpr_linebytes(wid,l) * ht;ptr++) *ptr <<= 2;
pr_rop(scrn,O,O,wid,ht,PIX_SRC,mem,O,O);
pr_close(mem);
pr_close(scrn);

5.2. Creating Memory
Pixrects

The mem _ere ate () and mem_point () functions allow a client program to
create memory pixrects.

Create Memory Pixrect

Create Memory Pixrect from
an Image

Pixrect *mem_create(w, h, depth)
int w, h, depth;

A new primary pixrect is created by a call to the procedure mem_create (). w,
hand depth specify the width and height in pixels, and depth in bits per pixel
of the new pixrect. Sufficient memory to hold those pixels is allocated and
cleared to 0, new mpr _data and P ixrect structures are allocated and initial­
ized, and a pointer to the pixrect is returned. If this can not be done, the return
value is NuLL. On Sun386i systems, the memory pixrects created by
mem_create () settheMP_I386 flag to 1 (true).

On 32 bit systems (such as the Sun-3 and Sun-4) the created pixrect will have
each scan line padded out to a 32 bit boundary, unless it is only 16 bits wide; that
is, the md _linebyte s structure member will contain either 2 or a multiple of
4. In older Sun releases pixrects created by mem _create () were always pad­
ded to a 16 bit boundary.

Pixrect *mem_point(width, height, depth, data)
int width, height, depth;
short *data;

The mem _point () routine builds a pixrect structure that points to a dynami­
cally created image in memory. Oient programs may use this routine as an alter­
native to mem_create () if the image data is already in memory. width and
height are the width and height of the new pixrect, in pixels. depth is the
depth of the new pixrect, in number of bits per pixel. data points to the image

·~,!!,!! Revision A of 9 May 1988

54 Pixrect Reference Manual

Example

Figure 5-2

to be associated with the pixrect. Unlike the mem _create () routine, the
mem _point () routine does not set the MP _ 3 8 6 I flag; the pixrect remains in
680XO fonnat.

Note that mem _point () expects each line of the memory image to be padded
to a 16 bit boundary. Also, mem_point () does not set the md_primary flag
so the image will not be automatically freed when the pixrect is destroyed.

Here is an example program which uses a memory pixrect to invert the frame
buffer contents from top to bottom. It opens the default frame buffer and creates
a memory pixrect of the same size. It then copies rows of pixels from the frame
buffer to the memory pixrect in reverse order. Finally, it copies the memory pix­
rect back to the frame buffer.

Example Program using Memory Pixrects

#include <pixrect/pixrect_hs.h>

main()
{

Pixrect *pr, *tmp;
int yin, yout;

if (! (pr = pr_open("/dev/fb")) II
! (tmp =
mem_create(pr->pr_size.x, pr->pr_size.y, pr->pr_depth)))
exit(1);

for (yin = 0, yout = pr->pr_size.y - 1; yout >= 0; yin++, yout--)
pr_rop(tmp, 0, yout, pr->pr_size.x, 1, PIX_SRC, pr, 0, yin);

pr_rop(pr, 0, 0, pr->pr_size.x, pr->pr_size.y, PIX_SRC, tmp, 0, 0);

exit(O);

5.3. Static Memory
Pixrects

#define mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

A memory pixrect may be created at compile time by using the
mpr_static () macro. name is a token to identify the generated data objects;
w, h, and depth are the width and height in pixels, and depth in bits of the pix­
rect; and image is the address of an even-byte aligned data object that contains
the pixel values in the fonnat described below, with each line padded to a 16 bit
boundary.

If static structures are desired, the macro mpr_static_static should be
used instead.

sun
microsystems

Revision A of 9 May 1988

c

c

5.4. Pixel Layout in
~ennoryPixrects

5.5. Using ~ennory
Pixrects

The macro generates two structures:

struct mpr_data name_data;
Pixrect name;

Chapter 5 -Memory Pixrects 55

The mpr _data is initialized to point to all of the image data passed in; the
Pixrect then refers to mem ops and to name data. On a Sun386i
machine, the MP _STATIC flag will be set in the md_fiags byte of the pixrect
data structure; see Chapter 2 for details. Note: Contrary to its name, this macro
generates structures of storage class exterrl. ·

In memory, the upper-left comer pixel is stored at the lowest address. This
address must be even. That first pixel is followed by the remaining pixels in the
top row, left-to-right. Pixels are stored in successive bits without padding or
alignment.

Each row of pixels is rounded to at least a 16 bit boundary. For best perfonnance
on 32 bit systems,· pixel rows should be rounded to 32 bit boundaries
(mem_createdoes this automatically). However, 16 bit rounding is required for
static pixrects and mem_point.

Memory pixrects with depths of 1, 8, 16, 24, and 32 bits are currently supported
by the pixrect library. If source and destination are both memory pixrects they
must have an equal number of bits per pixel.

NOTE If you are running a Sun386i machine. A pixrect' s image data will be converted
to 80386 format before being displayed. See Chapter 2 for details.

Memory pixrects can be used to get data from and send data to the display dev­
ice. Several routines exist for interfacing Pixwins with memory pixrects. These
include pw_read (), pw_rop () and pw._write (). Refer to the SunView 1
Programmer's Guide for more details. For applications using the raw 'device
without Sun View, pr _ r op () can be used' for operations on memory pixrects.

Another use of memory pixrects is for processing images that not intended for
display. User programs can write directly jnto a pixrect using parameters found
in the mpr _data structure, or they can use mem _point () for a previously
created image.· Memory pixrects can also be written to raster files using the facil-
ities described in Chapter 6. -

Revision A of 9 May 1988

(~

C'
6

File I/0 Facilities for Pixrects

File I/0 Facilities for Pixrects ... 59

6.1. Writing and Reading Raster Files .. 59
Run Length Encoding ... 59

Write Raster File ... 60

Read Raster File :.. 62

6.2. Details of the Raster File Format ... 63
)

6.3. Writing Parts of a Raster File ... 64

Write Header to Raster File .. :..................................... 64

Initialize Raster File Header ... 65

Write Image Data to Raster File ... 65

6.4. Reading Parts of a Raster File .. 65

Read Header from Raster File .. :...................................... 65

Read Colormap from Raster File .. ,............ 66

Read Image from Raster File ... 66

Read Standard Raster File ... 66

c

c

c\
6.1. Writing and Reading

Raster Files

Run Length Encoding

6
File l/0 Facilities for Pixrects

Sun Microsystems, Inc. has specified a file format for files containing raster
images. The format is defined in the header file <rasterfi1e. h>. The pix­
rect library con(ains routines to perform l/0 operations between pixrects and files
in this raster file format. This l/0 is done using the routines of the C Library
Standard l/0 package, requiring the caller to include the header file
<stdio .h>.

The raster file format allows multiple types of raster images. Unencoded, and
run-length encoded formats are supported directly by the pixrect library. Support
for customer defined formats is implemented by passing raster files with non­
standard types through filter programs. Sun supplied filters are found in the
directory Ius r I 1 ib Ira sf i 1 t er s. This directory also includes sample
source code for a filter that corresponds to one of the standard raster file types to
facilitate writing new filters.

The sections that follow describe how to store and retrieve an image in a
rasterfile.

The run-length encoding used in raster files is of the form

<byte><byte> ... <ESC><O> ... <byte><ESC><count><byte> ...

where the counts are in the range 0 .. 255 and the actual number of instances of
<byte> is <count>+l (i.e. actual is 1..256). One- ortwo-character
sequences are left unencoded; three-or-more character sequences are encoded as
<ESC><count><byte>. <ESC> is the character code 128. Each single <ESC>
in the input data stream is encoded as <ESC><O>, because the <count> in this
scheme can never be 0 (the actual count can never be 1). <ESC><ESC> is
encoded as <ESC><l><ESC>.

This algorithm will fail (make the compressed data bigger than the original data)
only if the input stream contains an excessive number of one- and two-character
sequences of the <ESC> character.

59 Revision A of 9 May 1988

60 Pixrect Reference Manual

Write Raster File int pr_dump(input_pr, output, colormap, type, copy_flag)
Pixrect *input_pr;
FILE *output;
colormap_t *colormap;
int type, copy_flag;

The pr _dump () procedure stores the image described by a pixrect onto a file.
It normally returns 0, but if any error occurs it returns PIX_ERR. The caller can
write a rectangular sub-region of a pixrect by first creating an appropriate
input _pr via a call to pr _region () . The output file is specified via out­
put. The specified output type should either be one of the following standard
types or correspond to a customer provided filter.

#define RT OLD 0
#define RT STANDARD 1
#define RT BYTE ENCODED 2

The RT_STANDARD type is the common raster file format in the same sense that
memory pixrects are the common pixrect format: every raster file filter is
required to read and write this format. The RT_OLD type is very close to the
RT_STANDARD type; it was the former standard generated by old versions of
Sun software. The RT_BYTE_ENCODED type implements a run-length encoding
of bytes of the pixrect image. This usually results in shorter files, although
pathological images may expand by 50%.

Specifying any other output type causes pr dump () to pipe a raster file of
RT_STANDARD type to the filter named convert. type, looking first in direc­
tories in the user's $PATH environment variable, and then in the directory
Ius r I 1 ib Ira sf i 1 t er s. type is the ASCII corresponding to the specified
type in decimal. The output of the filter is then copied to output.

It is strongly recommended that customer-defined formats use a type value of 100
or more, to avoid conflicts with additions to the set of standard types. The
RT_EXPERIMENTAL type is reserved for use in the development of experimental
filters, although it is no longer treated specially.

(
#define RT_EXPERIMENTAL 65535 J

'----------
pr _dump () and other functions that start filters wait until the filter process
exits before returning, so caution is advisable when working with experimental
filters.

For pixrects displayed on devices with colormaps, the values of the pixels are not
sufficient to recreate the displayed image. Thus, the image's colormap can also
be specified in the call to pr _dump·(). If the co1ormap is specified as NULL
but input _pr is a non-monochrome display pixrect, pr _dump () will attempt
to write the colormap obtained from input_pr (via pr_getco1ormap). The
following structure is used to specify the colormap associated with input_pr:

sun
mlcrosystems

Revision A of 9 May 1988

c

typedef struct {
int type;
int length;
unsigned char *map[3);

colormap_t;

Chapter 6- File I/0 Facilities for Pixrects 61

The colonnap type should be one of the Sun supported types:

*define RMT NONE 0
*define RMT_EQUAL_RGB 1
*define RMT RAW 2

If the colonnap type is RMT_NONE, then the colonnap length must be 0. This
case usually arises when dealing with monochrome displays and 1-bit deep
m~mory pixrects. If the colonnap type is RMT_EQUAL_RGB, then the map array
should specify the red (map [0]), green (map [1]) and blue (map [2]) color­
map values, with each vector in the map array being of the same specified color­
map length. If the colonnap type is RMT_RAW, the firstmap.array (map [0]),
should hold length bytes of colonnap data, which will not be interpreted by

· the pixrect library.

Finally, copy_ flag specifies whether or not input _pr should be copied to a
temporary pixrect before the image is output. The copy_ flag value should be
non-zero if input _pr is a pixrect in a frame buffer that is likely to be asyn­
chronously modified. The copy flag is also automatically set non-zero for secon­
dary pixrects, to simplify the code. Note that use of copy flag still will not
guarantee that the correct image will be output unless the pr _ rop () to copy
from the frame buffer is made uninterruptible.

Revision A of 9 May 1988

62 Pixrect Reference Manual

Figure 6-1 Example Program using pr_dump ()

Read Raster File

#include <stdio.h>
#include <sys/types.h>
#include <pixrect/pixrect.h>
#include <pixrect/pr_io.h>

main()
{

Pixrect *screen, *icon;
FILE *output = stdout;
colormap_t *colormap = 0;
int type = RT_STANDARD;
int copy_flag = 1;

if (!(screen = pr_open (" /dev/fb")) I I
! (icon= pr_region(screen, 1050, 10, 64, 64)"))
exit(1);

pr_dump(icon, output, colormap, type, copy_flag);
pr_close(screen);

exit(O);

Pixrect *pr_load(input, colormap)
FILE *input;
colormap_t *colormap;

The pr _load () function can be used to retrieve the image stored in a raster file
into a pixrect. The raster file's header is read from input, a pixrect of the
appropriate size is dynamically allocated, the colormap is read and placed in the
location addressed by colormap, and finally the image is read into the pixrect
and the pixrect returned. If any problems occurs, pr _load () returns NULL.

As with pr _dump () , if the specified raster file is not of standard type,
pr _load () first runs the file through the appropriate filterto convert it to
RT_STANDARD type and then loads the output of the filter.

Additionally, if colormap is NULL, pr _load () will simply discard any and
all colormap information contained in the specified input raster file. If color­
map is non-null pr _load () will load the colormap data even if the type and
length specified do not match that of the file (see pr_load _ colormap ()
below).

~\sun ~~ microsystems
Revision A of 9 May 1988

(J

0

Figure 6-2

6.2. Details of the Raster
File Format

Chapter ,6- File 1/0 Facilities for Pixrects 63

Example Program using pr_load ()

tinclude <stdio.h>
tinclude <sys/types.h>
tinclude <pixrect/pixrect.h>
tinclude <pixrect/pr_io.h>

main()
{

Pixrect *screen, *icon;
FILE *input = stdin;
colormap_t colormap;

colormap.type = RMT_NONE;

if (!(screen = pr_open (" /dev/fb")) I I
! (icon= pr~load(input, &colormap)))
exit(1);

if (colormap.type == RMT_EQUAL_RGB)
pr_putcolormap(screen, 0, colormap.length,

colormap.map[O], colormap.map[1],
colormap.map[2]);

pr_rop(screen, 1050, 110, 64, 64, PIX_SRC, icon, 0, 0);
pr_close(screen);

exit(O);

A handful of additional routines are available in the pixrect library for manipulat­
ing pieces of raster files. In order to understand what they do, it is necessary to
understand the exact layout of the raster file format.

The raster file is in three parts: first, a small header containing eight 32-bit
int 's; second, a (possibly empty) set of colormap values; third, the pixel image,
stored a line at a time, in increasing y order.

The image is essentially laid out in the file the exact way that it would appear in a
static memory pixrect. In particular, each line of the image is rounded out to a
multiple of 16 bits, corresponding to the rounding convention used by static pix­
rects.

The header is defined by the following structUre:

sun
microsystems

Revision A of 9 May 1988

64 Pixrect Reference Manual

6.3. Writing Parts of a
Raster File

Write Header to Raster File

struct rasterfile {
int ras_magic;

} ;

int ras_width;
int ras_height;
int ras_depth;
int ras_length;
int ras_type;
int ras_maptype;
int ras_maplength;

The ras _magic field always contains the following constant:

(#define RAS_MAGIC Ox59a66a95)
The ras_width, ras_height and ras_depth fields contain the image's
width and height in pixels, and its depth in bits per pixel, respectively. The depth
is usually either 1 or 8, corresponding to the standard frame buffer depths.

The ras length field contains the length in bytes of the image data. For an
unencoded image, this number is computable from the ras _width,
ras _height, and ras _depth fields, but for an encoded image it must be
explicitly stored in order to be available without decoding the image itself. Note
that the length of the header and of the possibly empty colormap values are not ~o· ..
included in the value in the ras _length field; it is only the image data length.
For historical reasons, files oftype RT_OLD will usually have a 0 in the
r as _length field, and software expecting to encounter such files should be
prepared to compute the actual image data length if it is needed. The
ras_maptype and ras_maplength fields contain the type and length in
bytes of the colormap values, respectively.

If the ras_maptype is not RMT_NONE and the ras_maplength is not 0,
then the colormap values are the ras_ maplength bytes immediately after the
header. These values are either uninterpreted bytes (usually with the
ras_maptype set to RMT_RAW) or the equal length red, green and blue vec­
tors, in that order (when the ras_maptype is RMT_EQUAL_RGB). In the latter
case, the ras _ maplength must be three times the size in bytes of any one of
the vectors.

The following routines are available for writing the various parts of a raster file.
Many of these routines are used to implement pr _dump () . First, the raster file
header and the colormap can be written by calling pr _dump_ header () .

int pr_dump_header(output, rh, colormap)
FILE *output;
struct rasterfile *rh;
colormap_t *colormap;

pr _dump_ header () returns PIX_ERR if there is a problem writing the header
or the colormap, otherwise it returns 0. If the colormap is NULL, no colormap

Revision A of 9 May 1988

c

c

Initialize Raster File Header

Write Image Data to Raster
File

6.4. Reading Parts of a
Raster File

Read Header from Raster File

_________________ , __ _. _________ £-~--~-~~~-. ------------------------~

Chapter 6 -File I/0 Facilities for Pixrects 65

values are written.

Pixrect *pr_dump_init(input_pr, rh, colormap,
type, copy_flag)

Pixrect *input_pr;
struct rasterfile *rh;
colormap_t *colormap;
int type, copy_flag;

For clients that do not want to explicitly initialize the rasterfile struct this routine
can be used to set up the arguments for pr _dump_ header () . The arguments
to pr_dump_init () correspond to the arguments to pr_dump (). However,
pr _dump_ ini t () returns the pixrect to write, rather than actually writing it,
and initializes the structure pointed to by r h rather than writing it. If colormap is
NULL, the ras_maptype and ras_maplength fields of rh will be set to
RMT_NONE and 0, respectively.

If any error is detected by pr _dump_ ini t () , the returned pixrect is NULL. If
there is no error, the copy_ flag is zero, and the input pixrect is suitable for
direct dumping (a primary memory pixrect), the returned pixrect is simply
input _pr. However, if copy_ flag is non-zero, or the input pixrect cannot
be dumped directly, the returned pixrect is dynamically allocated and the caller is
responsible for deallocating it with pr _destroy () when it is no longer
needed.

.int pr_dump_image(pr, output, rh)
Pixrect *pr;
FILE *output;
struct rasterfile *rh;

The actual image data can be output via a call to pr _dump_ image () . This
routine returns 0 unless there is an error, in which case it is PIX_ERR. It cannot
write the image in a non,standard (filtered) format, since by the time it is called
the raster file header has already been written.

Since these routines sequentially advance the output file's write pointer,
pr_dump_image () must be called afterpr_dump_header ().

The following routines are available for reading the various parts of a raster file.
Many of these routines are used to implement pr_load (}. Since these rou­
tines sequentially advance the input file's read pointer, rather than doing random
seeks in the input file, they should be called in the order presented below.

int pr_load_header(input, rh)
FILE *input;
struct rasterfile *rh;

The raster file header can be read by calling pr _load_ header (} . This rou­
tine reads the header from the specified input, checks it for validity and initializes
the specified rasterfile structure from the header. The return value is 0
unless there is an error, in which case it is PIX_ERR.

Revision A of 9 May 1988

66 Pixrect Reference Manual

Read Colormap from Raster
File

Read Image from Raster File

Read Standard Raster File

int pr_load_colormap(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

If the header indicates that there is a non-empty set of colormap values, they can
be read by calling pr_load_colormap (). If the specified colormap is
NULL, this routine will skip over the colormap values by reading and discarding
them. If the type and length values in colormap do not match the input file,
pr _load_ colormap () will allocate space for the colormap with malloc,
read the colormap, and modify colormap before returning. If this occurs, the
space allocated can be released with a free (colormap->map [0]) .

The return value is 0 unless there is an error, in which case it is PIX_ERR.

Pixrect *pr_load_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

An image can be read by calling pr _load_ image (). If the input is a standard
raster file type, this routine reads in the image directly. Otherwise, it writes the
header, colormap, and image into the appropriate filter and then reads tl:Ie output
of the filter. In this case, both the rasterfile and the colormap structures will be
modified as a side-effect of calling this routine. In either case, a pixrect is
dynamically allocated to contain the image, the image is read into the pixrect,
and the pixrect is returned as the result of calling the routine. If there is an error,
the return value is NULL.

Pixrect *pr_load_std_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t colormap;

If it is known that the image is from a standard raster file type, then it can be read
in by calling pr_load_std_image (). This routine is identical to
pr _load_ image () , except that it will not invoke a filter on non-standard ras­
ter file types.

sun
microsystems

Revision A of 9 May 1988

c
A

Writing a Pixrect Driver

Writing a Pixrect Driver .. 69

A.l. What You'll Need···.··· 69

A.2. Implementation Strategy .. 70

A.3. Files Generated .. 70

Memory Mapped Devices .. 71

A.4. Pixrect Private Data .. 71

c A.5. Creation and Destruction ... 72

Creating.aPrimary Pixrect .. 72

Creating a Secondary Pixrect ... 75

Destroying a Pixrect .. 7 6

The pr_makefun () Operations Vector.. 76

A.6. Pixrect Kernel Device Driver ... :.......... 77

Configurable Device Support ... ~..... 77

Open... 83

Mmap .. :.:: 83

Ioctl ... 84

Close ... :... 85

Plugging Your Driver into UNIX.. 86

A.7. Access Utilities .. 86

A.8. Rop.. 87

A.9. Batchrop ... 87

A.lO. Vector... 87
---,

Importance of Proper Clipping ... 87

A.ll. Colormap 87

Monochrome

A.12. Attributes

87 /"'"""""'\
(_j

87

Monochrome ... :: .. . 88

A.13. Pixel .. . 88

A.14. Stencil .. . 88

A.l5. Polygon 88

c

c

A.l. What You'll Need

A
Writing a Pixrect Driver

Sun has defined a common programming interface to pixel addressable devices
that enables, in particular, device independent access to all Sun frame buffers.
This int~rface is called the pixrect interface. Existing Sun supported software
systems access a frame buffer through the pixrect interface. Sun encourages cus­
tomers with other types of frame buffers (or other types of pixel addressable dev­
ices) to provide a pixrect interface to these devices.

This chapter describes how to write a pixrect driver. It is assumed that you have
already read Chapter 3, Pixrect Operations; it describes the programming inter­
face to the basic operations that must be provided in order to generate a complete
pixrect implementation. It is also assumed that you have a copy of Writing Dev­
ice Drivers The section in that manual on writing the kernel device driver portion
of the pixrect implementation is important.

This chapter contains auxiliary material of interest only to pixrect driver imple­
mentors, not programmers accessing the pixrect interface. This document
explains how toinstall a new pixrectdriver into the software architecture so that
it may be used in a device independent manner. Also, utilities and conventions
that may be of use to the pixrect driver implementor are discussed.

This chapter walks through the source code for the CG-1 pixrect driver. The
CG-1 is the Sun-1 color frame buffer. Using this particular driver as an example
has no significance; another pixrect driver would have worked just as well.

The actual source code that is presented here is boiler-plate, i.e., almost every
~ pixrect driver implementation will be similar. You should be able to make your

own driver just from the documentation alone. However, a complete source
example for an existing pixrect driver would probably expedite the development
of your own driver. The complete device specific source files for the Sun-1 color
frame buffer pixrect driver is available as a source code purchase option (avail­
able without a UNIX source license).

These are the tools and pieces that you'll need before assembling your pixrect
driver:

0 You need the correct documentation:

Sun View 1 Programmer's Guide

4}~sun
~ microsystems

69 Revision A of 9 May 1988

70 Pixrect Reference Manual

A.2. Implementation
Strategy

A.3. Files Generated

Sun View 1 System Programmer's Guide

Writing Device Drivers

o You need to know how to drive the hardware of your pixel addressable dev­
ice. At a minimum, a pixel addressable device must have the ability to read
and write single pixel values. (One could imagine a device that doesn't even
meet the minimum requirements being used as a pixel addressable device.
We will not discuss any of the ways that such a device might fake the
minimum requirements).

o You must have a UNIX kernel building environment. No extra source is
required.

o You must have the current pixrect library file and its accompanying header
files. No extra source is required.

This is one possible step-by-step approach to implementing a pixrect driver:

o Write and debug pixrect creation and destruction. This involves the pixrect
kernel device driver that lets you open(2) and mmap(2) the physical device
from a user process. The private cgl_make routine must be written. The
cgl_region and cgl_destroy pixrect operation must be written.

o Write and debug the basic pixel rectangular region function. The
cgl_putattributes and cgl_putcolormap pixrect operations must
be written in addition to the cgl_ rop routine.

o Write and debug batchrop routines. The cgl_ bat chrop pixrect operation
must be written.

o Write and debug vector drawer. The cgl_ vector pixrect operation must
be written.

o Write and debug remaining pixrect operations: cgl stencil, cgl get,
cgl_put,cgl_getattributesandcgl_ge~olormap. -

o If the device is to run with Sun View, build a kernel with minimal basic pixel
rectangle function for use by the cursor tracking mechanism in the Sun View
kernel device driver. Also include the colormap access routines for use by
the colormap segmentation mechanism in the Sun View kernel device driver.

o Load and test Sun View programs with new pixrect driver. Experience has
shown that when you are able to run released Sun View programs that your
pixrect driver is in pretty good shape.

Here is the list of source files generated that implement the example pixrect
driver:

o cglreg. h- Aheader file describing the structure of the raster device. It
contains macros used to adqress the raw device.

o cgl var. h- A header file describing the private data of the pixrect. It .::on-
tains external references to pixrect operation of this driver. (~

Revision A of 9 May 1988

c

Memory Mapped Devices

('·
\.-'

A.4. Pixrect Private Data

c

0

0

0

0

0

0

0

0

0

0

0

0

Appendix A -Writing a Pixrect Driver 71

I sysl sundev I cgone. c- The pixrect kernel device driver code.

cgl. c- The pixrect creation and destruction routines.

cgl_region. c- The region creation routine.

pr _make fun. c -Replaces an existing module and contains the vector of
pixrect make operations.

cgl_batch. c.- The batchrop routine.

cgl_ colormap. c -The colormap access and attribute setting routines .

cgl_getput. c- The single pixel access routines.

cgl_rop. c- The basic pixel rectangle manipulation routine.

cgl_stencil. c- The stencil routine.

cgl_ vee. c -The vector drawer.

cgl_ curve. c The curved shape routine.

cgl _polyline. c The polyline routine.

Some devices are memory mapped; a good example is the bw2, the Sun-2 mono­
chrome video frame buffer. With such devices, their pixels are manipulated
directly as main memory; there are no device specific registers through which the
pixels are accessed. Memory mapped devices are able to rely on the memory
pixrect driver for many of its operations. The only files that the Sun 2 mono­
chrome video frame buffer supplies are:

o bw2var. h- A header file describing the private data of the pixrect. It con-
tains external references to pixrect operation of this driver.

o I sysl sundevlbwtwo. c- The pixrect kernel device driver code.

o bw2 . c - The pixrect creation and destruction routines.

The operations vector for the Sun 2 monochrome pixrect driver is:

struct pixrectops bw2_ops = {

} ;

mem_rop, mem_stencil, mem_batchrop,
0, bw2_destroy, m~m_get, mem_put, mem_vector,
mem_region, mem_putcolormap, mem_getcolormap,
mem_putattributes, mem_getattributes

Each pixrect device must have a private data object that contains instance
specific data about the state of the driver. It is not acceptable to have global data
shared among all the pixrects objects. The device specific portion of the pixrect
data must contain certain information:

o An offset from the upper left -hand comer of the pixel device. This offset,
plus the width and height of the pixrect from the public portion, is used to
determine the clipping rectangle used during pixrect operations.

Revision A of 9 May 198.8

72 Pixrect Reference Manual

A.5. Creation and
Destruction

Creating a Primary Pixrect

o A flag for distinguishing between primary and secondary pixrects. Primary
pixrects are the owners of dynamically allocated resources shared between
primary and secondary pixrects.

o A file descriptor to the pixrect kernel device. Usually, the file descriptor is
used while mapping pages into the user process address space so that the
device may be addressed. One could imagine a pixrect driver that had some
of its pixrect operations implemented inside the kernel. The file descriptor
would then be the key to communicating with that portion of the package via
read(2), write(2) and ioctl(2) system calls.

Here is other possible data maintained in the pixrect's private data:

o For many devices, a virtual address pointer is part of the private data so that
the device can be accessed from user code.

o For color devices, there is a mask to enable access to specific bit planes.

o For monochrome devices, there is a video invert flag. This replaces the
colormap of color devices.

This section covers the code for pixrect object creation and destruction. Code for
the Sun-1 color frame buffer pixrect driver is presented as an e~xample.

There are two public pathways to creating a pixrect:

o pr _open () creates a primary pixrect.

o pr _region () creates a secondary pixrect which specifies a subregion in
an existing pixrect.

There are two public pathways to destroying a pixrect:

o pr _destroy () destroys a primary or secondary pixrect. Clients of the
pixrect interface are responsible for destroying all extant secondary pixrects
before destroying the primary pixrect from which they were derived.

o pr_close () simply calls pr_destroy ().

In this section, the I>rivate cgl_ make pixrect operation is described. This is the
flow of control for pr _open () :

o Higher levels of software call pr _open () , which takes a device file name
(e.g., I dev I cgoneO).

o pr _open () opens the device and finds out its type and size via an FBIOG­
TYPE ioctl(2) call (see <sun/fbio. h>).

o pr _open () uses the type of pixel addressable device to index into the
pr _make fun array of procedures {more on this later) and calls the refer­
enced pixrect make function, cgl_ make.

o cgl_ make returns the primary pixrect (it workings are discussed below).

o pr _open () closes its handle on the device and the pixrect is returned.

~~sun ,~ microsystems
Revision A of 9 May 1988

0

n
\..... .. /

0

c

Appendix A- Writing a Pixrect Driver 73

I

Here is a partial listing of cgl. c that contains code that is important to the
cgl_ make procedure. As it is for other code presented in this document, it is
here so you can refer back to it as you read the subsequent explanation. Some
lines are numbered for reference and normal C comments have been removed in
favor of the accompanying text.

#include <sys/types.h>
#include <stdio.h>
#include <pixrect/pixrect.h>
#include <pixrect/pr_util.h>
#include <pixrect/cglreg.h>
#include <pixrect/cglvar.h>

static struct pr_devdata *cgldevdata; /* cgl.l*/

struct pixrectops cgl_ops = { /* cg1.2*/

} ;

cgl_rop, cgl_stencil, cgl_batchrop, 0, cgl_destroy, cgl_get,
cgl_put, cgl_vector, cgl_region, cgl_putcolormap, cgl_getcolormap,
cgl_putattributes, cgl_getattributes,

struct pixrect *
cgl_make(fd, size, depth) /* cg1.3*/

int fd; /* cg1.4*/
struct pr size size;
int depth;

struct pixrect *pr;
register struct cglpr *cgpr; /* cg1.5*/
struct pr_devdata *dd; /* cgl.6*/

if (depth != CGl_DEPTH I I size.x != CGl WIDTH
I I size.y != CGl_HEIGHT) { /* cgl.7*/

fprintf(stderr, "cgl_make sizes wrong %D %D %D\n",
depth, size.x, size.y);

return (0);

if {! {pr = pr_makefromfd{fd, size, depth, &cgldevdata, &dd,/* cg1.8*/
sizeof(struct cglfb), sizeof(struct cglpr), 0)))
return (0);

pr->pr_ops = &cgl_ops; /* cg1.9*/
cgpr = (struct cglpr *)pr->pr_data; /* cgl.lO*/
cgpr->cgpr_fd = dd->fd; /* cgl.ll*/
cgpr->cgpr_va = (struct cglfb *)dd->va; /* cg1.12*/
cgpr->cgpr_planes = 255; /* cg1.13*/
cgpr->cgpr_offset.x = cgpr->cgpr_offset.y = 0; /* cg1.14*/
cgl_setreg(cgpr->cgpr_va, CG_STATUS, CG_VIDEOENABLE); /* cgl.l5*/
return (pr); /* cg1.16*/

~~sun ~ microsystems
Revision A of 9 May 1988

7 4 Pixrect Reference Manual

Line cgl.7 does some consistency checking to make sure that the dimensions of
the pixel addressable device and the client's idea about the dimensions of the
device match.

struct *pixrect pr_makefromfd(fd, size, depth, devdata,
curdd, mmapbytes, privdatabytes, mmapoffsetbytes)
struct pr_size size;
struct pr_devdata **devdata, **curdd;
int fd, depth, mmapbytes, privdatabytes,

mmapoffsetbytes;

Line cgl.8 calls the pixrect library routine pr _ makefromfd to do most of the
work:

o Allocates a pixrect structure object using the calloc library call. The
pixrect is filled in with size and depth parameters.

o Allocates an object of the size privdatabytes using the calloc library call
and placing a pointer to it in the pr _data field of the allocated pixrect.

o dup(2)s the passed in file descriptorfd so that when the caller closes the file
descriptor the device wouldn't close.

o mmap(2) allocates and maps to the device mmapbytes of space.

()

D If an error is detected during any of the above calls, an error is written to the
standard error output. A NULL pixrect handle is returned in this case. Q

o Returns the allocated pixrect.

This brings us to the issue of minimizing resources used by the pixrect driver.
andpr_open, cgl_make, can be (and are) called many times thus creating a
situation in which there are many primary pixrects open at a time. A pixrect
should maintain an open file descriptor and (usually) a non-trivial amount of vir­
tual address space mapped into the user process's address space. Both the
number of open file descriptors and the virtual address space (maximum 16
megabytes) are finite resources. However, multiple open pixrects can share all
these resources.

The pixrect library supports a resource sharing mechanism, part of which is
implemented in pr_makefromfd. The devdata parameter passed to
pr_makefromfd.is the head of a linked list ofpr_devdata structures of
which there is one per pixrect driver. It is sufficient to say that through the data
maintained on this list, sharing of the scarce resources described above can be
accomplished.

The curdd parameter passed to pr _ makefromfd is set to be the
pr _ devdata structure that applies to the device identified by fd ..

Lines cgl.9 through cgl.l4 are concerned withinitializing the pixrect's private
data with dynamic information described in dd (curdd in the previous para­
graph) and static information about the pixel addressable device.

sun
microsystems

Revision A of 9 May 1988

c

c

Appendix A- Writing a Pixrect Driver 75

Line cgl.l5 is where the video signal for the device is enabled. By convention,
every raster device should make sure that it is enabled.

Creating a SecondaryPixrect In this section, the cgl_ region pixrect operation is described. Here is all of
cgl_ region. c.

struct pixrect *cgl~region(src)
struct pr_subregion src;

register struct pixrect *pr;
register struct cglpr *scgpr
int zero = 0;

cgl_d(src.pr), *cgpr;

pr_clip(&src, &zero); /* cgl_region.l*/
if ((pr = (struct pixrect *)calloc(l, sizeof (struct pixrect))) 0)

return (0); /* cgl_region.2*/

if ((cgpr = (struct cglpr *)calloc(l, sizeof (struct cglpr))) 0) {
free(pr); /* cgl_region.3*/
return (0);

)
pr->pr_ops = &cgl_ops; /* cgl_region.4*/
pr->pr_size = src.size; /* cgl_region.S*/
pr->pr_depth = C~l_DEPTH; /* cgl_region.6*/
pr->pr_data = (caddr_t)cgpr; /* cgl_region.7*/
cgpr->cgpr_fd = -1; /* cgl_region.S*/
cgpr->cgpr_va = scgpr->cgpr_va; 1 /* cgl_region.9*/
cgpr->cgpr_planes = scgpr->cgpr_planes; /*cgl_region.lO*/
cgpr->cgpr_offset.x scgpr->cgpr_offset.x + src.pos.x; /*cgl_region.ll*/
cgpr->cgpr_offset.y = scgpr->cgpr_offset.y + src.pos.y; /*cgl_region.l2*/
return (pr);

cgl_region is less complex then cgl_make. The first thing done is to clip
the requested subregion to fall within the source pixrect (line cgl_region.l).

pr_clip(dstp, srcp)
struct pr_subregion *dstp;
struct pr_prpos *srcp;

pr _clip adjusts the position and size of dstp, the destination pixrect subre­
gion, to fall within dstp->pr. If *scrp, the source pixrectposition, is not
zero then the position of the source is clipped to fall within dstp.

Next, objects are allocated for the pixrect and the pixel addressable device's
private data (line cgl _region.2 and cgl _region.3). Then, similarly to the later
part of cgl_ make, the two new data objects are initialized (lines cgl_region.4
through cgl _region.l2). One thing to note is that the cgl driver uses a -1 in the
file descriptor field of the pixrect's private data to indicate that this pixrect is
secondary (line cgl_region.8).

r

sun
microsystems

Revision A of 9 May 1988

7 6 Pixrect Reference Manual

Destroying a Pixrect

cgl_destroy (pr)
struct pixrect *pr;

In this section, the cgl_destroy pixrect operation is described. It works on
secondary and primary pixrects. Here is more of cgl. c.

register struct cglpr *cgpr;

if (pr == 0)
return (0);

if (cgpr = cgl_d(pr)) { l*cg1.30*1
if (cgpr->cgpr_fd != -1) { l*cg1.3l*l

pr_unmakefromfd(cgpr->cgpr_fd, &cgldevdata); l*cg1.32*1

free(cgpr)l l*cg1.33*1

free(pr);
return (0);

The pr_makefun (}
Operations Vector

l*cg1.34*1

Note that dynamic memory is freed (lines cgl.33 and cgl.34). Also, note that
only a primary pixrect (as indicated by a file descriptor that is not -1) invokes a
call to pr_unmakefromfd (line cgl.32).

pr_unmakefromfd(fd, devdata)
struct pr_devdata **devdata;
int fd;

This pixrect library routine is the counterpart ofpr_makefromfd (}. If the
device identified by the file descriptor f d has no more pixrects associated with it
(as determined from devdata) then the resources associated with it are
released.

As mentioned above, pr_open (} calls cgl_make (} through the
pr makefun (} procedure vector. This is what pr make fun (} looks like (it - -
is the sole contents ofpr_makefun. c):

#include <pixrectlpixrect_hs.h>
#include <sunlfbio.h>

Pixrect *(*pr_makefun[FBTYPE_LASTPLUSONE]) ()
bwl_make,

} ;

sun
microsystems

cgl_make,
bw2_make,
cg2_make,
gpl_make,
0 I* bw3_make *I ,
0 I* cg3_make *I ,
0 I* bw4_make *I ,
cg4_make

Revision A of 9 May 1988

----------------------------~----------,--------------------------------~------~~--~-----·~~-------~

C\
.

L

A.6. Pixrect Kernel Device
Driver

Configurable Device Support

#include "cgone.h"
#include "win.h"
#if NCGONE > 0
#include " .. /h/param.h"
#include " .. /h/systm.h"
#include " .. /h/dir.h"
#include " .. /h/user.h"

(' #include " .. /h/proc.h"
__ #include " .. /h/buf .h"

#include " .. /h/conf.h"

Appendix A-Writing a Pixrect Driver 77

pr make fun () is the routine that pulls in all the code from the different frame
buffers. If a site is not going to use programs on more than one kind of display,
the unused slots can be commented out to prevent the code for the unused display
from being loaded. This has the advantage of reducing disk space usage. How­
ever, workfug set size will presumably not be affected due to virtual memory not
touching unused code.

For both the case of adding and deleting drivers, loading a compiled version of
this edited file will have the effect of ignoring the commented out device drivers.

When adding some new pixrect driver, you need to assign it some unused con­
stant from <sun/ fbio. h>, e.g., FBTYPE_NOTSUNl. This then becomes the
device identifier for your new pixrect driver. You need to generate a new version
ofthe source file pr_makefun. c with the above data structure except that the
array entry pr _make fun [FBTYPE_NOTS~l] would contain the pixrect make
procedure for your FBTYPE_NOTSUNl pixrect driver (line pr _make fun. 1).
The old pr _make fun. o in the pixrect library could be replaced with your new
pr _makefun. o using ar(l).

A pixrect kernel device driver supports the pixel addressable device as a com­
plete UNIX device. It also supports use of this device by the Sun View driver so
that the cursor can be tracked and the colormap loaded within the kernel. The
document Writing Device Drivers for the Sun Workstation contains the details of
device driver construction. It also contains an overview.

The code in this section comes from cgone. c. In the kernel, suffixes that end
with a number (like cgl) confuse the conventions surrounding device driver
names. A number suffix refers to the minor device number of a device. There­
fore, in our example, cgl becomes cgone where the naming has something to
do with the pixrect kernel device driver.

Raster devices typically hang off a high speed bus (e.g., Multibus) or are plugged
into a high speed communications port. At kernel building time the UNIX auto­
configuration mechanism is told what devices to expect anp where they should be
found. At boot time the~auto~configuration mechanism checks to see if each of
the devices it expects are present.

This section deals with the auto-configuration aspects ofthe driver. This driver
is written in the conventional-style that supports multiple units of the same dev­
ice type. It is recommended that you follow this style even if you aren't antici­
pating multiple pixel addressable devices of your type on a single UNIX system.

sun
microsystems

Revision A of 9 May 1988

78 Pixrect Reference Manual

#include .. /h/file.h"
#include /./h/uio.h"
#include .. /h/ioctl.h"
#include .. /machine/mmu.h"
#include .. /machine/pte. h"
#include .. /sun/fbio.h"
#lnclude .. /sundev/mbvar.h"
#include .. /pixrect/pixrect.h"
#include .. /pixrect/pr...::_util.h"
#include " .. /pixrect/cglreg.h"
#include " .. jpixrect/cglvar.h"

#if NWIN > 0
#define CGl OPS &cgl_ops
struct pixrectops cgl_ops

cgl_rop,
cgl_putcolormap,
cgl_putattributes,

} ;

#else
#define CGl OPS (struct pixrectops *)0
#endif

#define CGlSIZE (sizeof (struct cglfb))
struct cglpr cgoneprdatadefault =

{ 0, 0, 255, 0, 0 } ;
struct pixrect cgonepixrectdefault

CGl_OPS, { CGl_WIDTH, CGl HEIGHT }, CGl_DEPTH, /* f~lleq in later */ 0 };

I*
*Driver information for auto-configuration stuff.
*I

int cgoneprobe(), cgoneintr();
struct pixrect cgonepixrect[NCGO~E];
struct cglpr cgoneprdata[NCGONE]i
struct mb_device *cgoneinfo[NCGONE];
struct mb_driver cgonedriver = {

} ;

/*

cgoneprobe, 0(0, 0, 0, cgoneintr,
CGlSIZE, "cgone", cgoneinfo, 0, 0, 0,

* Only allow opens for writing or reading and writing
* because reading is nonsensical.
*I

cgoneopen(dev, flag)
dev_t dev;

return(fbopen(dev, flag, NCGONE, cgoneinfo));

I*

"sun
micmsystems

Revision A of 9 May 1988

()

c

c

Appendix A- Writing a Pixrect Driver 79

* When close driver destroy pixrect.
*I

I*ARGSUSED*I
cgoneclose(dev, flag)

dev_t dev;

register int unit= minor(dev);

if ((caddr t)&cgoneprdata[unit] == cgonepixrect[unit] .pr_data) {
bzero((caddr_t)&cgoneprdata[unit], sizeof (struct cglpr));
bzero((caddr_t)&cgonepixrect[unit], sizeof (struct pixrect));

I*ARGSUSED*I
cgoneioctl(dev, cmd, data, flag)

dev_t dev;
caddr_t data;

register int unit minor (dev) ;
'

switch (cmd)

case FBIOGTYPE:
register struct fbtype *fb = (struct fbtype *)data;

fb->fb_type = FBTYPE_SUNlCOLOR;
fb->fb_height = 480;
fb->fb_width = 640;
fb->fb_depth = 8;
fb->fb cmsize = 256;
fb->fb size = 512*640;
break;

case FBIOGPIXRECT:
register struct fbpixrect *fbpr = (struct fbpixrect *)data;
register struct cglfb *cglfb =

(struct cglfb *)cgoneinfo[(unit)]->md_addr;

I*
* "Allocate" and initialize pixrect data with default.
*I

fbpr->fbpr_pixrect = &cgonepixrect[unit~;
cgonepixrect[unit] = cgonepixrectdefault;
fbpr->fbpr_pixrect->pr_data = (caddr_t) &cgoneprdata[unit];
cgoneprdata[unit] = cgoneprdatadefault;
I*

* Fixup pixrect data.
*I

cgoheprdata[unit] .cgpr_va
I*

* Enable video
*I

cglfb;

Revision A of 9 May 1988

80 Pixrect Reference Manual

I*

cgl_setreg(cglfb, CG_FUNCREG, CG_VIDEOENABLE);
I*

* Clear interrupt
*I

cgl_intclear(cglfb);
break;

default:
return (ENOTTY);

return (0);

* We need to handle vertical retrace interrupts here.
* The color map(s) can only be loaded during vertical
* retrace; we should put in ioctls for this to synchronize
* with the interrupts.
* FOR NOW, see comments in the code.
*I

cgoneintclear(cglfb)
struct cglfb *cglfb;

I*
* The Sun-1 color frame buffer doesn't indicate that an
* interrupt is pending on itself so we don't know if the interrupt
* is for our device. So, just turn off interrupts on the cgone board.
* This routine can be called from any level.
*I

cgl_intclear(cglfb);
I*

* We return 0 so that if the interrupt is for some other device
* then that device will have a chance at it.
*I

return(O);

int
cgoneintr ()
{

return(fbintr(NCGONE, cgoneinfo, cgoneintclear));

I*ARGSUSED*I
cgonemmap(dev, off, prot)

dev_t dev;
off_t off;
int prot;

return(fbmmap(dev, off, prot, NCGONE, cgoneinfo, CGlSIZE));

• sun
microsystems

Revision A of 9 May 1988

~\
I

0

c

Appendix A - Writing a Pixrect Driver 81

#include " .. /sundev/cgreg.h"
/*

/*

* Note: using old cgreg.h to peek and poke for now.

*I

* We determine that the thing we're addressing is a color
* board by setting it up to invert the bits we write and then writing
* and reading back DATAl, making sure to deal with FIFOs going and coming.

*I
#define DATAl Ox5C
#define DATA2 Ox33
/*ARGSUSED*/
cgoneprobe(reg, unit)

caddr_t reg;
int unit;

register caddr t CGXBase;
register u char *xaddr, *yaddr;

CGXBase = reg;
if (pokec((caddr_t)GR_freg, GR_copy_invert))

return (0);
if (pokec((caddr_t)GR_mask, 0))

return (0);
xaddr = (u_char *) (CGXBase + GR_x_select + GR_update + GR_setO);
yaddr = (u_char *) (CGXBase + GR_y_select + GR_setO);
if (pokec((caddr_t)yaddr, 0))

return (0);
if (pokec((caddr_t)xaddr, DATAl))

return (0);
(void) peekc((caddr_t)xaddr);
(void) pokec((caddr_t)xaddr, DATA2);
if (peekc((caddr_t)xaddr) == (-DATAl & OxFF))

I*
* The Sun-1 color frame buffer doesn't indicate that an
* interrupt is pending on itself.
* Also, the interrupt level is user program changable.
* Thus, the kernel never knows what level to expect an
* interrupt on this device and doesn't know is an interrupt
* is pending.
* So, we add the cgoneintr
* handlers that are called
* Add default intr screens - -
* interrupt procedure.
*I

add_default_intr(cgoneintr);
return (CGlSIZE);

routine to a list of interrupt
if no one handles an interrupt.
out multiple calls with the same

return (0);

#endif

Revision A of 9 May 1988

82 Pixrect Reference Manual

I

~~
This is how the driver is plugged into the auto-configuration mechanism. \..-)
I etc/ config reads a line in the configuration file for a Sun-1 color frame
buffer:

device cgoneO at mbO csr OxecOOO priority 3

An external reference to cgonedriver (line cgone.4) is made in a table main­
tained by the auto-configuration mechanism. At boot time, if the auto­
configuration mechanism can resolve the reference to cgonedr i ver then the
contents of this structure are used to configure in the device:

o cgoneprobe- The name of the probe procedure O-ine cgone.5).

o cgoneintr- The name of the interrupt procedure O-ine cgone.6).

o CG I SIZE - The size in bytes of the address space of the device.

o cgone- The prefix of the device. Used in status and error messages.

o cgoneinfo -The array of devices pointers o.fthe driver's type 0-ine
cgone.2).

o The other field's defaults suffice for most pixel addressable devices.

cgoneprobe is called to let the driver decide if the virtual address at reg is
indeed a device that this driver recognizes as one of its own. The unit argu-
ment is the minor device number of this device. Writing a good probe routine Q
can be difficult. The trick is to use some idiosyncrasy of the device that differen- ' ·
tiates it from others. The real driver for the Sun-1 color frame buffer determines
that it is addressing a Sun-1 color frame buffer by setting it up to invert the data
written to it and reading back the result. The details of this code are not impor-
tant to this discussion and is not included. Zero is returned if the probe fails and
CG I SIZE is returned if the probe succeeds.

cgoneintr is called when an interrupt is generated at the beginning of the
vertical retrace. There are a variety of things that one might want to synchronize
with such an interrupt, e.g., load the colormap or move the cursor. Currently, the
utility fbintr simply disables the interrupt from happening again (line
cgone.6).

int fbintr{numdevs, mb_devs, intclear)
int numdevs;
struct mb_device **mb_devs;
int {*intclear) {);

numdevs is the maximum number of devices of these type configured.
mb _ devs is the array of devices descriptions. int clear is called back to
actually tum off the interrupt for a particular device. intclear must have the
same calling sequence as cgoneintclear 0-ine cgone.7), i.e., it take the vir­
tual address of the device to disable interrupts. cgl_ int clear O-ine cgone.8)
is a macro that actually disables the interrupts of cglfb.

Revision A of 9 May 1988

c Open

Mmap

c

c,

Appendix A- Writing a Pixrect Driver 83

When an open system call is made at the user level cgoneopen () is called.
I

cgoneopen(dev, flag)
dev_t dev;

return(fbopen(dev, flag, NCGONE, cgoneinfo));

cgoneopen () uses the utility fbopen () .

int fbopen(dev, flag, numdevs, ~_devs)
dev t dev;
int flag, numdevs;
struct rob device **rob_devs;

fbopen () checks to see if dev is available for opening. If not the error ENXIO

is returned. If f 1 ag doesn't ask for write position (FWRI1E) then the error EIN­

V AL is returned. Normally, zero is returned on a successful open.

The memory map routine in a device driver is responsible for returning a single
physical page number of a portion of a device.

/*ARGSUSED*/
cgonemmap(dev, off, prot}

dev_t dev;
off_t off;
int prot;

return(fbmmap(dev, off, prot, NCGONE, cgoneinfo, CGlSIZE}};

cgonemmap () used the utility fbmmap () .

int fbmmap(devJ off, prot, numdevs, rob_devs, size)
dev t dev;
off t off;
int prot, numdevs, size;
struct rob device **rob_devs;

The parameters to fbmmap () are similar to fbopen (). However, off is the
offset in bytes from the beginning of the device. prot is passed through but
currently not used.

Revision A of 9 May 1988

'~- -·~--·---~~c

'

84 Pixrect Reference Manual

(~
Ioctl A pixrect kernel device driver must respond to two input/output control requests: '~;

o FBIOGTYPE - Describe the characteristics of the pixel addressable device.

o FBIOGPIXRECT- Hand out a pixrect that may be used in the kernel. This
ioctl call is made from within the kernel. This is only required of frame ·
buffers.

#if NWIN > 0 /* cgone.9*/
#define CGl OPS &cgl_ops
struct pixrectops cgl_ops = {

~ cgl_rop, /*cgone.lO*/
cgl_putcolormap,

} ;

#else
#define CGl OPS (struct pixrectops *)0
#endif
struct cglpr cgoneprdatadefault =

{ 0, 0, 255, 0, 0 };
struct pixrect cgonepixrectdefault

{ CGl_OPS, { CGl_WIDTH, CGl_HEIGHT }, CGl_DEPTH, /* filled in later */ 0 };

struct pixrect cgonepixrect[NCGONE];
struct cglpr cgoneprdata[NCGONE];

cgoneioctl(dev, cmd, data, flag)
dev_t dev;
caddr_t data;

register int unit

switch (cmd)
case FBIOGTYPE:

minor (dev) ;

/*cgone.ll*/

register struct fbtype *fb = (struct ~btype *)data;
fb->fb_type = FBTYPE_SUNlCOLOR;
fb->fb_height = CGl_HEIGHT;
fb->fb_width = CGl_WIDTH;
fb->fb_depth = 8;
fb->fb_cmsize = 256;
fb->fb size CGl HEIGHT*CGl_WIDTH;
break;
}

case FBIOGPIXRECT:
register struct fbpixrect *fbpr = (struct fbpixrect *)data;
~egister struct cglfb *cglfb =

(struct cglfb *)cgoneinfo[(unit)]->md_addr;
fbp~->fbpr_pixrect = &cgonepixrect[unit]; /*cgone.l2*/
cgonepixrect[unit] = cgonepixrectdefault; /*cgone.13*/
fbpr->fbpr_pixrect->pr_data = (caddr_t) &cgoneprdata[unit];/*cgone.l4*/
cgoneprdata[unit] = cgoneprdatadefault; /*cgone.lS*/
cgoneprdata[unit] .cgpr_va = cglfb; /*cgone.l6*/

cgl_setreg(cglfb, CG_FUNCREG, CG_VIDEOENABLE); /*cgone.17*/

• sun
microsystems

Revision A of 9 May 1988

0

c

Close

Appendix A- Writing a Pixrect Driver 85

cgl_intclear(cglfb);
break;

/*cgone.18*/

defqult:
return (ENOTTY);

return (0);

The Sun View driver isn't configured into the system when NWIN = 0 (line
cgone.9). When there is no SunView driver, don't reference the pixrect opera­
tions cgl_rop () and cgl_putcol6rmap ().The kernel version of
cgl rop () (line cgone.JO) only needs to be able to read and write memory
pixrects for cursor management. Thus, you can

*ifndef KERNEL
/* code not associated with reading and writing */
/* memory pixrects */
#endif KERNEL

to reduce the size of the code.

Memory for pixrect public (pixrect structure) and private (cglpr structure)
objects is provided by arrays of each (line cgone.ll) NCGONE long. A device n
in these correspond to device n in cgoneinfo.

Lines cgone.l2 through cgone.l6 initialize a pixrect for a particular device. This
ioctl call should enable video for a frame buffer (line cgone.l7) and disable
interrupts as well (line cgone.l8).

When the device is no longer being referenced, cgoneclose () is called. All
that is done is that the pixrect data structures of the device are zeroed.

cgoneclose(dev, flag)
dev_t dev;

register int unit= minor(dev);

if ((caddr_t)&cgoneprdata[unit] == cgonepixrect[unit] .pr data) {
bzero((caddr_t)&cgoneprdata[unit], sizeof (struct cglpr));
bzero((caddr_t)&cgonepixrect[unit], sizeof (struct pixrect));

#endif

Revision A of 9 May 1988

86 Pixrect Reference Manual

Plugging Your Driver into
UNIX

A. 7. Access Utilities

You need to add the device driver procedures to cdevsw in
Is y sIs un Icon f . c after assigning a new major device number to your driver:

#include "cgone.h"
#if NCGONE > 0
int cgoneopen(), cgonemmap(), cgoneioctl();
int cgoneclose();
#'else
#define cgoneopen nodev
#define cgonemmap nodev
#define cgoneioctl nodev
#define cgoneclose nodev
#endif

cgoneopen, cgoneclose, nodev, nodev, 1*14*1
cgoneioct~, nodev, nodev, 0,
seltrue, cgonemmap,
} '

Also, you need to add the new files associated with your driver to
lsyslconflfiles.sun:

pixrect I cg1 colormap. c optional cgone win device-driver
pixrect I cg1 rep. c optional cgone win device-driver
sundev I cgon; .-e optional cgone device-driver

This section describes utilities used by pixrect drivers. The pixrect header files
memvar . h, pixrect . h and pr _ ut il . h contain useful macros that you
should fa.Il\iliarize yourself with; they are not documented here.

pr_clip(dstp, srcp)
struct pr_subregion *dstp;
struct pr_prpos *srcp;

pr _clip adjusts the position and size of dstp, the destination pixrect subre­
gion, to fall within dstp->pr. If* scrp, the source pixrect position, is not
zero then the position of the source is clipped to fall within dstp.

Two operations on operations, pr _ reversesrc () and pr _ reversedst (),
are provided for adjusting the operation code to take into account video reversing
of monochrome pixrects of either the source or the destination.

char
char

pr_revefsedst [16] ;·
pr_reversesrc[16];

These are implemented by table lookup in which the index into the tables is
(op> > 1) & OxF where op is the operation passed into pixrect public procedures.

This process can be iterated, e.g.,

Revision A of 9 May 1988

C'
-

c

A.8. Rop

A.9. Batchrop

A.lO. Vector

Importance of Proper
Clipping

A.ll. Colormap

Monochrome

A.12. Attributes

Appendix A- Writing a Pixrect Drivl!r 87

pr_reversedst[pr_reversesrc[op]].

These are the major cases to be considered with the pwo _ rop () operation:

o Case 1 -- we are the source for the pixel rectangle operation,' but not the des­
tination. This is a pixel rectangle operation from the frame buffer to another
kind of pixrect. If the destination is not memory, then we will go indirect by
allocating a memory temporary, and then asking the destination to operate
from there into itself.

o Case 2 -- writing to your frame buffer. This consists of 4 different cases
depending on where the data is coming from: from nothing, from memory,
from some other pixrect, and from the frame buffer itself. When the source
is some other pixrect, other than memory, ask the other pixrect to read itself
into temporary memory to make the problem easier.

A simple batchrop implementation could iterate on the batch items and call rop
for each. Even in a more sophisticated implementation, while iterating on the
batch items, you might also choose to bail out by calling rop when the source is
skewed, or if clipping causes you to chop off in left-x direction.

There are some notable special cases that you should consider when drawing vec­
tors:

o Handle length 1 or 2 vectors by just drawing endpoints.

o If vector is horizontal, use fast algorithm.

o If vector is vertical, use fast algorithm.

The hard part in vector drawing is clipping, which is done against the rectangle
of the destination quickly and with proper interpolation so that the jaggies in the
vectors are independent of clipping.

Each color raster device has its own way of setting and getting the colormap.

For monochrome raster devices, when pr _putcolormap () is called, the con­
vention is that if red [0] is zero then the display is light on dark, otherwise dark
on light. For monochrome raster devices, when pr _getcolormap () is
called, the convention is that if the display is light on dark then zero is stored in
red [0] , green [0] and blue [0] and -1 is stored in other positions in the
color map. Otherwise, if the display is dark on light, then zero and -1 are
reversed.

pr_getattributes () and pr_putattributes () operations get or set a
bitplane mask in color pixrects, respectively.

Revision A of 9 May 1988

88 Pixrect Reference Manual

Monochrome

A.l3. Pixel

A.14. Stencil

A.15. Polygon

Monochrome devices ignore pr _putattribute () calls that are setting the
bitplane mask. Monochrome devices always return 1 when
pr_getattribute () asking for the bitplane mask.

pwo _get () and pwo _put () operations get or set a single pixel, respectively.

In its most efficient implementation, stencil code parallels rap code, all the while
considering the 2 dimensional stencil. One way to implement stencil is to use
raps. We pay a small efficiency penalty for this. You may not consider writing
the special purpose code worthwhile for the bitmap stencils since they probably
won't get used nearly as much as rap. Here's the basic idea (Temp is a tem­
porary memory pixrect):

Temp Dest
Temp Dest op Source
Temp Temp & Stencil
Dest Dest & -stencil
Dest Dest I Temp

i.e.,

Dest (Dest & -stencil) 1 ((Dest op Source) & Stencil)

pr _polyline () is a natural extension to pr _vector (). It is especially
useful for devices that can optimize this operation.

Revision A of 9 May 1988

c
B

Pixrect Functions and Macros

Pixrect Functions and Macros .. 91

B .1. Making Pixrects ... 91

B.2. Text... 92

B.3. Raster Files... 94

B.4. Memory Pixrects ... 95

B.S. Colormaps and Bitplanes ... 96

B.6. Rasterops ... 98

C B.7. Double Buffering.. 100

.~------ ~··--

0

c

B
Pixrect Functions and Macros

B.l. Making Pixrects

Table B-1 Pixrects

Name
Create Pixrect

Create Secondary
Pixrect

Release Pixrect
Resources

Release Pixrect
Resources

Subregion Create
Secondary Pixrect

Subregion Release
Pixrect Resources

Convert 680XO pixrect
to 386i pixrect

Function

Pixrect *pr_operi(devicename)
char *devicename;

#define Pixrect *pr_region(pr, x, y, w, h)
Pixrect *pr;
int x, y, w, h;

#define pr_close(pr)
Pixrect *pr;

#define pr_destroy(pr)
Pixrect *pr;

#define Pixrect *prs_reg~on(subreg)
struct pr_subregion subreg;

#define prs_destroy(pr)
Pixrect *pr;

void pr_flip(pr)
Pixrect *pr;

91 Revision A of 9 May 1988

92 Pixrect Reference Manual

B.2. Text

Table B-2 Text

Name
Compute Bounding Box
of Text String

Compute Location of
Characters in Text
String

Compute Width and
Height of Text String

Load Font

Load Private Copy of
Font

Load System Default
Font

Release Pixjont
Resources

Unstructured Text

Write Text and
Background

I
pf_textbound(bound,
struct pr_subregion
int len;
Pixfont *font;
char *text;

Function
len, font, text) '
*bound;

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr_pos where[];
int *lengthp;
Pixfont *font;
char *text;

struct pr_size pf textwidth(len, font, text)
int len;
Pixfont *font;
char *text;

Pixfont *pf_open(name)
char *name;

Pixfont *pf_open_private(name)
char ,*name;

Pixfont *pf_default()

pf_close(pf)
Pixfont *pf;

pr_text(pr, x, y, op, font, text)
Pixrect *pr;
. t r J..n x, y, op;
Pixfont *font;
char *text;

pr_ttext(pr, x, y, op, font, text)
Pixrect *pr;
int x, y, op;
Pixfont *font;
char *text;

pf_text(where, op, font, text)
struct pr_prpos where;
int op;
Pixfont *font;
char *text;

~~sun ~ microsystems
Revision A of 9 May 1988

c
Name

Write Text

c

Appendix B - Pixrect Functions and Macros 93

Table B-2 Text- Continued

I Function
pf_ttext(where, op, font, text)
struct pr_prpos where;
int op;
Pixfont *font;
char *text;

Revision A of 9 May 1988

94 Pixrect Reference Manual

B.3. Raster Files

Table B-3 Raster Files

Name
Initialize Raster File
Header

Read Colormap from
Rasrer File

Read Header from
Raster File

Read Image from Raster
File

Read Raster File

Read Standard Raster
File

Write Header to Raster
File

Write Image Data to
Raster File

Write Raster File

I Function
Pixrect *pr_dump_init(input_pr, rh, colormap, type,

copy_f'lag)
Pixrect *input_pr;
struct rasterfile *rh;
colormap_t *colormap;
int type, copy_flag;

int pr_load_colormap(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

int pr_load_header(input, rh)
FILE *input;
struct rasterfile *rh;

Pixrect *pr_load_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t *colormap;

Pixrect *pr_load(input, colormap)
FILE *input;
colormap_t *colormap;

Pixrect *pr_load_std_image(input, rh, colormap)
FILE *input;
struct rasterfile *rh;
colormap_t colormap;

int pr_dump_header(output, rh, colormap)
FILE *output;
struct rasterfile *rh;
colormap_t *colormap;

int pr_dump_image(pr, output, rh)
Pixrect *pr;
FILE *output;
struct rasterfile *rh;

int pr_dump(input_pr, output, colormap, type, copy_flag)
Pixrect *input_pr;
FILE *output;
colormap_t *colormap;
int type, copy_flag;

~~sun ~~ microsystems
Revision A of 9 May 1988

0

Appendix B - Pixrect Functions and Macros 95

0
\.._ B.4: Memory Pixrects

C'

c

Table B-4 Memory Pixrects

Name ~ I
Create Memory Pixrect
from an Image

Create Memory Pixrect

Create Static Memory
Pixrect

Get Memory Pixrect
Data Bytes per Line

Get Pointer toM emory
Pixrect Data

Variations for the Sun386i:

Function

Pixrect *mem_point(width, height, depth, data)
int width, height, depth;
short *data;

Pixrect *mem_create(w, h, depth)
int w, h, depth;

#define mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

#define mpr_linebytes(width, depth)
(((pr_product(width, depth)+l5)>>3) &-1)

#define mpr_d(pr)
((struct mpr_data *) (pr)->pr_data)

D mem_point (} on the Sun386i does not flip the bitmap pointed to by *data. The pixrect structure returned
does not have the MP_STATIC or the MP_I38 6 flag set.

D mem_ create () on the Sun386i creates an empty pixrect with the MP _ I3 8 6 flag set.

D mpr _static () on the Sun3 86i creates a pixrect with both the MP _I 3 8 6 and MP _sTATIc flags set.

Revision A of 9 May 1988

96 Pixrect Reference Manual

B.S. Colormaps and Bitplanes

Table B-5 Colormaps and Bitplanes

Name
Exchange Foreground
and Background Colors

Get Colormap Entries

Get Plane Mask

Set Background and
Foreground Colors

Set Colormap Entries

Set Foreground and
Background Colors

Set Plane Mask

Subregion Get
Colormap Entries

Subregion Get Plane
Mask

Subregion Set
Colormap Entries

I
pr_reversevideo(pr,
Pixrect *pr;
int min, max;

Function
min, max)

#define pr_getcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

#define pr_getattributes(pr, planes)
Pixrect *pr;
int *planes;

pr_blackonwhite(pr, min, max)
Pixrect *pr;
int min, max;

#define pr_putcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

pr_whiteonblack(pr, min, max)
Pixrect *pr;
int min, max;

#define pr_putattributes(pr, planes)
Pixrect *pr;
int *planes;

#define prs_getcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

#define prs_getattributes(pr, planes)
Pixrect *pr;
int *planes;

#define prs_putcolormap(pr, index, count, red, green,
blue)

Pixrect *pr;
int index, count;
unsigned char red[], green[], blue[];

Revision A of 9 May 1988

/~
, I

_)

c

Name
Subregion Set Plane
Mask

Appendix B - Pixrect Functions and Macros 97

Table B-5 Colormaps and Bitplanes- Continued

I Function
#define prs_putattributes(pr, planes)
Pixrect *pr;
int *planes;

sun
microsystems

Revision A of 9 May 1988

98 Pixrect Reference Manual

B.6. Rasterops

Table B-6 Rasterops

Name
Draw Textured or Solid
Lines with Width

Draw Textured Polygon

Draw Vector

Get Pixel Value

Masked RasterOp

Multiple RasterOp

RasterOp

Replicated Source
RasterOp

Set Pixel Value

I Function
#define pr_line(pr, xO, yO, xl, yl, brush, tex, op)
Pixrect *pr;
int xO, yO, xl, yl;
struct pr_brush *brush;
struct pr_texture *tex;
int op;

pr_polygon_2(dpr, dx, dy, nbnds, npts, vlist, op,
spr, sx, sy)

Pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[];
struct pr_pos *vlist;
int op, sx, sy;

#define pr_vector(pr, xO, yO, xl, yl, op, value)
Pixrect *pr;
int xO, yO, xl, yl, op, value;

#define pr_get(pr, x, y)
Pixrect *pr;
int x, y;

#define pr_stencil(dpr, dx, dy, dw, dh, op,
stpr, stx, sty, spr, sx, sy)
Pixrect *dpr, *stpr, *spr;
int dx, dy, dw, dh, op, stx, sty, sx, sy;

#define pr_batchrop(dpr, dx, dy, op, items, n)
Pixrect *dpr;
int dx, dy, op, n;
struct pr_prpos items[];

#define pr_rop(dpr,
Pixrect *dpr, *spr;
int dx, dy, dw, dh,

pr_replrop(dpr, dx,
Pixrect *dpr, *spr;
int dx, dy, dw, dh,

#define pr_put(pr,
Pixrect *pr;
int x, y, value;

dx,

op,

dy,

op,

x, y,

dy, dw, dh, op, spr, sx,

sx, sy;

dw, dh, op, spr, sx, sy)

sx, sy;

value)

sy)

Revision A of 9 May 1988

I~ u

c
A~endix B - Pixrect Functions and Macros 99

Table B-6 Rasterops-- Continued

Name
Subregion Draw Vector

Subregion Get Pixel
Value

Subregion Masked
RasterOp

Subregion Multiple
RasterOp

Subregion RasterOp

Subregion Replicated
Source RasterOp

Subregion Set Pixel
Value

Trapezon RasterOp

I Function
#define prs_vector(pr, posO, posl, op, value)
Pixrect *pr;
struct pr_pos posO, posl;
int op, value;

#define prs_get(srcprpos)
struct pr_prpos srcprpos;

#define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr_prpos stenprpos, srcprpos;

#define prs_batchrop(dstpos, op, items, n)
struct pr_prpos dstpos;
int op, n;
struct pr_Frpos items[];

#define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr_prpos srcprpos;

#define prs_replrop(dsubreg, op, sprpos)
struct pr_subregion dsubreg;
struct pr_prpos sprpos;

#define prs_put(dstprpos, value)
struct pr_prpos dstprpos;
int value;

pr_traprop(dpr, dx, dy, t, op, spr, sx, sy)
Pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

sun
mlcrosystems

Revision A of 9 May 1988

1 00 Pixrect Reference Manual

B.7. Double Buffering

Table B-i Double Buffering

Name
Get Double Buffering
Attributes

Set Double Buffering
Attributes

I Function
pr_dbl_get(pr, attribute)
Pixrect *pr;
int attribute;

pr_dbl_set(pr, attribute_list)
Pixrect *pr;
int *attribute_list;

0
Revision A of 9 May 1988

c
c

Pixrect Data Structures

Pixrect Data Structures ... 103

c

C'

0

c

Table C-1

Name
Brush

Character Descriptor

Font Descriptor

Pixrect

c

c
Pixrect Data Structures

Pixrect Data Structures

I Data Structure
typedef struct pr_brush {

int width;
} Pr_brush;

struct pixchar

} ;

struct pixrect *pc_pr;
struct pr_pos pc_home;
struct pr_pos pc_adv;

typedef struct pixfont {
struct pr size pf_defaultsize;
struct pixchar pf_char[256];

} Pixfont;

typedef struct pixrect {
struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;
caddr t pr_data;

} Pixrect;

103 Revision A of 9 May 1988

104 Pixrect Reference Manual

Table C-1

Name
Pixrect Operations

Position

Position Within a
Pixrect

Size

Subregion

I
Pixrect Data Structures- Continued

Data Structure
struct pixrectops {

int (*pro_rop) ();

} ;

int (*pro_stencil} ();
int (*pro_batchrop} ();
int (*pro_nop) ();
int (*pro_destroy) ();
int (*pro_get) ();
int (*pro_put) ();
int (*pro_vector) ();
struct pixrect * (*pro_region) ();
int (*pro _putcolo.rmap) () ;
int (*pro_getcolormap) ();
int (*pro_putattributes) ();
int (*pro_getattributes) ();

struct pr_pos {
int x, y;

} ;

struct pr_prpos

} ;

struct pixrect *pr;
struct pr_pos pos;

struct pr_size {
int x, y;

} ;

struct pr_subregion
struct pixrect *pr;
struct pr_pos pos;
struct pr_size size;

} ;

0

Revision A of 9 May 1988

---~-----------------------------

c Table C-1

Name I
Texture

Trapezon

c
Trapezon Chain

Trapezon Fall

Appendix C - Pixrect Data Structures 105

Pixrect Data Structures- Continued

Data Structure
typedef struct pr_texture

short *pattern;
short offset;
struct pr_texture_options {

unsigned startpoint 1,
endpoint : 1,
balanced : 1,
givenpattern 1,
res_fat : 1,
res_poly: 1,
res mvlist : 1,
res_right 1,
res close : 1;

} options;
short res_polyoff;
short res_oldpatln;
short res_fatoff;

} Pr_texture;

struct pr_trap {

} ;

struct pr_fall *left, *right;
int yO, yl;

struct pr_chain {

} ;

struct pr_chain *next;
struct pr_size size;
int *bits;

struct pr_fall {

} ;

struct pr_pos pos;
struct pr_chain *chain;

Revision A of 9 May 1988

0

c\
D

Curved Shapes

Curved Shapes .. 109

()

---~~~--------------------------

c

Figure D-1

c

D
Curved Shapes

This appendix describes pr _ traprop () , a function for rendering curved
shapes with Pixrect. pr _ traprop () is an advanced pixrect operation analo­
gous to pr_rop ().

The curve to be rendered must first be stored in a data structure called pr _trap
which is based on a region called a trapezon, rather than on a rectangle. A tra­
pezon is a region with an irregular boundary. Like a rectangle, a trapezon has
four sides: top, bottom, left, and right. The top and bottom sides of a trapezon
are straight and horizontal. A trapezon differs from a rectangle in that its left and
right sides are irregular curves, called falls, rather than straight lines.

A fall is a line of irregular shape. Vertically, a fall may only move downward.
Horizontally, a fall may move to the left or to the right, and this horizontal
motion may reverse itself. A fall may also sustain pure horizontal motion, that
is, horizontal motion with no vertical motion.

The figures below show a typical trapezon with source and destination pixrects,
and some examples of filled regions that were drawn by pr _ tr a prop () .

Typical Trapezon

destination
pixrect

dx,!f_-----

v

sun
microsystems

-op

109

source
pixrect

- sx, 9f

Revision A of 9 May 1988

11 0 Pixrect Reference Manual

Figure D-2 Some Figures Drawn by pr _ traprop ()

pr_traprop(dpr, dx, dy, t, op, spr, sx, sy)
struct pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

dpr and spr are pointers to the destination and source pixrects, respectively. t
is the trapezon to be used. dx and dy specify an offset into the destination pix­
rect. s x and s y specify an offset into the source pixrect. op is an op-cod~ as
specified previously (see Section 3.3, The Op Argument).

struct pr_trap {

} ;

struct pr_fall *left, *right;
int yO, yl;

struct pr_fall {

} ;

struct pr_pos pos;
struct pr_chain *chain;

struct pr_chain {

} ;

struct pr~chain *next;
struct pr_size size;
int *bits;

pr_traprop () performs a rasterop from the source to the destination, clipped
to the trapezon's boundaries. A program must call pr_traprop () once per
trapezon; therefore this procedure must be called at least twice to draw the letter
A in Figure D-2.

The source pixrect is aligned with the destination pixrect; the pixel at (s x, s y) in
the source pixrect goes to the pixel at (dx, dy) in the destination pixrect (see
Figure D-2).

Positions within the trapezon are relative to position (dx, dy) in the destination
pixrect Thus, a position defined as (0,0) in the trapezon would actually be at

Revision A of 9 May 1988

0

c
Appendix D-Curved Shapes 111

(dx, dy) in the destination pixrect.

The structure pr _trap defines the boundaries of a trapezon. A trapezon con­
sists of pointers to two falls (left and right) and two y coordinates specify­
ing the top and bottom of the trapezon (yO and yl). Note that the trapezon's top
and bottom may be of zero width; yO and yl may simply serve as points of
reference.

Each fall consists of a starting position (pos) and a pointer to the head of the list
of chains describing the path the fall is to take (chain). A fall may start any­
where above the trapezon and end anywhere below it. pr_traprop () ignores
the portions of a fall that lie above and below the trapezon. If a fall is shorter
than the trapezon, pr _ traprop () will clip the trapezon horizontally to the
endpoint of the fall in question. Figure D-3 illustrates the way this works.

A chain is a member of a linked list of structures that describes the movement
of the fall. Each chain describes a single segment of the fall. Each chain consists
of a pointer to the next member of the chain (next), the size of the bounding
box for the chain (size), and a pointer to a bit vector containing motion com­
mands (bits).

Each chain may specify motion to the right and/or down, or motion to the left
and/or down; however, a single chain may not specify both rightward and left­
ward motion Remember that motion may not proceed upward, and that straight
horizontal motion is permitted.

The x value of the chain's size determines the direction of the motion: a posi­
tive x value indicates rightward motion, while a negative x value indicates left­
ward motion. They value of the chain's size must always be positive, since a
fall may not move upward (in the direction of negative y).

A chain's bit vector is a command string that tells pr _ traprop () how to draw
each segment of the fall. Each set (1) bit in the vector is a command to move one
pixel horizontally and each clear (0) bit is a command to move one pixel verti­
cally. The bits within the bit vector are stored in byte order, from most
significant bit to least significant bit. This ordering corresponds to the left -to­
right ordering of pixels within a memory pixrect.

The fall begins at the starting position specified in pr _fall. The motion
proceeds downward as specified in the first bit vector in the chain, from the
high-order bit to the low-order bit. When the fall reaches the bottom of the
bounding box, it continues at the top of the next chain's bounding box. Note that
the fall will always begin and end at diagonally opposite comers of a given
bounding box.

If a bit vector specifies a segment of the fall that would run outside of the bound­
ing box, pr_traprop () clips that segment of the fall to the bounding box.
This would occur when the sum of the 1 'sin a chain's bit vector exceeds the
chain's x size, or when the sum of the O's in the chain's bit vector exceeds the
chain's y size. When this happens, the segment in question runs along the edge
of the bounding box until it reaches the comer of the bounding box diagonally
opposite to the comer in which it started.

sun
mlcrosystems

Revision A of 9 May 1988

112 Pixrect Reference Manual

Figure D-3

If the fall has a straight vertical segment, the x size of its chain must be 0. If the
fall has a straight horizontal segment, the y size of its chain must be 0.

Trapezon with Clipped Falls

chain bounding box

chain bounding box

chain bounding box

y1

The following program draws an octagon.

Revision A of 9 May 1988

~
!)
\'-.....,./

c
Figure D-4

Appendix D- Cmved Shapes 113

Example Program using pr_traprop ()

*include <pixrect/pixrect_hs.h>

int shallowsteep[]

int steepshallow[]

{Oxbbbbbbbb, Oxbbbbbbbb,
Ox44444444, Ox44444444};

{Ox44444444, Ox44444444,
Oxbbbbbbbb, Oxbbbbbbbb};

struct pr_chain leftl = {0, {64, 64}, steepshallow},
leftO = {&leftl, {-64, 64}, shallowsteep},
rightl {0, {-64, 64}, steepshallow},
rightO = {&rightl, {64, 64}, shallowsteep};

struct pr_fall left_oct = {{0, 0}, &leftO},
right_oct = {{0, 0}, &rightO};

struct pr_trap octagon= {&left_oct, &right_oct, 0, 128};

main()
{

Pixrect *screen;

screen = pr_open (" /dev/fb");
pr_traprop(screen, 576, 450, octagon, PIX_SET, 0,0,0);
pr_close(screen);

pr _chain specifies the left lower, the left upper, the right lower, and the right
upper sides of the octagon, in that order. pr _fall specifies first the left side,
then the right side of the octagon.

Each of the eight sides of the octagon is half a chain. The two upper left sides
correspond to chain left 0. The bits start out with mostly 1 's (Oxb is binary
1011) for the shallow uppermost left edge. They tum to-mostly O's (Ox4 is
binary 0100) for the next edge down, which is steeper.

Revision A of 9 May 1988

0

c

Index

Special Characters
<rasterfile.h>,59
<stdio .h>, 59

8
80386, see Sun386i

B
bitmap, 4
bitmapped display, 4
boolean,4

c
clip pixrect, 21
compiling pixrect programs, 6
compute bounding box of text string, 46, 92
compute location of characters in text string, 46, 92
compute width and height of text string, 46, 92
convert 680XO pixrect to Sun386i pixrect, 91
coordinate system, 4
create memory pixrect, 53, 95
create memory pixrect from an image, 53, 95
create pixrect, 22, 91
create secondary pixrect, 23, 91
create static memory pixrect, 54, 95
curved shapes, 109

D
determine supported plane groups, 37
draw multiple points, 34
draw textured or solid lines with width, 31, 98
draw textured or solid polylines with width, 33
draw textured polygon, 28, 98
draw vector, 28, 98

E
exchange foreground and background colors, 35, 96

F
fbintr (), 82
fbmmap () , 83
fbopen (), 83
font

pixrect, 28, 43, 45, 46
fontedit, 44

-115-

G
get colormap entries, 34, 96
get current plane group, 37
get double buffering attributes, 38, 100
get memory pixrect data bytes per line, 52, 95
get pixel value, 24, 98
get plane mask, 36, 96
get pointer to memory pixrect data, 52, 95

H
header files

pixrect, 6, 7

I
include files

pixrect, 6, 7
initialize raster file header, 65, 94

L
lint

pixrect, 7
load font, 44, 92
load private copy of font, 45, 92
load system default font, 45, 92

M
masked RasterOp, 25, 98
mem _create (),53, 95
mem _point (), 53, 95
memory pixrects, 6, 13, 51, 53
mpr _ d (), 52, 95
mpr_data,51
mpr_linebytes (),52, 95
mpr_static (),54, 95
multiple RasterOp, 27, 98

0
object-oriented programming, 5

p
pf_close (), 45,92
pf_default (),45, 92
pf_open (), 44,92
pf_open_private (), 45,92
pf.:_text (), 45, 92

Index- Continued

pf_textbatch (), 46,92
pf _ textbound (), 46, 92
pf_textwidth () ,46, 92
pf_ttext (), 45,92
PIX_CLR, 20
PIX_DONTCLIP, 19,21
PIX_DST, 20
PIX_ERR, 19
PIX_NOT, 20
PIX_SET, 20
PIX_SRC, 20
pixchar, 43, 103
pixel, 51

address, 4, 51, 55
color, 4
depth, 4, 51, 55

Pixfont, 43, 103
Pixrect, 103
pixrect

available plane groups, 37
bit flipping, 13
bitmap, 4
bitplane, 36
clipping, 21, 86
close a font, 45
compiling, 6
coordinate system, 4
creation of, 22
data structures, 7, 13, 18, 32, 43, 51, 63, 71, 73, 74, 75, 78, 84,

103, 110
destruction of, 24
draw lines in, 31
draw textured polygon in, 28
draw vector in, 28
errors, 19
find character positions, 46
font, 28, 43, 45, 46
foreground and background, 35
get colormap, 34
get current plane group, 37
get double buffering, 38
get pixel of, 24
get plane mask, 36
header files, 6, 7
internals, 18, 43, 51, 63
lint library, 7
load a font, 44
load a private font, 45
load default font, 45
masked RasterOp, 25
memory pixrects, 6, 13, 51, 53, 54
multiple RasterOp, 27
object, 5
pixel, 4
polylines, 33
polypoints, 34
portability, 13
primary,5
raster files, 60, 62, 64, 65, 66
RasterOp, 4, 25
replicating, 26
screen parameters, 22

-116-

pixrect, continued
secondary, 6, 23
set colormap; 35
set double buffering, 39
set pixel, 24
set plane group, 38
set plane mask, 36
string width, 46
text bounding box, 46
trapezon, 109
write text, 45, 46
writing device drivers, 69, 74, 76, 83, 86

pixrect lint library, 7
pixrect header files

<pixrect/pixrect.h>,6
<pixrect/pr_planegroups.h>,37
<pixrect>, 7
<stdio.h>, 59

pixrect macros
MP DISPLAY, 51
MP-I386, 51
MP-REVERSEVIDE~51
MP-STATIC, 51
mpr d(),52
mpr-linebytes(),52
PIX-DONTCLIP,19,21
PIX-DST, 20
PIX-ERR, 19
PIX-NOT, 20
Pix:=sRc, 20
PIXPG SBIT COLOR, 37
PIXPG-CURRENT, 37
P IXPG-MONO, 37
P IXPG-OVERLAY, 37
PIXPG=OVERLAY_ENABLE,37

pixrectops, 18, 103
pr_available_plane_groups(),37
pr _ batchrop (), 27, 98
pr _ blackonwhi te (), 35, 96
pr_ brush, 103
pr_brush (), 31,33
pr_chain, 103, 110
pr_clip (), 86
pr_close (), 24,91
pr_dbl_get (), 38, 100
pr_dbl_set (), 39, 100
pr_destroy (), 24,91
pr_dump (), 60,94
pr_dump_header (), 64,94
pr _dump_ image () , 65, 94
pr_dump_init (), 65,94
pr_fall, 103, 110
pr_flip (), 13,91
pr_get (), 24,98
pr_get_plane_group(),37
pr~getattributes(),36,96
pr _getcolormap (), 34, 96
pr_line (), 31,98
pr_load (), 62, 94
pr_load_colormap (), 66,94
pr _load_ header (), 65, 94 ,

0

0

c

r

pr_load_image (}, 66,94
pr_load_std_image(),66,94
pr_makefromfd(),74
pr_open (}, 22,91
pr_polygon_2 (), 28,98
pr_polyline(),33
pr_polypoint(),34
pr_pos,103
pr_prpos, 103
pr_put (), 24,98
pr_putattributes(),36,96
pr _putcolormap (), 35, 96
pr _region (), 23, 91
pr _ replrop () , 26, 98
pr_reversedst(),86
pr_reversesrc(),86
pr_reversevideo(),35,96
pr_rop (), 25,98
pr_set_plane_group(),38
pr_set_planes(),38
pr_size, 103
pr_stencil(),25,98
pr'-subregion, 103
pr_text (), 46,92
Pr_texture, 103
pr_texture (), 31,33
pr_trap, 103, 110
pr_traprop (), 98, 109
pr_ttext (), 46,92
pr_unmakefromfd(),76
pr_ vector (), 28, 98
pr_whiteonblack(),35,96
primary pixrect, 5, 23
prs_batchrop (),see pr_batchrop
prs_destroy(),see pr_destroy
prs_get (),see pr_get
prs_getattributes(),see pr_getattributes
prs_getcolormap(),see pr_getcolormap
prs_put (),see pr_put
prs_putattributes(),see pr_putattributes
prs_putcolormap (),see pr_putcolormap
prs_region (),see pr_region
pr s _ repl rap () , see pr _ repl rap
prs_rop(),see pr_rop
prs_stencil (),see pr_stencil
prs_vector (),see pr_vector

R
raster file

data structure, 63
initialize header, 65, 94
read, 62, 66, 94
read colonnap, 66, 94
read header, 65, 94
read image, 66, 94
write, 60, 94
write header, 64, 94
write image, 65, 94

rasterfile, 63

-117-

RasterOp, 4, 25, 98
read colonnap from raster file, 66, 94
read header from raster file, 65, 94
read image from raster file, 66, 94
read raster file, 62, 94
read standard raster file, 66, 94
release pixfont resources, 45, 92
release pixrect resources, 24, 91
replicated source RasterOp, 26, 98
run-length encoding, 59

s
secondary pixrect, 6, 23
set background and foreground colors, 35, 96
set colonnap entries, 35, 96
set double buffering, 39, 100
set foreground and background colors, 35, 96
set pixel value, 24, 98
set plane group and mask, 38
set plane mask, 36, 96
subregion

creation of secondary pixrect, 23, 91
destruction of pixrect, 24, 91
draw vector in pixrect, 28, 98
get colonnap, 34, 96
get pixel of pixrect, 24, 98
get plane mask, 36, 96
masked RasterOp, 25, 98
multiple RasterOp, 27, 98
RasterOp, 25, 98
replicating, 26, 98
set colonnap, 35, 96
set pixel of pixrect, 24, 98
set plane mask, 36, 96

Sun386i
pixrect, 91
pixrect portability, 13
pr_flip (), 13

T
trapezon RasterOp, 98, 109

u
unstructured text, 46, 92

v
vector display, 4
vertical retrace, 38

w
write header to raster file, 64, 94
write image data to raster file, 65, 94
write raster file, 60, 94
write text, 45, 92
write text and background, 45, 92

Index- Continued

	Title Page

	Contents

	Tables

	Figures

	1. Introduction

	2. Portability Considerations

	3. Pixrect Operations

	4. Text Facilities for Pixrects

	5. Memory Pixrects

	6. File I/O Facilities for Pixrects

	A. Writing a Pixrect Driver

	B. Pixrect Functions and Macros

	C. Pixrect Data Structures

	D. Curved Shapes

	Index

