
® 

A RISC Tutorial 

Part Number: 800-1795-10 
Revision A of 9 May, 1988 





Contents 

Chapter 1 Introduction .......................................................................................................... 1 

1.1. Scalable Processor Architecture .............................................................................. 1 

1.2. What is RISC? ................................................................................................................... 1 

1.3. RISC Architecture ........................................................................................................... 3 

1.4. Earlier Architectures ...................................................................................................... 4 

1.5. Early RISC Machines.................................................................................................... 5 

1.6. RISC's Speed Advantage............................................................................................ 7 

Chapter 2 SPARC Architecture ..................................................................................... 9 

2.1. Instruction Categories ................................................................................................... 10 

2.2. Register Windows ........................................................................................................... 10 

2.3. Traps and Exceptions .................................................................................................... 12 

2.4. Memory Protection ......................................................................................................... 12 

Chapter 3 An Open Architecture .................................................................................. 13 

3.1. Advantages of Open Architecture.......................................................................... 13 

3 .2. SP ARC Design and RISC 13 

3.3. How SPARC Design is Different 14 

3.4. Speed Advantage of SPARC Systems 14 

3.5. SPARC Machines and Other RISC Machines «J•:,:.,, ... ,;;;;.:,,; ..... ,. •••••••••• ; .... ,,;,;:·:;:;,.,,,.:::''. 

3.6. Conclusion ....... ,. .... ., ........................................................... ,.~,:.<;:•~···~··"·"• .. ,.,.,,~·''"":: ... ;,;;;,.,,:,~• ... :,.''"' 

-iii-





Figures 

Figure 1-1 Genealogy of RISC Architectures ................................................................ 6 

Figure 2-1 Sample SP ARC Implementation ................................................................... 9 

Figure Overlapping Register Windows ..................................................................... 11 

Figure 3-1 Processor Performance ........................................................................................ 15 

-v-





Scalable Processor 
Architecture 

1.2. What is RISC? 

Introduction 

Sun Microsystems has designed a RISC architecture, called SP ARC™, and has 
implemented that architecture with the Sun-4™ family of supercomputing work
stations and servers. SP ARC stands for Scalable Processor ARChitecture, 
emphasizing its applicability to large as well as small machines. SPARC sys-
tems have an open computer architecture the design specification is published, 
and other vendors are producing microprocessors implementing the design. As 
with the Network File System (NFS™), we hope that the intelligent and aggres
sive nature of the SP ARC design will become an industry standard. 

The term' 'refers to the size the smallest lines on a chip. As lines 
become smaller, chips get faster. However, some chip designs do not shrink well 
- they do not scale properly - because the architecture is too complicated. 
Because of its simplicity, SP ARC scales well. Consequently, SP ARC systems 
will get faster as better chip-making techniques are perfected. 

Although this document is neither detailed nor highly technical, it assumes that 
you are acquainted with the vocabulary of a computer architecture. (An architec
ture is an abstract structure with a fixed set of machine instructions.) The first 
chapter answers the questions: what is RISC, and why is it useful? The second 
chapter gives an overview of the SPARC architecture. The third chapter com
pares the SPARC design with other RISC architectures, pinpointing the advan
tages of Sun's design. 

RISC, an acronym for Reduced Instruction Set Computer, is a style of computer 
architecture emphasizing simplicity and efficiency. RISC designs begin with a 
necessary and sufficient instruction set. Typically, a few simple operations 
account for almost all computations - these operations must execute rapidly. 
RISC is an outgrowth of a school of system design whose motto is ' 'small is 
beautiful.'' This school follows Von Neumann's advice on instruction set 
design: 

The really decisive consideration in selecting an instruction set is 
"simplicity of the equipment demanded by the [instruction set], and 
the of its application to the actually important problems, 

handling those problems.'' 

Simpler hardware, by itself, would seem marginal benefit to the user. The 
advantage of a architecture is the inherent speed of a simple design and the 
ease of implementing and debugging this simple design. Currently, RISC 

1 Revision A, of 9 May 1988 



2 ARISC 

supercomputer is 



1.3. RISC Architecture 

1 - Introduction 3 

For computer architects, the word technology refers to how chips are made -
how lines are drawn, how wide these lines are, and the chemical process 
involved. The use of gallium arsenide in fabrication, which creates faster chips, 
is an example of a recent development in chip technology. 

The following characteristics are typical of RISC architectures. Although none 
of these are required for an architecture to be called RISC, this list does describe 
most current RISC architectures, including the SP ARC design. 

o Single-cycle execution. Most instructions are executed in a single machine 
cycle. 

o Hardwired control with little or no microcode. Microcode adds a level of 
complexity and raises the number of cycles per instruction. 

o Load/Store, register-to-register design. All computational instructions 
involve registers. Memory accesses are made with only load and store 
instructions. 

o Simple fixed-format instructions with few addressing modes. All instruc
tions are the same length (typically 32 bits) and have just a few ways to 
address memory. 

o Pipelining. The instruction set design allows for the processing of several 
instructions at the same time. 

o High-performance memory. RISC machines have at least 32 general-purpose 
registers and large cache memories. 

o Migration of functions to software. Only those features that measurably 
improve performance are implemented in hardware. Software contains 
sequences of simple instructions for executing complex functions rather than 
complex instructions themselves, which improves system efficiency. 

o More concurrency is visible to software. For example, branches take effect 
after execution of the following instruction, permitting a fetch of the next 
instruction during execution of the current instruction. 

The real to enhanced performance are single-cycle execution and keeping 
the cycle time as short as possible. Many characteristics of RISC architectures, 
such as load/store and register-to-register design, facilitate single-cycle execu
tion. Simple fixed-format instructions, on the other hand, permit shorter cycles 
by reducing decoding time. 

Note that some of these features, particularly pipelining and high-performance 
memories, have used in supercomputer designs for many years. The differ
ence is that in RISC architectures these ideas are integrated into a processor with 
a simple instruction set and no microcode. 

Moving functionality from run time to compile time also enhances performance 
- functions calculated at compile time do not require further calculating each 
time the program runs. Furthermore, optimizing compilers can rearrange pipe
lined instruction sequences and arrange register-to-register operations to reuse 
computational results. 

Revision A, of 9 May 1988 



4 A RISC Tutorial 

made microcode memory 
The IBM 

9 



1.5. Early RISC Machines 

1 - Introduction 5 

involving many more memory references in the instructions than the 
machines I have designed. Simplicity, I guess, is a way of saying it. I 
am all for simplicity. If it's very complicated, I can't understand it.'' 

Many computer designers of the late 1970s did not grasp the implications of vari
ous technological changes. At that time, semiconductor memory began to 
replace ferrite-core memory; integrated circuits were becoming cheaper and per
forming 10 times faster than core memory. Also, the invention of cache 
memories substantially improved the speed of non-microcoded programs. 
Finally, compiler technology had progressed rapidly; optimizing compilers gen
erated code that used only a small subset of most instruction sets. All of this 
meant that architectural assumptions made earlier in the decade were no longer 
valid. 

A new set of simplified design criteria emerged: 

o Instructions should be simple unless there is a good reason for complexity. 
To be worthwhile, a new instruction that increases cycle time by 10% must 
reduce the total number of cycles executed by at least 10%. 

o Microcode is generally no faster than sequences of hardwired instructions. 
Moving software into microcode does not make it better, it just makes it 
harder to modify. 

o Fixed-format instructions and pipelined execution are more important than 
program size. As memory gets cheaper and faster, the space/time tradeoff 
resolves in favor of time - reducing space no longer decreases time. 

o Compiler technology should simplify instructions, rather than generate more 
complex instructions. Instead of substituting a complicated microcoded 
instruction for several simple instructions, which compilers did in the 1970s, 
optimizing compilers can form sequences of simple, fast instructions out of 
complex high-level code. Operands can be kept in registers to increase 
speed even further. 

In the mid 1970s, some computer architects observed that even complex comput
ers execute mostly simple instructions. This observation led to work on the IBM 
801- the first intentional RISC machine (although the term RISC had yet to be 
coined). Built from off-the-shelf ECL (emitter-coupled logic) and completed in 
1979, the IBM 801 was a 32-bit minicomputer with simple single-cycle instruc
tions, 32 registers, separate cache memories for instructions and data, and 
delayed branch instructions. The 801 was the predecessor of the chip now used 
as the CPU for the IBM PC/RT™, introduced early in 1986. 

The term RISC was coined as part of David Patterson's 1980 course in micropro
cessor design at the University of California at Berkeley. The RISC-I chip 
design was completed in 1982, and the RISC-II chip design was completed in 
1984. The RISC-II was a 32-bit microprocessor with 138 registers, and a 330-ns 
cycle time (for the 3-micron version). Even then, without the aid of elaborate 
compiler technology, the RISC-II outperformed the VAX 11/780 at integer arith
metic. 

Revision A, of 9 May 1988 



6 A RISC Tutorial 

MIPS 

MIPS-X 

... 

Revision A, 9 1988 



1.6. RISC's Speed 
Advantage 

1 - Introduction 7 

Using any given benchmark, the perfonnance, P, of a particular computer is 
inversely proportional to the product of the benchmark's instruction count, I, the 
average number of clock cycles per instruction, C , and the inverse of the clock 
speed, S: 

p = 1 

I· C · ~ 
Let's assume that a RISC machine runs at the same clock speed as a correspond
ing traditional machine; S is identical. The number of clock cycles per instruc
tion, C , is around 1. 3 to 1. 7 for RISC machines, but between 4 and 10 for tradi
tional machines. This would make the instruction execution rate of RISC 
machines about 3 to 6 times faster than traditional machines. But, because tradi
tional machines have more powerful instructions, RISC machines must execute 
more instructions for the same program, typically about 20% to 40% more. 
Since RISC machines execute 20% to 40% more instructions 3 to 6 times more 
quickly, they are about 2 to 5 times faster than traditional machines for executing 
typical large programs. 

Compiled programs on RISC machines are larger than compiled programs on 
traditional machines, partly because several simple instructions replace one com
plex instruction and partly because of decreased code density. All RISC instruc
tions are 32 bits wide, whereas some instructions on traditional machines are nar
rower. But the number of instructions actually executed may not be as great as 
the increased program size would indicate. Global registers, for example, often 
simplify call/return sequences so that context switches become less expensive. 

Designers of RISC machines dramatically reduce the clock cycles per instruction 
while slightly increasing the instruction count per program, resulting in an 
overall perfonnance increase. Moreover, RISC architectures scale better to new 
technology than more complicated architectures. Sometimes architectural clev
erness backfires - because of complicated design, the perfonnance of a machine 
will not improve at the same rate as technology advances. Simple RISC architec
tures, by contrast, will scale upwards as cycle times decrease and memory sizes 
increase. 

Revision A, of 9 May 1988 



8 A RISC Tutorial 

Revision A, of 9 1988 



Figure 2-1 

2 
SP ARC Architecture 

An architecture, or abstract design, often spans several hardware implementa
tions. This chapter introduces the SP ARC architecture, without going into 
specifics about particular implementations. 

The SP ARC CPU is composed of an Integer Unit (IU) that performs basic pro
cessing and a Floating-Point Unit (FPU) that performs floating-point calcula
tions. According to the architecture, the IU and the FPU may or may not be 
implemented on the same chip. Although not a formal part of the architecture, 
SP ARC-based computers from Sun Microsystems have a memory management 
unit (MMU), a large virtual-address cache for instructions and data, and are 
organized around a 32-bit data and instruction bus. 

Sample SP ARC Implementation 

--
IU FPU 

I<· .... ·:?>. 

J, ,, 

• 
,, 

I instruction and data bus I 
j ~ 

II 

main MMU VME - - -
memory - - cache - I/O 

The integer and floating-point units operate concurrently. The IU extracts 
floating-point operations from the instruction stream and places them in a queue 
for the FPU. The FPU performs floating-point calculations with a set number of 
floating-point arithmetic units (the number is implementation-dependent). The 
SP ARC architecture also specifies an interface for the connection of an additional 
coprocessor. 

9 Revision A, of 9 May 1988 



since 8 overlap), 



Figure 2-2 

2 - SP ARC Architecture 11 

windows. Note that the first actual SP ARC implementation has 7 windows, so in 
addition to the windows in this diagram, there would also be wO wO local, 
and wO out. 

t return 

t Current Window Pointer 

rotate counterclockwise; for a return 

The alternative to windows encompasses slower, more elaborate register 
allocations, which must be performed during compile time. For languages such 
as C, and Modula-2, is merely time consuming. For explora-
tory such as Lisp and Smalltalk, where compiler 
speed is to improving productivity, users may find slow 
optimizing compilers unacceptable, and unable to achieve the potential perfor
mance available on SP ARC machines. 

Recent research suggests that register windows and tagged arithmetic, found in 
SP ARC but not in commercial RISC machines, are sufficient to 
provide for system development requiring AI 

Revision A, of 9 May 1988 



12 A RISC Tutorial 

2.3. Traps and Exceptions 

2.4. Memory Protection 

languages such as Lisp and Smalltalk. t Recent benchmark experience with 
SP ARC systems supports earlier evidence. 

The SP ARC design supports a full set traps and interrupts. They are handled 
by a table that supports 128 hardware and 128 software traps. Even though 
floating-point instructions can execute concurrently with integer instructions, 
floating-point traps are precise because the FPU supplies (from the table) the 
address of the instruction that failed. 

Some SPARC instructions are privileged and can only be executed while the pro
cessor is in supervisor mode. This instruction execution protection ensures that 
user programs cannot accidentally alter the state of the machine with respect to 
its peripherals and vice versa. 

The SP ARC design also provides memory protection, which is essential for 
smooth multitasking operation. Memory protection makes it impossible for user 
programs that have run amok to trash the system, other user programs, or them
selves. 

t D. Ungar, R. Blau, P. Foley, A.D. Samples, D. Patterson, ''Architecture of SOAR: Smalltalk on a RISC,'' 
in Proceedings of the 11th Annual International Symposium on Computer Architecture, Ann Arbor, 1984. 

Revision A, of 9 May 1988 



3.1. Advantages of Open 
Architecture 

3.2. SP ARC Design and 
RISC 

3 
An Open Architecture 

The SP ARC design is the first open RISC architecture, and one of the few open 
CPU architectures. An architectural standard would lift the industry out of often 
useless debates over the merits of various microprocessors. Standard products 
are more beneficial than proprietary ones, because standards allow users to 
acquire the most cost-effective hardware and software in a competitive multi
vendor marketplace. Integrated circuits would come from chip vendors, while 
software would be supplied by systems vendors. This advantage is lost when 
users are limited by a processor with proprietary hardware and software. 

RISC architectures, and the SPARC design in particular, are easy to implement 
because they are relatively simple. Since they have short design cycles, RISC 
machines can absorb new technologies almost immediately, unlike complicated 
computer architectures. 

The SP ARC architecture is an aggressive, forward-thinking design. Even in the 
first implementation, processor cycle time is very fast - equivalent to the access 
time of static random-access memory (SRAM) rather than dynamic random
access memory (DRAM). Because registers are used intensively in a load/store 
architecture, the high cost of fast memory (as with SRAM) can be concentrated 
where it is used the most - in registers. Because the clock cycles per instruction 
are kept to a minimum, pipelining is simple and fast, since few restarts are neces
sary. So the high performance of SPARC systems results from both simple 
design and technological leverage. 

Like other RISC architectures, SP ARC systems provide: 

o Single-cycle execution. All instructions except loads, stores, and floating
point operations can be executed in one machine cycle. 

o Simple instruction format. All instructions are 32 bits wide and word
aligned in memory. Op-codes and addresses are always in the same place, 
so decoding hardware can be simplified. 

o Register-intensive architecture. Instructions operate on two registers or on a 
register and a constant, placing the result in a third register. The only way to 
access memory is with load and store instructions. 

o Large register windows. The processor has access to a large number of 
registers configured into overlapping sets, so that compilers can automati
cally cache values and pass parameters in registers. 

~\sun ~ microsystems 
13 Revision A, of 9 May 1988 



14 A 

and 



Figure 3-1 

3.5. SPARC Machines and 
Other RISC Machines 

3.6. Conclusion 

Architecture 15 

we come up with these numbers (/ indicates millions of instructions so P is in 
MIPS): 

Processor Performance 

Processor Performance 
cpu I c s p 

Motorola 68030 1.0 5.2 16.67 3.21 
Intel 80386 1.1 4.4 16.67 3.44 
SPARC 1.2 1.3 16.67 10.69 

Thus, SP ARC systems have a considerable theoretical performance advantage 
over other microprocessors on the market. The table compares three processors 
running at the same clock speed; higher clock speeds are possible with all three 
processors. 

The SPARC design has more similarities to Berkeley's RISC-II architecture than 
to any other RISC architecture. Like the RISC-II architecture, it uses register 
windows in order to reduce the number of load/store instructions. The SP ARC 
architecture allows 32 register windows, but the initial implementation has only 
7 windows. The tagged instructions are derived from SOAR, the "Smalltalk On 
A RISC'' processor developed at Berkeley after implementing RISC-II. 

Until recently, RISC architectures have performed poorly on floating-point calcu
lations. The IBM 801, for example, implemented floating-point operations in 
software. The Berkeley RISC-I and RISC-II outperformed a VAX 111780 in 
integer arithmetic, but not in floating-point arithmetic. This was also true of the 
Stanford MIPS processor. SP ARC systems, on the other hand, are designed for 
optimal floating-point performance, and support single-, double-, and extended
precision operands and operations, as specified by the ANSI/IEEE 754 floating
point standard. 

High floating-point performance results from concurrency of the IU and FPU. 
The integer unit loads and stores floating-point operands, while the floating-point 
unit performs calculations. If an error (such as a floating-point exception) occurs, 
the floating-point unit specifies precisely where the trap took place; execution is 
expediently resumed at the discretion of the integer unit. Furthermore, the 
floating-point unit has an internal instruction queue; it can operate while the 
integer unit is processing unrelated functions. 

SP ARC systems deliver very high levels of performance. The flexibility of the 
architecture makes future systems capable of delivering performance many times 
greater than the performance of the initial implementation. Moreover, the open
ness of the architecture makes it possible to absorb technological advances 
almost as soon as they occur. 

~\sun ~ rnicrosysterns 
Revision A, of 9 May 1988 




