purd e s el

N
L

sun’

microsystems

SunCore® Reference Manual

Part Number: 800-1787-10
Revision A, of 9 May 1988

Sun Workstation® and Sun Microsystems® are registered trademarks of Sun N
Microsystems, Inc.

SunCGI™, SunCore™, SunGKS™, SunView™, SunOS™, and the combination
of Sun with a numeric suffix are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T Bell Laboratories.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other-
wise, without prior explicit written permission from Sun Microsystems.

)

O O 0 00 N L W oW W

Contents
Chapter 1 Introduction
1.1. Where to Start
1.2. Overview and Terminology
Basics of Drawing Pictures
1.3. Getting Started With SunCore
1.4. The SunCore Lint Library
1.5. The Coordinate Systems
1.6. Details of Using SunCore
Classification of Functional Capabilities
Error Reporting 10
Useful Constants in the <usercore.h>IncludeFile ... 10
1.7. Further Reading * 13
Chapter 2 Control 17
2.1. Initialization and Termination ' 17
Initialize the SunCore System 18

Close Down the SunCore System

2.2. Initializing and Selecting View Surfaces

Initialize a View Surface

Close Down a View Surface
Add View Surface to Selected Set
Remove View Surface from Selected Set
2.3. Batching of Updates
Indicate Start of a Batch of Updates

—ii-

Contents — Continued

Indicate End of a Batch of Updates

Start New Frame Action for Selected View Surfaces

2.4. Error Control

Report Most Recent Error

Print Error

2.5. Miscellaneous

Drag Control (SunCore Extension)
Signal Handling

Chapter 3 Viewing Operations and Coordinate Transforms
3.1. Windows, View Volumes, and Clipping

3.2. Default Values of Viewing Operation Parameters

3.3. Setting 3D Viewing Operation Parameters
Establish Reference Point for Viewing

Establish View Plane Normal Vector

Establish View Plane Distance

Select Projection Type

Establish 2D View Up Vector

Establish 3D View Up Vector

Establish Size of 2D NDC Space
Establish Size of 3D NDC Space

Establish a Window in the View Plane

Specify Planes for Depth Clipping

Establish Limits of 2D Viewport

Establish Limits of 3D Viewport

Set Viewing Parameters

3.4. Viewing Control
Enable Clipping in the View Plane

Enable Front Plane Depth Clipping

Enable Back Plane Depth Clipping

Set Output Clipping (SunCore extension)

Set Coordinate System Type

Specify 2D World or Modelling Transform

—jiv—

20
20
20
20
21
21
21

25
27
28
29
30
30
30
30
31
31
32
33
33
34
34
35
35
35
36
36
36
36
37

Contents — Continued

Specify 3D World or Modelling Transform 37
Convert 2D NDC to World Coordinates 37
Convert 3D NDC to World Coordinates 38
Convert 2D World to NDC Coordinates 38
Convert 3D World to NDC Coordinates 38

3.5. Inquiring Viewing Characteristics 38
Inquire View Reference Point 39
Inquire View Plane Normal 39
Inquire View Plane Distance 39
Inquire View Depth 40
Inquire Projection 40
Inquire View Up 2 40
Inquire View Up 3 40
Inquire NDC Space 2 40
Inquire NDC Space 3 : 40
Inquire Viewport 2 40
Inquire Viewport 3 “ 40
Inquire Window 40
Inquire Viewing Parameters 41
Inquire World Coordinate Matrix 2 42
Inquire World Coordinate Matrix 3 42
Inquire Inverse Composite Matrix (SunCore Extension) 42
Inquire Viewing Control Parameters 42
Chapter 4 Segmentation and Naming 45
4.1. Retained Segment Attributes 45
4.2. Retained Segment Operations - 47
Create a New Segment 47
Close a Segment 47
Delete a Retained Segment 47
Rename a Retained Segment 48
Delete All Retained Segments . 48

Inquire Retained Segment Surfaces 48

Contents — Continued

43.

44.

Chapter 5 Output Primitives
5.1.

5.2

5.3.

5.4.

5.5.

5.6.

Inquire Retained Segment Names

Inquire Open Retained Segment

Temporary or Non-Retained Segments

Create Temporary Segment.

Close Temporary Segment-

Get Temporary Segment Status
Saving and Restoring Segments on Disk

Save Segment on Disk File (SunCore Extension)

Restore Segment from Disk File (SunCore Extension)

Moving the Current Position
Move to Absolute 2D Position

Move to Absolute 3D Position

Move to Relative 2D Position

Move to Relative 3D Position

Position Inquiry Functions

Inquire 2D Position

Inquire 3D Position

Line Functions

Describe Line in Absolute 2D Coordinates
Describe Line in Absolute 3D Coordinates
Describe Line in Relative 2D Coordinates
Describe Line in Relative 3D Coordinates

Polyline Functions

Describe Line Sequence in Absolute 2D Coordinates
Describe Line Sequence in Absolute 3D Coordinates
Describe Line Sequence in Relative 2D Coordinates
Describe Line Sequence in Relative 3D Coordinates

Text Functions

Draw Character String In World Coordinates

Text Inquiry Functions

Inquire Text Extent 2

—-Vvi—

49
49
49
49

49

49
49
50

53

56 .

56
56
56
56
56
56
57
57
57

57

57
57
58
58
58

58 -

58
59
59
59
59

O

N

Contents — Continued

Inquire Text Extent 3 59

5.7. Marker Functions : 60
Plot Marker at Absolute 2D Coordinates 60

Plot Marker at Absolute 3D Coordinates 60

Plot Marker at Relative 2D Coordinates 60

Plot Marker at Relative 3D Coordinates 60

Plot Marker Sequence at Absolute 2D Coordinates 61

Plot Marker Sequence at Absolute 3D Coordinates 61

Plot Marker Sequence at Relative 2D Coordinates 61

Plot Marker Sequence at Relative 3D Coordinates 61

5.8. 3D Polygon Shading Parameters (SunCore Extension) ... 61
Set Shading Parameters 62
Specify Direction of Light Source 62

Set Vertex Normals . 63

Set Vertex Indices 63

Set Z Buffer Cut 63

5.9. Polygon Functions (SunCore Extension) 63
Describe Polygon in Absolute 2D Coordinates 64
Describe Polygon in Absolute 3D Coordinates 64
Describe Polygon in Relative 2D Coordinates : 64
Describe Polygon in Relative 3D Coordinates 64

5.10. Raster Primitive Functions (SunCore Extension) 65
Raster Output Primitive ; 65

Read Raster from Monochrome or Color Frame Buffer ... 66

Set Size of Raster in NDC 66
Allocate Space for a Raster 66

Free Space of a Raster 66

Copy a Raster to a Disk Raster File ‘ 67

Get a Raster from a Disk File 67
Chapter 6 Attributes 73
6.1. Primitive Static Attributes 73

6.2. Using Texture for Color Attributes on the Monochrome Display 76

— vii—

Contents — Continued

Assign Colors to Indices
Select a Line Color Attribute

Select a Polygon and Raster Color

Select a Text and Marker Color

Set Linewidth

Set Linestyle

Select Plain or Shaded Polygons

Set Polygon Edge Style (No Effect)
Set Font

Select a Device Dependent Pen (no effect)
Set Character Size

Define Character Spacing for Output Primitives

Set Character Up Vector 2

Set Character Up Vector 3

Set Character Path 2

Set Character Path 3

Specify Text Justification (No Effect)

Set Character Precision

Set Marker Symbol

Set Pick ID

Select Rasterop to Display Memory (SunCore Extension)

Specify All Primitive Attributes

6.3. Inquiring Primitive Static Attribute Values

Inquire Color Indices

Inquire Line Index

Inquire Fill Index

Inquire Text Index

Inquire Linewidth

Inquire Linestyle

Obtain Polygon Shading Method
Inquire Polygon Edge Style

Inquire Pen

Inquire Font

— viii —

78
78
79
79
79
79
79
79
79
80
80
80
80
80
80
81
81
81
81
81

82
82
82
82
83
83
83
83
83
83
83
83

N’

Contents — Continued

-

Inquire Character Size 83
Inquire Character Spacing 84
Inquire Character Up Vector 2 84
Inquire Character Up Vector 3 84
Inquire Character Path 2 84
Inquire Character Path 3 84
Obtain Justification Attribute 84
Obtain Current Rasterop (SunCore Extension) 84
Inquire Character Precision 84
Inquire Pick ID 84
Inquire Marker Symbol 85
Obtain All Primitive Attributes 85
6.4. Retained Segment Static Attributes 85
Set Image Transformation Type 85
Inquire Image Transformation Type 86
Inquire Segment Image Transformation Type 86
6.5. Setting Retained Segment Dynamic Attributes 86
Set Visibility 87
Set Highlighting 87
Set Detectability 87
Set Image Translate 2 87
Set Image Transformation 2 87
Set Image Translate 3 88
Set Image Transformation 3 88
Set Segment Visibility 88
Set Segment Highlighting 88
Set Segment Detectability 89
Set Segment Image Translate 2 89
Set Segment Image Transformation 2 89
Set Segment Image Translate 3 90
Set Segment Image Transformation 3 90
6.6. Inquiring Retained Segment Dynamic Attributes 90
Inquire Visibility 91

Contents — Continued

Inquire Highlighting
Inquire Detectability

Inquire Image Translate 2

Inquire Image Transformation 2

Inquire Image Translate 3

Inquire Image Transformation 3

Inquire Segment Visibility

Inquire Segment Highlighting
Inquire Segment Detectability

Inquire Segment Image Translate 2

Inquire Segment Image Transformation 2

Inquire Segment Image Translate 3

Inquire Segment Image Transformation 3

Chapter 7 Input Primitives

7.1. Initializing and Terminaﬁng Input Devices

Initialize a Specific Device

Disable a Specific Device
7.2. Device Echoing
Define Type of Echo for Device

Define Type of Echo for a Group of Devices
Define Echo Reference Point
Define View Surface for Echo
7.3. Setting Input Device Parameters
Initialize LOCATOR Position
Initialize Value and Range for VALUATOR Device
Initialize KEYBOARD Parameters
Initialize STROKE Device
Initialize PICK Device
7.4. Reading From Input Devices
Wait for BUTTON Device
Wait for PICK Device
Wait for Input from the KEYBOARD

91
91
91
91
91
92
92
92
92
92
92
93
93

97

97

98

98

98
100
101
101
101
101
101
102
102
102
102
102
103
103
104

Scnert”

O
o

Contents — Continued

Wait for User to Draw a Curve 104
Read LOCATOR When BUTTON Clicked 105
Read VALUATOR When BUTTON Clicked 105
Low Level Mouse Support (SunCore extension) 105 .
7.5. Inquiring Input Status Parameters » 106.
Obtain Type of Echo for Device 106
Obtain Echo Reference Point 106
Obtain View Surface for Echo 106
Obtain Initial LOCATOR Position - 106.
Obtain Value and Range for VALUATOR Device ... 106
Obtain KEYBOARD Parameters 107
Obtain STROKE Device Parameters 107
Appendix A Deviations from ACM SIGGRAPH Core 111
A.l. Unimplemented Functions 111
A.2. Other Differences 112
Text ‘ 112
Raster Extensions 112
Miscellaneous 113
Appendix B SunCore View Surfaces 117
B.1. The vwsurf Structure . 117
B.2. View Surface Types 118
B.3. Choosing a View Surface Type within an Application Program ... 119
Using Shell Variables to Determine the Environment ... 120
The get_view_ surface Function . 120
B.4. Specifying a View Surface for Initialization 125
View Surface Specification for Raw Devices 126
View Surface Specification for Window Devices 127
B.S. Input Considerations 128
B.6. Notes on Window Device View Surfaces 129
Appendix C Alphabetical SunCore C Function Reference ... 133

—Xi—

Contents — Continued

C.1. Alphabetical List of C Functions

'Appendix D Using SunCore with Fortran-77 Programs

..............................

D.1. Programming Tips

D.2. Example Program
D.3. Correspondence Between C Names and FORTRAN Names
D.4. FORTRAN Interfaces to SunCore

Appendix E Using SunCore with Pascal Programs

E.1. Programming Requirements

Routines Using View Surface Names

Routines Using Rasters and Colormaps

E.2. Example Program
E.3. Correspondence Between C Names and Pascal Names

E.4. Type Declarations

E.5. Function Declarations

Appendix F Hardware Floating Point SunCore Libraries

Appendix G Error Messages

Appendix H Type and Structure Definitions

Appendix I Example Program
I.1. Declarations and the Main Program

I1.2. The Factory Drawing Function

1.3. The Workstation Drawing Function

1.4. The Chip Drawing Function

L.5. The Cloud Drawing Function

Index

— xii—

133

151
152
154
155
159

175
175
176
177
177
179
183
185

197
201
207

213
213
216
217
217
218

221

)

Tables

Table 1-1 Output Capabilities
Table 1-2 Input Capabilities

Table 1-3 Dimension Levels Supported 10
Table 3-1 Default Values of Viewing Operation Parameters 27
Table 3-2 Default Values of Viewing Control Parameters 27
Table 3-3 World Coordinate Matrix Parameters (Modelling

Transform) ; 27
Table 3-4 Image Transformation Parameters 28
Table 3-5 Summary of Functions for Setting Viewing Control

Parameters ‘ 29
Table 3-6 Summary of Functions for Inquiring Viewing Parameters 39
Table 5-1 Summary of Output Primitive Functions 53
Table 5-2 2 Useful PHONG Parameters 62

Table 6-1 Structure of a Fill-Index Value
Table 6-2 Texture Selection Values
Table 6-3 Useful Texture Selection Values

Table 7-1 Input Devices Supported By SunCore
Table 7-2 Echoing for PICK Device
Table 7-3 Echoing for KEYBOARD Device
Table 7-4 Echoing for BUTTON Device
Table 7-5 Echoing for STROKE Device

— xiii -

Tables — Continued

Table 7-6 Echoing for LOCATOR Device

Table 7-7 Echoing for VALUATOR Device

Table A-1 Unimplemented Primitive Attribute Functions

Table A-2 Unimplemented Synchronous Input Functions

Table A-3 Unimplemented Asynchronous Input Functions

Table A-4 Unimplemented Control Functions

Table A-5 Unimplemented Escape Functions
Table A-6 SunCore Extensions

Table A-7 SunCore Replacements

Table B-1 Declarations of get_view_surface in C, FORTRAN,
and Pascal

Table D-1 Comparison of C and FORTRAN Statements

Table D-2 Correspondence Between C Names and FORTRAN Names

Table E-1 Viewsurface Types

Table E-2 Comparison of C and Pascal Statements

Table E-3 Correspoudence Between C Names and Pascal Names

Table F-1 Floating Point Libraries

Table G-1 SunCore Error Messages

xiv

100

111

111

112
112
112
113
113

121

152
155

176
177
179

198

201

O

O

TN

;//

-

Figures
Figure 1-1 Simple Example Program 7
Figure 3-1 Components of Viewing System 26
Figure 5-1 Flow Diagram of Output Primitive Processing _ 55
Figure B-1 Selecting a View Surface from an Environment Variable ... 120
Figure B-2 gét__view_s urface Example 121
Figure B-3 get_view_surface.c Module 122
Figure D-1 FORTRAN Example Program 154
Figure E-1 Pascal Example Program 177
Figure I-1 factory.h Header File 213
Figure I-2 main. c Function . 214
Figure I-3 factory.c Function 216

Figure I-4 sunws . c Function

Figure I-5 chip. c Function

Figure I-6 cloud.c Function

—XV-—

O

[

D

Controlling Document

Audience

Preface

This document describes SunCore, an implementation of the ACM SIGGRAPH
Core System by Sun Microsystems, Inc. SunCore conforms to level 3C (dynamic
output with 3D scaling, rotation and translation) of the Core specification for out-
put primitives, and to level 2 (complete input) for input primitives. Appendix A
summarizes the differences between SunCore and ACM SIGGRAPH Core System.

The following document was used in interpreting the ACM SIGGRAPH Core Sys-
tem: ‘

[11 Status Report of the Graphics Standards Planning Committee. Computer
Graphics. Volume 13, Number 3, August 1979.

The intended reader of this document is an applications programmer who is fami-
liar with interactive computer graphics and the C programming language. This
manual contains several example programs that can be used as templates for
larger SunCore applications.

- Xvii —

Introduction

Introduction

1.1. Where to Start

1.2. Overview and Terminology

Basics of Drawing Pictures

1.3. Getting Started With SunCore
1.4. The SunCore Lint Library

1.5. The Coordinate Systems

1.6. Details of Using SunCore

Classification of Functional Capabilities

Error Reporting
Useful Constants in the <usercore.h> Include File

1.7. Further Reading

5
i

Bisine

=

1.1. Where to Start

1.2. Overview and
Terminology

Introduction

SunCore is a comprehensive package of engineering graphics software providing
the underlying support for interactive graphics applications programs. It is based
on the ACM Core System, a graphics standard designed for 3D interactive graph-
ics. '

SunCore provides extensions to the ACM Core System. These include textured
polygon fill algorithms, raster primitives, RasterOp attributes, shaded surface
polygon rendering, and hidden surface elimination.

SunCore supports both the high resolution monochrome bitmap displays and the
Sun color displays. Device-dependent functions support all these displays under
SunCore. SunCore can also be used in conjunction with the Sun Graphics Pro-
cessor and Graphics Buffer options.

Note that this manual is a reference manual for the SunCore graphics package. It
is not a tutorial for the programmer without knowledge of graphics principles. It
assumes that the reader is familiar with the concepts of graphics, and has some
familiarity with the ACM Core specification. Those who are new to graphics
should consult one of the publications listed in Section 1.7.

If you are an applications programmer who is familiar with the ACM Core
specification, but are new to SunCore, it is recommended that you read Appendix
A in order to become familiar with the areas where SunCore deviates from and
provides extensions to the ACM Core specification.

Note that SunCore supports the ACM Core output level 3C, that is, dynamic out-
put is supported, including 2 and 3D translation, scaling and rotation. SunCore
supports the ACM Core input level 2, that is, synchronous input, including the
PICK device. SunCore supports dimension level 2, that is, 3D operations.

The objective of a graphics application program is drawing pictures and text on
some display device, be it an ephemeral display device such as TV monitor or
terminal, or a hard copy device such as a plotter or printer.

There is a need for a device-independent way of representing graphics images in
the computer, and having a collection of software functions map the device-
independent representations into the physical representations that the output dev-
ice can handle. SunCore is an implementation of one of the *‘standard’’ pack-
ages of graphics software that have appeared recently. This section introduces

sSsun 3 Revision A, of 9 May 1988

microsystems

4

SunCore Reference Manual

e
some of the terminology of SunCore, This terminology is used throughout this N/
manual. It is somewhat easier to describe the terminology from the point of view
of the physical device working backwards to the application program, rather than
starting at the software and working out to the device.

There are two quite distinct points of view for looking at a system running a
graphics application: ‘

o The physical device (monitor, printer, and-so on) on which the final pictures
appear, and

o The internal world which the programmer uses to describe the pictures, and -
which (because of SunCore) is independent of the physical device.

A view surface is a physical surface on which the final picture appears.

There are two interdependent sets of coordinate systems in use in the graphics
package:

World Coordinates
is a coordinate system which is device-independent. The applications pro-
grammer constructs all graphical objects in terms of world coordinates. -

Normalized Device Coordinates
(often abbreviated as NDC) is a fixed coordinate system which is indepen-
dent of physical output devices. World coordinates are transformed to NDC
space for clipping and other operations. Each physical output device driver f"“}
then transforms from NDC space to the physical device coordinates for each s
view surface.

A viewport is a region of NDC space which the programmer selects and on which
the pictures will appear.

It is the job of the viewing transformations to perform the correct mapping
between world coordinates-and NDC space.

A window is a region defined in world coordinates within which the images that
the application program defines appear. The selection of the coordinates for the
window are arbitrary — the graphics package maps the window into the
viewport.

In 3D, the transformation from the window to the viewport is a relatively
straightforward process. In 3D, another level of complexity is introduced with
the notion of a view plane which is positioned arbitrarily in world coordinates.

An output primitive, or often just a primitive, is a part of a picture (such as a line
or a character string). The appearance of primitives (such as solid or dotted
lines) is determined by primitive attributes. A primitive attribute is a general
characteristic of an output primitive, and affects the appearance of that primitive.
Examples of primitive attributes are color, linestyle, and linewidth.

Each output primitive may be assigned a name, called the pick-id, which is used
to identify that primitive when an input operation (such as pointing at the primi-

tive with the mouse) is applied. N

S u n Revision A, of 9 May 1988
mg

)

Chapter 1 —Introduction 5

Basics of Drawing Pictures

The current position is a SunCore system value that defines the current location
for drawing. At startup time, the current position is set to the origin of the world
coordinate system. Functions that create output primitives (move, line, and so
on) can alter the current position.

Output primitives are collected together in segments. A segment defines an
image which is a part of the picture on a view surface.

Segments are divided into two classes, namely: temporary and retained. A
retained segment has a name, and can have segment attributes associated with it,
A temporary segment is nameless, and furthermore, the image that a temporary
segment defines only remains visible as long as information is only being added
to the view surface. As soon as a new frame action (one which repaints view sur-
face) occurs, the temporary segment’s image disappears from the view surface.

Each retained segment has one static attribute, its image transformation type.
The value of this attribute can be none, translatable , or transformable.
Translatable and transformable retained segments can be translated or
transformed in either 2 or 3D.

Segments also have dynamic attributes. The visibility and highlighting attributes
control the appearance of the image. The detectability attribute determines if the
segment can be detected by the pick device. Dynamic attributes for translatable
and transformable segments include the segment’s image transformation.
Depending on the image transformation type, the image transformation may con-
tain translation, rotation, and scaling components.

A viewing operation is an operation that maps positions in world coordinates to
positions in NDC space. The viewing operation also determines the portion of
the world coordinate space that is visible if window clipping or depth clipping is
enabled.

The applications program can obtain user interaction by means of input primi-

- tives, which provide facilities for pointing at objects, entering data from the key-

@

board, and causing events.
The general sequence of actions that an application program goes through to
create a picture on a device is this:

1. Initialize SunCore.

2. Initialize a view surface upon which the picture will be drawn.
3. Select a view surface upon which the picture will be drawn.
4

. Specify the viewing operation parameters (sizes of windows in world coordi-
nates, size of viewport, and so on).

“

Set an image transformation type.

6. Create a segment. The created segment becomes the currently open segment
until it is closed.

7. Set attributes for the segment, if required.

S ll n ' Revision A, of 9 May 1988

microsystems

6 SunCore Reference Manual

1.3. Getting Started With
SunCore

8. Draw objects in the segment using output primitives.
9. Close the segment.

10. Repeat steps 4 through 9 as often as required, for as many segments as
needed to build the picture.

11. Apply image transformations (translation, scaling, and rotation) to a given
segment, to achieve the required picture on the display device.

12. Deselect the view surface.
13. Terminate SunCore.

In providing the application programmer with the capabilities needed to draw
pictures, SunCore breaks the interface into six functional areas:

Control
directs the major actions of SunCore, such as startup, shutdown, selection
and deselection of view surfaces, and so on.

Segments
control the creation, closing, and removal of segments. Segments are then
used to collect sets of:

Output Functions
also known as output primitives, which describe the drawing of lines and

line sequences, shaded regions, text, and markers. («\

. R
Attributes

control the way in which output primitives actually appear in the final image
(solid or dotted lines, for instance). :

Transformations
control the major appearances of pictures, such as orientation (rotation),
scaling, and translation. Transformations also control projection type and

clipping.

Input Functions
handle the interaction with the user via the keyboard and the mouse.

This section provides an example of a SunCore application program. The
glass.c program draws a martini glass on the screen. This program demon-
strates the use of:

o Creating a temporary segment (see Segmentation and Naming),
o Moving to an absolute position (see Qutput Primitives),
o Using the polyline drawing functions (see Qutput Primitives),

o Using the absolute line drawing functions (see Output Primitives),

S un Revision A, of 9 May 1988
MICros:

rosystems

Chapter 1 — Introduction

7

#include <usercore.h>

static float glassdx[} = { -10.0,9.0,0.0,-14.0,30.0,
-14.0,0.0,9.0,-10.0 };

static float glassdy(] = { 0.0,1.0,19.0,15.0,0.0,
-15.0,-19.0,-1.0,0.0 };

int pixwindd () ;

struct vwsurf vwsurf = DEFAULT VWSURF (pixwindd) ;

main ()

{
initialize_core (BASIC, NOINPUT, TWOD):;
initialize view_surface(&vwsurf, . FALSE) ;
select_view_surface(&vwsurf);
set_viewport 2(0.125, 0.875, 0.125, 0.75);
set_window(-50.0, 50.0, -10.0, 80.0);

create_temporary segment () ;
move_abs_2(0.0, 0.0); v
polyline rel 2(glassdx, glassdy, 9):;
move_rel 2(-12.0, 33.0);
line_rel 2(24.0, 0.0);
close_temporary segment():

/ﬁ%\ sleep(10);
deselect_view_surface (&vwsurf) ;
terminate_core();
}
Figure 1-1 Simple Example Program
glass. c can be compiled with the following command line:
[% cc glass.c —-fswitch -o glass -lcore -lsunwindow -~lpixrect —-1lm

In the command line above, the options:

—fswitch causes the compiler to take advantage of floating point
hardware if it is available. Otherwise, the compiler will emu-
late this floating point support with software. (For more infor-
mation on floating point options, see Appendix F).

—lcore selects the SunCore run-time library from
/usr/1lib/libcore.a,

—lsunwindow selects the window system library,

P —lpixrect selects the pixrect library,
f
N - =1m selects the correct math library.
& sun Revision A, of 9 May 1988

L4

microsystems

8 SunCore Reference Manual

1.4, The SunCore Lint
Library

1.5. The Coordinate
Systems

-
-

When the compilation is complete, the final program is in the file glass and
may be run by typing its name.

This example uses the some but not all of SunCore’s capabilities. Appendix I
contains an example that illustrates other areas of the SunCore graphics package.

SunCore provides a 1int (1) library which provides type checking beyond the
capabilities of the C compiler. For example, you could use the SunCore
lint (1) library to check a program called glass. c with command like this:

[% lint glass.c -lcore]

Note that the error messages that 1int (1) generates are mostly warnings, and
may not necessarily have any effect on the operation of the program. For a
detailed explanation of 1int (1), see the 1int (1) chapterin the Program-
ming Tools manual.

Applications programs which draw pictures using SunCore communicate in

world coordinates. World coordinates are a device-independent, 2 or 3D, Carte-

sian coordinate system for describing objects. Output primitives are given to

SunCore functions in World Coordinates (WC). However, if the world coordi-

nate matrix is used, SunCore concatenates this matrix with the view transform so

that output primitives are first transformed by this matrix from ‘model’ or -
‘object’ coordinates to world coordinates. This means that the user can supply Q
primitives in ‘model’ coordinates, each model or object being moved into world
coordinates according to the current world coordinate matrix.

In 3D, the user may choose to use right-handed or left-handed world coordinates.
In a right-handed system, if (for example) the x coordinate increases to the right
and the y coordinate increases upwards, then the z coordinate increases towards
the viewer. In the corresponding left-handed system, the x coordinate increases

‘to the right, the y coordinate increases upwards, and the z coordinate increases

away from the viewer.

The composite viewing transform is formed from the world coordinate matrix
and the viewing parameters. SunCore functions transform the output primitives
from world (or model) coordinates to NDC, which is a left-hand coordinate sys-
tem bounded such that: 0.0<x,y,2<1.0

Since current Sun view surfaces have four-to-three aspect ratios, the default NDC
space has the y extent bounded to 0.0<y<0.75. Primitives are stored in the
Display List (also called the Pseudo Display File or PDF), in NDC space. The
user-specified window in world coordinates is mapped (and optionally clipped)
to the user-specified viewport within NDC space. The entire NDC space is then
mapped to the selected physical view surfaces.

, utn Revision A, of 9 May 1988
oIms

Chapter 1 — Introduction = 9

&\—a* 1.6. Details of Using This section describes the details of creating applications programs to run with
SunCore SunCore.
Classification of Functional - The ACM Core specification defines levels of functional capability for a graphics
Capabilities package which implements the specification. The table below shows the

classification. Terms such as BUFFERED and DYNAMICA are defined as con-
stants in the file <usercore.h>, discussed below.

Table 1-1 Output Capabilities

Functional Capability | BASIC | BUFFERED DYNAMICA | DYNAMICB DYNAMICC
Output Primitives and _
Primitive Attributes. yes yes yes yes yes
Viewing yes yes yes yes _ yes
Control yes yes yes yes - yes
Temporary Segments yes yes yes yes yes
Retained Segments no yes yes yes yes
i;fgé;gtﬁung Segment no yes yes yes yes
Visi.bility Segment 10 yes yes yes yes
N Attribute . :
Detzfctability Segment 10 yes* yes* yes* yes*
Attribute

* This feature is only available if input levels SYNCHRONOUS or COMPLETE
are supported. Note that SunCore supports all output levels up to DYNAMICC.

Table 1-2 Input Capabilities

Functional Capability | NOINPUT | SYNCHRONOUS | COMPLETE
Device Initialization and Termination no yes yes
Synchronous Interaction Functions no yes yes
Echo Control no yes _ yes
Explicit Enable or Disable no no yes
Event Queue Management no no yes
Sampled Device Functions no no yes
Associations ’ no no yes

Note that SunCore supports up to the SYNCHRONOUS input level.

&%%0 S un Revision A, of 9 May 1988

10 SunCore Reference Manual

Table 1-3 Dimension Levels Supported

Functional Capability | TWOD | THREED
2D Primitives, v
Attributes, and Viewing.

yes yes

3D Primitives,

. . no es
Attributes, and Viewing. Y

Note that SunCore supports up to the THREED dimension level.

Error Reporting SunCore performs consistency checks on arguments passed to its various func-
tions. Any time an error is detected, the name of the function which raised the
error condition and the text of the error message are printed on the standard error
(stderr).

All SunCore interfaces are functions that return a value. If a function completes
successfully, it returns the value zero. If the function raises any error conditions,
it returns a non-zero value. SunCore always identifies the name of the function
which raised the error condition. The ACM Core specification defines specific
error numbers. These do not correspond to SunCore’s error numbers in the
current release.

Useful Constants in the The file <usercore.h> defines a collection of constants which the application
<usercore.h> Include File programmer should use in lieu of hardwired constants in code. The constants are /m\
described here (but their values are not stated). -’

Useful Constants:
TRUE A universal value denoting the truth value.
FALSE A universal value denoting. the false value.

MAXVSURF The maximum number of view surfaces which may be initialized
at any one time.

Initialization Constants. These constants describe the levels of the SunCore
facilities which the application program will use. These constants should be used
when calling the initialize_ core () function.

BASIC Denotes the basic output level. See the tables above for the
classifications.

BUFFERED
Denotes the buffered output level. See the tables above for the
classifications.

DYNAMICA
Indicates that the application package wishes to use 2D translation
facilities. See the tables above for the classifications.

DYNAMICB
Indicates that the application package wishes to use 3D scaling, rota- ,
tion, and translation facilities. See the tables above for the C
classifications.

é%% sun Revision A, of 9 May 1988

microsystems

>

Chapter 1 — Introduction 11

DYNAMICC
Indicates that the application package wishes to use 3D scaling, rota-
tion, and translation facilities. See the tables above for the
classifications.

NOINPUT Indicates that this application package will not use any input facili-
ties. See the tables above for the classifications.

SYNCHRONOUS
Indicates that this application program will use synchronous input
facilities. See the tables above for the classifications.

COMPLETE
SunCore does not support this input level. See the tables above for
the classifications.

TWOD Indicates that the application package will only use 2D functions.
See the tables above for the classifications.

THREED Indicates that the application package will use both 2D and 3D func-
tions. See the tables above for the classifications.

Character Quality Constants. These constants should be used when calling the
set_charprecision () function.

STRING Denotes low quality text.

CHARACTER
Denotes medium quality text.

Transform Constants. These constants should be used when calling the
set_projection() and set_coordinate system type () functions.

PARALLEL
Value to indicate parallel projection.

PERSPECTIVE
Value to indicate perspective projection.

RIGHT Value to indicate right-handed world coordinate system.
LEFT Value to indicate left-handed world coordinate system.

Image Transformation Type Constants. These constants are used when calling
the set_image transformation type () and
set_segment_image transformation_ type () functions.

NONE Indicates a retained segment which cannot be transformed.
XLATE2 Indicates a retained segment which may be translated in 2D.

XFORM2 Indicates a retained segment which may be fully translated, scaled,
and rotated, in 2D.

XLATE3 Indicates a rerained segment which may be translated in 3D.

XFORM3 Indicates a retained segment which may be fully translated, scaled,
and rotated, in 3D.

sSun Revision A, of 9 May 1988

12 SunCore Reference Manual

Line Style Constants. These constants should be used when calling the
set_linestyle{() attribute for output primitives.

SOLID Solid line.
DOTTED Dotted line.
DASHED Dashed line.

DOTDASHED
Dashed and dotted line.

Text Font Selection Constants. These constants should be used when calling
set_font ().

ROMAN For character precision, a Roman font; for string precision, a raster
font.

GREEK For character precision, a Greek font; for string precision, the
default raster font.

| SCRIPT For character precision, a Script font; for string precision, a small
raster font.

OLDENGLISH
For character precision, an Old English font; for string precision,
equivalent to ROMAN.

STICK This is equivalent to a medium sized ROMAN raster font.

SYMBOLS This is equivalent to a bold version of STICK. It currently holds
some electronics symbols (character values 32 through 47).

Input Device Constants. These constants should be used when calling the
initialize device() and terminate device () functions and other
input functions.

PICK The Pick device. The mouse in SunCore.

KEYBOARD
The Keyboard device.

STROKE The frechand STROKE device. The mouse in SunCore.
LOCATOR The Locator device. The mouse in SunCore.

VALUATOR
The Valuator device. The mouse in SunCore.

! - BUTTON The Button device. The mouse in SunCore.

RasterOp Constants. These constants should be used when calling the
set_rasterop () function.

NORMAL Indicates normal copy mode.
XORROP Indicates bitwise exclusive or of source and destination.

ORROP Indicates bitwise or of source and destination.

Q?f sun Revision A, of 9 May 1988

microsystems

Chapter 1 — Introduction 13

1.7. Further Reading

)
|

Polygon Rendering Style Constants. These constants should be used when cal-
ling the set_polygon interior style () and
set_shading parameters () functions.

PLAIN Indicates area fill with the color indicated by the fill index primitive
attribute.”

SHADED Indicates shading according to the current shading parameters (for
3-D polygons only).

CONSTANT
Indicates constant user-specified shade.

GOURAUD
Indicates Gouraud shading.

PHONG Indicates Phong shading.
[1] Conrac Corporation. Raster Graphics Handbook, Second Edition. Van
Nostrand Reinhold, 1985.

[2] J.D.Foley and A. Van Dam. Fundamentals of Interactive Computer
Graphics. Addison-Wesley, 1982,

[31 W.M. Newman and R.F. Sproull. Principles of Interactive Computer
Graphics. McGraw-Hill, 1979.

[4] ACM-SIGGRAPH. Conference Proceedings.
[5]1 IEEE Computer Graphics and Applications.

[6]1 Status Report of the Graphics Standards Planning Committee. Computer
Graphics. Volume 13, Number 3, August 1979. :

7 Special Issue on Graphics Standards. ACM Computing Surveys. Volume
10, #4, December 1978.

[8]1 The SIGGRAPH Core System Today. Computer Graphics World. Volume
5, #8, August 1982.

[91 SunView Programmer’s Guide. Sun Microsystems.

[10]1 SunView System Programmer’s Guide. Sun Microsystems.
[11] Pixrect Reference Manual. Sun Microsystems.

[12] SunCGI Reference Manual. Sun Microsystems.

[13] FORTRAN Programmer’s Guide for the Sun Workstation. Sun Microsys-
tems.

(14] Pascal Programmer’s Guide for the Sun Workstation. Sun Microsystems.

Sun Revision A, of 9 May 1988
microsystems

5

Control

Control

2.1.

2.2.

2.3.

24.

2.5,

Initialization and Termination

Initialize the SunCore System
Close Down the SunCore System

Initializing and Selecting View Surfaces

Initialize a View Surface

Close Down a View Surface

Add View Surface to Selected Set

Remove View Surface from Selected Set

Batching of Updates

Indicate Start of a Batch of Updates

Indicate End of a Batch of Updates
Start New Frame Action for Selected View Surfaces

Error Control

Report Most Recent Error

Print Error

Miscellaneous

Drag Control (SunCore Extension)
Signal Handling

17

17
18
18
18
18
19
19
19
20
20
20
20
20
20
20
21
21
21

e

0

)

2.1. Initialization and
Termination

4
Y

The SunCore graphics package provides several functions for controlling the sys-
tem. These functions are discussed here, and the sections and subsections which
follow describe the individual functions in detail.

Initialization and termination
of SunCore provide for the initialization of the package to a specific and
predetermined state, and for closing it down when the applications program
has finished using the graphics package.

View surface control
provides for the initialization, termination, and selection of view surfaces. A
view surface must be initialized before it can be used. A view surface
should be terminated when the applications package has finished with it.
Functions are provided to add view surfaces to the set of selected view sur-
faces, and to remove view surfaces from that set. View surface names in
SunCore are structures. The vwsurf structure is declared in
<usercore.h> and is described in Appendix B. SunCore supports
several view surfaces; see Appendix B for details of view surfaces.

Picture change control
provides for the ‘‘batching’’ of changes to dynamic segment attributes so
that the application program may force the simultaneous occurrence of a
group of changes.

Frame control
denotes the function called new frame (), which clears the view surface
and redraws all segments except temporary segments.

Error handling
is that part of SunCore concerned with reporting errors to the application
program.

There are two functions provided for initializing and terminating SunCore. The
application program should call initialize core () before making any
other calls upon the graphics system. terminate_core () should be the last
call to SunCore before the application program itself is finished.

sun 17 Revision A, of 9 May 1988

microsystems

18 SunCore Reference Manual

Initialize the SunCore System

Close Down the SunCore
System

2.2. Initializing and
Selecting View
Surfaces

Initialize a View Surface

| q%:@

Y
M-’/ /

initialize core(output_level, input level, dimension)
int output level:; /* SunCore Level for Output */
/* BASIC, BUFFERED, DYNAMICA */
/* DYNAMICB, DYNAMICC */

int input_ level; /* SunCore Level for Input */
/* NOINPUT, SYNCHRONQUS, COMPLETE */
int dimension; /* Number of Dimensions Required */

/* TWOD, THREED */
initialize core () initializes the Core graphics package to a known state.

SunCore supports up to output level DYNAMICC of the ACM Core specification,
up to input level SYNCHRONOUS of the ACM Core, and dimension level
THREED of the ACM Core.

o The SunCore system is already initialized.

‘o The specified output level cannot be supported.

o The specified input level cannot be supported.
o The specified dimension cannot be supported.

terminate_core()

terminate core () closes down the Core graphics package.

0

View surface control provides for the initialization, termination, and selection of
view surfaces. A view surface must be initialized before it can be used. A view
surface should be terminated when the applications package has finished with it.
Examples of view surfaces are the Sun color display and the Sun monochrome
bitmap display. Functions provided in this category are:

initialize view_surface
performs the functions required to gain access to a specified view surface.

terminate view_surface
terminates access to the specified view surface.

select_view__surfaée
adds the specified view surface to the set of selected view surfaces for out-
put.

deselect_view_surface
removes the specified view surface from the set of selected view surfaces.

inquire selected surfaces
determines which view surfaces are currently selected (not yet imple-
mented).

initialize view surface(surface name, type)

struct vwsurf *surface_name; /* See Appendix B */

int type:; /* TRUE for hidden surface removal, x/""\
FALSE otherwise */ N’

Sun Revision A, of 9 May 1988

microsystems

Chapter 2— Control 19

Close Down a View Surface

Add View Surface to Selected

: Set
-
L
Remove View Surface from
Selected Set
-

//’

——

L 4

initialize_view_surface () initializes the Core package for a specific
view surface.

The surface_ name argument to the function specifies a physical view surface.
View surface names in SunCore are structures. The vwsurf structure is defined in
the <usercore.h> header file. Only color or gray scale devices support
hidden-surface removal.

o The view surface specified by surface name is already initialized.

o The view surface specified by surface name does not have any output dev-
ice associated with it.

o No other view surfaces can be initialized at this time.

o The specified view surface does not support hidden surface removal.
terminate view_surface(surface_name)

struct vwsurf *surface name; /* See Appendix B */
terminate_ view_surface () closes down the specified view surface.
o The view surface specified by surface_name is not initialized.
select _view_surface(surface_name)

struct vwsurf *surface_ name; /* See Appendix B */

select_view_surface () adds a specified view surface to the list of
selected view surfaces.

A segment is only drawn on those view surfaces marked as ‘‘selected’’ at the
time that the segment is created.

o A segment is open.

o The view surface specified by surface_name is not initialized.

o The view surface specified by surface name is already selected.
o The \;iew surface specified by surface name cannot be selected.
deselectiview_surface (surface name)

struct vwsurf *surface_name; /* See Appendix B */

deselect_view_ surface () removes a specified view surface from the list
of selected view surfaces.

Segments created after deselect_view_surface () is called will not be
drawn on the deselected view surface.

o A segment is open.

o The view surface specified by surface_name is not selected.

Suln Revision A, of 9 May 1988

microsystems

20 SunCore Reference Manual

2.3. Batching of Updates

Indicate Start of a Batch of
Updates

Indicate End of a Batch of
Updates

Start New Frame Action for
Selected View Surfaces

2.4. Error Control

Report Most Recent Error

Print Error

¢

3
8
8
k]

™

{

SunCore provides the facility for the application program to indicate that a -
sequence of updates is being started, and the graphics package stacks up these
picture changes until an end_batch_of updates () function call indicates
that the end of the sequence of updates has occurred. Picture changes or
‘updates’ include dynamic segment attributes such as visibility, detectability,

translate, rotate, and scale.

begin batch_of updates()

begin_batch_ of_ updates () indicates the beginning of a batch of updates
to the picture. All modifications to dynamic attributes of segments between calls
tobegin batch_of updates() and end batch_of updates() are
saved up and executed simultaneously. ‘

o There has been no end_batch_of updates () function call since the last
begin _batch of updates () function call.
end batch_of updates()

end batch_of_updates () indicates the end of a batch of updates. The
batch of changes to dynamic attributes of segments is executed,

o There has been no corresponding begin batch of updates () function
call.

new_frame () Q

new_frame () starts new frame action for currently selected view surfaces.
The view surface is cleared, and all visible retained segments are redrawn.

o The set of currently selected view surfaces is empty.

The following functions control the display of error information. This informa-

_tion can be used to determine the source of an error.

report_most_recent_error(error_number)
int *error_number;

report_most_recent_ error () obtains a copy of the most recently
detected error number. A value of zero returned to error number indicates
that there has been no error since the last call on
report_most_recent_ error().

print_error ("Your message”, error number);
int error number;

print_error () prints the message associated with this error number on
the standard error file (stderr). Your message is any character string that the user
wants printed. The error message is printed on the line following ‘“Your mes-
sage’’

./

Revision A, of 9 May 1988

=)

o,

Chapter 2 — Control 21

2.5. Miscellaneous The following functions provide extensions to the Core System.
Drag Control (SunCore set_drag (mode)
Extension) int mode; /* FALSE = uses the rasterop */

/* set by set rasterop */
/* TRUE = enable XOR'’ing */

set drag () writes all output to the bitmap or color framebuffer with XOR-
ing. If dragging is enabled, all output to the device drivers is done with XOR’s to
the data in the displays. This feature makes dragging more convenient. For
example, if you want to drag segment A across segment B, leaving segment B’s
image unaffected, do the following sequence of operations: '

o Set A visibility off,

[u]

Set dragging on,

[m]

Set A visibility on,

[n]

Drag segment A to the desired location,
Set A visibility off,
Set dragging off,

jm]

[u]

o Set A visibility on.
See also: set_rasterop().
Signal Handling SunCore uses the SunView Notifier to handle signals. Therefore, SunCore appli-

cations should use the Notifier instead of explicit signal () calls. See the
manuals, SunView Programmer’s Manual and SunView System Programmer’ s

Manual.
S |
”az{é mSmls}stg Revision A, of 9 May 1988

N’

Viewing Operations and Coordinate

Transforms
Viewing Operations and Coordinate Transforms 25
3.1. Windows, View Volumes, and Clipping 25
3.2. Default Values of Viewing Operation Parameters 27
3.3. Setting 3D Viewing Operation Parameters 28
Establish Reference Point for Viewing 29
Establish View Plane Normal Vector 30
‘ Establish View Plane Distance 30
| Select Projection Type 30
Establish 2D View Up Vector 30
Establish 3D View Up Vector 31
Establish Size of 2D NDC Space 31
Establish Size of 3D NDC Space 32
Establish a Window in the View Plane 33
' Specify Planes for Depth Clipping 33
Establish Limits of 2D Viewport 34
" Establish Limits of 3D Viewport 34
‘ Set Viewing Parameters 35
3.4. Viewing Control 35
Enable Clipping in the View Plane 35
Enable Front Plane Depth Clipping 36
Enable Back Plane Depth Clipping 36
Set Output Clipping (SunCore extension) 36

Set Coordinate System Type 36

i

e

3.5. Inquiring Viewing Characteristics

Specify 2D World or Modelling Transform
Specify 3D World or Modelling Transform
Convert 2D NDC to World Coordinates

Convert 3D NDC to World Coordinates

Convert 2D World to NDC Coordinates

Convert 3D World to NDC Coordinates

Inquire View Reference Point

Inquire View Plane Normal

Inquire View Plane Distance

Inquire View Depth

Inquire Projection

Inquire View Up 2

Inquire View Up 3

Inquire NDC Space 2

Inquire NDC Space 3

Inquire Viewport 2

Inquire Viewport 3

Inquire Window

Inquire Viewing Parameters

Inquire World Coordinate Matrix 2

Inquire World Coordinate Matrix 3

Inquire Inverse Composite Matrix (SunCore Extension)

Inquire Viewing Control Parameters

37
37
37
38
38
38
38
39
39
39
40
40

40

40

& 885 8 8

41
42
42
42
42

)

3.1. Windows, View
Volumes, and Clipping

, /}

i]

¢

\ ;
e

4

Viewing Operations and Coordinate
Transforms

Specifying a viewing operation may be thought of as specifying the arbitrary
orientation of a synthetic camera. The resulting view of the object (the snapshot)
can appear on one or more view surfaces. The viewing operations are provided
for two reasons:

1. To épecify how much of the world coordinate space should be visible, and

2. To specify a mathematical transformation between the world coordinate sys-
tem and NDC space.

A viewing operation is specified by a view volume that defines the portion of
world coordinate space which is to be projected onto a view plane (also called a
projection plane), and a rectangular viewport in NDC space to which the pro-
jected image will be mapped. The viewing operation is sufficiently general as to
support both parallel and perspective projections. The parallel projection
includes the orthographic, axonometric, isometric, cavalier, and cabinet projec-
tions, as special cases.

Once the camera model is specified with set_view reference point (),
set_view_plane_normal (), and so on, a 4 X 4 view transform matrix is
constructed. Then the process of generating an image on a view surface is:

1. View-transforming the output primitives (using the view transform preceded
by any modelling transform the user has specified) to NDC space.

Optional clipping to the window.
Scale the output to niap the window to the viewport.
Optional image transformation as specified by dynamic segment attributes.

Optional clipping to the viewport.

IS G S

Convert to device coordinates and draw the picture.

The window is the bounded portion of the view plane containing projected
objects which will appear within the viewport on the view surface. The view sur-
face corresponds to the physical device on which the picture is drawn. The win-
dow is the logical region, specified in world coordinates, in which the image

appears.

Sun 25 Revision A, of 9 May 1988

microsystems

26

SunCore Reference Manual

Front

Specifying a window involves defining a coordinate system for the view plane.
The coordinate system for the view plane is called the uvw coordinate system, to
distinguish it from the world coordinate system and the NDC space, both of
which are xyz coordinate systems.

The origin of the uvw coordinate system is at the point where the line through the
view reference point parallel to the view plane normal vector intersects the view
plane. In the default case, the view plane distance is zero, and so the view refer-
ence point lies in the view plane and is the origin of the uvw coordinate system.

The direction of the v-axis is determined from the view up vector. The view up
vector is specified in world coordinates relative to the view reference point.

The positive u-axis of the uvw coordinate system is 90 degrees clockwise from
the positive V axis, as viewed in the direction of the view plane normal vector.
The positive U and V axes, together with the view plane normal vector, form a
left handed coordinate system. The window is specified in terms of maximum
and minimum « and v values (see the set_window () function). Figure 3-1
shows the various components of the viewing system.

Clipping Plane

Front
Distance

\

View

Plane Distance

Back
Clipping Plane

View
Plane

View Up
Vector

View

Center of
Projection

Plane Normal

Distance
View
Reference Point

Figure 3-1

sun

microsystemns

S
@

Components of Viewing System

Revision A, of 9 May 1988

Chapter 3 — Viewing Operations and Coordinate Transforms 27

e
N

3.2. Default Values of
Viewing Operation
Parameters

Table 3-1 Default Values of Viewing Operation Parameters

Parameter | Default Value

View Reference Point {0, 0, 0}

View Plane Normal {0,0,-1}

View Distance 0

Front Distance 0

Back Distance 1

Type of Projection Parallel (0,0, 1)

' (perpendicular to the uv

plane)

Window 0,1,0,0.75)

View Up Vector 0,1,0)

NDC Space 0.0<x,z<1.0
0.0<y<0.75

Viewport (0.0, 1.0,0.0,0.75, 0.0, 1.0)

Table 3-2 Default Values of Viewing Control Parameters

IC‘ Parameter | Default Value
Window Clipping On
Output Clipping Off
Front Plane Clipping Off
Back Plane Clipping Off
World Coordinate System Right handed

Table 3-3 World Coordinate Matrix Parameters (Modelling Transform)

Parameter | Default Value
1000
. . 0100
Identity Matrix 0010
0001
ézv mh,!;!s,g Revision A, of 9 May 1988

28 SunCore Reference Manual

Table 3-4

3.3. Setting 3D Viewing
Operation Parameters

Image Transformation Parameters C

Parameter | Default Value
SX, SY, SZ 1, 1, 1 (no scaling)
AX,AY,AZ 0,0, 0 (no rotation)
TX, TY, TZ 0, 0, 0 (no translation)

SunCore provides a number of functions for setting parameters of the viewing
operations. There are a number of separate calls available for setting individual
parameters, then there is a composite set_viewing parameters () func-
tion which sets all the viewing parameters in one fell swoop. The individual -
calls provided are summarized here and described in detail in the subsections fol-
lowing.

o

Revision A, of 9 May 1988

Chapter 3 — Viewing Operations and Coordinate Transforms 29

Table 3-5

Establish Reference Point for
Viewing

\

%

Summary of Functions for Setting Viewing Control Parameters

Function | Description

set_view reference_point Sets the view reference point in world

coordinates.

Defines a vector which determines the
view plane, relative to the view refer-
ence point.

set_view_plane normal

Defines the view plane distance from the
view reference point along the view
plane normal vector.

set_view plane_distance

Defines the distance from the view
reference point to the ‘front’ clipping
plane (also known as the ‘hither’ or
‘near’ clipping plane) and the distance
from the view reference point to the
‘back’ clipping plane (also known as the
‘yon’ or ‘far’ clipping plane).

set_view_depth

set_projection Selects perspective or parallel projec-
tion, and defines the center of projection
(for PERSPECTIVE projection) or direc-
tion of projection (for PARALLEL pro-

jection).

set_view_up 2
set_view_up_ 3

Establish the view up direction in the
view plane for 2 or 3D viewing.

Establishes the window boundaries in

set_window
‘ the view plane.

set_viewport 2
set_viewport_ 3

Establish the viewport boundaries in
NDC space for 2 or 3D viewing.

Establish the size of NDC space for 2 or
3D viewing.

set ndc_space 2
set _ndc_space_3

set_viewing parameters is a composite function which does all

of the above functions at one time.

None of the above calls have any effect until the next call upon the
create_retained segment () orcreate temporary segment ()
functions.

set_view reference point(x, y, z)
float %, vy, z; /* %, vy, and z coordinates */

set_view_reference point () sets the view reference point in world
coordinates. x,y, and z are the coordinates of the view reference point. In the

sun

microsystems

Revision A, of 9 May 1988

30 SunCore Reference Manual

Establish View Plane Normal
Vector

Establish View Plane Distance

Select Projection Type

Establish 2D View Up Vector

S
&

. . s \‘%ezv~»f¢//
absence of a specified reference point, the default view reference point is

(0, 0, 0). The new reference point does not take effect until a new segment is
created.

set _view_plane normal (dx norm, dy norm, dz_norm)
float dx norm, dy norm, dz_norm;

set_view_plane normal () defines a vector relative to the view reference
point, in world coordinates. The view plane is perpendicular to the view plane
normal vector. In the absence of any information to the contrary, SunCore estab-
lishes the view plane normal vector as (0, 0, —1). The new vector does not take
effect until a new segment is created.

o No view plane normal direction can be established because dx_norm,
dy norm, and dz_norm are all zero.

set view plane_distance (distance)
float distance;

set_view_plane_ distance () establishes the view, or projection, plane.

The view plane is perpendicular to the view plane normal vector, and is distance

from the view reference point along the view plane normal vector. Distances are
measured in world coordinate units from the view reference point. Positive

values of distance correspond to the direction of the view plane normal vector,

and negative values correspond to the opposite direction. In the absence of any N
information to the contrary, distance is set to zero, which means that the viewing _ /
plane is located at the view reference point.

set_projection(projection, dx proj, dy proj, dz_proj)
int projection; /* Projection type */

/* PARALLEL; PERSPECTIVE */
float dx proj, dy proj, dz_proj;

/* x, y, and z Deltas of Projection Point */

set_projection () selects the projection system for displaying. The argu-
ments dx_proj, dy_proj, and dz_proj specify a world coordinate point relative to
the view reference point. If projection is PARALLEL, objects project onto the
view plane along lines parallel to the vector specified by dx_proj, dy_proj , and
dz_proj. If projection is PERSPECTIVE, (dx_proj, dy_proj, dz_proj) specify a
point in world coordinates relative to the reference point called the center of
projection (often abbreviated to COP). Objects project onto the view plane along
lines travelling towards this point. Thus the center of projection is the apex of a
pyramid whose edges pass through the four corners of the view window.

o The direction of projection cannot be established because dx, dy, and dz are all
zero. Note that this error is only applicable if parallel projection was selected.

set_view _up 2(dx, dy)

float dx, dy: /* dx and dy coordinates */

set_view_up 2 () establishes a view up vector in 2D. This vector defines C\\
the direction of ‘up’ for the window in world coordinates. 7

sun Revision A, of 9 May 1988

microsystems

Chapter 3 — Viewing Operations and Coordinate Transforms 31

N
N

o The view up vector cannot be established because dx, and dy are both zero.

Establish 3D View Up Vector set_view_up_3(dx_up, dy_up, dz_up)
float dx up, dy_up, dz_up;
/* x, y, and z Deltas of View Up Vector */

set_view_up_3() establishes a view up vector in 3D. The three arguments
dx_up, dy_up, and dz_up establish a view up vector relative to the view reference
point. The view up vector, when projected onto the view plane in the direction
of the view plane normal vector, specifies the positive v-axis of the uvw coordi-
nate system in the view plane. The u-axis is also in the view plane, such that the
u-axis, the v-axis, and the view plane normal vector form a left handed coordi-
nate system. The v-axis is vertical and the u-axis increases to the right when the
view plane is mapped onto the view surface.

SunCore establishes the default view up vector as (0, 1, 0), which means that the
y-axis is up.

If the view plane normal vector is parallel to the y-axis, this does not work and so
SunCore checks the view transforms for validity when creating a segment. Sun-
Core may generate the error message:

‘The current viewing specification is inconsistent’

Py o No view plane normal direction can be established because dx_up, dy up, and
& “ dz_up are all zero.

Establish Size of 2D NDC set_ndc_space_2(width, height)
Space float width, height;

set_ndc_space_2 () defines the size of the NDC space which can be
addressed on the view surface of all display devices available to the applications
program and within which viewports may be established. Both width and height
must be in the range of 0.0 to 1.0, and at least one of the parameters must have a
value of 1.0. NDC space ranges from 0.0 to width in the horizontal direction and
from 0.0 to height in the vertical direction. The rectangle defined by this func-
tion is mapped to the viewable area of any display device available to the appli-
cation program so that the entire rectangle is visible. Only uniform scaling of the
rectangle is allowed; no changes can be made to the viewport aspect ratio. Sun-
Core maximizes the usable area of the display and centers NDC space on each
view surface.

The default NDC specification is width=1.0 and height=0.75. Either of the

set_ndc_space_2 () or set_ndc_space_3 () (see below) functions may

be used at most once per initialization of SunCore, and the NDC space esta-
-blished applies to all view surfaces which the application program might use.

Ten SunCore functions require that NDC space be established before they com-

plete execution. If NDC space has not been explicitly defined before any of these

functions are executed, they implicitly define the NDC space using default values.
4 N Functions which implicitly define NDC space are:

/

s

@ sSun Revision A, of 9 May 1988

microsystems

32 SunCore Reference Manual

Establish Size of 3D NDC
Space

o initialiée_device()

o initialize group()

o create retained_ segment ()

o create temporary segment ()

0 set_viewport 2()

o set_viewport _3()

0 set_viewing parameters ()

o0 ingquire viewport_2()

0 inquire_ viewport_3()

0 inquire_viewing parameters ()

The depth of NDC space is set to 0.0 if set_ndc_space_2 () isusedina 3D
implementation.

o set_ndc_space 2() or set_ndc_space_3 () has already been called
since the system was initialized.

o set ndc_space 2() or set_ndc_space_3 () has been called too late
— the default values have already been defined implicitly.

o A parameter is outside the range 0.0 to 1.0.
o One of width or height must have a value of 1.0.

o width or height has a value of 0.0.

set ndc_space_3(width, height, depth)
float width, height, depth;

set _ndc_space_3 () defines the size of the NDC space which can be
addressed on the view surface of all display devices available to the applications
program and within which viewports may be established. 3D NDC space is a rec-
tangular parallelepiped lying within the NDC system. This coordinate system is
always left-handed, with the x-axis increasing to the right, the y-axis increasing
upwards, and the z-axis increasing away from the viewer. All of the parameters
width, height, and depth must be in the range of 0.0 to 1.0, and at least one of
width or height must have a value of 1.0. NDC space ranges from 0.0 to width in
the horizontal direction, from 0.0 to height in the vertical direction, and from 0.0
to depth in the direction away from the viewer. The rectangle of size width by
height in the 2=0 plane of NDC space is mapped to the viewable area of any
display device available to the application program so that the entire rectangle is
visible. Only uniform scaling of the rectangle is allowed — no changes can be
made to the viewport aspect ratio. SunCore maximizes the usable area of the
display and centers NDC space on each view surface.

The default NDC specification is width=1.0, height=0.75, and depth=1.0. Either

ofthe set _ndc_space_3() orset_ndc_space_2 () (see above) func-

tions may be used at most once per initialization of SunCore, and the NDC space
- established applies to all view surfaces which the application program might use.

&%’% sun Revision A, of 9 May 1988

microsystems

.’

Chapter 3 — Viewing Operations and Coordinate Transforms = 33

Establish a Window in the
View Plane

Specify Planes for Depth
Clipping

@

Ten SunCore functions require that NDC space be established before they com-
plete execution. If NDC space has not been explicitly defined before any of these -
functions are executed, they implicitly define the NDC space using default values.
Functions which implicitly define NDC space are:

0 initialize device ()

0 initialize group ()

0 create_retained segment ()

O create_ temporary segment ()

o set_viewport 2()

o set_viewport_3()

o set_viewing parameters()

0 inquire. viewport_2()

0 inquire_viewport_ 3 ()

0 inquire viewing parameters().

o set_ndc_space_2 () or set_ndc_space 3 () has already been called
since the system was initialized.

o set_ndc_space_2() or set_ndc_space_3 () has been called too late
— the default values have already been defined implicitly.

o A parameter is outside the range 0.0 to 1.0.
o One of width or height must have a value of 1.0.

o width or height has a value of 0.0.

set_window(umin, umax, vmin, vmax)
float umin, umax; /* Left and Right sides of window */
float vmin, vmax;. /* Bottom and Top of window */

set_window () establishes a window, defined by four coordinates in the uv
coordinate system, in the view plane. SunCore establishes the default window as
0.0, 1.0, 0.0, 0.75).

O umin is greater than or equal to umax, which means that the left side of the
window is congruent with or to the right of the right side of the window.

O vmin is greater than or equal to vmax, which means that the top of the window .
is congruent with or below the bottom of the window.

set_view depth(front_distance, back_distance)
float front_distance, back_distance;
/* Distances to Front and Back Planes */

set_view_depth () defines the front and back planes for depth clipping.
Clipping to these depth bounds is controlled by
set_front plane clipping() and

set_back_plane_clipping (). The front and back planes determine the

S ll n Revision A, of 9 May 1988

microsystems

34 SunCore Reference Manual

Establish Limits of 2D
Viewport

Establish Limits of 3D
Viewport

3D view volume which is mapped to the 3D viewport.
SunCore initializes the front distance to 0.0 and the back distance to 1.0.

o front_distance is greater than back -distance, so that the back clipping plane is
in front of the front clipping plane.

set viewport 2 (xmin, xmax, ymin, ymax)
float xmin, xmax; /* Left and Right sides of Viewport */
float ymin, ymax; /* Bottom and Top of Viewport */

set_viewport_2 () establishes the limits of the viewport in 2D NDC space.
The limits must lie in the range: 0<x<NDCwidth and 0<y <.SMNDCheight SunCore
establishes the viewport to (0.0, 1.0, 0.0, 0.75) at initialization time.

o xmin is greater than or equal to xmax, which means that the left side of the
viewport is congruent with or to the right of the right side of the viewport.

O ymin is greater than or equal to ymax, which means that the top of the viewport
is congruent with or below the bottom of the viewport.

o Viewport exceeds NDC space.

set_ viewport_ 3 (xmin, xmax, ymin, ymax, zmin, zmax)
float xmin, xmax; /* Left and Right sides of Viewport */
float ymin, ymax; /* Bottom and Top of Viewport */
float zmin, zmax; /* Front and Back of Viewport */ K\w)
set viewport_3 () establishes the limits of the viewport in 3D NDC space. '
The limits must lie in the range: 0<x SNDCwidth 0<y <.SMNDCheight, and
0<z <NDCdepth SunCore establishes the viewport to (0.0, 1.0, 0.0, 0.75, 0.0, 1.0)
at initialization time.
0 xmin is greater than or equal to xmax, which means that the left side of the

viewport is congruent with or to the right of the right side of the viewport.

o ymin is greater than or equal to ymax, which means that the top of the viewport
is congruent with or below the bottom of the viewport.

O zmin is greater than or equal to zmax, which means that the front of the
viewport is congruent with or behind the back of the viewport.

o Viewport exceeds NDC space.

sun Revision A, of 9 May 1988

microsystems

Chapter 3 — Viewing Operations and Coordinate Transforms 35

C

Set Viewing Parameters set_viewing parameters(view parameters)

struct {
float
float
float
float
float

vwrefpt [3]; /* %, y, 2z */

vwplnorm[3]; /* dx, dy, dz */

viewdis; /* View Reference Point to View Plane */
frontdis; /* View Reference Point to Front Clip Plane
backdis; /* View Reference Point to Back Clip Plane *

int projtype; /* PARALLEL or PERSPECTIVE */

float
float
float
float

projdir([3]; /* Meaning depends on projection type */
window[4]; /* umin, umax, vmin, vmax */

vwupdir([3]; /* dx, dy, dz */

viewport[6]; /* xmin, xmax, ymin, ymax, zmin, zmax */

} *view parameters;

set_viewing parameters () specifies all the viewing parameters with a
single function call. The view_parameters argument is a pointer to a structure as
defined above. set_viewing parameters () fills in the associated struc-
ture with the current values of the viewing parameters. The parameters are:

vwrefpt An array of three £1oats describing the coordinates of the view
reference point.
wwplnorm An array of three £1loats describing the direction of the view plane
normal vector.
{ g viewdis A float describing the distance of the view plane from the view refer-
N ence point.
Sfrontdis A float describing the front clipping distance.
backdis A float describing the back clipping distance.
projtype A int describing the projection type.
projdir An array of three £1oats describing the direction of projection.
The meaning of projdir is dependent on the projection type:
PARALLEL projdir specifies the direction of projection.
PERSPECTIVE
projdir specifies the center of projection.
window An array of four £1oats describing the boundaries of the viewing
window.
vwupdir An array of three £1oats describing the view up direction.
viewport An array of six f1oats describing the boundaries of the viewport.
3.4. Viewing Control The functions described in the following sections allow the user to control view-
ing attributes like clipping and coordinate systems.
_ Enable Clipping in the View set_window_clipping(on_off)
<: ™ Plane int on_off; /* TRUE = turn clipping on */
. /* FALSE = turn clipping off */

4rsun

microsystems

Revision A, of 9 May 1988

36 SunCore Reference Manual

set_window_clipping () enables or disables clipping against the window C
in the view plane. The on_off argument specifies whether window clipping is

enabled or not. A value of FALSE disables window c11pp1ng, whereas a value of

TRUE enables window clipping.

When window clipping is.off, objects described to SunCore are not checked to
insure that they lie within the window when projected onto the view plane.
When window clipping is on, objects described to SunCore are clipped to the
window.

SunCore initializes window clipping to TRUE.

Note that window clipping is done before segment primitives are written to the
pseudo display file. This means that subsequent image transformations may
extend images beyond the bounds of the viewport. SunCore has optional output
clipping (an extension to the ACM Core specification) to correct for this. See the
set_output_clipping() function described below.

Enable Front Plane Depth set_front_plane clipping(front_on_off)
Clipping int front_on_off:;

set front _plane clipping() enables or disables clipping against the
front clipping plane. The front_on_off argument specifies clipping enabled or
disabled for the front clipping plane. A value of FALSE means disable the clip-
ping, and a value of TRUE enables the clipping. Clipping is disabled by default.

Enable Back Plane Depth set_back _plane_clipping(back on_off) N/
Clipping int back_on_off;

set_back_plane_clipping() enables or disables clipping against the
back clipping plane. The back_on_off argument specifies clipping enabled or
disabled for the back clipping plane. A value of FALSE means disable the clip-
ping, and a value of TRUE enables the clipping. Clipping is disabled by default.

Set Output Clipping (SunCore set_output_clipping(on_off)
extension) int on off; /* TRUE = turn on clipping */
/* FALSE = turn off clipping */

SunCore supports output clipping, which is done after image transformations on
segments, as an option in addition to window clipping. The
set_output_clipping () function enables or disables output clipping. If
output clipping is enabled, it places a clipping process after the image transfor-
mation specified by the dynamic segment attribute. This ensures that everything
is correctly clipped to the viewport.

Set Coordinate System Type set_coordinate_system_type (type)
int type; /* RIGHT = right handed coordinates */
/* LEFT = left handed coordinates */

set_coordinate_system type() selects a left-handed or right-handed
world coordinate system. N

f/&%; sun Revision A, of 9 May 1988

microsystems

Chapter 3 — Viewing Operations and Coordinate Transforms 37

e

N

Specify 2D World or
Modelling Transform

Specify 3D World or
Modelling Transform

/'
{

Convert 2D NDC to World

Coordinates

C‘

set_world coordinate matrix 2 (array)
float array([3]I[3]; /* [row] [column] */

set_world coordinate matrix 2 () specifies a 3 X 3 matrix containing
the ‘world transform’ or modelling transform. This matrix is concatenated with
the ‘viewing transform’ to give the ‘composite viewing transform’. The compo-
site viewing transform is the transform that is actually used for all SunCore view-
ing transform operations. The default world coordinate matrix is the identity
matrix. Currently, this function does not modify column 2 of the matrix. This
function may be called at any time, even in the midst of putting output primitives
into a segment.

Note that the matrix order is such that:

xnew =x*array o gty*arraygtarray, o
ynew=x*array,+y*array, +array,

set_world coordinate matrix 3 (array)
float array(4][4]; /* [row] [column] */

set_world coordinate matrix_3() specifies a 4 X 4 matrix containing
the ‘world transform’ or modelling transform. This matrix is concatenated with
the ‘viewing transform’ to give the ‘composite viewing transform’. The compo-
site viewing transform is the transform that is actually used for all SunCore view-
ing transform operations. The default world coordinate matrix is the identity
matrix. Currently, this function does not modify column 3 of the matrix. This
function may be called at any time, even in the midst of putting output primitives
into a segment.

Note that the matrix order is such that:

xnew=x*array ,gty*array, gtz*array, grarray,
ynew=x*array,+y*array, ;+z*array, ;+array;
znew=x*array , s +y*array, ;+z*array, ,+arra

02 12 2.2 3.2

map_ndc_to_world 2(ndex, ndcy, wldx, wldy)
float ndcx, ndcy;
float *wldx, *wldy:

map _ndc_to_world 2 () maps a point in NDC space to its world coordi-
nates.

Revision A, of 9 May 1988

38 SunCore Reference Manual

)

Convert 3D NDC to World map_ndc_to_world 3(ndecx, ndcy, ndcz, wldx, wldy, wldz)
Coordinates float ndcx, ndey, ndcz;
' float *wldx, *wldy, *wldz;

map ndc_to_world 3 () maps a point in NDC space to its world coordi-
nates.

Convert 2D World to NDC map_world to ndc 2(wldx, wldy, ndcx, ndcy)
Coordinates float wldx, wldy:
float *ndcx, *ndcy;

map_world to ndc_2 () maps a point in world coordinates to its NDC
space.

Convert 3D World to NDC - map_world to ndc_3(wldx, wldy, wldz, ndcx, ndcy, ndcz)
Coordinates float wldx, wldy, wldz;
float *ndcx, *ndcy, *ndcz;

map_world to_ndc_3 () maps a point in world coordinates to its NDC
space.

3.5. Inquiring Viewing SunCore provides a number of functions for inquiring about parameters of the
Characteristics viewing operations. There are a number of separate calls available for inquiring
about individual parameters, then there is a composite
inquire_ viewing parameters () function which obtains all the viewing
parameters in one fell swoop. The individual calls provided are summarized here
and described in detail in the subsections following.

)

@ sun Revision A, of 9 May 1988
MiC ems

-
.

Chapter 3 — Viewing Operations and Coordinate Transforms 39

Table 3-6

inquire_view depth

inquire projection

— inquire view up 2

< . | inquire view up 3°
inquire viewport 2
inquire_viewport 3

inquire window

inquire_ ndc_space 2

inquire ndc space 3

inquire viewing parameters is a composite function which does all of the above functions

Summary of Functions for Inquiring Viewing Parameters
Function | Description
inquire_view_reference point Obtains the view reference point in world coordinates.
inquire view plane normal Obtains a vector which determines the view plane, relative to
the view reference point.
inquire_view_plane_distance Obtains the distance from the view reference point to the

view plane,

Obtains the distance from the view reference point to the
‘front’ clipping plane (also known as the ‘hither’ or ‘near’
clipping plane), and the distance from the view reference
point to the ‘back’ clipping plane (also known as the ‘yon’ or
‘far’ clipping plane).

Determines which projection type is in use, and returns
either the center of projection (for PERSPECTIVE projection)
or direction of projection (for PARALLEL projection).

Determines the view up direction in 2D.
Determines the view up direction in 3D.
Obtains the coordinates of the 2D viewport.
Obtains the coordinates of the 3D viewport.

Obtain the boundaries of the viewing window.

at one time.
Determine the size of the NDC space in 2D.
Determine the size of the NDC space in 3D.

Inquire View Reference Point
Inquire View Plane Normal

™ Inquire View Plane Distance

£
\\ -

&

inquire view_reference point(x, y, z)
float *x, *y, *z; /* %, v, and z Coordinates */

inquire view reference_point () obtains the coordinates of the view
reference point.

inquire_view_plane normal(dx, dy, .dz)

float *dx, *dy, -*dz; /* x, vy, and z deltas */

inquire view_plane_normal () obtains the coordinates of the view
plane normal vector.

inquire_view_plane_ distance (view distance)

“float *view_distance;

inquire_view_plane_distance () obtains the distance of the view

Sun Revision A, of 9 May 1988

microsystems

40 SunCore Reference Manual

Inquire View Depth

Inquire Projection

Inquire View Up 2

Inquire View Up 3

Inquire NDC Space 2

Inquire NDC Space 3

Inquire Viewport 2

Inquire Viewport 3

Inquire Window

®
plane from the view reference point. -
inquire view_depth(front_distance, back_distance)

float *front distance, *back_distance;

inquire_view_depth () obtains the distances of the front and back clipping

planes from the view reference point.

inquire projection(projection_type, dx, dy, dz)

int *projection_type;

float *dx, *dy, *dz: /* x, y, and z deltas */

inguire projection () obtains the current projection type and the coordi-

nates of the center of projection (for PERSPECTIVE projections) or the direction

of projection (for PARALLEL projections).

inquire view up 2 (dx, dy)

float *dx, *dy; /* x and y directions */

inquire_view_up_2 () obtains the view up direction in 2D.
inquire view up 3(dx, dy, dz)

float *dx, *dy, *dz; /* x, y, and z directions */
inquire view up 3 () obtains the view up direction in 3D,

O
inquire_ndc_space_2(width, height) -/
float #*width, *height;
inquire_ndc_space_ 2 () obtains the dimensions of the 2D NDC space.
inquire ndc_space_3(width, height, depth)
float *width, *height, *depth;
inquire ndc_space_3() obtains the dimensions of the 3D NDC space.
inquire viewport_2(xmin, xmax, ymin, ymax)
float *xmin, *xmax;
float *ymin, *ymax;
inquire viewport_2 () obtains the coordinates of the 2D viewport.
inquire viewport 3 (xmin, xmax, ymin, ymax, 2zmin, zmax)
float *xmin, *xmax;
float *ymin, *ymax;
float *zmin, *zmax;
inquire viewport_3() obtains the coordinates of the 3D viewport.
inquire window(umin, umax, vmin, vmax)
float *umin, *umax;
float *vmin, *vmax; »

’ | | N O
inquire window () obtains the boundaries of the viewing window. S

sun

microsystems

Revision A, of 9 May 1988

Chapter 3 — Viewing Operations and Coordinate Transforms 41

Inquire Viewing Parameters inquire_viewing parameters(view_parameters)
' struct {

float vwrefpt[3]; /* x, y, z */
float vwplnorm[3]; /* dx, dy, dz */
float viewdis; /* View Reference Point to View Plane */
float frontdis; /* View Reference Point

to Front Clip Plane */
float backdis; /* View Reference Point

to Back Clip Plane */
int projtype: /* PARALLEL or PERSPECTIVE *#*/
float projdir([3]; /* Meaning depends

on projection type */
float window([4]; /* umin, umax, vmin, vmax */
float vwupdir([3]; /* dx, dy, dz */
float viewport[6]; /* xmin, xmax, ymin,

'~ ymax, 2zmin, zmax */
} *view_parameters;

inquire viewing parameters () returns a collection of information per-
taining to the current parameters of the viewing system. The view parameters
argument is a pointer to a structure as defined above.

inquire_viewing parameters () fills in the associated structure with
the current values of the viewing parameters. The parameters are:

(@\ ‘ vwrefpt An array of three £1oats describing the coordinates of the view
e reference point.

vwplnorm An array of three £1oats describing the direction of the view plane
normal vector.

viewdis A float describing the distance of the view plane from the view
reference point.

- frontdis A float describing the front clipping distance.
backdis A float describing the back clipping distance.
pfojtype A int describing the projection type.

projdir An array of three £1oats describing the direction of projection.
The meaning of projdir is dependent on the projection type:

PARALLEL
projdir specifies the direction of projection.

PERSPECTIVE
projdir specifies the center of projection.

window An array of four £1oats describing the boundaries of the viewing
window.

vwupdir An array of three £ 1oats describing the view up direction.

(\ ' viewport An array of six £1oats describing the boundaries of the viewport.

N
% sun Revision A, of 9 May 1988

42 SunCore Reference Manual

Inquire World Coordinate
Matrix 2

Inquire World Coordinate
Matrix 3

Inquire Inverse Composite
Matrix (SunCore Extension)

Inquire Viewing Control
Parameters

inquire world coordinate matrix 2 (array)
float array([3]1(3]; /* arrayl[row]([col]l */

inquire world coordinate matrix_2 () returns a 3 by 3 matrix con-
taining the ‘world transform’ or modelling transform. This matrix is con-
catenated with the ‘viewing transform’ to give the ‘composite viewing
transform’. The composite viewing transform is the transform that is actually
used for all SunCore viewing transform operations. The default world coordinate
matrix is the identity matrix.

inquire world coordinate matrix 3 (array)
float array[4]1([4]; /* array[row][col]l */

inquire world coordinate matrix_3 () returns a 4 by 4 matrix con-
taining the ‘world transform’ or modelling transform. This matrix is con-
catenated with the ‘viewing transform’ to give the ‘composite viewing
transform’. The composite viewing transform is the transform that is actually
used for all SunCore viewing transform operations. The default world coordinate
matrix is the identity matrix.

inquire inverse composite matrix(array)
float arrayl[4]1[4]; /* arrayl[row]{col] */

SunCore uses the matrix inverse of the composite viewing transform internally
for operations such as map_ndc_to_world (). This matrix may at times be
useful to the applications program.

inquire viewing control parameters(windowclip,

frontclip, backclip, type)
int *windowclip; /* TRUE if window clipping enabled */
int *frontclip; /* TRUE if front plane clipping enabled */
int *backclip:; /* TRUE if back plane clipping enabled */
int *type; /* RIGHT or LEFT world coordinate system type */

inquire_viewing control parameters () obtains the enabled status
of clipping, and the type of world coordinates in use.

S
%{? U1 Revision A, of 9 May 1988

™
])
;
:ﬂ,,;/

=
.

Segmentation and Naming

Segmentation and Naming

4.1. Retained Segment Attributes

4.2. Retained Segment Operations

Create a New Segment

Close a Segment .

Delete a Retained Segment

Rename a Retained Segment

Delete All Retained Segments

Inquire Retained Segment Surfaces

Inquire Retained Segment Names

Inquire Open Retained Segment
4.3. Temporary or Non-Retained Segments

Create Temporary Segment

Close Temporary Segment

Get Temporary Segment Status

4.4. Saving and Restoring Segments on Disk’

Save Segment on Disk File (SunCore Extension)

Restore Segment from Disk File (SunCore Extension) .

45

45
47
47
47
47
48
48
48
43
49
49
49
49
49
49
49
50

9

-

4.1. Retained Segment
Attributes

Segmentation and Naming

All output primitives for a graphical object are placed in a segment by SunCore
on request from the application program. Each segment defines an image which
is a view of the object and which is part of the picture displayed on the view sur-
face. An application program describes an object by creating a segment, calling
output primitive functions (the results of which are placed in the segment), and
then closing the segment. :

There are two kinds of segments, namely: temporary segments and retained seg-
ments. Retained segments have an image transformation type which specifies
how they can be transformed. Retained segments can be made visible or invisi-
ble, detectable (via the pick input function) or undetectable, highlighted, and may
be transformed, depending on their type.

Retained segments have names (actually numeric identifiers) so that by placing
output primitives in such segments, the application programmer can selectively
modify parts of the picture by deleting and recreating segments (which effec-
tively replaces them) so that their images change. Retained segments are stored
in the display list for later dynamic modification.

Temporary segments are not saved in the display list, are only drawn once, and
may not be modified dynamically. A new frame action deletes all portions of any
temporary segments which have already been drawn.

In the same way that primitive attributes affect the output primitives, retained
segment dynamic attributes affect the characteristics of retained segments. From
now on, the term dynamic attributes means the dynamic attributes of retained
segments.

As well as being identified by the name of the retained segment into which they
have been placed, output primitives may also be assigned a primitive attribute
known as a pick identifier or pick-id. This means that within the single level of
segmentation, another level of naming is provided. An example of the use of
pick-id might be that all the character strings for (say) a menu could appear in a
single segment, where each character string is assigned a different pick-id. Then
when the user is using the mouse to select a specific item from the menu, the
application program uses the PICK input function to find out which menu item
was selected.

Sun 45 Revision A, of 9 May 1988

46

SunCore Reference Manual

Retained segments have one static attribute and four dynamic attributes. Attri-
butes, and the means of setting them and inquiring their values, are described in
detail in Chapter 6.

The only static attribute of retained segments is the image transformation type.
This attribute can have one of five values:

None
The segment is a retained segment on which no transformations may be
applied.

Translatable 2D
The segment is a retained segment which may be translated in 2D.

Transformable 2D
The segment is a retained segment which may be fully translated scaled,
and rotated, in 2D.

Translatable 3D
The segment is a retained segment which may be translated in 2 or 3D.

Transformable 3D
The segment is a retained segment which may be fully translated, scaled,
and rotated, in 2 or 3D.

SunCore sets image transformation type to the default value of NONE at initiali-
zation time.

The four dynamic attributes of retained segments are defined here.

Visibility
indicates whether the segment should have a visible image. There are only
two values of this attribute, namely: TRUE and FALSE.

SunCore sets the default value of visibility to TRUE at initialization time.

Highlighting
indicates whether the segment’s image should be highlighted. In SunCore,
highlighting is done by blinking. There are only two values of the highlight-
ing attribute, namely: TRUE and FALSE. When highlighting is turned on,
the segment is blinked once.

SunCore sets the default value of highlighting to FALSE at initialization
time.

Detectability
indicates whether the retained segment can be detected by the pick device
(mouse pointing device). See the await_pick () function. The values
for the detectability attribute, are: O through 2,147,483,647. SunCore sets
the default value of detectability to 0 at initialization time.

Image Transformation
indicates how the image of a retained segment, in NDC space, is scaled,
rotated, or translated. A segment’s static image transformation type attribute
limits the values which its image transformation attribute may have. See the
set of functions called set _segment_image_ ixx() in Chapter 6.

Q\f sun Revision A, of 9 May 1988
microsystems

TN
.’

N
O

' |

L

Chapter 4 — Segmentation and Naming 47

4.2. Retained Segment
Operations

Create a New Segment

Close a Segment

Delete a Retained Segment

@

SunCore sets the default value of image transformation to the identity
transformation at initialization time.

A retained segment is a form of storage for graphical primitives. This kind of
segment remains for the duration of a SunCore application program unless it is
deleted. After the program exits the contents of a retained segment are lost.

create_ retained segment (segment name)
int segment_name; /* Segment Identifier */

create retained segment () creates a new, empty, open segment. The
segment name argument defines a ssgment number in the range 1 through
2,147,483,647.

The image transformation type for the newly created segment is obtained from
the current attribute value for image transformation type. The
dynamic attribute values for the newly created segment are obtained from the
default values of the dynamic attributes for retained segments.

Use the set_image_ transformation_type () function, before calling
create_retained_segment (), to specify whether the created segment is
translatable or transformable. After calling

create_retained_segment (), the specified segment is said to be
“‘open’’. This means that output primitives can now be called upon to add
graphics primitives (lines, text, polygons, and so on) to this segment.

Only one segment can be open at a time.

o The set of currently selected view surfaces is empty.
o The current viewing specification is inconsistent.

o There is already an open segment.

o A retained segment named segment_name already exists.

o

The default value of image_transformation is invalid for the current
image_transformation_ type.

close_retained_segment ()

close_retained segment () closes the currently open segment. Dynamic
segment attributes may be changed both before and after closing the segment.

o There is no open retained segment.

delete_retained segment (segment name)
int segment_name; /* Segment Identifier */

delete retained segment () deletes a specifically named segment. The
segment specified by the segment_name argument is deleted. If the segment
being deleted is the currently open segment, it is closed before it is deleted. The
deleted segment is erased from all view surfaces.

sun Revision A, of 9 May 1988

microsystems

48 SunCore Reference Manual

Rename a Retained Segment

Delete All Retained Segments

Inquire Retained Segment
Surfaces

Inquire Retained Segment
Names

4

o There is no retained segment with the name segment_name.

rename retained segment (segment_name, newname)
int segment_name; /* 0l1d Segment Identifier */
int newname; /* New Segment Identifier */

rename retained segment () changes the name of a retained segment.
The segment whose identity is segment name is renamed as newname, and
this name must be used in any future references to that segment. The segment
segment_name is no longer accessible.

o There is no retained segment with the name segment name.

o There is an existing retained segment named new_name.

delete_all retained segments ()

delete all retained_segments () deletes all retained segments. All
retained segments are deleted. If there is a currently open retained segment, it is
closed before it is deleted.

inquire_retained segment_ surfaces (segment_name,
array_size, view_surface_array, number of surfaces)

int segment name; /* Name of Segment */

int array_size; /* Size of View Surface Array */

struct vwsurf view_surface arrayl[]:; : /ﬂm\
/* Array of view surface names */ e

int *number of surfaces;
/* Returned number of surfaces */

inquire retained segment_surfaces () obtains the number and
names of the view surfaces upon which this segment gets drawn. These view
surfaces were ‘selected’ when the segment was created. The number of view sur-

faces selected at the time the retained segment name given by segment _name

was created is copied into number of_ surfaces. The names of those sur-
faces are copied into view surface_ array, where the array is an array of
view surface names. array_size is specified by the caller, and is the size of
view surface_array. The view surface structure is defined in the
<usercore.h> header file.

If number_ of surfaces is greater than array_size,only array size
view surface names are copied into view_surface_array. If array size isless
than or equal to zero, no names are returned.

o There is no retained segment with the name segment_name.

inquire_ retained segment_ names (array_size,
name_array, number of segments)

int array size; /* Size of Array */
int name_array(]; /* Segment Identifiers */
int *number of segments; /* Number of Segments */

inquire retained segment_names () obtains a list of the retained seg- O '
ments names. The name _array argument is an array which is to receive a list

sun Revision A, of 9 May 1988

microsystems

®

(

Chapter 4 — Segmentation and Naming 49

Inquire Open Retained
Segment

4.3. Temporary or Non-
Retained Segments

Create Temporary Segment

Close Temporary Segment

Get Temporary Segment
Status

4.4. Saving and Restoring
Segments on Disk

Save Segment on Disk File
(SunCore Extension)

of the existing retained segments. array size specifies the number of ele--
ments in name_array. The number_of segments argument is returned to the
caller, and is the number of existing retained segments. If the number of existing
retained segments is greater than the size of the array, only array size seg-
ment names are copied into the array. If array size is less than or equal to
zero, no segment identifiers are returned.

inquire open retained_segment (segment_name)
int *segment name; /* Segment Name */

inquire open retained_segment () obtains the name of the currently
open retained segment. The name of the currently open retained segment (if
there is one) is copied into the segment_name variable. If there is no currently
open retained segment, segment_name is set to zero.

Temporary segments are used for transient images. Temporary segments cannot
be modified dynamically, and all portions of temporary segments which have
already been drawn are deleted upon any new frame action. Primitives placed in
temporary segments are not stored in the display list.

create temporary segment<()

Create_temporary_ segment () creates a new, empty, nonretained or tem-
porary, segment.

close temporary segment ()

close_temporary segment () closes the currently open temporary seg-
ment.

inquire_open_temporary_ segment (open)

int *open; /* Receives status of temporary segment */

inquire_open_temporary segment () determines whether there is a
currently open temporary segment. The open argument receives the status of
whether there is a currently open temporary segment:

FALSE
TRUE

There is no currently open temporary segment.

There is a currently open temporary segment.

The two functions described in this section provide for saving segments on disk
files and restoring segments from disk files. Only one segment is saved in a
given file.

save_segment (segment name, filename)
int segment_ name; /* Name of segment to save */
char *filename; /* Pointer to a filename */

save_segment () saves the named retained segment on a specified disk file.
Saved primitives are in NDC space. Dynamic segment attributes are also saved.

Revision A, of 9 May 1988

50 SunCore Reference Manual

Restore Segment from Disk
File (SunCore Extension)

restore_segment (segment_name, filename)
int segment name; /* Name of segment to create */
char *filename; /* Pointer to a filename */

restore_ segment () restores the named retained segment from a specified
disk file. A new segment is created and the segment from the disk file is copied
into it. The segment is then closed. ’

é%?{; » U 1 Revision A, of 9 May 1988
microsystems

(
\

(

Output Primitives

Output Primitives

5.1. Moving the Current Position

Move to Absolute 2D Position

Move to Absolute 3D Position

Move to Relative 2D Position

Move to Relative 3D Position

5.2. Position Inquiry Functions

Inquire 2D Position :

Inquire 3D Position

5.3. Line Functions

Describe Lirnie in Absolute 2D Coordinates

: Describe Line in Absolute 3D Coordinates

Describe Line in Relative 2D Coordinates

Describe Line in Relative 3D Coordinates

5.4. Polyline Functions
Describe Line Sequence in Absolute 2D Coordinates
Describe Line Sequence in Absolute 3D Coordinates .

Describe Line Sequence in Relative 2D Coordinates

Describe Line Sequence in Relative 3D Coordinates |

5.5. Text Functions

Draw Character String In World Coordinates

5.6. Text Inquiry Functions

Inquire Text Extent 2

53

56
56
56
56
56
56
56
57
57
57
57
57
57
58
58
58
58
58
59
59
59
59

Inquire Text Extent 3

5.7. Marker Functions
Plot Marker at Absolute 2D Coordinates
Plot Marker at Absolute 3D Coordinates
Plot Marker at Relative 2D Coordinates
Plot Marker at Relative 3D Coordinates

Plot Marker Sequence at Absolute 2D Coordinates

Plot Marker Sequence at Absolute 3D Coordinates

Plot Marker Sequence at Relative 2D Coordinates
Plot Marker Sequence at Relative 3D Coordinates
5.8. 3D Polygon Shading Parameters (SunCore Extension)

Set Shading Parameters

Specify Direction of Light Source

Set Vertex Normals

Set Vertex Indices
Set Z Buffer Cut
5.9. Polygon Functions (SunCore Extension)

Describe Polygon in Absolute 2D Coordinates

Describe Polygon in Absolute 3D Coordinates

Describe Polygon in Relative 2D Coordinates

Describe Polygon in Relative 3D Coordinates

5.10. Raster Primitive Functions (SunCore Extension)

Raster Output Primitive
Read Raster from Monochrome or Color Frame Buffer
Set Size of Raster in NDC
Allocate Space for a Raster

Free Space of a Raster

Copy a Raster to a Disk Raster File
Get a Raster from a Disk File

59

60
60
60

60

61
61
61
61
61
62
62
63
63
63
63
64
64
64
64
65
65
66
66
66
66
67
67

N/

/"'“\\

/

D)

Output Primitives

Output Primitives serve to describe objects in the world coordinate system.
When the output primitive functions are called, primitives are placed in the
currently open segment via drawing commands which eventually produce line
and character output.

SunCore supports six kinds of output primitives, namely moves, lines and poly-
lines, polygons, text, markers and polymarkers, and rasters. The table below
summarizes these types of functions:

Summary of Output Primitive Functions

Primitive | Description
Move primitives alter the value of the current position
(described below).
Line primitives describe lines in world coordinates.
Polyline primitives describe sequences of connected lines in

world coordinates.

Polygon primitives describe a closed polygon which will be filled
with a color. The polygon primitives are a SunCore
extension to the ACM Core specification.

Text primitives describe character strings on the display.

Marker primitives describe markers which are written on the
display in a constant orientation, independent of any
transformations which may be in effect.

Polymarker primitives describe a sequence of markers which are
written on the display in a constant orientation, indepen-
dent of any transformations which may be in effect.

Rasters primitive describes an array of one-bit or eight-bit pix-
els.

All primitive operations use world coordinates. Some of these operations affect
the value known as the current position. The current position defines the current
drawing location in the world coordinate system. SunCore maintains the value -
of the current position at all times. At initialization time, the current position is
initialized to the origin of the world coordinate system.

sun 53 Revision A, of 9 May 1988

microsystems

54

SunCore Reference Manual

5
In both 2 and 3D, coordinate positions can be specified in terms of absolute N’
world coordinates, or coordinates can be specified relative to the current position.

A segment must be open (see the create xxxxx segment () functions)
before any output primitives may be used. A segment contains a set of output
primitives which can subsequently be manipulated as a unit.

An output primitive is processed as follows:

1. The primitive is transformed to clipping coordinates using the composite
viewing transform. This places the window boundaries at umin=-32767,
umax=+32767, vmin=-32767, and vmax=+32767. The front clipping plane is
at z=0 and the back clipping plane is at z=+32767.

2. The primitive is then clipped to the boundaries just mentioned if window
clipping is enabled.

3. The output primitive is then output scaled to the viewport which is specified
in NDC space.

4. The resulting primitive is then copied to the display list or pseudo display
file (PDF) if the open segment is a retained segment.

5. Next, the primitive is transformed using the image transform which is an
attribute of retained translatable or retained transformable segments.

6. The output primitive is then clipped again to the viewport boundaries if out-
put clipping is enabled. C

7. For each view surface which was selected when the segment was created, the
primitive is then converted to physical device coordinates and drawn on the
view surface.

If a change is made to certain dynamic segment attributes of a retained segment,
the primitives in that segment are recovered from the PDF and used to erase the

.segment (if necessary) and redraw the segment following steps 5 through 7

@

above. The diagram below shows the above process in a graphical form.

M

sun Revision A, of 9 May 1988

microsystems

Chapter 5 — Output Primitives 55

Figure 5-1 Flow Diagram of Output Primitive Processing

Output
Primitives

View Transform
(Composite)

|

:

| Window Clip
: (Optional)

i

I

)
VAVAV/

Viewport Scale
(to NDC space)

&=

Transform

Vv

t Clip

~ O
@
< 2.2
U
| B

Convert to Device
Coords and Draw

Revision A, of 9 May 1988

56 SunCore Reference Manual

5.1. Moving the Current
Position

Move to Absolute 2D Position

Move to Absolute 3D Position

Move to Relative 2D Position

Move to Relative 3D Position

5.2. Position Inquiry
Functions

Inquire 2D Position

Y
Output primitives are drawn with the static primitive attributes set by the primi- s’
tive attribute functions (see Chapter 6).
There are four functions for moving the current position. move_abs_2 () and
move abs_3() change the current position to an absolute position in world
coordinates, whereasmove_rel 2() and move_rel 3 () change the current
position by a delta relative to the current position.
Note thatmove abs 2 () andmove_rel 2 () are simply short forms of the
corresponding 3D functions. The z coordinate of move_abs: 2 () is the z coor-
dinate of the current position. The z delta of move_rel 2 () is taken as zero.
move_abs_2(x, y)
float %, y; /* x and vy coordinates to move to */
move_abs_2 () moves the current position to an absolute position. The
current position is set to the values of x and y in 2D world coordinates.
move_abs_2 () only sets the current position; no drawing commands are out-
put.
move_abs_3(x, y, z)
float %, v, z; /* x, y, and z coordinates to move to */
move_abs_3 () moves the current position to an absolute position. The
current position is set to the values of x, y, and z in 3D world coordinates. /""\)
move_abs_3 () only sets the current position; no drawing commands are out- ./
put.
move_ rel 2(dx, dy)
float dx, dy: /* x and y coordinate deltas */
move_rel 2 () increments the current position by the values given. The
current position is set to the value of current position plus dx and dy in 2D world
coordinates. move rel 2 () only sets the current position; no drawing com-
mands are output.
move_rel 3(dx, dy, dz)
float dx, dy, dz; /* %, y, and 2z coordinate deltas */
move_rel 3 () increments the current position by the values given. The
current position is set to the value of current position plus dx, dy, and dz in 3D
world coordinates. move _rel 3() only sets the current position; no drawing
commands are output. '
The position inquiry functions return the coordinates of the current position to
the caller.
inquire current position_ 2(x, y)
float *x, *y;
inguire current position 2 () returns the 2D world coordinates of C

the current position to the caller.

SUun Revision A, of 9 May 1988

microsystems

Chapter 5 — Output Primitives 57

("\
-~ Inquire 3D Position

5.3. Line Functions

Describe Line in Absolute 2D
Coordinates

Describe Line in Absolute 3D

(\ “ Coordinates

Describe Line in Relative 2D
Coordinates

Describe Line in Relative 3D
Coordinates

C

&

inquire current_position 3(x, y, z)
float *x, *y, *z;

inquire_ current_position_3 () returns the 3D world coordinates of
the current position to the caller.

The line functions draw lines on the currently selected SunCore view surfaces.
Attributes of the line can be specified with additional calls to primitive attribute
setting functions.

The primitive attributes of line index, linestyle, linewidth, and pick_id are appli-
cable for lines.

o There is no open segment.
line_abs_2(x, y)
float x, vy

line abs_2 () describes aline in 2D world coordinates. The line that
line_abs_2 () describes extends from the current position to the position

specified by the x and y coordinates.

The current position is updated to the coordinates specified by x and y.

line abs 3(x, y, 2)
float x, y, z;

line abs_3() describes aline in 3D world coordinates. The line that
line_abs_3 () describes extends from the current position to the position
specified by the x, y, and z coordinates.

The current position is updated to the coordinates specified by x, y, and z.

line rel_ 2 (dx, dy)
float dx, dy:

line_rel 2 () describes aline in 2D world coordinates. The line that
line_rel_ 2 () describes extends from the current position to the position
specified by the current position plus the dx and dy coordinates. The current
position is updated by the deltas specified by dx and dy.

line_rel 3(dx, dy, dz)
float dx, dy, dz;

line rel_3() describes a line in 3D world coordinates. The line that
line_rel_ 3 () describes extends from the current position to the position
specified by the current position plus the dx, dy, and dz coordinates.

The current position is updated by the deltas specified by dx, dy, and 4z.

S ll n Revision A, of 9 May 1988

microsystems

58 SunCore Reference Manual

5.4. Polyline Functions

Describe Line Sequence in
Absolute 2D Coordinates

Describe Line Sequence in
Absolute 3D Coordinates

Describe Line Sequence in
Relative 2D Coordinates

Describe Line Sequence in
Relative 3D Coordinates

The polyline functions describe connected sequences of lines. The first two or N
three arguments to a polyline function are arrays of the appropriate coordinates.
Consider the polyline function:
polyline abs 3(x array, y_array, z_array, n)
float x_arrayl(l, y_arrayl], z arrayll;
/* %, y, and z arrays */
int n; /* Number of coordinates */
The sequence of lines that these arrays of coordinates describe starts at the
current position, then draws to: (x_array[0],y_array[0], z_array[0]), then runs
through the intermediate array values and ends at (x_array[n-1],y_array[n-1],
z_array[n-1]) where n is the number of elements in each of the coordinate arrays.
There are thus » lines in the figure described.
o The number of coordinates, #, is less than or equal to zero.
o There is no open segment.
polyline abs_2(x_array, y_array, n)
float x arrayl], y arrayll; /* x and y coordinates */
int n; /* number of array elements */
polyline abs_2 () describes a line sequence in absolute 2D world coordi-
nates. The current position is updated to the end of the last line drawn.
polyline abs 3(x_array, y_array, z_array, n) <;T>

float x arrayll, y_arrayll, z_arrayl[]l:
/* x, y, and z arrays */
int n; /* number of elements */

polyline abs_3 () describes a line sequence in absolute 3D world coordi-
nates. The current position is updated to the end of the last line drawn.

polyline rel 2(dx_array, dy array, n)
float dx_arrayl], dy_arrayl(l; /* x and y delta arrays */
int n; /* number of array elements */

polyline rel 2 () describes a line sequence in relative 2D world coordi-
nates. The sequence of lines that this function describe starts at the current posi-
tion, moves to: current position + dx_array [0], (dy_array [0]) then draws to:
current position + dx_array [0], (dy_array [0]) + dx_array[1], (dy_array [1])
and so on. The current position is updated to the end of the last line drawn.

polyline_rel 3(dx array, dy_array, dz_array, n)
float dx arrayl{], dy arrayl[]l, dz arrayl[];

/* %, v, and z delta arrays */
int n; /* number of elements */

polyline rel 3 () describes aline sequence in relative 3D world coordi-

nates. The sequence of lines that this function describe starts at the current posi-

tion, moves to: current position + dx_array [0], (dy_array [0], dz_array [0])

then draws to: current position + (dx_array[0], dy_array(0], dz_array[0]) + i\“ /
(dx_array[1], dy array[l],dz_array[1]) and so on. The current position is -

sun Revision A, of 9 May 1988

microsystems

Chapter 5 — Output Primitives . 59

C

5.5. Text Functions

Draw Character String In
World Coordinates

5.6. Text Inquiry Functions

S
5

a

Inquire Text Extent 2

Inquire Text Extent 3

4»sun

updated to the end of the last line drawn.

The functions described in the next section describe the text facilities available in
SunCore. The inquiry functions that follow can be used to determine characteris-
tics of text.

text (string);
char *string;

text () draws a character string in world coordinates. The character string
specified by string is drawn from the current position. The current position is
unchanged. The font, size, orientation, and so on, are set by calls to the set prim-
itive attribute functions.

o There is no open segment.
o The character string contains one or more characters which cannot be drawn.

o The vectors that the current charpath and charup attributes describe are paral-
lel. : :

Text inquiry functions obtain the length that a character string would extend, in
world coordinates, if the character string were actually drawn according to the
current text primitive attributes.

0 inquire_text_extent_2 () was used to obtain the current position
when inquire_text_extent_3 () should have been used in order to
avoid loss of information.

o The character string contains one or more characters which cannot be drawn.

o The vectors that the current charpath and charup attributes describe are paral-
lel.

inquire_ text_ extent_ 2(string, dx, dy)
char *string;
float *dx, *dy:

inquire_text_ extent_ 2 () returns the extent of the character string
specified by string, if the character string were drawn, unjustified, from the
current position. The extent is returned in dx and dy in world coordinates relative
to the current position.

The specified character string, and the values of the primitive attributes font,
charup, charsize, charpath, charspace, and charprecision are used to calculate
the vector which represents the extent of the character string.

In the current implementation of SunCore, this function only returns meaningful
values if charprecision is CHARACTER.

inquire_text extent_ 3 (string, dx, dy, dz)
char *string;
float *dx, *dy, *dz;

inquire text_extent_3 () obtains the 3D extent, in world coordinates, of

Revision A, of 9 May 1988

microsystems

60 SunCore Reference Manual

5.7. Marker Functions

Plot Marker at Absolute 2D
Coordinates

Plot Marker at Absolute 3D
Coordinates

Plot Marker at Relative 2D
Coordinates

Plot Marker at Relative 3D
Coordinates

O

the specified character string. inquire text extent_3 () returns the
extent of the character string specified by string, if the character string were.
drawn, unjustified, from the current position. The extent is returned in dx, dy,
and dz in world coordinates relative to the current position.

The specified character string, and the values of the primitive attributes font,
charup, charsize, charpath, charspace, and charprecision are used to calculate
the vector which represents the extent of the character string.

In the current implementation of SunCore, this function only returns meaningful
values if charprecision is CHARACTER.

The marker functions place a character at a specific location on the display. The:
polymarker functions place a character at a sequence of locations on the display.

The marker character is any printable ASCII character, and is the value of the
marker_ symbol primitive attribute. The marker_ symbol primitive attri-
bute is set by the set_marker symbol () function described in Chapter 6.

The markers are placed on the display without any of the rotations, translations,
or scaling which is applied to text strings. Markers use the default orientation
attributes.

o There is no open segment.

marker abs 2(x, y) {/N\,
float x, y; /* Absolute x and y Coordinates */ N/

marker_abs_2 () plots a marker at specified absolute 2D world coordinates..
marker abs_2 () plots the marker at the absolute 2D coordinates specified by
the x and y arguments. The current position is updated to be this point.

marker abs_3(x, y, 2)
float x, .y, z; /* Absolute %, y, and z Coordinates */

marker abs_3() plots a marker at specified absolute 3D.world coordinates. .
marker_abs_3 () plots the marker at the absolute 3D coordinates specified by: -
the x, y, and z arguments. The current position is updated to be this point.

marker rel 2(dx, dy)
float dx, dy; /* x and y Coordinate Deltas */

marker rel 2 () plots the marker at the position relative to the current posi-
tion, specified by the deltas dx and dy. The current position is updated to be this

point.

marker rel 3(dx, dy, dz)
float dx, dy, dz; /* x, vy, and z Coordinate Deltas */

marker rel 3 () plots a marker at a specified relative 3D position.
marker_rel 3 () plots the marker at the position relative to the current posi-

tion, specified by the deltas dx; dy, and dz. The current position is updated to be -
this point. N

sun Revision A, of 9 May 1988

microsystems

Chapter 5 — Output Primitives 61

Plot Marker Sequence at
Absolute 2D Coordinates

Plot Marker Sequence at
Absolute 3D Coordinates

Plot Marker Sequence at
Relative 2D Coordinates

Plot Marker Sequence at
Relative 3D Coordinates

5.8. 3D Polygon Shading
Parameters (SunCore
Extension)

polymarker abs 2(x _array, y_array, n)
float x arrayl], y_arrayll:; /* Absolute x and y */
int n; /* Number of Coordinates */

polymarker_ abs_2 () plots a sequence of markers at specified absolute 2D
positions. polymarker abs 2 () plots a sequence of markers at the absolute”
positions specified by the x_array and y_array arguments. n specifies the
number of coordinates in the arrays. The current position is updated to be the

last point. '

polymarker abs_3(x array, y array, z array, n)
float x_arrayl(l]l, y_arrayll, z_arrayll:

/* Absolute x, y, and z */
int n; /* Number of Coordinates */

polymarker_ abs_3 () plots a sequence of markers at specified absolute 3D
positions. polymarker_abs_3 () plots a sequence of markers at the absolute
positions specified by the x_array,y_array, and z_array arguments. The number
of coordinates in the array is given by the n argument. The current position is
updated to be the last point.

polymarker rel 2(dx array, dy array, n)
float dx_arrayll, dy arrayl[l:; /* x and y Deltas */
int n; /* Number of Coordinates */

polymarker rel 2 () plots a sequence of markers at specified relative 2D
positions. polymarker rel 2 () plots a sequence of markers at the posi-
tions relative to the current position, specified by the deltas dx_array and
dy_array. The number of deltas in the arrays is specified by n. The current posi-
tion is updated to be the last point.

polymarker rel 3(dx array, dy_array, dz_array, n)
float dx arrayl(]l, dy_arrayl[]l, dz_arrayl]:

/* x, y, and z Deltas */
int n; /* Number of Coordinates */

polymarker rel 3 () plots a sequence of markers at specified relative 3D
positions. polymarker rel 3 () plots a sequence of markers at the posi-
tions relative to the current position, specified by the deltas dx_array, dy_array,
and dz_array. The number of deltas in the arrays is specified by n. The current
position is updated to be the last point.

When drawing 3D polygons on the Sun color displays, several shading options
are available. The functions described in this section provide shading control.
These shading parameters may be changed at any time and are not stored in the
display list. Therefore a segment may be drawn with fast shading at one time,
and then drawn again later with smooth shading.

Sun ' Revision A, of 9 May 1988

62 SunCore Reference Manual

Set Shading Parameters

Table 5-2

Specify Direction of Light
Source

S
&

)

(

set_shading parameters(ambient, diffuse,
specular, flood, bump, hue, style)
float ambient; /* percent background light */
float diffuse; /* percent diffuse reflection */
float specular; /* percent specular reflection */
float flood; . /* percent flood lighting */
float bump; /* specular power 2 .. 9 */
int hue; /* color index range to generate */
/* =0 ..255, 1 =0 .. 63 */
/* =64 .. 127, 3 = 128 .. 191 */
/* = 192 .. 255 */
int style; /* Type of surface shading to do: */
/* CONSTANT, GOURAUD, PHONG */

= N O

set_shading parameters () specifies the parameters for rendering 3D
polygons on the color display. See set_polygon interior style() for
the ways in which these shading parameters are used. CONSTANT style shading
gives constant intensity over the polygon using the color set by

set_fill index (). GOURAUD style shading linearly interpolates between
vertices where the intensity at each vertex is set by the

set_vertex indices () function. PHONG style shading produces smooth
shading using the other parameters (only with convex polygons).

The equation used for PHONG style shading is:

)

a
\-,

pixelshade =ambient +diffuse (L &N Y+specular (H &N Y?*™ —(flood*z)

where L is the direction vector of the light source, N is the surface normal vector,
H is a vector which is the average of L and E (the eye direction vector), and z is
depth in NDC.

Here are some useful sets of PHONG parameters:

2 Useful PHONG Parameters

Parameter | Value | Value
ambient 0.05 0.05
diffuse 0.94 0.74
specular 0.0 0.20
flood 0.0 0.0
bump 0.0 7.0
hue 0 0

set_light direction(dx, dy, dz)
float dx, dy, dz:

set_light direction () specifies the direction of the light source from
the object. This assumes NDC space where the direction from object to viewer is
always {0.0, 0.0, —1.0}. Hence, to place the light source at the viewer, the light
direction is (0.0, 0.0, —1.0). The light direction vector is only used if the shading ./
style is GOURAUD or PHONG. A useful light direction is (0.2, 0.2, —1.0).

S un Revision A, of 9 May 1988

microsystems

Chapter 5 — Output Primitives 63

Set Vertex Normals

Set Vertex Indices

Set Z Buffer Cut

5.9. Polygon Functions
" (SunCore Extension)

C

set_vertex normals(xlist, ylist, zlist, n)
float xlist[], ylist[], zlist[];
int n;

set_vertex_ normals () sets the surface normal vectors for each vertex of
the subsequent 3D polygon primitives (polygonabs_3 () or polygon—

- rel_3()). These normals are used for PHONG style shading. For GOURAUD

style shading, use set_vertex_indices (). The number of elements in the
list, n, must be equal to the number of vertices in the subsequent call to
polygonxxx 3 (). '

set_vertex indices(coler_index list, n)
int color_index list[];
int n;

set_vertex_indices () specifies a color index for each vertex of the next
polygonxxx_3 () primitive. GOURAUD shading linearly interpolates these
color indices for smooth shading in the interior of the polygon. The number of
elements in the list, », must be equal to the number of vertices in the subsequent
call to polygonxxx 3 ().

Note: If the hue argument to set_shading parameters () is 0, then
color_index_list is an index into the predefined colormap. If hue is 1, then the
first 64 values in the predefined colormap are interpolated into color_index list.
If hue is 2, then the second 64 values are used, and so on.

set_zbuffer cut(surface name, xlist, zlist, n)

struct vwsurf *surface name; /* See Appendix B */
float xlist[], zlist[];
int n;

set_zbuffer cut () specifies a cutaway view of 3D polygon objects when
hidden surfaces are being removed. set_zbuffer cut () specifies an array
of depths in NDC space. Any parts of objects which are closer to the viewer than
this piecewise-linear function are clipped away.

Note: this function has no effect on Graphics Processor view surfaces, i.e.
gplddor gplpixwindd. xlistis assumed to be monotonically increasing.
This function specifies a piecewise-linear cutaway threshold in the z coordinate,
which, given any x coordinate, is constant in y. The default cutaway depth is 0
for all values of x. Values of x less than xlist [0] or greater than xlist [n - 1] will
have the default depth. The view surface must have been initialized with the id-
den flag on.

The polygon functions are a SunCore extension to the ACM Core specification.
The polygon functions describe connected sequences of lines which form closed
figures. The polygons are filled in with color as specified by the

set_fill_ index () primitive attribute, or are shaded according to the
current shading parameters, depending on the polygoninterior style
primitive attribute. Only polygons created by the 3D polygon functions may be
shaded.

% sun Revision A, of 9 May 1988

microsystems

64 SunCore Reference Manual

Describe Polygon in Absolute
2D Coordinates

Describe Polygon in Absolute
3D Coordinates

Describe Polygon in Relative
2D Coordinates

Describe Polygon in Relative
3D Coordinates

The first two or three arguments to a polygon function are arrays of the appropri-
ate coordinates. Consider the polygon function:

polygon_abs_3(x_array, y_ array, z_array, n)

float x_array[], y _arrayl{l, z_arrayli; '
/* %, y, and z coordinates */

int ns /* Number of coordinates */

The bounding sequence of edges that these arrays of coordinates describe pass
from the first point x_array[0],(y_array[0], z_array[0]), then runs through the
intermediate array values to (x_array[n-1],y_array[n-1], z_array[n-1]) and then
back to the first point. # is the number of elements in each of the coordinate
arrays. There are thus » sides in the figure described. '

Note that the polygon functions describe a closed figure. The last coordinate in
the array of points is connected to the first point.

o The number of coordinates, n, is less than or equal to two.
o There is no open segment.
polygon_abs_2(x_array, y_array, n)

float x arrayll, y arrayl[l; /* x and y coordinates */
int n; /* number of array elements */

L
polygon abs_ 2 () describes a polygon int absolute 2D world coordinates.
The current position is set to the first point. Q

polygon abs_3(x array, y_array, z_array, n)
float x_arrayll, y_arrayll, z_arrayll;

/* x, y, and z coordinates */
int n; /* number of array elements */

polygon abs_3() describes a ;;olygon in absolute 3D world coordinates.

'The current position is set to the first point.

polygon_rel 2(dx array, dy_afray, n)
float dx_arrayl]l, dy_arrayl[l; /* x and y deltas */
int n; /* number of array elements */

polygon rel 2 () describes a polygon in relative 2D world coordinates.
The first array value specifies a displacement from the current position; remain-
ing array values specify displacements from the preceding point. The current
position is set to the first point.

polygon_rel_ 3(dx array, dy array, dz array, n)
float dx arrayl(l, dy_arrayl], dz_arrayl];

/* x, y, and z deltas */
int n; /* number of array elements */

polygon_rel 3 () describes a polygon in relative 3D world coordinates.
The first array value specifies a displacement from the current position; remain-

ing array values specify displacements from the preceding point. The current m
position is set to the first point. N~/
sSun ' Revision A, of 9 May 1988
microsystems

.
‘<

Chapter 5 —OQutput Primitives 65

5.10. Raster Primitive
Functions (SunCore
Extension)

Raster Qutput Primitive

The raster primitive functions described in the following sections allow the Sun-
Core application program to access.and manipulate rectangular arrays of pixels.
Both monochrome and color frame raster primitives are supported. These func-
tions are not a part of the standard Core system.

put_raster(raster)
struct suncore_raster *raster;

put_raster () draws a rectangular 1-bit or 8-bit deep raster and enters it into
the current segment. The raster may not be used in transformable segments,
because rasters cannot be scaled or rotated in the current release of SunCore. A
raster primitive may, however, be picked or dragged if it is entered in a translat-
able segment. The current position is at the lower left-hand corner of the raster.

Note that put_raster () is device dependent in that it is written to the right
and upward from the current position a specified number of PIXELS in height and
width. The current position is unchanged.

Here is the definition of the suncore_ raster structure.

struct suncore_raster {
int width;
int height;
int depth:;
short *bits;
}i

The depth parameter can be 1 or 8 bits per pixel.

The bits of the raster are stored in the following order fordepth = 1: The first
word is the upper left 16-horizontal bits, with the high order bit being the left-
most bit. The first (width +15)/16 words comprise the top row of the rectangle. -
The number of words of storage.that bits points to is:

{(width+15) / 16) * height
for depth = 1.

Rasters of depth = 8 are stored as successive bytes in row order. The number of
bytes that bits points to is:

width * height
for depth = 8.

If a 1-bit deep raster is written to a color view surface; ‘O’ bits select the back-
ground color and ‘1” bits select the color specified by the fill index primitive attri-
bute.

Note that output clipping is always done on raster primitives.

S un Revision A, of 9 May 1988

microsystems

66 SunCore Reference Manual

Read Raster from
Monochrome or Color Frame
Buffer

Set Size of Raster in NDC

Allocate Space for a Raster

Free Space of a Raster

S
<

/i
-
get_raster (surface_name, xmin, xmax,
ymin, ymax, x, y, raster)
struct vwsurf *surface_name; /* See Appendix B */
float xmin, ymin, xmax, ymax;
/* Region of NDC space to read */
int %, y: /* starting point pixel offsets
in raster relative top left */
struct suncore_raster *raster; /* Returned Raster */

get_raster () reads a specified region of the monochrome or color frame
buffer into a storage area. get_raster () requires an area of memory large
enough to hold the raster region that it returns. It is the user’s responsibility to
allocate this storage area before calling get_raster (). The

size raster() and allocate_raster () functions may be used to do
this:

size_raster(surface name, xmin, xmax, ymin, ymax, &raster);
allocate_raster(&raster);
if (raster.bits == NULL)
error case - the raster could not be allocated
else
continue with the processing

To free the area when finished with the raster, call the free_raster () func-
tion:

free_raster(&raster);

Hence, a large raster may be allocated and then portions of it filled with data
using get_raster () with various x,.I'y offsets, in pixel coordinates from the
top left hand corner of the raster.

size raster(surface name, xmin, xmax, ymin, ymax, raster)
struct vwsurf *surface_name;

float xmin, xmax, ymin, ymax;

struct suncore_raster *raster;

size raster () returns the raster with the pixel coordinates width, height,
and depth, for a specified region of NDC space and a specified view surface. On
return, raster.bits is set to NULL.

allocate raster(raster)
struct suncore_ raster *raster;

Given a raster whose width, height, and depth fields were filled by the

size raster () function (described above), allocate_ raster () allo-
cates the memory required for that raster and sets the raster.bits pointer.
allocate raster () returns a NULL pointer value in raster .bitsifitis
unable to obtain enough memory for the raster structure.

free raster (raster) VR
struct suncore raster *raster; o/
un Revision A, of 9 May 1988

microsystems

Chapter 5 — Output Primitives 67

Copy a Raster to a Disk
Raster File

)

‘/w
{

Get a Raster from a Disk File

&

free raster () frees the memory used by a specified raster, if
raster.bits is not NULL.

raster_to file(raster, map, fd, replicate)
struct suncore raster *raster;
struct {-
"int type; /* 1 for RGB color table */
int nbytes; /* 3 times number
of color table elements */
char *data; /* ptr to nbytes/3 red,
blue, and green bytes */
} *map;
int fd; /*standard file descriptor for C programs */
/* FORTRAN logical unit number
for FORTRAN programs */
/* Pascal file variable for Pascal programs */
int replicate; /* magnification factor */

raster_to_file () copies a raster to a disk file in Sun’s standard raster file
format. If map.nbytes =0, no color map data will be written. This would
normally be the case for rasters copied from the bitmap display.

The replicate parameter specifies whether the raster should be magnified on
transmission to the file. The raster is transmitted without magnification if andre-
plicate= 1, pixel-replication zoom for a factor of 2 magnification if replicate= 2.

Note: The colormap information provided to raster_to_ file () includes
integer color values in the range 0—255. SunCore normally takes floating point
color values in the range 0 1.0.

The format of the generated disk file can be found in the include file in
<rasterfile.h>. Disk raster files can be printed on a raster addressable hard
copy device by using the 1pr(1) command with the —v option.

file to_raster(fd, raster, map)
int fd;
/* standard file descriptor for C programs */
/* Fortran logical unit number for Fortran programs */
/* Pascal file variable for Pascal programs */
struct suncore_ raster *raster;
struct ({
int type; /*. 1 for RGB color table */
int nbytes; /* 3 times number
of color table elements */
char *data; /* ptr to nbytes/3 red,
blue, and green bytes */
} *map;

file_to_raster () allocates enough memory for a raster stored on a disk
file, then fills in all fields of the raster and map structures. Note that this function
frees map . data, unless data is NULL, and allocates map . data each time it is
called — therefore map . data is only valid in the last call to this function. The
raster.bits field is set to NULL if there is not enough room to allocate the

S Uun Revision A, of 9 May 1988
microsystems

68

SunCore Reference Manual

D
@

raster.

The format of the disk file can be found in the include file in
<rasterfile.h>.

sun Revision A, of 9 May 1988

microsystems

«

)

S

Attributes

Attributes

6.1. Primitive Static Attributes .

6.2. Using Texture for Color Attributes on the Monochrome Display

Assign Colors to Indices
Select a Line Color Attribute

Select a Polygon and Raster Color
Select a Text and Marker Color
Set Linewidth
Set Linestyle

Select Plain or Shaded Polygons
Set Polygon Edge Style (No Effect)
Set Font

Select a Device Dependent Pen (no effect) .
Set Character Size

Define Character Spacing for Output Primitives

Set Character Up Vector 2

Set Character Up Vector 3
Set Character Path 2
Set Character Path 3
Specify Text Justification (No Effect)

Set Character Precision ,
Set Marker Symbol
Set Pick ID

73

73
76
78
78
79
79
79
79
79
79
79
80
80
80
80
80
80
81
81
81
81
81

Select Rasterop to Display Memory (SunCore Extension)
Specify All Primitive Attributes

6.3. Inquiring Primitive Static Attribute Values

Inquire Color Indices

Inquire Line Index

Inquire Fill Index

Inquire Text Index

Inquire Linewidth

Inquire Linestyle

Obtain Polygon Shading Method
Inquire Polygon Edge Style

Inquire Pen

Inquire Font

Inquire Character Size

Inquire Character Spacing

Inquire Character Up Vector 2

Inquire Character Up Vector 3
Inquire Character Path 2

Inquire Character Path 3

Obtain Justification Attribute

Obtain Current Rasterop (SunCore Extension)

Inquire Character Precision

Inquire Pick ID

Inquire Marker Symbol
Obtain All Primitive Attributes

6.4. Retained Segment Static Attributes

Set Image Transformation Type

Inquire Image Transformation Type

Inquire Segment Image Transformation Type

6.5. Setting Retained Segment Dynamic Attributes

Set Visibility

Set Highlighting

Set Detectability

Set Image Translate 2

Set Image Transformation 2

82
82
82
82
83
83
83
83
83
83
83
83
83
84
84
84
84
84
84
84
84
84
85
85
85
85
86
86
86
87
87
87
87
87

)

o
%\,

C

Set Image Translate 3

Set Image Transformation 3

Set Segment Visibility

Set Segment Highlighting
Set Segment Detectability

Set Segment Image Translate 2

Set Segment Image Transformation 2

Set Segment Image Translate 3

Set Segment Image Transformation 3

6.6. Inquiring Retained Segment Dynamic Attributes

Inquire Visibility

Inquire Highlighting
Inquire Detectability

Inquire Image Translate 2

Inquire Image Transformation 2

Inquire Image Translate 3

Inquire Image Transformation 3

Inquire Segment Visibility

Inquire Segment Highlighting
Inquire Segment Detectability

Inquire Segment Image Translate 2

Inquire Segment Image Transformation 2 ...

Inquire Segment Image Translate 3

Inquire Segment Image Transformation 3 .

88
88
88
88
89
89
89
90
90
90
91
91
91
91
91
91
92
92
92
92
92
92
93
93

e
\“&My /

N’

~ Attributes

Attributes in SunCore specify general characteristics for segments and for output
primitives.

There are two major divisions of attributes. One set of attributes is called seg-
ment attributes and applies only to retained segments. The other set is called

primitive attributes and applies only to output primitives. There are no attributes
which apply to both retained segments and to output primitives.

Attributes are further subdivided into static and dynamic. Static attributes
specify characteristics of retained segments or output primitives which apply for
the entire lifetime of those objects. Dynamic attributes specify characteristics of
- segments which can change during the lifetime of those segments. Static primi-
\/‘ \‘ tive attributes are stored in the display list so that subsequent manipulation of a
’ ' segment is performed with the appropriate attributes.

6.1. Primitive Static The list below defines the primitive static attribute values.

Attributes line index

is an index into three £1oat arrays which determine the red, green, and
blue components of the color displayed for line and polyline output primi-
tives. Index value 0 corresponds to the background color. For lines and
polylines on monochrome displays, a non-zero line index gives black lines
on a white background. SunCore initializes line index to 1. The range of
possible values is 0 to 255.

fill index
is an index into three £1oat arrays which determine the red, green, and
blue components of the color displayed for polygon and raster output primi-
tives. Index value O corresponds to the background color. For monochrome
displays, the values form a set of definitions for texture, described later.
SunCore initializes fill index to 1. The range of possible values is 0 to 255.

text index
is an index into three £ 1oat arrays which determine the red, green, and
blue components of the color displayed for markers and text. Index value O
corresponds to the background color. For text and markers on monochrome

‘ displays, a non-zero textindex" gives black on a white background. SunCore

C initializes text index to 1. The range of possible values is 0 to 255.

é{‘?’? sun | 7 Revision A, of 9 May 1988

microsystems

|
1‘ 74 SunCore Reference Manual
|
|

linestyle
is an int value which controls the appearance of lines drawn. Linestyle can
assume the values: :

SOLID Solid lines,
DOTTED Dotted lines,
DASHED Dashed lines,

DOTDASHED
Dotdashed lines.

The definitions of these constants can be found in <usercore.h>. Sun-
Core sets linestyle to SOLID at initialization time.

polygon interior style
is an int value which controls the interior filling style for polygons.
polygon interior style can have the values:

PLAIN Solid color polygon

SHADED Shading style is set dynamically by
set_shading parameters (). Only 3D polygons may be

shaded.
SunCore sets polygon interior style to PLAIN at initialization time.
polygon edge style &)
;/

is not implemented in the current release of SunCore.

linewidth _
is a float value which describes, in world coordinates, the width of drawn
lines. SunCore sets linewidth to 0.0 (the minimum) at initialization time.

pen
is an int value which is passed to the device driver to select a particular
device dependent pen. SunCore initializes pen to 0.

font :
is an int value which determines the character font in which text will be
written. Font can assume the following values (for
charprecision=CHARACTER):

ROMAN If charprecision=STRING, this gives a large raster font.

GREEK If charprecision=STRING, this gives the default raster font.

SCRIPT If charprecision=STRING, this gives a small raster font.

OLDENGLISH If charprecision=STRING, this is equivalent to a bold ver-
sion of GREEK.

STICK If charprecision=STRING, this is equivalent to a medium
sized ROMAN raster font.

SYMBOLS Currently holds some electronics symbols (character values C\,
32 through 47). If charprecision=STRING, this is o

S
’%{? ,,%!;!stg Revision A, of 9 May 1988

Chapter 6 — Attributes 75

@

equivalent to a bold version of STICK.
SunCore sets font to STICK at initialization time.

charsize
is a pair of £1oat values which determine the size of characters, in world
coordinates. SunCore sets the default character width to 11.0 and the default
character height to 11.0 at initialization time.

charup
attribute consists of three £1oat values which represent a vector giving the
direction of ‘up’ for characters:

{(dx_charup, dy_charup, dz_charup)

in world coordinates. Usually, charup is normal to charpath. SunCore
establishes the default as a vector in the positive y direction (0.0, 1.0, 0.0) at
initialization time.

charpath
consists of three £1oat values which represent a vector:

(dx_charpath, dy_charpath, dz_charpath)

that determines the direction, in world coordinates, in which character
strings will extend. SunCore sets the charpath attribute to (1.0, 0.0, 0.0) at
initialization time. '

charspace
is a single £1oat value specifying the space, in world coordinates, which
should be inserted between characters in a text string. SunCore establishes
charspace with the value 0.0 at initialization time.

charjust
is not implemented in the current release of SunCore.

charprecision
is an int value which controls the quality of the text drawing operation.
Charprecision can have the values:

STRING Fast raster fonts, fixed size, and fixed orientation.
CHARACTER Hershey vector fonts.

marker symbol
determines the character which is plotted on the displays by the marker and
polymarker functions described in Chapter 5. Any printable ASCII character
can be used as the marker character.

Note: The ACM Core specifies that the integer values 1 through 5 represent
specific characters. SunCore does not implement this feature.

pick id
is an int value identifying the next output primitive. The input primitives
use this number for user interaction with segments and primitives within
segments.

S_ un Revision A, of 9 May 1988

microsystems

76 SunCore Reference Manual

rasterop
specifies the rasterop used when writing to the display. It can be one of:

NORMAL Source value is written to the display.

XORROP Source value is exclusive or’ed with the value already in the
display before being written to the display.

ORROP Source value is or’ed with the value already in the display
before being written to the display.

This attribute is ignored if set_drag () was specified as TRUE.

The functions listed in the subsections below each set the specified attribute
value for the indicated primitive attribute.

o One or more of the attribute values is incorrect.

o No character orientation can be established because dx_charpath,
dy_charpath, and dz_charpath are all zero.

n No character up direction can be established because dx_charup, dy charup,
and dz_charup are all zero.

6.2. Using Texture for When a monochrome disblay is used, the fill index attribute is used to determine
Color Attributes on the how a region of the screen is textured when using the polygon output primitives.
Monochrome Display Texturing is done in terms of 16 X 16 pixel regions of the screen. There are 16

rows of 16 pixels each. The fill index attribute selects an entry from each of three \\,, J
arrays of £ loat values in the range 0.0 through 1.0, representing red, green, and
blue. In the case of the monochrome display, each of these three £loat
numbers is converted to an integer between 0 and 255. Each of the 8-bit
numbers is divided into two four-bit quantities, which we can call A and B.

Table 6-1 Structure of a Fill-Index Value

Red Green Blue

Select Select | Length Length | Rotate Rotate
B A B A B A

Select A and Select B are four-bit values which are used to select an A pattern
and a B pattern out of the table of numbers shown below.

S
42{4 sun Revision A, of 9 May 1988

microsysiems

e

Chapter 6 — Attributes 77

- Table 6-2 T_'exture Selection Values

Four-Bit Value | Hexadecimal Pattern | Binary Pattern
0 0000 0000000000000000
1 8000 1000000000000000
2 8080 1000000010000000
3 8410 1000010000010000
4 8888 1000100010001000
5 9124 1001000100100100
6 9494 1001010010010100
7 A552 1010010101010010
8 AAAA 1010101010101010
9 EBG6E 1110101101101110
10 . DDDD 1101110111011101
11 FIE7 1111011111110111
12 FFFF 111111131111111111
13 E3E3 1110001111100011
14 FF0O 1111111100000000
15 00FF 0000000011111111

The patterns are then laid down in the texture field, pixels, as described in the
pseudo code below.

let x = y = Pattern A
for index = 0 to Length A - 1

pixels[index] = x | y

if Rotate A & 1 then rotate x one bit right

if Rotate A & 2 then rotate x one bit left

if Rotate A & 4 then rotate y one bit right

if Rotate A & 8 then rotate y one bit left
let x = y = Pattern B

for index = Length A to Length A + Length B - 1

pixels[index] = x | y

if Rotate B & 1 then rotate x one bit right

if Rotate B & 2 then rotate x one bit left

if Rotate B & 4 then rotate y one bit right

if Rotate B & 8 then rotate y one bit left
If the value of

length A + length B

is less than 16, the processes described above are repeated as many times as
required to fill the 16 line region.

The above encoding provides for an enormous number of textures. Here are a
few of the useful ones.

ég?? S un Revision A, of 9 May 1988

microsystems

78 SunCore Reference Manual

Table 6-3

Assign Colors to Indices

Select a Line Color Attribute

Useful Texture Selection Values

Texture | Red | Green | Blue

Hatched Left 0.1334 0.5020 0.3529
Hatched Right 0.1334 0.5020 0.6471

Wallpaper 0.4667 0.5334 0.2118
Black 0.0000 0.2667 0.3882
White 0.2667 0.4001 0.8001
Wavy Lines 0.3334 0.4001 0.1334
Grey Tone 0.5334 0.4001 0.5334

Cross Hatched 0.5334 0.4001 0.1334

define color_indices (surface name, il, i2,

red array, green_ array, blue_array)
struct vwsurf *surface_name; /* See appendix B */
int i1, i2; /* indices range from 0 through 255 */
float red_arrayl], green_arrayl[], blue array{]:

define_color_indices () defines entries in the color lookup table of a
view surface. The three arrays provide the values for red, green, and blue respec-
tively. The value of each element in the color arrays is in the range 0.0 through
1.0. The function defines all the indices in the color index table between i/ and
i2 inclusive, using the first i2-i/ + 1 elements from each of the three arrays.

Subsequent calls to the set_xxx_index () function selects a color from the
lookup table to use as a color attribute.

Location 0 in the color tables is the background color for the view surface. For
the monochrome displays, lines, text, and markers are drawn black for any color
index other than 0. "

SunCore initializes the lookup table for monochrome view surfaces such that for
the ith entry, red[i{] =i, green[i]=255—i, and blue[i] =i{. SunCore initializes
color view surfaces which have a full 256-element lookup table such that entry 0
is gray, entry 1 is black, entries 2 through 63 contain an intensity ramp in red,
entries 64 through 127 contain an intensity ramp in green, entries 128 through
191 contain an intensity ramp in blue, and entries 192 through 255 contain an
intensity ramp in yellow (red + green). See appendix B for details of color view
surfaces with fewer than 256 entries in the lookup table.

Note: If the SunCore application is run in the SunView environment,
vwsurf.cmapname and vwsurf.cmapsize must be defined in order to
cooperate with colormap sharing provided by SunView.

set line index(index)
int index; /* range 0 through 255 */

set_line index () selects a color by providing an index into the tables
defined by the define color_indices () function. This color attribute is
applied to subsequent line and polyline output primitives.

sun Revision A, of 9 May 1988

/\}

Chapter 6 — Attributes 79

Select a Polygon and Raster
Color

Select a Text and Marker
Color

Set Linewidth

Set Linestyle

Select Plain or Shaded
Polygons

Set Polygon Edge Style (No
Effect)

Set Font

set_fill index(index)
int index; /* range 0 through 255 */

set_£fill index () selects a color by providing an index into the tables
defined by the define color_indices () function. This color attribute is
applied to subsequent polygon and raster output primitives.

set_text_ index(index)
int index; /* range 0 through 255 */

set_text index () selects a color by providing an index into the tables
defined by the define_color_indices () function. This color attribute is
applied to subsequent text and marker output primitives.

set_linewidth (linewidth)
float linewidth; /* unit of width
is 1 percent of NDC space */

set_linewidth{() specifies the linewidth attribute for the output primitives.
SunCore initializes linewidth to 0.0, which results in a one pixel wide line.

If XOR’ing is enabled (via the set_rasterop() or set_drag () func-
tions), lines whose pixel width is greater than one may partially overwrite them-
selves, resulting in poorly drawn wide lines. Redrawing the lines with XOR’ing
off will draw the lines correctly (until this problem is fixed).

set_linestyle(linestyle)
int linestyle; /* SOLID, DOTITED, */
/* DASHED, DOTDASHED */

set linestyle () specifies the linestyle attribute for output primitives. Sun-
Core initializes linestyle to SOLID.

set_polygon_interior_style(style)
int style; /* PLAIN, SHADED */

set_polygon_interior style () specifies the method of filling for
polygons. If the filling method is SHADED, polygons are shaded according to the
parameters set by the set_shading parameters () function. Only 3D
polygons may be shaded.

set_polygon_edge style(style)
int style; /* SOLID, INTERIOR */

set_polygon_ edge. style () specifies the method of drawing the edges of
a polygon. This function has no effect in the current release of SunCore.

set_font (font)
int font; /* ROMAN, GREEK, SCRIPT */
/* OLDENGLISH, STICK, SYMBOLS */

set font () specifies the font attribute for the output primitives. SunCore ini-
tializes font to STICK. If the charprecision attribute is set to STRING, ROMAN

sSun

Revision A, of 9 May 1988
microsystems .

80 SunCore Reference Manual

Select a Device Dependent Pen
(no effect)

Set Character Size

Define Character Spacing for
Output Primitives

Set Character Up Vector 2

Set Character Ub Vector 3

Set Character Path 2

gives a small Roman font, GREEK gives a stick figure font, SCRIPT gives a tiny
stick figure font, OLDENGLISH gives a bold version of GREEK, STICK gives a
medium sized ROMAN raster font, and SYMBOLS gives a bold version of STICK.
The STRING precision fonts are ‘raster’ fonts and are not scalable or rotatable,
hence they are in pixel coordinates and are larger on the color surface than on the
monochrome bitmap display.

set_pen (pen)
int pen;

This function has no effect on the standard SunCore view surfaces.

set_charsize(charwidth, charheight)
float charwidth, charheight;

set_charsize () specifies the charsize attribute for the text output primitive,
in world coordinates. If the charprecision attribute is set to STRING,
set_charsize () has no effect, except to control the target extent of the text
for the await pick () function. If the charprecision attribute is set to CHAR-
ACTER, set_charsize () sets the average size of a character, given that each
character has its own size.

set_charspace (charspace)
float charspace;

set_charspace () specifies the space attribute for the text output primitive,
in world coordinates. It is used to insert additional space between characters in
text strings. If the charprecision attribute is set to STRING,

set_charspace () has no effect.

set_charup_2(dx, dy)
float dx, dy:; ’

set _charup 2 () specifies the charup attribute for the text output primitive,
in world coordinates. Note that the dz offset is set to 0.0 for this function. If the
charprecision attribute is set to STRING, set_charup_2 () has no effect; oth-
erwise it specifies the upward direction for the characters. This provides for
slanting, mirror imaging, and so on, for characters.

set_charup 3(dx, dy, dz)
float dx, dy, dz;

set_charup_3 () specifies the charup attribute for the text output primitive,
in world coordinates. If the charprecision attribute is set to STRING,
set_charup_ 3 () has no effect; otherwise it specifies the direction of upward
for the characters. This provides for slanting, mirror imaging and such, for char-
acters.

set_charpath 2 (dx, dy)
float dx, dy:

set_charpath_2 () specifies the charpath attribute for the text output

sSsun Revision A, of 9 May 1988

g

)

'
.

e

R

/f'“x
{

(Y
J

ey

ot s o e g e - R W

Chapter 6 — Attributes 81

Set Character Path 3

Specify Text Justification (No
Effect)

Set Character Precision

Set Marker Symbol

Set Pick ID

primitive, in world coordinates. Note that the dz offset is set to 0.0 for this func-
tion. If the charprecision attribute is set to STRING, set_charpath_ 2 () has
no effect; otherwise the character string is written in this direction.

set_charpath_3(dx, dy, dz)
float dx, dy, dz:;

set_charpath_3 () specifies the charpath attribute for the text output primi-
tive, in world coordinates. If the charprecision attribute is set to STRING,
set_charpath_3 () has no effect; otherwise the character string is written in
this direction.

set_charjust (just)

int Jjust;

set_charjust () specifies how text strings should be justified. This function
has no effect in the current release of SunCore.

set_charprecision(charprecision)
int charprecision; /* STRING, CHARACTER */

set_charprecision () selects the method of drawing text.

STRING Specifies characters of fixed size and orientation, which are
drawn rapidly using raster operations. This is the default.

CHARACTER Specifies Hershey vector fonts, which can be clipped and
transformed.

set_marker_ symbol (marker)
int marker; /* Character to use as Marker - 32 .. 127 */

set_marker symbol () establishes the marker symbol primitive attribute.
The character specified by the marker argument in the

set_marker_ symbol () function call is subsequently used as the marker
character by the marker and polymarker functions.

set_pick_id(pick_id)
int pick id;

set_pick_id() specifies the pick id attribute for output primitives. The pick
id attribute is only used by the await_pick input function. Subsequent output

* primitives are identified by the specified pick id when they are detected by the

Select Rasterop to Display
Memory (SunCore Extension)

S

mouse pointing device, via the await pick () input function.

set _rasterop(rop)
int rop:; /* XORROP, ORROP, NORMAL */

set;rasterop () selects Xor’ing or or’ing of primitives to display memory.

Sun Revision A, of 9 May 1988

microsystems

82 SunCore Reference Manual

Specify All Primitive
Attributes

6.3. Inquiring Primitive
Static Attribute Values

Inquire Color Indices

Inquire Line Index

set_primitive attributes(attributes)
struct {
int lineindx, fillindx, textindx;
int linestyl, polylinestyl, polyedgestyl;
float linwidth; :
int pen, font;
float charwidth, charheight;
float charupx, charupy, charupz, charupw;
float charpathx, charpathy, charpathz, charpathw;
float charspacex, charspacey, charspacez, charspacew;
int chjust, chquality;
int marker, pickid, rasterop:
} *attributes;

set primitive attributes() isa composite function which provides a
means to set all the primitive attributes in a single function call. Note that the
function call:

set_primitive attributes (§PRIMATTS)

sets all the primitive attributes to their default values. PRIMATTS is defined in
<usercore.h>.

The functions described in the sections that follow allow the user to inquire static
attribute values of the SunCore primitives. £

o A 2D inquiry function was used when a 3D inquiry function should have been
used to avoid loss of information.

inquire_color_indices(surface_name, il, i2,

red array, green_array, blue array)
struct vwsurf *surface_name; /* See appendix B */
int i1, i2; /* Start and end table indices */
float red arrayl[l; /* Range is 0.0 thru 1.0 */
float green_ arrayl(]:; /* Range is 0.0 thru 1.0 */
float blue_array[]; /* Range is 0.0 thru 1.0 */

inquire color_ indices () obtains the color lookup table for the specified
view surface. surface_name is the name of the view surface for which the color
lookup tables should be obtained.

inquire color_indices () takes entries from the color lookup tables,
starting at index i/ (relative to zero) and ending at index i2. The color lookup
tables for a given color are stored in

array([0] throuéh array([i2-il]

inquire line index(index)
int *index;

inquire_liné_index () obtains the current color index for coloring line {/—\
and polyline output primitives. ./

é{% §c un Revision A, of 9 May 1988

rosystems

Chapter 6 — Attributes 83

Inquire Fill Index

Inquire Text Index

Inquire Linewidth

Inquire Linestyle

Obtain Polygon Shading
Method

Inquire Polygon Edge Style

Inquire Pen

Inquire Font

Inquire Character Size

inquire_fill index(index)
int *index;

inquire fill index () obtains the current color index for coloring
polygon and raster output primitives.

inquire_text_index(index)

int *index;

inquire text_ index () obtains the current color index for coloring marker
and text output primitives.

inquire linewidth (linewidth)

float *linewidth;

inquire linewidth () obtains the linewidth attribute, in percent of NDC
space, for the output primitives.

inquire linestyle(linestyle)
int *linestyle; /* SOLID, DOTTED, */
/* DASHED, DOTDASHED */

inquire_ linestyle () obtains the linestyle attribute for the output primi-
tives.

inquire_ polygon interior_style(style)

int *style; /* PLAIN, SHADED */
inquire_polygon_interior style () obtains the method of filling for
polygons.

inquire polygon_edge style(style)
int *style; /* SOLID, INTERIOR */

inquire_polygon_ edge_style () obtains the current method of drawing
polygon edges.

inquire_pen (pen)

int *pen; /* Device dependent pen selector */
inquire pen() obtains the pen attribute for the text output primitive.
inquire_ font (font)

int *font; /* ROMAN, GREEK, SCRIPT, OLDENGLISH, */
/* STICK, SYMBOLS */

inquire font () obtains the font attribute for the text output primitive.

inquire charsize (charwidth, charheight)
float *charwidth, *charheight;

inquire_charsize () obtains the charsize attribute for the text output prim-
itive.

S ll n Revision A, of 9 May 1988

84 SunCore Reference Manual

Inquire Character Spacing

Inquire Character Up
Vector 2

Inquire Character Up
Vector 3 '

Inquire Character Path 2

Inquire Character Path 3

Obtain Justification Attribute

Obtain Current Rasterop
(SunCore Extension)

Inquire Character Precision

Inquire Pick ID

N

inquire_charspace (charspace)
float *charspace;

inquire charspace () obtains the charspace attribute for the text output
primitive.

inquire charup_ 2 (dx, dy)

float *dx, *dy;

inquire charup 2 () obtains the charup attribute for the text output primi-
tive.

inquire charup_ 3(dx, dy, dz)

float *dx, *dy, *dz;

inquire charup 3 () obtains the charup attribute for the text output primi-
tive.

inquire charpath_ 2(dx, dy)

float *dx, *dy:

inguire charpath 2 () obtains the charpath attribute for the text output
primitive.

inquire charpath_3(dx, dy, dz)

float *dx, *dy, *dz; . g::) |

inquire charpath 3 () obtains the charpath attribute for the text output
primitive.

inquire_charjust (just)

int *just;

inquire_ charjust () obtains the justification attribute for text strings.
inquire_rasterop (rop)

int *rop:; /* XORROP, ORROP, NORMAL */

inquire rasterop () determines the current setting of the rasterop attri-
bute.

inquire_charprecision(charprecision)

int *charprecision; /* STRING, CHARACTER */

inquire charprecision () obtains the charprecision attribute for the text
output primitive.

ingquire pick_id(pick_id)

int *pick_id;

inquire pick id{() obtains the pick id attribute for output primitives.

[
./

U1 Revision A, of 9 May 1988
Oms

{

Y

N

e,

™

e

Chapter 6 — Attributes 85

Inquire Marker Symbol

Obtain All Primitive
Attributes

6.4. Retained Segment
Static Attributes

Set Image Transformation
Type

inquire_marker_symbol (symbol)
int *symbol; /* 32 .. 127 */

inquire marker symbol () obtains the current value of the marker sym-
bol.

inquire_primitive_attributes(attributes)
struct {
int lineindx, £fillindx, textindx;
int linestyl, polylinestyl, polyedgestyl;
float linwidth;
int pen, font;
float charwidth, charheight;
float charupx, charupy, charupz, charupw;
float charpathx, charpathy, charpathz, charpathw;
float charspacex, charspacey, charspacez, charspacew;
int chijust, chquality;
int marker, pickid, rasterop:;
} *attributes:;

inquire primitive_attributes () is a composite function which pro-
vides a means to obtain all the primitive attributes in a single function call.

There is only one static attribute for segments. This is the image transformation
type attribute. This attribute can take on one of five values:

NONE Retained segment on which no translation, scaling, or rotation can be
performed.

XLATE2 Translatable retained segment. The segment can be moved
(translated) in 2D (x and y of NDC space).

XFORM?2 Fully transformable retained segment. The segment can be moved
(translated), rotated, and scaled (have its size changed) in 2D (x and
y of NDC space).

XLATE3 Translatable retained segment. The segment can be moved
(translated) in 3D (x and y of NDC space).

XFORM3 Fully transformable retained segment. The segment can be moved
(translated), rotated, and scaled (have its size changed) in 3D (x, y
and z of NDC space).

The image transformation type attribute is set when a segment is created and can-
not be changed at any time during the life of the segment. The default value of
image transformation type is NONE.

The functions described below are used to set and inquire about the values of
image transformation type.

set_image_ transformation_type (type)

int type; /* NONE, XLATE2, XFORM2, XLATE3, XFORM3 */
set_image transformation_type () specifies the image

sun Revision A, of 9 May 1988

microsystems

86 SunCore Reference Manual

Inquire Image
Transformation Type

Inquire Segment Image
Transformation Type

6.5. Setting Retained
Segment Dynamic
. Attributes

@

o’
transformation type attribute for subsequently created segments. -

inquire_image_transformation_type (type)
int *type; /* NONE, XLATE2, XFORM2, XLATE3, XFORM3 */

inquire image transformation_type () obtains the current value of
the image transformation type attribute.

inquire_segment_image_ transformation_type (segment name, type)
int segment_name; /* Name of segment for inquiry */
int *type; /* NONE, XLATEZ2, XFORM2, XLATE3, XFORM3 */

inquire segment_ image transformation_ type () obtains the
image transformation type for a specified segment.

In addition to the one static attribute described above, there are a number of
dynamic attributes which apply to segments. Each retained segment has its own
set of dynamic attributes, as listed below.
Visibility
indicates whether the segment should have a visible image. There are only
two values of this attribute, namely: TRUE and FALSE.

SunCore sets visibility to TRUE at initialization time.

Highlighting C\
indicates whether the segment’s image should be highlighted. In SurCore, o
highlighting is done by briefly blinking the segment. There are only two
values of the highlighting attribute, namely, TRUE and FALSE.

SunCore sets highlighted to FALSE at initialization time.

Detectability
indicates whether the retained segment can be detected by the
await_pick () input primitive. A value of 0 means that the segment is
not pickable. If two segments overlap, the one with the greatest value of
detectability is the one that gets picked. SunCore sets detectability to the
default value of O at initialization time.

Image Transformation
indicates how the image of a retained segment is scaled, rotated, or
translated. Image transformations are done in NDC space, that is, after all
viewing operations have been performed. Image transformations do not
compose and do not cumulate. Whenever any function affecting a segment’s
image transformation is called, the transformation is reset to reflect only the
values specified by the call. The image transformation attribute of a seg-
ment must be consistent with its image transformation type attribute (for
instance, if the image transformation type is XLATE2, it is an error to
attempt to rotate the segment).

SunCore sets the default image transformation to the identity transformation
(that is, no translation, scaling, or rotation) at initialization. k N

J
Ny

Sun Revision A, of 9 May 1988

microsystems

N

-

Chapter 6 — Attributes . 87

Set Visibility

Set Highlighting

Set Detectability

Set Image Translate 2

Set Image Transformation 2

There are two classes of functions for setting retained segment dynamic attri-
butes. One class sets the default attributes for subsequently created segments; the
other sets attributes on a named segment basis.

o There is no retained segment called segment_name.
o One or more of the attributes is incorrect.

o The segment’s image transformation type attribute value is incompatible with
the requested function.

set visibility(visibility)
int visibility; /* TRUE or FALSE */

set_visibility () specifies the default visibility attribute for subsequently
created segments. This does not affect the visibility of existing segments or the
currently open segment.

set_highlighting (highlighting)
int highlighting; /* TRUE or FALSE */

set_highlighting () specifies the default highlighting attribute for subse-
quently created segments.

set_detectability(detectability)
int detectability; /* 0 thru 2 to the 31lrd power */

set_detectability () specifies the default detectability attribute for subse-
quently created segments.

set_image translate 2(tx, ty)
float tx, ty:; /* X and y translation values in NDC */

set image translate_2 () sets the default image transformation attribute
for subsequently created segments. The default image transformation is set to a
2D translate by #x and zy.

set__image__transformation_Z(sx, sy, a, tx, ty)

float sx, sy; /* x and y scale factors */

float a; /* rotation value in radians
counter—-clockwise about z axis */ _

float tx, ty: /* x and y translation values in NDC */

set_image transformation_2 () sets the default image transformation
for subsequently created segments. The default transformation is set to a 2D
scale by sx and sy, rotation by a, and translation by #x and ty. The order of
transformation is:

1. Scale about the origin of NDC space.

2. Rotate about the origin of NDC space (about the z axis). A positive rota-
tion of 7t/2 radians will rotate the x axis into the y axis.

3. Translate.

n Revision A, of 9 May 1988

88 SunCore Reference Manual

Set Image Translate 3

Set Image Transformation 3

Set Segment Visibility

Set Segment Highlighting

To scale and rotate about a point x, y, add dx to £x and add dy to ty, where N’

dx=x—(x*sx*cos (a)-y*sy*sin(a))
dx=y—(x*sx*sin (a }i—y*sy*cos (a))

set_image translate 3(tx, ty, tz)
float tx, ty, tz; /* x, v, and z Translation Values in NDC */

set_image translate_ 3 () sets the default image transformation attri-
bute, in NDC space, for subsequently created segments. The default image
transformation is set to a 3D translate by #x, ¢ty and ¢z.

set_image transformation_ 3(sx, sy, sz, ax, ay, az, tx, ty, tz)

float sx, sy, sz; /* x, y, and z Scale Factors */

float ax, ay, az; /* Rotation Values in radians clockwise */
/* about the x, y, and z axes */

float tx, ty, tz; /* x, y, and z Translation Values in NDC */

set_image transformation 3 () sets the default image transformation
attribute for subsequently created segments. The default image transformation is
set to a 3D scale by sx, sy, 5z, a 3D rotation by ax ay, az, and a 3D translation by
tx, ty, tz. The order of transformation is:

1. Scale about (0.0, 0.0, 0.0) in NDC space, Q

2. Rotate about (0.0, 0.0, 0.0) in NDC space, first about the x-axis, then about
the y-axis, and then about the z-axis. Since NDC space is a left-handed coor-
dinate system, rotations are computed using the left-hand rule. When the ori-
gin is viewed from the positive side of the axis of rotation, clockwise rota-
tions correspond to positive rotations.

3. Translate.
set_segment_visibility(segment name, visibility)

int segment name;
int visibility; /* TRUE or FALSE */

set segment visibility () specifies the visibility attribute for the
named segment. When visibility is set to FALSE, the segment is erased from the
view surfaces. The segment is redrawn again when visibility is set to TRUE.

set_segment_highlighting(segment name, highlighting)
int segment name;
int highlighting; /* TRUE or FALSE */

set_segment highlighting () specifies the highlighting attribute for the
named segment. When highlighting is set to TRUE, the segment is blinked once.

Revision A, of 9 May 1988

Chapter 6 — Atiributes 89

C
Neen

Set Segment Detectability

Set Segment Image
Translate 2

Set Segment Image
Transformation 2

set_segment detectability(segment_name, detectability)
int segment name;
int detectability; /* 0 thru 2 to the 31rd power */

set_segment_detectability () specifies the detectability attribute for
the named segment. When detectability is set to 0, the segment cannot be picked
by the await pick () input function. If two segments overlap, the segment
with the greatest detectability is picked.

set_segment_image ‘translate_2(segment_name, tx, ty)
int segment_name;

float tx; /* x Translation Value in NDC */

float ty; /* y Translation Value in NDC */

set segment_image_ translate_ 2 () sets the image transformation
attribute for the named segment. The image transformation is set to a 2D
translate by tx, ty. The named segment is erased from the view surface and then
redrawn after the new image transformation is applied. This may be done while
the segment is open.

set_segment_image transformation_ 2 (segment name,
sx, sy, a, tx, ty)

int segment name;

float sx; /* ®x Scale Factor */

float sy /* y Scale Factor */

float a; /* Rotation Value in radians
clockwise about z axis */

float tx; /* x Translation Value in NDC */

float ty: /* y Translation Value in NDC */

set_segment_ image transformation_ 2 () sets the image transforma-
tion attribute for the named segment. The image transformation is set to a 2D
scale by sx and sy, a 2D rotation by a, and a 2D translation by ¢x and ty. The
order of transformation is:

1. Scale about the origin of NDC space.

2. Rotate about the origin of NDC space (about the z axis). A positive rotation
of ©/2 radians will rotate the x axis into the y axis.

3. Translate.

To scale and rotate about a point x, y, add dx to & and add dy to ty, where

dx=x—(x*sx* cos(a)-y*sy* sin(a))

dx=y—(x*sx* sin(a }+y*sy* cos(a))

The named segment is erased from the view surface and then redrawn after the

new image transformation is applied. This may be done while the segment is
open.

n ’ Revision A, of 9 May 1988

90 SunCore Reference Manual

Set Segment Image
Translate 3

Set Segment Image
Transformation 3

6.6. Inquiring Retained
Segment Dynamic
Attributes -

R\“m,/]
set_segment_ image translate_ 3 (segment_ name, tx, ty, tz)
int segment_name;
float tx; /* x Translation Value in NDC */
float ty:; /* y Translation Value in NDC */
float tz; /* z Translation Value in NDC */

set_segment_ image_ translate 3 () sets the image transformation
attribute for the named segment. The image transformation is set to a 3D
translate by #x, ty, tz. The named segment is erased from the view surface and
then redrawn after the new image transformation is applied. This may be done
while the segment is open.

set_segment_image transformation_ 3 (segment name,
sx, sy, sz, ax, ay, az, tx, ty, tz)
int segment_ name;
float sx; /* x Scale Factor */
float sy; /* y Scale Factor */
float sz; /* z Scale Factor */
float ax; /* Rotation Value in radians clockwise
about the x axis */
float ay; /* Rotation Value in radians clockwise
about the y axis */
float az; /* Rotation Value in radians clockwise
about the z axis */ P
float tx; /* x Translation Value in NDC */ | j
float ty; /* y Translation Value in NDC */
float tz; /* z Translation Value in NDC */

set_segment_image transformation_3() sets the image transforma-
tion attribute for the named segment. The image transformation is set to a 3D
scale by sx, sy, sz, a 3D rotation by ax, ay, az, and a 3D translation by x, ty, tz.
The order of transformation is:

1. Scale about (0.0, 0.0, 0.0) in NDC space.

2. Rotate about (0.0, 0.0, 0.0) in NDC space, first about the x-axis, then about
the y-axis, and then about the z-axis. Since NDC space is a left-handed coor-
dinate system, rotations are computed using the left-hand rule. When the ori-
gin is viewed from the positive side of the axis of rotation, clockwise rota-
tions correspond to positive rotations.

3. Translate.

The named segment is erased from the view surface and then redrawn after the
new image transformation is applied. This may be done while the segment is

open.

The functions described below are for inquiring the settings of the dynamic attri-

butes for retained segments. There are two classes of functions for inquiring

retained segment dynamic attributes. One class obtains the default attributes for
subsequently created segments and the other obtains attributes on a named seg-

ment basis. =

sun Revision A, of 9 May 1988

microsystems

Chapter 6 — Atiributes 91

There is no segment called segment name.

]

The default image transformation attribute value is of a more complex type
than the inquiry function used.

The segment’s image transformation type attribute value is incompatible with
the requested function.

[n]

The segment’s image transformation type attribute value is of a more complex
type than the inquiry function used.

o

Inquire Visibility inquire visibility(visibility)
int *visibility; /* TRUE or FALSE */
inquire visibility () obtains the default visibility attribute for subse-
quently created segments.

Inquire Highlighting inquire_highlighting(highlighting)
int *highlighting; /* TRUE or FALSE */
inquire highlighting () obtains the default highlighting attribute for the
subsequently created segments.
Inquire Detectability inquire_detectability(detectability)
int *detectability; /* 0 thru 2 to the 31lrd power */

ingquire detectability () obtains the default detectability attribute for
the subsequently created segments.

0

Inquire Image Translate 2 inquire_image_translate_2(tx, ty)
float *tx, *ty; /* x and y Translation Values in NDC */

inquire image_ translate_ 2 () obtains the 2D translation components
of the default image transformation for subsequently created segments.

Inquire Image inquire image transformation 2(sx, sy, a, tx, ty)
_Transformation 2 float *sx, *sy; /* x and y Scale Factors */
float *a; /* Rotation Value in radians
clockwise about the z axis */
float *tx, *ty; /* x and y Translation Values in NDC */

inquire_ image_ transformation_ 2 () obtains the 2D scale factor, rota-
tion, and translation components of the default image transformation attribute for
subsequently created segments.

Inquire Image Translate 3 inquire_image_t ranslate_3(tx, ty, tz)
float *tx, *ty, *tz; /* %, y, and z Translation Values in NDC *

inquire image translate_ 3 () obtains the 2D translation components
of the default image transformation attribute for subsequently created segments.

@ sun . Revision A, of 9 May 1988

microsystems

92 SunCore Reference Manual

Inquire Image
Transformation 3

Inquire Segment Visibility

Inquire Segment Highlighting

Inquire Segment Detectability

Inquire Segment Image
Translate 2

Inquire Segment Image
Transformation 2

Q@

N\

O

inquire_image_transformatioh_3(sx, sy, sz, ax, ay, az, tx, ty, tz)

float *sx, *sy, *sz; /* %, y, and z Scale Factors */

float *ax, *ay, *az; /* Rotation Values in radians clockwise
about the x, y, and z axes */

float *tx, *ty, *tz; /* x, y, and z Translation Values in NDC *

inquire_ image_transformation_ 3 () obtains the 3D scale factor, rota-
tion, and translation components of the default image transformation attribute for
subsequently created segments.

inquire_segment_ visibility(segment name, visibility)
int segment_name;
int *visibility; /* TRUE or FALSE */

inquire segment_ visibility () obtains the visibility attribute for the
named segment.

inquire_segment highlighting(segment name, highlighting)
int segment_name;
int *highlighting; /* TRUE or FALSE */

inquire segment_ highlighting () obtains the highlighting attribute
for the named segment.

inquire_segment_detectability(segment_name, detectability)
int segment name; ‘
int *detectability; /* 0 thru 2 to the 31rd power */

./

inquire_segment_ detectability () obtains the detectability attribute
for the named segment.

inquire segment image_translate_2 (segment_name, tx, .ty)
int segment name;

flecat *tx; /* x Translation Value in NDC */

float *ty; /* y Translation Value in NDC */

inquire_segment_image translate_ 2 () obtains the 2D translation
components of the named segment’s image transformation attribute.

inquire_segment_image transformation 2 (segment. name,
sx, sy, a, tx, ty)

int segment name;

float *sx; /* x Scale Factor */

float *sy; /* y Scale Factor */

float *a; /* Rotation Value in radians clockwise

about the z axis */
float *tx; /* x Translation Value in NDC */
float *ty; /* y Translation Value in NDC */

inquire_segment_image_transformation_2 () obtains the 2D scale
factor, rotation, and translation components of the named segment’s image {A\
transformation attribute. . N

sun Revision A, of 9 May 1988

microsystems

Chapter 6 — Attributes 93

Inquire Segment Image
Translate 3

Inquire Segment Image
" Transformation 3

o

@

inquire segment_image translate_3(segment_name, tx, ty, tz)
int segment_ name;
/* x Translation Value in NDC */
/* y Translation Value in NDC */
/* z Translation Value in NDC */

float

float *ty;
*tz;

float

*tx;

inquire segment_ image translate_3 () obtains the 3D translation
components of the named segment’s image transformation attribute.

inquire_segment_image_transformation_3 (segment_name,
az, tx, ty, tz)

sX,

SY,

sz, ax, ay,

int segment_name;
/* x Scale Factor
/* y Scale Factor
/* z Scale Factor

float
float
float
float

float
float
float

float
float

*sx;

*sy;

*sZ;
*ax;

*ay;
*az;
*tx;

*ty;
*tz;

/* Rotation
about the x
/* Rotation
about the y
/* Rotation
about the z

*/

*/

*x/
Value in radians clockwise
axis */
Value in radians clockwise
axis */
Value in radians clockwise
axis */

/* x Translation Value in NDC */
/* y Translation Value in NDC */
/* z Translation Value in NDC */

inquire segment_image_ transformation_3 () obtains the 3D scale
factor, rotation, and translation components of the named segment’s image
transformation attribute.

Sun

microsystems

Revision A, of 9 May 1988

B

s

.
el

ki

’ Q

2

&
B g mRu d.m
8 I3 E - 2 7
% a < g s
a % = m = L o
5 = Nwm O =z 2
oy g8 2 > 8 < 7z O 9
K= = 2 0o & o w @& o) o) Q
0 O mahwo,mm. @ L mm
@8 RS ER8 gE . § o S 2 a
17 g3 5 9 rr.Prmmngw 8 8 m A m >
L ER 3 S &g 85§03 = ¥ O @ s 8§
> E 5 A 2 e 8 e SE 30 R8RR gL § 2
o= & o £ £ 2 § 380 7T < 3 8 5 5
- mm..u.mﬁ EEcwpﬂ.anOE MNvmr%RS
» p—f © ‘D ferVAa KmpOGOD -
= SAFEEER RN LR IR LR
. asmmmmwtmmEmcmmmmaTAo
O @ mceacch.wWLVKSHo C&g<n 2
a» s FfEsReCdfByiapetiiiioEl
= Hlb Q O .l-u.l.l.l.u I >
= £ mﬁﬁﬁﬁglgfffvau
= E fEZiRRRACEEEEESEEEERG:

o = A Q g S
— g - &~ = <
7

7.5. Inquiring Input Status Pafameters

Obtain Type of Echo for Device

Obtain Echo Reference Point

Obtain View Surface for Echo

Obtain Initial LOCATOR Position

Obtain Value and Range for VALUATOR Device
Obtain KEYBOARD Parameters

Obtain STROKE Device Parameters

106
106
106
106

- 106

106
107
107

a
KM/'

Input Primitives

SunCore supports several logical input devices providing for interactive use of

the graphics system. The physical input devices provided are the keyboard and
the mouse. The mouse is versatile in that it can be used both as a pointer and a

button device.

In the terminology of the ACM Core specification, input devices fall into two dis-
tinct classes, namely: devices that generate events, and devices that may only be
sampled for position or numerical values. SunCore supports the ACM Core stan-
dard level 2 input (synchronous); hence no event generation or event queue is
supported. The supported logical devices in SunCore are:

(/m\ Table 7-1 Input Devices Supported By SunCore
\\a-/
Device | Descruption
PICK identifies a segment or a primitive within a seg-
ment. SunCore uses the mouse as a PICK dev-
ice.
KEYBOARD provides alphanumeric information to the appli-
cation program.
BUTTON provides a means of choosing among several

alternatives. In SunCore, the three BUTTON
devices are on the mouse.

STROKE generates a sequence of positions in NDC space.
In SunCore, the STROKE device is the mouse.

LOCATOR provides a position in NDC space. SunCore uses
the mouse as the LOCATOR device.

VALUATOR provides a scalar value to the application pro-

gram which samples it. SunCore uses the mouse
as the valuator device.

A logical input device must be initialized before it can be used.

7.1. Initializing and The functions described in the sections that follow are used to initialize and ter-
Terminating Input minate input devices. These functions are normally called at the beginning and
Devices - end of a SunCore application program.
e
N s
&v D e 97 Revision A, of 9 May 1988

98 SunCore Reference Manual

Initialize a Specific Device

Disable a Specific Device

7.2. Device Echoing

initialize device(device class, device_number)
int device_class; /* PICK, KEYBOARD, STROKE */
/* LOCATOR, VALUATOR, BUTTON */

int device_number; /* There are: */
/* 1 PICK device */
/* 1 KEYBOARD device */
/* STROKE device */
/* BUTTON devices */
/* 1 LOCATOR device */
/* 1 VALUATOR device */

initialize device () initializes a specific logical device. This function
must be called before accessing any of the input devices. An initialized input
device which uses position information from the mouse must be associated with
an initialized view surface (as an echo surface) before valid data can be read from
the device. See Appendix B for details.

Note: that if the KEYBOARD device is initialized and the program crashes before
the KEYBOARD device is terminated, the tty will not echo and cbreak will be set.
To recover from this condition, type ‘reset’ followed by a carriage return.

oW e

o The device specified by device_number is not initialized.

o The device specified by device_number is already initialized. C
W,
terminate_device(device_class, device_number)
int device_class; /* PICK, KEYBOARD, STROKE */
/* LOCATOR, VALUATOR, BUTTON */

int device _number; /* There are: */
/* 1 PICK device */
/* KEYBOARD device */
/* STROKE device */
/* BUTTON devices */
/* LOCATOR device */
/* 1 VALUATOR device */

terminate_device () disables a specific device.

N S N

o The device specified by device_number is not enabled.

Device echoing means that SunCore can provide a visible indication to the user
that the system has seen the input from a specific input device.

SunCore provides the means whereby the application programmer can control
the way in which input devices are echoed to the user of the graphics system.

Firstly, the types of echoing for each device are defined here. The tables below
describe the types of echoing for specific devices.

sun

microsystems

Revision A, of 9 May 1988

N

Chapter 7 — Input Primitives

99

(N

Table 7-2

Table 7-3

Table 7-4

Table 7-5

Echoing for PICK Device
Echo Type | Actions Performed

0 No echo

1 SunCore blinks the picked segment briefly. A
printer’s fist (pointing finger) indicates the
position of the PICK device.

2 A printer’s fist (pointing finger) indicates the
position of the PICK device. SunCore does
not blink the picked segment.

Echoing for KEYBOARD Device

Echo Type l Actions Performed
0 No echo
1 The string which the user typed on the KEY-

BOARD device is echoed on the screen start-
ing at the echo reference position.

Echoing for BUTTON Device
Echo Type I Actions Performed
0 No echo
1 No echo

Echoing for STROKE Device

Echo Type l Actions Performed
0 No echo
1 a printers fist (pointing finger) sign is

displayed at the cursor position.

2 A string of dots is drawn to follow the path of
the cursor. (not implemented)

3 A solid line is drawn to follow the path of the
cursor. (not implemented)

4 a printers fist sign is displayed at the final
position of the cursor. (not implemented)

Revision A, of 9 May 1988

100 SunCore Reference Manual

Table 7-6 Echoing for LOCATOR Device C

Echo Type Actions Performed

0 No echo '

1 A printers fist (pointing finger) sign is

o displayed at the position of the LOCATOR
device.

2 A solid line is drawn connecting the echo
reference point with the LOCATOR.

3 A solid line is drawn connecting the echo
reference point with the x coordinate of the
LOCATOR.

4 A solid line is drawn connecting the echo
reference point with the y coordinate of the
LOCATOR.

5 A solid line is drawn connecting the echo
reference point with either the x coordinate, or
the y coordinate, of the LOCATOR, which-
ever is farthest from the echo reference point.

6 A box is drawn with the position of the
LOCATOR as one corner, and the echo refer-
ence point as the opposite corner. O

Table 7-7 Echoing for VALUATOR Device
Echo Type | Actions Performed
0 No echo
1 The current value of the valuator is displayed
on the screen starting at the echo reference
point.

2-11 SunCore does not perform the actions as
described in the ACM Core specification,
which sets the values of the valuator into vari-
ous parameters of the
image_transformation_type attribute of
retained segments. SunCore leaves this up to
the application program.

Define Type of Echo for set_echo(device class, device_number, echo_type)
Device int device_class:; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */
int device number;
int echo type:
\
set echo (). determines the echo type for a input device. C/

é{?f S un Revision A, of 9 May 1988
MICK

osystems

Chapter 7 — Input Primitives 101

Cj\

Define Type of Echo for a
Group of Devices

Define Echo Reference Point

Yo Define View Surface for Echo
§

\\%’ .
7.3. Setting Input Device
Parameters
Initialize LOCATOR Position

)

4

set_echo_group (device_class, device_number_ array, n, echo_type)
int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */
int device number_ arrayl[];
int n; /* number of devices in array */
int echo_type;

set_echo;group () determines the echo type for an input device class.

set _echo _position(device class, device number, echo_x, echo_y)
int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */
int device_number; '
float echo_x; /* x Coordinate of Echo Point */
float echo_y; /* y Coordinate of Echo Point */

set_echo_position () specifies the position, in NDC space, which will be
used as the echo reference point. The coordinates must lie within the bounds of
NDC space, or set_echo_position () will set the echo reference point to be
the point in NDC space closest to the specified point. The echo reference point
that this function defines is used for certain types of echo such as rubber band
LOCATOR echo.

set_echo_surface(device class, device number, surface name)
int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */
int device number;
struct vwsurf *surface_ name; /* See Appendix B */

set_echo_surface () specifies the viewing surface on which echoing will
be done. An initialized input device which uses position information from the
mouse must be associated with an initialized view surface (as an echo surface)
before valid data can be read from the device. See Appendix B for details. If a
NULL pointer is given for the surface_name argument, any association of the
specified input device with an echo surface is ended.

The functions described in the sections that follow are used to define certain
parameters for each of the logical input devices. These functions are normally
called at the beginning of a SunCore application program.

set_locator_2(locator_number, x, y)
int locator_number;

float x;

float y;

set_locator_2 () sets the initial LOCATOR position in NDC space.

Sun Revision A, of 9 May 1988

microsystems

102 SunCore Reference Manual

Initialize Value and Range for set_valuator(valuator_ number, initial value, low, high)

VALUATOR Device int valuator_number;
float initial_value;

float low;
float high;

set_valuator () sets the value and range for the valuator device. The
default values are: initial value=0.0, low=0.0, and high=1.0.

Initialize KEYBOARD set_keyboard (keyboard number, buffer size,
Parameters initial string, initial_cursor_position)
int keyboard_number;
int buffer size;
char *initial_string;
int initial cursor_position;

set_keyboard () sets the size of the character buffer for the KEYBOARD
device, the initial character string, and the initial character cursor counting from
the echo reference position. SunCore uses default values of buffer_size=80,
initial_string="enter:", and initial_cursor_position=7. The maximum
buffer_size and the maximum length of initial_string are 80 characters.

Initialize STROKE Device set_stroke(stroke number, buffer size, distance, time)
int stroke number; /* Device Number */ ™
int buffer_size; /* not used */ &
float distance; /* Minimum distance to move */ ’
int time; /* not used */

3 set_stroke () sets parameters for the STROKE device. The buffer_size
argument is the maximum number of x, y points in a STROKE. The distance
argument is the minimum distance, in NDC space, which the mouse must move
before a new point is added to the x, y list comprising the STROKE. The default
setting is distance=0.01.

Initialize PICK Device set_pick (pick-number, aperture)
int pick-number; /* device number */
float aperture; /* device aperture */

set pick () sets the aperture for the PICK device. The aperture argument
provides control over the ‘sensitivity’ of the PICK device. A square is defined
with its center at the cursor position and with sides of length 2 * aperture. Seg-
ments that intersect this square can be picked. aperture is given in NDC space.
? An error is returned if the pick-number is incorrect or if the aperture <0.0. The
default aperture square has two pixels per side.

7.4. Reading From Input SunCore has several functions for interrogating input devices. These function
Devices allow the application programmer a great deal of flexibility in user-interface
design.
é‘é\% grgs‘g Revision A, of 9 May 1988

Chapter 7 — Input Primitives 103

Wait for BUTTON Device

Wait for PICK Device

N

await_any button(time, button number)
int time:; /* Time in microseconds to wait */
int *button number; /* BUTTON which was hit */

await_any button () waits for the user to click any of the BUTTON dev-
ices. await_any button () waits for the user to click any BUTTON device,
or until the time specified by the time parameter expires. If the time argument is
exactly zero, the BUTTON devices are checked once, then the function returns to
the caller immediately.

If a BUTTON device is clicked before time expires, the number of the BUTTON
device is returned in the button _number parameter. If the user does not click any
BUTTON device before time expires, the function returns a BUTTON device
number of zero.

For the mouse, BUTTON device numbers 1, 2, and 3 represent the left, middle,
and right buttons, respectively, when the buttons are facing away from the user.

await_pick(time, pick_number, segment_name, pick_id)
int time; /* Time in microseconds to wait */

int pick_number;

int *segment_name;

int *pick_id;

await_pick () waits for the user to pick an output primitive within a visible
and detectable retained segment. await pick () waits for the user to click the
left hand button on the mouse, or until the time specified by the time parameter
expires. If the time argument is exactly zero, the function tests the button once,
and if the button has been clicked, performs the pick operation.

If the button is clicked before time expires, the function returns the
segment_name of the segment that the PICK device is pointing at, and the
pick_id parameter is set to the value of the pick_id attribute of the primitive that
was picked. If the user does not click any mouse button before time expires, or
no segment is found where the user points, the function sets the segment_name
and pick_id parameters to zero.

~await_pick () only searches those segments which are visible and detectable

and appear on the echo surface of the specified PICK device. Primitives within a
segment have bounded volume descriptors. The square pick aperture must inter-
sect one of these ‘extents’ in order that the segment_name and pick_id be
returned. If more than one segment is at the point, the segment with the highest
value of the detectability attribute is returned. Detectability may be set to zero to
prevent a segment from being picked.

o The specified PICK device does not exist.

SUun Revision A, of 9 May 1988

microsystems

104 SunCore Reference Manual

Wait for Input from the
KEYBOARD

Wait for User to Draw a
Curve

e’
await_keyboard(time, keyboard number, input_string, length)
int time; /* Time in microseconds to wait */
int keyboard number;
char *input_string:
int *length;

await keyboard () waits for the user to type a line of input on the KEY-
BOARD device. await_ keyboard () waits for the user to enter data at the
KEYBOARD device, or until the time specified by the #ime parameter expires. If
the time argument is exactly zero, the function tests once to see if a character has
been typed, and then returns to the caller.

If any data is entered at the KEYBOARD device before time expires, the function
returns the typed characters in an array pointed to by input_string. The length of
this character string is returned in length. The string is null terminated. If the
user does not enter any data before time expires, the function sets the length
parameter to zero. If a carriage-return or newline character is typed, the function
returns with the input string containing a newline character as the last non-null
character.

o The specified KEYBOARD device does not exist.

await_stroke 2 (time, stroke_ number, array_size,

X_array, y_array, number_ points) Y
int time; /* Time in microseconds to wait */ {‘W/
int stroke_number; /* STROKE device to wait for */ "
int array_ size; /* Maximum size of x and y arrays */
float x_arrayl]:
float y arrayll]:; :
int *number points; /* Number of x, y coordinates

actually read */

await stroke_ 2 () waits for the user to draw a curve, consisting of a list of
points in NDC space, using the mouse. A curve in this context means a string of
line segments. await_ stroke 2 () waits for the user to draw a curve using
the mouse, or until the time specified by the time parameter expires. If the time
argument is exactly zero, the function tests once to see if a curve has been drawn,
and then returns to the caller.

The curve starts at the current position of the LOCATOR, and finishes when the
user clicks button 3 on the mouse. When the function returns, the number of x, y
coordinates actually read is returned in the number_points argument. When the
number of points read equals array_size the function returns before time expires.
Note: The BUTTON device must be initialized for await stroke 2() to
work.

Revision A, of 9 May 1988

Chapter 7 — Input Primitives . 105

o

Read LOCATOR When
BUTTON Clicked
Read VALUATOR When
BUTTON Clicked

N

{
Low Level Mouse Support

(SunCore extension)

£ysun

await_any button_get locator_ 2 (time, locator number,
button_number, x, y)

int time; /* Time in microseconds to wait */

int locator_number; /* LOCATOR device to wait for */

int *button_number; /* BUTTON which was clicked */

float *x, *y; /* Returned point in NDC */

await_ any button_get_ locator_2 () waits for the user to click any of
the mouse buttons. When the button is clicked, the function returns the current
NDC coordinates of the LOCATOR.

await any button_get_locator_2 () waits for the user to click any
mouse button, or until the time specified by the #ime argument expires. If the
time argument is exactly zero, the function checks if any buttons have been
clicked immediately and then returns.

If the time expires before the user has clicked any of the mouse buttons, the func-

* tion returns a zero in the button_number argument.

await_any button_get valuator(time, valuator number,
button_number, wvalue)

int time; /* Time in microseconds to wait */

int valuator_number; /* VALUATOR number to read from */

int *button_number; /* BUTTON which was clicked */

float *value; /* Value of valuator */

await_any_button_get_ valuator () waits for the userto click any of
the mouse buttons, or for a specified time. When the button is clicked, the func-
tion returns the current value of the valuator.

await_any button_get_ valuator () waits for the user to click any
mouse button, or until the time specified by the time argument expires. If the
time argument is exactly zero, the function checks if any buttons have been
clicked and then returns immediately.

If the user clicks one of the mouse buttons, the function returns with the value of
the valuator, and the number of the button which was clicked. If the time expires
before the user has clicked any of the mouse buttons, the function returns a zero
in the button_number argument. Movement of the mouse left or right lowers or
raises the value of the valuator. Note: The BUTTON device must be initialized
forawait_any button_get_valuator () to work.

get mouse state(device class, device_number, x, y, buttons)
int device_class; /* PICK, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */
int device number;
float *x, *y:
int *buttons;

get_mouse_state () reads the low level mouse x, y and button information
corresponding to a particular input device. The buttons are up-down encoded,
and the location of the mouse is in NDC space.

Revision A, of 9 May 1988

microsystems

106 SunCore Reference Manual

7.5. Inquiring Input Status
Parameters

Obtain Type of Echo for
Device

Obtain Echo Reference Point

Obtain View Surface for Echo

Obtain Initial LOCATOR
Position

Obtain Value and Range for
VALUATOR Device

N
./

Bit 0 of buttons is the right-hand mouse button.
Bit 1 of buttons is the middle mouse button.
Bit 2 of buttons is the left-hand mouse button.

A zero bit means that the button is up, while a one bit means that the button is
down.

The functions described in the sections that follow are used to inquire various
parameters of the logical input devices.

inquire_echo(device class, device number, echo_type)

int device_class; /* PICK, KEYBOARD, STROKE, */
/* LOCATOR, VALUATOR, BUTTON */

int device number;

int *echo_type:;

inquire_ echo () obtains the echo_type for the specified device.

inquire_echo_position(device_class, device_number,
echo_x, echo_y)
int device_class;
int device number;
float *echo x; /* x Coordinate of Echo Point */
float *echo_y:; /* y Coordinate of Echo Point */ s

../

inquire echo_position () obtains the position, in NDC space, of the
echo reference point for the specified device.

inquire_echo_surface(device_class, device number, surface name)
int device class;

int device_number;

struct vwsurf *surface name;

inquire_echo_surface () obtains the viewing surface on which echoing
is done for the specified device.

inquire_locator_2 (locator_ number, x, y)
int locator_ number;

float *x;

float *y;

inquire_locator_2 () obtains the initial position of the specified LOCA-
TOR in NDC space.

ingquire_valuator(valuator number, initial value, low, high)
int valuator_ number;

float *initial_value;

float *low;

float *high:;

=

inquire valuator () obtains the value and range for the specified valuator _J
device. "

S
0%@ §c ,!;!stﬁ Revision A, of 9 May 1988

Chapter 7 — Input Primitives 107

‘..~ Obtain KEYBOARD
Parameters

Obtain STROKE Device
Parameters

S

—

inquire_keyboard(keyboard number, buffer size, initial string,
initial_cursor position)

int keyboard number;

int *buffer_size;

char *initial string;

int *initial_cursor_position;

inquire_ keyboard () obtains the size of the character buffer, the initial
character string, and the initial character cursor for the specified KEYBOARD
device.

inquire stroke (stroke_number, buffer size, distance, time)
int stroke number; /* device number */

int *buffer_size; /* not used */
float *distance: /* minimum distance to move in NDC */
int *time; /* not used */

inquire_stroke () obtains the buffer size, distance, and time parameters for
the specified STROKE device.

sun Revision A, of 9 May 1988

Deviations from ACM SIGGRAPH

Core

Deviations from ACM SIGGRAPH Core

A.1. Unimplemented Functions

A.2. Other Differences

Text

Raster Extensions

Miscellaneous

111

111
112
112
112
113

9}

A.1. Unimplemented

Deviations from ACM SIGGRAPH
Core

This appendix points out specific differences between the SunCore graphics
package and the ACM SIGGRAPH Core Specification. In addition to differences
noted here, SunCore has numerous extensions to the ACM Core which are docu-
mented in the main body of this manual.

Here is a list of those functions which SunCore does not implement:

Functions
Table A-1 Unimplemented Primitive Attribute Functions
Primitive Attribute Functions
S~ set _charjust
K ’ inquire charjust
Table A-2 Unimplemented Synchronous Input Functions
Synchronous Input Functions
await_stroke_ 3 inquire pick
initialize group inquire stroke_ dimension
inquire button set_all buttons
inquire_echo segments set_button
inquire_input capabilities set_echo_segment
inquire_input_device_characteristics set_locator_3
inquire locator 3 ' set_locport 2
inquire_locator_dimension set_locport_3
inquire_locport_ 2 terminate group
inquire locport_ 3
o
{/ S
N

sun 111 Revision A, of 9 May 1988

microsystems

112 SunCore Reference Manual

Table A-3

Table A-4

Table A-5

A.2. Other Differences

Text

Raster Extensions

¢

Unimplemented Asynchronous Input Functions

Asynchronous Input Functions

enable_gioup
disable group

read locator 2
read valuator
flush device_ events
flush all events
disassociate
disassociate_ group
get_pick_data
get_stroke_data_2
get_locator_data_ 2
get_valuator_ data

enable device
disable device
disable all
read_locator_3
await_event
flush_group_events
associate
disassociate device
disassociate_all
get_keyboard data
get stroke_data_ 3
get_locator_ data_3

inquire device_associations | inquire device_ status

Unimplemented Control Functions

Control Functions

inquire_output_ capabilities
set_immediate visibility
inquire control_status

inquire_ selected_surfaces
make picture_ current
set visibilities

)

log error

Unimplemented Escape Functions

Escape Functions

escape
inquire escape

The sections that follow describe other differences between the Core
specification and SunCore.

SunCore does not have the charplane primitive attribute; instead, the charpath,
charup, and charspace attributes are used to specify text orientation as described
in the manual. The current release of SunCore has no STROKE precision text
and no text justification. The inquire text extent 2() and
inquire_text_extent_ 3 () functions do not take a view surface name as
an argument. The text inquiry functions only return meaningful values when the
current charprecision attribute is CHARACTER.

SunCore contains several of the proposed raster extensions to the ACM Core and

other raster functions. Thus there are no color or intensity primitive attributes.

Instead a color lookup table model is used. There are several primitive attributes -
which are indices into lookup tables. In addition, hidden surfaces are supported \w /?
on color view surfaces. This requires a second parameter to the "

sun

microsystems

Revision A, of 9 May 1988

C’b\i
e

)

)

Appendix A — Deviations from ACM SIGGRAPH Core 113

Miscellaneous

Table A-6

Table A-7

initialize_view_surface () function.
SunCore adds these functions:

SunCore Extensions

SunCore Extension Functions

set _image translate 3
inquire image_translate_3
set segment_ image translate 3

inquire segment image translate 3

SunCore Replacements

Core Function

| SunCore Replacement

set primitive attributes_ 2
set primitive attributes_3
inquire primitive attributes 2
inquire primitive attributes 3

set_primitive attributes

inquire primitive_attributes

Default values for many SunCore system parameters differ from those of the
ACM Core.

There are restrictions on set_world coordinate matrix 2() and
set_world coordinate matrix 3() asdescribed in the manual.

As described in the manual, some of the echo types for input functions in the
ACM Core are not implemented.

The marker symbol primitive attribute deviates from the ACM Core as described
in the manual.

Batching of updates only applies to dynamic segment attributes as described in
the manual.

View surfaces initialized for hidden-surface elimination do not support dynamic
segment attributes of highlighting, transformation, or translation.
initialize view_surface () can optionally suppress clearing the view
surface when it is initialized.

n Revision A, of 9 May 1988
tems

\i‘“v@m e

\\-mw/ :

N

SunCore View Surfaces

SunCore View Surfaces

B.1. The vwsurf Structure

B.2. View Surface Types

B.3. Choosing a View Surface Type within an Application Program |

Using Shell Variables to Determine the Environment

The get_view_surface Function

B.4. Specifying a View Surface for Initialization

View Surface Specification for Raw Devices

View Surface Specification for Window Devices

B.S. Input Considerations

B.6. Notes on Window ngice View Surfaces

117

117
118
119
120
120
125
126
127
128
129

ﬁ‘

-

m

J

e
N

B.1. The vwsurf
Structure

-

SunCore View Surfaces

SunCore supports several types of view surfaces and multiple simultaneous
instances of any type, subject to the hardware resources of the workstation on
which a SunCore program is being run. The current release allows up to five
view surfaces to be active at any time. This appendix gives implementation
details of SunCore view surfaces and provides information on initializing them.

View surface names in SunCore are structures. The following declaration and
definitions are contained in the header file <usercore.h>:

#define DEVNAMESIZE 20

struct vwsurf {
char screenname [DEVNAMESIZE];
char windowname [DEVNAMESIZE];
int windowfd;
int (*dd) ():
int instance;
int cmapsize;
char cmapname [DEVNAMESIZE];
int flags:;
char **ptr;

}:

#define NULL VWSURF {("", "", 0, 0, O, 0, "", 0, 0}
#define DEFAULT VWSURF (ddname) \

{"Il, llll’ 0’ ddname, 0’ O, "'l’ 0, 0}
#define VWSURF_NEWFLG 1

After initialization via the function initialize view surface(),a
vwsur £ structure represents a specific instantiation of a particular type of view
surface. The elements of the vwsur £ structure completely characterize that
instantiation and/or provide information used to initialize the view surface. This
appendix refers to members of the vwsur £ structure using the standard C nota-
tion, as if the declaration

struct vwsurf vwsurf;
had been given.

wwsurf.screenname
is a character string which is the name of the physical device on which the

Sun 117 Revision A, of 9 May 1988

microsystems

118 SunCore Reference Manual

B.2. View Surface Types

‘)
C

view surface appears (for example, /dev/cgone0).

vwsurf.windowname
is a character string which is the name of a window device which has been
opened for display of the output primitives directed to the view surface (for
example, /deviwinl0).

vwsurf.windowfd
is the file descriptor corresponding to this device. Since, for all current Sun-
Core view surface types, output display and input device echoing are accom- :
plished through window system functions, these members of the structure |
are valid even for raw output devices. 3

vwsurf.dd
is the name of the device-independent/device-dependent interface function
through which graphics output to the view surface will pass. This function
defines the view surface type. The current SunCore view surface types are
described below.

vwsurf.instance
identifies the instantiation of a view surface type. It should be set to O prior
to calling initialize view_surface (). SunCore will set this value
appropriately if the initialization is successful.

vwsurf.cmapsize
defines the size of the color lookup table for the view surface, and the char- /"
acter string vwsurf.cmapname gives its name, which can be used to share a K\m/
color map between two or more view surfaces on the same physical device.
These elements of the vwsurf structure are used only for view surfaces on
color devices. Their use is described more fully below.

vwsurf flags
is a field of one-bit flags. Currently, only one flag, VWSURF_NEWFLG, is
defined; this flag is described below.

vwsurf.ptr
is a pointer to an array of character pointers. The array should be terminated
by a null pointer. The strings pointed to by the array contain optional infor-
mation which may be used to initialize the view surface. Details are pro-
vided below.

A view surface type in SunCore is the name of the driver function for the
device-independent/device-dependent interface. The name of the function
corresponding to the desired view surface type should be put into vwsurf.dd prior
tocalling initialize view surface () (see the programming examples
in Chapters 1 and 8).

The current release of SunCore has eight view surface types:

bwldd
The Sun-1 monochrome bitmap display used as a raw device.

N
bw2dd @
The Sun-2 or Sun-3 monochrome bitmap display used as a raw device.

4?:?? sun Revision A, of 9 May 1988

icrosystemns

Appendix B — SunCore View Surfaces 119

e
‘s\vv
B.3. Choosing a View
Surface Type within
an Application
Program

cgldd .
The Sun-1 color graphics display used as a raw device.

cg2dd
The Sun-2 or Sun-3 color graphics display used as a raw device.

cgddd
The Sun-3/110 color display used as a raw device.
pixwindd
A monochrome (one bit deep) graphics window within the Suntools window

environment. This window may appear on either a color or monochrome
display.

cgpixwindd
A color graphics window within the Suntools window environment. This
window must appear on a color display.

gpldd
A Sun-2/160 or Sun-3/160 graphics display with a Graphics Processor
option.

gplpixwindd
A color graphics window within the Suntools window environment running
on a Sun-2/160 or Sun-3/160 color graphics display with a Graphics Proces-
sor option.

Only view surface types cgldd, cg2dd, cg4dd, cgpixwindd, gpldd, and
gplpixwindd support hidden surface removal. In the discussion above, gray scale
devices are considered to be color devices.

The term ‘raw device’ above implies that the physical device specified by
vwsurf.screenname is used completely and only for display of graphics output
directed to one view surface. This allows somewhat more efficient display of

.output primitives. It also implies that the user has not started up a Suntools win-

dow environment using the device as a desktop.

Low-level device-dependent functions are not part of SunCore. For efficiency,
such functions are necessary for some applications. The Pixrect Reference
Manual contains information on low-level functions corresponding to bwldd,
bw2dd, cgldd, cg2dd cg4dd and gpldd, (the ‘pixrect’ level) and
pixwindd, cgpixwindd and gplpixwindd (the ‘pixwin’ level).

It may be desirable to write application programs which use different view sur-
face types depending on the environment. The next two subsections provide
examples of ways to do this. The next subsection illustrates using a Shell vari-
able, and the subsection after that uses the get_view surface () functionto
do the job in a more general way. The source for get _view surface() is
contained in /usr/src/sun/suntool/get_view surface.c.

Revision A, of 9 May 1988

120 SunCore Reference Manual

Using Shell Variables to
Determine the Environment

Figure B-1

The get_view surface
Function

&

Examining a Shell environment variable is one way to determine which environ- N/
ment a program is running in. The following example illustrates using either a

bw2dd (raw Sun-2 or Sun-3 monochrome display) or a pixwindd (monochrome

window) view surface depending on whether the user is currently in the Suntools

window environment. The WINDOW_ME environment variable is normally

defined in the user’s environment if and only if the window system is being used.

Selecting a View Surface from an Environment Variable
s p
int bw2dd({();

struct vwsurf rawsurface = DEFAULT VWSURF (bw2dd) ;

int pixwindd();

struct vwsurf windowsurface = DEFAULT VWSURF (pixwindd);

main ()

{

struct vwsurf *surface, *get_ surface();

surface = get_surface();
initialize view surface(surface, FALSE);
select view surface (surface);

}

/* returns a pointer to an appropriate view surface */
struct vwsurf *get_ surface()
{
if (getenv("WINDOW _ME"))
return (&windowsurface) ;
else
return (&rawsurface);

The SunCore library includes the get_view_surface () function which a
programmer can use to set up a view surface structure using information from
command-line arguments and the environment. A complete listing of
get_view surface () appears at the end of this section.
get_view_surface () has the following declarations for C, FORTRAN, and
Pascal:

e

Ssun Revision A, of 9 May 1988

microsystems

Appendix B — SunCore View Surfaces 121

Table B-1

Figure B-2

Declarations of get_view_surface in C, FORTRAN, and Pascal

Language] Declaration

C get view_ surface (vsptr, argv)
struct vwsurf *vsptr:;
char **argv;

FORTRAN getviewsurface (vwsurf)
integer vwsurf (VWSURFSIZE)

Pascal getviewsurface (var surfacename:
vwsurf) : integer; external;

The elements of argv are pointers to null-terminated strings which are extracted
from the command line that started the application program. The following frag-
ment of C code illustrates the use of get _view surface () for C programs:

get_view_surface Example
e ~
main (argc, argv)
int argc;

char **argv;

{

struct vwsurf vwsurf;

code

if (get_view_surface (&vwsurf, argv))
exit (1)
initialize view_surface(&vwsurf, FALSE))

more code

}

. J

get _view surface () returns zero (0) if it succeeds and non-zero otherwise.
The vwsur £ structure will have vwsurf.dd and possibly vwsurf.screenname set
to appropriate values. Other elements of the structure will be null — the pro-
grammer may modify them to suit the application, but it is not necessary.

The only command-line option that get view surface () currently recog-
nizes is the display_device—d.I option, where display_device is the name of the
physical display device (/devifb or /dev/cgone0 for example). The vwsurf

‘structure will be set up to run on this device. get_view_surface () also

D

sun Revision A, of 9 May 1988

microsystems

1

22 SunCore Reference Manual

A

determines if the window system is running on the device, and chooses vwsurf.dd
appropriately.

Using get_view surface () has a disadvantage in that since it refers to all
six SunCore types of view surfaces, any program using it will get the code for all
six device-independent/device-dependent driver functions linked in. For this rea-
son, the code for get _view_ surface () isincluded here. SunCore program-
mers may wish to tailor a version of this code for particular machine
configurations and applications in order to make smaller final object code.

The code of get_view surface () contains calls on several functions from
libsunwindow.a — the SunView library. Details of these functions can be
found in the SunView Programmer’s Guide and SunView System Programmer’s

Guide.

Figure B-3 get_view_surface.c Module

r

/*
get_view_surface -- Determines from command-line arguments and
the environment a reasonable view surface
for a SunCore program to run on.

*/

#include <sunwindow/window_hs.h>
#include <sys/file.h>

#include <sys/ioctl.h>

#include <sun/fbio.h>

#include <stdio.h>

#include <usercore.h>

int bwldd(); /* All device-independent/device-dependent */

int bw2dd () ; /* routines are referenced in this function. */
int cgldd(): /* This means the linker will pull in all of them */
int cg2dd();

int gpldd{():;

int pixwindd();
int cgpixwindd();
int gplpixwindd() ;

static struct vwsurf nullvs = NULL_VWSURF;

static char *devchk;
static int devhaswindows;

int get_view_surface (vsptr, argv)

struct vwsurf *vsptr;

char **argv;
{
int devfnd, fd, chkdevhaswindows () ;
char *wptr, dev[DEVNAMESIZE], *getenv():
struct screen screen;
struct fbtype fbtype:;

S
é%é sSun Revision A, of 9 May 1988

microsystems

Appendix B — SunCore View Surfaces

123

*vsptr = nullvs;
devind = FALSE;
if (argv)
/*
If command-line arguments are passed, process them using
win initscreenfromargv (see the Programmer’s Reference Manual
for the Sun Window System). The only option used by
get view surface is the ~-d option, allowing the user to
specify the display device on which to run.
*/
{
win initscreenfromargv(&screen, argv):;
if (screen.scr fbname[0] != " ")
{
/* -d option was found */
devfnd = TRUE;
strncpy (dev, screen.scr_fbname, DEVNAMESIZE);
/*
Check to see if this device has a window system
running on it. If so devhaswindows will be TRUE
following the call to win_enumall. win_enumall is
a function in libsunwindow.a. It takes a function
as its argument, and applies this function to every
window being displayed on any screen by the window
system. To do this it opens each window and passes
the windowfd to the function. The enumeration
continues until all windows have been tried or the
function returns TRUE.
*/
devchk = dev;
devhaswindows = FALSE;
win_enumall (chkdevhaswindows) ;
}
}
if (!devind)
/* No -d option was specified */
if (wptr = getenv ("WINDOW ME"})
{
/*
Running in the window system. Find the device from
which this program was started.
x/
devhaswindows = TRUE;
if ((fd = open(wptr, O_RDWR, 0)) < 0)
{
fprintf (stderr, "get view surface: Can’t open %s\n",
wptr);
return(l);
}
win_ screenget (fd, &screen);
close (fd);
strncpy (dev, screen.scr_ fbname, DEVNAMESIZE) ;
}

@% sun Revision A, of 9 May 1988

microsystems

SunCore Reference Manual

else
{
/*
Not running in the window system. Assume device is
/dev/fb.
x/
devhaswindows = FALSE;
strncpy(dev, "/dev/fb", DEVNAMESIZE) ;
}
/* Now have device name. Find device type. */
if ((fd = open{dev, O_RDWR, 0)) < 0)
{
fprintf (stderr, "get_view_surface: Can’t open %s\n", dev):
return(l);
}
if (ioctl(fd, FBIOGTYPE, &fbtype) == -1)
{
fprintf (stderr, "get_view surface: ioctl FBIOGTYPE failed on %s\n",
dev) ;
close (fd);
return(l);
}
close(fd);
/* Now have device type and know if window system is running on it. */
if (devhaswindows)
switch (fbtype.fb_type)
{
case FBTYPE_SUN1BW:
case FBTYPE_ SUN2BW:
vsptr->dd = pixwindd;
- break;
case FBTYPE SUN1COLOR:
case FBTYPE SUNZCOLOR:
vsptr->dd = cgpixwindd;
break;
case FBTYPE SUN2GP:
vsptr->dd = gplpixwindd;
break;
default:
fprintf (stderr,
"get view surface: %s is unknown fbtype\n", dev);
return(l);
}
else
‘switch (fbtype.fb_type)
{
case FBTYPE SUNI1BW:
vsptr->dd = bwldd;
break;
case FBTYPE SUN2BW:
vsptr->dd = bw2dd;
break;

case FBTYPE SUN1COLOR:
J

&%?? sun Revision A, of 9 May 1988

microsystems

'
‘.\‘w /,

Appendix B — SunCore View Surfaces 125

break;

break;

break;
default:

return (1) ;

}

if (!devhaswindows

/*

out the device
window will be
*/

return (0) ;

}

N
<jiﬁ static int chkdevhaswindows(windowfd)

int windowfd;

{

if (strcmp (devchk,
{
/*

the flag TRUE.
x/
devhaswindows
return (TRUE) ;
}

return (FALSE) ;

}

vsptr->dd = cgldd;

case FBTYPE SUN2COLOR:
vsptr->dd = cg2dd;

case FBTYPE SUN2GP:
vsptr->dd = gpldd;

fprintf (stderr,
"get view surface: %s is unknown fbtype\n", dev);

/* Now SunCore device driver pointer is set up. */

If no window system on device or -d option was specified,
tell SunCore which device. Otherwise, let SunCore figure

strncpy (vsptr->screenname, dev, DEVNAMESIZE) ;

struct screen windowscreen;

win screenget (windowfd, &windowscreen):;

If this window is on the display device we are checking, set

|} devEnd)

itself from WINDOW GFX so the default
used if desired.

windowscreen.scr_fbname) == 0)

Return TRUE to terminate the enumeration.

= TRUE;

B.4. Specifying a View
Surface for
Initialization

It is not necessary to specify every member of the vwsur £ structure in order to-
initialize the view surface. If only vwsurf.dd is specified, SunCore will try to
obtain a view surface of the specified type according to a default sequence. A
statically allocated vwsur £ structure may be set up to use this default by initial-
izing the structure via the DEFAULT VWSURF macro defined in
<usercore.h>. This is a compile-time initialization. The user may exercise
finer control over view surfaces by setting other elements of the structure as
described below. Any members which are not specified by the user should be set

é{?& sun : Revision A, of 9 May 1988

microsystems

126 SunCore Reference Manual

Yiew Surface Specification for
Raw Devices

@

to zero (the integer 0, the NULL pointer, or an empty string, as appropriate).

The default action for obtaining a new view surface of a raw device type is to try
to open a sequence of devices until one is found which is of the right type and is
not already being used. The sequence always starts with /dev/fb. Then the fol-
lowing names are tried depending on the view surface type:

bwldd - "/dev/bwone0", "/dev/bwonel", ..., "/dev/bwoned”
bw2dd - "/dev/bwtwo(", "/dev/bwtwol", s "/dev/bwtwod"
cgldd - "/dev/cgoneQ", "/dev/cgonel”, ; "/dev/cgoneg”
cg2dd - "/dev/cgtwo0", "/dev/cgtwol™, .y "/dev/cgtwod"®
cgddd - "/dev/cgfourO", "/dev/cgfourl™, ..., "/dev/cgfourd"
gpldd - "/dev/gponela", "/dev/gponelb™, ..., "/dev/gpone3d"

If none of the names in the sequence can be successfully opened and verified to
be of the correct type and not already in use,
initialize view_ surface () fails.

If the user wishes to specify a particular physical device for a view surface, he
may set vwsurf.screenname to be the device name of that device. The same steps
will be taken to try to open the device as for each name in the default sequence.
However, if these steps fail, no other names will be tried, and the initialization
will fail.

vwsurf.cmapname and vwsurf.cmapsize are only used for color view surfaces.
For cgldd, cg2dd, cg4dd and gpldd vwsurf.cmapsize is set to 256. If
vwiurf.cmapname is specified, this name is used as the name of the color map;
otherwise SunCore will provide a unique name.

No flags are currently defined for use with raw devices.

vwsurf.ptr provides a mechanism for passing optional initialization data to Sun-
Core. In the case of raw devices, one such option is currently available — the
passing of information about the adjacencies of physical screens. When the user
creates a Suntools window environment on a screen, he is also responsible for
specifying the relationship of that screen to other screens also running Suntools
for purposes of tracking the mouse across multiple screens. The adjacentscreens
command may be used to do this (see the SunOS Reference Manual). However,
when a SunCore program initializes a new view surface on a raw screen, the user
will not previously have been able to inform the system of this adjacency
because the new screen was previously not in use. vwsurfptr may be used to
pass adjacency information for the new screen.

If vwsurf.ptr is not NULL, it should point to an array of character pointers. Only
the first pointer in this array will be used. It should point to a string which is the
pathname of a file containing information about the adjacencies of physical
display devices. When the user sets up his display devices on his desk he may
create a file describing the layout of these devices. For example, the following
lines describe a system with two screens, the console frame buffer on the left
(which might be a monochrome bitmap display) and a Sun color graphics display
on the right:

sun Revision A, of 9 May 1988

microsystems

0

View Surface Specification for
Window Devices

4

Appendix B — SunCore View Surfaces 127

/dev/fb

R: /dev/cgone0
/dev/cgonel

L: /dev/fb

By convention, /dev/fb is the console frame buffer and /dev/cgonel is the first
Sun color graphics display on a system. For each display device in the system,
there should be one line giving its name, followed by several lines giving the
directions and names of all adjacent screens. Thus all four lines above are neces-
sary, not just the first two. Directions may be indicated as R, L, T, and B for
right, left, top, and bottom, or as N, S, E, and W for north, south, east, and west.

The default action for obtaining a new view surface of type pixwindd,
cgpixwindd or gplpixwindd is to first test whether the window referred to by the
Shell environment variable WINDOW _GFX is already in use as a view surface. If
not, a blanket window is inserted over the WINDOW GFX window and this
blanket window becomes the view surface. If WINDOW_GFX has already been
used in this manner, the program /usr/1ib/view surface is invoked to
create a new window on the same physical display device as WINDOW GFX.
This new window becomes the view surface. Thus, if a SunCore program is run
from the tty subwindow of a Graphics Tool, the first default view surface will
occupy the display space covered by the graphics subwindow of the tool. Subse-
quent default view surfaces will appear as graphics windows, each within a
separate View Surface Tool on the same screen as the Graphics Tool.

This default action may be circumvented in two ways. If vwsurf.flags has the
VWSURF_NEWFLG set, no attempt is made to take over WINDOW _GFX. A new
window within a View Surface Tool is opened on the same screen as
WINDOW_GFX. If vwsurf.screenname is non-empty, a new window within a
View Surface Tool is opened on the screen specified by vwsurf.screenname, pro-
vided this device exists and has a Suntools window environment running on it.

For view surfaces of type cgpixwindd or gplpixwindd, vwsurf.cmapsize
and vwsurf.cmapname provide a means of specifying and sharing color maps.
The color map facilities of SunView are used to control color maps for
cgpixwindd or gplpixwindd view surfaces (see the SunView
Programmer’s Guide). The user may specify a color map size of 0, in which
case a color map of length 2 will be used. Otherwise, vwsurf.cmapsize should be
a power of 2 between 2 and 256. The user may specify a null color map name, in
which case SunCore will provide a unique name. Otherwise, SunCore will check
vwsurf.cmapname against the names of the color maps for all windows currently
displayed on the physical device on which the new view surface is to appear. If a
matching name is found, that color map will be used (even if its size differs from
vwsurf.cmapsize) and this map is shared among all windows on the device which
reference that name. If the user specified a null name or the specified name does
not match any current window’s color map name, a new color map is allocated
with the given size. The indices for each cgpixwindd or gplpixwindd view
surface’s color map run from 0 to vwsurf.cmapsize—1.

Currently, one optiorial string of initialization data may be passed to
initialize_view_surface (). If vwsurfptr is non-NULL, it should

S ll ll Revision A, of 9 May 1988

microsystems

128 SunCore Reference Manual

B.5. Input Considerations

4

N’

point to an array of character pointers, only the first of which will be used. The
pointer should point to a string containing position and size information for a
Core Tool which may be started up to provide a window for the new view sur-
face. (If the WINDOW_GFX window is taken over by this new view surface and
thus no View Surface Tool is started, the string will be ignored.) The string
should consist of nine integers, separated by commas:

"nl,nt,nw,nh,il, it,iw,ih, I"

nl, and nt give the initial position of the top left comer of the View Surface Tool
in its normal form. nw and nh give the initial width and height. The numbers are
given in screen coordinates, where (0, 0) is the upper left corner. il, it, iw, and ih
give the same initial information for the iconic form of the tool. Iis a boolean
flag which should be non-zero if the tool is to be started in its iconic form.

SunCore uses window system functions to obtain user input from the keyboard

and mouse, no matter what mix of raw device view surfaces and window device

view surfaces the user has initialized. For purposes of input, a raw device view

surface behaves just like a window device view surface; it exists as a window

within the window system’s data structures, and the user may direct input to the

window simply by positioning the mouse over it. The facts that window system

input is directed to different windows depending on the location of the mouse

and that the mouse position in the window system is reported in the coordinates

of the window underlying the mouse have implications for the SunCore input f“\
functions. o/

For SunCore programs which are invoked from a window within the Suntools
window environment, whenever the KEYBOARD device is initialized,
await_keyboard () will return characters typed when the mouse is located
over any initialized view surface (belonging to a single user process) or over the
tty subwindow from which the program was started. For programs run from out-
side a window environment, await_keyboard will return all characters typed on

‘the keyboard, provided the KEYBOARD device is initialized.

The ACM Core specification defines input and output to be completely orthogo-
nal functions. Thus, it is possible to initialize a locator device and read from it
without ever initializing a view surface. SunCore uses the mouse as the LOCA-
TOR, STROKE, PICK, VALUATOR, and BUTTON devices. The only way Sun-
Core can obtain mouse position and button click information to emulate these
logical devices is to take input from a window. SunCore will return valid data in
response to input requests for the LOCATOR, STROKE, PICK, and VALUATOR
devices only when the user has associated these devices with an initialized view
surface via the set_echo_surface () function. Because all SunCore view
surfaces are instantiations of generic view surface types, there is no default echo
surface for any input device. The set_echo_surface () function will
accept a NULL pointer as its surface_name argument to allow the programmer to
end the association of an input device with a view surface. Any input device
may be echoed on any view surface independently of any other input device.
£

The input functions await_any button_get_locator_2(), .

await stroke 2(),await_pick(),and

sun : Revision A, of 9 May 1988

microsystems

Appendix B — SunCore View Surfaces 129

B.6. Notes on Window
Device View Surfaces

4
1)
=

await_any button_get_valuator () will only use mouse input which
the user directs to the window which is the echo surface for the indicated LOCA-
TOR, STROKE, PICK, or VALUATOR device. This includes both position and
button click input, so that the functions which are terminated by button clicks
will terminate only when a button click occurs within the proper window (or a
timeout occurs). Which buttons are listened to is still controlled by 1nd1v1dua11y
initializing or terminating each BUTTON device.

The user may also use set_echo_surface () to choose from which window
button clicks should be reported for a BUTTON device when the
await_button () functionis called; alternatively, if the echo surface for a
BUTTON device is NULL, await_button () will check for button clicks from
any view surface associated with a LOCATOR, STROKE, PICK, or VALUATOR .
device.

Note that the resolution obtained from a LOCATOR, STROKE, PICK, or VALUA-
TOR device is limited by the width and/or height of its echo surface window,
since mouse position information is provided by window system input functions
in terms of window coordinates.

Graphics primitives drawn on a view surface as part of a temporary segment nor-
mally remain visible on the view surface until a new-frame action occurs. For
view surfaces which are windows within the Suntools window environment,
several user actions can cause the view surface to be redrawn. Such actions
include stretching the enclosing tool, exposing a previously obscured portion of
the tool, and changing from the iconic form of the tool to the normal form.
When the view surface is redrawn in this manner, all output primitives which
previously appeared as part of temporary segments will disappear.

When a SunCore program is run from a shelltool (1), WINDOW GFX is
normally set to be the tool’s.tty subwindow. If this window is taken overand .
blanketed to serve as a view surface, output directed to the tty subwindow (for
example, stdout and stderr, including SunCore error messages) will not be visible
because the blanket window obscures the tty subwindow. When the program ter-
minates or the view surface is terminated, any portion of this output which has
not scrolled out of the subwindow will be visible. The fact that the tty subwin-
dow is obscured also means that there is no way to type characters to that win-
dow, so that stdin will never see any input. However, if the KEYBOARD device
is initialized, special characters, such as interrupt and suspend, typed to the
blanket window will be recognized and will have their normal effect on the user
process.

Revision A, of 9 May 1988

N/

()
-

'
N

s

Alphabetical SunCore C Function

Reference
133

Alphabetical SunCore C Function Reference

133

g

i

C.1. Alphabetical List of C Functions

()

B
i

i/]
N’

O

s

o

Alphabetical SunCore C Function
Reference

This appendix contains an alphabetical list of SunCore functions and their argu-
ments definitions. SunCore programs written in C must contain the statement:

#include <usercore.h>

at the start of each SunCore source file.

C.1. Alphabetical List of C The list on the following pages is a complete alphabetical list of the functions in
Functions SunCore.

allocate raster(rptr)

struct {
int width, height, depth;
short *bits;

} *rptr;

)

await_any button(tim, butnum)
int tim;
int *butnum;

await_any_button_get_ locator_ 2(tim, locnum, butnum, x, y)
int tim, locnum, #*butnum;
float *x, *y;

await_any button get valuator(tim, valnum, butnum, val).
int tim, valnum, *butnum;
float *val;

await_keyboard(tim, keynum, string, length)
int tim, keynum;

char *string;

int *length;

await_pick(tim, picknum, segnam, pickid)
int tim;
int picknum, *segnam, *pickid;

await_stroke_2(tim, strokenum, arrsize, xarray, yarray, numxy)
"™ int tim, strokenum, arrsize, *numxy;
. float xarrayl[], yarrayll:

é{%@ sun 133 Revision A, of 9 May 1988

microsystems

134 SunCore Reference Manual

begin batch of updates()
close_retained segment ()
close_temporary_segment ()

create_retained segment (segname)
int segname;

create temporary_ segment ()

define color_indices(surf, il, i2, red, grn, blu)
struct vwsurf *surf;

int i1, 1i2:

float *red, *grn, *blu;

delete_all retained segments()

delete retained segment (segname)
int segname;

deselect view_surface (surfname)
struct vwsurf *surfname;

end batch of updates()

file to_raster(rasfid, raster, map)
int rasfid;
struct {
int width, height, depth;
short *bits;
} *raster;
struct {
int type, nbytes;
char *data;
} *map;

free raster(rptr)

struct {
int width, height, depth;
short *bits;

} *rptr;

get _mouse_state (devclass, devnum, X, y, buttons)
int devclass, devnum;

float *x, *y;

int *buttons;

get_raster(surfname, xmin, xmax, ymin, ymax, xd, yd, raster)
struct vwsurf *surfname;
float xmin, ymin, xmax, ymax;int xd, yd;
struct {
int width, height, depth:;

4y sun

microsystems

.
.

Revision A, of 9 May 1988

Appendix C — Alphabetical SunCore C Function Reference 135

short *bits;
} *raster;

get_view_surface(vsptr, argv)
struct vwsurf *vsptr;
char **argv;

initialize core(outlev, inlev, dim)
int outlev, inlev, dim:

initialize device(devclass, devnum)
int devclass, devnum;

initialize view_surface (surfname, type)
struct vwsurf *surfname;
int type:

inquire_charjust (chjust)
int *chjust;

inquire_ charpath_2(dx, dy)
float *dx, *dy;

inquire_charpath_ 3(dx, dy, dz)
float *dx, *dy, *dz;

inquire_charprecision (chqualty)
int *chqualty;

inquire_charsize (chwidth, cheight)
float *chwidth, *cheight;

inquire charspace (space)
float *space;

inquire charup_ 2 {(dx, dy)
float *dx, *dy;

inquire charup_ 3(dx, dy, dz)
float *dx, *dy, *dz;

inquire_color indices(surf, il, i2, red, grn, blu)
struct vwsurf *surf;

int i1, i2;

float *red, *grn, *blu;

inquire_ current position_2(x, y)
float *x, *y;

inquire_current position 3(x, y, z)
float *x, *y, *z;

inquire_detectability(detectability)

4y sun

microsystems

Revision A, of 9 May 1988

136 SunCore Reference Manual

int *detectability;

inquire echo(devclass, devnum, echotype)
int devclass, devnum, *echotype:

inquire_echo_position(devclass, devnum, x, y)
int devclass, devnum;
float *x, *y:;

inquire echo surface(devclass, devnum, surfname)
int devclass, devnum;
struct vwsurf *surfname;

inquire fill index(color)
int *color;

inquire_ font (font)
int *font;

inquire highlighting(highlighting)
int *highlighting;

inquire image transformation_2(sx, sy, a, tx, ty)
float *sx, *sy, *a, *tx, *ty;

inquire_image transformation 3(sx, sy, sz, ax, ay, az, tx, ty, tz) <ji>
float *sx, *sy, *sz, *ax, *ay, *az, *tx, *ty, *tz; -

inquire_image_ transformation_ type (segtype)
int *segtype:

inquire image translate 2(tx, ty)
float *tx, *ty;

inquire_image_translate 3 (tx, ty,‘tz)
float *tx, *ty, *tz;

inquire_inverse composite_matrix(arrayptr)
float *arrayptr;

inquire keyboard(keynum, bufsize, istr, pos)
int keynum, *bufsize, *pos;
char *istr;

inquire line index(color)
int *color;

inquire linestyle(linestyl)
int *linestyl;

inquire linewidth (linwidth)
float *linwidth;

O

S
%:{? S u n Revision A, of 9 May 1988

microsystems

®

-
{

Appendix C — Alphabetical SunCore C Function Reference 137

inquire_locator_2(locnum, x, y)
int locnum;
float *x, *y;

inquire marker_symbol (mark)
int *mark;

inquire ndc_space 2 (width, height)
float *width, *height;

inquire ndc_space_3(width, height, depth)
float *width, *height, *depth;

inquire open_retained segment (segname)
int *segname;

inquire open_temporary_segment (open)
int *open;

inquire pen (pen)
int *pen;

inquire pick_id(pickid)
int *pickid;

inquire_polygon_edge_style (polyedgstyl)
int *polyedgstyl;

inquire polygon_interior_style(polyintstyl)

int *polyintstyl;

inquire primitive_ attributes(defprim)
struct {
int lineindx, fillindx, textindx;
int linestyl, polyintstyl, polyedgstyl;
float linwidth;
int pen, font;
float charwidth, charheight;
float charupx, charupy, charupz, charupw;
float charpathx, charpathy, charpathz, charpathw;
float charspacex, charspacey, charspacez, charspacew;
int chijust, chqualty;
int marker, pickid, rasterop;
} *defprim;

inquire_projection(projection_type, dx proj, dy_proj, dz proj)

int *projection type;

inquire_rasterop(rasterop)
int *rasterop;

inquire retained segment names (listcnt, seglist, segcnt)
int seglist[], listcnt, *segcnt;

4 sun

\ microsystems

Revision A, of 9 May 1988

138 SunCore Reference Manual

inquire retained segment_ surfaces (segname, arraycnt, surfaray, surfnum) N/
int segname, arraycnt;

struct vwsurf surfarayl]:;

int *surfnum;

inquire_segment_detectability (segname, detectbl)
int segname;
int *detectbl;

inquire segment highlighting(segname, highlght)
int segname;
int *highlght;

inquire_segment_ image transformation_ 2 (segname, sx, sy, a, tx, ty)
int segname;
float *sx, *sy, *a, *tx, *ty;

inquire_segment image transformation 3(segname, sx, sy, sz, rx, ry, rz, tx, ty, tz)
int segname;
float *sx, *sy, *sz, *rx, *ry, *rz, *tx, *ty, *tz;

inquire segment image translate_2 (segname, tx, ty)
int segname;
float *tx, *ty;

inquire segment_image translate_3(segname, tx, ty, tz)
int segname;
float *tx, *ty, *tz;

o’

inquire segment visibility(segname, visbilty)
int segname;
int *visbilty:

inquire_stroke (strokenum, bufsize, dist, time)
int strokenum, *bufsize, *time;
float *dist;

inquire_ text extent 2(s, dx, dy)
char *s:
float *dx, *dy;

inquire text extent_ 3(s, dx, dy, dz)
char *s;
float *dx, *dy, *dz;

inquire text index(color)
int *color;

inquire valuator(valnum, init, low, high)
int valnum;

float *init, *low, *high; /ﬂm\

inguire view depth(front distance, back_distance)

@?& S u n Revision A, of 9 May 1988

microsystems

9

C

Appendix C — Alphabetical SunCore C Function Reference 139

float *front_distance, *back distance;

inquire_view plane distance(view distance)
float *view _distance;

inquire view_plane_normal (dx norm, dy norm, dz_norm)
float *dx norm, *dy norm, *dz norm;

inquire view reference point (x ref, y_ref, z ref)
float *x ref, *y ref, *z ref;

inquire view_up 2(dx up, dy_up)
float *dx _up, *dy up:

inquire view_up 3(dx up, dy up, dz_up)
float *dx up, *dy_up, *dz_up;

inquire_viewing_control_parameters(winddwclip, frontclip, backclip, type)

int *windowclip, *frontclip, #*backclip, *type:

inquire_viewing parameters(viewparm)
struct {
float vwrefpt[3];
float vwplnorm[3];
float viewdis;
float frontdis;
float backdis;
int projtype:
float proijdir[3];
float window[4];
float vwupdir[3]:
float viewport[6];
} *viewparm;

inquire_ viewport_ 2 (xmin, xmax, ymin, ymax)
float *xmin, *xmax, *ymin, *ymax;

inquire_viewport 3(xmin, =xmax, ymin, ymax, zmin, zmax)

float *xmin, *xmax, *ymin, *ymax, *zmin, *zmax;

inquire visibility(visibility)
int *visibility;

inguire window(umin, umax, vmin, vmax)
float *umin, *umax, *vmin, *vmax;

inquire_world coordinate matrix 2(arr)
fleoat *arr;

inquire world coordinate matrix 3(arrayptr)
float *arrayptr:;

line abs 2(x, y)

4y sun

microsystems

Revision A, of 9 May 1988

140 SunCore Reference Manual

fleoat %, y;

line abs 3(x, y, 2z)
float %, vy, z;

line rel 2(dx, dy)
float dx, dy:

line rel 3(dx, dy, dz)
float dx, dy, dz;

map_ndc_to_world 2(ndcx, ndcy, wldx, wldy)
float ndcx, ndcy, *wldx, *wldy:;

map ndc_to_world 3(ndcx, ndcy, ndcz, wldx, wldy, wldz)
float ndecx, ndcy, ndcz, *wldx, *wldy, *wldz;

map world to_ndc_2(wldx, wldy, ndcx;. ndcy)
float wldx, wldy, *ndcx, *ndcy;

map world to_ndc_3(wldx, wldy, wldz, ndcx, ndcy, ndcz)
float wldx, wldy, wldz, *ndcx, *ndcy, *ndcz;

marker_abs_2 (mx, my)
float mx, my;

marker_ abs_3(mx, my, mz)
float mx, my, mz;

marker rel 2(dx, dy)
float dx, dy:

marker rel 3(dx, dy, dz)
float dx, dy, dz;

move_abs_ 2(x, y)
float x, y:

move_abs_3(x, y, z)
float %, y, 2z:

move rel 2(dx, dy)
float dx, dy;

move rel 3(dx, dy, dz)
float dx, dy, dz;

new_frame ()
polygon abs 2(xlist, ylist, n)

float *xlist, *ylist;
short n;

S
DY
&\f r%rglg

Revision A, of 9 May 1988

R

Appendix C — Alphabetical SunCore C Function Reference 141

polygon_abs 3(xlist, ylist, zlist, n)
float *xlist, *ylist, *zlist;
int n;

polygon_rel 2(xlist, ylist, n)
float *xlist, *ylist;
short n;

polygon rel 3(xlist, ylist, zlist, n)
float *xlist, *ylist, *zlist;
int n;

polyline abs 2 (xcoord, ycoord, n)
float xcoord[], ycoordll]:;
int n;

polyline abs_3(xcoord, ycoord, zcoord, n)
float =xcoord[], ycoord[], zcoordl[]:;
int n;

polyline rel 2(xcoord, ycoord, n)
float xcoord[], ycoord[]:;
int n;

polyline rel 3(xcoord, ycoord, zcoord, n)
float xcoord[], ycoord[], zcoordl[]:
int n;

polymarker abs 2 (xcoord, ycoord, n)
float xcoord[], ycoordl[]:
short n;

polymarker abs_3(xcoord, ycoord, zcoord, n)
float xcoord[], ycoord[l, zcoord[]:
int n;

polymarker rel 2(xcoord, ycoord, n)
float xcoord[], ycoordl[]:;
int n;

polymarker rel 3(xcoord, ycoord, zcoord, n)
float xcoordl[], ycoordl[], zcoord[]:;
int n;

print_error(string, error)
char *string;
int error;

put_raster(srast)

struct {
‘int width, height, depth;
short *bits;

} *srast;

4» sun

microsystems

Revision A, of 9 May 1988

142 SunCore Reference Manual

raster_to_file(raster, map, rasfid, n)

struct {
int width, height, depth;
short *bits;
} *raster;
struct {
int type, nbytes:;
char *data;
} *map;
int rasfid, n;

rename_retained segment (segname, newname)

int segname, newname;

report_most_recent_ error(error)
int *error;

restore segment (segname, filename)
int segname;
char *filename;

save_segment (segnum, filename)
int segnum;

char *filename;

select view_surface (surfname)
struct vwsurf *surfname;

set _back plane_clipping(onoff)
int onoff;

set charjust (chjust)
int chijust;

set_charpath_2(dx, dy)
float dx, dy:;

set_charpath 3(dx, dy, dz)
float dx, dy, dz;

set charprecision(chqualty)
int chqualty;

set_charsize (chwidth, cheight)
float chwidth, cheight;

set_charspace (space)
float space;

set_charup_2(dx, dy)
float dx, dy;

set_charup 3(dx, dy, dz)

sSun

microsystems

Revision A, of 9 May 1988

9

“ww/

T

T

St

Appendix C — Alphabetical SunCore C Function Reference 143

float dx, dy, dz:

set_coordinate_system_type (type)
int type;

set detectability(detectability)
int detectability;

set drag(drag)
int drag:;

set_echo (devclass, devnum, echotype)
int devclass, devnum, echotype:;

set_echo_group(class, devnum, n, echotype)
int class, devnum[], n, echotype:;

set_echo_position{devclass, devnum, x, y)
int devclass, devnum;
float x, v

set_echo_surface(devclass, devnum, surfname)
int devclass, devnum;

struct vwsurf *surfname;

set fill index{(color)
int color;

set_font (font)
int font;

set_front plane clipping(onoff)
int onoff;

set highlighting(highlighting)
int highlighting;

set_image transformation 2(sx, sy, a, tx, ty)
float sx, sy, a, tx, ty:

set_image_transformation 3(sx, sy, sz, ax, ay, az, tx, ty, tz)
float sx, sy, sz, ax, ay, az, tx, ty, tz:

set_image transformation type (type)
int type:;

set image translate 2(tx, ty)
float tx, ty:

set_image_translate 3(tx, ty, tz)
float tx, ty, tz;

set_keyboard(keynum, bufsize, istr, pos)

&%?; sun Revision A, of 9 May 1988

microsystems

144 SunCore Reference Manual

int keynum, bufsize, pos;
char *istr;

set light direction(dx, dy, dz)
float dx, dy, dz:;

set_line_index(color)
int color;

set linestyle(linestyl)
int linestyl;

set_linewidth(linwidth)
float linwidth;

set_locator_2(locnum, X, y)
int locnum;
float x, y:

set_marker symbol (mark)
int mark;

set_ndc_space_ 2 (width, height)
float width, height:;

set_ndc_space_3(width, height, depth)
float width, height, depth;

set_output_clipping (onoff)
int onoff;

set_pen (pen)
int pen;

set_pick_ id(pickid)
int pickid;

set_polygon_ edge_ style(polyedgstyl)
int polyedgstyl;

set_polygon_interior_style(polyintstyl)
int polyintstyl;

set_primitive attributes(defprim)
struct {
int lineindx, fillindx, textindx;
int linestyl, polyintstyl, polyedgstyl;
float linwidth;
int pen, font;
float charwidth, charheight;
float charupx, charupy, charupz, charupw;

float charpathx, charpathy, charpathz, charpathw;
charspacew;

float charspacex, charspacey, charspacez,

4» sun

microsystems

Revision A, of 9 May 1988

0

/"\
o/

T

N

Appendix C — Alphabetical SunCore C Function Reference

145

int chjust,; chqualty;
int marker, pickid, rasterop:
} *defprim;

set _projection (projtype, dx, dy, dz)
int projtype;
float dx, dy, dz;

set_rasterop(flag)
int flag:;

set_segment detectability (segname, detectbl)
int segname;
int detectbl;

set_segment_ highlighting(segname, highlght)
int segname;
int highlght;

set_segment_ image transformation_ 2 (segname, sx, sy, a, tx, ty)

int segname;
float sx, sy, a, tx, ty;

set_segment_image translate 2 (segname, tx, ty)
int segname;
float tx, ty;

set_segment_ image_translate_ 3 (segname, dx, dy, dz)
int segname;
float dx, dy, dz;

set_segment image transformation_3(segname, .sx, sy, sz, rX, ry, rz, tx, ty, tz)

int segname;
float sx, sy, sz, rx, ry, rz, tx, ty, tz;

set_segment visibility(segname, visbilty)
int segname;
int visbilty:;

set_shading parameters(amb, dif, spec, flood, bump, hue, style)

float amb, dif, spec, flood, bump:;
int hue,. style;

set_stroke(strokenum, bufsize, dist, time)
int strokenum, bufsize, time;
float dist;

set_text index(color)
int color;

set _wvaluator(valnum, init, low, high)
int wvalnum;
float init, low, high;

4 sun

\ microsystems

Revision A, of 9 May 1988

146 SunCore Reference Manual

set vertex indices(indxlist, n)
int *indxlist, n;

set_vertex normals(dxlist, dylist, dzlist, n)
float *dxlist, *dylist, *dzlist:
int n;

set_view_depth(near, far)
float near, far;

set view plane distance(dist)
fleoat dist;

set _view_plane normal(dx, dy, dz)
float dx, dy, dz;

set_view_reference_point(x, y, 2z)
float %, v, z;

set view up 2(dx, dy)
float dx, dy:

set_view up 3{dx, dy, dz)
float dx, dy, dz;

set_viewing parameters (viewparm)
struct {
float vwrefpt[3]:;
float vwplnorm[3];
float viewdis:
float frontdis;
float backdis;
int projtype;
float projdir(3]:
float windowl[4];
float vwupdir([3]:
float viewport[6]:
} *viewparm;

set_viewport_ 2 (xmin, xmax, ymin, ymax)
float xmin, xmax, ymin, ymax;

set_viewport_3(xmin, xmax, ymin, ymax, 2zmin, zmax)
float xmin, xmax, ymin, ymax, zmin, zmax;

set_visibility(visibility)
int wvisibility;
set window (umin, umax, vmin, vmax)

float umin, umax, vmin, vmax;

set window_clipping(onoff)
int onoff;

4» sun

microsystems

Revision A, of 9 May 1988

)

\W;xwv/ /}

s

Appendix C — Alphabetical SunCore C Function Reference

147

set_world coordinate matrix 2 (array)
float *array;

set_world coordinate matrix 3(array)
float *array;

set_zbuffer cut (surf, =xarr, zarr, n)
struct vwsurf *surf;
float =xarr{], zarrl[]:
int n;
size raster(surfname, xmin, xmax, ymin,
struct vwsurf *surfname;
float xmin, ymin, xmax, ymax;
struct {
int width, height, depth;
short *bits;
} *raster;

terminate_core()

terminate_ device (devclass, devnum)
int devclass, devnum;

terminate_view_surface (surfname)
struct vwsurf *surfname;

text (string)
char *string;

4

Qun

microsystems

ymax,

raster)

Revision A, of 9 May 1988

®

P

O

Using SunCore with Fortran-77 Pro-

grams

Using SunCore with Fortran-77 Programs

D.1. Programming Tips

D.2. Example Program

Correspondence Between C Names and FORTRAN Names .
FORTRAN Interfaces to SunCore

151

152
154
155
159

i

i

T

—

v

i

\‘\wm-«z"/ ‘

L J
N //

~

Using SunCore with Fortran-77
Programs

All functions provided in SunCore may be called from FORTRAN-77 programs
by linking them with the /usr/1ib/libcore77.a library. This is done by
using the 77 compiler with a command line such as:

[% £f77 -fswitch -0 grab grab.f -lcore77 -lcore -lsunwindow -lpixrect -1m]

where grab. £ is the FORTRAN source program. The —fswitch option will
cause the compiler to take advantage of floating point hardware if it is available.
Otherwise, the compiler will emulate this floating point support with software.
(For more information on floating point options, see Appendix F). Note that
/usr/lib/libcore.a must be linked with the program (the —1core
option), and /usr/1lib/libcore77.a must come before it (the —1core77
option).

-
{

Defined constants may be referenced in source programs by including
/usr/include/£77/usercore’7.h Ina FORTRAN program, this must be
done via a source statement like:

include "/usr/include/f77/usercore?7.h"”

This include statement must be in each FORTRAN program unit which uses the
defined constants, not just once in each source program file. The default primi-
tive attribute structure PRIMATTS which is provided in <usercore.h> and is
described in section 6.1.23 of this manual is not provided in usercore77.h
because of FORTRAN’s restrictions on the ordering of specification statements
and data statements.

In the Sun release of FORTRAN-77, names are restricted to sixteen characters in
length and may not contain the underline character. For this reason, FORTRAN
programs must use abbreviated names to call the corresponding SunCore func-
tions. The correspondence between the full SunCore names and the FORTRAN
names appears later in this appendix. In addition, FORTRAN-77 declarations for
all SunCore functions appear at the end of this appendix.

?%@ sSsun 151 Revision A, of 9 May 1988

microsystems

152 SunCore Reference Manual

D.1. Programming Tips o

Table D-1 C

The abbreviated names of the SunCore functions are less readable than the full
length names because the underline character cannot be used in the FORTRAN

names. However, since FORTRAN doesn’t distinguish between upper-case and

lower-case letters in names, upper-case characters can be used to improve rea-
dability. There is an example of this later in this appendix.

Character strings passed from FORTRAN programs to SunCore cannot be
longer than 256 characters.

FORTRAN passes all arguments by reference. Although some SunCore func-
tions receive arguments by value, the FORTRAN programmer need not worry
about this. The interface routines in /usr/1lib/libcore77.a handle this
situation correctly. When in doubt, look at the FORTRAN declarations for
SunCore subroutines at the end of this appendix.

SunCore uses pointers in some places. For instance, view surface structures
contain pointers to device driver functions. Also, the raster data type includes
a pointer to an array of short’s containing the raster data. There are no pointer
types in FORTRAN, but there are ways to handle all uses of pointers required
to use SunCore. For view surface names, the following fragments of C code
and FORTRAN code do the same thing:

omparison of C and FORTRAN Statements

C Code

| FORTRAN Code

int bwldd () :;

vsurf.dd = bwldd;

struct vwsurf vsurf = NULL_VWSURF; integer vsurf (VWSURFSIZE)

integer bwldd
external bwldd

data vsurf /VWSURFSIZE*0/
vsurf (DDINDEX) = loc{(bwldd)

initialize_view surface(&vsurf, FALSE); call InitializeVwsurf(vsurf, FALSE)

The constants VWSURFSIZE and DDINDEX are defined in
usercore77.h. The constant VWSURFNEWFLG is also defined in
usercore77.h.

bwldd
The Sun-1 monochrome bitmap display used as a raw device.

bw2dd

The Sun-2 or Sun-3 monochrome bitmap display used as a raw device.
cgldd

The Sun-1 color graphics display used as a raw device.
cg2dd

The Sun-2 or Sun-3-color graphics display used as a raw device.

y U Revision A, of 9 May 1988

2
A

N

)

Appendix D — Using SunCore with Fortran-77 Programs 153

cg4dd
The Sun-3/110 color display used as a raw device.

pixwindd :
A monochrome (one bit deep) graphics window within the Suntools
window environment. This window may appear on either a color or
monochrome display.

cgpixwindd
A color graphics window within the Suntools window environment.
This window must appear on a color display.

gpldd .
A Sun-2/160 or Sun-3/160 graphics display with a Graphics Processor
option.

gplpixwindd
A color graphics window within the Suntools window environment run-
ning on a Sun-2/160 or Sun-3/160 color graphics display with a Graph-
ics Processor option.

Only view surface types cgldd, cg2dd, cgddd, cgpixwindd, gpldd, and
gplpixwindd support hidden surface removal. In the discussion above, gray
scale devices are considered to be color devices.

As shown above, all required pointer manipulation can be done with the
FORTRAN 1loc library subroutines, which returns the address of its argu-
ment as an integer.

SunCore function arguments which are pointers to structures can be declared
as arrays in FORTRAN. For example, the C and FORTRAN declarations of
the SunCore raster structure are shown below:

C Code | FORTRAN Code
struct { integer raster (4)
int width, height, depth;
short *bits:;
} raster:

Then the following fragments of C and FORTRAN code are equivalent:

C Code | FORTRAN Code
short datal[l6]; integer*2 data(16)

raster.width = 16; raster(l) = 16
raster.height = 16; raster(2) = 16
raster.depth = 1; raster (3) 1
raster.bits = data; raster (4) loc(data)

o Some SunCore structures contain both andint’s £loat’s. For instance, the

argument to inquire viewing parameters () contains bothint’s and
float’s. This can be handled in FORTRAN by declaring a REAL array and
an INTEGER array which are made to share storage by an EQUIVALENCE

S
2»sun v Revision A, of 9 May 1988

microsystems

154 SunCore Reference Manual

statement. Then following the call to the inquiry function, the REAL com- R
ponents can be accessed by using the REAL array and the INTEGER com-
ponents accessed via the INTEGER array.

o Since FORTRAN does not distinguish between upper-case and lower-case
letters in identifiers, any FORTRAN program unit which includes the
usercore77.h header file cannot use identifiers with the same spelling as
any constant defined in that header file (regardless of case).

o The filetoraster and rastertofile functions in C take an argument
that is a UNIXT file descriptor. The corresponding argument to the FORTRAN
functions is a logical unit number (LUN). This unit should be explicitly
opened by using the FORTRAN open statement. I/O to the opened file should
be done only viathe filetoraster and rastertofile functions.

D.2. Example Program This example is the FORTRAN equivalent of the very simple program for draw-
ing a martini glass.

r)

include "/usr/include/f77/usercore?7.h”

integer vsurf (VWSURFSIZE)

integer pixwindd

\ external pixwindd

‘ integer InitializeCore, InitializeVwsurf, SelectVwsurf
real glassdx(9), glassdy(9)

data glassdx /-10.0,9.0,0.0,-14.0,30.0,-14.0,0.0,9.0,-10.0/ .
data glassdy /0.0,1.0,19.0,15.0,0.0,-15.0,-19.0,-1.0, 0.0/
data vsurf /VWSURFSIZE*(Q/

U

vsurf (DDINDEX) = loc (pixwindd)

if (InitializeCore(BASIC, NOINPUT, TWOD) .ne. 0) call exit (1)
if (InitializeVwsurf (vsurf, FALSE) .ne. 0) call exit (2)
if (SelectVwsurf (vsurf) .ne. 0) call exit(3)

call SetViewport2(0.125, 0.875, 0.125, 0.75)

call SetWindow(-50.0, 50.0, -10.0, 80.0)

call CreateTempSeg()

call MoveAbs2(0.0, 0.0)

call PolylineRel2(glassdx, glassdy, 9)

call MoveRel2 (~12.0, 33.0)

.call LineRel2(24.0, 0.0)

call CloseTempSeqg ()

call sleep(10)

call DeselectVwsurf (vsurf)

call TerminateCore ()

end

Figure D-1 = FORTRAN Example Program

1 UNIX is a registered trademark of AT&T. { /‘\\
N
&}% sun Revision A, of 9 May 1988
WV microsystems ?

\

o)

Appendix D — Using SunCore with Fortran-77 Programs 155

D.3. Correspondence

Between C Names and
FORTRAN Names

Table D-2 Correspondence Between C Names and FORTRAN Names

C Name FORTRAN Name
allocate_raster allocateraster
await_any button awaitanybutton
await _any button_get_locator_ 2 awtbuttongetloc?2
await any button get_ valuator awtbuttongetval
await keyboard awaitkeyboard
await pick awaitpick
await_stroke 2 awaitstroke2
begin batch_of updates beginbatchupdate
close_retained segment closeretainseg
close_temporary segment closetempseg
create retained segment createretainseg
create_ temporary segment createtempseg
define color_indices defcolorindices
delete all retained segments delallretainsegs
delete retained segment delretainsegment
deselect_view_surface deselectvwsurf
end batch_of updates endbatchupdate
file to_raster filetorastex
free raster freeraster
get _mouse_state getmousestate
get raster getraster
initialize_ core initializecore
initialize device initializedevice
initialize view_surface initializevwsurf
inquire charjust ingcharjust
inquire_charpath 2 ingcharpath?
inquire charpath_3 ingcharpath3
inquire_charprecision ingcharprecision
inquire charsize ingcharsize
inquire_charspace ingcharspace
inquire_charup_ 2 ingcharup?2
inquire charup_ 3 ingcharup3
inquire_ color_indices ingcolorindices
inquire current position_2 ingcurrpos2
inquire current_position_3 ingcurrpos3
inquire detectability ingdetectability
inquire_echo ingecho
inquire_echo_position ingechoposition
inquire_echo_surface ingechosurface
inquire_fill index ingfillindex
inguire_font ingfont
inquire highlighting inghighlighting

4ysun

microsystems

Revision A, of 9 May 1988

156

SunCore Reference Manual

Table D-2 Correspondence Between C Names and FORTRAN Names— Continued
| C Name | FORTRAN Name
inquire image transformation 2 ingimgtransform?2
inquire_image transformation 3 ingimgtransform3
inquire_image transformation type ingimgxformtype
inquire_image_ translate 2 ingimgtranslate2
inquire_image translate_ 3 ingimgtranslate3
inquire_inverse composite matrix inginvcompmatrix
inquire keyboard ingkeyboard
inquire_line index inglineindex
inquire linestyle inglinestyle
inquire linewidth inglinewidth
inquire locator_ 2 inglocator2
inquire marker symbol ingmarkersymbol
inquire_ndc_space 2 ingndcspace?2
inquire ndc_space_3 ingndcspace3
inquire_open retained segment ingopenretainseqg
inquire_open_temporary segment ingopentempseg
inquire pen ingpen
inquire pick_id ingpickid
inquire polygon_edge style ingpolyedgestyle
inquire polygon_interior style ingpolyintrstyle
inquire primitive attributes ingprimattribs
inquire projection ingprojection
inquire_rasterop ingrasterop
inquiré_retained_segment_names ingretainsegname
inquire retained_segment surfaces ingretainsegsurf
inquire segment detectability ingsegdetectable
inquire_segment highlighting ingseghighlight
inquire_segment_ image transformation 2 ingsegimgxform2
inquire segment_image_ transformation 3 ingsegimgxform3
inquire_segment image transformation type ingsegimgxfrmtyp
inquire_segment_image translate 2 ingsegimgxlate2
inquire segment_ image_ translate 3 ingsegimgxlate3
inquire_segment visibility ingsegvisibility
inquire stroke ingstroke
inquire text_extent 2 ingtextextent2
inquire_text_extent 3 ingtextextent3
inquire text_ index ingtextindex
inquire valuator ingvaluator
inquire view depth ingviewdepth
inquire view plane distance ingviewplanedist
inquire_view_plane normal ingviewplanenorm
‘inquire view_reference point ingviewrefpoint
inquire_view_up 2 ingviewup?2
inquire_view up 3 ingviewup3
inquire viewing control_ parameters inqgqvwgcntrlparms
| inquire viewing parameters ingviewingparams

4rsun

microsystems

Revision A, of 9 May 1988

//

D

T

Appendix D — Using SunCore with Fortran-77 Programs

157

Table D-2 Correspondence Between C Names and FORTRAN Names— Continued

C Name | FORTRAN Name
inquire viewport_2 ingviewport2
inquire viewport_ 3 ingviewport3
inquire visibility ingvisibility
inguire window ingwindow
inquire world coordinate matrix_2 ingworldmatrix2
inquire world coordinate matrix 3 ingworldmatrix3
line_abs_2 lineabs2
line_abs 3 lineabs3
line rel 2 linerel2
line rel 3 linerel3
map_ndc_to_world 2 mapndctoworld?2
map ndc_to_world 3 mapndctoworld3
map_world to_ndc_2 mapworldtondc2
map world to ndc_3 mapworldtondc3
marker abs 2 markerabs2
marker abs_3 markerabs3
marker rel 2 markerrel2
marker rel 3 markerrel3
move abs_2 moveabs2
move_abs 3 moveabs3
move_rel 2 moverel2
move rel 3 moverel3
new_frame newframe
polygon_abs_ 2 polygonabs2
pelygon abs 3 polygonabs3
polygon rel 2 polygonrel?2
polygon_rel 3 polygonrel3
polyline abs 2 polylineabs?2
polyline abs_3 polylineabs3
polyline rel 2 polylinerel2
polyline rel 3 polylinerel3
polymarker_ abs 2 polymarkerabs2
polymarker_ abs_ 3 polymarkerabs3
polymarker rel 2 polymarkerrel2
polymarker rel 3 polymarkerrel3
print error printerror
put_raster putraster
raster_to_file rastertofile
rename_retained segment renameretainseg
report _most recent_error reportrecenterr
restore_ segment restoresegment
save_ segment savesegment
select view_surface selectvwsurf
set _back plane_clipping setbackclip
set_charjust setcharjust
set_charpath 2 setcharpath?2

4rsun

microsystems

Revision A, of 9 May 1988

SunCore Reference Manual

Table D-2 Correspondence Between C Names and FORTRAN Names— Continued

C Name | FORTRAN Name
set_charpath 3 setcharpath3
set_charprecision setcharprecision
set_charsize setcharsize
set_charspace setcharspace
set_charup 2 setcharup?
set_charup 3 setcharup3
set_coordinate system type setcoordsystype
set detectability setdetectablility
set_drag setdrag
set_echo setecho
set_echo_group setechogroup
set_echo_position setechoposition
set_echo_surface setechosurface
set_fill index setfillindex
set_font setfont
set_front plane clipping setfrontclip
set highlighting sethighlighting
set_image_transformation 2 setimgtransform?2
set_image_transformation 3 setimgtransform3
set_image transformation_type setimgxformtype
set_image_translate 2 setimgtranslate2
set_image_ translate_ 3 setimgtranslate3
set_keyboard setkeyboard
set_light direction setlightdirect
set _line index setlineindex
set_linestyle setlinestyle
set linewidth setlinewidth
set_locator_ 2 setlocator2
set_marker symbol setmarkersymbol
set_ndc_space_2 setndcspace?2
set_ndc_space_ 3 setndcspace3
set_output_clipping setoutputclip
set_pen setpen
set_pick setpick
set pick_id setpickid
set_polygon_edge_ style setpolyedgestyle
set_polygon_ interior_ style setpolyintrstyle
set_primitive attributes setprimattribs
set_projection setprojection
set_rasterop setrasterop
set_segment_detectability setsegdetectable
set_segment highlighting setseghighlight
set_segment_ image transformation 2 setsegimgxform?2
set_segment_image_ transformation_3 setsegimgxform3
set_segment_image translate 2 setsegimgxlate?2
set_segment image translate 3 setsegimgxlate3

4rsun

microsystems

Revision A, of 9 May 1988

Neo’

Appendix D — Using SunCore with Fortran-77 Programs 159

Table D-2 Correspondence Between C Names and FORTRAN Names— Continued

C Name | FORTRAN Name
set_segment_ visibility ® setsegvisibility
set shading_parameters setshadingparans
set_stroke setstroke
set_text_index settextindex
set_valuator setvaluator
set vertex indices setvertexindices
set_vertex normals setvertexnormals
set view_depth setviewdepth
set_view plane distance setviewplanedist
set view plane normal setviewplanenorm
set_view_reference point , setviewrefpoint
set viewport 2 setviewport2
set viewport 3 setviewport3
set_view up 2 setviewup?2
set view up 3 setviewup3
set viewing parameters setviewingparams
set_visibility setvisibility
set_window setwindow
set_window clipping setwindowclip
set_world coordinate matrix 2 setworldmatrix2
set_world coordinate matrix 3 setworldmatrix3
set_zbuffer cut setzbuffercut
size raster sizeraster
terminate core terminatecore
terminate device terminatedevice
terminate view_surface terminatevwsurf

text text

D.4. FORTRAN Interfaces Note: Although all SunCore procedures are declared here as functions, each may
to SunCore also be called as a subroutine if the user does not want to check the returned
value.

integer function allocateraster (raster)
integer raster(4)

integer function awaitanybutton(time, buttonnum)
integer time, buttonnum

integer function awtbuttongetloc2(time, locatornum, buttonnum, %, y)
integer time, locatornum, buttonnum
redl x, y

integer function awtbuttongetval (time,valuatornum,buttonnum,value)
integer time, valuatornum, buttonnum

real value

integer function awaitkeyboard(time, keyboardnum, inputstring, length)

Q?; sun | Revision A, of 9 May 1988

microsystems

160 SunCore Reference Manual

integer
integer

integer
integer

integer
integer

time, keyboardnum
character* (*) inputstring

length

function awaitpick(time, picknum, segname, pickid)

time, picknum,

function awaitstroke2 (time,
time, strokenum, arraysize

real =xarray, yarray

integer
integer
integer
integer

integer
integer

integer
integer

integer
integer

n

function

function

function

function
segname

function

function defcolorindices (surfacename, il, i2, red,

beginbatchupdate ()

closeretainseg()

closetempseg ()

segname, pickid

strokenum, arraysize, xarray, yarray, n)

createretainseqg (segname)

createtempseqg ()

surfacename (*)

i1, i2

real red(*), green(*), blue(*)

integer function delallretainsegs()

integer function delretainsegment (segname)

integer

segname

integer function deselectvwsurf (surfacename)
surfacename (*)

integer
integer

integer
integer
integer
integer

integer
integer

integer
integer
real x,
integer

integer
integer

function endbatchupdate ()

function filetoraster(rasfid, raster, map)

rasfid
raster (4)
map (3)

function freeraster(raster)

raster (4)

function getmousestate(devclass, devnum, X, y, buttons)

devclass,

y
buttons

devnum

blue)

function getraster(surfacename, xmin, xmax, ymin, ymax, xd, yd, raster)
surfacename (*)

4

sun

microsystems

Revision A, of 9 May 1988

Appendix D — Using SunCore with Fortran-77 Programs 161

real xmin, xmax, ymin, ymax

integer
integer

integer
integer

integer
integer
integer
integer

integer

integer
integer

integer

xd, yd
raster (4)

function initializecore(outputlevel, inputlevel, dimension)
outputlevel, inputlevel, dimension

function initializedevice (deviceclass, devicenum)
deviceclass, devicenum

function initializevwsurf (surfacename, type)
surfacename (*)
type

function ingcharjust (just)
just

function ingcharpath2 (dx, dy)

real dx, dy

integer

function ingcharpath3(dx, dy, dz)

real dx, dy, dz

integer
integer

integer

function ingcharprecision (charprecision)
charprecision

function ingcharsize (charwidth, charheight)

real charwidth, charheight

integer

function ingcharspace (charspace)

real charspace

integer

real dx,

integer

real dx,

integer
integer
integer

function ingcharup2 (dx, dy)
dy

function ingcharup3(dx, dy, dz)
dy, d=z

function ingcolorindices (surfacename, i1, i2, red, green, blue)
surfacename (*)
il, i2

real red(*), green(*), blue(*)

integer
real x,

integer
real x,

integer
integer

integer

function ingcurrpos2(x, y)
Y

function ingcurrpos3(x, vy, 2z)
Yr Z

function ingdetectability(detectability)
detectability

function ingecho (deviceclass, devicenum, echotype)

4y sun

microsystems

Revision A, of 9 May 1988

162

SunCore Reference Manual

integer deviceclass, devicenum, echotype

integer function ingechoposition(deviceclass, devicenum, echox, echoy)
integer deviceclass, devicenum

real echox, echoy
integer function ingechosurface(deviceclass, devicenum, surfacename)
integer deviceclass, devicenum
integer surfacename (*)
integer function ingfillindex(index)
integer index
integer function ingfont (font)
integer font
integer function inghighlighting(highlighting)
integer highlighting
integer function>inqimgtransformZ(sx, sy, a, tx, ty)
real sx, sy, a, tx, ty
integer function ingimgtransform3(sx, sy, sz, ax, ay, az, tx, ty, tz)
real sx, sy, sz, ax, ay, az, tx, ty, t=z
integer function ingimgxformtype (type) wa/
integer type
integer function ingimgtranslate2(tx, ty)
real tx, ty
integer function ingimgtranslate3(tx, ty, tz)
real tx, ty, tz
integer function inginvcompmatrix(array)
real array(4,4)
integer function ingkeyboard(keyboardnum, buffersize, initstring, initcursor)
integer keyboardnum, buffersize
character* (*) initstring
integer initcursor
integer function inglineindex (index)
integer index
integer function inglinestyle (linestyle)
integer linestyle
integer function inglinewidth (linewidth)
real linewidth
"
integer function inglocator2(locatornum, x, y) N

integer locatornum

sSun

microsystems

@

Revision A, of 9 May 1988

N

Appendix D — Using SunCore with Fortran-77 Programs 163

real x,

integer
integer

integer

Yy

function ingmarkersymbol (symbol)
symbol

function ingndcspace2(width, height)

real width, height

integer

function ingndcspace3(width, height, depth)

real width, height, depth

integer
integer

integer
integer

integer
integer

integer
integer

integer
integer

integer
integer

integer
integer

function inqgopenretainseg(segname)
segname

function ingopentempseg (open)
open

function ingpen (pen)
pen

function ingpickid(pickid)
pickid

function ingpolyedgestyle (style)
style

function ingpolyintrstyle (style)
style

function ingprimattribs (primattr)
primattr (28)

Note: The actual argument in the calling program corresponding to primattr should be an array which can be refer-
enced both as a real array and as an integer array in order to access both integer valued and real valued primitive attri-
butes. This can be done using the equivalence statement.

integer
integer

integer
integer

integer
integer

integer
integer
integer
integer

function ingprojection(projection, dxproj, dyproj, dzproi)
projection real dxproj, dyproj, dzproj

function ingrasterop (rop)
rop

function ingretainsegname (arraysize, namearray, numberofsegments)
arraysize, namearray(*), numberofsegments

function ingretainsegsurf (segname, arraysize, vwsurfarray, numsurf)
segname, arraysize

vwsurfarray (*)

numsurf

Note: arraysize should give the number of view surface structures which can be held in vwsurfarray. Each structure
requires VWSURFSIZE elements of vwsurfarray.

integer
integer

function ingsegdetectable (segname, detectability)
segname, detectability

é{%’; sun Revision A, of 9 May 1988

microsysiems

164

SunCore Reference Manual

integer function ingseghighlight (segname, highlighting)

integer segname,

function
segname
Sy, ay

integer
integer
real sx, t
integer function
integer segname
real sx, sy, sz,

integer function
integer segname,

integer function
integer segname
real tx, ty

integer function
integer segname
real tx, ty, tz

function
segname,

integer
integer

integer
integer
real dist

integer time

integer function
character* (*) str
real dx, dy

highlighting
ingsegimgxform2 (segname, sx, sy,

%, ty

ingsegimgxform3 (segname, sx, sy,

ax, ay, az, tx, ty, tz

ingsegimgxfrmtyp (segname, type)
type

ingsegimgxlate?2 (segname, tx, ty)

ingsegimgxlate3 (segname, tx, ty,

{

a, tx, ty)

sz, ax, ay, az, tx, ty, tz)

tz)

ingsegvisibility(segname, visibility)

visibility

function ingstroke (strokenum, bufsize, dist, time) L /)
strokenum, pe

bufsize

ingtextextent2 (string, dx, dy)
ing

integer function ingtextextent3(string, dx, dy, dz)

character*(*) str
real dx, dy, dz

function
index

integer
integer

integer
integer valuatorn
real initialvalue

ing

ingtextindex (index)

um

; low, high

function ingvaluator(valuatornum, initialvalue, low, high)

integer function ingviewdepth (frontdistance, backdistance)

real frontdistanc

integer function
real viewdistance

integer function ingviewplanenorm(dxnorm, dynorm, dznorm)

real dxnorm, dyno

e, backdistance

ingviewplanedist (viewdistance)

dznorm

%Y

rm,

sun

microsystems

W

)

Revision A, of 9 May 19838

Appendix D — Using SunCore with Fortran-77 Programs

165

-

integer function
real x, y, 2

integer function
real dxup, dyup

integer function
real dxup, dyup,

ingviewrefpoint (x, vy, z)

ingviewup2 (dxup, dyup)

ingviewup3
dzup

(dxup,

dyup,

dzup)

integer function ingvwgentrlparms (windowclip, frontclip, backclip, type)

integer windowclip,

frontclip, backclip, type

integer function ingviewingparams (viewparams)
real viewparams (26)

Note: The actual argument in the calling program corresponding to viewparams should be an array which can be
referenced both as a real array and as an integer array in order to access both integer valued and real valued viewing

parameters. This can be done using the equivalence statement.

integer function
real xmin, xmax,

integer function
real xmin, xmax,

integer function
integer function
real umin, umax,

integer function
real array(3,3)

integer function
real array(4,4)

integer function
real x, y

integer function
real %, y, 2

integer function
real dx, dy

integer function
real dx, dy, dz

integer function
real ndcx, ndcy,

integer function
real ndcx, ndcy,

ingviewport2 (xmin, xmax, ymin, ymax)

ymin, ymax

ingviewport3 (xmin, xmax, ymin, ymax,

ymin, ymax

, zmin,

zmax

ingvisibility(visibility)
integer visibility

ingwindow (umin, umax, vmin, vmax)

vmin, vmax

ingworldmatrix2 (array)

ingworldmatrix3 (array)

lineabs2(x

lineabs3(x

linerel2 (d

linerel3 (4

' Y)
r Yr 2)
Xy

dy)

x, dy,

dz)

mapndctoworld2 (ndcx, ndcy, wldx, wldy)

wldx, wldy

mapndctoworld3 (ndcx,

ndcz, wldx

, wldy,

Sun

microsystems

ndcy,
wldz

ndcz,

wldx,

zmin,

wldy,

Zmax)

wldz)

Revision A, of 9 May 1988

166 SunCore Reference Manual

integer function mapworldtondc2(wldx, wldy, ndcx, ndcy)
real wldx, wldy, ndcx, ndcy

ihteger function mapworldtondc3(wldx, wldy, wldz, ndcx, ndcy, ndcz)
real wldx, wldy, wldz, ndcx, ndcy, ndcz

integer function markerabs2 (x, y)
real %, y

integer function markerabs3(x, y, z)
real %, vy, z

integer function markerrel2 (dx, dy)
real dx, dy

integer function markerrel3(dx, dy, dz)
real dx, dy, dz

integer function moveabs2(x, y)
real %, y

integer function moveabs3(x, vy, 2)
real x, y, z

integer function moverel2 (dx, dy)
real dx, dy

integer function moverél3(dx, dy, dz)
real dx, dy, dz

integer function newframe ()

integer function polygonabs2(xarray, yarray, n)
real xarray(*), yarray(*)
integer n

integer function polygonabs3(xarray, yvarray, zarray, n)
real xarray(*), yarray(*), zarray(*)
integer n

integer function polygonrel?2 (dxarray, dyarray, n)
real dxarray(*), dyarray(*)
integer n

integer function polygonrel3(dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray(*), dzarray(*)
integer n

integer function polylineabs2(xarray, yarray, n)
real xarray(*), yarray(*)

integer n

integer function polylineabs3(xarray, yarray, zarray, n)

4y sun

microsystems

Revision A, of 9 May 1988

N
../

/,_3

.
i

N

Appendix D — Using SunCore with Fortran-77 Programs

167

real xarray(*), yarray(*), zarray(*)
integer n

integer function polylinerelZ(dxarray, dyarray, n)
real dxarray(*), dyarray(*)
integer n

integer function polylinerel3 (dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray(*), dzarray(*)
integer n

integer function polymarkerabs2(xarray, yarray, n)
real xarray(*), yarray(¥*)
integer n

integer function polymarkerabs3(xarray, yarray, zarray, n)
real xarray(*), yarray(*), zarray(*)
integer n

integer function polymarkerrel2(dxarray, dyarray, n)
real dxarray(*), dyarray(%*)
integer n

integer function polymarkerrel3(dxarray, dyarray, dzarray, n)
real dxarray(*), dyarray({*), dzarray(*)
integer n

integer function printerror (message, errornum)
character* (*) message
integer errornum

integer function putraster(raster)
integer raster(4)

integer function rastertofile(raster, map, rasfid, n)
integer raster (4)

integer map (3)

integer rasfid, n

integer function renameretainseg(segname, newname)
integer segname, newname

integer function reportrecenterr(errornum)
integer errornum

integer function restoresegment (segname, filename)
integer segname
character* (*) filename

integer function savesegment (segname, filename)
integer segname
character* (*) filename

S
&J:& rﬁgﬂg Revision A, of 9 May 1988

168 SunCore Reference Manual

integer function selectvwsurf (surfacename)
integer surfacename (*)

integer function setbackclip(onoff)
integer onoff

integer function setcharjust (just)
integer just

integer function setcharpath2(dx, dy)
real dx, dy

integer function setcharpath3(dx, dy, dz)
real dx, dy, dz

integer function setcharprecision(charprecision)
integer charprecision

integer function setcharsize (charwidth, charheight)
real charwidth, charheight

integer function setcharspace (charspace)
real charspace

integer function setcharup2(dx, dy)
real dx, dy

integer function setcharup3(dx, dy, dz)
real dx, dy, dz

integer function setcoordsystype (type)
integer type

integer function setdetectability(detectability)
integer detectability

integer function setdrag(mode)
integer mode

integer function setecho(deviceclass, devicenum, echotype)
integer deviceclass, devicenum, echotype

integer function setechogroup(deviceclass, devicenumarray, n, echotype)
integer deviceclass, devicenumarray(*), n, echotype

integer function setechoposition{deviceclass, devicenum, echox, echoy)
integer deviceclass, devicenum
real echox, echoy

integer function setechosurface(deviceclass, devicenum, surfacename)
integer deviceclass, devicenum
integer surfacename (*)

A

Revision A, of 9 May 1988

)

Appendix D — Using SunCore with Fortran-77 Programs

169

integer function
integer index

integer function
integer font

integer function
integer onoff

setfillindex (index)
setfont (font)

setfrontclip (onoff)

integer function sethighlighting(highlighting)

integer highlight

integer function
real sx, sy, a, t

integer function
real sx, sy, sz,

integer function
integer type

integer function
real tx, ty

integer function
real tx, ty, tz

integer function

ing

setimgtransform2 (sx, sy,
x, ty

setimgtransform3 (sx, sy,

ax, ay, az, tx, ty, tz

setimgxformtype (type)

setimgtranslate2 (tx, ty)

setimgtranslate3 (tx, ty,

setkeyboard (keyboardnum,

integer keyboardnum, buffersize
character* (*) initstring

integer initcurso

r

a, tx, ty)

sz,

tz)

ax,

ay,

buffersize,

integer function setlightdirect (dx, dy, dz)

real dx, dy, dz

integer function
integer index

integer function
integer linestyle

integer function
real linewidth

integer function

setlineindex (index)

setlinestyle (linestyle)

setlinewidth (linewidth)

setlocator2 (locatornum,

integer locatornum

real x, vy

integer function
integer symbol

integer function setndcspace2 (width, height)

setmarkersymbol (symbol)

real width, height

4y sun

microsystems

Xy

y)

az, tx, ty,

initstring,

tz)

initcursor)

Revision A, of 9 May 1988

170 SunCore Reference Manual

integer function setndcspace3(width, height, depth)

real width, height, depth

integer function setoutputclip(onoff)
integer onoff

integer function setpen (pen)
integer pen

integer function setpick(picknum, aperture)

integer picknum
real aperture

integer function setpickid(pickid)
integer pickid

integer function setpolyedgestyle (style)
integer style

integer function setpolyintrstyle(style)
integer style

integer function setprimattribs (primattr)
integer primattr{28)

Note: The actual argument in the calling program corresponding to primattr should be an array which can be refer-
enced both as a real array and as an integer array in order to access both integer valued and real valued primitive attri-
butes. This can be done using the equivalence statement.

integer function setprojection(projection, dxproj, dyproij, dzproj)

integer projection
real dxproj, dyproj, dzproj

integer function setrasterop (rop)
integer rop.

integer function setsegdetectable (segname, detectability)
"integer segname, detectability

integer function setseghighlight (segname,
integer segname, highlighting

integer function setsegimgxform2 (segname,
integer segname
real sx, sy, a, tx, ty

integer function setsegimgxform3 (segname,
integer segname
real sx, sy, sz, ax, ay, az, tx, ty, tz

integer function setsegimgxlate2 (segname,
integer segname
real tx, ty

4y sun

microsystems

highlighting)

SX, 8Y, &,

sX, sy, sz,

tx, ty)

ty, tz)

Revision A, of 9 May 1988

R

~

e

Appendix D — Using SunCore with Fortran-77 Programs 171

integer function setsegimgxlate3(segname, tx, ty, tz)
integer segname
real tx, ty, tz

integer function setsegvisibility(segname, visibility)
integer segname, visibility

integer function setshadingparams(ambient, diffuse, specular, flood, bump, hue, style)
real ambient, diffuse, specular, flood, bump
integer hue, style

integer function setstroke(strokenum, buffersize, distance, time)
integer strokenum, buffersize

real distance

integer time

integer function settextindex(index)
integer index

integer function setvaluator(valuatornum, initialvalue, low, high)
integer valuatornum
real initialvalue, low, high
\
integer function setvertexindices(colorindexlist, n)
integer colorindexlist(*), n

integer function setvertexnormals(xlist, ylist, zlist, n)
real xlist(*), ylist(*), zlist (*)
integer n

integer function setviewdepth(frontdistance, backdistance)
real frontdistance, backdistance

integer function setviewplanedist (distance)
real distance

integer function setviewplanenorm(dxnorm, dynorm, dznorm)
real dxnorm, dynorm, dznorm

integer . function setviewport2 (xmin, xmax, ymin, ymax)
real xmin, xmax, ymin, ymax

integer function setviewport3(xmin, xmax, ymin, ymax, zmin, zmax)
real xmin, xmax, ymin, ymax, zmin, 2zmax

integer function setviewrefpoint(x, y, z)
real x, y, zZ

integer function setviewup2 (dx, dy)
real dx, dy

integer function setviewup3(dx, dy, dz)
real dx, dy, dz

microsystems

é%?} sun Revision A, of 9 May 1988

172 SunCore Reference Manual

integer

function setviewingparams (viewparams)

real viewparams (26)

Note: The actual argument in the calling program corresponding to viewparams should be an array which can be
referenced both as a real array and as an integer array in order to access both integer valued and real valued viewing
parameters. This can be done using the equivalence statement.

integer
integer

integer

function setvisibility(visibility)
visibility

function setwindow(umin, umax, vmin, vmax)

real umin, umax, vmin, vmax

integer
integer

integer

function setwindowclip (onoff)
onoff

function setworldmatrix2 (array)

real array(3,3)

integer

function setworldmatrix3(array)

real array(4,4)

integer
integer

function setzbuffercut (surfacename, xlist, zlist, n)
surfacename (*)

real xlist(*), zlist (*)

integer

integer
integer

n

function sizeraster (surfacename, xmin, xmax, ymin, ymax, raster)
surfacename (*)

real xmin, xmax, ymin, ymax

integer
integer

integer
integer

integer
integer

integer

raster (4)
function terminatecore ()

function terminatedevice (deviceclass, devicenum)
deviceclass, devicenum

function terminatevwsurf (surfacename)
surfacename (*)

function text (string)

character* (*) string

n Revision A, of 9 May 1988
ems

)

./

sing SunCore with Pascal Programs

Using SunCore with Pascal Programs 175
E.1. Programming Requirements 175
Routines Using View Surface Names 176
Routines Using Rasters and Colormaps 177

E.2. Example Program 177
E.3. Correspondence Between C Names and Pascal Names ... 179
E.4. Type Declarations 183

E.5. Function Declarations 185

{4 o

-’

o

Using SunCore with Pascal Programs

All functions provided in SunCore may be called from Pascal programs by link-
ing them with the /usr/1ib/libcorepas. a library by using the Pascal
compiler with a command line of the form:

[% pc —fswitch -o grab grab.p -—lcorepas —-lcore -lsunwindow -lpixrect —-1m]

E.1. Programming
Requirements

where grab . p is the Pascal source program. The ~fswitch option will cause
the compiler to take advantage of floating point hardware if it is available. Oth-
erwise, the compiler will emulate this floating point support with software. (For
more information on floating point options, see Appendix F). Note that
/usr/lib/libcore.a must be linked with the program (the —1core
option), and /usr/1ib/libcorepas.a must come before it (the —1core-
pas option).

The files typedefspas.h, usercorepas.h,devincpas.h and
sunpas.h from the /usr/include/pascal directory must be included in
the user’s source code to provide the necessary declarations for the Pascal inter-
face to SunCore. Pascal programs which call SunCore functions must place
these include files in the most global declaration section of the program:

program example (input,output)

#include ' /usr/include/pascal/usercorepas.h’
#include ’/usr/include/pascal/typedefspas.h’

var
{user declarations}

#include ’/usr/include/pascal/devincpas.h’
#include ’/usr/include/pascal/sunpas.h’

If the Pascal program is composed of separately compiled files, these include
statements must be in each Pascal file which uses SunCore functions and the
corresponding defined constants. Defined constants for SunCore (see section on
Useful Constants in the introduction to this manual) are set in the file
/usr/include/pascal/usercorepas.h. The default primitive attri-

. bute structure PRIMATTS provided in usercore . h and described in the section

describing set_primitive_attributes is not provided in usercorepas.h.

sun 175 Revision A, of 9 May 1988

microsystems

176 SunCore Reference Manual

Routines Using View Surface
Names

The Sun release of Pascal does not support the passing of variable length arrays

S’

as arguments in function or procedure calls. Therefore, fixed length arrays which
are compatible with the SunCore-Pascal interface are declared as predefined
types in the t ypedefspas . h file (see the Declarations section of this appen-
dix). The length of these arrays in 256. The length of character strings passed
from Pascal programs to SunCore must also be 256 characters.

The correspondence between the full SunCore names and the Pascal names
appears in the Function Declarations section of this appendix. To provide a
mechanism for returning the status of calls to SunCore routines, all SunCore rou-
tines must be called as functions from Pascal. Finally, although most SunCore
functions use floats (32-bit reals), Pascal uses 64-bit reals. However, the Pascal
programmer is only required to provide reals. SunCore functions which have
structures as their arguments have corresponding predefined types in Pascal (see
the Type Declarations section of this appendix).

View surface names in SunCore are structures containing pointers to device
driver routines. The device driver names are supplied by the include file
devincpas.h. The user may then simply use one of the names listed in Table

E-1:

Table E-1 Viewsurface Types

Symbol | Description N
bwldd Sun-1 monochrome display ./
bw2dd Sun-2 monochrome display
cgldd Sun-1 color display
cg2dd Sun-2 color display
cg4dd Sun-3/110 color display
gpldd Graphics Processor
pixwindd windows on the Sun-1 monochrome display

1 cgpixwindd windows on a color display

gplpixwindd windows with the Graphics Processor

The pasloc function (provided in the SunCore-Pascal interface) transforms the

function corresponding to the device driver into an integer which can then be

inserted in the appropriate place in the device driver structure (see following

example).
N
./

Revision A, of 9 May 1988

/’\

\
\\

N

Appendix E — Using SunCore with Pascal Programs 177

Table E-2

Comparison of C and Pascal Statements

C Code

| Pascal Code

struct vwsurf dsurf =
int bwldd{() ;

dsurf.dd = bwldd;

NULL_VWSURF;

initialize view surface(&dsurf, FALSE); x :=

var
dsurf:vwsurf;
tstr:vwsurfst;

tstr ="

dsurf.dd := paslcc(bwldd);
dsurf.screenname := tstr;
dsurf.windowname tstr;
dsurf.windowfd :=
dsurf.instance
dsurf.cmapsize
dsurf.cmapname :=
dsurf.flags := 0;
dsurf.ptr :=0;
InitializeVwsurf (dsurf,

.
r

0
0:;
0
t

.
’

str;

FALSE) ;

Routines Using Rasters and
Colormaps

E.2. Example Program

Figure E-1

Assigning a literal string of two spaces (blanks).to the #str variable will initialize
the character array to all spaces.

For uses of SunCore functions which have rasters or colormaps as arguments
which do not involve arithmetic direct manipulation by the programmer (for
example, writing a raster to a file), the following restrictions on the functions do
not apply and the programmer is only required to call the function. SunCore ras-
ter and colormap structures contain pointers to variable length data (that is,
dynamic arrays). The SunCore-Pascal interface declares these varaibles as
integers.

Pascal programmers wishing to alter the contents of the colormap or raster data
within a program can write a C function which uses the pointer value returned in
Pascal to copy the information into a fixed-length array. Arithmetic operations
can then be performed on the data using conventional Pascal statements. - The
programmer can then write another C function to copy the information back into
the array pointed to by the pointer returned by the SunCore-Pascal interface.
These C functions are not provided because the size of the fixed-length array will
vary greatly among different applications. Therefore, the individual Pascal pro-
grammer must decide how large an array to declare for each application.

The use of the SunCore-Pascal interface is illustrated by showing the text of a
program for drawing the martini glass used in previous tutorial examples.

Pascal Example Program

program martiniglass (input,output);

#include ’/usr/include/pascal/usercorepas.h’;

sun

microsystems

Revision A, of 9 May 1988

178

SunCore Reference Manual

[#include " /usr/include/pascal/typedefspas.h’;

var
glassdx, glassdy: parr {type parr is an array of reals of
length 256 declared in typedefs.h}:
x:integer; :
dsurf:vwsurf;
tstr:vsurfst;
function sleep(x:integer) :integer; external;
#include ’/usr/include/pascal/sunpas.h’;
#include ' /usr/include/pascal/devincpas.h’;

procedure loaddata:;

begin
glassdx[1l] := -10.0; glassdy[l] := 0.0;
glassdx[2] := 9.0; glassdy[2] := 1.0;:
glassdx[3] := 0.0; glassdy([3] := 19.0;
glassdx[4] := =~14.0; glassdy([4] := 15.0;
glassdx[5] := 30.0; glassdy(5] := 0.0;
glassdx[6] := =-14.0; glassdy[6] := -15.0;
glassdx[7] := 0.0; glassdy[7] := -19.0;
glassdx[8] := 9.0; glassdy([8] := -1.0;
glassdx[9] := -10.0; glassdyl[9] := 0.0;
end;

begin {main program}

tstr =" 7;

dsurf.screenname := tstr;

dsurf.windowname := tstr;

dsurf.windowfd := 0;

dsurf.dd := pasloc(pixwindd):;

dsurf.instance := 0;

dsurf.cmapsize := 0;

dsurf.cmapname := tstr;

dsurf.flags := 0;

if (initializecore (BASIC, NOINPUT, TWOD) <> 0) then
writeln ('’ error 17)
else

if (initializevwsurf (dsurf, FALSE) <> 0) then
writeln (’ error 2')

else
if (selectvwsurf (dsurf) <> 0) then
writeln (’ error 37)
else

X := setviewport2(0.125, 0.875, 0.125, 0.75);
x := setwindow(-50.0, 50.0, -10.0, 80.0);
X := createtempseg;

X := moveabs2(0.0, 0.0);

loaddata;
X := polylinerel2(glassdx, glassdy,9);
X := moverel2(-12.0, 33.0);
X := linerel2(24.0, 0.0);
x := closetempseg;

J/

sSun

microsystems

&

Revision A, of 9 May 1988

®

o)

N

Appendix E — Using SunCore with Pascal Programs

179

X := sleep(10);
X := deselectvwsurf (dsurf) ;
X := terminatecore;

end.

E.3. Correspondence
Between C Names and
Pascal Names

Table E-3 Correspondence Between C Names and Pascal Names

C Name Pascal Name
allocate_raster allocateraster
await_any button awaitanybutton
await_any button get locator 2 awtbuttongetloc?2
await_any button_get valuator awtbuttongetval
await keyboard awaitkeyboard
await_pick awaitpick
await_stroke 2 awaitstroke?2
begin batch_of updates beginbatchupdate
close_retained_ segment closeretainseg
close temporary segment closetempseg
create retained segment createretainseg
create_ temporary segment createtempseg
define_color_indices defcolorindices
delete_all retained segments delallretainsegs
delete retained segment delretainsegment
deselect_view surface deselectvwsurf
end batch of updates endbatchupdate
file to_raster filetoraster
free_raster freeraster
get _mouse_state getmousestate
get_raster getraster
initialize core initializecore
initialize_device initializedevice
initialize view_surface initializevwsurf
inquire_charjust ingcharjust
inquire charpath 2 ingcharpath2
inquire_charpath_3 ingcharpath3
inquire_ charprecision ingcharprecision
inquire charsize ingcharsize
inquire_charspace ingcharspace
inquire charup 2 ingcharup2
inquire_charup_ 3 ingcharup3
inquire_ color_indices ingcolorindices
inquire current_position_2 ingcurrpos2
inquire_ current_position 3 ingcurrpos3
inquire detectability ingdetectability

4rsun

Revision A, of 9 May 1988

SunCore Reference Manual

Table E-3 Correspondence Between C Names and Pascal Names— Continued
C Name | Pascal Name

inguire_echo ingecho
inquire_echo_position ingechoposition
inquire_echo_surface ingechosurface
inquire fill index ingfillindex
inquire font ingfont
inquire_highlighting inghighlighting
inquire_image transformation 2 ingimgtransform2
inquire_image transformation 3 ingimgtransform3
inquire_image transformation type ingimgxformtype
inquire_image translate_ 2 ingimgtranslate?2
inquire_image translate 3 ingimgtranslate3
inquire_inverse composite matrix inginvcompmatrix
inquire keyboard ingkeyboard
inquire line index inglineindex
inquire linestyle inglinestyle
inquire linewidth inglinewidth
inquire locator_2 inglocator2
inquire marker_ symbol ingmarkersymbol
inquire ndc_space_2 ingndcspace2
inquire_ndc_space 3 ingndcspace3
inquire_open retained_ segment ingopenretainseg
inquire_open_temporary_ segment ingopentempseg
inquire pen ingpen
inquire pick_id ingpickid
inquire_ polygon edge_ style ingpolyedgestyle
inquire polygon_interior style ‘ingpolyintrstyle
inquire primitive attributes ingprimattribs
inquire projection ingprojection
inquire rasterop ingrasterop
inquire retained segment_ names ingretainsegname
inquire retained segment surfaces ingretainsegsurf
inquire_segment detectability ingsegdetectable
inquire_segment_ highlighting ingseghighlight
inquire_segment image transformation 2 ingsegimgxform2
inquire_segment_image_transformation 3 ingsegimgxform3
inquire_segment_image_ transformation_type ingsegimgxfrmtyp
inquire_segment image_ translate_ 2 ingsegimgxlate?2
inquire_ segment image translate_ 3 ingsegimgxlate3l
inquire_ segment visibility ingsegvisibility
inquire_ stroke ingstroke
inquire_text_ extent 2 ingtextextent2
inquire_ text extent_ 3 ingtextextent3
inquire text index ingtextindex
ingquire_ valuator ingvaluator
inquire view_depth ingviewdepth
inquire view plane distance ingviewplanedist

4ysun

microsystems

Revision A, of 9 May 1988

e’

Appendix E — Using SunCore with Pascal Programs 181

Table E-3 Correspondence Between C Names and Pascal Names— Continued

C Name | Pascal Name
inquire view_plane normal ingviewplanenorm
inquire_view reference_point ingviewrefpoint
inquire view up 2 ingviewup2
inquire_view up 3 ingviewup3
inquire_viewing control parameters ingvwgcntrlparms
inquire_viewing parameters ingviewingparams
inquire viewport 2 ingviewport2
inquire_viewport_ 3 ‘ ingviewport3
inquire visibility ingvisibility
inquire_window ingwindow
inquire_world coordinate matrix 2 ingworldmatrix2
inquire world_coordinate matrix 3 ingworldmatrix3
line_abs_ 2 lineabs2
line abs 3 lineabs3
line rel 2 linerel2
line rel 3 linerels
map_ndc_to_world 2 mapndctoworld?2
map_ndc_to_world 3 mapndctoworld3
map_world to_ndc_2 mapworldtondc?2

- map _world to ndc_3 mapworldtondc3

(/ marker_abs 2 markerabs2

e marker_abs_3 markerabs3
marker_rel 2 markerrel?2
marker rel 3 markerrel3
move_abs_2 moveabs2
move_abs_3 moveabs3
move_rel 2 moverel2
move_rel 3 moverel3
new_frame newframe
polygon_abs_2 polygonabs2
polygon_abs 3 polygonabs3
polygon_rel 2 polygonrel?2
polygon _rel 3 polygonrel3
polyline_abs_ 2 polylineabs?2
polyline abs 3 polylineabs3
polyline rel 2 polylinerel2
polyline rel 3 polylinerel3
polymarker abs 2 polymarkerabs2
polymarker abs 3 polymarkerabs3
polymarker rel 2 polymarkerrel2
polymarker rel 3 polymarkerrel3
print error printerror
put_raster putraster

P raster_to file rastertofile

\m, rename_retained segment renameretainseqg
report most recent erroxr reportrecenterr

@

Revision A, of 9 May 1988

SunCore Reference Manual

Table E-3 Correspondence Between C Names and Pascal Names— Continued

C Name Pascal Name
restore segment restoresegment
save_segment savesegment
select view_ surface selectvwsurf
set_back plane clipping setbackclip
set_charjust setcharjust
set_charpath 2 setcharpath2
set_charpath 3 setcharpath3
set charprecision setcharprecision
set_charsize setcharsize
set charspace setcharspace
set charup 2 setcharup?2
set_charup 3 setcharup3
set coordinate system type setcoordsystype
set detectability setdetectability
set_drag setdrag
set echo setecho
set echo_group setechogroup
set_echo_position setechoposition
set_echo_surface setechosurface
set_fill index setfillindex
set_font setfont
set front plane clipping setfrontclip
set_highlighting sethighlighting
set image transformation 2 setimgtransform2
set_image_ transformation_ 3 setimgtransform3
set_image_ transformation_type setimgxformtype
set _image translate_ 2 setimgtranslate2
set_image translate_3 setimgtranslate3
set _keyboard setkeyboard
set_light direction setlightdirect
set line_index setlineindex
set linestyle setlinestyle
set_linewidth setlinewidth
set_locator_ 2 setlocator2
se€t_marker symbol setmarkersymbol
set_ndc_space 2 setndcspace?
set_ndc_space 3 setndcspace3
set_output clipping setoutputclip
set_pen setpen
set_pick setpick
set pick id setpickid
set_polygon edge style setpolyedgestyle
set_polygon_interior_ style setpolyintrstyle
set primitive attributes setprimattribs
set projection setprojection
set rasterop setrasterop

4rsun

microsystems

Revision A, of 9 May 1988

Nt /

Appendix E — Using SunCore with Pascal Programs 183

Table E-3 Correspondence Between C Names and Pascal Names— Continued

C Name | Pascal Name

set segment detectability setsegdetectable
set segment highlighting setseghighlight
set segment image transformation 2 setsegimgxform?2
set segment_ image transformation_ 3 setsegimgxform3
set segment image translate 2 setsegimgxlate?2
set _segment image translate 3 ' setsegimgxlate3
set: segment visibility setsegvisibility
setishading_parameters setshadingparams
set stroke setstroke
set text index settextindex
set valuator setvaluator
set _vertex indices setvertexindices
set vertex normals setvertexnormals
set view_depth setviewdepth
set _view plane distance setviewplanedist
set view plane normal setviewplanenorm
set view reference point setviewrefpoint
set view up 2 setviewup?2
set_view up 3 setviewup3
set viewing parameters setviewingparams
set_viewport 2 setviewport2
set viewport 3 setviewport3
set visibility setvisibility
set_window setwindow
set _window clipping setwindowclip
set _world coordinate matrix 2 setworldmatrix?2
set _world coordinate matrix 3 setworldmatrix3
set zbuffer cut setzbuffercut
size raster sizeraster
terminate core terminatecore
terminate device terminatedevice
terminate_view_surface terminatevwsurf
text puttext

E.4. Type Declarations The list on the following pages is a complete alphabetical list of the Pascal data

structures in SunCore.

type iarr = array[l..256] of integer;

type parr = array[l..256] of real;

type cct = arrayl[l..257] of char;

type ivarray = array([l..4,1..4] of real;

type ivarrayl = arrayl[l..3,1..3] of real;

type pttype = record
X,y,Z,W:real;
end;
type aspect = record
width, height:real;

@:2? sun Revision A, of 9 May 1988

microsystems

184

SunCore Reference Manual

end;

type

type

primattr = record
lineindx: integer;
fillindx: integer:;
textindx: integer;
linestyl: integer;
polyintstyl: integer;
polyedgstyl: integer;
linwidth: real;
pen: integer;
font: integer;
charsize: aspect;
chrup, chrpath, chrspace: pttype:;
chijust: integer;
chqualty: integer;
marker: integer;
pickid: integer;
rasterop: integer;

end;
rasttyp = record
width: integer;
height: integer;
depth: integer;
bits: integer; {var}
end;
cmap = record

type

type

type

type

type

typ: integer;
nbyt: integer;
dat :integer; {var}
end;
windtype = record
xmin, xmax, ymin, ymax:real;
end;
porttype = record
xmin, xmax, ymin, ymax, zmin, zmax:real;
end;
vwprmtype = record
vwrefpt: array [1..3] of real;
vwplnorm: array [1..3] of real;
viewdis:real;
frontdis:real;
backdis:real;
projtype:integer;
projdir: array [1..3] of real;
window:windtype;
vwupdir: array [l..3] of real;
viewport :porttype;
end;
vwsurf = record
screenname: array [l..DEVNAMESIZE] of char;
windowname: array [l..DEVNAMESIZE] of char;
windowfd:integer;
dd:integer;

@

sun

microsystems

Revision A, of 9 May 1988

PN

et

J

)

Appendix E — Using SunCore with Pascal Programs 185

instance:integer;
cmapsize:integer;

cmapname: array [l..DEVNAMESIZE] of char;
flags:integer;
ptr: integer;
end;
type vwsurfst = array [1l..DEVNAMESIZE] of char;

type vwarr =

E.S5. Function Declarations

array[l..MAXVSURF] of vwsurf;

The list on the following pages is a complete alphabetical list of the Pascal func-
tions in SunCore.

function allocateraster(var rptr:rasttyp) :integer; external;
function awaitanybutton(tim:integer; var buttonnum:integer) :integer; external;
function awtbuttongetloc2 (time:integer; locatornum:integer; :

var buttonnum:integer; var x:real; var y:real):integer; external;

function

awtbuttongetval (time:integer; wvalnum:integer; var buttonnum:integer;

var val:real) :integer; external;

function

awaitkeyboard (tim:integer; keynum:integer; var sptr:cct;

var length:integer) :integer; external;

function

awaitpick (time:integer; picknum:integer; var segnam:integer:;

var pickid:integer) :integer; external;

function

awaitstroke2 (tim:integer; picknum:integer; asize:integer; var x:parr;

var y:parr; numxy:integer) :integer; external;

function

beginbatchupdate:integer; external;

function closeretainseg:integer; external;

function closetempseg:integer; external;

function createretainseg(segname:integer) :integer; external;

function createtempseg:integer; external;

function defcolorindices(var surfacename:vwsurf; il:integer; i2:integer;

var r:parr; var g:parr; var b:parr):integer; external;

function
function
function
function
function

:integer; external;

function
function

delallretainsegs:integer; external;

delretainsegment (segname:integer) :integer; external;
deselectvwsurf (var surfacename:vwsurf) :integer; external;
endbatchupdate:integer; external;

filetoraster(var rasfid:text; var rptr:rasttyp; var map:cmap)

freeraster(var rptr:rasttyp):integer; external;
getmousestate (devclass:integer; devnum:integer; var x:real;

var y:real; var buttons:integer) :integer; external;

function

ymax:

function
function

getraster(var surfacename:vwsurf; xmin:real; xmax:real; ymin:real;
real; xd:integer; yd:integer; var rptr:rasttyp) :integer; external;
getviewsurface(var surfacename:vwsurf) :integer; external;
initializecore (outputlevel:integer; inputlevel:integer;

dimension:integer) :integer; external;

function

initializedevice (deviceclass:integer; devicenum:integer)

:integer; external;

function

iinteger;

function
function
function
function

initializevwsurf (var surfacename:vwsurf; typ:integer)
external;

ingcharjust (var chjust:integer) :integer; external;
ingcharpath2 (var x:real; var y:real) :integer; external;
ingcharpath3(var x:real; var y:real; var z:real):integer;
ingcharprecision(var chquality:integer) :integer; external;

4

external;

sun

microsystems

Revision A, of 9 May 1988

186 SunCore Reference Manual

5/‘“\‘
k\. J
function ingcharsize(var width:real; var height:real) :integer; external; i
function ingcharspace(var space:real) :integer; external;
function inqgcharup2(var x:real; var y:real):integer; external;

function
function

ingcharup3(var x:real; var y:real; var 2z:real) :integer; external;

ingcolorindices (var surfacename:vwsurf; il:integer; i2:integer;

var r:parr; var g:parr; var b:parr) :integer; external;

function ingcurrpos2(var x:real; var y:real) :integer; external;

function ingcurrpos3(var x:real; var y:real; var z:real):integer; external;

function ingdetectability(var detect:integer) :integer; external;

function ingecho(devclass:integer; devnum:integer; var echotype:integer)

:integer; external;

function ingechoposition{devclass:integer; devnum:integer; var x:real;

var y:real) :integer; external;
function ingechosurface (devclass:integer; devnum:integer;
var surfacename:vwsurf) :integer; external;
function ingfillindex(var color:integer) :integer; external;
function ingfont (var font:integer) :integer; external;

function inghighlighting(var highlight:integer) :integer; external;

function ingimgtransform2(var sx:real; var sy:real; var a:real; var tx:real;

var ty:real) :integer; external;

function ingimgtransform3(var sx:real; var sy:real; var sz:real; var ax:real;

var ay:real; var az:real; var tx:real; var ty:real; var tz:real)

:integer; external;
function ingimgxformtype (var segtype:integer) :integer; external;

function ingimgtranslate2(var tx:real; var ty:real) :integer; external;

function ingimgtranslate3(var tx:real; var ty:real; var tz:real)
:integer; external;
function inginvcompmatrix(var iarray:ivarray) :integer; external;

function ingkeyboard(keynum:integer; var bufsize:integer; var string:cct;

var pos:integer) :integer; external;
function inglineindex(var color:integer) :integer; external;
function inglinestyle(var linestyle:integer) :integer; external;
function’ inglinewidth(var linewidth:real) :integer; external;

function inglocator2 (locnum:integer; var x:real; var y:real) :integer; external;

function ingmarkersymbol (var mark:integer) :integer; external;
function ingndcspace2 (var width:real; var height:real) :integer; external;
function ingndcspace3(var width:real; var height:real; var depth:real)

:integer; external;

function
function

ingopenretainseg(var segname:integer) :integer; external;
ingopentempseg (var open:integer) :integer; external;

function ingpen(var pen:integer) :integer; external;
function ingpickid(var pick:integer) :integer; external;

function ingpolyedgestyle(var pestyle:integer) :integer; external;
function ingpolyintrstyle(var pistyle:integer) :integer; external;

function ingprimattribs(var defprim:primattr) :integer; external;

function ingprojection(var ptype:integer; var dx:real; var dy:real;

var dz:real) :integer; external;
function ingrasterop(var rastop:integer) :integer; external;
function ingretainsegname (arraycnt:integer; var seglist:iarr;
var segcnt:integer) :integer; external;
function ingretainsegsurf (segname:integer; arraycnt:integer;
var surflist:vwarr; var surfent:integer) :integer; external;
function ingsegdetectable (segname:integer; var dtable:integer)

4 sun

\ microsystems

O

Revision A, of 9 May 1988

£ ,,.,>

-

Appendix E — Using SunCore with Pascal Programs

187

:integer; external;

function ingseghighlight (segname:integer; var highlight:integer)
:integer; external;

function ingsegimgxform2 (segname:integer; var sx:real; var sy:real;
var a:real; var tx:real; var ty:real):integer; external;

function ingsegimgxform3 (segname:integer; var sx:real; var sy:real;
var sz:real; var rx:real; var ry:real; var rz:real; var tx:real;
var ty:real; var tz:real) :integer; external;

function ingsegimgxfrmtyp (segname:integer; var segtype:integer)
:integer; external;

function ingsegimgxlate?2 (segname:integer; var tx:real; var ty:real)
:integer; external;

function ingsegimgxlate3(segname:integer; var sx:real; var sy:real;
var sz:real) :integer; external:;

function ingsegvisibility(segname:integer; var visible:integer)
:integer; external;

function ingstroke (strokenum:integer; var bufsize:integer; var dist:real;
var time:integer) :integer; external;

function ingtextextent2 (var string:cct; var dx:real; var dy:real)
:integer; external;

function ingtextextent3(var string:cct; var dx:real; var dy:real; var dz:real)
:integer; external;

function ingtextindex(var color:integer) :integer; external;

function ingvaluator(valnum:integer; var init:real; var low:real;
var high:real) :integer; external;

function ingviewdepth (var fdist:real; var bdist:real):integer; external;

function ingviewplanedist (var vdist:real) :integer; external;

function inqgviewplanenorm(var dx:real; var dy:real; var dz:real)
:integer; external;

function ingviewrefpoint (var rx:real; var ry:real; var rz:real)
tinteger; external;

function ingviewup2 (var dx:real; var dy:real) :integer; external;

function ingviewup3(var dx:real; var dy:real; var dz:real):integer; external;

function ingvwgcntrlparms (var wclip:integer; var fclip:integer;
var bclip:integer; var typ:integer) :integer; external;

function ingviewingparams(var viewparm:vwprmtype) :integer; external;

function ingviewport2(var xmin:real; var xmax:real; var ymin:real;
var ymax:real) :integer; external;

function ingviewport3(var xmin:real; var xmax:real; var ymin:real;
var ymax:real; var zmin:real; var zmax:real) :integer; external;

function ingvisibility(var visible:integer) :integer; external;

function ingwindow(var umin:real; var umax:real; var vmin:real;
var vmax:real) :integer; external;

function ingworldmatrix2(var iarray:ivarrayl) :integer; external;

function ingworldmatrix3(var iarray:ivarray) :integer; external;

function lineabs2(x:real; y:real):integer; external;

function lineabs3(x:real; y:real; z:real):integer; external;

function linerel2(x:real; y:real):integer; external;

function linerel3(x:real; y:real; z:real):integer; external;

function mapndctoworld2 (ndx:real; ndy:real; var wldx:real; var wldy:real)
:integer; external;

function mapndctoworld3(ndx:real; ndy:real; ndz:real; var wldx:real;
var wldy:real; var wldz:real) :integer; external;

é{‘?f sun Revision A, of 9 May 1988

microsystems

188

SunCore Reference Manual

N
function mapworldtondc2 (wldx:real; wldy:real; var ndx:real; var ndy:real) N
:integer; external;
function mapworldtondc3 (wldx:real; wldy:real; wldz:real; var ndx:real;
var ndy:real; var ndz:real) :integer; external;
function markerabs2 (mx:real; my:real) :integer; external;
function markerabs3 (mx:real; my:real; mz:real) :integer; external;
function markerrel2 (dx:real; dy:real):integer; external;
function markerrel3(dx:real; dy:real; dz:real):integer; external;
function moveabs2 (x:real; y:real) :integer; external;
function moveabs3(x:real; y:real; z:real):integer; external;
function moverel2(x:real; y:real):integer; external;
function moverel3 (x:real; y:real; z:real):integer; external;
function newframe:integer; external;
function pasloc(function f:integer) :integer; external;
function polygonabs2(var xcoor:parr; var ycoor:parr; n:integer)
:integer; external;
function polygonabs3(var xcoor:parr; var ycoor:parr; var zcoor:parr; n:integer)
:integer; external;
function polygonrel2 (var xcoor:parr; var ycoor:parr; n:integer)
:integer; external;
function polygonrel3(var xcoor:parr; var ycoor:parr; var zcoor:parr; n:integer)
:integer; external;
function polylineabs2 (var xcoor:parf; var ycoor:parr; n:integer)
:integer; external; '
function polylineabs3(var xcoor:parr; var ycoor:parr; var zcCoOr:parr; Pan
n:integer) :integer; external; L)

function polylinerel2 (var xcoor:pakrr; var ycoor:parr; n:integer)
:integer; external;

function polylinerel3(var xcoor:parr;
n:integer) :integer; external;

function polymarkerabs2(var Xcoor:parr; var ycoor:parr; n:integer)
:integer; external;

function polymarkerabs3(var Xcoor:parr; var ycoor:parr; Var zCOOr:parr;
n:integer) :integer; external;

function polymarkerrel2(var xcoor:park; var ycoor:parr; n:integer)
:integer; external;

function polymarkerrel3(var Xcoor:parr; var ycCoor:parr;
n:integer) :integer; external;

function printerror(var string:cct; error:integer) :integer; external;

function putraster(var rptr:rasttyp) :integer; external;

function puttext (var string:cct) :integer; external;

function rastertofile(var rptr:rasttyp; var map:cmap; var rasfid:text;
n:integer) :integer; external;

function renameretainseg(segname:integer; newname:integer) :integer; external;

var ycoor:parr; var zCoor:parr;

var Zzcoor:parr;

function reportrecenterr(var error:integer) :integer; external;
function restoresegment (segname:integer; var fname:cct):integer; external;
function savesegment (segname:integer; var fname:cct) :integer; external;

selectvwsurf (var surfacename:vwsurf) :integer; external;
setbackclip(onoff:integer) :integer; external;

function
function

function setcharjust (chijust:integer) :integer; external;
function setcharpath2(dx:real; dy:real):integer; external; /‘“\
function setcharpath3(dx:real; dy:real; dz:real):integer; external; kwd/

function

setcharprecision(chquality:integer) :integer; external;

Revision A, of 9 May 1988

Sun

microsystems

-

N

Appendix E — Using SunCore with Pascal Programs

189

function
function
function
function
function
function
function
function

setcharsize (chwid:real; chht:real) :integer; external;
setcharspace (space:real) :integer; external;

setcharup2 (dx:real; dy:real):integer; external;

setcharup3 (dx:real; dy:real; dz:real) :integer; external;
setcoordsystype (typ:integer) :integer; external;
setdetectability (detect:integer) :integer; external;
setdrag(drag:integer) :integer; external;

setecho (devclass:integer; devnum:integer; echotype:integer)

:integer; external;

function

setechogroup (devclass:integer; var devarray:iarr; n:integer;

echotype:integer) :integer; external;

function

setechoposition(devclass:integer; devnum:integer; x:real; y:real)

:integer; external;

function

setechosurface (devclass:integer; devnum:integer;

var surfacename:vwsurf) :integer; external;

function
function
function
function
function

setfillindex(color:integer) :integer; external;

setfont (font :integer) :integer; external;
setfrontclip(onoff:integer) :integer; external;
sethighlighting(highlight:integer) :integer; external;
setimgtransform2 (sx:real; sy:real; a:real; tx:real; ty:real)

:integer; external;

function

setimgtransform3 (sx:real; sy:real; sz:real; ax:real; ay:real; az:real;

tx:real; ty:real; tz:real):integer; external;

function
function
function
function

setimgxformtype (segtype:integer) :integer; external;
setimgtranslate2 (tx:real; ty:real):integer; external;
setimgtranslate3(tx:real; ty:real; tz:real) :integer; external;
setkeyboard (keynum:integer; bufsize:integer; var string:cct;

pos:integer) :integer; external;

function
function
function
function
function
function
function
function
function
function
function
function
function
function
function
function

setlightdirect (dx:real; dy:real; dz:real):integer; external;
setlineindex (color:integer) :integer; external;

setlinestyle (style:integer) :integer; external;

setlinewidth (width:real) :integer; external;

setlocator2 (locnum:integer; x:real; y:real):integer; external;
setmarkersymbol (mark:integer) :integer; external;

setndcspace2 (width:real; height:real) :integer; external;
setndcspace3 (width:real; height:real; depth:real) :integer; external;
setoutputclip(onoff:integer) :integer; external;
setpen(pen:integer) :integer; external;

setpick(pickid:integer; aperture:real):integer; external;
setpickid(pickid:integer) :integer; external;

setpolyedgestyle (pestyle:integer) :integer; external;
setpolyintrstyle (pistyle:integer) :integer; external;
setprimattribs (var defprim:primattr) :integer; external;
setprojection(ptype:integer; dx:real; dy:real; dz:real)

:integer; external;

function
function
function
function

setrasterop (rop:integer) :integer; external;

setsegdetectable (segname:integer; detectbl:integer) :integer; external;
setseghighlight (segname:integer; highlight:integer) :integer; external;
setsegimgxform2 (segname:integer; sx:real; sy:real; a:real; tx:real;

ty:real) :integer; external;

function

setsegimgxform3 (segname:integer; sx:real; sy:real; sz:real; rx:real;

ry:real; rz:real; tx:real; ty:real; tz:real):integer; external;
function setsegimgxlate2 (segname:integer; tx:real; ty:real) :integer; external;

sun

microsystems

¢

Revision A, of 9 May 1988

190 SunCore Reference Manual

function setsegimgxlate3(segname:integer; tx:real; ty:real; tz:real)
:integer; external;

function setsegvisibility(segname:integer; visible:integer) :integer; external;

function setshadingparams (amb:real; dif:real; spec:real; flood:real; bump:real;
hue:integer; style:integer) :integer; external;

function setstroke(strokenum:integer; bufsize:integer; dist:real; time:integer)
:integer; external;

function settextindex(color:integer) :integer; external;

function setvaluator(valnum:integer; init:real; low:real; high:real) :integer;
external;

function setvertexindices{var x:iarr; n:integer) :integer; external;

function setvertexnormals(var xcoor:parr; Vvar ycoor:parr; var zcoor:parr;
n:integer) :integer; external;

function setviewdepth(near:real; far:real):integer; external;

function setviewplanedist (dist:real) :integer; external;

function setviewplanenorm(dx:real; dy:real; dz:real) :integer; external;

function setviewrefpoint (x:real; y:real; z:real):integer; external;

function setviewup2(dx:real; dy:real) :integer; external;

function setviewup3(dx:real; dy:real; dz:real) :integer; external;

function setviewingparams(var viewparm:vwprmtype) :integer; external;

function setviewport2 (xmin:real; xmax:real; ymin:real; ymax:real)
:integer; external;

function setviewport3(xmin:real; xmax:real; ymin:real; ymax:real; zmin:real;
zmax:real) :integer; external;

function setvisibility(visibility:integer) :integer; external;

function setwindow(umin:real; umax:real; vmin:real; vmax:real) A
:integer; external;

function setwindowclip(onoff:integer) :integer; external;

function setworldmatrix2(var iarray:ivarrayl) :integer; external;

function setworldmatrix3(var iarray:ivarray) :integer; external;

function setzbuffercut (var surfacename:vwsurf; var x:parr; var z:parr;
n:integer) :integer; external;

function sizeraster(var surfacename:vwsurf; xmin:real; xmax:real; ymin:real;
ymax:real; var rptr:rasttyp):integer; external;

function terminatecore:integer; external;

function terminatedevice (devclass:integer; devnum:integer) :integer; external;

function terminatevwsurf (var surfacename:vwsurf) :integer; external;

Note: since vwarr is an array of MAXVSURF viewsurfaces, arraycnt should be MAXVSURF.

function ingsegdetectable (segname:integer;var dtable:integer)
:integer; external;
function ingseghighlight (segname:integer;var highlight:integer)
:integer; external;
function ingsegimgxform2 (segname:integer;var sx:real;var sy:real;
var a:real;var tx:real;var ty:real
) rinteger; external;
function ingsegimgxform3 (segname:integer;var sx:real;var sy:real;
var sz:real;var rx:real;var ry:real;
var rz:real;var tx:real;var ty:real;var tz:real
) :integer; external;
function ingsegimgxfrmtyp (segname:integer;var segtype:integer)
:integer; external;
function ingsegimgxlate2 (segname:integer;var tx:real;var ty:real)

o

é&?g sun : Revision A, of 9 May 1988

microsystems

(ﬂm\
N ”

Appendix E — Using SunCore with Pascal Programs

191

function
function
function
function
function

function
function

function

function
function

function
function
function
function
function
function

function

function
function

function
function
function
function
function
function
function

function

function

:integer; external;
ingsegimgxlate3 (segname:integer;var sx:real;var sy:real;
var sz:real):integer; external:;
ingsegvisibility (segname:integer;var visible:integer):
integer; external;
ingstroke (strokenum:integer;var bufsize:integer:;var
dist:real;var time:integer) :integer; external;
ingtextextent2(var string:cct;var dx:real; var dy:real
) :integer; external;
ingtextextent3 (var string:cct;var dx:real; var dy:real
; var dz:real) :integer; external;
ingtextindex (var color:integer):integer; external;
ingvaluator(valnum:integer;var init:real;var low:real;var high:real)
:integer; external;
ingviewdepth (var fdist:real;var bdist:real)
:integer; external;
ingviewplanedist (var vdist:real) :integer; external;
ingviewplanenorm(var dx:real; var dy:real;
var dz:real) :integer; external;
ingviewrefpoint (var rx:real; var ry:real;
var rz:real):integer; external;
ingviewup?2 (var dx:real; var dy:real
) :integer; external;
ingviewup3 (var dx:real; var dy:real;
var dz:real) :integer; external;
ingvwgcntrlparms (var welip:integer;var fclip:integer;
var bclip:integer;var typ:integer)
:integer; external;
ingviewingparams (var viewparm:vwprmtype) :integer; external;
ingviewport2(var xmin:real; var xmax:real;var ymin:real;var ymax:real
) :integer; external;
ingviewport3(var xmin:real; var xmax:real;var ymin:real;var ymax:real
' ;var zmin:real;var zmax:real)
:integer; external;
ingvisibility(var visible:integer)
:integer; external;
ingwindow(var umin:real; var umax:real;var vmin:real;var vmax:real
) :integer; external;
ingworldmatrix2 (var iarray:ivarrayl) :integer; external;
ingworldmatrix3(var iarray:ivarray) :integer; external;
lineabs2 (x:real;y:real) :integer; external;
lineabs3(x:real;y:real;z:real) :integer; external;
linerel2 (x:real;y:real) :integer; external;
linerel3(x:real;y:real;z:real):integer; external;
mapndctoworld2 (ndx:real; ndy:real;
var wldx:real; var wldy:real)
:integer; external;
mapndctoworld3 (ndx:real; ndy:real; ndz:real;
var wldx:real; var wldy:real
; var wldz:real)
:integer; external;)
mapworldtondc2 (wldx:real; wldy:real;
var ndx:real; var ndy:real)

é%% sun Revision A, of 9 May 1988

microsystems

192 SunCore Reference Manual

:integer; external;

function mapworldtondc3(wldx:real; wldy:real;
var ndx:real; var ndy:real
; var ndz:real '

) :integer; external;

function markerabs2 (mx:real;my:real) :integer;

function markerabs3(mx:real; my:real;mz:real):

function markerrel2(dx:real;dy:real) :integer;
function markerrel3(dx:real; dy:real;dz:real)

wldz:real;

external;
integer; external;
external;

:integer; external;

function moveabs2 (x:real;y:real):integer; external;
function moveabs3(x:real;y:real;z:real) :integer; external;
function moverel2 (x:real;y:real) :integer; external;
function moverel3(x:real;y:real;z:real) :integer; external;

function newframe:integer; external;
function pasloc (function f:integer
) tinteger; external;

function polygonabs2(var xcoor:parr; var ycoor:parr;

n:integer) :integer; external;

function polygonabs3(var xcoor:parr; var ycoor:parr;var zcoor:parr;

n:integer) :integer; external;

function polygonrel2 (var xcoor:parr; var ycoor:parr;

n:integer) :integer; external;

function polygonrel3(var xcoor:parr; var ycoor:parr;var zcoor:parr;

n:integer) :integer; external;

function polylineabs2 (var xcoor:parr; var ycooOr:parr;

n:integer) :integer; external;

function polylineabs3 (var xcoor:parr; var ycoor:parr;var zCOoOIr:parr;

n:integer) :integer; external;

function polylinerel2(var xcoor:parr;var ycoor:parr;

n:integer) :integer; external;

function polylinerel3(var Xcoor:parr; var ycoor:parr;var zcoor:parr;

n:integer) :integer; external;

function polymarkerabs2 (var xcoor:parr; var ycoor:parr;

n:integer) :integer; external;

function polymarkerabs3(var Xcoor:parr; var ycoor:parr;var ZCOOL:parr;

n:integer) :integer; external;

function polymarkerrel2 (var xcoor:parr; var ycoOOr:parr;

n:integer) :integer; external;

function polymarkerrel3(var xcoor:parr; var ycoor:parr;var zcoor:parr;

n:integer) :integer; external;

function printerror(var string:cct;error:integer) :integer; external;

function putraster(var rptr:rasttyp) :integer;

external;

function puttext(var string:cct) :integer; external;
function rastertofile(var rptr:rasttyp;var map:cmap;rasfid:integer

) :integer; external;

function renameretainseg(segname:integer;newname:integer) :integer; external;

function reportrecenterr(var error:integer) :integer; external;
function restoresegment (segname:integer;var fname:cct) :integer; external;
function savesegment (segname:integer;var fname:cct) :integer; external;

function selectvwsurf (surfacename:vwsurf
) tinteger; external;

function setbackclip(onoff:integer) :integer; external;
function setcharjust (chjust:integer) :integer; external;

4y sun

microsystems

Revision A, of 9 May 1988

T

e’

N

Appendix E — Using SunCore with Pascal Programs

193

function
function
function
function
function
function
function
function
function
function
function

function

function

function

setcharpath2 (dx:real; dy:real):integer; external;

setcharpath3(dx:real; dy:real;dz:real) :integer; external;

setcharprecision(chquality:integer) :integer; external;

setcharsize (chwid:real;chht:real) :integer; external;

setcharspace (space:real) :integer; external;

setcharup2 (dx:real; dy:real) :integer; external;

setcharup3 (dx:real; dy:real;dz:real):intgger; external;

setcoordsystype (typ:integer) :integer; external;

setdetectability(detect:integer) :integer; external;

setdrag(drag:integer) :integer; external;

setecho (devclass:integer;devnum: integer;
echotype:integer) :integer; external;

setechogroup (devclass:integer;var devarray:iarr;n:integer;
echotype:integer) :integer; external;

setechoposition(devclass:integer;devnum:integer;
X:real;y:real) :integer; external;

setechosurface (devclass:integer;devnum:integer;

surfacename:vwsurf) :integer; external;

function
function
function
function
function

function

function
function
function
function

function
function

function
function

function

function
function
function

function
function
function
funiction
function
function
function
function

function

setfillindex(color:integer) :integer; external;
setfont (font :integer) :integer; external;
setfrontclip(onoff:integer) :integer; external;
sethighlighting(highlight:integer) :integer; external;
setimgtransform2 (sx:real; sy:real;a:real

;tx:real; ty:real):integer; external;
setimgtransform3 (sx:real; sy:real;sz:real;

ax:real; ay:real;az:real;

tx:real; ty:real;tz:real)

:integer; external;
setimgxformtype (segtype:integer) :integer; external;
setimgtranslate2 (tx:real; ty:real):integer; external;
setimgtranslate3 (tx:real; ty:real;tz:real) :integer; external;
setkeyboard (keynum:integer;bufsize:integer;var string:cct;

pos:integer) :integer; external;
setlightdirect (dx:real; dy:real;dz:real

) tinteger; external;
setlineindex(color:integer) :integer; external;
setlinestyle(style:integer) :integer; external;
setlinewidth(width:real) :integer; external;
setlocator2 (locnum:integer;x:real;y:real) :integer; external;
setmarkersymbol (mark:integer) :integer; external;
setndcspace2 (width:real;height:real) :integer; external;
setndcspace3 (width:real;height:real;depth:real)

:integer; external;
setoutputclip(onoff:integer) :integer; external;
setpen(pen:integer) :integer; external;
setpick(picknum:integer; aperture: real) :integer; external;
setpickid(pickid:integer) :integer; external;
setpolyedgestyle (pestyle:integer) :integer; external;
setpolyintrstyle(pistyle:integer) :integer; external;
setprimattribs (var defprim:primattr) :integer; external;
setprojection(ptype:integer;dx:real; dy:real;dz:real)

rinteger; external;
setrasterop (rop:integer) :integer; external;

4» sun

microsystems

Revision A, of 9 May 1988

194 SunCore Reference Manual

function

function

function

function

function

function

function

function

function

function

function

function

function setvertexnormals(var Xcoor:parr; Var yCOOIr:pParr;var ZCOOIr:parr;

setsegdetectable (segname:integer; detectbl:integer)
:integer; external;

setseghighlight (segname:integer; highlight:integer)
:integer; external;

setsegimgxform?2 (segname:integer;sx:real; sy:real;a:real;
tx:real;ty:real) :integer; external;

setsegimgxform3 (segname:integer; sx:real; sy:real;
sz:real; rx:real; ry:real; rz:real
; tx:real; ty:real; tz:real
) :integer; external;

setsegimgxlate2 (segname:integer;tx:real; ty:real
) tinteger; external;

setsegimgxlate3 (segname:integer;tx:real; ty:real;tz:real
) rinteger; external;

setsegvisibility(segname:integer;visible:integer) :integer; external;

setshadingparams (amb:real;dif:real;spec:real;flood:real;
bump:real;hue:integer;style:integer
) :integer; external;
setstroke (strokenum:integer;bufsize:integer;
dist:real;time:integer)
:integer; external;
settextindex (color:integer) :integer; external;
setvaluator(valnum:integer;init:real;low:real;high:real)
:integer; external; _
setvertexindices(var x:iarr;n:integer) :integer; external;

n:integer) :integer; external;

function
function
function
function
function
function
function
function

function

function
function

function
function
function
function

setviewdepth (near:real;far:real) :integer; external;
setviewplanedist (dist:real) :integer; external; ,
setviewplanenorm(dx:real; dy:real;dz:real):integer; external;
setviewrefpoint (x:real; y:real;z:real) :integer; external;
setviewup2 (dx:real; dy:real) :integer; external;
setviewup3(dx:real; dy:real;dz:real):integer; external;
setviewingparams (var viewparm:vwprmtype) :integer; external;
setviewport2 (xmin:real;xmax:real;ymin:real;ymax:real):
integer; external;

setviewport3 (xmin:real;xmax:real;ymin:real;ymax:real;zmin:real;zmax:real)

:integer; external;
setvisibility(visibility:integer) :integer; external;
setwindow (umin:real;umax:real;vmin:real;vmax:real)
:integer; external;
setwindowclip(onoff:integer) :integer; external;
setworldmatrix2 (var iarray:ivarrayl) :integer; external;
setworldmatrix3(var iarray:ivarray) :integer; external;
setzbuffercut (var surfacename:vwsurf;var x:parr;

var z:parr;n:integer) :integer; external;

function

function

function terminatedevice (devclass:integer;devnum:integer) :integer; external;

function

sizeraster (var surfacename:vwsurf;
xmin:real;xmax:real;ymin:real;ymax:real;
var rptr:rasttyp):integer; external;

terminatecore:integer; external;

terminatevwsurf (var surfacename:vwsurf) :integer; external;

N
%{é sSun Revision A, of 9 May 1988

microsystems

s

impen

Hardware Floating Point SunCore
Libraries

Hardware Floating Point SunCore Libraries 197

9

Hardware Floating Point SunCore
Libraries

SunCore programs intended for Sun workstations with hardware floating point
support may use alternative SunCore libraries which provide higher floating
point performance. Separate libraries are provided for each of the floating point
options described below.

The presence of one of these options is independent of whether a Graphics Pro-
cessor is present. It is not necessary to use one of these special libraries to take
advantage of the Graphics Processor.

For Sun-2 workstations, the only available floating point hardware is the SKY
floating point processor. The appropriate library in this case is
/usr/lib/libcoresky.a. A program linked with this library will only run
on a Sun workstation with a SKY board. k

For Sun-3 workstations, two floating point hardware options are available. For
Sun workstations with the MC68881 floating point co-processor, the appropriate
library is /usr/1lib/libcore68881.a. A program linked with this library
will only run on a Sun workstation with an MC68881. For Sun workstations
with a Floating Point Accelerator (FPA), the appropriate library is
/usr/1lib/libcorefpa.a. A program linked with this library will only run
on a Sun workstation with an FPA.

C programs written with SunCore can be compiled with the following command
line:

cc -fxxx —o box box.c -lcorexxx —lsunwindow -lpixrect -1im]

FORTRAN programs written with SunCore can be compiled with the following
command line:

'SR
o\

£f77 —fxxx —-o box box.f -lcore77 =-lcorexxx —lsunwindow -lpixrect =-1lm . j

Pascal programs written with SunCore can be compiled with the following com-
mand line: ‘

pc —faxx —o box box.p -lcorepas —lcorexxx —lsunwindow -lpixrect -1lm J

In these command lines, xxx should be replaced with the appropriate symbol

sSsun 197 Revision A, of 9 May 1988

microsystems

198 SunCore Reference Manual

Table F-1

from Table F-1.
Floating Point Libraries

Symbol | Description

sky Sky floating point board
68881 MC68881 floating point co-processor

fpa Floating Point Accelerator

If compiling and linking are done in separate steps, the —fxxx option must be
specified in the linking stage. The —£fxxx option may also be used in the compil-
ing step. Different modules within a program cannot be compiled with different
hardware floating point switches, but modules compiled with -fsoft or -
fswitch can be combined with modules compiled with a single type of
hardware switch. See the manual pages for cc(1), £77(1) and pc(1) for details.

To compile and link a program to run on any configuration of hardware for a
specific processor type (Sun-2 or Sun-3), use the —£ switch option for compil-
ing and linking. The —fswitch option will cause the compiler to take advan-
tage of floating point hardware if it is available. Otherwise, the compiler will
emulate this floating point support with software. See cc(1), £77(1) or pc(1)
for details. The —1core option links with the generic SunCore library,
/usr/lib/libsuncore.a. Note that different binary versions of a program

are required for Sun-2 and Sun-3 processors.

Many graphics programs written in C do not require the precision implied by
evaluating floating point expressions in double precision. The -fsingle
option may be used to force single precision evaluation of arithmetic expressions

involving only float quantities (see cc(1)).

Revision A, of 9 May 1988

T
o/

e

g

Error Messages

Error Messages

201

Error Messages

SunCore does not use the error numbers suggested by the. ACM CORE standard.
The following table matches an error number with the error message:

Table G-1 = SunCore Error Messages

Ai:;;r Description

0 The CORE SYSTEM has already been initialized.
1 The specified level cannot be supported.
2 The surface has already been initialized.
3 No physical surface is associated with the specified logical sur-

fmx* face. '

N 4 The CORE SYSTEM has not been initialized.
5 The specified surface has not been initialized.
6 The specified surface is already selected.

. 7 The specified surface was not selected.
A 8 A segment is open.
9 The specified surface is not selected. '
10 The specified surface has not been deselected.
11 This function has already been called once.
12 A segment has been opened.
13 A value specified for a default attribute is improper.
14 The specified segment does not exist.)
15 ‘The VIEW SURFACE ARRAY is not large enough.
16 Segment list overflow, can’t create segment.
17 There has been no ‘end batch’ since last ’'begin batch’.
18 There has been no corresponding 'begin batch’.
19 A viewing function has been invoked, or a segment has been
created.
20 The value for TYPE is improper.
21 No segment is open.
22 n is <= 0.
23 String contains an illegal character.
24 The vectors established by CHARSPACE and CHARUP are parallel.
= 25 Invalid marker table offset.

26 Invocation when no open segment.

N 27 Invalid attribute value.

f{?y sun 201 Revision A, of 9 May 1988

microsystems

202 SunCore Reference Manual

Table G-1 SunCore Error Messages— Continued

Ni:;‘;; Description

28 Invalid segment type.

29 Invalid segment number.

30 Invalid image transformation for the segment.

31 A retained segment named SEGNAME already exists.

32 The segment type is incoéonsistent with the current
IMAGE TRANSFORM.

33 No view surface is currently selected.

34 The current viewing specification is inconsistent.

35 No view surfaces have been initialized.

36 There is an existing retained segment named NEW NAME.

37 There is no retained segment named SEGMENT NAME.

38 No characters in string (n=0).

39 Dx, dy, and dz, are all zero: no direction can be established.

40 MIN is not less than MAX, for u or v bounds.

41 FRONT_DISTANCE exceeds BACK DISTANCE; back clip plane is in
front.

42 "ndcsp2’ or ‘ndcsp3’ has been invoked since SunCore was last ini-
tialized.

43 The invocation of ‘ndespx’ is toc late, default values have been
assumed.

44 A parameter value is greater than 1, or is less than or equal to
0.

45 ‘Neither parameter has a value of 1.

46 Viewport extent is outside of normalized device coordinate space.-

47 MIN is not less than MAX, for x, y, or z bounds.

48 Specified device already enabled.

49 DEVICE_ CLASS or DEVICE NUM invalid.

50 DEVICE CLASS invalid.

51 Specified device is not enabled.

52 LOCATOR _NUM is invalid.

53 The specified LOCATOR device 1is not enabled.

54 VALUATOR_NUM is invalid.

55 The specified VALUATOR device is not enabled.

56 The TIME value is less than zero.

57 EVENT_CLASS and EVENT NUM do not specify a valid event device.

58 EVENT CLASS is not a legal event device class.

59 The specified asscociation already exists.

60 EVENT_CLASS or SAMPLED CLASS reference invalid or wrong type of
class.

61 EVENT NUM or SAMPLED NUM are invalid device numbers for their
classes.

62 The specified association does not exists.

63 The current event report is not from a PICK device.

64 The current event report is not from a KEYBOARD event.

D
@:{& S l}tg Revision A, of 9 May 1988

"/

/”“>
)

7
|

o)

O

Appendix G — Error Messages 203

Table G-1 SunCore Error Messages— Continued

NIZ’:Z" Description
65 Input string was not large enough to hold the string centered by
user.
66 When event occurred, the LOCATOR device was not enabled or was
not associated with the event device.
67 When event occurred, the VALUATOR device was not enabled or was
not associated with the event device.
68 XECHO and YECHO specify positions outside NDC space.
69 PICK NUM does not specify a valid PICK device.
70 LOCATOR _NUM does not specify a valid LOCATOR device.
71 XLOC,YLOC specify a position outside normalized device coordinate
space.
72 VALUATOR NUM is not a valid VALUATOR device.
73 LOW_VALUE is greater than HIGH VLAUE.
74 INITIAL VALUE lies outside the range defined by LOW_VALUE and
HIGH VALUE.
75 KEYBOARD NUM is not a valid KEYBOARD device.
76 BUFFER SIZE is <= zero or > the defined maximum.
71 BUTTON_NUM is not a valid BUTTON device.
78 Incorrect arguments for the specified function.
79 Incorrect argument count for the specified function.
80 Specified function not supported.
81 More than MAXPOLY vertices in polygon.
82 Invalid Viewing Specification. Viewing Matrix Unchanged!
83 Invalid view surface name.
84 Selected view surface cannot support hidden surfaces.
85 No other view surface can be initialized at this time.
86 Raster depth is 1 or 8 bit pixels only.
87 Unable to allocate space for virtual memory display list.
88 Memory allocation failure.
89 Error in view reference point.
90 Error in view plane normal.
91 Error in view plane distance.
92 Error in view depth.
93 Error in projection.
94 Error in window.
95 Error in view up direction.
96 Error in viewport.
97 Set_ndc_space_2 or set _ndc_space_3 has already been invoked.
98 The default NDC space has already been established.
99 A parameter is not in the range of 0 to'l.
100 Neither width nor height has a value of 1.
101 Width or height is O.
102 STROKE NUM is not a valid STROKE device.
103 Input device is already initialized.
104 Input device is not initialized.

microsystems

éf:%? sSun Revision A, of 9 May 1988

204 SunCore Reference Manual

Table G-1 SunCore Error Messages— Continued —’
lezl;:z‘I)JZr Description
105 DEVICE_CLASS is not a valid device class.
106 Invalid echo type for PICK device.
107 Invalid echo type for KEYBOARD device.
108 Invalid echo type for STROKE device.
109 Invalid echo type for LOCATOR device.
110 Invalid echo type for VALUATOR device.
111 Invalid echo type for BUTTON device.
112 Echo position specified is outside NDC 'space.
113 No BUTTON device is initialized.
114 Invalid raster type.
115 Fewer than 3 vertices in polygon.

Revision A, of 9 May 1988

Type and Structure Definitions

Type and Structure Definitions 207

*)

et
™
A
.

Type and Structure Definitions

This appendix lists the types and structures used by SunCore functions. The
definition of these types and structures can be found in <usercore.h>.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
 #define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
' #define
#define
#define
#define
#define
#define
#define

BASIC
BUFFERED
BUTTON
CENTER
CHARACTER
CMR 4
CMRBQLD
COMPLETE
CONSTANT
DASHED

NN RO

(=2 SN |

2

/* Core output levels */

/* polygon shading modes */

DEFAULT VWSURF (ddname) {"", "", 0, ddname, 0, 0, "*, 0, 0}

DEVNAMESIZE 20

DOTDASHED
DOTTED
DYNAMICA
DYNAMICB
DYNAMICC
FALSE

GACHA
GACHABOLD
GALLANT
GOURAUD
GREEK
KEYBOARD
LEFT
LOCATOR
MAXVSURF
NOINPUT
NONE

NORMAL
NULL_VWSURF
OFF 0
OLDENGLISH
ORROP
PARALLEL
PERSPECTIVE
PHONG

{"",

O OUNWHRHFHFRFEFRFRFOWIMFOND WN MKW

/* raster font constants */

/* view surfaces; maximum number of */
/* Core input levels */
/* segment types */
/* rasterop selection */
", 0, 0, 0, O, "™, 0, O}

/* char justify constants */

w

N o N

/* transform constants */

v

4%?? Sun 207

microsystems

Revision A, of 9 May 1988

208 SunCore Reference Manual

(#define
#define
#define
#define
#define
#define
#define
#define
#define
$define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

int
int
int
int
int
int

int
int

int
int
int
int
int

int
int
int
int

static struct {

PICK 0
PLAIN 0
RIGHT 3
ROMAN 0
SAIL 2
SCRIPT 2
SHADED 1
SOLID 0
STICK 4
STRING 0
STROKE 5
SYMBOLS 5
SYNCHRONOUS 1
THREED 1
TRUE 1
TWOD 0
VALUATCOR 4
VWSURF NEWFLG
XFORM2
XFORM3
XLATEZ2
XLATE3
XORROP

= NN W W

lineindx;
fillindx;
textindx;
linestyl;
polyintstyl;
polyedgstyl;

float linwidth;

pen;
font;

chijust;
chqualty;
marker;
pickid;
rasterop;

struct vwsurf {
char screenname [DEVNAMESIZE];
char windowname [DEVNAMESIZE];

windowfd;
(*dd) () ;
instance;
cmapsize;

/*
/*

/*

/'k

/-k

/* default primitive attributes */

float chwidth,chheight;

float chup(4], chpath[4], chspacel[4];

} PRIMATTS = {1,1,1,SOLID,PLAIN, SOLID,0.0,0,STICK,11.,11.,
{0.,1.,0.,1.},{1.,0.,0.,1.}, {0.,0.,0.,1.},
OFF, STRING, 42, 0, NORMAL} ;

char cmapname [DEVNAMESIZE];

input device constants */
polygon interior style */

vector font select constants */

line styles */

Core dimensions */

J

&

sun Revision A, of 9 May 1988

microsystems

0

o

()

i

Appendix H — Type and Structure Definitions ~ 209

int flags;
char **ptr;

S

sSun

microsystems

Revision A, of 9 May 1988

p—

i
o
-

g

onc

g £ 85
50 mm.mmm
: RN
,mmwwmb

i £ B |

A _ 5 &% &
g TR
o 24 .ummDD
: 3 mmm.pm
g 258
5 2 mmewc
Q
(R m lzmm.mm

1.1. Declarations and the
Main Program

Figure I-1

Q@

Example Program

This appendix contains an example program that uses a number of SunCore’s
facilities. The example is called factory. It displays a factory building with a
smokestack and a cloud of smoke puffing out. Silicon chips move in at one end
of the building, and Sun Workstations come out of the other end.

Facilities displayed by this simple example include texturing, translation, scaling,
and output clipping. The example is presented function by function, with an
accompanying narrative.

The first line in a SunCore application program should include the file
<usercore.h> which contains the definitions required for using the SunCore
graphics package. The factory program also has some definitions stored in
the file factory.h.

factory.h Header File
e N
#define FACTORY 10

#define CLOUD 9

#define WORKSTATION 1 1

#define WORKSTATION 2 2

#define WORKSTATION_3 3

#define CHIP_1 4

#define CHIP 2 5

#define CHIP_3 6

\ J

Then there are some definitions. Then we define and initialize the variables that
describe the outlines of the various objects in the picture: Then we have the main
program: The first call in the program is to initialize SunCore, with an appropri-
ate exit if there is an error returned: Then we initialize and select a view surface.
Again, we exit if there was an error returned: Then we establish a viewport and a
window. Note that we can set clipping on output — this is a SunCore extension
to the ACM Core. Set up the color lookup table. Now make a temporary seg-
ment for a title and border. Next we establish a segment for the factory. This
segment is the simplest type, since we perform no transformations of any kind on
it. Next we establish a segment for the cloud above the factory. This segment is
subject to scaling, so we must allow for transformations. Lastly, we establish
segments for the chips and the workstations. The chips and workstations will be
moving across the picture, so these segments must allow translation. Notice that

sun

microsystems

213 Revision A, of 9 May 1988

214

SunCore Reference Manual

-

we created the workstations all on top of each other, and also all the chips on top S~/
of each other. The actual spatial separation of the individual segments is handled
in the main body of the animation code.
Now we get to the body of the code which animates the picture. The outer for
loop is done 100 times. The calls on the translation functions make the chips and
workstations move. The inner for loop makes the cloud grow: Finally, when
everything is done, we deselect the view surface, and terminate SunCore: The
remainder of the demonstration program consists of the functions which fill in
the details in the individual segments.
Figure -2 main.c Function
N
#include <usercore.h>
#include "factory.h"
static float deltal[] = {0.0, 0.025, 2*0.025, 3%0.025, 4*0.025,
5%0.025, 6*0.025, 7*0.025, 8*0.025, 9*0.025,
10*0.025, 11*0.025, 12*0.025};
int pixwindd{(); /* device driver name for SunWindows */
/* on a monochrome display - see Appendix B */
struct vwsurf vsurf = DEFAULT_VWSURF (pixwindd) ;
/* The DEFAULT VWSURF macro */
/* is defined in <usercore.h> */
main () p—

{

short i, p0, pl, p2;
float clx, cly, scale;

if (initialize core (DYNAMICB, NOINPUT, TWOD))

exit (0); .

if (initialize view surface(&vsurf, FALSE))
exit (1)

if (select view_ surface(&vsurf))
exit (1) ;

set viewport_ 2(0.05, 0.95, 0.05, 0.7);
set_window(30.0, 225.0, 30.0, 225.0);
set output clipping(TRUE) ;

set window clipping (FALSE) ;
create_temporary_segment();

move abs 2(30.0, 30.0);
line rel 2(0.0, 195.0);

line rel 2(195.0, 0.0);

line rel_2(0.0, -195.0);

line_rel 2(-1%95.0, 0.0):

set charprecision (CHARACTER) ;

set charsize(14.0, 14.0);

set text index(1l):;

move abs 2(40.0, 200.0);

text ("SunCore") ; ‘ {f“\

close temporary segment(); N
J
f%?} S un Revision A, of 9 May 1988
microsystems

Appendix | — Example Program 215

/”\>

.

set_image_transformation_type (NONE) ;
create_retained segment (FACTORY);

factory(110.0, 60.0);

close_retained segment ()

set_image transformation_type (XFORM2) ;
create_retained_segment (CLOUD) ;

map world to ndc 2(120.0, 100.0, &clx, &cly);
set_segment_ image transformation 2(CLOUD, 0.05, 0.1,

0.0, clx, cly + 0.02);
cloud (0.0, 0.0);
close retained_segment () ;
set_image transformation_type (XLATE2) ;

/* Draw the Sun Workstation Segment */
create retained segment (WORKSTATION_ 1);
sunws {(160.0, 60.0);
close_retained segment ()
create retained segment (WORKSTATION_2);
sunws (160.0, 60.0);
close retained segment();
create retained segment (WORKSTATION_ 3);
sunws (160.0, 60.0);
close retained segment ()

/* Draw the Chip Segment */
create_retained segment (CHIP_1);
chip(20.0, 70.0);
close_retained_segment () ;
create_retained segment (CHIP_ 2);
chip(20.0, 70.0);
close_retained segment () ;
create_retained segment (CHIP_3);
chip(20.0, 70.0);
close retained segment ();

p0 = 6;
pl = 4;
p2 = 8;

for (i=0; i<100; i++) {
set_segment_image translate 2 (WORKSTATION_ 1, delta[p0O], 0.0);
set_segment_image translate_ 2 (WORKSTATION_ 2, deltalpl], 0.0);
set_segment image translate 2 (WORKSTATION 3, delta[p2], 0.0);
set_segment image_translate 2 (CHIP_3, deltal[p2], 0.0);
set_segment_image_ translate_ 2 (CHIP_2, delta([pl], 0.0):
set_segment_ image translate 2 (CHIP_1, delta[p0], 0.0);

pO++;

pl++;

pa2++;

if (p0 > 11)
p0 = 0;

if (pl > 11)
pl = 0;

if (p2 > 11)
p2 = 0;

for (scale=0.1; scale<l.0; scale += 0.2)
set_segment_image transformation 2 (CLOUD,

J

é& Sun Revision A, of 9 May 1988

microsystems

216 SunCore Reference Manual

(0.5 * scale, scale, 0.0,)
clx, cly + scale * 0.2);

}

deselect_view_ surface (&vsurf);

terminate core():

L.2. The Factory Drawing First, here are the coordinates for the outline of the factory itself: The next set of
Function declarations describe the outline of the windows in the factory: Now we have the

actual code of the factory drawing function itself: The x0 and y0 arguments to
the factory function describe the absolute position in world coordinates at which
the factory should appear. The actual outline of the factory is described by the
array of coordinates declared above. Now we draw the windows within the fac-
tory: The next function is the one which draws the Sun Workstations within the
workstation segment.

Figure I-3 factory.c Function

#include <usercore.h>
#include "factory.h"”

{0.0, 0.0, 8.0, 2.0, 3.0, 2.0, 3.0,

1.0, 3.0, 1.0, 17.0, 0.0, -40.0};

{0.0, 20.0, 0.0, 20.0, 0.0, -20.0,

0.0, 15.0, 0.0, -15.0, 0.0, -20.0, 0.0};
static float winddx[] = {0.0, 0.0, 10.0, 0.0, =10.0};

static float winddyI[] = {0.0, 5.0, 0.0, -5.0, 0.0},

static int black = 3;

static int brick = 1;

static float factdx[]

static float factdyl!]

factory(x0, y0)
float x0, y0;
{
set fill index(brick);
move abs 2(x0, y0); /* Move to appropriate position */
polygon_rel 2(factdx, factdy, 12); /* Draw the factory outline */
set_fill index(black):

move_rel 2(5.0, 10.0); /* Move to position of first window */
polygon rel 2(winddx, winddy, 4); /* and draw the window */
move_rel 2(15.0, 0.0); /* Move to position of second window */

polygon_rel 2(winddx, winddy, 4): /* and draw the window */
set fill index(1l); /* reset fill index */

é%% sun ‘ Revision A, of 9 May 1988

microsystems

Appendix] — Example Program 217

C
L3. The Workstation The declarations below describe the outline of the Sun Workstation. Tube
Drawing Function describes the screen, Case describes the outer outline of the case, base describes
the base of the Workstation, and keybd describes the appearance of the keyboard:
Then all we have to do is move to the coordinates that were supplied as function
arguments, and draw the lines:
FigureI-4 sunws.c Function
-
#include <usercore.h>
#include "factory.h™
static float tubex[] = {0.0, 5.0, 0.0, =-5.0};
static float tubey([] = {5.0, 0.0, -5.0, 0.0};
static float casex[] = {1.0, 7.0, 1.0, 1.0, -1.0, -7.0, =1.0};
static float casey[] = {7.0, 0.0, -7.0, 1.0, 7.0, 0.0, -1.0};
static float basex[] = {9.0, -1.0, -1.0, -5.0, -1.0};
static float baseyl[] = {0.0, 0.0, -2.0, 0.0, 2.0};
static float keybdx[] = {0.0, 10.0, 3.0, 0.0, -10.0, -3.0, 10.0, 3.0};
static float keybdy[] = {-1.0, 0.0, 2.0, 2.0, 0.0, -3.0, 0.0, 3.0};
sunws (x0, y0)
float x0, yO0;
{
. move abs 2(x0+5.0, y0+8.0); /* Move to the position given */
<jm ‘ polyline rel 2(tubex, tubey, 4):; /* Draw the tube */
move_rel 2(-2.0, -1.0);
polyline rel 2(casex, casey, 7);: /* Draw the case */
move_rel 2(-1.0, -7.0);
polyline rel 2 (basex, basey, 5); /* Draw the base */
move_abs 2(x0, y0+1.0);
polyline rel 2(keybdx, keybdy, 8); /* Draw the keyboard */
}
\ y
1.4. The Chip Drawing The declarations below describe the outline of the chips. Plasti describes the out-
-‘Function line of the chip itself, while lead describes the outline of the leads on the chip:
Then all we have to do is move to the coordinates that were supplied as function
arguments, and draw the lines:
C

Revision A, of 9 May 1988

218 SunCore Reference Manual

{Aﬁx
N
Figure I-5 chip.c Function
4 R
#include <usercore.h>
#include "factory.h"
static float plastix[] = {0.0, 16.0, 0.0, -16.0};
static float plastiy([] = {4.0, 0.0, -4.0, 0.0};
static float leadx[] = {-1.0, 2.0, -1.0, 0.0};
static float leadyl[] = (2.0, 0.0, -2.0, -4.0};
chip (x0, yO0)
float x0, y0;
{ 1]
short 1i;
set_rasterop (XORROP) ;
move_abs 2 (x0, y0); /* Move to appropriate position */
polyline_rel 2(plastix, plastiy, 4):; /* Draw the chip */
move ‘rel 2(2.0, 1.0);
for (i=0; i<5; i++) { /* Draw the leads on the chip */
polyline rel 2(leadx, leady, 4):
move rel 2(3.0, 4.0); {’“\
} N’
set_rasterop (NORMAL) ; /* Reset rasterop */
}
\ J
LS. The Cloud Drawing The last function is the one that draws the cloud. The cloud function is easy: all
Function we have to do is draw its outline. The actual scaling of the cloud is done in the
main program.
The declarations below describe the outline of the cloud: Then all we have to do
is move to the coordinates that were supplied as function arguments, and draw
the lines:
.

& y
&v y U g Revision A, of 9 May 1988

Appendix I — Example Program

219

N

Figure I-6 cloud.c Function
> —~
#include <usercore.h>
#include "factory.h"
static float cloudx[] = {0.0, 8.0, -8.0, -4.0, 2.0, 14.0, 8.0, 0.0,
12.0, 8.0, 4.0, 0.0, -10.0, 10.0, 4.0, -2.0,
-6.0, -12.0, -6.0, -12.0, -10.0};
static float cloudyl[l] = {12.0, 8.0, 2.0, 6.0, 6.0, 10.0, -4.0, -6.0,
i0.0, 0.0, -4.0, -10.0, -10.0, -2.0, -6.0,
-8.0, -4.0, 0.0, 4.0, -8.0, 4.0};
cloud(x0, y0)
float x0, yO0;
{
move_ abs 2 (x0, y0);
polyline rel 2(cloudx, cloudy, 21);
}
\. J

»

3
\%
/

i
\

4»sun

microsystems

Revision A, of 9 May 1988

e,

R R S S R R

S

Index

A

allocate_raster(), 66
attributes, 73

dynamic, 45, 46, 73

image transformation type, 85

primitive, 73

segment, 73

static, 46, 73
attributes, retained segment static, 46
await_any button (), 103
await_any button get locator_ 2(}, 105
await_any_ button_get valuator (), 105
await_keyboard(), 104
await_pick (), 103
await_stroke 2 (), 104

B

batching updates, 20
begin_batch_of updates(),20
BUTTON input device, 97

C

character quality constants, 11
clipping, 25
close_retained segment (), 47
close_temporary_segment (), 49
constants, 10 thru 13
character quality, 11
image transformation type, 11
initialization, 10
input device, 12
line-style, 12
polygon rendering style, 13
RasterOp, 12
text font selection, 12
transform, 11
control, 17
- drag, 21
error handling, 17
frame, 17
initialization, 17
picture change, 17
termination, 17
view surface, 17
coordinate systems, 8
normalized device, 8

e B,

coordinate systems, continued

world, 8
Core type definitions, 207 thru 209
create_retained segment (), 47
create_temporary segment (),49
current position, moving, 56

D

data type definitions, 207 thru 209
define color indices(),78
delete_all retained segments(),48
delete_ retained segment (), 47
deselect_view_surface (), 19
drag control, 21
dynamic attributes

detectability, 86

highlighting, 86

image transformation, 86

visibility, 86

E

echoing, 98 thru 101
BUTTON device, 99
KEYBOARD device, 99
LOCATOR device, 100
PICK device, 99
STROKE device, 99
VALUATOR device, 100

end batch of updates(),20

error control, 20

error handling, 17

error reporting, 10

event-generating devices, 97

F

file_to_raster(), 67

FORTRAN interface
function definitions, 159 thru
function name mapping, 155 thr
programmmg hints, 152 thru 154
using FORTRAN, 151

frame control, 17

free raster(), 67

functional capabilities
classification, 9
dimension levels, 10

Index — Continued

functional capabilities, continued
input, 9
output, 9

G

get_mouse_state (), 105
get_raster(), 66
get_view_surface (), 119

I

image transformation type attribute

none, 46

transformable 2D, 46

transformable 3D, 46

translatable 2D, 46

translatable 3D, 46
image transformation type constants, 11
initialization and termination, 17 thru 18
initialization constants, 10
initialize core(),18
initialize device(),98
initialize_view_surface(), 19
input device constants, 12
input devices, 97

BUTTON, 97

echoing, 98 thru 101

event generating, 97

initializing, 98

KEYBOARD, 97

LOCATOR, 97

PICK, 97

reading, 102 thru 106

sampled, 97

STROKE, 97

terminating, 98

VALUATOR, 97
input primitives, 97

~ inguire_charjust (), 84

inquire charpath 2(), 84
inquire charpath 3(), 84
inquire_charprecision(), 84
inquire charsize(), 83
inquire charspace (), 84
inquire charup_2(), 84
inquire charup 3(), 84
inquire color_indices({(), 82
inquire current_position_2(), 56
inquire current_position_3(), 57
inquire detectability (), 91
inquire echo (), 106
inquire echo_position (), 106
inquire_echo_surface(), 106
inquire_f£fill index(), 83
inquire font (), 83
inquire_highlighting(}, 91
inquire_ image_ transformation_2(),91
inquire_ image transformation_ 3(),92
inquire image transformation type (), 86
inquire image_ translate 2(),91
inquire image translate 3(),91

-222 -

inquire_inverse composite_matrix(), 42

inquire_ keyboard (), 107

inquire line index(), 82

inquire linestyle(}, 83

inquire_linewidth (), 83

inquire locator_2(), 106

inquire marker_ symbol (}, 85

inquire ndc_space_2(), 38,40

inquire ndc_space_3(), 38,40

inquire open_retained_segment(),49

inquire open_temporary segment (), 49

inquire pick_id(), 84

inquire polygon_edge style(}, 83

inquire polygon_interior style(), 83

inquire primitive attributes(),85

inquire projection (), 38,40

inquire_rasterop(), 84

inquire retained segment names (), 48

inquire retained segment_surfaces ()}, 48

inquire_ segment_ detectability (), 92

inquire_segment_highlighting{(), 92

inquire_segment_ image_transformation_ 2 (), 92

inquire segment_image_ transformation_ 3(),93

inquire_segment_image transformation_type ()},
86

inquire_segment_image_translate_2(),92

ingquire_ segment_image_translate_3(),93

inquire segment_ visibility(),92

inquire_ stroke(), 107

inquire_text_extent_ 2(),59

inquire text_extent_3(),59

inquire_ text_index(), 83

inquire_ valuator (), 106

inquire view_depth (), 38,40

inguire view_plane_distance(), 38,39

inquire view_plane normal (), 38,39

inquire view_reference point (), 38,39

inquire_view_up_ 2{(), 38,40

inquire view_up_3(), 38,40

inquire viewing control_ parameters(),42

inquire viewing parameters (), 38,41

inquire viewport_2(), 38,40

inquire viewport_3(), 38,40

inquire visibility (), 91

inquire_window (), 38, 40

inquire_world coordinate matrix 2(),42

inquire world coordinate matrix 3(),42

K
KEYBOARD input device, 97

L
line functions, 57
line-style constants, 12
line abs 2(),57
line_abs_3(), 57
line_rel 2(),57
line rel_3(),57

N’

Index — Continued

lint library, 8
LOCATOR input device, 97

M

map_ndc_to_world 2(),37
map_ndc_to_world 3(),38
map_world to_ndc_2(),38
map world to_ndec_3(),38
marker functions, 60 thru 61
marker_abs_2(), 60
marker_abs_3(), 60
marker rel 2(),60
marker rel 3(),60

move abs_ 2 (), 56
move_abs_3(), 56
move_rel 2(),56
move_rel 3(),56

moving functions, 56 thru 57

N
NDC space, 4, 8
new_frame (), 20

0

output primitives
line, 53
marker, 53
move, 53
polygon, 53
polyline, 53
polymarker, 53
rasters, 53
text, 53

P
Pascal interface
declarations, 183 thru 194
function declarations, 185 thru 194
function name mapping, 179 thru 183
programming requirements, 175 thru 177
type declarations, 183 thru 185
using Pascal, 175
PICK input device, 97
picture change control, 17
polygon functions, 63 thru 64
polygon rendering style constants, 13
polygon shading parameters, 61 thru 63
polygon_abs_2(), 64
polygon_abs_3(), 64
polygon_rel 2(),64
polygon_rel 3(), 64
polyline functions, 58 thru 59
polyline abs_2(),58
polyline_abs_3(), 58
polyline rel 2(),58
polyline_rel 3(),58
polymarker abs_2(), 61
polymarker abs 3(),61
polymarker rel 2(),61

-223-

polymarker rel 3(}),61
primitive attributes, 73
primitive static attributes
charjust, 75
charpath, 75
charprecision, 75
charsize, 75
charspace, 75
charup, 75
fill index, 73
font, 74
line index, 73
linestyle, 73
linewidth, 74
marker symbol, 75
pen, 74
pick id, 75
polygon edge style, 74
polygon interior style, 74
rasterop, 75
text index, 73
put_raster(), 65

R
raster functions, 65 thru 68
raster_to_ file(), 67
RasterOp constants, 12
rename_retained segment (},48
report most_recent_error(),20
restore_segment (), 50

S

sampled input devices, 97
save_segment (}, 49
segment attributes, 46 thru 47, 73

detectability, 46

highlighting, 46

image transformation, 46

visibility, 46
segmentation, 45
segments, 45

attributes, 45, 47

dynamic attributes, 45, 46, 47, 86

operations, 47, 49

retained, 45

static attributes, 46, 85

temporary, 45
select_view surface(),19
set_back_plane clipping(),36
set_charjust (), 81
set_charpath 2(), 80
set_charpath 3(), 81
set_charprecision(), 81
set_charsize(), 80 \'\
set_charspace (), 80
set_charup 2(), 80
set_charup_3(), 80
set_coordinate system type (), 36
set_detectability (), 87
set_drag(),21
set_echo(), 100

|
/

Index — Continued

set_echo_group (), 101

set_echo position (}, 101

set_echo surface(), 101

set_fill index(),79

set_font (), 79

set_front_plane clipping (), 36
set_highlighting(), 87
set_image_transformation_2(), 87
set_image transformation_3(), 88
set_image transformation_type (), 85

set _image_translate_2(), 87

set_image translate 3(), 88
set_keyboard(), 102

set light_direction(), 62

set_line index(),78

set_linestyle(),79

set linewidth(),79

set locator_2(), 101

set_marker symbol (},81

set_ndc_space 2(),28,31
set_ndc_space_3(),28,32
set_output_clipping(), 36

set_pick (), 102

set_pick_id(), 81

set_polygon_edge style(),79
set_polygon_interior style(),79
set_primitive attributes (), 82
set_projection (), 28,30

set_rasterop(), 81

set_segment_ detectability(), 89
set_segment_highlighting (), 88
set_segment_image_ transformation_ 2 (), 89
set segment image transformation 3 (), 90
set_segment_image_translate_2{(), 89
set_segment image translate_ 3(), 90
set segment_visibility(),88
set_shading_parameters (), 62
set_stroke (), 102
set_text_index(),79

set_valuator (), 102

set vertex indices(), 63

set_vertex normals(), 63
set_view_depth(), 28,33

set. view_plane_ distance(), 28,30

set view_plane normal (), 28,30
set_view_reference_point (), 28,29
set_view_up 2(), 28,30
set_view_up_3(), 28,31

set_viewing_ parameters (), 28,35
set_viewport_2(), 28,34
set_viewport_3(), 28,34
set_visibility (), 87

set_window (), 28,33
set_window_clipping (), 36

set_world coordinate matrix 2(),37
set_world coordinate matrix 3(),37
set_zbuffer cut(),63

shading

shading, continued Negr”’

CONSTANT, 62
GOURAUD, 62
PHONG, 62
shading parameters, 61
size_raster(), 66
static attributes, 73
STROKE input device, 97

T

temporary segment, 45
temporary segment operations, 49
terminate core(}), 18
terminate device (},98
terminate view_surface(), 19
terminology, 3 thru 6
text font selection constants, 12
text functions, 59 thru 60
text (), 59
texture, 76

black, 77

cross hatched, 77

grey tone, 77

hatched left, 77

hatched right, 77

wallpaper, 77

wavy lines, 77

white, 77
transform constants, 11 /’.\\/
type definitions, 207 thru 209 N

U

<usercore.h>, 10

Vv
VALUATOR input device, 97
view surface
bwldd, 118, 152
bw2dd, 118, 152
cgldd, 118, 152
cg2dd, 119, 152
cgddd, 119, 152
cgpixwindd, 119, 153
control, 17
gpldd, 119, 153
gplpixwindd, 119, 153
initializing, 18 raru 19
pixwindd, 119, 153
selecting, 18 thru 19
vwsurf structure, 117
view volumes, 25

w
windows, 25
world coordinates, 8

s

	Title Page

	Contents

	Tables

	Figures

	Preface

	1. Introduction

	2. Control

	3. Viewing Operations and Coordinate Transforms

	4. Segmentation and Naming

	5. Output Primatives

	6. Attributes

	7. Input Primatives

	A. Deviations from ACM SIGGRAPH Core

	B. SunCore View Surfaces

	C. Alphabetical SunCore C Function Reference

	D. Using SunCore with Fortran-77 Programs

	E. Using SunCore with Pascal Programs

	F. Hardware Floating Point SunCore Libraries

	G. Error Messages

	H. Type and Structure Definitions

	I. Example Program

	Index

