
sun®
microsystems

Porting Software to SPARC Systems

Part Number: 800-1796-10
Revision A of 9 May, 1988

Inc.

Contents

Chapter 1 Machine Architecture ... 1

1.1. Introduction 1

1.2. Non-Issues ... 1

Word Size.. 1

Byte Ordering 1

Scalar Representation 2

1. 3. How to Read this Document ... 2

Chapter 2 Porting C Programs .. 3

2.1. Porting Issues 3

Data Alignment .. 3

Structure Alignment and Padding ... 4

Function Return Values ... 5

Passing Mismatched Parameter Types ... 5

Parameter Passing: varargs () .. 6

Order of Parameter Evaluation ... 6

Passing Union Arguments to semctl () 6

Stack Allocation with alloca () 6

Out-of-Range Shifts 6

Uninitialized Automatic Variables 6

2.2. Conclusion 7

Chapter 3 Porting FORTRAN Programs 9

3.1. Porting Issues 9

-iii-

Contents-

The COMMON

4.1.

Data

of Parameter

4.2.

Variables

9

10

10

11

11

11

13

13

13

13

Figures

Figure 1-1 Forward Byte and Backward Bit Ordering (MC680x0 &

SPARC)... 1

Figure 1-2 Backward Byte and Bit Ordering (VAX & 80386) 1

Figure 1-3 Forward Byte and Bit Ordering (IBM 360) ... 1

Figure 2-1 Structures that Result in Non-Portable Binary Files 4

Figure 3-1 Alignment Problems with EQUIVALENCE .. 9

Figure 3-2 Alignment Problems with COMMON .. 10

Figure 4-1 Records that Result in Non-Portable Binary Files 12

Table 4-1 Bitwise Operations in Pascal and C ... 13

-v-

1.1. Introduction

1.2. Non-Issues

Word Size

Byte Ordering

1
Machine Architecture

This document is intended for programmers who are porting programs written in
C, FORTRAN, or Pascal from Sun-2 or Sun-3 machines to SP ARC systems. The
acronym SP ARC stands for Scalable Processor ARChitecture. SP ARC is a RISC
(Reduced Instruction Set Computing) architecture easily scalable to new techno­
logies, and is described in the SP ARC Processor Architecture manual.

Here are some common porting considerations that are not of concern here.

Both the Sun-2, based on the Motorola MC68010 CPU, and the Sun-3, based on
the MC68020, are 32-bit machines. That is, integers are 32 bits long. Since
SP ARC is a 32-bit architecture, word size is not an issue.

Both the MC68010 and the MC68020 have forward byte ordering but reverse bit
ordering. In other words, the MC680x0 is big-endian with respect to bytes, but
little-endian with respect to bits. The same is true of SP ARC machines. Thus,
byte ordering is not an issue.

By contrast, the VAX and the Intel 80386 have both reverse byte ordering and
reverse bit ordering. In other words, they are little-endian architectures. The
IBM 360, on the other hand, has both forward byte ordering and forward bit
ordering. In other words, it is a big-endian architecture.

Figure 1-1 Forward Byte and Backward Bit Ordering (MC680x0 & SPARC)

Figure 1-2 Backward Byte and Bit Ordering (VAX & 80386)

byte 3

Figure 1-3 Forward Byte and Bit Ordering (IBM 360)

~sun
microsystems

1 Revision A, of 9 May 1988

The bit and byte ordering of the VAX, Intel 80386, and IBM 360 are not relevant
when porting from the Motorola 680x0 to SP ARC systems. They are mentioned
only for comparison. Also, note that the difference in bit ordering between the
MC680x0 and the IBM 360 is purely notational. That is, on the MC680x0 the bit
named 0 is the least significant, but on the IBM 360 the bit named 31 is the least
significant. These bits have the same numeric value, but different names.

Scalar Representation Both the MC680x0 and SP ARC machines use two's-complement integers, and
standard IEEE floating-point single- and double-precision representations. So
scalar data representation is not an issue.

1.3. How to Read this The next chapter describes issues you may encounter when porting C programs
Document to SPARC systems. The chapter after that covers the porting of FORTRAN pro­

grams. The last chapter talks about porting Pascal programs to SP ARC systems.
You may read only the material that concerns you.

2.1. Porting Issues

Data Alignment

2
Porting C Programs

Here are some architectural considerations that you should be aware of when
porting C programs to SP ARC machines. Fortunately you can pinpoint most of
these problems with lint -ch. The -c flag detects unportable casts, and the -
h flag performs heuristic checking.

On the MC680x0, characters are aligned on byte boundaries, and everything else,
regardless of size, is aligned on halfword (even) boundaries. On SPARC
machines, all quantities must be aligned on boundaries corresponding to their
sizes: bytes on byte boundaries, (16-bit) halfwords on halfword boundaries, (32-
bit) words on word boundaries, and (64-bit) doublewords on doubleword boun­
daries. If you are coding in assembly language, you must observe alignment res­
trictions. Otherwise, compilers normally keep track of everything for you. There
are several C language constructs, however, that may lead to a bus error during
execution:

o Casting a pointer to a char or unsigned char into a pointer to a larger
quantity, such as a short, int, long, float, double, or struct/­
union containing one of these. This includes passing a char * as an argu­
ment to a function expecting a pointer to a larger quantity.

o Casting a pointer to a short or unsigned short into a pointer to a
larger quantity, such as an int, long, float, double, or struct/­
union containing one of these. This includes passing a short * as an
argument to a function expecting a pointer to a larger quantity.

o Casting a pointer to a 32-bit quantity (such as an int, unsigned int, or
float) into a pointer to a (64-bit) double or struct/union containing
a double. This includes passing a pointer to a 32-bit quantity as an argu­
ment to a function expecting a pointer to a double. C programmers should
note that float *and double *are not the same.

The above constructs may work occasionally, if the pointer happens to end up on
the right boundary. But more often, these constructs lead to bus errors. It is not
the cast itself that causes the bus error, but rather dereferencing the resulting
pointer. The use of lint should catch most of these problems.

~\sun ~ microsystems
3 Revision A, of 9 May 1988

Structure Alignment and
Padding

Figure 2-1

MC680x0, each structure is aligned on a halfword
machines, the alignment requirement for a struc-

ture is the same as that of its most aligned component. For instance, a
struct char members has no alignment restrictions, whereas
a struct a double must be aligned on an 8-byte boundary .

.... v ~vL•vn..v, structures are padded internally so that
on an even boundary. On SPARC machines,

........................... .LA._, so element is aligned on the appropri-
......... .., """'' a struct containing only one char and then a

11-1 ,u _i;;. after the so that the 1 on g is aligned on a

Because of the three considerations members of a given structure may
have ...,._.._. __ .._.,, ,.. , ,,.,,than on the MC680x0, and the struc-

Even though data representations are
files where raw structures have

been written out may not be between processors. Note that structures
retained in memory are problems occur only when raw structures are written
to disk or across the network.

Result in Non-Portable

struct chl
{

char
i

struct

char cl;
char
char c3;

MC680x0

+2

+1

could not be written on one processor
would

Files

sizeof(struct)
MC680x0 SPARC

+4 6 8

+1
4 3

you could write a program to run
...... ..,.~...,. ... -._. ,, to the require-

......... , .. ,,.. ,""""' used with device-

Revision A, of 9 1988

Function Return Values

Passing Mismatched
Parameter Types

5

Second, if a structure must be portable across machines, Sun's eXternal Data
Representation (XDR) is the best solution. The best way to write a record on one
machine that is to be read on others is to use an XDR standard representation for
the data. See the section entitled "XDR Protocol Specification" in the manual
Networking Programming on the Sun Workstation.

Third, you could manually arrange the members of a structure, from the most to
least restrictive alignment requirements, then insert explicit fill (padding) ele­
ments as needed. Structures are often designed in this manner anyway, with the
largest elements at the beginning.

On SP ARC machines, if a function is going to return a structure by value, both
the calling function and the called function must agree on its type. If the called
function returns a structure by value but the calling function doesn't use it, no
harm is done. The value is returned, but the calling function ignores it. If the
called function does not return a structure by value but the calling function
expects one, you get an "Unimplemented Instruction Trap" at runtime upon
return from the called function. The use of lint should catch these problems.

The C language does not define what happens when you pass a list of variables to
a routine that receives a struct by value, or vice versa. This just happened to
work with Sun's MC680x0 C compilers. On SPARC machines, it does not work.
Here is an example that won't work on SP ARC:

struct thing {

int x, y;
} ;

int a, b;

routine(s)
struct s;

routine(a, b) ;
....

Likewise, on SPARC machines, passing a union by value is not equivalent to
passing one of its elements (use of lint should catch this). Here is a construct
that won't work on SP ARC:

union thing {
int i; double x;

} combo;

routine(x)
double x;

routine(combo);

.)

sun
microsystems

Revision A, of 9 May 1988

Parameter R.Jl'll•C'"'" 1
'"'

0
•

varargs()

Order of Parameter

Passing
semctl ()

Stack Allocation
alloca ()

Out-of-Range

Uninitialized
Variables

manipulating it to access other
MC680x0 C com-

The order of evaluation of to a function is not defined by the C
language, and is different in SPARC C compilers than in Sun's MC680x0 C
compilers. consider this ex<:UnJ)le:

Since the of func (} are evaluated in a different order on SPARC
systems than on Sun-2 or Sun-3 machines, the caused by i++ is going
to yield on different It is never a good idea to make
assumptions order of parameter evaluation. strategy is to
write C not depend on effects of parameter evaluation.

Users of the V semaphore have to modify code that worked
on other machines for SPARC. With the the subcom­

require a mands
IJr.n,CTr"J>rY'IC' that call semctl () with

rather than an element of the
semctl () with other

than pass a constant such
problems of this kind.

On SPARC users of the stack allocation routine alloca () must
1 nro' 111 r 1

""' the <al lo ca. h> routine. Furthermore,
al lo ca () is now it cannot be assigned to an int

(*) () nor can it parameter.

...,.,_"_,,., <<, >>,<<=,or>>= with a right­
the left-hand operand (in bits)

F.,, are not aware of this, and
zero. This is often true on

...... i-,...... .. ,..i-, .. r1 modulo 64. This is
machines, count is interpreted

is to avoid shift counts greater than the size of the
"""''"""t-·nre> shift count results on either

uninitialized have different values
on use of
uninitialized automatic variables continues to be a poor programming practice.

the use detect such ,.,.h,"'•m"

Revision A, of 9 1988

2.2. Conclusion

7

Well-written portable C programs should compile and run on SPARC machines
as well as on other machines. Non-portable programs, by definition, may present
problems when transported to SPARC machines, or to any other machine. There
is no substitute for good program design and judicious use of lint.

Revision A, of 9 May 1988

3.1. Porting Issues

The EQUIVALENCE

Statement

Porting FORTRAN Programs

In general, there are fewer potential areas of concern in porting FORTRAN pro­
grams to SP ARC than there are porting C programs. Data alignment is not a
problem, because FORTRAN has no type casting mechanism. Binary reads and
writes are done byte-by-byte, so structure padding is not a concern. FORTRAN
has no structures, no unions, and no mechanism for variable-length argument
lists, so these do not pose portability problems, either.

The EQUIVALENCE statement and the COMMON block, and the order of parame­
ter evaluation, are perhaps the only potential problem areas.

The use of EQUIVALENCE can force double-precision variables to be
misaligned, as in the following FORTRAN code:

Note that the 8-byte doubleword D (1) does not begin on an 8-byte boundary
owing to the even though it would be much more efficient for
D (1) to be aligned on an 8-byte boundary.

Figure 3-1 Alignment Problems with EQUIVALENCE

Because this usage of EQUIVALENCE is standard FORTRAN, the FORTRAN
compiler must deal with it. When an statement skews align-
ment, the compiler generates code to access double-precision variables as pairs
of single-precision variables. These variables are loaded and stored with word
instructions, rather than with doubleword instructions. Unfortunately this slows
down execution somewhat, so for the sake of efficiency, it is best not to
EQUIVALENCE variables without regard for data alignment.

9 Revision A, of 9 May 1988

Software to SP ARC

COMMON Block

3-2

""' _L ... , i::;_,_u s1.ng.1e-1Jre1c1s1ton arrays before double-precision
uuurnle-IJre...,c,,,1.ll"''''V.1.J. variables to be

COMMON

boundary because
much more efficient for

the FORTRAN compiler
array D as of single-

word instruc-
........ ...,,1 this slows down

placing double-

pruran1et~ers to a FORTRAN function or subroutine is
Let's consider this example:

subroutine tally (),
than on the MC680x0, the

that does not depend on the order of

Revision A, of 9 1988

4.1. Porting Issues

Data Alignment

Record Alignment and
Padding

4
Porting Pascal Programs

Here are some architectural considerations that may cause problems when port­
ing Pascal programs to SP ARC.

Since Pascal has no type casting mechanism like the one in C, there should never
be data alignment problems caused by casting pointers to small objects into
pointers to larger objects.

However, it is possible to simulate the effect of type casts by the use of the vari­
ant record mechanism. For example, the following program may fail to work as
you would expect:

program WontWork;

type
f oo = record

case boolean
false :

(Iptr
true :

(Cptr
end;

var
bar : foo;

begin
new(bar.Cptr);
bar.Iptr"' ·= 0;

end.

of

"'integer);

"char)

On the MC680x0, each record is aligned on halfword (even) boundaries. On
SPARC machines, the alignment requirement of a record is the same as that of
its most strictly aligned component. For instance, a record containing only
char members has no alignment restrictions, whereas a record containing a
real must be aligned on an 8-byte boundary.

On the MC680x0, records are padded internally so that integers and reals
always begin on an even boundary. For instance, a record containing only one

~\sun ~ microsystems
11 Revision A, of 9 May 1988

the so that

on one

8

3

Order of Parameter
Evaluation

Out-of-Range Shifts

Table 4-1

Uninitialized Local Variables

4.2. Conclusion

13

order of evaluation '-', .• "'to a procedure or function is not defined by
the Pascal language, and is Pascal compilers than in Sun's
MC680x0 this example:

Since the functions func () and eval) , which are arguments of procedure
() , are evaluated in a different order on SP ARC systems than on the

MC680x0, value x not change between function calls.

effects

lsr(x, count
asl y, count
asr(y, count

-:icc·nmnt-1 '""c about the order of parameter evalua­
does not depend on any side

no1t1-stanlaaira '"''"'l-'"'''=.l\J.l.l0 to perform bit operations on
and left) is analogous to shifting

UTn,Pt"P•ClC' the arithmetic shift (right and left) is analo-

c
c
x << count;

>> count;
count;
count;

"'I-''"',,, a count than or equal to the size of the
machine-dependent results. Many programmers are not

logical shift by a large amount yields zero .
......... , v ... Jvr...v,,,...,...,,because the shift count is interpreted

machines, because the shift count

is to avoid shift counts greater than the size of the affected
count yield sensible results on either machine,

variables; they may come up with dif­
The use of uninitialized variables is a poor

'·""'" I-', .. pc flags uninitialized local vari-
...... .ll•U.Ll.I.'-'"• since external procedures may ini-

""...,,. by definition, may present
............ ,...,u or to any other machine. There

Revision A, of 9 May 1988

I

