
~ .. SUD®
~ microsystems

Sun™ FORTRAN
Programmer's Guide

#+sun@
• microsystems

Sun™ FORTRAN
Programmer's Guide

This FORTRAN software and documentation is a proprietary product of Sun
Microsystems, Inc.

Some of the material in this manual is based on the Bell Laboratories document
entitled A Portable Fortran 77 Compiler, by S.I. Feldman and P.J. Weinberger,
dated 1 August 1978. Material on the 1/0 Library is derived from the paper
entitled Introduction to thej77 110 Library, by David L. Wasley, University of
California, Berkeley, California 94720. Further work was done at Sun
Microsystems.

Sun Microsystems, Sun Workstation, SunCore, and the Sun logo are registered
trademarks of Sun Microsystems, Inc.

Sun, SunOS, Sun-2, Sun-3, Sun-4, and Sun386i are trademarks of Sun
Microsystems, Inc.

CRA Y-1 is a registered trademark of Cray Research, Inc.

DEC, VMS, and VAX are trademarks of Digital Equipment Corporation.

Sky is a trademark of Sky Computers, Inc.

UNIX is a registered trademark of AT&T.

Copyright © 1987, 1988 by Sun Microsystems, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved.
No part of this publication may be reproduced, stored in a retrieval system,
translated, transcribed, or transmitted, in any form, or by any means manual,
electric, electronic, electro-magnetic, mechanical, chemical, optical, or other­
wise, without prior explicit written permission from Sun Microsystems.

Contents

Preface .. xvii

Chapter 1 Introduction .. 3

Chapter 2 Getting Started ... 9

2.1. Oveiview .. 9

2.2. Compiling .. 9

2.3. Running ... 10

2.4. Renaming the Executables ... 10

Chapter 3 Using the Compiler .. 13

3.1. Oveiview .. 13

3.2. Compiler Command... 13

3.3. Source Lines ... 13

The INCLUDE Statement ... 13

Searchpath 13

Nesting... 14

Comment Lines .. 14

Blank Lines .. 14

Standard Source Lines 14

Tab-format Source Lines .. ~............... 14

Continuation Lines... 15

Extended Lines 15

Padding... 15

3.4. Upper and Lower Case ... 15

- iii-

Contents - Continued

Case with INQUIRE 15 ...,.,
Case with dbxtool .. . 16

3 .5. Routines })Cf File 16

3.6. Oilier Files 17

Language Preprocessor 18

3.7. Compiler Options 18

Unrecognized Arguments 22

Chapter 4 Data Structures and Expressions 25
4.1. Overview 25

4.2. Names 25

4.3. Data Types 25

The BYTE Type 25

The CHARACTER Ty:pe .. . 26

The DOUBLE CO!i5'.PLEX Ty:pe 27

Short Integer Type 27

Storage Allocation 28

Implicit Typing 29

The IMPLICIT Statement 29
...,,,,,,

Implicit Undefined 29

4.4. Expressions 30

Character Constants .. . 30

Escape Sequences .. . 30

Hollerith 30

Character String Assignment 31

Joining Strings 31

Substrings 31

Exponentiation 32

Binary, octal, and hexadecimal constants 32

Relaxation of Restrictions 33

Mixed Mode 33

Mixed INTEGER and LOGICAL .. . 33

Constant expressions 34

-iv-

Contents - Continued

Subscripts ... 34

4.5. Parameters ... 35

The PARAMETER Statement .. 35

Intrinsic Functions .. 35

Equivalence Statements .. 36

4.6. Static Variables ... 36

The SA VE Statement .. 36

Automatic/Static .. 36

Array Declarations ... 37

4.7. Pointers .. 37

Pointer statement... 37

Usage of pointers .. 38

Address assignment ... 38

The Function MALLOC () .. 39

The Subroutine FREE () .. 39

Pointer arithmetic ... 39

Optimization and pointers .. 40

4.8. Structures .. 42

Structure declaration ... 42

Field declaration .. 42

Record declaration 4 3

Record and field reference ... "'.. 44

Substructure declaration ... 45

Unions and maps ... 47

4.9. Data Representations ... 48

Representation of REAL and DOUBLE PRECISION........................ 48

Representation with Extreme Exponents .. 48

Hexadecimal Representation of Selected Numbers 49

Arithmetic Operations on Extreme Values .. 49

Chapter 5 Control and Program Structures ... 55

5 .1. Overview .. 55

5.2. Alternate Returns... 55

-v-

Contents - Continued

5.3. Block Data Statements .. . 56

5.4. The DO Loop 56
..,,.,

The Do Variables 56

One-Trip DO Loops 56

Unlabeled DO Loops .. . 56

Indefinite DO WHILE Loops ··· 57

Extended Range Removed 58

5 .5. The ENTRY Statement 58

5.6. The IF-THEN-ELSE Statement .. . 59

5.7. The INTRINSIC Statement .. . 60

5.8. Program Statement .. . 60

5.9. Recursion 60

Chapter 6 The File System and FORTRAN 1/0 .. . 65
6.1. Hierarchy 65

6.2. Directories .. . 66

6.3. Filenames .. . 66

6.4. Pathnames 67

Relative pathnames 67 ~

Absolute pathnames 67

6.5. Redirection 68

6.6. Piping .. . 69

Chapter 7 Input and Output .. . 73
7 .1. Overview 73

7.2. General Concepts of FORTRAN 1/0 .. . 73

Logical Units .. . 73

1/0 Errors .. . 74

Forms of 1/0 74

1/0 Execution 74

Summary of Sun FORTRAN Input and Output 75

Print Files 76

Scratch Files .. . 76

-vi-

Contents - Continued

Carriagecontrol on All Files ... 76

Logical Unit Preattachment .. 76

7 .3. FORTRAN 1/0 Statements ... 77

The OPEN Statement .. 77

The CLOSE Statement ... 81

The INQUIRE Statement... 81

Using defaults.. 83

Pennissions ... 84

The BACKSPACE Statement.. 86

The REWIND Statement .. 86

The ENDFILE Statement... 87

Direct I/0 ... 87

Internal Files .. 88

Fonnatted I/0 .. 89

Unfonnatted 1/0 .. 89

List-Directed 1/0 90

Input Fonnat ... 90

Output fonnat .. 90

Unquoted strings .. 91

Internal 1/0 .. 91

N amelist 1/0 92

N amelist output .. 92

N amelist input 94

N amelist data ... 94

Requesting names ... 97

7.4. Accessing Files from FOR1RAN Programs .. 98

Accessing Named Files ... 98

Accessing Unnamed Files .. 99

OJ>ened as scratch .. 99

Already OJ>en 100

Other... 100

Passing filenames to programs .. 100

Preconnected uni ts .. 100

-vii-

Contents - Continued

Other units 100

7.5. Formats .. 101

Alpha editing (A) ... 101

Blank control (B, BN, BZ) ... 101

Carriagecontrol ($) .. 102

Commas in Formatted Input ... 102

Hollerith (nH) .. 103

Octal and hexadecimal (O,Z) .. 103

Radix control (R) ... 106

Remaining characters (Q) .. 107

Sign control (SU, SP, SS, S) .. 108

Scale control (P) 108

Tab control (T,nT, TRn,TLn) ... 108

Termination control(:) .. 109

Vertical Format Control .. 109

Extensions to Iw, Ew.d, Gw.d ... 109

Them field ... 109

Thee field .. 110

The form Ew.d.e ... 110

Defaults for w, d, e ... 110

Summary of Formats .. 112

7.6. Magnetic Tape 1/0 .. 112

Using TOPEN .. 113

Formatted .. 113

Unformatted ... 113

Tape File Representation .. 113

The dd conversion utility ... 113

The GETC library routine ... 114

End-of-File ... 114

Access on Multi-File Tapes .. 114

Chapter 8 Program Development ... 117

8.1. Simple Program Builds .. 117

-viii-

Contents - Continued

Making a Script .. 117

Making an Alias .. 117

Using a Script or Alias ... 117

Limitations .. 117

8.2. Program Builds with the make Program... 118

The makefile .. 118

Using make ... 119

The C Preprocessor .. 119

The . F Suffix .. 119

The -D Option ... 119

Macros with make... 120

Sample macro definition ... 120

Sample macro use ... 120

Overriding Macro Values... 121

Suffix Rules in make ... 121

8.3. Tracking and Controlling Changes with SCCS ... 122

Putting Files under SCCS.. 122

Making the SCCS directory.. 122

Inserting SCCS ID keywords ... 122

Creating SCCS files ... 123

Checking Out Files 127

Checking In Files .. 127

8.4. Relocatable Libraries ... 127

Libraries Loaded ... 128

Advantages ... 128

Disadvantages ... 128

Sequential Libraries... 128

Random Libraries ... 129

Sample create... 129

Sample replace.. 129

8.5. Transporting Other FORTRANs ... 130

General Hints 130

Time Functions .. 130

-ix-

Contents - Continued

Formats .. . 133

Carriage-Control 133
....,,

File Equates 133

Data Representation 133

Hollerith 134

Chapter 9 Debugging and Profiling 139
9 .1. Introduction .. . 139

9.2. Using dbx .. . 140

dbx commands 140

Structures and pointers 144

Parameters .. . 145

9.3. Using adb .. . 146

9.4. Compiler flags 147

9.5. Profiling Tools 148

Chapter 10 The VMS Extensions 153
10.1. Overview 153

10.2. Background 153 ...,,.,,,
10.3. The VMS Extensions Recognized by f 7 7 .. . 154

10.4. The Source Code Converter 154

Usage .. . 155

Input 155

Output 155

Using f77cvt with £77 .. . 155

Converter Options .. . 156

Conversion Description 157

Embedded Comments .. . 157

Debug Statements 157

VMS Tab-format 157

Initializing BLOCK DATA .. . 157

Radix-50 Constants 157

The IMPLICIT NONE Statement .. . 157

-x-

Contents- Continued

The VIRTUAL statement .. 157

Nonstandard PARAMETER Statements... 157

Initializers in Declarations ... 158

Non-CHARACTER Format Specifiers .. 158

Omitted Actual Arguments.. 158

Variables and Literals of Type REAL*16 .. 158

Using a CHARACTER Alias for Non-CHARACTER

Variables... 158

Consecutive Operators ... 158

Illegal REAL Expressions ... 159

Hex and Octal Constants ... 159

Nonstandard Length Specifiers.. 160

Old TYPE and ACCEPT Statements ... 160

Alternate Return Arguments ... 160

The ENCODE and DECODE statements... 160

Record Specifier ' N in Direct-access I/O .. 161

Old OPEN and INQUIRE Options .. 161

The OPEN for unformatted files Options ... 161

The DISPOSE=p in the CLOSE Statement ... 161

Line Numbers for dbx ... 161

Special Intrinsic Functions ... 161

Backslash in character string .. 162

Logical filenames in the INCLUDE statement 162

Conversion Samples .. 163

Unsupported VMS FOR1RAN .. 167

10.5. The VMS Intrinsics ... 169

Chapter 11 The C-FORTRAN Interface ... 179

11.1. Command Line Arguments ... 179

11.2. Exiting with status .. 180

11.3. Interprocedure Interface .. 180

Procedure Nam es .. 180

Data Representations .. 181

-xi-

Contents - Continued

Return Values 181

Functions 181
..,,,

Subroutines .. . 182

Argument Lists .. . 182

Arrays 183

Calling C from FOR1RAN .. . 183

Repeat a character .. . 183

Return a float .. . 184

Calling FOR1RAN from C 185

Sharing Input/Output Streams 186

File Descriptors and stdio .. . 186

File permissions .. . 187

Chapter 12 Ratfor - A FOR1RAN Preprocessor .. . 191

12.1. Overview 191

12.2. Introduction 192

Using the ratfor translator 193

Using the f7 7 compiler 193

12.3. Language Description 193
,.,.,,

Design 193

Statement grouping 194

The else clause .. . 195

Nested if 's 196

Ambiguity in if-else 197

The switch statement .. . 198

The do statement 198

Using break and next 199

The while statement 200

The f 0 r statement .. . 202

The repeat-until statement .. . 203

More on break and next .. . 204

The return statement .. . 204

Cosmetics 205

-xii-

Contents- Continued

Free-form Input .. 205

Translation services ... 206

The define statement ... 206

The include statement ... 207

Pitfalls, Botches, Blemishes and other Failings .. 208

12.4. Implementation .. 208

12.5. Experience .. 210

Good Things .. 21 O

Bad Things.. 211

12.6. Conclusions .. 212

Appendix A ASCII Character Set ... 215

Appendix B FORTRAN Statements .. 219

Appendix C Intrinsic Functions ... 229

Appendix D FORTRAN Runtime Error Messages .. 241

D.l. Overview... 241

D.2. SunOS Error Messages.. 241

D.3. Signal Handler Error Messages .. 241

D.4. 1/0 Error Messages .. 242

Appendix E Bibliography ... 247

Appendix F Manual Pages for FORTRAN .. 251

- xiii-

Tables

Table 3-1 Filename Suffixes Sun FORTRAN Understands 17

Table 4-1 Summary of Double Complex Functions ... 27

Table 4-2 Backslash Escape Sequences... 30

Table 4-3 Floating-Point Representation .. 48

Table 4-4 Hexadecimal Representation of Selected Numbers 49

Table 4-5 Abbreviations for Numbers .. 49

Table 7-1 Summary of Sun FORTRAN Input and Output..................................... 75

Table 7-2 Summary of INQUIRE Options,................................ 85

Table 7-3 Sample Octal/Hex Input Values .. 104

Table 7-4 Sample Octal/Hex Output Values ... 105

Table 7-5 Default w, d, e Values in Format Field Descriptors............................. 111

Table 7-6 FORTRAN Format Specifiers .. 112

Table 8-1 Time Functions Available to FORTRAN .. 131

Table 8-2 Maximum Characters per Data Type .. 135

Table 10-1 Double-Precision Complex Functions Recognized by Sun
FORTRAN ... ; ~ ; ~... 169

Table 10-2 Degree-Based Trigonometric Functions Recognized by
Sun FORTRAN .. ; •...... 169

Table 10-3 Bit-Manipulation Functions Recognized by Sun
FORTRAN ... ;~;.; ;..................... 170

Table 10-4 Bit-Manipulation Functions Converted by f77cvt 170

-xv-

Tables - Continued

Table 10-5 Quad-Precision Real Functions Converted by f 7 7 cvt 171 ,..,,,,,
Table 10-6 Integer Functions Converted by f 7 7 c vt .. . 173

Table 10-7 Converted Functions that VMS Coerces to a Particular
Type 173

Table 10-8 Other Conversions by f 7 7 cvt 174

Table 10-9 Zero-Extend Functions .. . 175

Table 11-1 FORTRAN and C Declarations 181

Table 11-2 Characteristics of Three I/O Systems 187

Table B-1 FORTRAN Statements 219

Table B-2 More FORTRAN Statements .. . 223

Table C-1 Sun FORTRAN Intrinsic Functions .. . 229

Table C-2 More Sun FORTRAN Intrinsic Functions 230

Table C-3 Sun FORTRAN Bitwise Functions .. . 231

Table C-4 Sun FORTRAN Trigonometric Functions 232

Table C-5 Sun FORTRAN Character Functions 233

Table C-6 Sun FORTRAN Miscellaneous Functions 233,.

- xvi-

.• ,_,,

Purpose and Audience

Conventions in Text

Pref ace

This guide provides information needed to write FORTRAN programs on the
Sun™ workstation. It assumes you have a thorough understanding of FORTRAN
and of some operating system - not necessarily either the Sunos™ or UNIX®
operating system.

It does assume that you know certain SunOS commands and concepts: how to
log on and off, how to find your way around the SunOS file system, and
something about piping and redirection. If you need to refresh your memory on
these topics, see Chapter 6- "The File System and FORTRAN I/O", or refer to
Getting Started with SunOS: Beginner's Guide, or see an introductory UNIX
book.

This guide describes the extensions provided by FORTRAN 77 and Sun
FORTRAN, but it does not assume you know either Sun FORTRAN or

TM TM

VAX NMS FORTRAN. For basic features of standard FORTRAN, refer to any
standard FORTRAN text. This guide also introduces related extensions to the Sun
debugger, and the source-code converter.

Note the following conventions we use in this manual to display information.
After logging in, the SunOS system prompt looks something like this:

The basic Sun OS prompt is merely the percent sign (%). However, most Sun
workstations have distinct host names and our examples are more easily
distinguished if we use a symbol longer than a % sign. For this reason, examples
in this manual use demo% to denote the system prompt.

The system prompts and replies are shown in plain typewriter font,
shown here and in the example below. Text the user types is shown in
boldface typewriter font. For example:

demo% echo hello
hello
demo% I

The plain typewriter font is also used to indicate FORTRAN
statements and reserved words. Italics indicates general arguments or parameters

- xvii-

Preface - Continued

Organization

References

that you should replace with the appropriate input. Italics are also used to
indicate emphasis. Examples of coding arc in white boxes, and screen displays
arc in gray boxes.

This manual consists of a tutorial part (the chapters), with exposition and
examples, aimed at experienced programmers, and a reference part (the
appendices), mostly tables:

Chapter 1 is an introduction to Sun FORTRAN and SunOS.

Chapter 2 is a minimal guide to running Sun FORTRAN.

Chapter 3 introduces the compiler: syntax, options, etc.

Chapter 4 describes extensions to data structures and expressions.

Chapter 5 describes control structure extensions.

Chapter 6 describes the SunOS file system as it relates to FORTRAN I/0.

Chapter 7 describes Sun FORTRAN 1/0 statements.

Chapter 8 introduces program development.

Chapter 9 introduces the debuggers dbx and dbxtool.

Chapter 10 describes the VMS extensions and the source-code converter.

Chapter 11 describes the conventions for interfacing C and FORTRAN.

Chapter 12 describes the Ratfor language.

Appendix A is a table of the ASCII character set.

Appendix B provides selected examples for all Sun FORTRAN statements.

Appendix C lists intrinsic functions for Sun FORTRAN.

Appendix D is a list of the FORTRAN-related runtime error messages.

Appendix E is a bibliography.

Appendix F contains the manual pages for Sun FORTRAN.

o Programming in VAX FORTRAN, September 1984, Software Version 4.0,
Digital Equipment Corporation. [AA-D034D-TE]

o Cray-I Computer Systems FORTRAN (CFT) Reference Manual, SR-0009,
November 1982, Cray Research Inc.

o American National Standard Programming La.nguage FORTRAN, ANSI
X3.9-1978, April 1978, American National Standards Institute, Inc.

o Applied FORTRAN 77 Featuring Structured Programming, Roy Ageloff and
Richard Mojcna, 1981, Wadsworth, Inc.

o FORTRAN-77 Featuring Structured Programming, Loren P. Meissner, and
Elliott I. Organick, 1980, Addison-Wesley.

- xviii-

Preface - Continued

o Problem Solving with Structured FORTRAN 77, D.M. Etter, 1984,
Benjamin/Cummings Publishing Company, Inc.

See also the bibliography at the end of this manual.

-xix-

1
Introduction

Introduction... 3

1
Introduction

Sun FOR1RAN is an enhanced ANSI FOR1RAN 77 development system for the
Sun workstation. Sun FOR1RAN is GSA certified, provides an IEEE standard
floating-point package, and offers VAX VMS FOR1RAN 4.0 extensions, plus
recursion and pointers. For installations that use both Sun and VAX computers,
you can write FOR1RAN programs that can run the same on both systems.

Routines written in other Sun languages, such as C, Pascal, and Modula-2, may
be combined with FOR1RAN programs, since these Sun languages have common
calling conventions.

Both global and peephole optimizations are available to create FOR1RAN
applications that are significantly faster and smaller. Benchmarks show that
optimized applications are as much as 80% faster, with an average of 10%
reduction in code size.

Sun FOR1RAN comes with a complete set of UNIX system calls and FOR1RAN
support libraries.

Sun FOR1RAN is highly integrated with powerful Sun development tools,
including both Sun View,™ and the SunPro ™tools: dbxtool, make, and SCCS.
Tools that you may find useful are summarized here.

Text Editing The major text editor for source programs is vi (vee-eye), the
visual display editor. It has considerable power because it offers
the capabilities of both a line and a screen editor. vi also provides
several commands specifically for editing programs. These are
options you can set in the editor. Two examples are the
autoindent option, which supplies white space at the
beginning of a line, and the showrnatch option, which shows
matching parentheses. For more information, see the Editing Text
Files manual section on vi.

Other editors are available for use, such as ed, ex, and textedi t (available
under Sun View on Sun workstations).

3 Revision A of 6 May 1988

4 Sun FORTRAN Programmer's Guide

FORTRAN Tools

f pr is a FORTRAN output filter for printing files that have
FORTRAN carriagecontrol characters in column one.
The UNIX implementation on the Sun system does not
use carriagecontrol since UNIX provides no explicit
printer files. Thus, you use fpr when you want to
transform files formatted with FORTRAN
carriagecontrol conventions into files formatted
according to UNIX line-printer conventions. For more
information on fpr, refer to Appendix For the SunOS
Reference Manual, or try the command man fpr.

f split splits a multi-routine FORTRAN file into one file per
routine.

Debug Aids
There are three main debugging tools available on the Sun system:

dbx is an interactive symbolic debugger that understands
Sun FORTRAN programs.

dbxtool is dbx with a mouse and windows.

adb is an interactive, general-pmpose low-level
debugger.

The online documentation consists of pages from the FORTRAN Programmer's
Guide and the SunOS Reference Manual that are called 'man pages'. Some
commonly used pages for FORTRAN are:

• f7 7(1)

• f77cvt(l)

• fpr(l)

• f split(l)

• dbx(l)

• dbxtool(l)

• ieee_handler (3M)

• matherr (3M)

• sigfpe (3)

The man pages that deal with error handling and exception processing are:
ieee_handler rnatherr, and sigfpe. ieee_handler is the IEEE
exception trap handler function, sigfpe is the signal handler function for
specific SIGFPE error codes, and rnatherr is the math library exception­
handling function.

Revision A of 6 May 1988

Chapter 1 - Introduction 5

f77 invokes the FORTRAN compiler; fpr and fsplit are FORTRAN tools
briefly explained above. See the manual pages near the end of this guide for
descriptions of other FORTRAN routines.

Other Sun manuals containing information on editing or using FORTRAN are:

• Editing Text Files

• Programmer's Tools Manuals Minibox

• SunOS Reference Manual

Revision A of 6 May 1988

2
Getting Started

Getting Started .. 9

2.1. Overview .. 9

2.2. Compiling .. 9

2.3. Running ... 1 O

2.4. Renaming the Executables ... 10

2.1. Overview

2.2. Compiling

2
Getting Started

This chapter provides the knowledgable user with a bare minimum on how to
compile and run Sun FORTRAN programs. It is meant for the user who knows
FORTRAN thoroughly and needs to start writing FORTRAN programs on a Sun
immediately. If that is not your style, skip to Chapter 3 - "Using the
Compiler".

Using FORTRAN on a Sun workstation involves three steps:

o Write a program in FORTRAN using an editor, giving the
filename a . f suffix.

o Compile this . f file using the f 7 7 command.

o Execute by typing the name of the executable file.

For example, here is a simple program that displays a message on the worksta­
tion screen.

demo% ·cat .·greetings • f
PROGRAM GREETINGS

hack FORTRAN! '

Compile the program greetings using the f77 command as follows:

demo%.·. £77 greetings .. f
greetings.f!

MAIN greetings:
demo% I

Note that f 7 7 displays a message indicating the stage of the compilation. In this
example, £7 7 compiles greetings. f executable code is put onto the a. out
file.

9 Revision A of 6 May 1988

I 0 Sun FORTRAN Programmer's Guide

2.3. Running

2.4. Renaming the
Executables

You can then run the program by typing a. out on the command line:

demo% a.out
Real programmers hack FORTRAN!

demo% I

It is inconvenient to have the result of every compilation end up on a file called
a. out since if such a file already exists, it is overwritten. You can avoid this in
either of two ways:

o Change the name of a. out after each compilation, using the mv command.
For example:

(~--~~~-=_:_~_~_~_i_v __ a __ ._ou_t __ ·_g_r_e_e_t_i_n_g_s ______ ___; ________ __; ___________]

o Use the compiler's -o option to tell it to rename the output executable file.
For example:

demo% f77 ~o greetings greetings.£
greetings.f:

MAIN greetings:
demo% I

places the executable code on the greetings file.

Either way (mv or -o), you can run the program by typing the name of the
executable file, as follows:

demo% greetings
Real programmers hack FORTRAN!

demo% I

At this stage, the impatient user may jump right in and start cutting code. Other
more cautious types will at least browse through one or more of the next few
chapters, if only to check out the compiler options and extended features.

If you are not familiar with the file system of UNIX or Sun OS, you should read
Chapter 6 - "The File System and FORTRAN I/O", or refer to Getting Started
with SunOS: Beginner's Guide, or see an introductory UNIX book.

4}~sun
~'fli microsystems

Revision A of 6 May 1988

3
Using the Compiler

Using the Compiler ... 13

3.1. Overview .. 13

3.2. Compiler Command... 13

3.3. Source Lines ... 13

The INCLUDE Statement ... 13

Searchpath 13

Nesting... 14

Comment Lines .. 14

Blank Lines .. 14

Standard Source Lines ... 14

Tab-format Source Lines .. 14

Continuation Lines... 15

Extended Lines 15

Padding... 15

3.4. UpJ)er and Lower Case ... 15

Case wiili INQUIRE ... 15

Case with dbxtool ... 16

3.5. Routines {)Cf File .. 16

3.6. Other Files... 17

Language Preprocessor .. 18

3.7. Compiler Options .. 18

Unrecognized Arguments... 22

3.1. Overview

3.2. Compiler Command

3.3. Source Lines

The INCLUDE Statement

Searchpath

3
Using the Compiler

This chapter describes the following topics:

o Compiler command syntax

o Kinds of lines accepted

o Multiple routines per file

o Compiler options

Most details of the language are deferred to later chapters.

The syntax of the compiler command is as follows:

f77 [options] filename ...

As an example with two files:

(~j----ct~e_•~~o~%~••·••·_f_7~7~•·• .. _g_r~o-wt_··~h~··~~~~f~£-t_ ... F~--~--~~------~~-----------'J
or with some options:

J

Various properties and kinds of source lines are described below:

The statement:

(~ ____ r_N_c_L_uo __ E __ 's_t_u_f_f_' __ J

is replaced by the contents of the file stuff.

If the name referred to by the INCLUDE statement begins with the character'/',
it is taken by f 7 7 to mean the absolute pathname* of the include file.

* For more on pathnames, see Chapter 6 - The File System and FORTRAN 110.

13 Revision A of 6 May 1988

14 Sun FORTRAN Programmer's Guide

Nesting

Comment Lines

Blank Lines

Standard Source Lines

Otherwise, the compiler looks for the include file in the following places, in this
order: .._.,,,

o The directory containing the source file with the INCLUDE statement.

o the current directory in which the f 7 7 command was issued.

o the /usr/include directory.

For example, if:

(1) your current working directory is I us r If t n,
(2) your source file is /usr I ftn/pro jA/myprg. f,
(3) this source file has the line ''INCLUDE verl/ const. h",

then f 7 7 will search for con st. h in the following three paths, in order:

/usr/ftn/projA/verl/const.h
/usr/ftn/verl/const.h
/usr/include/verl/const.h

These INCLUDE scan be nested ten deep.

NOTE Files included via the preprocessor# include directive may contain
#def in es and the like, while files included with the compiler INCLUDE
statement must contain only FORTRAN statements.

A line with a c or c or an asterisk (*) in column one is a comment line.

A totally blank line is a comment line.

The standard source lines for FORTRAN are specified as follows:

o The first 72 columns of each line are scanned. (See "Extended Lines",
below.)

o The first five columns must be blank or contain a numeric label.

o Continuation lines are identified by a nonblank or non-zero in column 6.

o Short lines are padded to 72 characters; long lines are truncated (See
"Extended Lines", below.)

Tab-format Source Lines The tab-fonnat source lines are in the fonnat used in the UNIX operating system:

o A tab in any of columns 1 though 5 marks the beginning of a tab-fonnat
source line. The text following the tab is scanned as if it started in column 7.
The line may be up to 72 columns long. (See "Extended Lines", below.)

o Continuation lines are identified by an ampersand(&) in column 1.

Revision A of 6 May 1988

Continuation Lines

Extended Lines

Padding

Chapter 3 - Using the Compiler 15

The default maximum number of continuation lines is 19 (1 initial and 19
continuation). See the Nln option, below.

The compiler includes an option to accept extended source lines, with up to 132
characters. By default, it ignores any characters after column 72. To specify the
recognition of extended source lines, use the -e option, as in this example:

[~~~-d_e_m~o-%_•·_f_7_1_·_<~_e_•.•_p_r_o_g_··~~f_. ~~~~~~~~~-----~~~~~-----~~----)
Padding is significant in lines such as:

1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012

DATA SIXTYH/60H
1 I

3.4. Upper and Lower Case

Case with INQUIRE

In the standard, there are only 26 letters - FORTRAN 77 is a one-case language.
Consistent with ordinary UNIX system usage, this compiler accepts upper-case or
lower-case input. That is, the program source file can be in either lower-case or
upper-case, or any mixture, but note the following general rules concerning case:

o The normal action of the compiler is to maintain names of procedures and
names of variables in lower-case. (The -u option prevents this. In this -u
mode, it is possible to specify external names with upper-case letters in
them, and to have distinct variables differing only in case.)

o The compiler does not translate characters inside character-string constants.

o The strings returned by INQUIRE are in upper-case.

o The debugger dbxtool does not convert to lower-case.

Since strings returned by the FORTRAN INQUIRE statement are in upper-case,
use of INQUIRE needs some caution regarding case. For example:

derr\0% ¢at.> inql • f
* ;i.11,qLf•.rnquire with .uPPER•·arid .. fower~case

CHARACTER ANSWER.* 15
INQU!RE• .. J•· 6(•••SEQUENT!AL=ANSWER

:ur J ANSWER $Q. 'YES') PRINT *, "CAPS >MATCH'

IF.•··· c ANSWER .EQ •..•.. 'yes'• .. •> PRINT *, 'lowers<match'
END

aemO.% £77 inq1 . £
iriq:I.. f:

MAIN:

dern6% a.out
CAPS MATCH

• ciemo%>1

Revision A of 6 May 1988

16 Sun FORTRAN Programmer's Guide

Case with dbxtool

3.5. Routines per File

The match on upper-case is successful; the match on lower-case fails. The
programmer should probably be alert to such distinctions.

Use of the debugger dbxtool also requires some caution regarding case.* If
your source file is in upper-case, then before you use dbxtool you should
either tell £7 7 to use upper-case, for example:

or use the tr command to translate the source file from upper-case to lower-case
or vice versa. For example, to read the upper-case source file SBENCH. f and
write the lower-case source file sbench. f:

(....... __ a_e~m_o..;...%..;.... ·_t_r_·..;...A __ -_z..;... • ..;...a..;...-_z_·_<_s_s_EN.;._C_H_. _f_>_·_sb_e_n..;...c_h_• ._f.;._~----"-"-..;..._...J
If your programs have bugs, dbxtool is useful. Most who have tried it found it
was more than worth the bother of recompiling with the -u option.

The scope of FORTRAN variables and routines (as compared with C) has nothing
to do with the files they reside in, so a source file can contain any number of
compilation units (main programs, functions, or subroutines). However, there are
two good reasons to keep each compilation unit in a separate source file:

o Reduce the compilation overhead of changing one procedure.

o Minimize loading of unreferenced functions.

* This debugger displays variable names so the users can select the variable they want displayed. It gets the
variable names from the source file, so if the source has them in upper and the compiler has them in lower, then
dbxtool cannot find the selected variable.

Revision A of 6 May 1988

Note that this applies only to the . o
modules in libraries. Files explicitly
named in the link command are
unconditionally loaded.

3.6. Other Files

Table 3-1

Chapter 3 - Using the Compiler 17

f 7 7 produces one . o file for each . f file it processes. If any routine
in the . o file is referenced, the linker 1 d copies in the entire . o file,
loading all routines, referenced or not.

For example, suppose we have two files: subs. f and main.£:

File subs . f has routines a and b .
File main. f has a main program that calls a but not b .
The command:

produces an a . out file that contains the code for subroutine b even
though b is not referenced.

The f split command can be used to break up multiple-routine source files into
a series of files, one routine per file.

The f 7 7 command recognizes several other kinds of files. The table below
summarizes the filename extensions that f 7 7 understands.

Filename Suffixes Sun FORTRAN Understands

Suffix Language Action

.f FORTRAN Compile FORTRAN source files, put object files in
current directory, default name of object file is that
of the source but with . o suffix.

.F FORTRAN Process FORTRAN source files by the C
preprocessor before compiling by £7 7.

.c c C source files are compiled by the C compiler. The
f 77 and cc commands generate slightly different
loading sequences, since FOR1RAN programs need
a few extra libraries and a different startup routine
than do C programs.

.s Assembler Process assembly-language source files by the
assembler as.

.i1 In-line Expansion Process in-line expansion code template files.
These are used to expand calls to selected routines
in-line when the -0 option is used.

.o Object Files Pass object files through to the linker.

Note: Files with none of the above filename suffixes are passed to the linker.

Revision A of 6 May 1988

18 Sun FORTRAN Programmer's Guide

Language Preprocessor

3. 7. Compiler Options

The cpp program is the C language preprocessor, which is invoked during the
first pass of a FORTRAN compilation if the source filename has the . F extension.
Its main uses here are for constant definitions and conditional compilation. See
cpp (1), or the -Dname option in Compiler Options, in the next section.)

The list below contains the options that f 7 7 understands. Note that the compiler
option -help displays essentially the same list, as does the man £77
command. (See the Manual Pages, online or in the appendices.)

-66
Report non-FORTRAN 66 constructs as errors.

-a Insert code to count how many times each basic block is executed. Invokes
a runtime recording mechanism that creates a . d file for every . f file (at
normal termination). The . d file accumulates execution data for the
corresponding source file. The tcov(l) utility can then be run on the source
file to generate statistics about the program.

-align _block_
Cause the common block whose FORTRAN name is block to be page­
aligned: its size is increased to a whole number of pages, and its first byte is
placed at the beginning of a page. For example, the command "£77
-align _BUFFO_ GROWTH. F" causes BUFFO to be page-aligned. This
option applies to uninitialized data only: if any variable of the common
block is initialized in a DATA statement, then the block will not be aligned.
This option is passed to the linker.

-ansi
Identify all non-ANSI extensions. Note that f77cvt provides an option to
flag any Sun FORTRAN extensions that it uses during the conversion of a
VMS FORTRAN source file. For more on f 7 7 c vt, see Section 10.4 - "The
Source Code Converter."

-c Suppress linking and produce a . o file for each source file.

-C Compile code to check that subscripts are within declared array bounds.

-dry run
Show but do not execute commands constructed by the compiler driver.

-Dname=def

-Dname
Define name to the C preprocessor, as if by "#define". If no definition is
given, the name is defined as "1" (. F files only).

-e Accept extended source lines, up to 132 characters long.

-£ Align local data and COMMON blocks on 8-byte boundaries. Resulting code
may not be standard and may not be portable.

-£float_ option

Revision A of 6 May 1988

Chapter 3 - Using the Compiler 19

na na
This option applies only to the Sun-2 or Sun-3 . See the Sun Floating-
Point Programmer's Guide for more information.

-£68881
Generate code that assumes the presence of the Sun Floating-Point
Accelerator (Sun-3 only).

-ffpa
Generate code that assumes the presence of the Sun-3 floating-point
accelerator board (Sun-3 only).

-f sky
Generate code that assumes the presence of a Sky™ Floating-Point
Processor board. Programs compiled with this option can only be run in
systems that have a Sky board installed. (Sun-2 only).

-£soft
Generate code that uses software floating-point calls (this is the default).

-£store
Insure that expressions allocated to extended-precision registers are
rounded to storage precision whenever an assignment occurs in the
source code. Only has effect when -f68881 is specified (Sun-3 only).

-£switch
Run-time-switched floating-point calls. The compiled object code is
linked at runtime to routines that support the FPA, MC68881, Sky
floating-point board, or software-floating-point calls, depending on the
system that is running the program (Sun-2 or Sun-3).

-F Apply the C preprocessor to relevant files and put the result in the file with
the suffix changed to . f, but do not compile.

--q Produce additional symbol table information for dbx or dbxtool. Also,
pass the -lg file to ld (1).

-he1p

-i2

-i4

Display an equivalent of this list of options.

Make the default size of integer and logical constants and variables
short (2 bytes).

Make the default size of integer and logical constants and variables four
bytes (this is the default).

-Ipath
Add path to the list of directories in which to search for '#include' files
with relative pathnames (not beginning with/). Search first for
'#include' files whose names do not begin with'/' in the directory
containing the source file, then in directories named in -I options, and
finally in directories on a standard list (. F suffix files only). Note that this
does not affect FORTRAN's INCLUDE statement, only the C
preprocessor's. For example, "£77 -I/usr/app1ib growth.£"

Revision A of 6 May 1988

20 Sun FORTRAN Programmer's Guide

-lx

causes the compiler to search for '#include' files in the /usr/ applib
directory.

Link with object library I 1ibI1 ibx. a, where xis a string. If that does not
exist, then ld tries /usr I lib/ libx. a (see ld (1)).

-Ldir
Add dir to the list of directories containing object-library routines (for
linking using ld(l)).

-misalign
Allow for misaligned data in memory. This option is/or for the Sun-4 only.
Use this option only if you get a warning that COMMON or EQUIVALENCE
statements cause data to be misaligned. WARNING: With this option, the
compiler will generate much slower code for references to dummy
arguments. If you can, you should recode the indicated section instead of
recompiling with this option. For example, the program

INTEGER*2 I (4)
REAL Rl, R2
EQUIVALENCE (Rl, I (1)), (R2, I (2))
END

causes the error message

"misalign. f", line 4: Error: bad alignment for "r2" ...,,,_,,.
forced by equivalence

-N[cdlnqsx]nnn
Make static tables in the compiler bigger. f 7 7 complains if tables overflow
and suggests you apply one or more of these flags. These flags have the
following meanings:

c Maximum depth of nesting for control statements (for example, DO
loops). The default is 20.

d Maximum depth of nesting for data structures and unions.
The default is 20.

1 Maximum number of continuation lines for a continued statement.
The default is 19 (1 initial and 19 continuation).

n Maximum number of identifiers. The default is 1009.

q Maximum number of equivalenced variables. The default is 150.

s Maximum number of statement numbers. The default is 401.

x Maximum number of external names (common block names, subroutine
and function names). The default is 200.

Revision A of 6 May 1988

Chapter 3 - Using the Compiler 21

-o output
Name the final output file output instead of a. out.

-onetrip

-On

Compile DO loops so that they are performed at least once if reached.
Sun FORTRAN DO loops are not performed at all if the upper limit is smaller
than the lower limit, unlike FORTRAN 66 DO loops.

Optimize the object code. If you use this with the -q option, then the -On is
ignored.

-01

-02

-03

Peephole Optimization only. Do not use-01 unless-02 and-03
result in excessive compilation time, or running out of swap space.

Partial optimization. Does a restricted set of global optimizations. Do
not use -02 unless -03 results in excessive compilation time, or
running out of swap space.

Global Optimization. (same as -0)

Note:
If the optimizer runs out of swap space, try any of the following
possibly corrective measures Oisted in increasing order of difficulty):

o Change from -03 to -02.

o Divide large, complicated routines into smaller, simpler ones.

o Increase the limit for the stacksize: insert the line
"limit stacksize 8 megabytes" into your . cshrc file.

o Repartition you disk with two to four times as much swap space.
Backup everything first. You may well need help from your system
administrator to do this.

-p Prepare object files for profiling, see prof (1).

-pq
Produce counting code in the manner of -p, but invoke a runtime recording
mechanism that keeps more extensive statistics and produces a gmon. out
file at normal termination. An execution profile can then be generated by use
of gprof (1).

-pipe
Use pipes, rather than intermediate files between compilation stages. Very
cpu-intensi ve.

-P Partial optimization. (same as -02)

Revision A of 6 May 1988

22 Sun FORTRAN Programmer's Guide

Unrecognized Arguments

-Qoption prog opt
Pass the option opt to the program prog. The option must be appropriate to
that program and may begin with a minus sign. prog can be one of: as, c2,
cg,cpp,f77passl,iropt,inline,orld.

-Qpath pathname
Insert the directory pathname into the compilation search path (to use
alternate versions of programs invoked during compilation). This path will
also be searched first for certain relocatable object files that are implicitly
referenced by the compiler driver (such files as *crt *. o and
bb_link. o).

-Qproduce sourcetype
Produce source code of the type sourcetype, where sourcetype is one of:
. o Object file from as (1) .
. s Assembler source (from f77passl, inline, c2, or cg.)

-s Compile the named programs, and leave the assembly-language output on
corresponding files suffixed with . s (no . o file is created).

-temp=dir
Set directory for temporary files to be dir.

-time
Report execution times for the various compilation passes.

-u Make the default type of variables 'undefined', rather than using FORTRAN
implicit typing. ..,,_,

-u Do not convert upper-case letters to lower-case, but leave them in the
original case. The default is to convert to lower-case except within
character-string constants.

-v Print the name of each pass as the compiler executes.

-w Suppress all warning messages.

-w66
Suppress only messages generated by programs using obsolete FORTRAN 66
features.

Other arguments are taken to be either linker option arguments or names of
f 7 7 -compatible object programs, typically produced by an earlier run, or
perhaps libraries off 7 7-comp_atible routines. These programs, together with the
results of any compilations specified, are linked (in the order given) to produce
an executable program called (by default) a. out or with a filename specified by
the -o option.

Revision A of 6 May 1988

4
Data Structures and Expressions

Data Structures and Expressions .. 25

4.1. Overview .. 25

4.2. Names ... 25

4.3. Data Types ... 25

The BYTE Type ... 25

The CHARACTER Type ... 26

The DOUBLE CO!i!PLEX Type .. 27

Short Integer Type .. 27

Storage Allocation .. 28

Implicit Typing .. 29

The IMPLICIT Statement.. 29

Implicit Undefined .. 29

4.4. Expressions ... 30

Character Constants ... 30

Escape Sequences ... 30

Hollerith ... 30

Character String Assignment ... 31

Joining Strings .. 31

Substrings .. 31

Exponentiation ... 32

Binary, octal, and hexadecimal constants ... 32

Relaxation of Restrictions .. 33

Mixed Mode ... 33

Mixed INTEGER and LOGICAL .. . 33
Constant expressions .. . 34
Subscripts 34 ...,.,

4.5. Parameters .. . 35
The PARAMETER Statement 35
Intrinsic Functions 35
Equivalence Statements 36

4.6. Static Variables .. . 36
The SA VE Statement 36
Automatic/Static 36

Array Declarations .. . 37
4. 7. Pointers 37

Pointer statement .. . 37
Usage of pointers 38
Address assignment .. . 38
The Function MALLOC () 39
The Subroutine FREE () 39
Pointer arithmetic 39
Optimization and pointers 40

4. 8. Structures 42
Structure decl.aration .. . 42
Field declaration 42
Record declaration .. . 43
Record and field reference .. . 44

Substructure declaration .. . 45
Unions and maps .. . 47

4.9. Data Representations .. . 48
Representation of REAL and DOUBLE PRECI:SI:ON 48
Representation with Extreme Exponents 48
Hexadecimal Representation of Selected Numbers 49
Arithmetic Operations on Extreme Values 49

4.1. Overview

4.2. Names

4.3. Data Types

'-"' The BYTE Type

4
Data Structures and Expressions

This chapter describes data structures and expressions that have been added to
FORTRAN by FORTRAN 77 and Sun FORTRAN, It includes constants and
parameters, names and types of variables, structured variables, and pointers.

Names can have as many as 32 characters. They must begin with a letter, and
they can consist of letters, digits, the dollar sign ($), and the underline character
(_). This applies to names of variables, symbolic constants (parameters),
labeled common, and names of programs and procedures (as in the PROGRAM,
SUBROUTINE, FUNCTION, and BLOCK DATA statements).

Some new data types have been added since FORTRAN 66.

Sun FORTRAN has added a 1-byte integer data type, BYTE, which has the
synonym LOGICAL* 1. A BYTE variable can hold the logical values . TRUE.
or . FALSE., or one character, or an integer between -128 and 127. An
example showing some uses of these types is:

column 2

25 Revision A of 6 May 1988

26 Sun FORTRAN Programmer's Guide

The CHARACTER Type

The above example use the octal fonnat specifier o. For more on this see
Chapter 7 - "Input and Output".

FORTRAN 77 has the CHARACTER data type. Local and COMMON character
variables are declared with a length denoted by a constant expression.
For example:
r

\.

or:
,

\..

CHARACTER*l7 A, B(3,4)
CHARACTER*(6+3) C

CHARACTER A*17, B(3,4)*17
CHARACTER C*(6+3)

If the length is omitted, it is assumed equal to 1.

A dummy argument character string can have a constant length. For example:

[

SUBROUTINE SCHLEP (A) J
____ c_H_A_RA __ c_T_E_R __ A_*_3_2 __ __

or the length can be declared to be the same as that of the corresponding actual
argument at runtime. For example:

[SUBROUTINE SCHLEP (A)
CHARACTER A*(*)

There is an intrinsic function LEN that returns the actual declared length of a
character string. For example, the program

CHARACTER A*17
A = "xyz"
PRINT *, LEN(A
STOP
END

will display 1 7, not 3.

Character arrays and common blocks containing character variables are packed:
in an array of character variables, the first character of one element follows the
last character of the preceding element, without holes.

See the section - Expressions - for more about character objects.

]

Revision A of 6 May 1988

The DOUBLE COMPLEX
...,., Type

Table 4-1

Short Integer Type

Chapter 4 - Data Structures and Expressions 27

Sun FORTRAN adds the DOUBLE COMPLEX type. Each datum is a pair of
double-precision real variables. A double complex version of each complex
built-in function is provided. Generally the specific function names begin with z
or CD instead of c, except for the two functions DIMAG and DREAL, which
return a real value. DREAL is a Sun synonym for DBLE.

Summary of Double Complex Functions

Name Arg Type Result Type Meaning

ZABS COMPLEX*16 REAL*8 a~lal

CDABS

ZEXP COMPLEX*16 COMPLEX*l6 a~ea
CD EXP

ZLOG COMPLEX*16 COMPLEX*l6 natural log
CD LOG

ZSQRT COMPLEX*l6 COMPLEX*16 square root
CD SQRT

ZSIN COMPLEX*16 COMPLEX*16 sine
CDS IN

zcos COMPLEX*16 COMPLEX*16 cosine
CDC OS

DCMPLX any numeric COMPLEX*16 Expand to Double Complex

DCONJG COMPLEX*16 COMPLEX*16 x + yi ~x-yi

DIMAG COMPLEX*l6 REAL*8 x + yi ~y

DREAL any numeric REAL*8 Expand to Double Precision

For more detail on these functions, see Appendix C-lntrinsic Functions.

Sun FORTRAN accepts declarations of type INTEGER* 2. An expression
involving only objects of type INTEGER* 2 is of that type. Generic functions
return short or long integers depending on the default integer type. If a procedure
is compiled using the -i2 flag, all integer constants that fit and all variables of
type INTEGER (no explicit size) are of type INTEGER*2. If the precision of an
integer-valued intrinsic function is not detennined by the generic function rules,
one is chosen that returns the prevailing length (INTEGER* 2 when the -i2
command flag is in effect). When the -i2 option is in effect, the default length
of LOGICAL quantities is 2 bytes.

Ordinary integers follow the FORTRAN 77 rules about occupying the same space
as a REAL variable; they are assumed to be equivalent to the C type long int,
and half-word integers are of C type short int. These short integer and

Revision A of 6 May 1988

28 Sun FORTRAN Programmer's Guide

Storage Allocation

logical quantities do not obey the standard rules for storage association.

This section describes the way storage is allocated to variables of different types.
In general, any word value (a value that occupies 16 bits) is always aligned on a
word boundary. Anything larger than a word is also aligned on a word boundary
(on a Sun-3, 32-bit or larger unequivalenced local variables are longword­
aligned). Values that can fit into a single character are character-aligned.

BYTE or LOGICAL*l
occupies one character (8 bits) of storage, aligned on a character boundary.
A value of 0 represents . FALSE., 1 represents . TRUE., and any other
value is 'undefined' as a logical value, but may be used as a character or
small integer.

CHARACTERorCHARACTER*l
occupies one character (8 bits) of storage, aligned on a character boundary.

CHARACTER*n
occupies n characters (8 bits each) of storage, aligned on a character
boundary. (Every character string constant is aligned on a word boundary,
and if it does not appear in a DATA statement, it is followed by a null
character to ease communication with C routines.)
There are no null (zero-length) character strings.

COMPLEX
elements are represented by two REAL elements. The first element
represents the real part and the second represents the imaginary part.

DOUBLE COMPLEX or COMPLEX*16
elements are represented by two DOUBLE PRECISION elements. The first
represents the real part and the second represents the imaginary part.

DOUBLE PRECISION or REAL*B
occupies 64 bits (eight characters or four words), aligned on a word boun­
dary. A DOUBLE PRECISION element has a sign bit, an 11-bit exponent
and a 52-bit fraction. FORTRAN DOUBLE PRECISION elements conform
to the IEEE standard for double-precision floating-point data as defined in
[19]. The layout is shown in Table 4-3 .

INTEGER*2
occupies 16 bits (two characters or one word), aligned on a word boundary.

INTEGER or INTEGER*4
occupies 32 bits (four characters or two words), aligned on a word boundary.
If the -i2 compiler flag is set, then INTEGER (without any size
specification) is the same as INTEGER*2.

LOGICAL
occupies four characters (32 bits) of storage, aligned on a word boundary.
The value 0 represents . FALSE., 1 represents . TRUE., and any other
value is an 'undefined' logical value. If the -i2 compiler flag is set, then
LOGICAL (without any size specification) is the same as LOGICAL*2.

Revision A of 6 May 1988

Implicit Typing

The IMP LI c IT Statement

Implicit Undefined

Chapter 4 - Data Structures and Expressions 29

LOGICAL*l or BYTE

See BYTE or LOGICAL*l, above.

LOGICAL*4

occupies four characters (32 bits) of storage, aligned on a word boundary.
The value 0 represents the value . FALSE., 1 represents . TRUE., and any
other value is an 'undefined' logical value.

REAL or REAL* 4

occupies 32 bits (four characters or two words), aligned on a word boundary.
A REAL element has a sign bit, an 8-bit exponent and a 23-bit fraction.
FORTRAN REAL elements conform to the IEEE standard 1. The layout is
shown in Table 4-3 .

REAL*8 or DOUBLE PRECISION

occupies 64 bits (eight characters or four words), aligned on a word
boundary. A DOUBLE PRECISION element has a sign bit, an 11-bit
exponent and a 52-bit fraction. FORTRAN DOUBLE PRECISION

elements conform to the IEEE standard for double-precision floating-point
data as defined in [19]. The layout is shown in Table 4-3.

Unless otherwise declared, a variable whose name begins with I, J, K, L, M, or
N is of type INTEGER, otherwise it is of type REAL.

The general implicit typing rule may be overridden with an IMPLICIT

statement. For example:

IMPLICIT REAL(A-C,G), COMPLEX(W-Z), CHARACTER*l7 (S)

declares that variables whose names begin with an A, B, c, or G are REAL, those
beginning with w, x, Y, or z are COMPLEX, and those beginning withs are
CHARACTER*l 7. It is still generally poor practice to depend on implicit typing.

As an aid to good programming practice, the Sun FORTRAN compiler has the
related modifier UNDEFINED. For example, the statement

[_~_I_M_P_L_I_c_I_T_u_N_D_E_F_I_N_E_D_<_A_-_z_>~~--~~~~~~~~~~~~--J
turns off the automatic data typing mechanism, and causes the compiler to issue a
diagnostic for each variable that is used but does not appear in a type statement.
This applies throughout the subprogram with the statement. Specifying the -u

compiler flag on the command line is equivalent to beginning each procedure
with this statement.

1 See p.754 [19].

Revision A of 6 May 1988

30 Sllll FORTRAN Programmer's Guide

4.4. Expressions

Character Constants

Escape Sequences

In standard FORTRAN 77, character-string constants are marked by strings
surrounded by apostrophes. If an apostrophe is to be included in a constant, it
must be repeated. For example:

[
'abc' J
'ain"t'

....___ ___ _
The Sun FORTRAN compiler and 1/0 system recognize both the apostrophe (')
and the double-quote ("). If a string begins with one variety of quotation marks,
the other can be embedded within it without using the repeated quote or
backslash escapes (see next section). For example:

[
:'abc" J
"ain't"

'-------

Each character string constant appearing outside a DATA statement is followed
by a null character to ease communication with C routines. There are no null
(zero-length) character strings in FORTRAN 77.

For compatibility with C usage, the following backslash escapes are recognized:

Table 4-2 Backslash Escape Sequences

Character Meaning

\n newline
\t tab
\b backspace
\f form feed
\v vertical tab
\0 null
\' apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)
\\ \
\x x, where x is any other character

Hollerith ANSI standard FORTRAN 77 does not have the old Hollerith (n H) notation,
although the ANSI standard recommends implementing the Hollerith feature in
order to improve compatibility with old programs. In Sun FORTRAN, Hollerith
data can be used in place of character-string constants, and can also be used to
initialize noncharacter variables in DATA statements, though none of these are
recommended. For example:

Revision A of 6 May 1988

Character String Assignment

Joining Strings

Substrings

Chapter 4- Data Structures and Expressions 31

r

CHARACTER*2 CODE
INTEGER*2 TAG
DATA TAG / 2Hok /
CODE = 2Hno

The left and right sides of a character assignment may not share storage. (The
assumed implementation of character assignment is to copy characters from the
right to the left side.) If the left side is longer than the right, it is padded with
blanks. If the left side is shorter than the right, trailing characters are discarded.

FOR1RAN 77 has the I I operator for joining character-strings. This is usually
called the concatenation operator. The result of concatenating two strings is a
third string containing the characters of the left operand followed immediately by
the characters of the right operand. For example, the program

CHARACTER A*8, B*2, C*12
A "join"
B = "ed"
C =A// B
PRINT *, C
STOP
END

will display "joined". Also, the program

IF (("ab" // "cd") .EQ. "abed"
STOP
END

PRINT *, "equal"

will display "equal". That is, the single constant "ab" I I "cd" and the
constant "abed" are equal.

You can extract a substring of a character object by specifying the initial and last
character positions, separated by the colon. For example, the expression:

(S (I: L)

is the string of characters with initial character from the I'h character of s and
with the last character from the L'h character of s.
Similarly, the expression:

(A(J,K) (M:N)

is the string of characters with initial character from the M'h character of the
array element A (J, K) and with the last character from the N'" character of that

)

]

+m.!! Revision A of 6 May 1988

32 Sun FORTRAN Programmer's Guide

Exponentiation

Binary, octal, and
hexadecimal constants

These constant indicators are for
use in DATA statements only.

element. Note that there are (L-M+l) characters in the substring.

Rules and Restrictions for Substrings

D

D

D

The first character position is numbered one (not zero).

The initial and last character positions must be integer expressions.

If the first expression is omitted, the substring begins with the first character
of the string.

D If the second expression is omitted, the substring ends with the last character
of the string.

D

D

The result is undefined unless 0 < I ~ L ~ the declared length.*

Substrings may be used on the left and right sides of assignments and as
procedure actual arguments.

FORTRAN 77 allows raising real quantities to complex powers, or complex
quantities to real or complex powers. The principal part of the logarithm is used.
Also, multiple exponentiation is defined. For example:

(A**B**C

is equivalent to:

(A ** (B**C)

The B, o, x, and z constant indicators in a DATA statement are for binary, octal
and hexadecimal constants. The B is for binary, the o is for octal, and the X or z
are for hexadecimal. These are typeless constants. For example:

INTEGER*2 Nl, N2, N3, N4
DATA Nl /B'0011111'/, N2/0'37'/, N3/X'lf'/, N4/Z'lf'/
WRITE (*, 1) Nl, N2, N3, N4

1 FORMAT (lX, 04, 04, Z4, Z4)
STOP
END

Each of the above integer constants has the value 31 decimal.

Restrictions on typeless constants

o These constants are typeless; they are stored in the variables without any
conversion to match the type of the variable.

1 I is the initial position and L is the last position.

J

J

Revision A of 6 May 1988

....,

Relaxation of Restrictions

Mixed Mode

Mixed INTEGER and
LOGICAL

Chapter 4 - Data Structures and Expressions 33

o If the receiving data type has more digits than are specified in the constant,
zeros are filled on the left.

o If the receiving data type has/ewer digits than are specified in the constant,
digits are truncated on the left. If nonzero digits are lost, an error message is
displayed.

o Specified leading zeros are ignored.

o You can specify up to 8 bytes of data for any one variable.

o For binary constants, each digit is 0 or 1.

o For octal constants, each digit must be in the range 0 to 7.

o For hexadecimal constants, each digit must be in the range 0 to 9 or in the
range A to F, or a to f.

FOR1RAN 77 has relaxed restrictions on mixed mode, constant expressions, and
subscripts.

FOR1RAN 77 has relaxed restrictions on mixed mode. For instance, it is
permissible to combine integer and complex quantities in an expression.

In Sun FOR1RAN you can use a LOGICAL value anyplace where standard
FOR1RAN requires a numeric value; the compiler implicitly converts it to
INTEGER. Also, logical operations are allowed on integers and, conversely,
integer operations are allowed on logical variables. If you use these features,
your program may not be portable.

The following example shows some combinations of integer and logical types:

Revision A of 6 May 1988

34 Sun FORTRAN Programmer's Guide

Constant expressions

Subscripts

derno% cat mixl. f
* mixL f Mixed integer

INTEGER* 2 I 1 i •• .· I2>,
LOGICAL Ll, L2,
DATA Tl I BI~ I2
DATA L1 /.TRUE./,

WRITE (* ,< 1) "

1 FORMAT (lX, A8,
WRITE (*, .2)
Ll Ll + 1
I2 = .NOT. 12
L2 Tl .AND. I3
L3 I1 .OR. I2
WRITE (<*, 2

2 FORMAT (lX,
STOP
END

demo%£77 mixl.f
mix1.f:

MAIN:
demo%·· ·a. out

Bef are
After:

demo%

Resultant type

o If you use integer operands with a logical operator, the operation is done
bit-by-bit on the internal value of the operands. The result of such an
operation is an integer.

o If the operands are mixed integer and logical, then the logicals are converted
to integers and the result is an integer.

Constant expressions are permitted where a constant is allowed, except in DATA
statements. (A constant expression is made up of explicit constants and
parameters and the FOR1RAN operators, except for exponentiation to a floating­
point power). An adjustable dimension may now be an integer expression
involving constants, arguments, and variables in common.

Subscripts may now be general integer expressions; the old cv ±c' rules have been
removed. The DO loop bounds may be general integer, real, or double-precision
expressions. Computed GO TO expressions and 1/0 unit numbers can be general
integer expressions.

Revision A of 6 May 1988

4.5. Parameters

The PARAMETER Statement

Intrinsic Functions

Chapter 4 - Data Structures and Expressions 35

FORTRAN 77 allows you to give a symbolic name to a constant. Once defined,
such a symbolic name can be used anywhere a constant can be used, except in a
FORMAT statement.

The FORTRAN 77 PARAMETER statement defines a symbolic name. For
example:

CHARACTER S*8
REAL X, Y, PI
PARAMETER (X=l 7, Y=X/3, PI=3 .1415900, S='hello')

A variation of the PARAMETER statement is:

PARAMETER (X=l 7), (Y=X/3), (PI=3 .1415900), (S='hello')

Rules and restrictions for symbolic names of constants

o The type of each name is governed by the same implicit and explicit type
rules as for variables.

o These names are fonned by the same rules as names of variables.

o Once defined, a symbolic name of a constant cannot be redefined in another
statement. In particular, it cannot appear as the left-hand-side of an
assignment statement.

o The PARAMETER statement must appear before all executable and DATA
statements.

o The right side of each equal sign must be a constant expression (an
expression made up of constants, operators, and already defined parameters,
and in Sun FORTRAN certain intrinsic functions, as listed in the next
section.)

The PARAMETER statement allows clauses of the fonn s=e wheres is a
symbolic name and e is a compile-time constant expression. The expression can
include the following intrinsic functions:

LOC, CHAR,
AND, OR, NOT, XOR, LSHIFT, RSHIFT, LGE, LGT, LLE, LLT,
MIN, MAX, ABS, MOD, ICHAR, NINT, DIM,
DPROD, CMPLX, CONJ, AIMAG

(The functions IAND, IOR, IEOR, and ISHFT are not available, but you can use
the corresponding AND, OR, XOR, LSHIFT' or RSHIFT; or if you use the
f77cvt program it will make these conversions for you. For more on f77cvt
see Section 10.4- "The Source Code Converter."

Revision A of 6 May 1988

36 Sun FORTRAN Programmer's Guide

Equivalence Statements

4.6. Static Variables

The SAVE Statement

Dummy arguments cannot appear
in a SAVE statement.

Automatic/Static

As a special and peculiar case, FORTRAN 66 pennits an element of a
multidimensional array to be represented by a singly-subscripted reference in
EQUIVALENCE statements. FORTRAN 77 does not pennit this usage, since
subscript lower bounds may now be different from 1. (See Subsection Array
Declarations, a little later in this section.) The Sun FORTRAN compiler pennits
single subscripts in EQUIVALENCE statements, under the interpretation that all
missing subscripts are equal to 1. A warning message is printed for each such
incomplete subscript.

According to ANSI standard FORTRAN, local variables in a procedure do not
necessarily retain their values between invocations of that procedure. At any
instant in the execution of a program, if a common block is neither declared in
the currently executing procedure nor in any of the procedures in the chain of
callers, all of the variables in that common block also become undefined. The
only exceptions are variables that have been defined in a DATA statement and
never changed. These rules pennit overlay and stack implementations for the
affected variables.

In FORTRAN 77 you can specify that certain variables and common blocks retain
their values between invocations. For example, the declaration

leaves the values of the variables A and c and all of the contents of common Vfflflllfll
block B unaffected by a RETURN. The simple declaration

(_sA-VE ____ ____...]

has this effect on all variables and common blocks in the procedure. A common
block must be saved in every procedure in which it is declared if the desired
effect is to occur.

In addition to the SAVE statement, Sun FORTRAN allows you to type variables
as static or automatic. For static variables, there is exactly one copy of each
datum, and its value is retained between calls. For automatic variables, there is
one copy for each invocation of the procedure. For example:

STATIC A, B, C
STATIC REAL P, D, Q
IMPLICIT AUTOMATIC (X-Z)

Rules and restrictions on static and automatic

o Local variables are static by default.

o Arguments and function values are automatic.

Revision A of 6 May 1988

Array Declarations

4. 7. Pointers

Pointer statement

Chapter 4 - Data Structures and Expressions 37

o Automatic variables cannot appear in EQUIVALENCE, DATA, or SAVE
statements.

In FORTRAN 77 arrays can have as many as seven dimensions. For example:

(____ R_E_A_L--TA_o __ c2_,_2_,_3_,_4_,_s_,_6_,_1_0_> _______________________________]

The lower bound of each dimension can be declared to be other than 1 by using a
colon between the lower bound and the upper bound. If the lower bound and
colon are omitted, the lower bound is assumed to be 1. For example:

[____ R_E_A_L_A __ <s_:_3_, __ 7_, __ 3_:_s_>_,_s __ co_:_2_> ___________________________)

Furthermore, an adjustable array bound can be an integer expression involving
constants, arguments, and variables in common:

SUBROUTINE POPUP (A, B, N)
COMMON / DEFS / M, L, K
REAL A(5:3, 7, M:N), B(N+1:2*N)

The upper bound on the last dimension of an array argument can be denoted by
an asterisk to indicate that the upper bound is not specified. For example:

SUBROUTINE PULLDOWN (A, B, C
INTEGER A (5, *) , B (*) , C (0 : 1, 2 : *)

A pointer* is an integer variable that contains an address. The PO INTER
statement establishes pairs of variables and pointers, where each pointer contains
the address of its paired variable. Any variable paired with a pointer in a
PO INTER statement is called a pointer-based variable, or just a based variable.

The syntax for the POINTER statement is as follows:

POINTER (pl, vi) [' (p2, v2) ...]

where vl, v2 are pointer-based variables, and pl, p2 are the corresponding
pointers. A simple POINTER statement is shown in this example:

(____ P_o_I_N_T_E_R ___ < __ P_, __ v __ > _______________________________________)

Here, v is a pointer-based variable, and P is its associated pointer.

• Sun FORTRAN pointers are compatible with Cray-1 Computer Systems FORTRAN (CFT).

Revision A of 6 May 1988

38 Sun FORTRAN Programmer's Guide

Usage of pointers

Address assignment

Once you have defined a variable as based on a pointer, you must assign an
address to that pointer before you can reference the pointer-based variable with
standard FOR1RAN. (Whenever your program references a pointer-based
variable, that variable's address is taken from the associated pointer.) It is your
responsibility to provide an address of a variable of the appropriate type and size.

Since no storage is allocated when a pointer-based variable is defined, you must
provide a memory area of the right size and assign the address to a pointer,
usually with the nonnal assignment statement or data statement. You can obtain
the address from the intrinsic function LOC () , or you can obtain both the area of
memory and the address from the function MALLOC ().

Address via LOC ()

The following example uses the LOC () function to get an address:

* ptrl.f: Assign an address via LOC()
POINTER (P, V)
CHARACTER A*12, V*12
DATA A I "ABCDEFGHIJKL" I
P = LOC (A)
PRINT *, V(S:S)
STOP
END

In the above example, the CHARACTER statement allocates 12 bytes of storage
for A, but no storage for v; it merely specifies the type of v because vis a
pointer-based variable. Then we assign the address of A to P so now any use of v
will refer to A via the pointer P. The program will print an E.

Address via MALLOC ()

The following example uses MA.LLOC (} to get the area of memory and its
address:

* ptr2.f: Assign an address via MALLOC()
POINTER (P, V)
CHARACTER A*12, V*l2
DATA A I "ABCDEFGHIJKL" I
P = MALLOC(12)
V = A

PRINT *, V(S:S)
STOP
END

In this example, we get 12 bytes of memory and its address from the function
MALLOC () , then assign the address of that block of memory to the pointer P.
The program will print an E.

Revision A of 6 May 1988

The Function MALLOC ()

The Subroutine FREE ()

Pointer arithmetic

Chapter 4 - Data Structures and Expressions 39

The function MALLOC (} allocates an area of memory and returns the address of
the start of that area. The argument to the function is an integer specifying the
amount of memory to be allocated, in bytes. If successful, it returns a pointer to
the first element of the region, otherwise it returns an integer 0. The region of
memory is not initialized in any way - assume it is garbage.

The following example uses MALLOC (} to get the area of memory and its
address:

POINTER (p' v)
CHARACTER V*l2, Z*l
P = MALLOC (12)
WRITE (6, 1) P

1 FORMAT (lX, Z)
STOP
END

In the above example, we obtain 12 bytes of memory from the function
MALLOC () and assign the address of that block of memory to the pointer P.

The subroutine FREE () deallocates a region of memory previously allocated by
MALLOC () . The argument given to FREE () must be a pointer previously
returned by MALLOC () , but not already given to FREE () . The memory is
returned to the memory manager, making it unavailable to the programmer.

For example:

POINTER (Pl, X) , (P2, Y) , (P3, Z)

Pl = MALLOC (36

CALL FREE (Pl)

In the above example, we get 36 bytes of memory from MALLOC () and then
after some other instructions, probably using that chunk of memory, we tell
FREE () to return those same 36 bytes to the memory manager.

Since the value of a pointer is the address of the thing it points to, in bytes, you
can do integer addition or subtraction with pointers. Thus, if you add 4 to PTR,
that would start it at the fifth character in A, as in the following example, which
also prints an E:

Revision A of 6 May 1988

40 Sun FORTRAN Programmer's Guide

Optimization and pointers

* ptr3.f: Arithmetic with pointers
POINTER (PTR, V)
CHARACTER A*12, V*12, Z*l
DATA A I "ABCDEFGHIJKL" I
PTR = LOC(A)
PTR = PTR + 4
Z = V(l:l)
PRINT *, Z
STOP
END

You can dimension these variables in a separate type declaration or DIMENSION
statement, or you can specify the dimensions in the PO INTER statement itself, as
shown in this example:

(~~~~-P_o_r_N_T_E_R~(~P-T_R_,~Y-(_4_,_i_o_o_>_>~~~~~~~~~~~~~--]
Rules and restrictions on pointers

o The pointers are of type integer, and are automatically typed that way by the
compiler. You must not type them yourself.

o The pointer-based variables can be of any type, including structures.

o No storage is allocated when such a pointer-based variable is defined, even if ..._,
there is a size specification in the type statement.

o You can't use a pointer-based variable as a dummy argument or in COMMON,
EQUIVALENCE, DATA, or NAMELIST statements.

o A pointer-based variable cannot itself be a pointer.

o The dimension expressions for pointer-based variables must be constant
expressions in main programs. In subroutines and functions, the same rules
apply for pointer-based array variables as for dummy arguments: the
expression can contain dummy arguments and variables in common. Any
variables in the expressions must be defined with an integer value at the time
the subroutine or function is called.

Pointers have the annoying side effect of reducing the assumptions that the
global optimizer can make. In particular, in the absence of pointers, when a
subroutine or function is called, the optimizer previously could be assured that
the call will change only variables in common or those passed as arguments to
that call. This is no longer valid, since a routine can take the address of an
argument and save it in a pointer in common for use in a subsequent call to itself
or to another routine. Therefore, the optimizer must assume that a variable
passed as an argument in a subroutine or function call can be changed by any
other call.

Such an unrestricted use of pointers would degrade optimization for the vast
majority of programs that don't use pointers. Thus, the compiler places the

Revision A of 6 May 1988

Chapter 4 - Data Structures and Expressions 41

following restrictions on the use of pointers whenever optimization is selected:

o Subroutines and functions are not permitted to save the address of any of
their arguments between calls; a function can't return the address of any of
its arguments, although it can return the value of a pointer argument.

o Only those variables whose addresses are explicitly taken with the LOC () or
MALLOC () functions can be referenced through a pointer.

The following is an example of one kind of code that could cause trouble when
optimization is enabled:

COMMON A, B, C
POINTER (P, V

P = LOC(A) + 4 f-- possible problems if optimized

The compiler will assume that a reference through P may change A, but not B;
this assumption could produce incorrect code.

Revision A of 6 May 1988

42 Sun FORTRAN Programmer's Guide

4.8. Structures

Structure declaration

Field declaration

Sun FORTRAN has an extension that allows organizing data into structures. The
structure declaration defines the fonn of a record by specifying the name, type,
size, and order of the fields that constitute the record. Once a structure is defined
and named, it can be used in RECORD statements, as explained below. The
structure declaration has the following syntax:

STRUCTURE [I structure-name/] [field-list]
field-declaration
[.field-declaration J

[field-declaration J
END STRUCTURE

where structure-name is the name of the structure,field-list is a list of fields of
the specified structure, each field-declaration defines a field of the record, and

each field declaration can be one of the following:

o A substructure (either another structure declaration, or a record that has been
previously defined)

o A union declaration (described below)

o A FORTRAN type declaration

An example of a s TRUCTURE declaration is:

STRUCTURE /PRODUCT/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4

END STRUCTURE
PRICE

In this example, a structure named PRODUCT is defined to consist of the five
fields ID, NAME, MODEL, COST, and PRICE. For an example with a.field-list,
see "Structure within a structure" later in this section.

Rules and restrictions for structures

o The name is enclosed in slashes and is optional only in nested structures.

o If slashes are present, a name must be present.

o You can specify the field-list within nested structures only.

o There must be at least one field-declaration.

o Each structure-name must be unique among structures, although you can use
structure names for fields in other structures or as variable names.

Revision A of 6 May 1988

Record declaration

Chapter 4- Data Structures and Expressions 43

o The only statements allowed between the STRUCTURE statement and the
END STRUCTURE statement are field-declaration statements and
PARAMETER statements. A PARAMETER statement inside a structure
declaration block is equivalent to one outside.

Rules and restrictions for fields

Fields that are type declarations use the identical syntax of normal FOR1RAN
type statements, and all Sun FOR1RAN types are allowed, subject to the
following rules and restrictions:

o Any dimensioning needed must be in the type statement. The DIMENSION
statement has no effect on field names.

o You can specify the pseudo-name %FILL for a field name to align fields in
a record.

o You must explicitly type all field names. The IMPLICIT statement does
not apply to statements in a STRUCTURE declaration, nor do the implicit
I, J, K, L, M, N rules apply.

o You can't use arrays with adjustable or assumed size in field declarations,
nor can you include passed-length CHARACTER declarations.

o Field offsets - In a structure declaration, the offset of field n is the offset of
the preceding field, plus the length of the preceding field, possibly corrected
for any adjustments made to maintain alignment. For a summary of storage
allocation, see the Subsection \(lqStorage Allocation\(rq in Section 4.3 -
"Data Types."

The RECORD statement declares variables to be records with a specified
structure, or declares arrays to be arrays of such records. The syntax of a
RECORD statement is as follows:

RECORD I structure-name I record-list
[,I structure-name I record-list]

[, I structure-name I record-list]

where structure-name is the name of a previously declared structure, and
record-list is a list of variables, arrays, or arrays with dimensioning and index
ranges, separated by commas.

For example, using the structure in the example above:

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

Each of the three variables CURRENT, PRIOR, and NEXT is a record which has
the PRODUCT structure, and LINE is an array of 10 such records.

Revision A of 6 May 1988

44 Sun FORTRAN Progranuner's Guide

Record and field reference

Rules and restrictions for records

o Each record is allocated separately in memory.

o Initially, records have undefined values.

o Records, record fields, record arrays, and record-array elements are allowed
as arguments and dummy arguments. When you pass records as arguments,
their fields must match in type, order, and dimension. The record
declarations in the calling and called procedures must match. Within a
union declaration, the order of the map fields is not relevant - see "Unions
and maps," later in this section.

o Records and record fields are allowed in COMMON and DIMENSION

statements.

o Records and record fields are not allowed in DATA, EQUIVALENCE,

NAMELIST, or SAVE statements.

You can refer to a whole record, or to an individual field in a record, and since
structures can be nested, a field can itself be a structure, so you can refer to fields
within fields, within fields, etc. The syntax of record and field reference is as
follows:

record-name [.field-name] . . . [.field-name]

where record-name is the name of a previously defined record variable, and each
field-name is the name of a field in the record immediately to the left.

Examples of references are given below, based on the structure and records of the
above two examples:

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(10)

CURRENT NEXT
LINE(l) CURRENT
WRITE (9) CURRENT
NEXT.ID 82

In this example, the first assignment statement copies one whole record (all five
fields) to another record, the second assignment statement copies a whole record
into the first element of an array of records, the WRITE statement writes a whole
record, and the last statement sets the ID of one record to 82.

A complete sample program is listed below to show structure and record
declarations, record and field assignments, and field output:

Revision A of 6 May 1988

Substructure declaration

Chapter 4 - Data Structures and Expressions 4 5

demo% cat strl.f
* strl.f.Simple structure

STRUCTURE I S /
INTEGER*4 I

REAL*4 R
END STRUCTURE

RECORD l S / Rl, R2

RLI
Rl.R
R2 = Rl

82
2.7182818

WRITE (*, *) R2.I, R2.R
STOP
END

derno% £77 strl.f
strl. £:
MAIN:

demo% a.out
82 2.718280

demo%

A structure can have a field that is also a structure. Such a field is called a

substructure. You can declare a substructure in either of two ways:

o A RECORD declaration within a structure declaration

o A structure declaration within a structure declaration (nesting)

Record within a structure

A nested structure declaration is one that is contained within either a structure

declaration or a union declaration (see below). You can use a previously defined

record within a a structure declaration. For example, using the previously defined

record PRODUCT you can define a structure SALE:

STRUCTURE /SALE/
CHARACTER*32
INTEGER*2
RECORD /PRODUCT/

END STRUCTURE

BUYER
QUANTI'l'Y
ITEM

In the above example, the structure SALE contains three fields: BUYER,

QUANTITY' and ITEM, where ITEM is a record with the structure /PRODUCT I.

Revision A of 6 May 1988

46 Sun FORTRAN Programmer's Guide

Structure within a structure

You can nest a declaration within a declaration. For example, if /PRODUCT I is
not declared previously, then you can declare it within the declaration of SALE:

STRUCTURE /SALE/
CHARACTER*32 BUYER
INTEGER*2 QUANTITY
STRUCTURE /PRODUCT/ ITEM

INTEGER*4 ID
CHARACTER*l6 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE
END STRUCTURE

Here the structure SALE still contains the same three fields as in the prior
example: BUYER, QUANTITY, and ITEM. The field ITEM is an example of a
field-list (in this case, a single-element list), as defined under "Structure
declaration."

The size and complexity of the various structures determine which style of
substructure declaration is best to use in a given situation.

Field reference in substructures

You can refer to fields within substructures; for example, with PRODUCT and
SALE in the current program unit:
r

RECORD /SALE/ JAPAN

N = JAPAN.QUANTITY
I = JAPAN.ITEM.ID

Rules and restrictions for substructures

o You must define at least one field name for any substructure.

o No two fields at the same nesting level can have the same name. Fields at
different levels of a structure can have the same name (although doing so
might be questionable programming practice).

o You can use the pseudo-name %FILL to align fields in a record. This makes
an unnamed empty field.

o You must not include a structure as a substructure of itself, at any level of
nesting.

~

Revision A of 6 May 1988

Unions and maps

Union declaration

Map declaration

Chapter 4 - Data Structures and Expressions 4 7

A union declaration defines groups of fields that share memory at runtime.

The syntax of a union declaration is as follows:

UNION
map-declaration
map-declaration
[map-declaration J

[map-declaration J
END UNION

The syntax of a map declaration is as follows:

MAP
field-declaration
[field-declaration J

[field-declaration J
END MAP

A map declaration defines alternate groups of fields in a union. During
execution, one map at a time is associated with a shared storage location. When
you reference a field in a map, the fields in any previous map become undefined
and are succeeded by the fields in the map of the newly referenced field. The
amount of memory used by a union is that of its biggest map.

For example, you can declare the structure I STUDENT I to contain either NAME,

CLASS, and MAJOR- or NAME, CLASS, CREDITS, and GRAD _DATE:

STRUCTURE /STUDENT/
CHARACTER*32 NAME
INTEGER*2 CLASS
UNION

MAP
CHARACTER*16 MAJOR

END MAP

MAP
INTEGER*2 CREDITS
CHARACTER*8 GRAD DATE

END MAP
END UNION

END STRUCTURE

If you define the variable PERSON to have the structure I STUDENT I from the
above example, then PERSON. MAJOR references a field from the first map, and
PERSON. CREDITS references a field from the second map. If the variables of
the second map field are initialized and then the program references the variable
PERSON. MAJOR, the first map becomes active and the variables of the second
map become undefined.

Revision A of 6 May 1988

48 Sun FORTRAt""l Programmer's Guide

Fields in a map

4.9. Data Representations

Representation of REAL and
DOUBLE PRECISION

Table 4-3

Representation with Extreme
Exponents

Each field-declaration in a map declaration can be one of the following:

o a structure declaration

o a record

o a union declaration

o a declaration of a typed data field

Whatever the size of the data element in question, the most significant bit of the
data element is al ways in the lowest-numbered character of the character
sequence required to represent that object.

Both REAL and DOUBLE PRECISION data elements are represented according
to the IEEE standard:

Floating-Point Representation

Single-Precision Double-Precision

Sign bit 31 bit 63

Exponent bits 3(}-23 bits 62-52
bias 127 bias 1023

Fraction bits 22-0 bits 51-0

Range 3.402823e+ 38 1. 797 693e+ 308
approx. 1. l 75494e-38 2.225074e-308

A REAL or DOUBLE PRECISION number is represented by the form:

(-1 yign * 2expon.1!nt-bias * 1./

where/ is the bits in the fraction.

zero (signed)
is represented by an exponent of zero and a fraction of zero.

subnormal number
The form of a subnormal number is

(-IYign * 21-bias* O.f

where f is the bits in the significand.

signed infinity
(that is, affine infinity) is represented by the largest value that the exponent
can assume (all ones), and a zero fraction.

Revision A of 6 May 1988

Hexadecimal Representation
of Selected Numbers

Chapter 4- Data Structures and Expressions 49

Not a Number (NaN)
is represented by the largest value that the exponent can assume (all ones),
and a nonzero fraction.

Nonnalized REAL and DOUBLE PRECISION numbers have an implicit leading
bit that provides one more bit of precision than usual.

Table 4-4 Hexadecimal Representation of Selected Numbers

Arithmetic Operations on
Extreme Values

Table 4-5

Value Single-Precision Double-Precision

+O 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7Fxxxxxx 7FFxxxxxxxxxxxxx

This section describes the results of basic arithmetic operations perfonned on
combinations of extremal and ordinary values. No traps or any other exception
actions are taken. All inputs are assumed to be positive. Overflow and
underflow are assumed not to happen. Table 4-5 summarizes the abbreviations
used in the following tables:

Abbreviations for Numbers

Abbreviation

Sub
Num
Inf
NaN
Uno

Meaning

Subnonnal Number
Nonnalized Number
Infinity (positive or negative)
Not a Number
Unordered

Revision A of 6 May 1988

50 Sun FORTRAN Programmer's Guide

Inf+ Inf = Inf
Inf - Inf = NaN

NS means either Num or Sub result
possible.

Left
Operand

0

Sub

Num

Inf

NaN

Left
Operand

0

Sub

Num

Inf

NaN

Left
Operand

0

Sub

Num

Inf

NaN

Addition and Subtraction

Right Operand

0 Sub Num Inf NaN

0 Sub Num Inf NaN

Sub Sub Num Inf NaN

Num Num Num Inf NaN

Inf Inf Inf See Note NaN

NaN NaN NaN NaN NaN

Multiplication

Right Operand

0 Sub Num Inf NaN

0 0 0 NaN NaN

0 0 NS Inf NaN

0 NS Num Inf NaN

NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN

Division

Right Operand
0 Sub Num Inf NaN

NaN 0 0 0 NaN

Inf Num Num 0 NaN

Inf Num Num 0 NaN

Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN

Revision A of 6 May 1988

If either x or Y is NaN, then
X .NE. Y is TRUE
and the others
(. EQ. I • GT. I • GE. I • LT. I • LE.)
are FALSE.
+O compares equal to -0.

If any argument is NaN, then
the results of MAX or MIN
are undefined.

Left
Operand 0

0 =

Sub >

Num >

Inf >

NaN Uno

Chapter 4 - Data Structures and Expressions 51

Comparison

Right Operand

Sub Num Inf NaN

< < < Uno

< < Uno

> < Uno

> > = Uno

Uno Uno Uno Uno

Revision A of 6 May 1988

5
Control and Program Structures

Control and Program Structures .. 55

5 .1. Overview .. 55

5.2. Alternate Returns... 55

5.3. Block Data Statements ... 56

5.4. The DO Loop.. 56

The DO Variables .. 56

One-Trip DO Loops.. 56

Unlareled DO Loops ... 56

~ Indefinite DO WHILE Loops... 57

Extended Range Removed .. 58

5.5. The ENTRY Statement.. 58

5.6. The IF-THEN-ELSE Statement··· 59

5.7. The INTRINSIC Statement... 60

5.8. Program Statement ... 60

5.9. Recursion.. 60

5.1. Overview

5.2. Alternate Returns

5
Control and Program Structures

FORTRAN 77 and Sun FORTRAN have added various features which control
which statements get executed next. This chapter describes such features,
including DO loops, IF-THEN-ELSE, the INTRINSIC statement, alternate
entries, alternate returns, recursion, and block data.

FORTRAN 77 allows you to return from a subroutine to a specified labeled
statement in the calling routine. To do this, the corresponding arguments of the
CALL and SUBROUTINE statements must indicate that the argument passed is a
statement label, and the RE TURN statement indicates which alternate return to
use. The alternate return syntax for these three statements is illustrated in the
examples below:

o In the CALL statement, the argument of an alternate return is a statement
label preceded by an asterisk. For example:

(_______ c_A_L_L __ s_H_R_E_D __ <_J __ ,_*_9_o_, __ M_, __ *_S __ > ________________________]

o In the SUBROUTINE or ENTRY statement, the argument of an alternate
return is an asterisk. For example:

(~ _____ s_u_s_R_o_u_T_r_N_E_s_H_R_E_o ___ <_A_, __ *_, __ s_, __ * __ > _____________________]

o In the RE TURN statement, you select a return by an optional integer
expression. For example:

(_______ R_E_T_u_RN---2---J

In the above example, the "RE TURN 2" causes a return to the 2nd alternate
return, in this case, statement number 5.

In general, "RE TURN K" is a branch to the K'h statement label.

Restriction: For "RE TURN K" we must have 1g 5N, where N is the number of
alternate return (asterisk) arguments in the SUBROUTINE statement. If K is
outside that range, then the usual return to the statement following the CALL is
executed. Note that for two or more alternate return arguments, it is usually

55 Revision A of 6 May 1988

56 Sun FORTRAN Programmer's Guide

5.3. Block Data Statements

5.4. The DO Loop

The DO Variables

One-Trip DO Loops

Unlabeled DO Loops

clearer to put them together at the end of the argument list.

Block data procedures can have a name. For example:

(BLOCK DATA STUFF
J

According to the standard, only one unnamed block data procedure can appear in
a program. The standard does not specify the effect of the program and block
data names, but they are clearly intended to aid conventional linkers.

Several extensions and refinements to the DO loop have been implemented since
FORTRAN 66.

Starting with FORTRAN 77, the DO variables and range parameters may be of
INTEGER, REAL, or DOUBLE PRECISION types. However, the use of
floating-point DO variables is dangerous because of the possibility of unexpected
roundoff, and we strongly recommend against it. The action of the DO statement
is defined for all values of the DO parameters. The statement

performs max(O, l (U-L+D)ID J) iterations. The DO variable has a predictable

value when exiting a loop - the value at the time a GO TO or RETURN

terminates the loop; otherwise, it is the value that failed the limit test. ...,,,,

In order to accommodate certain types of old programs, the -onetrip compiler
flag makes f 7 7 generate loops that are executed at least once. The FORTRAN 66
standard states that the effect of such a statement is undefined, but it is common
practice that the range of a DO loop is performed at least once. Note that the
FORTRAN 77 standard requires that the range of a DO loop not be performed if
the initial value is already past the limit value, but this -onetrip flag allows
you to override that requirement. For example:

With -onetrip the above loop will be executed exactly once; without it, the
loop will not be executed at all.

Sun FORTRAN extends the standard FORTRAN 77 loop by not requiring a label
for the executable statement that terminates the loop. Compare:

[
DO 3 I = 1, 10

3 CONTINUE l
Revision A of 6 May 1988

Indefinite DO WHILE Loops

Chapter 5 - Control and Program Structures 57

and the following loop, which works exactly the same as the preceding example:

Note that you cannot terminate nested loops with a single unlabeled END DO
statement. For example, the following is NOT correct:

DO I 1, 10
DO J 5, 8

END DO ~invalid syntax

One acceptable alternative:

DO I 1, 10
DO J 5, 8

END DO
END DO

If a DO loop doesn't have a label, it must terminate with an END DO statement.

Sun FOR1RAN extends the standard FOR1RAN 77 loop with the DO WHILE
statement. This statement tests a logical expression before executing the state­
ments inside the loop: as long as the expression's value is true, the loop repeats;
as soon as the loop test finds the expression's value false, the loop terminates.

As with an unlabeled DO statement, a DO WHILE statement uses an END DO to
terminate. For example:

CHARACTER*l32 LINE

READ (*, *) LINE
L = 132
DO WHILE (L .GT. 1 .and. LINE(L:L) .EQ. ' ')
L = L-1
END DO

As an alternative, you can specify a label to terminate a DO WHILE statement.
For example:

[~~~9~~~D_:_o_:_T_:_:_:_:_E~-(-X~-·L_E~·~o-._0~)~~~~~~~~~~~----'l
Revision A of 6 May 1988

58 Sun FORTRAN Programmer's Guide

Extended Range Removed

5.5. The ENTRY Statement

In FORTRAN 66, under a set of restrictive and rarely understood conditions, it is
permissible to jump out of the range of a DO loop, then jump back into it.
Extended range has been removed in the FORTRAN 77 language. The
restrictions are so special, and the implementation of extended range is so
unreliable in many compilers, that this change really counts as no loss. You can
transfer control out of a DO WHILE loop, but you can't transfer control into a
loop from outside it.

FORTRAN 77 allows multiple entry points. Subroutine and function
subprograms can have additional entry points, declared by an ENTRY statement
with an optional argument list. For example:

SUBROUTINE FINAGLE(A, B, c)
INTEGER A, B
CHARACTER C*4

RETURN

ENTRY SCHLEP(A, B, c)

RETURN

ENTRY SHMOOZ

RETURN
END

In the above example, the subroutine FINAGLE has two entries; the entry
SCHLEP has an argument list; the entry SHMOOZ has no argument list. In the
calling routine we can call the above subroutine and entries as follows:

INTEGER A, B
CHARACTER C*4

CALL FINAGLE(A, B, C)

CALL SCHLEP(A, B, C)

CALL SHMOOZ

-......

_J

The order of the call statements need not match the order of the entry statements.

•\sun ~ microsystems
Revision A of 6 May 1988

~

5~. The IF-THEN-ELSE
Statement

End-of-line:

Chapter 5 - Control and Program Structures 59

Rules and restrictions for ENTRY

o Execution begins at the first statement following the ENTRY line.

o All declarations of variables must precede all executable statements in the
procedure.

o If the procedure begins with a SUBROUTINE statement, each entry point is a
subroutine name.

o If it begins with a FUNCTION statement, each entry is a function name, with
the type determined by the declared entry name's type.

o If any entry is a character-valued function, then all entries must be
character-valued functions.

o In a function, an entry name of the same type as that where control entered
must be assigned a value.

o Arguments do not retain their values between calls. The ancient trick of
calling one entry point with a large number of arguments so that the
procedure 'remembers' the locations of those arguments, then invoking an
entry with just a few arguments for later calculation is still illegal.
Furthermore, the trick doesn't work in this implementation, since arguments
are not kept in static storage.

The IF-THEN-ELSE branching structure is standard with FORTRAN 77. It is
often called a 'Block If'. A Block If begins with a statement of the form:

[____ r_F __ (__ ._·_· __ > __ T_H_E_N ______________________________________]

and ends with an

[__ E_No_r_F _________________________]

statement.

Two other new statements can appear in a Block If. There can be several

(ELSE IF (. . .) THEN

J
statements, followed by at most one

(_EL-SE ______]

statement.

There must be nothing more on the same line after the "IF (. . .) THEN"
or after the"ELSE IF (. . .) THEN".

If the logical expression in the Block If statement is true, the statements
following it up to the corresponding ELSE IF' ELSE, or END IF are

Revision A of 6 May 1988

60 Sun FORTRAN Programmer's Guide

5.7. The INTRINSIC
Statement

5.8. Program Statement

5.9. Recursion

executed. Otherwise, the next ELSE IF statement in the group is executed. If
none of the ELSE IF conditions is true, control passes to the statements
following the ELSE statement, if any. The ELSE must follow all ELSE IFs in
a Block If. Of course, there may be Block Ifs embedded inside of other Block If

structures.

One way to approximate a case construct is:

IF (S .EQ. 'ab') THEN

ELSE IF S . EQ. 'cd' THEN

ELSE IF S . EQ. 'ef' THEN

ELSE

END IF
\.

You can pass the name of a routine as an argument to another routine. If the
name of an intrinsic function is to be passed to another routine, it must be
declared INTRINSIC. Declaring it EXTERNAL passes a function other than the
built-in one. All of the functions specified in the standard are in a single
category, 'intrinsic functions,' rather than being divided into 'intrinsic' and
'basic external' functions. For example:

INTRINSIC SIN

CALL BENCH (N, X, T, SIN)

FORTRAN 77 allows a main program to be begin with a statement that gives that
program an external name. For example :

[PROGRAM WORK]

~~~~~~~~~~~~~~~~~~~~~~~~~~~~
---

Procedures can call themselves, directly or through a chain of other procedures. 
For example: 

Revision A of 6 May 1988 



1 
2 FORMAT ( .·· "N? 

READ ( *, * ) 
IF J T •. LT. 0 . 
N ::::: FACT ( I ) 

RETURN 
END 

reel.£: 
MAIN recur$: 

fact: 
"recLf",· line 
dem6% a~out 
N?· 3 

6 

* ) 

Chapter 5 - Control and Program Structures 61 

But note that a subroutine or function cannot pass its own name as a procedure 
parameter. To do so would require the name to appear in an EXTERNAL 

statement, which is prohibited by the ANSI standard. Note also that use of 
recursion may make FORTRAN programs nonportable. 

Revision A of 6 May 1988 





6 
The File System and FORTRAN I/0 

The File System and FORTRAN I/0 .............................................................................. 65 

6.1. Hierarchy.............................................................................................................................. 65 

6.2. Directories ........................................................................................................................... 66 

6.3. Filenames ............................................................................................................................. 66 

6.4. Pathnames ............................................................................................................................ 67 

Relative pathnames ...................................................................................................... 67 

Absolute pathnames .................................................................................................... 67 

6.5. Redirection .......................................................................................................................... 68 

6.6. Piping ..................................................................................................................................... 69 





6.1. Hierarchy 

6 
The File System and FORTRAN 1/0 

This chapter is a basic introduction to the SunOS file system and how it relates to 
the FOR1RAN I/0 system. Topics covered include: 

D Hierarchy 

D Directories 

D Filenames 

0 Pathnames 

0 Redirection 

D Piping 

If you understand these concepts then skip this chapter. For a more detailed 
discussion of the Sun OS file system structure, refer to the Getting Started with 
SunOS: Beginner's Guide. 

The basic file system consists of a hierarchical file structure, established rules for 
filenames and pathnames, and various commands for moving around in the file 
system, showing your current location in the file system, and making, deleting or 
moving files or directories. 

The system file structure of Sun OS or of UNIX is analogous to an upside-down 
tree. The top of the file system is the root - directories, subdirectories, and 
files all branch down from the root. Directories and subdirectories are considered 
nodes on the directory tree, and can have subdirectories or ordinary files 
branching down from them. The only directory that is not a subdirectory is the 
root directory, so except for this instance, we do not usually make a distinction 
between directories and subdirectories. 

A sequence of branching directory names and a filename in the file system tree 
describes a path. Files are at the ends of paths, and cannot have anything 
branching from them. When moving around in the file system, down means away 
from the root and up means toward the root. The figure below shows a diagram 
of the file system tree structure. 

65 Revision A of 6 May 1988 



66 Sun FORTRAN Programmer's Guide 

6.2. Directories 

6.3. Filenames 

file 

file 

Figure 6-1 

root 
directory 

subdirectory 

file 

subdirectory 

subdirectory 

file 

Diagram showing a sample file system structure 

file 

All files branch from directories except the root directory. Directories are just 
files with special properties. While you are logged on to a Sun system, you are 
said to be in a directory. When you first log on, you are usually in your home 
directory. At any time, wherever you are, the directory you are in is called your 
current working directory. It is often useful to list your current working 
directory. The pwd command prints the current working directory name and the 
GETCWD routine gets (retums)the current working directory name. You can 
change your current working directory simply by moving to another directory. 
The cd shell command and the CHDIR routine change to a different directory. 
Additional explanations of the file system organization and relevant shell 
commands are located in the Getting Started with SunOS: Beginner's Guide. 

All files have names, and you can use almost any character in a filename. The 
name can be up to 1024 characters long, but individual components can be only 
512 characters long. However, to prevent the shell from misinterpreting certain 
special punctuation characters, you should restrict your use of punctuation in 
filenames to the dot(.), underscore(_), comma(,), plus(+), and minus(-). The 
slash(/) character has a specific meaning in a filename, and is only used to 

Revision A of 6 May 1988 



6.4. Pathnames 

Relative pathnames 

Absolute pathnames 

Chapter 6 - The File System and FORTRAN l/O 67 

separate components of the pathname (as described below). Also, you should 
avoid using blanks in filenames. Directories are just files with special properties 
and follow the same naming rules as files. The only exception is the root 
directory, which is named slash(/). 

To describe a file anywhere in the file system, you can list the sequence of names 
for the directory, subdirectory, etc., and file, separated by slash characters, down 
to the file you want to describe. If you show all the directories, starting at the 
root, that's called an absolute pathname. If you show only the directories below 
the current directory, that's called a relative pathname. 

From anywhere in the directory structure, you can describe a relative pathname 
of a file. Relative pathnames start with the directory you are in (the current 
directory) instead of the root. For example, if you are in the directory 
"/usr/you", and you use the relative pathname: 

(_~_m_a_i_1_1_r_e_c_o_rd~~~~~~~~~~~~~~~~~~~~~---] 
that is equivalent to using the absolute pathname: 

( /usr/you/mail/record 

This is illustrated in the diagram below: 

/usr/you 

mail 

record 

Figure 6-2 Relative Path Name 

A list of directories and a filename, separated by slash characters, from the root 
to the file you want to describe, is called an absolute pathname. It is also called 
the complete file specification or the complete pathname. 

A complete file specification has the general form: 

/directory/directory/ ... /directory/file 

] 

+§.!!.!! Revision A of 6 May 1988 



68 Sun FORTRAN Programmer's Guide 

6.5. Redirection 

There can be any number of directory names between the root (/) and the file at 
the end of the path as long as the total number of characters in a given pathname 
is less than or equal to 1024. 

An absolute pathname is illustrated in the diagram below: 

/usr/you/maiVrecord 

I 

usr 

you 

mail 

record 

Figure 6-3 Absolute Path Name 

Redirection is a way of changing the files that a program uses without passing a 
filename to the program. Both input to and output from a program can be 
redirected. The symbol for redirecting standard input is the 'less than' sign ( <), 
and for standard output is the 'greater than' sign(>). 

File redirection is a function performed by the command interpreter or shell 
when a program is invoked by it. The shell command line: 

causes the file mydata (which must already exist) to be connected to the 
standard input of the program myprog when it is run. This means that if 
myprog is a FORTRAN program and reads from unit 5, it reads from the 
mydata file. Similarly, the shell command line: 

( demo%.•myprog >· myoutput 

causes the file myoutput (which is created if it does not exist, or rewound and 

) 

Revision A of 6 May 1988 



6.6. Piping 

Chapter 6 - The File System and FORTRAN 1/0 69 

truncated if it does) to be connected to the standard output of the program 
myprog when it is run. So if the FORTRAN program myprog writes to unit 6, 
it writes to the file myoutput. 

Both standard input and standard output may be redirected to and from different 
files on the same command line. Standard error may also be redirected so it does 
not appear on your workstation's display. In general, this is not a good idea, since 
you usually want to see error messages from the program immediately, rather 
than sending them to a file. 

The shell syntax to redirect standard error varies, depending on whether you are 
using the Bourne shell or the C shell. Refer to the Beginner's Guide to the Sun 
Workstation for more information on redirecting standard error. 

You can connect the standard output of one program directly to the standard 
input of another without using an intervening temporary file. The mechanism to 
accomplish this is called a pipe. A shell command line using a pipe looks like 
this: 

(_: ____ d_e_m_o_%~f-i_r_s_t_p_r_o_g_·_1_• .. •_s_e_c_on_d_p_r_og------------------~--"--------J 
This causes the standard output (unit 6) of firstprog to be piped to the 
standard input (unit 5) of secondprog. Piping and file redirection can be 
combined in the same command line. A simple example is: 

(_: ___ d_e_m_o_%_. _myp _____ r_o __ g_ .. _<_· ···_m_y_d_a_t_a_.·_i_w __ c:_< >_• _d_a_t_a_c_. o_un __ . _t __ · _________ .........,, ____________ ) 

in which the program rnyprog takes its standard input from the file rnydata, 
and has its standard output piped into the standard input of the we command, the 
standard output of which is redirected into the file datacount. 

Revision A of 6 May 1988 



7 
Input and Output 

Input and Output ........................................................................................................................... 73 

7 .1. Overview .............................................................................................................................. 73 

7.2. General Concepts ofFOR1RAN I/O ..................................................................... 73 

Logical Units ................................................................................................................... 73 

I/0 Errors ........................................................................................................................... 74 

FormsofI/0 .................................................................................................................... 74 

I/0 Execution .................................................................................................................. 74 

Summary of Sun FOR1RAN Input and Output ............................................ 75 

Print Files .......................................................................................................................... 76 

Scratch Files ................ ....................................... ......... ... ..................... ............................. 7 6 

Carriagecontrol on All Files ................................................................................... 76 

Logical Unit Preattachment .................................................................................... 76 

7.3. FORTRAN 1/0 Statements ........................................................................................... 77 

The OPEN Statement .................................................................................................. 77 

The CLOSE Statement ............................................................................................... 81 

The INQUIRE Statement......................................................................................... 81 

Using defaults............................................................................................................ 83 

Permissions ................................................................................................................. 84 

The BACKSPACE Statement.................................................................................. 86 

The REWIND Statement ............................................................................................ 86 

The ENDFILE Statement......................................................................................... 87 

Direct I/0 ............................... ......... ................................................... ... ...... ....................... 8 7 

Internal Files .................................................................................................................... 88 



Fonnatted 1/0 ................................................................................................................. . 89 

Unfonnatted I/0 ........................................................................................................... . 89 

List-Directed 1/0 .......................................................................................................... . 90 ...,,,,, 
Input Fonnat .............................................................................................................. . 90 

Output fonnat ........................................................................................................... . 90 

Unquoted strings ..................................................................................................... . 91 

Internal I/0 ................................................................................................................. . 91 

Namelist I/0 .................................................................................................................... . 92 

N amelist output ....................................................................................................... . 92 

N amelist input .......................................................................................................... . 94 

N amelist data ............................................................................................................ . 94 

Requesting names .................................................................................................. . 97 

7.4. Accessing Files from FORTRAN Programs ..................................................... . 98 

Accessing Named Files ............................................................................................ . 98 

Accessing Unnamed Files ....................................................................................... . 99 

Opened as scratch ................................................................................................... . 99 

Already open ............................................................................................................. . 100 

Other .............................................................................................................................. . 100 

Passing filenames to programs ............................................................................. . 100 

Preconnected units ................................................................................................. . 100 

Other units .................................................................................................................. . 100 

7.5. Fonnats ................................................................................................................................. . 101 

Alpha editing (A) .......................................................................................................... . 101 

Blank control (B, BN, BZ) .................................................................................... . 101 

Carriagecontrol ( $) ..................................................................................................... . 102 

Commas in Fonnatted Input .................................................................................. . 102 

Hollerith (nH) ................................................................................................................. . 103 

Octal and hexadecimal (O,Z) ................................................................................. . 103 

Radix control (R) .......................................................................................................... . 106 

Remaining characters (Q) ....................................................................................... . 107 

Sign control (SU, SP, SS f S) ............................................................................... . 108 

Scale control (P) ........................................................................................................... . 108 

Tab control (T,nT, TRn,TLn) ................................................................................ . 108 

Tennination control(:) ............................................................................................. . 109 

Vertical Fonnat Control ........................................................................................... . 109 



Extensions to Iw, Ew.d, Gw.d ............................................................................... 109 

The m field ................................................................................................................... 109 

Thee field .................................................................................................................... 110 

The form Ew.d.e ....................................................................................................... 110 

Defaults for w, d, e ....................................................................................................... 110 

Summary of Formats .................................................................................................. 112 

7.6. Magnetic Tape 1/0 .......................................................................................................... 112 

Using TOPEN .................................................................................................................. 113 

Formatted .......................................................................................................................... 113 

Unformatted ............................................................................ ......... ................................ 113 

Tape File Representation .......................................................................................... 113 

The dd conversion utility ................................................................................... 113 

The GETC library routine ................................................................................... 114 

End-of-File ....................................................................................................................... 114 

Access on Multi-File Tapes .................................................................................... 114 



7 .1. Overview 

7 .2. General Concepts of 
FORTRANI/0 

Logical Units 

7 
Input and Output 

This chapter describes 1/0 features added by FORTRAN 77 and Sun FORTRAN. 
Topics covered include: 

o General concepts of FORTRAN 1/0 

o FOR TRAN 1/0 statements 

o Formats 

o Magnetic tape 1/0 

SunOS is not as format-oriented as FORTRAN. It treats files as sequences of 
characters instead of collections of records. The FORTRAN runtime system 
keeps track of file formats and access modes. It also provides the file facilities, 
including the FORTRAN libraries and the standard 1/0 library. 

The maximum number of logical units that a program can have open at one time 
is the same as the SunOS system limit, currently 64. 

The standard logical units 0, 5, and 6 are named internally stderr, stdin, and 
stdout, respectively. These are not actual filenames and cannot be used for 
opening these units. INQUIRE does not return these names and indicates that the 
above units are not named unless they have been opened to real files. However, 
these units can be redefined with an OPEN statement. 

The names stderr, st din, and stdout are meant to make error reporting 
more meaningful. To preserve error reporting, it is an error to close logical unit 
0, although it can be reopened to another file. 

If you want to open the default filename for any preconnected logical unit, 
remember to close the unit first. Redefining the standard units may impair 
normal console 1/0. An alternative is to use shell redirection to externally 
redefine the above units. 

To redefine default blank control or the format of the standard input or output 
files, use the OPEN statement specifying the unit number and no filename (see 
below). 

73 Revision A of 6 May 1988 



7 4 Sun FORTRAN Programmer's Guide 

1/0 Errors 

Forms ofl/O 

1/0 Execution 

If the user's program does not trap I/O errors an appropriate error message is 

written to stderr before aborting. An error number is printed in square ,._,,, 

brackets, [],along with a brief error message showing the logical unit and I/O 

state. Error numbers < 100 refer to Sun OS errors; these are described in intro(2) 

in the SunOS Reference Manual. Error numbers;;::: 100 come from the I/0 

library, and are described further in Appendix D of this manual. For external 

I/O, part of the current record will be displayed if the error was caused during 

reading from a file that can backspace. For internal I/O, part of the string is 

printed with a vertical bar (I) at the current position in the string. 

The four forms of FORTRAN I/O are formatted, unformatted, list-directed, and 

name list. 

There are two modes of access to files: sequential and direct. When a file is 

opened, sequential or direct access is set, explicitly or by default. 

There are two types of files: external and internal. Most files are external files; 

they reside on physical peripheral devices. The FORTRAN 77 language allows 

five types of external (peripheral device) files: sequential formatted, sequential 

unformatted, direct formatted, direct unformatted, and list-directed sequential. 

An internal file is a location in memory that can be read from and written to like 

a peripheral device. 

See Table 7-1 for a summary of FORTRAN I/O. 

Direct-access, list-directed I/O is not allowed. Direct-access, namelist I/0 is not 

allowed. Namelist 1/0 on internal files is not allowed. Unformatted, internal 1/0 

is not allowed. All other flavors of 1/0 are allowed, although some are not part 

of the ANS I standard. Any error detected during I/O processing will cause the 

program to abort unless alternative action has been provided specifically in the 

program. Any I/O statement may include an ERR= clause (and IOSTAT= 

clause) to specify an alternative branch to be taken on errors (and return the 
specific error code). Read statements may include END=n to branch on end-of­

file. File position and the value of 1/0 list items are undefined following an error. 

Revision A of 6 May 1988 



Chapter 7 -Input and Output 75 

Summary of Sun FORTRAN Input and Output 

Table 7-1 Summary of Sun FORTRAN Input and Output 

Type of file Access mode 
Sequential Direct 

internal file is a character variable, array file is a character array; 
element, array, or substring each record is one array 

element Formatted 

external only fonnatted records of same or only fonnatted records, 
variable length all the same length 

internal (not allowed) (not allowed) 

Unformatted external contains only unfonnatted records READ: one logical 
record at a time. 
WRITE: unfilled part of 
record undefined. 

internal READ: reads characters until eof or (not allowed) 
1/0 list is satisfied; WRITE: writes 

List-directed 
records until list is satisfied. * 

external values input or output depend on (not allowed) 
types in list. 

internal (not allowed) (not allowed) 

external READ: scans records (cols 2-80) (not allowed) 
for" $groupname", then for 

Namelist names in that group, and stores data 
in those variables. Scans until a 
"$",or eof; 
WRITE: writes records showing 
groupname and each variable name 
with value. 

* Avoid list-directed internal writes: the number of lines and items per line vary with the values of items. 
See "List-Directed JJO'', later in this chapter. 

Revision A of 6 May 1988 



76 Sun FORTRAN Programmer's Guide 

Print Files 

Scratch Files 

Carriagecontrol on All Files 

Logical Unit Preattachment 

The ANSI standard is ambiguous regarding the definition of a 'print' file. Since 

SunOS has no default 'print' file, an additional FORM specifier is now recognized """""1 
in the OPEN statement. Specifying FORM=' PRINT' implies formatted output 

and enables vertical format control for that logical unit. Vertical format control 

is interpreted only on sequential formatted writes to a 'print' file (see "Vertical 

Format Control", later in this chapter). 

The INQUIRE statement returns 'PRINT' in the FORM variable for logical units 

opened as 'print' files. It returns -1 for the unit number of an unopened file. 

If a logical unit is already open, an OPEN statement including the FORM option 

or the BLANK option does nothing but redefine those options. This instance of 

the OP EN statement need not include the filename, and must not include a 

filename if UNIT refers to standard input or output. Therefore, to redefine the 

standard output as a 'print' file, use: 

( OPEN( UNIT~6, FORM~'PRINT') 

To prevent a temporary file from disappearing after execution is completed, you 

must execute a CLOSE statement with STATUS=' KEEP' . It is the default for 

all other files. Remember to get the scratch file's real name, using INQUIRE, if 

you want to reopen it later. 

Traditional FORTRAN environments usually assume carriage control on all 

logical units. They usually interpret blank spaces on input as zeroes and often 

provide attachment of global filenames to logical units at runtime. There are 

several routines in the 1/0 library to provide these functions. 

If a program reads and writes only units 5 and 6, then including the -1I66 flag 

in the f 7 7 command causes carriage control to be interpreted on output and 

cause blanks to be read as zeroes on input without further modification of the 
program. If this is not adequate, the routine IOINIT (3F) can be called to 

specify control parameters separately, including whether files should be 
positioned at their beginning or end upon opening. 

] 

The IOINIT routine can also be used to attach logical units to specific files at 
runtime. It looks in the environment for names of a user-specified form, and then 

it opens the corresponding logical unit for sequential formatted 1/0. Names must 

be of the general form PREF!Xnn, where the particular PREFIX is specified in 

the call to IOINIT, and nn is the logical unit to be opened. Unit numbers less 

than 10 must include the leading 'O'. For details, see the man page IOINIT(3F), 

online or in this guide. 

For example, to attach external files test. inp and test. out to units 1 and 

2: 

Revision A of 6 May 1988 



7.3. FORTRAN 1/0 
Statements 

The OPEN Statement 

Chapter 7 - Input and Output 77 

IOINIT should prove adequate for most programs as written. However, it is 
written in FORTRAN specifically so that it may serve as an example for similar 
user-supplied routines. A copy may be retrieved by issuing the command: 

dern6% >ar x Yusr/lib/libI77~<a Toinit. £ 

The 1/0 extensions added by FORTRAN 77 and Sun FORTRAN are explained 
below: 

The OPEN statement connects a file with a unit, or alters some property of the 
connection. It has the following format: 

( OPEN ( KEYWORDl=valuel, KEYWORD2=value2, ... 

where KEYWORDn is a valid keyword specifier, as listed below. 

All of the properties and options are explained in full below, but a few simple 
examples are presented first, just to show the kinds of statements we are talking 
about. 

For example, either of the following forms of the OPEN statement will open the 
file projectA/ data. test and connect it to FORTRAN unit 8: 

OPEN( UNIT=8, FILE="projectA/data.test" 
OPEN( 8, FILE="projectA/data.test" ) 

In the above example, the following properties are established by default: 
sequential access, formatted file, and (unwisely) no allowance for error during 

J 

Revision A of 6 May 1988 



78 Sun FORTRAN Programmer's Guide 

file 1/0. You can also explicitly specify such properties: 

OPEN( UNIT=8, FILE="projectA/data.test", 
& ACCESS=' SEQUENTIAL', FORM='FORMATTED' 

\. 

For an even simpler example, either of the following will open the scratch file 
fort. 8 and connect it to unit 8: 

( OPEN( UNIT=8 
OPEN( 8 ) 

As with the previous example: sequential access, formatted file, and no 
allowance for error during file 1/0. If the file fort. 8 does not exist before 
execution, it is created. 

For an example of allowing for 1/0 errors: 

OPEN( UNIT=8, FILE="projectA/data.test", ERR=99 ) 

which branches to statement label 9 9 if an error occurs during the OPEN. 

] 

The OP EN statement determines the type of file named, whether the connection 
specified is legal for the file type (for instance, DIRE CT access is illegal for tape 
and tty devices), and allocates buffers for the connection if the file is on tape or if 
the subparameter F ILEOPT='BUFFER=n' is specified. The default buffer size """""' 
for tape is 64K characters. Existing files are never truncated on opening. 

Valid specifiers for OPEN are as follows: 

UNIT 

FILE 

A required nonnegative integer that specifies the FORTRAN unit 
number to connect to. If the unit is first in the parameter list, then 
"UN IT=" can be omitted. 

An optional character expression naming the file to open. An OPEN 
statement need not specify a filename. If not specified, a default 
filename is created. 

If you open a unit that's already open without specifying a filename 
(or with the previous filename), FORTRAN thinks you are reopening 
the file to change parameters. The only parameters you are allowed 
to change are BLANK (NULL or ZERO) and FORM (FORMATTED or 
PRINT). To change any other parameters, you must close, then 
reopen the file. 

If STATUS='SCRATCH' is specified, a temporary file with a name 
of the form tmp . F AAA.xnnnnn is opened, and (by default) deleted 
when closed or during termination of program execution. 

Any other STATUS specifier without an associated filename results 
in opening a file named 'fort . n', where n is the specified logical 
unit number. See below for a general description of the STATUS 
parameter. ...,,, 

Revision A of 6 May 1988 



Chapter 7 - Input and Output 79 

ACCESS An optional character expression. The options are APPEND, 
DIRECT, or SEQUENTIAL. If not specified, SEQUENTIAL is 
assumed. 

FORM 

RECL 

If ACCESS='APPEND' is specified: 

0 SEQUENTIAL and FILEOPT='EOF' are assumed. This is 
for opening a file to append records to an existing 
sequential-access file. This is a Sun FORTRAN extension. 

If ACCESS='DIRECT' is specified: 

o RECL must also be given, since all 1/0 transfers are done in 
multiples of fixed-size records. 

o Only directly accessible files are allowed; thus, tty, pipes, 
and magnetic tape are not allowed. 

o If FORM is not specified, unfonnatted transfer is assumed. 

o If FORM='UNFORMATTED', the size of each transfer 
depends upon the data transferred. 

If ACCESS='SEQUENTIAL': 

o RECL is prohibited since records are of varying size. 

o No padding of records is done. 

o Files don't have to be randomly accessible; thus tty, pipes, 
and tapes can be used. 

o If FORM is not specified, fonnatted transfer is assumed. 

o If FORM='FORMATTED', each record is tenninated with a 
newline (\n) character. This means that each record actually 
has one extra character. 

0 If FORM='PRINT', the file acts like a 
FORM='FORMATTED' file, except for the interpretation of 
column- I characters on output (0 = double space, 
1 = fonn feed, and blank= single space). 

o If FORM='UNFORMATTED', each record is preceded and 
tenninated with an INTEGER*4 count, making each record 
8 characters longer than nonnal. This convention is not 
shared with other SunOS programs, so is useful only for 
communicating between FORTRAN programs. 

An optional character expression. The options are 'FORMATTED', 
'UNFORMATTED', or 'PRINT'. 
If not specified, 'FORMATTED' is assumed. 
Interacts with ACCESS. 

"RECL=n" specifies a record length of n characters. 
Required if ACCESS='DIRECT' . 
Prohibited if ACCESS=' SEQUENTIAL'. 

Revision A of 6 May 1988 



80 Snn FORTRAN Programmer's Guide 

Each WRITE defines one record and each READ reads one record 
(unread characters are flushed). 

ERR An optional clause, with an integer statement label to branch to if 
an error occurs during the OPEN. 

I OS TAT An optional clause, with an integer variable that receives the 
error status from an OPEN. 

Note: If you want to avoid aborting the program when an error 
occurs on an OPEN, then include an ERR=label o an 
IOSTAT=name. 

BLANK An optional character expression that indicates how blanks are 
treated. For formatted input only; the options are 'ZERO' (blanks 
treated as zeroes), and 'NULL' (blanks ignored during numeric 
conversion). If not specified, 'NULL' is assumed. 

STATUS An optional character expression. Possible values are: 

o 'OLD' - the file already exists (nonexistence is an error). 
For example: STATUS=' OLD' 

o 'NEW' - the file doesn't exist (existence is an error) 
Note: 'F ILE=name' is required. 

o 'UNKNOWN' - existence is unknown (the default). 

o 'SCRATCH' - In general, if you open a file with .,,,,,,,,,, 

STATUS=' SCRATCH', then the file will be removed when 
it is closed. 
Note: The standard prohibits opening a named file as 
scratch, that is if the OPEN statement has a FILE=name 

option, then it cannot have a STATUS=' SCRATCH' option. 
Sun FORTRAN allows opening named files as scratch, but 
such files will be removed when closed or at program termi­
nation unless there is an explicit CLOSE statement with the 
option STATUS='KEEP'. 

FILEOPT An optional character expression. The options are: 

o 'NOP AD' - don't extend records with blanks if you read 
past the end-of-record (formatted input only). That is, a 
short record causes an abort with an error message, rather 
than just filling with trailing blanks and continuing. 

o 'BUFFER=n' -This suboption is for magnetic tape only. It 
sets the size of the 1/0 buffer to use. It is necessary only 
when writing, since the 1/0 system defaults to 64K-character 
buffers for tape, allowing reads to anything smaller than that. 
WARNING: It must be at least 8 characters greater than the 
largest record you write to avoid spanning tape blocks. 

o 'EOF' - opens a file at end-of-file rather than at the begin­
ning (useful for appending data to the file). 

+ §.!,!! Revision A of 6 May 1988 



The CLOSE Statement 

The INQUIRE Statement 

Chapter 7 - Input and Output 81 

For example: FILEOPT='EOF' 
See ACCESS='APPEND'. 

The CLOSE statement severs the connection between a unit and a file. The unit 
number must be given. The optional parameters are IOSTAT, ERR (see OPEN for 
meanings), and STATUS. The values for STATUS are 'KEEP' or 'DELETE', 
where KEEP is the default (except for scratch files) and DELETE means that the 
file will be removed after it is closed. 

A simple example of a CLOSE statement is: 

[_~_c_L_o_s_E_(~3_,_E_RR~=-1_7~)~~~~~~~~~~~~~~~~~---) 
Sequentially accessed, external files are truncated to the current file position on 
CLOSE only if the last access to the file was a WRITE. 

The INQUIRE statement returns information about a unit or a file. You can 
determine such things as whether it exists, is opened, is connected for sequential 
1/0. If you do use INQUIRE, you must inquire either by unit or by file (but not 
by both in the same INQUIRE statement). 

An inquire by unit has the general form: 

INQUIRE ( UNIT=unit_number, parameter list 

An example of an inquire by unit: 

LOGICAL OK 
INQUIRE( UNIT=3, OPENED=OK ) 
IF ( OK ) CALL GETSTD ( 3, STDS 

You can, of course, ask for more than one answer in an INQUIRE statement. 
For example: 

CHARACTER FN*32 
LOGICAL HASNAME, OK 
INQUIRE UNIT=3, OPENED=OK, NAMED=HASNAME, NAME=FN ) 
IF ( OK .AND. HASNAME ) PRINT *, "Filename= '", FN, "'" 

An inquire by file has the general form: 

[~~-I-N_Q_u_I_R_E_(~F-I_L_E_=fi_I_e_na_me~·-pa~r_a_me~re_r_u_st~~~~~~~~~~~~--J 
An example of an inquire by file: 

Revision A of 6 May 1988 



82 Sun FORTRAN Programmer's Guide 

LOGICAL THERE 
INQUIRE ( FILE='. profile', EXIST=THERE ) 
IF ( THERE ) CALL GETPROFILE( FC, PROFILE 

The options to INQUIRE are as follows: 

FILE a character variable specifies which file the INQUIRE is about. 
Trailing blanks in the filename are ignored. Files have the properties 
of name, existence (or nonexistence), and the ability to be connected 
in certain ways (FORMATTED, UNFORMATTED, SEQUENTIAL, or 
DIRECT). The file need not be connected to a unit in the current 
program. 

UNIT a positive integer variable that refers to files after they are opened. 
Exactly one of FILE or UNIT must be used. 

IOSTAT as in the OPEN statement. 

ERR as in the OPEN statement. 

EX Is T a logical variable that is set to . TRUE . if the file or unit exists and 
. FALSE. otherwise. 

OPENED a logical variable that is set to . TRUE. if the file is connected to a 
unit or the unit is connected to a file, and . FALSE. otherwise. 

NUMBER an integer variable that is assigned the number of the unit connected 
to the file, if any. If no file is connected, the variable is unchanged. 

NAMED a logical variable that is assigned . TRUE. if the file has a name, 
. FALSE. otherwise. 

NAME a character variable that is assigned the name of the file connected to 
the unit. If you do an inquire-by-unit, the name parameter is 
undefined unless both the OPENED and NAMED variable's values are 
. TRUE. If you do an inquire-by-file, the name parameter is returned, 
even though standard FORTRAN 77 leaves it undefined. 

ACCESS a character variable that is assigned the value 'SEQUENTIAL' if the 
connection is for sequential 1/0 and 'DIRECT' ifthe connection is 
for direct 1/0. The value is undefined if there is no connection. 

SEQUENTIAL 

a character variable that is assigned the value 'YES' if the file could 
be connected for sequential 1/0, 'NO' if the file could not be 
connected for sequential 1/0, and 'UNKNOWN' if the system can't tell. 

DIRECT a character variable that is assigned the value 'YES' if the file could 
be connected for direct 1/0, 'NO' if the file could not be connected 
for direct 1/0, and 'UNKNOWN' if the system can't tell. 

FORM a character variable which is assigned the value 'FORMATTED' if the 
file is connected for formatted 1/0 and 'UNFORMATTED' if the file is 
connected for unformatted 1/0. 

Revision A of 6 May 1988 



Using defaults 

Chapter 7 - Input and Output 83 

FORMATTED 
a character variable that is assigned the value 'YES' if the file could 
be connected for fonnatted 1/0, 'No' if the file could not be 
connected for formatted 1/0, and 'UNKNOWN' if the system can't tell. 

UNFORMATTED 
a character variable that is assigned the value 'YES' if the file could 
be connected for unfonnatted 1/0, 'NO' if the file could not be 
connected for unfonnatted 1/0, and 'UNKNOWN' if the system can't 
tell. 

RECL an integer variable that is assigned the record length of the records in 
the file if the file is connected for direct access. 

NEXTREC an integer variable that is assigned one more than the number of the 
the last record read from a file connected for direct access. 

BLANK a character variable that is assigned the value 'NULL' if null blank 
control is in effect for the file connected for fonnatted 1/0 and 
'ZERO' if blanks are being converted to zeros and the file is 
connected for fonnatted 1/0. 

Here is an example, in which declarations are omitted: 

[~~-o-P_E_N_(~l-'~F-I_L_E_=_'l_d_e_v_l_c_o_n_s_o_1_e_'_>~~~~~~~~~~~~~--J 
On a Sun system this statement opens the console for formatted sequential 1/0. 
An INQUIRE for either unit I or file I dev I console would reveal that the 
file: 

o exists 

o is connected to unit I 

o hasthename /dev/console 

o is opened for sequential 1/0 

o could be connected for sequential 1/0 

o can't be connected for direct 1/0 (can't seek) 

o is connected for fonnatted 1/0 

o can be connected for fonnatted 1/0 

o can't be connected for unformatted 1/0 (can't seek) 

o has neither a record length nor a next record number 

o is ignoring blanks in numeric fields. 

Revision A of 6 May 1988 



84 Sun FORTRAN Programmer's Guide 

Pennissions In the Sun system environment, the only way to discover what pennissions you 

have for a file is to use the ACCESS (3F) function. The INQUIRE statement does ..._., 

not detennine pennissions. 

Revision A of 6 May 1988 



Chapter 7 - Input and Output 85 

Table 7-2 Summary of INQUIRE Options 

Form: SPECIFIER=variable 

SPECIFIER 
Value of the variable Data type for 

for inquire the variable 

ACCESS 'DIRECT' CHARACTER 
'SEQUENTIAL' 

BLANK 'NULL' CHARACTER 
'ZERO' 

DIRECT * 'YES' CHARACTER 
'NO' 
'UNKNOWN' 

ERR statement number INTEGER 
EXIST .TRUE . LOGICAL 

. FALSE. 
FORM 'FORMATTED' CHARACTER 

'UNFORMATTED' 
FORMATTED * 'YES' CHARACTER 

'NO' 
'UNKNOWN' 

IO STAT error number INTEGER 
NAME t name of the file CHARACTER 
NAMED t .TRUE . LOGICAL 

. FALSE. 
NEXTREC next record number INTEGER 
NUMBER * unit number INTEGER 
OPENED .TRUE. LOGICAL 

.FALSE. 
RECL record length INTEGER 
SEQUENTIAL * 'YES' CHARACTER 

'NO' 
'UNKNOWN' 

UNFORMATTED * 'YES' CHARACTER 
'NO' 
'UNKNOWN' 

Notes for the above table: 

* Returned value is undefined for inquire-by-unit in standard FORTRAN 77 
but is defined in Sun FORTRAN. 

t Returned value is undefined for inquire-by-file in standard FORTRAN 77 
but is defined in Sun FORTRAN. 

+m.!! Revision A of 6 May 1988 



86 Sun FORTRAN Programmer's Guide 

The BACKS p ACE Statement 

The REWIND Statement 

General 

• If a file is scratch, then NAMED and NUMBER are not returned. 

• If there is no file with the specified name, then these are not returned: 
DIRECT,FORMATTED,NAME,NAMED,SEQUENTIAL,and 
UNFORMATTED. 

• If OPENED=. FALSE.' then these are not returned: ACCESS, BLANK, 
FORM, NEXTREC, and RECL. 

• If no file is connected to the specified unit, then these are not returned: 
ACCESS,BLANK,DIRECT,FORM,FORMATTED,NAME,NAMED, 
NEXTREC,NUMBER,RECL,SEQUENTIAL,andUNFORMATTED. 

• If ACCESS=' SEQUENTIAL'' then these are not returned: RECL and 
NEXTREC. 

• If FORM=, UNFORMATTED, ' then BLANK is not returned. 

The BACKSPACE statement does one of two things, depending on what the 
device is, and whether or not the end-of-file has been reached. If it has, then it 
backs up over the endfile record - on a disk file this does nothing; but on a tape 
it corresponds to backing up over the tape mark, and positioning the tape after 
the last data record of the file, but before the endfile record. Otherwise, it backs 
up over the last data record read or written (i.e., the last FORTRAN logical record, 
which may involve reading one or more physical records). For FORMATTED 
records, it will search backwards looking for the record separator (\n or AJ); for ...,, 
UNFORMATTED records, it uses the character-count trailer that is part of the 
record. 

Sequentially accessed, external files are truncated to the current file position on 
BACKSPACE only if the last access to the file was a WRITE. 

The BACKSPACE options are: 

UNIT A required nonnegative integer that specifies the FORTRAN unit 
number to connect to. If the unit number is first in the parameter list, 
then "UNIT=" can be omitted. 

ERR An optional clause, with an integer statement reference (for example, 
ERR=9) to branch to if an error occurs during the BACKSPACE. 

IOSTAT An optional clause, with an integer variable that receives the error 
status value from a BACKSPACE. For example, IOSTAT=STATUS, 
where STATUS is a user variable of type INTEGER. 

The REWIND statement positions you at the beginning of the current file on the 
specified unit. When writing a sequential file (such as one on tape), it does an 
implicit ENDFILE action first. If you are reading the endfile record, REWIND 
backspaces over that and all the data records preceding. 

The REWIND does not necessarily rewind a tape to its beginning. If you are 
reading the second file on a tape, then it rewinds to the beginning of the second 
file. To fully rewind a tape, use the rnt(l) utility program, which can be invoked "ffllll///f 

Revision A of 6 May 1988 



The ENDFILE Statement 

Direct 1/0 

Chapter 7 - Input and Output 87 

from a FORTRAN program by calling the SYSTEM(3F) routine. 

The options related to REWIND are: 

UNIT A required nonnegative integer that specifies the FORTRAN unit 
number to connect to. If the unit number is first in the parameter list, 
then "UNIT=" can be omitted. 

ERR An optional clause, with an integer statement reference (for example, 
ERR=9) to branch to if an error occurs during the REWIND. 

IOSTAT An optional clause, with an integer variable that receives the error 
status from a REWIND. For example, IOSTAT=STATUS, where 
STATUS is a user variable of type INTEGER. 

When writing to a SunOS disk file, ENDFILE truncates the file at the current 
position. This is because in disk files, the endfile record is represented by the end 
of the file. 

Two endfile records signify the end-of-tape mark. When writing to a tape file, 
ENDF ILE writes two endfile records, then the tape backspaces over the second 
one. If the file is closed at this point, both end-of-file and end-of-tape are marked. 
If more records are written at this point (either by continued write statements or 
by another program if you are using no-rewind magnetic tape), the first tape mark 
stands (endfile record), and is followed by another data file, then by more tape 
marks, and so on. 

The options related to ENDFILE are: 

UNIT 

ERR 

A required nonnegative integer that specifies the FORTRAN unit 
number to connect to. If the unit number is first in the parameter list, 
then "UNIT=" can be omitted. 

An optional clause, with an integer statement reference (for example, 
ERR=l 0 0 O ) to branch to if an error occurs during the ENDFILE 
operation. 

IOSTAT An optional clause, with an integer variable that receives the error 
status from ENDFILE. For example, IOSTAT=STATUS, where 
STATUS is a user variable of type INTEGER. 

Random access to files is also called direct access. A direct-access file contains a 
number of records that are written to or read from by referring to the record 
number. This record number is specified when the record is written. In a direct­
access file, records must be all the same length and all the same type. 

A logical record in a direct access, external file is a string of bytes of a length 
specified when the file is opened. Read and write statements must not specify 
logical records longer than the original record size definition. Shorter logical 
records are allowed. Unfonnatted, direct writes leave the unfilled part of the 
record undefined. Fonnatted, direct writes cause the unfilled record to be padded 
with blanks. 

Revision A of 6 May 1988 



88 Sun FORTRAN Programmer's Guide 

Internal Files 

In using direct unfonnatted 1/0, you should be careful with the number of values 
your program expects to read. Each READ operation acts on exactly one record; ..,,,,.,, 
the number of values that the input list requires must be less than or equal to the 
number of values in that record. 

Direct access READ and WRITE statements have an extra argument, REC=n, 

which gives the record number to be read or written. For example, with direct­
access, unformatted: 

OPEN( 2, FILE=' data.db', ACCESS='DIRECT', RECL=20, 
& FORM='UNFORMATTED, ERR=90 

READ( 2, REC=l3, ERR=30 ) X, Y 

This opens a file for direct-access, unfonnatted 1/0, with a record length of 20 
characters, then reads the thirteenth record as is. 

And with direct-access,formatted: 

OPEN( 2, FILE='inven.db', ACCESS='DIRECT', RECL=20, 
& FORM='FORMATTED, ERR=90 ) 

READ( 2, FMT="(I10,Fl0.0)", REC=l3, ERR=30 ) A, B 

This opens a file for direct-access, fonnatted 1/0, with a record length of 20 
characters, then reads the thirteenth record and converts it according to the 
fonnat" (IlO, FlO. 3) ". 

Internal files are character-string objects such as variables or substrings, or arrays 
of type character. In the fonner case, there is only a single record in the file but 
in the latter case, each array element is a record. The ANSI standard includes 
only sequential formatted 1/0 on internal files. (1/0 is not a precise tenn to use 
here, but internal files are dealt with using READ and WRITE statements.) 
Internal files are used by giving the name of the character object in place of the 
unit number. For example: 

CHARACTER X*80 
READ ( 5 , ' (A) ' ) X 
READ ( X, ' ( I3, I 4) ' ) Nl, N2 

reads a card image into x and then reads two integers from the front of it. A 
sequential READ or WRITE always starts at the beginning of an internal file. 

Sun FORTRAN extends direct 1/0 to internal files. This is like direct 1/0 on 
external files, except that the number of records in the file cannot be changed. In 
this case, a record is a single element of an array of character strings. For 
example: 

Revision A of 6 May 1988 



Formatted 1/0 

Unformatted 1/0 

Chapter 7 - Input and Output 89 

This does a direct-access read of the third record of the internal file CARD. 

Formatted WRITE converts the record according to the instructions in the 
associated fotmat from internal form to a form suitable for the external media 
involved. For example: 

[ 

WRITE( 6, 10 ) A, B 
10 FORMAT( F8.3, F6.2 ) 

Formatted records are terminated with newline characters. Fotmatted, sequential 
access causes one or more logical records to be read or written. For fotmatted 
write statements, logical record length is determined by the fotmat statement 
interacting with the list of input or output variables (1/0 list) at execution time. 

Unfotmatted 1/0 is used to transfer binary information to or from memory 
locations without changing its internal representation. Each execution of an 
unformatted 1/0 statement causes a single logical record to be read or written. 
Since internal representation varies with different machines, unformatted 1/0 is 
limited in its portability. 

Unfotmatted 1/0 can be used to write data out temporarily, or to write data out 
quickly for subsequent input to another program on the same machine. 

Logical record length for unformatted, sequential files is determined by the 
number of bytes required by the items in the 1/0 list. The requirements of this 
fotm of 1/0 cause the external physical record size to be somewhat larger than 
the logical record size. For example: 

( WRITE( 8 ) A, B 

] 

) 

Revision A of 6 May 1988 



90 Sun FORTRAN Programmer's Guide 

The FORTRAN runtime system embeds the record boundaries in the data by 
inserting an INTEGER*4 byte count at the beginning and end of each 
unformatted sequential record during an unformatted sequential WRITE. The 
trailing byte count enables BACKSPACE to operate on records. The result is that 
FORTRAN programs can use an unformatted sequential READ only on data that 
was written by an unformatted sequential WRITE operation. Any attempt to read 
such a record as formatted would have unpredictable results. If the first byte of 
the record were a "4", an unformatted sequential READ would interpret it as the 
first byte of a count, and conclude the record had at least Ox4000000 bytes! 

NOTE Avoid using the unformatted sequential READ unless your file was written that 
way. If you want to use unformatted /JO, try using the unformatted direct READ 
whenever possible. Open the file with RECL=l if your input lists are not all the 
same length. 

List-Directed 1/0 List-directed 1/0 is a kind offreejorm I/O for sequential access devices. It is 
invoked by using an asterisk as the format identifier, as in: 

Input Format 

Output format 

On input, values are separated by strings of blanks and (possibly) a comma. 
Values, except for character strings, cannot contain blanks. Character strings can 
be quoted strings, using pairs of quotes("), or pairs of apostrophes('), or 
unquoted strings (see below), but NOT hollerith (nHxy z) strings. End of record """"""" 
counts as a blank, except in character strings, where it is ignored. Complex 
constants are given as two real constants separated by a comma and enclosed in 
parentheses. A null input field, such as between two consecutive commas, means 
that the corresponding variable in the 1/0 list is not changed. Input data items 
can be preceded by repetition counts, as in 

( 4* (3., 2.) 2*, 4*'hello' 

which stands for 4 complex constants, 2 null input fields, and 4 string constants. 

A slash (/) in the input list will terminate assignment of values to the input list 
during list-directed input and the remainder of the current input line is skipped. 
Text following the slash is ignored and may be used to comment the data file. 

) 

List-directed output provides a quick-and-easy way to print output without 
fussing with format details. A suitable simple format is automatically chosen for 
each item, and where a conflict exists between complete accuracy and simple 
output form, the simple form is chosen. For example, such a conflict occurs with 
numbers like 1.4, which has no exact binary representation: 

Revision A of 6 May 1988 



Unquoted strings 

Internal 1/0 

demo%.cat<lis5.f 
READ< ( 5 i . * ) X 

WRI'l'E(61 * ) 
WRITEC<6, 1 ) 
FORMAT( 1Xi 
STOP 
END 

demo% f77 
liss~ f: 

MAIN: 

If you need accuracy, specify the fonnat. 

Chapter 7 - Input and Output 91 

In fonnatting list-directed output, the 1/0 system tries to prevent output lines 
longer than 80 characters. List-directed output of COMP LEX values includes an 
appropriate comma. List-directed output distinguishes between REAL and 
DOUBLE PRECISION values and fonnats them differently. A '\n' in a 
character string is output as a carriage return. 

The values of character strings are printed as is; they are not enclosed in quotes, 
so only certain fonns of strings can be read back using list-directed input; these 
fonns are described in the next section. 

Sun FORTRAN extends list-directed 1/0 to allow reading of a string not enclosed 
in quotes. The string must not start with a digit, and cannot contain separators 
(commas or slashes(/)) or whitespace (spaces or tabs). A newline tenninates the 
string unless escaped with a backslash (\). Any string not meeting the above 
restrictions must be enclosed in single or double quotes. 

Sun FORTRAN extends list-directed 1/0 to allow internal 1/0. During internal, 
list-directed reads, characters are consumed until the input list is satisfied or the 
end-of-file is reached. During internal, list-directed writes, records are filled until 
the output list is satisfied. The length of an internal array element should be at 
least 20 characters to avoid logical record overflow when writing double­
precision values. Internal, list-directed read was implemented to make command 
line decoding easier. Internal, list-directed output should be avoided. 

Revision A of 6 May 1988 



92 Sun FORTRAN Programmer's Guide 

Namelist 1/0 

Namelist output 

Namelist I/0 lets you do fonnat-free input or output of whole groups of 
variables, or input of selected items in a group of variables. The NAMEL Is T 

statement defines a group of variables or arrays: it specifies a group-name, and it 

lists the variables and arrays of that group. 

The syntax of the NAMELIST statement is: 

NAMELIST I group-name I namelist[ [, ] I group-name I namelist] ... 

where group-name is an identifier, and name list is a list of variables or arrays, 

separated by commas. For example: 

CHARACTER*l6 
LOGICAL*4 

SAMPLE 
NEW 

REAL*4 DELTA 
NAMELIST /CASE/ SAMPLE, NEW, DELTA 

Rules and restrictions for namelist 

o The group name can appear in only the NAMELI ST, READ, or WRITE 

statements, and must be unique for the program. 

o The list cannot include any dummy arguments, array elements, structures, 

substrings, records, record fields, pointers or pointer-based variables.* 
However, the input data can include array elements or substrings. 

o A variable or array can be listed in more than one namelist group. 

Namelist output uses a special fonn of the WRITE statement. This makes a 

report showing the group name, and for each variable of the group, it shows the 

name and current value in memory. It formats each value according to the type 

of each variable, and it writes the report so that namelist READ can read it. 

The syntax of namelist WRITE is: 

WRITE ( extu, namelist-specifzer [, iostat] [,err]) 

where namelist-specifzer has the form: 

[NML= ]group-name 

and group-name has been previously defined in a NAMELIST statement. 

The namelist WRITE statement writes values of all variables in the group, in the 
same order as in the NAMELIST statement. 

The following is an example of namelist output: 

* For more on pointer-based variables, see Section 4.7 - ''Pointers." 

Revision A of 6 May 1988 



Chapter 7 - Input and Output 93 

demo%•.cat···naml.f 
* naml. f Namelist output 

CHARACTER*8 SAMPLE 
LOGICAL*4 NEW 
REAL*4 DELTA 
NAMELIST /CASE/ SAMPLE, NEW, DELTA 
DATA SAMPLE /"Demo"/, NEW /.TRUE./, DELTA /0 .1/ 
WRITE ( *, C.A:SE ) 
STOP 

demo% 
f77<I1.aml.f 
riaml.<f: 
MAIN: 

·aemo%>a.out 
sample= 

column 2 

Note that if you do omit the keyword NML then you must also omit the keyword 
UNIT and the unit parameter must be first, the namelist-specifier must be second, 
and there must not be a format specifier. 

Alternate-The WRITE can have the following form: 

[~ ____ w_R_r_T_E ___ c_u_N __ rT_= __ 6_,_N_M __ L_=_cA __ s_E __ ) ________________ ~~---------] 

Revision A of 6 May 1988 



94 Sun FORTRAN Programmer's Guide 

N amelist input 

N amelist data 

The namelist READ statement reads the next external record, skipping over 
column one, and looking for the symbol 11 $" in column two or beyond, followed 
by the group name specified in the READ statement. The records are input and 
values assigned by matching names in the data with names in the group, using 
the data types of the variables in the group. Variables in the group that are not 
found in the input data are unaltered. 

The syntax of namelist READ is: 

READ ( extu, namelist-specifier [, iostat] [,err] [,end]) 

The namelist-speci.fier has the form: 

[NML= ]group-name 

where group-name has been previously defined in a NAMELIST statement. 

For example: 

CHARACTER*16 SAMPLE 
LOGICAL*4 NEW 
REAL*4 DELTA 
NAMELIST /CASE/ SAMPLE, NEW, DELTA 
READ ( 1, CASE ) 

In this example, the group CASE consists of the three variables SAMPLE, NEW, 

and DELTA. If you do omit the keyword NML, then you must also omit the 
keyword UNIT, and the unit parameter must be first, the namelist-specifier must 
be second, and there must not be a format specifier. 

Alternate - The READ can have the following form: 

(~~-R_E_AD~-(~u-N_r_T_=_1_,~N-M_L_=_c_A_s_E~)~~~~~~~~~~~~~~--] 
The first record of namelist input data has the special symbol 11 $" (dollar sign) in 
column two or beyond, followed by the namelist group name. This is followed 
by a series of assignment statements, starting in or after column two, on the same 
or subsequent records, each assigning a value to a variable (or one or more values 
to array elements) of the specified group. The input data is terminated with 
another 11 $ 11

, in or after column two, as in the pattern: 

$group-name variable=value [ , variable= value, ... ] $ [END] 

You can alternatively use an ampersand ( & ) in place of each dollar sign, but the 
beginning and ending delimiters must match. The END is an optional part of the 
last delimiter. 

Revision A of 6 May 1988 



If an array is subscripted, it must be 
subscripted with the appropriate 
number of subscripts: 1, 2, 3, ... 

Use " or ' to delimit character 
constants. For more on character 
constants, see "Syntax rules for 
namelist data," below. 

Chapter 7 - Input and Output 95 

The input data assignment statements must be in one of the following forms: 

variable=value 

array=valuel [, value2,] ... 

array(subscript)=valuel [, value2,] ... 

array(subscript,subscript)=valuel [, value2,] ... 

variable=character constant 

variable( index:index)=character constant 

The following is sample data to be read by the program segment above: 

[ 
$case delta=0.05, sample='Demo' $ ] 

-+ ----------
column 2 

or the data could be on several records: 

$case 

$ 

delta=O. 05 
sample=' Demo' 

column 2 

Here NEW was not input, and the order is not the same as in the NAMELIST 

statement. 

Syntax rules for namelist data 

The following syntax rules apply for input data to be read by namelist: 

o The variables of the named group can be in any order, and any can be 
omitted. 

o The data must start in or after column two. Column one is totally ignored. 

o There must be at least one comma, space, or tab between variables, and one 
or more spaces or tabs are the same as a single space.* Consecutive commas 
are not permitted before a variable name. Spaces before or after a comma 
have no effect. 

o No spaces or tabs are allowed inside a group name or a variable name, 
except around the punctuation of a subscript or substring. No name can be 
split over two records. 

o The end of a record acts like a space character. 

Exception: In a character constant, it is ignored, and the character 
constant is continued with the next record. The last character of the 
current record is immediately followed by the second character of the 

Revision A of 6 May 1988 



96 Sun FORTRAN Programmer's Guide 

next record. The first character of each record is ignored. 

o The equal sign of the assignment statement can have zero or more blanks or 
tabs on each side of it. 

o Only constant values can be used for subscripts, range indicators of 
substrings, and the values assigned to variables or arrays. You can not use a 
symbolic constant (PARAMETER). 

o Hollerith, octal, and hexadecimal constants are not permitted. 

o Each constant assigned has the same form as the corresponding 
FOR1RAN constant. 

o There must be at least one comma, space, or tab between constants, and 
zero or more spaces or tabs are the same as a single space.* (You can 
enter 1 , 2 , 3 or 1 2 3 or 1 , 2 , 3 etc.) 

o A character constant is delimited by apostrophes(') or quotes("), but if 
you start with one of those, you must finish that character constant with 
the same one. If you use the apostrophe as the delimiter, then to get an 
apostrophe in a string, use two consecutive apostrophes. For example: 

sarnple='use "$" in 2' 
sarnple='don''t' 
sarnple="don''t" 
sarnple="don't" 

{goes in as: use "$"in 2} 
{goes in as: don't } 
{goes in as: don'' t} 
{goes in as: don't} 

o A complex constant is a pair of real or integer constants separated by a 
comma and enclosed in parentheses. Spaces can occur only around the 
punctuation. 

o A logical constant is any form of true or false value, such as . TRUE • 
or . FALSE., or any value beginning with . T, . F, etc. 

o A null data item is denoted by two consecutive commas, and it means the 
corresponding array element or complex variable value is not to be changed. 
Null data item can be used with array elements or complex variables only. 
One null data item represents an entire complex constant, although you 
can't use it for either part of a complex constant. For example, the program: 

* narn2.f Narnelist "r*c" and consecutive commas 
REAL ARRAY(4,4) 
NAMELIST /GRID/ ARRAY 
WRITE ( *, * ) "Input?" 
READ ( *, GRID ) 
WRITE ( *, GRID ) 
STOP 
END 

* Inside a character constant, consecutive spaces or tabs are preserved, not compressed. 

Revision A of 6 May 1988 



Requesting names 

Chapter 7 - Input and Output 97 

with the data: 

[~~-~~G_R_I_D~A-R-RA~Y~-9_,_9_,_9_,_g~r~'-'_'_'_s_,s_,_s_,_s~$~~~~~~~~~--] 
column 2 5 consecutive commas 

loads 9's into row 1, skips 4 elements, and loads 8's into row 3 of ARRAY. 

Arrays only - The following can be used only with an array: 

o The fonn r*c stores r copies of the constant c into an array, where r is a 
nonzero, unsigned integer constant, and c is any constant. For example, 
the program: 

* nam3.f Namelist "r*c" and "r* 
REAL PSI (10) 
NAMELIST /GRID/ PSI 
WRITE ( *' * ) "Input?" 
READ ( *, GRID ) 
WRITE ( *, GRID ) 
STOP 
END 

with the input: 

[~~~~~~G_R_I_D~-P_s_I~~S-*9_s_o~~-$~~~~~~~~~~~~~-] 
column 2 

loads 980.0 into the first 5 elements of the array P s I. 

o The fonn r* skips r elements of an array (that is, does not change them) 
where r is an unsigned integer constant. For example, the same 
program of the above example, with this input: 

[ 
$GRID PSI = 3* 5*980 $ ] 

----+-+ -~------
column 2 

skips the first 3 elements and loads 980.0 into elements 4,5,6,7,8 of 
PSI. 

If your program is doing namelist input from the terminal, you can request the 
group name and namelist names that it will accept. To do this, enter a question 
mark (?) in column two, and press I RETURN I. The group name and variable 
names for that group will be displayed, and then it will wait again for input. 

Revision A of 6 May 1988 



98 Sun FORTRAN Programmer's Guide 

7.4. Accessing Files from 
FORTRAN Programs 

Accessing Named Files 

For example: 

demo%cat 
* nam4.f Namelist prornpting•.for 

CHARACTER*l6 
LOGICAL*4 NEW 
REAL*4 DELTA 
NAMELIST ···/CASE/ •• SAMPLE, 
WRITE ( *, * ) "Input?l' 
READ {. *, CASE> ) 
STOP 
END 

demo% £77 nam4.f 
nam4.f: 

MAIN: 

demo% a.out 
Input? 

? 
$case 

sample 
new 
delta 

$end 
$case 

demo% 

column 2 

Data is transferred to or from devices or files by specifying a logical unit number 
in an 1/0 statement 

Logical unit numbers can be nonnegative integers or the character'*'. The'*' 
stands for the standard input if it appears in a read statement, or the standard 
output if it appears in a write or print statement. Standard input and standard 
output are explained in the section on preconnected units found later in this 
chapter. 

Before a program can access a file with a READ, WRITE, or PRINT statement, 
the file needs to be created and a connection established for communication 
between the program and the file. The file can already exist or be created at the 
time the program executes. The FORTRAN OPEN statement establishes a 
connection between the program and file to be accessed. OPEN can take a 
filename parameter (FILE=filename) to specify the file. Filenames can be: 

o quoted character constants , such as: 
FILE='myfile.out' 

o character variables, such as: 
FILE=FILNAM 

Revision A of 6 May 1988 



Accessing Unnamed Files 

Opened as scratch 

Chapter 7 - Input and Output 99 

o character expressions, such as: 
FILE=PREFIX (: LNBLNK (PREFIX)) II'/' II 

& NAME (: LNBLNK (NAME)), ... 

Some ways a program can get filenames are: 

o by reading from a file or tenninal keyboard, such as: 
READ( 4, 401) FILNAM 

o from the command line, such as: 
CALL GETARG( ARGNUMBER, FILNAM) 

o from the environment, such as: 
CALL GETENV( STRING, FILNAM ) 

The example below shows one way to construct a filename: 

c 

CHARACTER*1024 FUNCTION FULLNAME ( NAME 
CHARACTER*(*) NAME 
CHARACTER*1024 PREFIX 

C In path names starting with '-I': 
C replace the tilde with the home directory name; 
C prefix relative pathname by path to current directory; 
C leave absolute path names unchanged. 
c 

IF ( NAME(l:l) .EQ. 'I') THEN 
FULLNAME = NAME 

ELSE IF ( NAME ( 1 : 2) . EQ . ' - I' ) THEN 
CALL GETENV( 'HOME', PREFIX) 
FULLNAME PREFIX(:LNBLNK(PREFIX)) II 

& NAME(2:LNBLNK(NAME)) 
ELSE 

CALL GETCWD( PREFIX ) 
FULLNAME PREFIX(:LNBLNK(PREFIX)) II 

& 'I' II NAME(:LNBLNK(NAME)) 
END IF 
END 

When a program opens a FORTRAN file without a name, the run time system 
supplies a filename. There are several ways it can do this. 

If you specify STATUS=' SCRATCH' in the OPEN statement, then the system 
opens a file with a name of the fonn tmp . F AAA.xnnnnn, where nnnnn is 
replaced by the current process ID, AAA is a string of three characters, and x is a 
letter, the AAA and x make the filename unique. This file is deleted upon 
tennination of the program or execution of a CLOSE statement, unless 
STATUS=' KEEP, is specified in the CLOSE statement. 

Revision A of 6 May 1988 



100 Sun FORTRAN Programmer's Guide 

Already open 

Other 

Passing filenames to programs 

Preconnected units 

Other units 

If a FORTRAN program has a file already open, an OPEN statement that specifies 

only the file's logical unit number and the parameters to change can be used to 

change some of the file's parameters (specifically, BLANK and FORM). The 

system determines that it should not really OPEN a new file, but just change the 

parameter values. Thus, this looks like a case where the runtime system would 

make up a name, but it does not. 

In all other cases, the runtime system OPENS a file with a name of the form 

fort. n, where n is the logical unit number given in the OPEN statement. 

The Sun OS file system does not have any notion of temporary filename binding 

(or file equating) as some other systems do. Filename binding is the facility that 

is often used to associate a FORTRAN logical unit number with a physical file 

without changing the program. This mechanism evolved to communicate 
filenames more easily to the running program, because in FORTRAN 66 you 

could not open files by name. With SunOS or with UNIX there are several 
satisfactory ways to communicate filenames to a FORTRAN program including 

command-line arguments and environment-variable values. For example, see the 

file i o i nit . f in 1ibI7 7, which is discussed in Section 7 .2, under 

Subsection "Logical Unit Preattachment." The program can then use those 

logical names to open the files. The next section describes two additional ways 
to change a program's input and output files without changing the program, 

called redirection and pip~ng. 

When a FORTRAN program begins execution under SunOS, there are usually 

three units already open. These are called preconnected units. Their names are 

standard input, standard output, and standard error. In FORTRAN programs: 

o standard input is logical unit 5 

o standard output is logical unit 6 

o standard error is logical unit 0 

All three are connected to your workstation or window, unless file redirection or 
piping is done at the command level. 

All other units are preconnected to files named fort. n where n is the 
corresponding unit number. These files need not exist, and are created only if the 

units are actually used, and if the first action to the unit is a WRITE or PRINT. 

That is, only if an OPEN statement does not override the preconnected name 

before any WRITE or PRINT is issued for that unit. For example, the program: 

[ 
WRITE( 15 ) 2 J 

---END ___ ___, 

writes a single unformatted record on the fort . 15 file. 

Revision A of 6 May 1988 



7 .5. Formats 

Alpha editing (A) 

Blank control (B, BN, BZ) 

Chapter 7 -Input and Output 101 

Sun FORTRAN and FORTRAN 77 provide additional specifiers and enhancements 
to the FORTRAN 66 format specifications I, F, E, G, D, H, x, A, and L. For all 
specifiers, upper-case as well as lower-case characters are recognized in format 
statements and in all the alphabetic arguments to the 1/0 library routines. 

If the external representation of a datum is too large for the field width specified, 
the specified field is filled with asterisks(*). 

The A specifier is used with CHARACTER type data elements. In FORTRAN 66, 
this specifier could be used with any variable type. Sun FORTRAN supports the 
older usage, up to four characters to a word. 

For nonnal input, without any specific blank specifiers in the fonnat, non-leading 
blanks in numeric input fields are interpreted as zeros or ignored, depending on 
the value of the BLANK= specifier currently in effect for the unit. 

In FORTRAN 77, the following blank specifiers were added: 

o BN - If BN precedes a specification, a non-leading blank in the input data is 
considered null, and is ignored. 

o BZ - If BZ precedes a specification, a non-leading blank in the input data is 
considered zero. 

o B- Sun FORTRAN has added the blank-control specifier B. It returns 
interpretation to the default mode of blank interpretation, consistent with s, 
which returns to default sign control. 

For example, the following program reads the same data twice, once with BZ and 
once with BN, and prints the results both times: 

Revision A of 6 May 1988 



102 Sun FORTRAN Programmer's Guide 

Carriagecontrol ( $) 

Commas in Formatted Input 

Rules and Restrictions for Blank Control 

o Blank control specifiers apply to input only. 

o A blank control specifier remains in effect until another blank control 
specifier is encountered, or format interpretation is complete. 

o The B, BN, and BZ specifiers affect only I, F, E, D, and G editing. 

The special edit descriptor $ suppresses the carriage return.* The action does 
not depend on the first character of the format. It is used typically for console 
prompts. For instance, you can use this to make a typed response follow the 
output prompt on the same line. This edit descriptor is constrained by the same 

rules as the colon ( : ). 

As an example, the statements: 

r 

* doll.f The $ edit descriptor with space 
WRITE ( *, 2 ) 

2 FORMAT (' Enter the node number: ', $ 

READ ( *, * ) NODENUM 
STOP 
END 

produce a displayed prompt and user input response such as: 

(_: E_n_t_e_r_.· •_t_h_e_ •.•. _n_·. o_.•·ct_e_· .. _n_u_m_be_. ·._r_=_·_s_2_. _________________ ] -' 

The first character of the format is printed out, in this case, a blank. For an input 
statement, the $ descriptor is ignored. 

If you are entering data that is controlled by a fixed-column format, then you can 
use commas to override the exacting column restrictions. Thus, the format: 

[ (IlO, F20.10, I4) ] 

reads the record: 

[-345, .OSe-3,12 

correctly. 

The 1/0 system is just being more lenient than described in the standard. In 
general, when doing a formatted read of noncharacter variables, commas 

override field lengths. More precisely: for Iw, Fw.d, Ew.d[Ee], and Gw.d input 

fields, the field ends when w characters have been scanned or a comma has been 

* If FOR TRAN carriage control is enabled, then for formatted output, the first character of a record controls 

carriage movement 

] 

Revision A of 6 May 1988 



Hollerith (nH) 

Octal and hexadecimal (O,Z) 

Chapter 7 - Input and Output 103 

scanned, whichever occurs first. If the latter, the field consists of the characters 
up to but not including the comma; the next field begins with the character 
following the comma. 

FOR1RAN 77 does not have the old Hollerith (n H) notation, although the ANSI 
standard recommends implementing the Hollerith feature in order to improve 
compatibility with old programs. Though this is not recommended, in Sun 
FOR1RAN you can use Hollerith constants wherever a character constant can be 
used in FORMAT statements, assignment statements, and DATA starements. But 
such constants cannot be used as input data elements in list-directed or namelist 
input. For example, the two formats below are equivalent: 

10 FORMAT( 8H Code 
2 0 FORMAT ( " Code 

, A6 ) 
", A6 ) 

Sun FOR1RAN also allows consecutive Hollerith constants without a separating 
comma. For example: 

( 10 FORMAT( SH flex 4Hible ) 

For compatibility with older programs, Sun FOR1RAN also allows READ s into 
Hollerith edit descriptors, for example: 

demo% cat holl.f 
PRINT 1 

1 FORMAT( 6Holder 
READ 1 
PRINT 1 
STOP 
END 

demo% f77 holl.f 
holl. f: 

MAIN 
demo% a.out 
older 
newer 
newer 
demo% I 

Note that there is no list in this READ statement. 

Theo and z field descriptors for a FORMAT statement are for octal and 
hexadecimal notation, respectively. They can be used with any data type, taking 
the form: 

Ow [ .m] 

zw [. m] 

J 

Revision A of 6 May 1988 



104 Sun FORTRAN Programmer's Guide 

where w is the number of characters in the external field, and for output, m, if 
specified, determines the total number of digits in the external field (that is, if 
there are fewer than m nonzero digits, the field is zero-filled on the left to a total 
of m digits). Them has no effect on input. 

Octal and hex input 

A READ, with the o or z field descriptors in the FORMAT, reads in w characters 
as octal or hexadecimal, respectively, and assigns the value to the corresponding 
member of the 1/0 list. 

For example, if the external data field is: 

(_;~s-4_3_2_1 ______________________________________________ ] 

column 1 

then the input instructions: 

READ ( *, 2 ) M 

FORMAT ( 06 ) 

will result in the octal value 654321 being loaded into the variable M. Further 
examples are included in the table below. 

Table 7-3 Sample Octal/Hex Input Values 

Format External Field Internal (Octal or Hex) Value 

04 1234 ... 1234 
04 16234 1623 
03 97" ...... Error: "9" not allowed 

ZS A23DE ... A23DE 
ZS A23DEF A23DE 
Z4 95.AF2 Error: " " not allowed 

NOTE The caret(") indicates blanks. 

General rules for octal and hex input 

o For octal values, the external field can contain only numerals 0 through 7. 

o For hexadecimal values, the external field can contain only numerals 0 
through 9 and the letters A through F or a through f. 

o Signs, decimal points, and exponent fields are not allowed. 

o All-blank fields are treated as having a value of zero. 

] 

Revision A of 6 May 1988 



Chapter 7 - Input and Output 105 

o If an of item data is too big for the corresponding variable, an error message 
is displayed. 

Octal and hex output 

A WRITE, with the O or z field descriptors in the FORMAT, writes out values as 
octal or hexadecimal integers, respectively. It writes to a field that is w 
characters wide, right-justified. 

For example, the output instructions: 

M = 161 
WRITE ( *, 8 } M 
FORMAT ( Z3 } 

display as ( 161 decimal= Al hex): 

column 2 

Further examples are included in the table below. 

Table 7-4 Sample Octal/Hex Output Values 

Format Internal (Decimal) External 
Value (OctaUHex) 

Representadon 

06 32767 "77777 
02 14251 ** 
04.3 27 "033 
04.4 27 0033 
06 -32767 100001 

Z4 32767 7FFF 
Z3.3 2708 A94 
Z6.4 2708 ""OA94 
ZS -32767 "8001 

NOTE The caret(') indicates blanks. 

General rules on octal and hex output 

o Negative values are written as if unsigned; no negative sign is printed. 

o The external field is filled with leading spaces, as needed, up to the width w. 

o If the field is too narrow, it is filled with asterisks. 

l 

Revision A of 6 May 1988 



106 Sun FORTRAN Programmer's Guide 

Radix control (R) 

o If mis specified, the field is left-filled with leading zeros, to a width of m. 

Radixes other than 10 can be specified for fonnatted integer 1/0 conversion. The 
specifier is patterned after P, the scale factor for floating-point conversion. It 
remains in effect until another radix is specified or fonnat interpretation is 
complete. The specifier is R or nR, where 2 ~ n ~ 36. If n is omitted, the default 
decimal radix is restored. The 1/0 item is treated as a 32-bit integer. 

For an example, see "Sign Control" later in this section. 

Revision A of 6 May 1988 



Remaining characters ( Q) 

Chapter 7 - Input and Output 107 

You can get the length of an input record, or of the remaining portion of it that is 
unread, by the special edit descriptor Q in the FORMAT statement. This edit 
descriptor obtains the number of characters that remain to be read from the 
current record. For example: 

%demo cat qedl.f 
* qedL f Q edit descriptor {real & string) 

CHARACTER CVECT(80)*1 
OPEN ( UNIT=4, FILE='qedl.dat' ) 
READ ( 4, 1 )·R, L, ( CVECT(I), I;::;l,L 

l FORMAT ( F4 .2, Q, 80 Al ) 
WRITE ( *, 2) R,L, '"', (CVECT(I),I=l,L), 

2 FORMAT ( lX, F7~2, IX, I2, IX, 80Al ) 
STOP 
END 

demo% cat qedl.dat 
8. lOqwerty 
demo% f77 qedl.f -o qedl 
qedl.f: 

MAIN: 
%demo•· qedl 

8 .10 6 ••qwerty" 
%demo 

, .. , 

The above example reads a field into the variable R, then reads the number of 
characters remaining after that field into L, then reads L characters into CVECT. 
Note that Q's position in the FORMAT statement corresponds to that of Lin the 
READ statement. The next example puts the Q descriptor first: 

demo% cat qed.2.f 
* qed2. f The Q edit descriptor (string) 

CHARACTER C\TECT(80)*1 
OPEN ( UNIT=4f FILE=' qed2 .dat' ) 
READ ( 4, 1 ) L,: <( CVECT(I), I=l,L 

1 FORMAT ( Q, 80Al ) 
wRITE C *, 2 > L, ' "' (CVECT (T) , 1==1, L) , I n f 

2 FORMAT ( lX, <I2, lX, 80Al< ) 
STOP 
END 

demo% cat qed.2.dat 
qwerty 
demo%f77 qed.2.f ~o qed.2 
qed2.f: 

MAIN: 
demo% qed.2 

6 °qwerty" 

The above example gets the length of the input record. With the whole input 
string and its length, you can then parse it yourself. 

Revision A of 6 May 1988 



108 Sun FORTRAN Progranuner's Guide 

Sign control (SU, SP, SS, S) 

Scale control (P) 

Tab control (T,nT, TRn,TLn) 

Restrictions on the Q edit descriptor 

o The list element it corresponds to must be of INTEGER or LOGICAL data 

type. 

o This is strictly a character count: it gets the number of characters remaining 

in the input record; it does not get the number of integers or reals or anything 

else. 

o This operates on files only - not with interactive (terminal) I/O. 

For normal output, without any specific sign specifiers, if a value is negative, a 

minus sign is printed in the first position to the left of the left-most digit; and if 

the value is positive, printing a plus sign depends on the implementation. 

In FOR1RAN 77, the following sign specifiers were added: 

o SP - If SP precedes a specification, a sign is printed. 

o ss - If SS precedes a specification, plus-sign printing is suppressed. 

o s - If s precedes a specification, the system default is restored. 

Sun FOR1RAN has added the sign-control specifier SU to cause integer values to 

be interpreted as unsigned. 

For example, the unsigned specifier can be used with the radix specifier to format 

a hexadecimal dump, as follows: 

( 2000 FORMAT( SU, 16R, 8I10.8 J 

Rules and Restrictions for Sign Control 

o Sign-control specifiers apply to output only. 

o A sign-control specifier remains in effect until another sign-control specifier 

is encountered, or format interpretation is complete. 

o The s, SP, and SS specifiers affect only I, F, E, D, and G editing. 

o The SU specifier affects only I editing. 

P by itself is equivalent to OP. It resets the scale factor to the default value, 0. 

An additional form of tab-control specification has been added. The ANSI 

standard forms TRn, TLn, and Tn are supported, where n is a positive nonzero 

number. If T or nT is specified, tabbing is to the next (or n-th) 8-column tab 

stop. Thus columns of alphanumerics can be lined up without counting. 

Nondestructive tabbing is implemented for both internal and external formatted 

I/O: tabbing left or right on output does not affect previously written portions of 

a record. Tabbing right on output causes unwritten portions of a record to be 

filled with blanks. Tabbing right off the end of an input logical record is an error. 

Tabbing left beyond the beginning of an input logical record leaves the input 

pointer at the beginning of the record. The format specifier T may appear by .,,,,,_, 

Revision A of 6 May 1988 



Termination control(:) 

Vertical Format Control 

Extensions to Iw, Ew.d, Gw.d 

Them field 

Chapter 7 - Input and Output 109 

itself, or be preceded or followed by a positive nonzero number. Tabbing left 
requires the ability to seek on the logical unit. Therefore, it is not allowed in I/0 
to a terminal or pipe. Likewise, nondestructive tabbing in either direction is 
possible only on a unit that can seek. Otherwise tabbing right or spacing with the 
x edit specifier writes blanks on the output. 

The colon ( : ) is the conditional termination edit descriptor. If the 1/0 list is 
exhausted before the format, then the format terminates at the colon. For 
example: 
r 

* coll.f The colon (:) edit descriptor 
DATA INIT / 3 /, LAST / 8 / 
WRITE ( *, 2 ) INIT 
WRITE ( *, 2 ) INIT, LAST 

2 FORMAT ( lX "INIT = ", I2, . , 3X, "LAST I2 ) 
STOP 
END 

The above code produces output such as the following: 

Without the colon, the output is more like this: 

Simple vertical format control is provided. The logical unit must be opened for 
sequential access with FORM='PRINT'. Control codes 'O' and '1' in column one 
are replaced in the output file with '\n' and '\f', respectively. The control 
character '+' is not implemented and, like any other character in the first position 
of a record written to a 'print' file, is dropped. No vertical format control is 
recognized for direct formatted output or list-directed output. See fpr (1) for an 
alternative way of mapping FORTRAN carriage control to ASCII control 
characters. 

FORTRAN 77 extends the formats Iw, Ew.d, and Gw.d to include the forms: 

Iw.m Ew.dEe Gw.dEe 

In Iw.m, them field specifies the minimum number of nonblank characters 
written out, with as many leading zeros as necessary to get a width of m. The m is 
ignored on input. 

Revision A of 6 May 1988 



110 Sun FORTRAN Programmer's Guide 

Thee field 

The form Ew.d.e 

Defaults for w, d, e 

In Ew.dEe or Gw.dEe, thee field specifies the minimum number of digits or 
spaces in the exponent field on output. The default value for e is 2. 

With the form Ew.d.e, ifthe value of the exponent is too large, the single 
character E or D in the exponent notation is dropped from the output to allow one 
more character position. If this is still not adequate, the e field is filled with 
asterisks(*). The form Ew.d.e is allowed but is not standard. 

You can write field descriptors A, D, E, F, G, I, L, o, or z without thew, d, ore 
field indicators. If these are left unspecified, the appropriate defaults will be used, 
based on the data type of the 1/0 list element. Typical format field descriptor 
forms that use w, d, e include: 

Aw, Iw, Lw, Ow, Zw, Dw.d, Ew.d, Gw.d, Ew.dEe, Gw.dEe 

For example, with default w=7 for INTEGER*2, and 161 decimal= Al hex: 

INTEGER*2 M 
M = 161 
WRITE ( *, 8 ) M 

8 FORMAT ( Z ) 

will display as follows: 

(----+--;1 __________________________ ] 
column 6 

Revision A of 6 May 1988 



Chapter 7 - Input and Output 111 

Table 7-5 Default w, d, e Values in Format Field Descriptors 

Field Descriptor List Element w d e 

I,O,Z BYTE 7 - -
I,O,Z INTEGER*2, LOGICAL*2 7 - -
I,O,Z INTEGER*4, LOGICAL*4 12 - -
O,Z REAL*4 12 - -
O,Z REAL*8 23 - -
O,Z REAL*16 44 - -
L LOGICAL 2 - -
F,E,D,G REAL, COMPLEX*8 15 7 2 
F,E,D,G REAL*8, COMPLEX*16 25 16 2 
F,E,D,G REAL*16 42 33 3 
A LOGICAL*l 1 - -
A LOGICAL*2, INTEGER*2 2 - -
A LOGICAL*4, INTEGER*4 4 - -
A REAL*4, COMPLEX*8 4 - -
A REAL*8, COMPLEX*16 8 - -
A REAL*16 16 - -
A CHARACTER*n n - -

NOTE: Default for the A descriptor is the length of the corresponding 1/0 list element. 

Revision A of 6 May 1988 



112 Sun FORTRAN Programmer's Guide 

Summary of Formats 

Table 7-6 

7.6. Magnetic Tape 1/0 

This table summarizes FORTRAN 66, FORTRAN 77, and Sun FORTRAN formats. 

FORTRAN Format Specifiers 

Specifier FORTRAN66 FORTRAN77 Sun FORTRAN 
Extensions Extensions 

Blank Control BN, BZ B 

Carriage Control $ 

Character Edit wH, Aw "xx.xx" 
(string 
constant), 
A 

Floating-Point Fw.d, Ew.d, Ew.dEe, Ew.d.e, 

Edit Gw.d, Dw.d Dw.dEe, Dw.d.e, Gw.d.e 

Gw.dEe 

Hexadecimal Edit zw.m 

Integer Edit Iw Iw.m 

Logical Edit Lw 

Octal Edit Ow.m 

Position Control Tn, TLn, TRn nT, T 

Position Edit wx, I 

Radix Control nR 

Remaining Q 
Characters 

Scale Control nP p 

Sign Control S, SP, SS SU 

Terminate : 

a Format 

Using tape files on a SunOS or UNIX systems is awkward because, historically, 
UNIX development was oriented toward small data sets residing on fast disks. 
Magnetic tape was used by early UNIX systems for archival storage and moving 
data between different machines. Unfortunately, many FORTRAN programs are 
intended to use large data sets from magnetic tape. 

Revision A of 6 May 1988 



Using TOPEN 

Formatted 

Unformatted 

Tape File Representation 

The dd conversion utility 

Chapter 7 - Input and Output 113 

A FORTRAN tape 1/0 package (see TOPEN (3F)) offers a partial solution to the 
problem. FORTRAN programmers can transfer blocks between the tape drive and 
buffers declared as FORTRAN character variables. The programmer can then use 
internal 1/0 to fill and empty these buffers. This facility does not integrate with 
the rest of FORTRAN 1/0 (it even has its own set of tape logical units); thus, its 
use is discouraged. 

Sun FORTRAN provides facilities for transparent access to formatted, sequential 
files on magnetic tape. The tape block size may be optionally controlled by the 
OPEN statement's FILEOPT parameter. There is no bound on formatted record 
size and records may span tape blocks. 

Connecting a magnetic tape for unformatted access is less satisfactory. Because 
of the implementation of unformatted records as a sequence of characters 
preceded and followed by character counts, the first word of the record must be 
backpatched after the length of the entire record is known. This is due to the 
sequential property of the medium, which makes it impossible to seek back and 
rewrite this word. Thus, the size of a record ( + 8 characters of overhead) cannot 
be bigger than the buffer size. 

As long as this restriction is honored, the 1/0 system does not write records that 
span physical tape blocks, but writes short blocks when necessary. This 
representation of unformatted records is preserved (even though it is 
inappropriate for tape), so files can be freely copied between disk and tapes. Note 
that, since the block-spanning restriction does not apply to tape reads, files can be 
copied from disk to tape without any special considerations. 

A FORTRAN file is represented on tape by a sequence of data records followed 
by an endfile record. The data is grouped into blocks, the maximum size 
determined when the file is opened. The records are represented the same as 
records in disk files: formatted records are followed by newlines, unformatted 
records are preceded and followed by character counts. In general, there is no 
relation between FORTRAN records and tape blocks; that is, records can span 
blocks, which can contain parts of several records. The only exception is that 
FORTRAN won't write an unformatted record that spans blocks; thus, the size of 
the largest unformatted record is eight characters less than the block size. 

An endfile record in FORTRAN maps directly into a tape mark. Thus, FORTRAN 
files are the same as tape system files. Because the representation of FORTRAN 
files on tape is the same as that used in the rest of UNIX, naive FORTRAN 
programs cannot read 80-column card images from tape. If you have an existing 
FORTRAN program and an existing data tape you wish to read with it, you should 
translate the tape using the dd(l) utility, which adds newlines and strips trailing 
blanks. For example: 

demo% dd if=/dev/rmtO ibs=20b cbs=SO conv=unblock I ftnprg 

Revision A of 6 May 1988 



114 Sun FORTRAN Programmer's Guide 

The GETC library routine 

End-of-File 

Access on Multi-File Tapes 

If you write or modify a program and don't want to use dd, you can use the 
GE TC(3F) library routine to read characters from the tape. You can then 
assemble the characters into a character variable and use internal 1/0 to transfer 
formatted data. See also TOPEN(3F). 

The end-of-file condition is reached when an endfile record is encountered during 
execution of a READ statement. The standard states that the file is positioned 
after the endfile record. In real life, this means that the tape read head is poised 
at the beginning of the next file on the tape. Thus, it would seem that you should 
be able to continue reading the next file on the tape; however, this doesn't work 
and is prohibited by the standard. 

The standard also says that a BACKSPACE or REWIND statement may be used to 
reposition the file. This means that after reaching end-of-file, you can backspace 
over the endfile record and further manipulate the file (such as writing more 
records at the end), rewind the file, and reread or rewrite it. 

Each tape drive can be opened by many names. The name used determines 
certain characteristics of the connection, which are the recording density and 
whether the tape is automatically rewound when opened and closed. To access a 
file on a multiple-file tape, you should use the mt(l) utility to position the tape to 
the correct file, then open the file as a no-rewind magnetic tape such as 
I dev I nrmt 0. Using the tape with this name also prevents it from being 
repositioned when it is closed. This means that if your program reads the file 
until end-of-file, then reopens it, it can access the next file on the tape. Any 
following programs can access the tape where you left it (preferably at the 
beginning of a file, or past the endfile record). If your program terminates 
prematurely it could leave the tape positioned in an unpredictable place. 

Revision A of 6 May 1988 



8 
Program Development 

Program Development .............................................................................................................. 117 

8.1. Simple Program Builds ................................................................................................ 117 

Making a Script .............................................................................................................. 117 

Making an Alias ............................................................................................................ 117 

Using a Script or Alias ............................................................................................... 117 

Limitations ........................................................................................................................ 117 

8.2. Program Builds with the make Program ........................................................... 118 

The makefile .................................................................................................................... 118 

Using make ..................................................................................................................... 119 

The C Preprocessor . ......... ..................... .............................. ......................................... 119 

The . F Suffix ............................................................................................................ 119 

The -D Option ........................................................................................................... 119 

Macros with make ....................................................................................................... 120 

Sample macro definition ..................................................................................... 120 

Sample macro use ................................................................................................... 120 

Overriding Macro Values......................................................................................... 121 

Suffix Rules in make ................................................................................................. 121 

8.3. Tracking and Controlling Changes with SCCS ............................................... 122 

Putting Files under SCCS .......................................................................................... 122 

Making the SCCS directory ................................. ..................... .......................... 122 

Inserting SCCS ID keywords ............................................................................. 122 

Creating SCCS files ................................................................................................. 123 

Checking Out Files ...................................................................................................... 127 



Checking In Files .......................................................................................................... 127 

8.4. Relocatable Libraries ..................................................................................................... 127 

Libraries Loaded ........................................................................................................... 128 

Advantages ....................................................................................................................... 128 

Disadvantages ................................................................................................................. 128 

Sequential Libraries ..................................................................................................... 128 

Random Libraries ......................................................................................................... 129 

Sample create............................................................................................................. 129 

Sample replace .......................................................................................................... 129 

8.5. Transporting OtherFORTRANs ............................................................................... 130 

General Hints .................................. ........................ ........................... ............................. 130 

Time Functions .............................................................................................................. 130 

Formats ............................................................................................................................... 133 

Carriage-Control ............................................................................................................ 133 

File Equates ................. ............... ............ ........................ .................................... .............. 13 3 

Data Representation .................................................................................................... 133 

Hollerith ............................................................................................................................. 134 



8.1. Simple Program 
Builds 

Making a Script 

Making an Alias 

Using a Script or Alias 

Limitations 

8 
Program Development 

This chapter introduces building programs with make, tracking changes with 
SCCS, and creating libraries with ar and ranlib. 

For a program that depends on only a single source file and some system 
libraries, you can compile all every time you change the program. Even in this 
simple case, the f 7 7 command can involve much typing, and with options or 
libraries, a lot to remember. A simple script or alias can help. 

For example, to compile a small program contained in the file example . f, that 
uses the SunCore graphics library, you can save a one-line shell script onto a file 
called f ex, that looks like this: 

( f77 example.f -lcore77 -lcore -o example 

You may need to put execution permissions on fex: 

( demo~ehlnod .. +x .. fex 

Or you can set up an alias to do the same command: 

alias fex .. "£77 example.£ 
--lco;rel .,-o • exa.xttple ~ 

Either way, to recompile example. f, you type only fex: 

J 

J 

(
• demo% fex ) 

........__...... -----------------------------~----

With multiple source files, forgetting one compile makes the objects inconsistent 
with the source. Recompiling all files after every editing session wastes time, 
since not every source file needs recompiling. Forgetting an option or a library 
produces questionable executables. The make program can help. 

117 Revision A of 6 May 1988 



118 Sun FORTRAN Programmer's Guide 

8.2. Program Builds with 
the make Program 

The makefile 

The make program recompiles only what needs recompiling, and it uses only the 
options and libraries you want. This section shows you how to use normal, basic ..,,.,, 
make, and it provides a simple example. For a full discussion of make, see the 
chapter "Make- a Program for Maintaining Computer Programs" in the 
Programming Tools manual. For a summary, see the Sun User's Manual page 
make (1). 

The way you tell make what files depend on other files, and what processes to 
apply to which files, is to put this information into a file called the makefile, in 
the directory where you are developing the program. 

For example, suppose that you have a simple program of four source files and a 
makefile, as listed below: 

demo% ls 
Makefile 
commonblock 
computepts.f 
pattern.f 
startupcore. f 
demo% I 

For this example, assume that both pattern. f and computepts. f do an 
include of commonblock, and you wish to compile each . f file and link the 
three relocatable files (plus a series oflibraries) into a program called pat tern. 

The makefile for this example is listed below: 

demo% cat Makefile 

pattern 
f77 

pattern.a: pattern.f qomrnonblock 
£77 ~c ~Qpattern.f 

computepts. o< : computepts<. f 
£77 -c -u computepts .<f 

startupcore. 0 ; startupcore .<f 
f77 -c -u startupcore.f 

demo%. I 

The first line of this makefile says "make pattern", and "pattern 
depends on pattern. o, computepts. o, and startupcore. o". The 
second line is the command for making pattern, and the third line is a 
continuation of the second. 

There are four such paragraphs or entries in this makefile. The structure of these 
entries is: 

Revision A of 6 May 1988 



Using make 

The C Preprocessor 

The . F Suffix 

The -D Option 

Chapter 8 - Program Development 119 

o Dependencies - Each entry starts with a line that names the file to make, 
and names all the files it depends on. 

o Commands - Each entry has one or more subsequent lines that contain 
shell commands, and that tell how to build the target file for this entry. 
These subsequent lines must each be indented by a tab, 

When make is invoked with no arguments: 

it looks for a file named makefile or Makefile in the current directory, and 
takes its instructions from there. 

Its general actions are: 

o From the makefile, it gets all the target files it must make, and what files 
they depend on. It also gets the commands used to make the target files. 

o It gets the date and time changed for each file. 

o If any target file is not up to date with the files it depends on, then that target 
is rebuilt, using the commands from the makefile for that target. 

You can use the C preprocessor for such things as passing strings to f 7 7. The 
example is just an extension of the example above. 

Let's say that you want your program to print the time it was compiled when it is 
given a command-line argument of -v. You need to add code that looks like: 

IF (ARGSTRING .EQ. "-v") THEN 
PRINT *, CTIME 
CALL EXIT(O) 

ENDIF 

and use the C preprocessor to define CTIME as a quoted string that can be 
printed. The next two examples show how to do this. 

The C preprocessor is applied if the filenames have the suffix . F, so we change 
the filename: 

(~•--~d_e_m_o_% __ m~v_._p_a_t_t_e_r_n_._£ __ p_a_t_t_e_rn __ .F __________ ~------------------J 
The -D option defines a name to have a specified value for the C preprocessor, as 
if by a "#define" line. So we change the compilation line for pattern.Fin 
the makefile to look like this: 

demo% £77 "-DCTIME=\" 'date' \" " -c -u pattern.F 

Essentially, the part up to the -c option gets the output of the date command, 

Revision A of 6 May 1988 



120 Sun FORTRAN Programmer's Guide 

Macros with make 

Sample macro definition 

Sample macro use 

puts quotes around it, stuffs that into CT IME, and passes that on to the C 
preprocessor. (If you want to follow the gory details, see the note below.t) 

The preprocessor now converts CTIME to "jan15 ... ", so that: 

becomes 

( PRINT*, "jan15 ... " 

The purpose here is to show how such strings are passed to the C preprocessor; 
the particular string passed is not useful, but the method is the same. 

] 

The make program does simple paramaterless macro substitutions. In the 
example above, the list of relocatable files that go into the target program pattern 
appears twice: once in the dependencies and once in the f 7 7 command that 
follows. This makes changing the makefile error-prone, since the same changes 
must be made in two places in the file. In this case, you can add the following to 
the beginning of your makefile: 

OBJ pattern.o cornputepts.o startupcore.o 

and change the description of the program pattern into: 

r 

pattern: $(OBJ) 
f77 $(OBJ} -lcore77 -lcore -lsunwindow \ 

-lpixrect -o pattern 

Note the peculiar syntax in the above example: a use of a macro is indicated by a 
dollar sign immediately followed by the name of the macro in parentheses. For 
macros with single-letter names, the parentheses may be omitted. 

t The innermost single quotes are back-quotes or grave accents. They indicate that the output of the 
command contained in them (in this case the date command) is to be substituted in place of the backquoted 
word(s). The next level of quote marks is what makes this define a FORTRAN quoted string, so it can be used in 
the print statement. These marks must be escaped (or "quoted") by preceding backslashes because they are 
nested inside another pair of quote marks. The outermost marks indicate to the interpreting shell that the 
enclosed characters are to be interpreted as a single argument to the f7 7 command. They are necessary because 
the output of the date command contains blanks, so that without the outermost quoting it would be interpreted as 
several arguments, which would not be acceptable to f 7 7. 

Revision A of 6 May 1988 



Overriding Macro Values 

..._..,.. Suffix Rules in make 

Chapter 8 - Program Development 121 

The initial values of make macros can be overridden with command-line 
options to make. For instance, if you add the line: 

( FFLAGS=-u 

to the top of your makefile, and change each command for making FORTRAN 
source files into relocatable files by deleting that flag, the compilation of 
computepts. f looks like this: 

( f77 $(FFLAGS) -c cornputepts.f 

and the final link looks like this: 

f77 $(FFLAGS) $(OBJ) -lcore77 -lcore -lsunwindow \ 
-lpixrect -o pattern 

J 

J 

If you issue the bare make command, everything compiles as before. But if you 
give the command: 

(_] ___ d_e_rn_o_%_.···_ma __ k_e_·._·'-'F_F_LA __ G_s_=-_·•_u_·._--0_.··_·_· _______________________________ ) 

then the -o flag, as well as the -u flag, is passed to f 7 7 . 

If you don't tell make how to make a relocatable file, it uses one of its default 
rules, in this case: 

Use the f 77 compiler, pass as arguments any flags specified by the 
FF LAGS macro, the -c flag, and the name of the source file to be 
compiled. 

We can take advantage of this rule twice in our example, but still must explicitly 
state the dependencies, and the nonstandard command for compiling the 
pat tern. F file. The makefile is: 

OBJ= pattern.o cornputepts.o startupcore.o 

FFLAGS=-u 

pattern: $(OBJ) 
f77 $(OBJ) -lcore77 -lcore -lsunwindow \ 

-lpixrect -o pattern 

pattern.o: pattern.F cornrnonblock 
f77 $(FFLAGS) "-DCTIME=\" 'date' \" "-c pattern.F 

cornputepts.o: cornputepts.f cornrnonblock 

startupcore.o: startupcore.f 

Revision A of 6 May 1988 



122 Sun FORTRAN Programmer's Guide 

8.3. Tracking and 
Controlling Changes 
with SCCS 

Putting Files under SCCS 

Making the SCCS directory 

Inserting SCCS ID keywords 

SCCS is Source Code Control System. It provides a way to: 

o keep track of a source file's evolution (change history) 

o prevent different programmers from changing the same source file at the 
same time 

o keep track of the version number by providing version stamps 

The basic three operations of SCCS are: putting files under SCCS control, 
checking out a file for editing, and checking in a file. This section shows you 
how to use SCCS to do these things and provides a simple example, using the 
previous program. It describes nonnal, basic SCCS, and introduces only three 
SCCS commands: create, edit, and delget.t 

Putting files under SCCS control involves making the SCCS directory, inserting 
SCCS ID keywords into the files (optional), and creating the SCCS files. 

To begin, you must create the SCCS subdirectory in the directory in which your 
program is being developed: 

[ demo% mkdir SCCS 
demo% I 

The 'SCCS' must be upper case. 

Put one or more SCCS "ID keywords" into each file. These will later be filled in 
with a version number each time the file is checked in with a get or delget 
SCCS command. There are three likely places to put such strings: 

o in comment lines, 

o in parameter statements, or 

o in initialized data. 

The advantage of the last is that the version infonnation appears in the compiled 
object program, and can be printed using the what command. Included header 
files containing only parameter and data definition statements should not gen­
erate any initialized data, so the keywords for those files usually are put in com­
ments or in parameter statements. Finally, in the case of some files, like ASCTI 
data files or makefiles, the source is all there is, so the SCCS infonnation can go 
in comments, if anywhere. 

Let's identify the makefile with a make comment containing the keywords: 

] 

[
# %Z%%M% %I% %E% J 
-------
The source files startupcore. f and computepts. f and pattern. f can 

t For more on SCCS, see "Source Code Control System" in Programming Utilities and Librarks Although 
addressed mainly to the C language programmer, that manual provides a thorough introduction to the mechanics 
of using secs. 

Revision A of 6 May 1988 



9.1. Introduction 

9 
Debugging and Profiling 

This chapter describes tools for debugging and measuring the resource use of 
FORTRAN programs. The most versatile and powerful tool for debugging on the 
Sun workstation is the symbolic debugger dbx or dbxtool. With dbx you can 
display and modify variables, set breakpoints, trace variables, and invoke 
procedures in the program being debugged without having to recompile. 
dbxtool is a Sun workstation debugger that lets you make more effective use 
of dbx by replacing the original, terminal-oriented interface with a window- and 
mouse-based interface. 

The adb debugger is an older binary-oriented debugger, which is occasionally 
useful as a supplement to dbx. 

The -C, -u, and -v flags are useful for debugging, see Section 9.4. 

The simplest way to measure resource consumption is with the time (1) 
command. The gprof (1) command provides a detailed procedure-by­
procedure analysis of execution time, including how many times a procedure was 
called, who called it and who it called, and how much time was spent in the 
procedure and by the routines that it called. 

The following program is used in several examples: 

al.£: 

program silly 
real twobytwo(2,2) 
data twobytwo /4 *-1 I 
n = 2 
call mkidentity( twobytwo, n ) 
print *, determinant(twobytwo) 
end 

139 Revision A of 6 May 1988 



140 Sun FORTRAN Programmer's Guide 

9.2. Using dbx 

dbx commands 

conpi1e 

dbx 

a2 .f: 
r 

20 
10 

a3 .f: 

subroutine mkidentity{matrix,dim) 
real matrix{dim,dim) 
integer dim 
do 10 m = 1, dim 
do 20 n = 1, dim 
if {m.eq.n) then 

matrix{m,n) 1. 
else 

matrix{m,n) 0. 
endif 
continue 
continue 
return 
end 

real function determinant{m) 
real m{2,2) 
determinant 
return 

m{l,l)*m{2,2) - m{l,2)/m{2,1) 

end 

This section summarizes the use of dbx and describes some of its FORTRAN­
specific aspects. Complete documentation for dbx and dbxtool can be found 
in the dbx (1) and dbxtool (1) man pages and in Debugging Tools. 

To use dbx or dbxtool, you must compile and load your program with the -g 
* flag. For example: 

[_~d_e_m_o_.·.~-0 ~~-7_7_••·_-_o_•·•~s-i_1_1~y~··-~-g~·····~>a~1~····_.£_.••_a~2_._.f_··~··• ... _a_3_>_f_• ---""---'-"-~~---'----'-'--""-""~) 
or: 

dernd% f77 -c -g al.£ a2.f a3 .... f 
demo% f 77 -o silly al.o a.2.o 

1 The -g and -0 options are incompatible. If used together, the -g option cancels the -0 option. 

Revision A of 6 May 1988 



breakpoint 

Chapter 9 - Debugging and Profiling 141 

To run the program under the control of dbx, change to the directory where the 
sources and programs reside, then type the dbx command and the name of the 
executables file: 

demo% dbx silly 
Reading symbolic information ... 
Read 635 symbols 
(dbx) 

To set a breakpoint before the first executable statement, wait for the ( dbx) 
prompt, then type stop in MAIN, as follows: 
,. 

\. 

(dbx) stop in MAIN 
(1) stop in MAIN 
(dbx) 

run After the ( dbx) prompt appears, type run to begin execution. When the break­
point is reached, dbx displays a message showing where it stopped, in this case 
at line 4 of file al. f: 

print 

(dbx) run 
Running: silly 
stopped in MAIN at line 4 in file "al.f" 

4 n = 2 
(dbx) 

The command print n at this point displays 0, since the statement n=2 has 
not been executed yet: 

[ ;~:~~~~~t =n a l 
The command next advances execution to line 5, and if the print n com­
mand is now repeated it displays a 2: 

(dbx) next 
stopped in MAIN at line 5 in file "al.f" 

5 call mkidentity( twobytwo, n ) 
{dbx) print n 
'al 'MAIN 'n .;:;:: 2 
(dbx} 

The command print twobytwo displays the entire matrix, one element per 
line. Note that square brackets (not parentheses) are used to reference array 
elements: 

Revision A of 6 May 1988 



142 Sun FORTRAN Programmer's Guide 

(dbx) print twobytwo 
twobytwo :::: [ 1, 1] 

(dbx) 

(2, l] -1. 0 
[1, 2] 
[2,2] 

The command print matrix fails because subroutine mkidentity is not 
active at this point and the bounds of the adjustable array ma tr ix are not know: 

(dbx>.· print 
''matrix" is 
(dbx) 

Execution can be continued in three ways: 

continue The continue command resumes execution without setting further 
breakpoints. 

next The next command sets a one-time breakpoint, in this case at line 5 of file 
a 1 . f, and continues execution until that point is reached. 

step The step command sets a breakpoint at the next source line to be executed, in 

where 

which 

func/file 

status 

this case line 4 of file a2 . f. If the next statement is a subroutine or function .._, 
call, then step sets a breakpoint at the first source line of the subprogram, but 
next sets the breakpoint at the first source line after the call but still in the cal-
ling program. 

Throughout a debugging session, dbx defines a procedure and a source file (the 
file that contains the source for the current procedure) as "current." Requests to 
set breakpoints and to print or set variables are interpreted relative to the current 
function and file. Thus, stop at 5 sets one of three different breakpoints 
depending on whether the current file is a 1 . f, a2 . f, or a 3 . f. 

Likewise, print n displays a different storage location when the current 
function is main than when it is mkidentity. 

The where command shows where in the program execution stopped and how 
execution reached this point. 

The which command shows exactly which variable n is being referenced. 

The func and file commands can be used to alter dbx 's definition of the 
current procedure. 

The status command lists the breakpoints in effect and the delete command 
removes breakpoints. 

Revision A of 6 May 1988 



postmortem 

where 

Chapter 9 - Debugging and Profiling 143 

It is possible to call a subroutine or function in the program at any point when 
execution has stopped. The effect is exactly as if the source had contained a call 
at that point. For example if, after the initial breakpoint described above, you 
typed print determinant (twobytwo) the value 0 would display, since 
mkidentity would not yet have modified twobytwo. 

This facility is often useful for special-case printing. For example, in a program it 
might be meaningful to trace the row and column sums of different matrices. A 
subroutine called mats um that does this could be compiled into a program and 
invoked by the user at appropriate breakpoints. 

Assume that file a3. f was modified as follows: 

real function determinant(m,dim) 
real m(dim,dim) 
integer dim 
determinant= m(l,l)*m(2,2) - m(l,2)*m(2,1) 
return 
end 

Execution results in a "segmentation violation" as soon as determinant is 
invoked and a core file (a copy of the program's image in memory) is produced. 
The command dbx silly core correlates this program image with the 
program, as follows: 

[~: ___ d_e_m_o_%_··~d.b_._x_ .. ·~>s_i_·1_1~y-····_c_o_r_e ________ ~--------~--------~~-----J 
Then where commands can determine which routines were active at the time of 
the exception: 

(dbx) where 
determinant(rn ARRAY , dim 

line 5> iri "a3 of" 
MAIN,> line >6 in>)'al. f" 

16776938)•, 

MAIN ( Oxl, OxfffebO, Oxf ffeb8) at 0x82fa 
(dbx) 

Revision A of 6 May 1988 



144 Sun FORTRAN Programmer's Guide 

Structures and pointers The dbx debugger recognizes the Sun FORTRAN data types of structure, record, 
union, and pointer. The following examples show using dbx with these data 

types. 

Compile for dbx using the -q option, load it in dbx, and list it: 

demo% £77 -o debstr -g deb1.f 
deb1.f: 

MAIN: 
demo% dbx debstr 
Reading symbolic information ... 
Read 604 symbols 
(dbx) list 1,30 

1 * dbxl.f: Showdbx with structures 
2 STRUCTURE /PRODUCT/ 
3 INTEGER*4 ID 
4 
5 
6 
7 

8 
9 

CHARACTER*l6 
CHARACTER* 8 
REAL*4 
REAL*4 

END STRUCTURE 

NAME 
MODEL 
COST 
PRICE 

10 RECORD /PRODUCT/ PRODl; PROD2 
11 POINTER (PRIOR, PRODl), (CURR, 
12 
13 PRIOR = MALLOC ( 36 ) 

14 PRODl.ID= 82 
15 PRODLNAME == "Schlepper" 
16 PRODl .MODEL = "XL" 
17 PRODl.COST = 24.0 
18 PRODl.PRIC~= ~04.0 

19 CURR= MALLOC( 36 ) 
20 PROD2 PRODl 
21 WRITE { *, * ) 
22 STOP 
23 END 

(dbx) 

Set a breakpoint at a specific line number, and run it under dbx: 

(dbx) stop at "debl.£":21 
( 1) stop at ••ctebl. f": 21 
(dbx) run 
Running: debstr 
stopped in main at line 21 in file "debl. f" 

21 WRITE ( *, * ) PROD2.NAME 
(dbx) 

Revision A of 6 May 1988 



Parameters 

Chapter 9 -Debugging and Profiling 145 

Print a record: 

(dbx) print prodl 
*prodl = ( 

(dbx) 

id 
name 
model 
cost 
price 

24.0 
104.0 

82 
"Schlepper 
"XL 

" 

If you tell dbx to print a record, it displays all fields of the record, including field 
names. 

Inquire about a record: 

(dbx}· whatis prodl 
(based> variable) record /product/ prodl 

(dbx) whatis product 
~tiucture /product/ 

integer*4 id 
character*16 name 
character*8 model 
real cost 
realpriCE3 

end structure product 
(dbx) 

Print a pointer, then quit dbx: 

(dbx) print prior 
prior = 150244 
(dbx) quit 
demo% 

If you tell it to print a pointer, it displays the contents of that pointer, which is the 
address of the variable pointed to. 

The dbx debugger recognizes parameters -the compiler generates pseudo 
variables for parameters when programs are compiled for dbx with the -q 
option. The following examples show using dbx with parameters. 

Compile for dbx using the -q option, load it in dbx and list it. Print some 
parameters. 

Revision A of 6 May 1988 



146 Sun FORTRAN Programmer's Guide 

9.3. Using adb 

start 

demo% f77 
deb2.f: 
deb2.f: 

MAIN silly: 

determinant: 
Linking: 
demo%·••dbx •·silly 
Reading symbolic 
Read 2 6 9 symbols 
(d.bx) list 1,30 

1 

2 
3 
4 

program silly 
parameter ( n=2, nri=n*ri 
real twdbytwo(n~n) 
ciata <twobytwo··;nn * .... 1 ••.•. / 

5 
6 

c aTI << mk:iderit.it y{ t woqytwo / 
print t, •determ:Lriant(twobytwo) 
end 

The adb debugger can also be used to provide a stack traceback but at a lower 
level. The adb program does NOT display a prompt; it just waits. 

For example, adb silly core starts up adb and the command $c displays 
something like the following: 

_abort:ld.590J•<) < +<< 4 
~sigdie( OJ(p, O/fffe30) +<152 
___.si<Jtramp[11abQ]. er<+ 2.0 
_dete rmirian.t--{81 dcl ( 18 Ole) 
_MAIN_[8074] <T. + <36 
_main ( 82a.O] .. {l, fffebO/fffeb8) 

This is interpreted as follows. The startup routine main, called the FORTRAN 
MAIN routine, which in tum called the function determinant (note the under­
scores appended to FORTRAN external names). Somewhere around 36 (hex) 
bytes from the beginning of determinant an exception occurred. The exception is 
recorded as a call to the signal dispatcher sigtrarnp. sigtrarnp noted that 
the particular signal was handled by sigdie, a signal handling routine in the 
FORTRAN library, and then called it. sigdie printed a message and then called 
abort to halt execution. The command determinant_, 10? ia displays 

Revision A of 6 May 1988 



9.4. Compiler flags 

Chapter 9 - Debugging and Profiling 14 7 

lO(hex) machine instructions and their addresses starting from the entry point 
determinant. 

quit To quit adb, type $q or $Q or ""D. 

-c 

adb can be used on any program regardless of whether or not it was compiled 
with the -q debugging flag. Variables can be displayed in a variety of fonnats, 
but their addresses must be known. The addresses of some external variables are 
easy to determine. For example, the command _BLNK_/ D prints the first four 
bytes after label _BLNK_ in a decimal fonnat, which is equivalent to the dbx 
print n command if n is the first variable in blank common. The addresses of 
local variables are usually difficult to detennine. 

As another example, consider the program: 

[ 
write(4) 4 J 

_end ___ ___.. 

When executed, this program creates a file named fort. 4 which contains a sin­
gle unfonnatted record. An unfonnatted record includes two count words con­
taining the record length at the beginning and end of the record. You can exam­
ine this data file with adb as follows: 

(~· ~-d_e_m_o_%~•··•·_a_db __ ····~f~o-r~t-._4_•···~.~------'~--_.;.~----~------~----'----'---"-_.;.----'J 
Then display the first three words of the data file in decimal Oocation 0 with a 
repeat count of three): 

The compiler provides three flags that are useful for debugging FORTRAN 
programs: -c -u and -v 

The -c flag causes the compiler to generate subscript checking code that catches 
certain kinds of out-of-bounds array subscripts. 
For example, if line 7 of file a2 . f were changed to: 

( _____ m_a_t_r_i_x_(_2_*_m_,_2_*_n_> __ = __ 1_. __________________________________ ] 

Execution would produce the message 

S1.lbsciipt. out of rang¢ .. • ori file line 
procedure .. mkidel1tL 
At:tempt ... •to. a.ccess< the·.10.-th element 
vaiiable .. matrix. 

Revision A of 6 May 1988 



148 Sun FORTRAN Programmer's Guide 

The -c does NOT catch all 
subscript range errors. 

9.5. Profiling Tools 

-u 

-v 

The current implementation does not catch all out of range subscripts. For 
example, if dim is greater than 2, then a reference of the form 
matrix ( 2 *dim, 1) , though illegal, does not produce an error. An error is 
flagged only if a subscript expression causes a reference outside the linearized 
internal representation of the array. 

The -u flag causes all variables to be initially declared "UNDEFINED", so that an 
error is flagged for variables that are not explicitly declared. The -u flag is 
useful for discovering mistyped variables. When -u is set, all variables are 
treated as undefined until explicitly declared. Use of an undefined variable is 
accompanied by an error message. 

The -v flag produces a log of the various phases of the compiler along with 
information about the resources used by each phase. This can be useful in 
tracking the origin of ambiguous error messages and in reporting compiler 
failures. 

The simplest way to gather data about the resources consumed by a program is to 
use the time command or, in the C shell to issue the set time command. 
After the program terminates, the shell prints a line like this: 

6.Su 17.ls 1:16 31% ll+21k 354+210i0 135pf+Ow 

This indicates that the program spent six seconds executing user code, 17 
seconds executing kernel code on behalf of the user, and took one minute and 16 
seconds to complete, so that approximately 31 per cent of the machine's 
resources were dedicated to this program. Memory usage during execution 
averaged 11 kilobytes of shared (program) memory and 21 kilobytes of private 
(data) memory. Input and output operations done by the program resulted in 564 
disk accesses of which 354 were reads and 210 were writes. The program caused 
135 page faults and was never swapped out. 

To obtain a more detailed account of how the program spent its time we can 
compile and link it with the -pq flag, for example: 

( demo% £77 -o sil.l.y ~pg al.f a2.f a3.£ ) 
After execution completes, a file named gmon. out is written in the working 
directory. This file contains profiling data that can be interpreted with gprof (1). 
To generate meaningful timing information, execution must complete normally. 
The command gprof silly invokes gprof and asks it to correlate the 
gmon. out file with the program in file silly. gprof produces two 
summaries of how the total time (user time plus system time) the program uses is 
distributed across the program's procedures. Both user routines and library 
routines are accounted for. 

The "flat" profile lists the procedures along with the number of times each 
procedure was called and the number of seconds spent in the routine. This 
information can be useful, but does not allow you to determine the calling 
structure of the program and how time is distributed across it. For example, if 
you discover that a vector cross-product function that is called from many points 

Revision A of 6 May 1988 



0.18 
[3] 95.5 

Chapter 9 - Debugging and Profiling 149 

in a program is taking up most of the execution time, you can't tell who it calls 
most often and causes it to do the most work. The second summary produced by 
gprof, the "graph" profile, can help answer these questions. 

For example, if you modify MAIN to call mkidenti ty 1000 times, then 
compile your source files with the -pg flag and call gprof to produce timing 
profiles, an entry in the graph profile might look like this: 

0.24 1000/1000 
1000 
4000/4000 

MAIN [4] 
_mkidentity_ [3] 
lmult [SJ 

In the graph profile above, the line that begins with "[3]" is called the function 
line, the lines above it the "parent lines", and the lines below it the "descendant" 
lines. The function line in the example above reveals that mkideni ty was 
called 1000 times, a total of 0.18 seconds were spent in mkident it y itself and 
0.24 seconds were spent in routines called by mk identity. 95 .5 per cent of 
the program's execution time is attributable to mkidenti ty and its 
descendants. 

The single parent line reveals that MAIN was the only procedure to call 
mkidentity, that is, all 1000 invocations ofmkidentity came from MAIN. 

Thus, all of the 0.18 seconds spent in mkidenti ty were spent on behalf of 
MAIN and all 0.24 seconds of mkidenti ty s descendants were spent on behalf 
of MAIN. If mkidenti ty had also been called from another procedure there 
would be two parent lines and the 0.18 seconds of "self' time and 0.24 seconds 
of "descendant time" would be divided between MAIN and the other caller. 

The descendant lines are interpreted similarly. In this example, mkidentity 
has only called one function, lmul t, the 32-bit integer multiply routine. lmult 
is called 4000 times in this program and all of these calls come from mkiden-
t it y. lmul t has a descendant time of zero, which suggests that it calls no 
other routines (this could be confirmed by examining the lmul t entry). 

When you enable profiling, the running time of a program is significantly 
increased. The fact that mcount the utility routine used to gather the raw 
profiling data, is usually at the top of the flat profile shows this. To eliminate this 
overhead in the completed version of the program, recompile all source files 
without the -pg flag. The overhead incurred by mcount should be ignored 
when interpreting the flat profile. The graph profile automatically subtracts time 
attributed to mcoun t when computing percentages of total runtime. 

The FORTRAN library includes three routines that return the total time used by 
the calling process- see dtime (3F), etime (3F), and tcov (1). 

Revision A of 6 May 1988 





10 
The VMS Extensions 

The VMS Extensions .................................................................................................................. 153 

10.1. Overview............................................................................................................................ 153 

10.2. Background ...................................................................................................................... 153 

10.3. The VMS Extensions Recognized by f77 ..................................................... 154 

10.4. The Source Code Converter.................................................................................... 154 

Usage ................................................................................................................................... 155 

Input................................................................................................................................ 155 

Output............................................................................................................................ 155 

Using f77cvt with f77 ................................................................................... 155 

Converter Options ................................................................................................... 156 

Conversion Description............................................................................................. 157 

Embedded Comments........................................................................................... 157 

Debug Statements ................................................................................................... 157 

VMS Tab-format....................................................................................................... 157 

Initializing BLOCK DATA ................................................................................... 157 

Radix-50 Constants ................................................................................................ 157 

The IMPLICIT NONE Statement ................................................................. 157 

The VIRTUAL statement.................................................................................... 157 

Nonstandard PARAMETER Statements....................................................... 157 

Initializers in Declarations ................................................................................. 158 

Non-CHARACTER Format Specifiers .......................................................... 158 

Omitted Actual Arguments ................................................................................ 158 

Variables and Literals of Type REAL*16 ................................................ 158 



Using a CHARACTER Alias for Non-CHARACTER 

Variables ...................................................................................................................... . 158 

Consecutive Operators ........................................................................................ . 158 

Illegal REAL Expressions .................................................................................. . 159 

Hex and Octal Constants .................................................................................... . 159 

Nonstandard Length Specifiers ....................................................................... . 160 

Old TYPE and ACCEPT Statements ............................................................ . 160 

Alternate Return Arguments ............................................................................ . 160 

The ENCODE and DECODE statements ...................................................... . 160 

Record Specifier 'N in Direct-access I/O ............................................... . 161 

Old OPEN and INQUIRE Options ............................................................... . 161 

The OPEN for unformatted files Options .................................................. . 161 

The DISPOSE=p in the CLOSE Statement ............................................ . 161 

Line Numbers for dbx ........................................................................................ . 161 

Special Intrinsic Functions ................................................................................ . 161 

Backslash in character string ........................................................................... . 162 

Logical filenames in the INCLUDE statement ...................................... . 162 

Conversion Samples .................................................................................................. .. 163 

Unsupported VMS FORTRAN ............................................................................... . 167 

10.5. The VMS Intrinsics ..................................................................................................... .. 169 ..., 



10.1. Overview 

10.2. Background 

10 
The VMS Extensions 

This chapter provides the following infonnation about the VMS extensions: 

o A summary of the VMS extensions recognized by f 7 7 

o A complete description of the VMS source code converter f 7 7 cvt and the 
conversions it makes 

o A summary of the VMS extensions not supported by f 7 7 or f 7 7 c vt. 

o A table of the VMS Intrinsic Functions supported by f 7 7 or f 7 7 c vt. 

Sun FORTRAN has added the VMS extensions to make it as easy as possible to 
port FORTRAN programs from VMS environments to Sun workstations. 

These extensions involve three systems: 

o The Sun FORTRAN compiler, which supports many of the VMS features, 

o The source code conversion program, which converts most of the remaining 
extensions into statements that the Sun FORTRAN compiler will accept. 

o The debugger, which supports many of the VMS features 

Used together, the compiler and converter provide almost complete compatibility 
with VMS FORTRAN. 

Sun FORTRAN includes: 

o Relics of previous DEC FORTRAN compilers or VMS-specific features that 
provide little in terms of the language, such as the TYPE and ACCEPT. 

o Features that improve readability but not capability; examples: unlabeled 
DO/END DO, DO WHILE, and end-of-line comments. 

o Significant language enhancements, such as namelist 1/0, structures, and 
unions. 

Supporting features of the first category lends itself to separate pre-processing. 
For this reason, most features in the first category are converted into standard 
FORTRAN by the source code converter. The converter prints diagnostic 
messages for those features that remain unconverted. 

The features in the second category are either implemented as compiler 
extensions or converted by the source code converter, depending on ease of 

153 Revision A of 6 May 1988 



154 Sun FORTRAN Progranuner's Guide 

10.3. The VMS Extensions 
Recognized by f 7 7 

10.4. The Source Code 
Converter 

conversion and general usefulness. 

The features in the last category are implemented as extensions to the Sun 
FORTRAN compiler. 

This is a summary of the VMS extensions are recognized by f 7 7. They are 
described elsewhere in this manual. 

o N amelist 1/0 

D Unlabeled DO ... END DO 

D Indefinite DO WHILE ... END DO 

D The BYTE data type 

o Logical operations on integers, and arithmetic operations on logicals 

o Additional field and edit descriptors for FORMAT s: 

Remaining characters ( Q) 
Carriage Control ( $ ) 
Octal (0) 
Hexadecimal (X) 
Hexadecimal (Z) 

o Default field indicators for w, d, and e field descriptors in FORMAT s 

o READ s into Hollerith edit descriptors 

o The additional option APPEND for the OPEN statement: 

[~~~~-o-P_E_N_(~··_·_'~A_c_c_E_s_s_=_'_A_P_P_E_N_D_'_,~··_·_)~~~~~~~~~~--J] 
o Long names (32 characters) and acceptance of"_" and "$" in names 

o Long (132-character) source lines 

o Records, structures, unions, and maps 

o Getting addresses via the LOC function 

o Passing arguments via the %VAL function 

In general, the source-code conversion program accepts files that contain valid 
VMS FOR TRAN t source code and produces source files acceptable to both the 
Sun and VMS FORTRAN compilers. The converter accepts options that 
correspond to the VMS compiler options, and if it finds one it doesn't know, it 
generates a diagnostic message. 

t Designed for VMS FORTRAN, level 4.0, as documented. 

Revision A of 6 May 1988 



Usage 

Input 

Output 

Using f77cvt with £77 

Chapter 10-The VMS Extensions 155 

The syntax of the source code converter command is as follows: 

f77cvt [options] filename. [vf I for] 

For example: 

[filename. [vf I for] ... J 

[ ..... • __ d_e_m_o_%_:_£_1_1_c_vt_· _g_r_o_wt_• : _h_·. ·~· £_o_r __ £_£~t-· ·~·· v-f---'-'--------'----'----'----'-----'_;__JJ 

Each filename must have one of the forms: 

name. vf name. for 

The suffix . vf or . for can be any mixture of upper and lower case. 
Each file must contain valid VMS FOR1RAN source code. 

For each input file there is a corresponding output file, with the same filename 
but a different suffix. Each output.filename is in one of the following forms: 

name. f name .F 

The filename gets a . f or a . F suffix, depending on the - D option. (Options are 
explained in the following section.) 

Each output file is a FOR1RAN source file whose code is acceptable to both the 
Sun and VMS compilers.* 

The output has an optional detailed summary of the conversions performed, as 
well as an identification of the lines that could not be converted. The 
unconvertible are written to standard error. 

Generally, you should be able to run £77 immediately after a f77cvt run. For 
example: 

In general, with existing VMS FOR1RAN programs, first use f 7 7 cvt, then use 
£77. 

1 Except that there may be VMS FORTRAN constructs that the program can't convert, which generate a 
message on standard error. See the Section Unsupported VMS FORTRAN . 

+~.!! Revision A of 6 May 1988 



156 Sun FORTRAN Programmer's Guide 

Converter Options The converter accepts the following options: 

-b Prevents the converter from creating BLOCK DATA subprograms for initialized 
COMMON variables. 

-d Enables VMS FORTRAN debugging statements. If specified, lines with a D in 
column 1 are converted into FORTRAN statements. If this option is not used, 
these debugging statements are converted into comments. 

-D Also enables VMS FORTRAN debugging statements, but the debugging state­
ments are enclosed by a pair of preprocessor statements, as shown here: 

#ifdef DEBUG 

#endif 

The -D and -dare mutually exclusive; do not specify both. 

-e Indicates that the input file(s) contains extended source lines (up to 132 
characters). If your file contains extended lines and you omit this option, the 
source lines are truncated to 72 characters. 

-E Allows the output file(s) to contain extended source lines. If this option is not 
specified, the output lines are broken into 72-column lines. 

-i Inserts the text of the INCLUDE files into the converted program. 

-Ncx Sets x as the maximum number oflevels that control structures can be nested. 
The default is 20. 

-Ndx Sets x as the maximum number oflevels that data structures and unions can be 
nested. The default is 20. 

-Nlx Sets x as the maximum number of continuation lines per statement. (If you use 
-N 15 0, then you can have a total of 51 lines: one first line and 50 after it.) The 
default is 19, that is, one initial line and 19 continuation lines. 

-P Suppresses the generation of preprocessor line numbers for dbx and f 7 7. 

-s Produces warning messages if Sun-specific FORTRAN extensions are generated; 
examples include character/non-character equivalencing, 32-character variable 
names, IMPLICIT UNDEFINED statements, and hexadecimal constants. 

-v Enables verbose mode; that is, the converter places a FORTRAN comment before 
each converted line, describing the conversion of the source code. 

Revision A of 6 May 1988 



Conversion Description 

Embedded Comments 

Debug Statements 

VMS Tab-format 

Initializing BLOCK DATA 

Radix-50 Constants 

The IMPLICIT NONE 
Statement 

The VIRTUAL statement 

Nonstandard PARAMETER 
Statements 

Chapter 10-The VMS Extensions 157 

The major items converted are described in some detail in the following pages. 

End-of-line comments are converted into comment lines preceding the 
statement. 

Debugging lines are converted into comment lines or FORTRAN statements, 
depending on whether the-Dor -d options are set. 
(See Section 10.4, under Subsection Usage) 

Tab-format source lines are converted into standard FORTRAN source lines. 

Initialization of variables in common blocks is moved to a BLOCK DATA 
subprogram. (But see also the -b option.) 

Radix-50 constants are relics from older DEC FORTRAN compilers, 
implemented to save memory on procedure names, and so forth. These constants 
are converted to Sun bit-string constants--that is, no type is assumed. 

The VMS statement: 

[ ____ r_M_P_L_r_c_r_T __ N_o_N_E __________________________________________ J 

is converted to the equivalent: 

[ ____ r_M_P_L_r_c_r_T __ u_N_D_E_F_r_N_E_D __ <A __ -_z_) _______________________________ J 

The f77cvt program converts a VIRTUAL statement to a DIMENSION state­
ment (a synonym). 

The alternate PARAMETER statement syntax is converted to standard syntax, 
including a type declaration if necessary. For example, the following statement: 

(~----P-A_RAM ___ E_T_E_R __ F_L_A_G_l __ = __ ._T_R_u_E_. ____________________________ ____,] 

is converted to: 

[ 

LOGICAL FLAGl J 
_____ P_A_RAM ___ E_T_E_R __ (_F_L_A_G_l ____ ·_T_R_U_E_._) __________________________ __ 

Note that an ambiguous statement that could be interpreted as either a 
PARAMETER statement or an assignment statement is always taken to be the 
former. For example: 

[~----P-A_RAM ___ E_T_E_R __ s ____ ·_T_R_u_E_. __________________________________ J 

Revision A of 6 May 1988 



158 Sun FORTRAN Programmer's Guide 

Initializers in Declarations 

Non-CHARACTER Format 
Specifiers 

Omitted Actual Arguments 

Variables and Literals of Type 
REAL*l6 

Using a CHARACTER Alias for 
Non-CHARACTER Variables 

Consecutive Operators 

is interpreted as the PARAMETER statement about the variable S: 

(~~~P-A-RAM~-E-T_E_R~S~=~-·T_R_u_E~·~~~~~~~~~~~~~~~~~-J 
rather than the assignment statement about the variable PARAMETERS: 

( PARAMETERS = .TRUE. 

Initialization of variables within declaration statements is changed to the 
standard declaration statement followed by a DATA statement; for example: 

J 

(~~~c_H_A_RA~C-T_E_R~*-l_o_N_AM~-E~/-'_N_e_1_1_'_/~~~~~~~~~~~~~~-] 
is converted to: 

( 
CHARACTER*lO NAME ] 

~~~D-A_T_A~N-AM~E~/_'_N_e_l_l_'_/~~~~~~~~~~~~~~~~~----

If such initialization statements involve variables in COMMON, then they are
moved to a BLOCK DATA subprogram.

If a runtime format specifier is not of type CHARACTER, the converter creates a
CHARACTER variable and EQUIVALENCES that variable to the one specified.
The result is used for the format. The ability to equivalence the character and
non-character variables is a Sun extension to standard FORTRAN.

Whenever the converter finds an omitted argument in a subroutine call (that is,
two consecutive commas), it inserts a zero.

The converter changes variables of type REAL*16 to DOUBLE PRECISION.
Likewise, it converts literals such as 1. OQl to the 1. ODl form.

Standard FORTRAN requires the FILE= specifier for OPEN and INQUIRE to be
an expression of type CHARACTER. VMS FORTRAN, however, also accepts a
numeric variable or array element reference. If the converter finds a numeric
variable or array element, it creates a CHARACTER variable of the correct size
and EQUIVALENCES it to the one specified. The result is used as the
FILE= specifier in the new source statement.

VMS FORTRAN allows two consecutive arithmetic operators when the second
operator is a unary + or - . The converter inserts parentheses into such
expressions so as to preseive the meaning and precedence. For example:

(..____x_= A_** -B _____]

Revision A of 6 May 1988

Illegal REAL Expressions

Hex and Octal Constants

Typeless Numeric Constants

Octal Integer Constants

Chapter 10-The VMS Extensions 159

The VMS compiler would evaluate the - operator and then exponentiate. To
get the same result in Sun FORTRAN, the expression above is converted to:

When the converter finds a REAL expression where it expects an integer
expression, it inserts an explicit type conversion to INTEGER. Examples are:

0 Alternate RETURN

o Dimension declarators and array subscripts

o Substring selectors

o Computed GO TO

o Logical unit number, record number, and record length.

Hex and octal constants are converted to Sun FORTRAN syntax. These include
typeless hex, typeless octal, and integer octal constants.

Typeless numeric constants are so named because their expressions assume data
types based on how they are used. However, in Sun FORTRAN such constants
must be distinguished from character strings. Thus, in DATA statements such
constants are converted to typeless hexadecimal or octal constants; elsewhere,
they are converted to the type required by the context. For example, in the
statements:

[

~COUNT = ICOUNT + '777'0]

-~~T-E_M_P~=~-'F_F_F~9-9A~'-X~~~~~~~~~~~~~~~~~~~-
are converted to:

(JCOUNT = ICOUNT + 451
TEMP= 2.35076E-38

The context defines' 777' o as INTEGER*2 and' FFF99A' x as REAL*8.

Similarly, a VMS FORTRAN octal integer constant is converted to its decimal
fonn. For example:

]

(~~~J_c_o_u_N_T~=~_rc_o_u_N_T~-+~"-7_0_3~~~~~~~~~~~~~~~~-J
is converted to:

Revision A of 6 May 1988

160 Sun FORTRAN Programmer's Guide

Nonstandard Length Specifiers

Old TYPE and ACCEPT

Statements

Alternate Return Arguments

The ENCODE and DECODE

statements

(_____ J_c_o_u_N_T ____ r_c_o_u_N_T __ + __ s_1_1 __________________________________]

The VMS FORTRAN notation "7 0 3, signals f 7 7 cvt to convert from the
integer octal constant to its integer decimal equivalent, 451 in this case. Note
that 7 0 3 cannot be the start of a character constant, because VMS FORTRAN
character constants are delimited by apostrophes, not quotes.

The £7 7 cvt program converts to standard syntax any nonstandard length
specifiers in function declarations. For example, the VMS-specific syntax for the
FUNCTION statement is:

[type] FUNCTION name [*m] ([p [, p] ...])

where m is an unsigned, nonzero integer constant specifying the length of the
data type. The syntax in Sun FORTRAN is:

[type] [*m] FUNCTION name([p[,p] ...])

For example:

(____ r_N_T_E_G_E_R __ F_u_N_c_T_r_o_N __ F_c_N_*_2 __ <_A __ ,_B __ ,_c ___ > ______________________ J

is converted to:

[____ r_N_T_E_G_E_R_*_2 __ F_u_N_c_T_r_o_N __ F_c_N __ <_A __ ,_B __ ,_c ___ > ______________________ J

The TYPE statement is converted into a PRINT statement; likewise, ACCEPT is
converted into READ.

The nonstandard " & " syntax for alternate-return actual arguments is converted to
the standard FORTRAN"*" syntax. For example:

(CALL SUB (... , &label, ...)

is converted to:

(CALL SUB (... , *label, ...)

)

J

The ENCODE and DECODE statements are converted into standard internal READ
and WRITE statements, respectively.

These statements require a buffer of CHARACTER type. If their buffer is a
CHARACTER variable, it is used, otherwise the converter creates a CHARACTER
variable and equivalences it to the buffer. If the buffer is a dummy argument,
then it cannot be in an EQUIVALENCE statement, so the ENCODE/DECODE
statement is flagged as an untranslatable feature. ...,,,,

Revision A of 6 May 1988

Record Specifier 'N in Direct-
~ access 1/0

Old OPEN and INQUIRE

Options

The OP EN for unformatted files
Options

The DISPOSE=p in the CLOSE
Statement

Line Numbers for dbx

Special Intrinsic Functions

Chapter 10 - The VMS Extensions 161

The VMS nonstandard record specifier' N for direct-access 1/0 statements is
converted to the standard REC=N. For example:

is converted to:

(_~_R_E_AD~-(~U-N_r_T_=_K_,~R-E_c_=_N~)~L-I_s_T~~~~~~~~~~~~~--]
where the logical unit number is K and the number of the record is N.

The TYPE and NAME options for both the OPEN and INQUIRE statements are
converted into the standard STATUS and FILE options, respectively.

The RECORDS I ZE option for OPEN is changed to RECL.

In Sun FORTRAN unformatted files are opened with the logical record size in
bytes. If the VMS OPEN statement states or implies an unformatted file, then the
new OPEN statement has its logical record size multiplied by four.

If the converter cannot determine formatted/unformatted, then it issues a warning
message that the record size may need to be adjusted. This could happen if the
information is passed in variable character strings.

Warning: The record size returned by an INQUIRE statement is not adjusted
by the converter.

The VMS DISPOSE=p clause in the CLOSE statement is converted to
STATUS=p.

To make conversion debugging easier, the converter passes through line numbers
from the original VMS FORTRAN program, for dbx. For example, the converter
generates:

(it line "filename"

The compiler and debugger both print the offending line number of the . vf

source file instead of the . f or . for file into which it has been converted. That
way, you can more easily find the source of the diagnostic message in the
original VMS file. This conversion can be suppressed by using the -P converter
option.

The converter processes certain intrinsic functions:

]

Revision A of 6 May 1988

162 Sun FORTRAN Programmer's Guide

Backslash in character string

Logical filenames in the
INCLUDE statement

%VAL is converted to %VAL

% LOC is converted to LOC

%REF (expr) is converted to expr
(with a warning if expr is of type CHARACTER)

%DESCR is reported as an untranslatable feature.

A backslash in a character string is doubled on output, since Sun FORTRAN does
treat backslash as an escape character.

If the -i converter option is set, then the converter will translate VMS logical
filenames on the INCLUDE statement if it finds the environment variable
LOGICALNAMEMAPPING to define the mapping between the logical names and
the UNIX pathname.

The environment variable should be set to a string with the following syntax:

"lnamel=pathl; lname2=path2; ... "

where each lname is a logical name and each path is the pathname of a UNIX
directory (without a trailing '/'). All blanks are ignored when parsing this string.

Logical names in a file name are delimited by the first":" in the VMS filename.
The converter will convert filenames of the form:

lnarnel:file to pathl/file

For logical names, upper/lower case is significant. If a logical name is
encountered on the INCLUDE statement which is not specified in the
LOGICALNAMEMAPPING, the filename is used unchanged.

Revision A of 6 May 1988

Conversion Samples

Chapter 10-The VMS Extensions 163

This section lists samples of each kind of conversion made by f 7 7 cvt. Some
of the examples include a line just above the coding that shows column numbers;
such a line is not part of the coding, but is there only as a guide.

VMS FORTRAN

Embedded comment

DO 10 I = 1, 80 Find EoL

Debug statement
1
D PRINT * I '

Debug statement
1
D PRINT * I '

Debug statement
1

D PRINT * I '

Tab-format line
1 3
9 {tab} X = 0. 0

continuation line
1 3
{ tab } if (i . GT . 0)
{tab} 1 x = 0. 0

Initialize in declaration
CHARACTER*lO NAME /'Nell'/

Conversion by £77 cvt

Preceding comment line
1 7

c Find EoL
do 10 i 1, 80

If neither -d nor-Dis set:
1 7

c write(unit=*, fmt=*) i

If-dis set:
1 7

write(unit=*, fmt=*) i

If-Dis set:
1 7

Hf def DEBUG
write(unit=*, fmt=*) i

#-endif

Standard FORTRAN line
1 7

9 x = 0.0

Standard FORTRAN line
1 7

if (i .gt. 0) x - 0.0

Initialize in DAT A statement
character*lO name
data name /'Nell'/

Revision A of 6 May 1988

164 Sun FORTRAN Programmer's Guide

VMS FORTRAN

Initialize in common block
COMMON / ID / NAME, ADDR
CHARACTER*lO NAME /'Nell'/

Radix-50 constants
DATA IOTA / 7RA SKOSH /

IMPLICIT NONE

VIRTUAL A(4,6)

PARAMETER FLAGl

Non-character format
INTEGER X

.TRUE.

WRITE(6, X) list

Omitted actual argument
CALL SUBX (A,,Z)

Type REAL* 16
REAL*16 X
1.0Ql

File specifier,
non-character

INTEGER X
OPEN(8, FILE=X

Consecutive operators
X = A ** -B

Conversion by f77cvt

Move to BLOCK DATA subprogram
common I id I name, addr
character name*lO

block data v00000 ... 00000001
common I id I name, addr
character *10 name
real addr
data name /'Nell' I
end

Sun bit-string
data iota I x'472b0653'/

implicit undefined (a-z)

dimension a(4,6)

logical f lagl
parameter (flagl = .true.)

Equivalenced character format
character a
integer x
equivalence
write (6, a)

Insert zero

x, a)
list

call subx (a, 0, z)

double precision x
1.0dl

Equivalenced file specifier

character a
integer x
equivalence (x, a)
open (8, file=a

Insert parentheses
x = a ** (-b)

Revision A of 6 May 1988

VMS FORTRAN

Illegal REAL expression

REAL R

RETURN R
DIMENSION A (R)
STRZ (1 :R)
GO TO (3 0 , 5 0 , 9 0) , R
READ(UNIT=R, ...)
READ (. . . REC=R, . . .)
OPEN(... , RECL=R,

Typeless numerics in DAT A
DATA Nl I '777'0 I
DATA N2 I 'lF'X I

Typeless numerics not in DATA

JCOUNT = ICOUNT + '777'0
TEMP = 'FFF99A'X

Octal integer constants
JCOUNT = ICOUNT + 11 703

Nonstandard function length
INTEGER FUNCTION FCN*2 (A,B)

Old TYPE/ ACCEPT statements
TYPE *, LIST
ACCEPT *, LIST

Alternate-return " & "

CALL SUB(A, &90)

ENCODE/DECODE char buffer
CHARACTER A*32
ENCODE (32, A, 1
DECODE (32, A, 1

LIST
LIST

ENCODE/DECODE non char buffer
INTEGER I*4

ENCODE
DECODE

16, 1, I
16, 1, I

K' N (direct access read):
READ (K ' N) LIST

sun
microsystems

LIST
LIST

Chapter 10 - The VMS Extensions 165

Conversion by f77cvt

Explicit type conversion

real r

return int(r)
dimension a(int(r))
strz(l:int(r))
go to (30, 50, 90) , int (r)
read(unit=int(r), ...)
read (... , rec=int (r), ...)
open(... , recl=int(r), ...)

Sun syntax
data
data

nl I o'777' I
n2 I x'lf' I

To a type, depending on context

jcount = icount + 451
temp 2.35076e-38

Decimal
jcount = icount + 511

Standard function length
integer*2 function fen (a,b)

Print/Read
PRINT *, LIST
READ *, LIST

Alternate-return "*"

call sub (a, *90)

character
read (a,
write(a,

integer
character

a*32
1 list
1) list

i*4
z*16

equivalence (i, z
read (z, 1) list
write (z, 1) list

)

read (unit=k, rec=n) list

Revision A of 6 May 1988

166 Sun FORTRAN Programmer's Guide

VMS FORTRAN

OPEN options
TYPE=' OLD'
NAME='FFT.DATA'
RECORDSIZE=lO

OPEN unformatted files
OPEN(1, ACCESS='DIRECT',

& RECL=20)

INQUIRE options
TYPE=ANSWER
NAME= ANSWER
RECORDSIZE=NCPR

CLOSE option
DISPOSE=' KEEP'

%VAL:
CALL SUBX (%VAL(A), B)

%LOC:
I = %LOC(X)

%REF:
CALL SUBX (%REF (expr))

%DESCR:
CALL SUBX (%DESCR(A))

Backslash in string
STRZ = 'ABCD\abcd' . . * Logical filename m INCLUDE statement
INCLUDE 'vers4:common.h'

Conversion by f 7 7 cvt

status=' OLD'
file='FFT.DATA'
recl=lO

New RECL (--- old RECL * 4
OPEN(1, ACCESS='DIRECT',

& RECL=80)

status=answer
f ile=answer
recl=ncpr

status=' KEEP'

call subx (%val(a), b)

i loc (x)

call subx (expr),,
{warns if expr is character}

Reported as untranslatable

strz = 'ABCD\\abcd'

INCLUDE projA/version/4/common.h

1 This conversion is done if f 7 7 c vt is run with the - i option, and if the environment variable
LOGICALNAMEMAPPING is set to "vers4=progA/version/4f' .

~\sun ~ microsystems
Revision A of 6 May 1988

Unsupported VMS FORTRAN

Chapter 10-The VMS Extensions 167

Most VMS FORTRAN extensions are either incorporated into the Sun FORTRAN
compiler or converted to equivalent Sun FORTRAN statements by the source
code converter. This section lists the few VMS statements that remain. The
converter writes diagnostic messages to standard error for any unconverted
statements in the . v f source file and does not pass the statements on to either
the . f or . F file.

The following VMS FORTRAN features are not supported in Sun FORTRAN:

0 DEFINE FILE statement

0 DELETE statement

o UNLOCK statement

o FIND statement

0 RE WR I TE statement

o Variable FORMAT expressions

o A first character option of+, 0, or 1 with the $ edit descriptor (supports only
the space option)

o KEY ID and key specifiers in READ statements

o Nonstandard INQUIRE specifiers:

CARRIAGECONTROL
DEFAULTFILE
KEYED
ORGANIZATION
RECORD TYPE

o Nonstandard OPEN specifiers:

ASSOCIATEVARIABLE
BLOCKSIZE
BUFFERCOUNT
CARRIAGECONTROL
DEFAULTFILE
DISP[OSE]
EXTENDSIZE
INITIALSIZE
KEY
MAXREC
NOSPANBLOCKS
ORGANIZATION
READONLY
RECORD TYPE
SHARED
USEROPEN

o Quadruple-precision REAL

o The intrinsic function %DESCR.

Revision A of 6 May 1988

168 Sun FORTRAN Programmer's Guide

D The INCLUDE statement

Some aspects of the INCLUDE statement are converted: see "Logical
filenames in the INCLUDE statement," above. The INCLUDE

statement is operating system-dependent, so it cannot be completely
converted automatically. The VMS version allows a module-name
and a LIST control directive that are indistinguishable from a
continuation of a UNIX filename. Also, VMS ignores alphabetic case,
so if the programmer was inconsistent about capitalization,
distinctions would be made where none were intended.

o Getting a long integer - expecting a short

In VMS FORTRAN you can pass a long integer argument to a
subroutine that expects a short integer. This will work if the long
integer fits in 16 bits, because the VAX addresses an integer by its
low-order byte. This does not work on Sun-2, Sun-3 or Sun-4
systems.

o An ENCODE/DECODE buffer that is a dummy argument

These statements require a buffer of CHARACTER type. If their
buffer is a CHARACTER variable, it is used, otherwise the converter
creates a CHARACTER variable and equivalences it to the buffer. If
the buffer is a dummy argument, then it cannot be in an
EQUIVALENCE statement, so the ENCODE/DECODE statement is
flagged as an error.

o The VMS system calls

Revision A of 6 May 1988

Chapter 10 - The VMS Extensions 169

10.5. The VMS Intrinsics

This section lists the VMS FORTRAN intrinsic functions recognized by £77 or converted by f77cvt, and the one
function not covered by either. There are roughly 150 intrinsic functions beyond those mandated by the ANSI
standard. Some functions are in more than one category. All functions take one argument, unless otherwise
indicated.

Table 10-1 Double-Precision Complex Functions Recognized by Sun FORTRAN

Name Gen/Spec Function Arg Type Result Type

COABS specific absolute value COMPLEX*16 REAL*8
CO EXP specific exponential, e a COMPLEX*16 COMPLEX*16
CO LOG specific natural log COMPLEX*16 COMPLEX*16
CO SQRT specific square root COMPLEX*16 COMPLEX*16

COS IN specific sine COMPLEX*16 COMPLEX*16
cocos specific cosine COMPLEX*16 COMPLEX*16

OCMPLX specific convert to Dcomplex any numeric COMPLEX*16
OCON JG specific complex conjugate COMPLEX*l6 COMPLEX*16
OIMAG specific imaginary part of complex COMPLEX*16 REAL*8
OREAL specific real part of complex COMPLEX*16 REAL*8

Table 10-2 Degree-Based Trigonometric Functions Recognized by Sun FORTRAN

Name Gen/Spec Function Arg Type Result Type

SINO generic sine - -
SINO specific sine REAL*4 REAL*4
OS IND specific sine REAL*8 REAL*8

COSO generic cosine - -
COSO specific cosine REAL*4 REAL*4
OCOSO specific cosine REAL*8 REAL*8

TAND generic tangent - -
TAND specific tangent REAL*4 REAL*4
OTANO specific tangent REAL*8 REAL*8

AS IND generic arc sine - -
AS IND specific arc sine REAL*4 REAL*4
OASINO specific arc sine REAL*8 REAL*8

ACOSO generic arc cosine - -
ACOSO specific arc cosine REAL*4 REAL*4
OACOSO specific arc cosine REAL*8 REAL*8

Revision A of 6 May 1988

170 Sun FORTRAN Programmer's Guide

Table 10-2 Degree-Based Trigonometric Functions Recognized by Sun FORTRAN- Continued ...,,,,,
Name Gen/Spec Function ArgType Result Type

ATAND generic arc tangent - -

ATAND specific arc tangent REAL*4 REAL*4

DAT AND specific arc tangent REAL*8 REAL*8

ATAN2D generic arc tangent of a 1 I a 2 - -

ATAN2D specific arc tangent of a 1Ia2 REAL*4 REAL*4

DATAN2D specific arc tangent of al I a2 REAL*8 REAL*8

Table 10-3 Bit-Manipulation Functions Recognized by Sun FORTRAN

Name Gen/Spec Function Arg Type Result Type

IBITS generic from al, initial bit a2, extract a3 bits - -
IIBITS specific from al, initial bit a2, extract a3 bits INTEGER*2 INTEGER*2

JIB ITS specific from al, initial bit a2, extract a3 bits INTEGER*4 INTEGER*4

generic shift al logically by a2 bits * ISHFT - -

ISHFTC generic in al, circular shift by a2 places, of right a3 bits - -

IISHFTC specific in a 1, circular shift by a 2 places, of right a 3 bits INTEGER*2 INTEGER*2

JISHFTC specific in al, circular shift by a2 places, of right a3 bits INTEGER*4 INTEGER*4

The following are translated by £77 cvt. See comments about multiple integer sizes for Table 7.

Table 10-4 Bit-Manipulation Functions Converted by f 7 7 cvt

Name Gen/Spec Function Arg Type Result Type Translation

IAND generic bitwise AND of al, a2 - - AND
IIAND specific bitwise AND of al, a2 INTEGER*2 INTEGER*2 AND
JI AND specific bitwise AND of al, a2 INTEGER*4 INTEGER*4 AND

IOR generic bitwise OR of al, a2 - - OR
IIOR specific bitwise OR of a 1, a2 INTEGER*2 INTEGER*2 OR
JIOR specific bitwise OR of al, a2 INTEGER*4 INTEGER*4 OR

IEOR generic bitwise exclusive OR of al, a2 - - XOR
IIEOR specific bitwise exclusive OR of a 1, a2 INTEGER*2 INTEGER*2 XOR

JIEOR specific bitwise exclusive OR of al, a2 INTEGER*4 INTEGER*4 XOR

• ISHFT - If a2 is positive, then logical shift left, is negative, then logical shift righL

Revision A of 6 May 1988

Chapter 10 - The VMS Extensions 171

Table 10-4 Bit-Manipulation Functions Converted by f 7 7 cvt- Continued

Name Gen/Spec Function Arg Type Result Type Translation

NOT generic bitwise complement - - NOT
INOT specific bitwise complement INTEGER*2 INTEGER*2 NOT
JNOT specific bitwise complement INTEGER*4 INTEGER*4 NOT

IISHFT specific shift al logically left by a2 bits INTEGER*2 INTEGER*2 I SHIFT
JISHFT specific shift al logically left by a2 bits INTEGER*4 INTEGER*4 I SHIFT

IBSET generic in al, set bit a2 to 1 - - BIS
IIBSET specific in al, set bit a2 to 1; return new al INTEGER*2 INTEGER*2 BIS
JIB SET specific in al, set bit a2 to 1; return new al INTEGER*4 INTEGER*4 BIS

BTEST generic if bit a2 of al is 1, return . TRUE. - - BIT
BITE ST specific if bit a2 of al is 1, return .TRUE. INTEGER*2 LOGICAL*2 BIT
BJTEST specific if bit a2 of al is 1, return . TRUE. INTEGER*4 LOGICAL*4 BIT

IBCLR generic in al, set bit a2 to O; return new al - - BIC
IIBCLR specific in al, set bit a2 to O; return new al INTEGER*2 INTEGER*2 BIC
JIBCLR specific in al, set bit a2 to O; return new al INTEGER*4 INTEGER*4 BIC

Table 10-5 Quad-Precision Real Functions Converted by f7 7 cvt

Name Gen/Spec Function Arg Type Result Type Translation

QSQRT specific square root REAL*l6 REAL*l6 DSQRT
QLOG specific natural log REAL*l6 REAL*l6 DLOG
QLOGlO specific common log REAL*l6 REAL*l6 DLOGlO
QEXP specific exponential, e a REAL*16 REAL*16 DEXP

QSIN specific sine REAL*16 REAL*l6 DSIN
QSIND specific sine (degrees) REAL*16 REAL*16 DSIND
QCOS specific cosine REAL*16 REAL*l6 DCOS
QCOSD specific cosine (degrees) REAL*16 REAL*l6 DCOSD
QTAN specific tangent REAL*16 REAL*l6 DTAN
QTAND specific tangent (degrees) REAL*l6 REAL*l6 DTAND

QASIN specific arc sine REAL*l6 REAL*l6 DAS IN
QASIND specific arc sine REAL*l6 REAL*16 DAS IND
QACOS specific arc cosine REAL*16 REAL*l6 DACOS
QACOSD specific arc cosine REAL*l6 REAL*16 DACOSD

Revision A of 6 May 1988

172 Sun FORTRAN Programmer's Guide

Table 10-5 Quad-Precision Real Functions Converted by £7 7cvt-Continued

Name Gen/Spec Function

QATAN specific arc tangent
QATAND specific arc tangent

QATAN2 specific arc tangent of a 1Ia2
QATAN2D specific arc tangent of a 1Ia2

QSINH specific hyperbolic sine
QCOSH specific hyperbolic cosine
QTANH specific hyperbolic tangent

QABS specific absolute value
QINT specific truncation toward zero
QNINT specific nearest integer, INT (a+. S*sign (a))

SNGLQ specific convert to REAL*4
DBLEQ specific convert to REAL *8
QEXT generic convert to REAL* 16
QEXT specific convert to REAL*16
QEXTD specific convert to REAL*16
QFLOAT specific convert to REAL*16

QMAXl specific maximum *

QMINl specific minimum *

QDIM specific positive difference t
QMOD specific remainder of a 1 I a2
QSIGN specific transfer sign, I a 11 *sign (a2)

* QMAXl, QMINl: at least two arguments.

t positive difference: al-min (al, a2))

Arg Type Result Type Translation

REAL*16 REAL*l6 DATAN
REAL*16 REAL*16 DATAND

REAL*16 REAL*16 DATAN2
REAL*16 REAL*l6 DATAN2D

REAL*16 REAL*l6 DSINH
REAL*16 REAL*l6 DCOSH
REAL*16 REAL*16 DTANH

REAL*16 REAL*16 DABS
REAL*16 REAL*16 DINT
REAL*16 REAL*16 DNINT

REAL*16 REAL*4 SNGL
REAL*16 REAL*8 DBLE
any numeric REAL*16 DBLE
REAL*4 REAL*16 DBLE
REAL*8 REAL*16 DBLE
any integer REAL*l6 DBLE

REAL*16 REAL*16 DMAXl
REAL*16 REAL*16 DMINl
REAL*16 REAL*16 DDIM
REAL*16 REAL*16 DMOD
REAL*16 REAL*16 DSIGN

Revision A of 6 May 1988

Chapter 10 - The VMS Extensions 173

The possibility of multiple integer types is not addressed by the standard. Sun FORTRAN copes with their existence
by treating a specific INTEGER~ INTEGER function name (IABS, etc.) as a special sort of generic: the argument
type is used to select the appropriate runtime routine name, which is not accessible to the programmer. VMS

FORTRAN takes a similar approach but makes the specific names available. The £7 7 cvt program converts the VMS

specific name back into the corresponding pseudo-generic name.

Table 10-6 Integer Functions Converted by f 7 7 cvt

Name Gen/Spec Function Arg Type Result Type Translation

IIABS specific absolute value INTEGER*2 INTEGER*2 IABS
JIABS specific absolute value INTEGER*4 INTEGER*4 IABS

IMAXO specific maximum * INTEGER*2 INTEGER*2 MAXO
* JMAXO specific maximum INTEGER*4 INTEGER*4 MAXO

IMINO specific minimum * INTEGER*2 INTEGER*2 MINO
* JMINO specific minimum INTEGER*4 INTEGER*4 MINO

II DIM specific positive difference t INTEGER*2 INTEGER*2 IDIM
JI DIM specific positive difference t INTEGER*4 INTEGER*4 IDIM

IMOD specific remainder of a 1 I a2 INTEGER*2 INTEGER*2 MOD
JMOD specific remainder of a 1 I a 2 INTEGER*4 INTEGER*4 MOD
II SIGN specific transfer sign, I al I* sign (a2} INTEGER*2 INTEGER*2 I SIGN
JI SIGN specific transfer sign, I a 1 I *sign (a2} INTEGER*4 INTEGER*4 I SIGN

Some VMS FORTRAN functions coerce to a particular INTEGER type. Sun FORTRAN always coerces to the
prevailing INTEGER type. The converter recognizes such functions, converts each to its generic name,
and issues a warning.

Table 10-7 Converted Functions that VMS Coerces to a Particular Type

Name Gen/Spec Function Arg Type Result Type Translation

IINT specific truncation toward zero REAL*4 INTEGER*2 INT
JINT specific truncation toward zero REAL*4 INTEGER*4 INT

I ID INT specific truncation toward zero REAL*8 INTEGER*2 ID INT
JIDINT specific truncation toward zero REAL*8 INTEGER*4 ID INT

IQ INT generic truncation toward zero REAL*16 INTEGER IDINT
IIQINT specific truncation toward zero REAL*16 INTEGER*2 IDINT
JIQINT specific truncation toward zero REAL*16 INTEGER*4 IDINT

* At least two arguments

t positive difference: al-min (al, a2))

~~sun 9 microsystems
Revision A of 6 May 1988

174 Sun FORTRAN Programmer's Guide

Table 10-7 Converted Functions that VMS Coerces to a Particular Type- Continued

Name Gen/Spec Function Arg Type Result Type Translation

IN INT specific nearest integer, INT (a+. S*sign (a)) REAL*4 INTEGER*2 NINT
JN INT specific nearest integer, INT (a+ . 5 *sign (a)) REAL*4 INTEGER*4 NINT

IIDNNT specific nearest integer, INT (a+. S*sign (a)) REAL*8 INTEGER*2 IDNINT
JIDNNT specific nearest integer, INT (a+. 5*sign (a)) REAL*8 INTEGER*4 IDNINT

IQNINT generic nearest integer, INT (a+ . 5 *sign (a)) REAL*16 INTEGER IDNINT
IIQNNT specific nearest integer, INT (a+. 5*s ign (a)) REAL*16 INTEGER*2 IDNINT
JIQNNT specific nearest integer, INT (a+. 5*sign (a)) REAL*16 INTEGER*4 IDNINT

I IF IX specific fix REAL*4 INTEGER*2 IFIX
JI FIX specific fix REAL*4 INTEGER*4 IFIX

IMAXl specific maximum REAL*4 INTEGER*2 MAXl
JMAXl specific maximum REAL*4 INTEGER*4 MAXl

IMINl specific minimum READ*4 INTEGER*2 MINl
JMINl specific minimum READ*4 INTEGER*4 MINl

In other cases, each VMS specific name is converted into a Sun generic name.

Table 10-8 Other Conversions by f77cvt

Name Gen/Spec Function Arg Type Result Type Translation

FLOAT I specific convert to REAL* 4 INTEGER*2 REAL*4 REAL
FLOATJ specific convert to REAL* 4 INTEGER*4 REAL*4 REAL
DFLOAT generic convert to REAL* 8 INTEGER REAL*8 DBLE
DFLOTI specific convert to REAL* 8 INTEGER*2 REAL*8 DBLE
DFLOTJ specific convert to REAL* 8 INTEGER*4 REAL*8 DBLE

AIMAXO specific maximum INTEGER*2 REAL*4 AMAXO
AJMAXO specific maximum INTEGER*4 REAL*4 AMAXO

AIMINO specific minimum INTEGER*2 REAL*4 AMINO
AJMINO specific minimum INTEGER*4 REAL*4 AMINO

Revision A of 6 May 1988

Chapter 10 - The VMS Extensions 17 5

The zero-extend functions are not recognized by Sun FORTRAN and are not converted by f 7 7 cvt.

Table 10-9 Zero-Extend Functions

Name Gen/Spec Function Arg Type Action

ZEXT generic zero-extend - error message
IZEXT specific zero-extend short log or int error message
JZEXT specific zero-extend log or int error message

Revision A of 6 May 1988

11
The C-FORTRAN Interface

The C-FORTRAN Interface ... 179

11.1. Command Line Arguments ... 179

11.2. Exiting witl1 status .. 180

11.3. Interproccdure Interface .. 180

Procedure Names .. 180

Data Representations .. 181

Return Values .. 181

Functions.. 181

Subroutines ... 182

Argument Lists ... 182

Arrays .. 183

Calling C from FOR1RAN ... 183

Repeat a character ... 183

Return a float ... 184

Calling FOR1RAN from C ... 185

Sharing Input/Output Streams ... 186

File Descriptors and stdio ... 186

File permissions ... 187

11.1. Command Line
Arguments

11
The C-FORTRAN Interface

This chapter describes conventions for interfacing C and FORTRAN. It is
intended as a guide to programmers who want to use FORTRAN with modules
written in C. It assumes more sophisticated knowledge of FORTRAN and C than
do most of the other parts of this manual. The Pascal-FOR TRAN interface is
covered in comparable chapters of the Pascal Programmer's Guide. The
Modula-2-FORTRAN interface is similar to the Pascal-FORTRAN interface.

The function IARGC (3F) returns the number of command-line arguments, and
GETARG (3F) copies an argument into a variable in the program. For example:
r

CHARACTER ARG*70
c How many command-line arguments ?

NARGS = IARGC ()
c Get an argument and write it out.

DO 10 I = 1, NARGS
CALL GETARG(I, ARG
PRINT ' (A) ' ' ARG

10 CONTINUE
END

This loops through the parameter list copying a parameter into ARG and then
writing it to standard output. Since ARG is only 70 characters long, any longer
parameter is truncated. If the above program is compiled as myecho, you can
test it as follows:

demo% myecho this· is a sample
this
is
a
sample
demo% myecho *
calc.f
mycat.f
myecho
myecho.f
demo% I

179 Revision A of 6 May 1988

180 Sun FORTRAN Programmer's Guide

11.2. Exiting with status

11.3. lnterprocedure
Interface

Procedure Na mes

The subroutine EXIT () can set the shell status variable to indicate whether

the program was successful or not. The default is that stat us is set to zero.

The following statement:

sets status to 8, then terminates execution of the program. The current value

of status can be displayed as follows:

[. ~emo% echo $status l
_demo% I _

The echo command sets status back to zero after showing its value. The

value of status can be tested in shell scripts.

The ABORT routine can terminate a program, set status to 138 to dump

memory to the file core, and print a message on standard error:

CALL ABORT(" sample error message")

and causes a program to terminate after writing out:

abort: sample error message
bus error (core dumped)

To write C procedures that call or are called by FOR1RAN procedures, you must

know the conventions for procedure names, data representation, return values,

and argument lists that both languages use.

The FOR1RAN compiler appends an underscore to the name of a common block

or procedure to distinguish it from C procedures or external variables with the

same user-assigned name. If the name has exactly 32 characters, the underscore

is not appended. All FOR1RAN library procedure names have embedded

underscores to reduce clashes with user-assigned subroutine names.

Revision A of 6 May 1988

Data Representations

Table 11-1

In standard FORTRAN, variables of
type I NT EGER, LOG I CAL, and
REAL occupy the same amount of
memory. Since LOGICAL* 1 or
BYTE violate such rules, they are
not standard FORTRAN and can
result in nonportable programs.

Return Values

Functions

A COMPLEX or DOUBLE COMPLEX
function is equivalent to a C routine
having an additional initial argument
that points to the return value
storage location.

A character-valued FORTRAN
function is equivalent to a C
function with two extra initial
arguments: data address and
length.

Chapter 11 - The C-FOR1RAN Interface 181

This table summarizes corresponding FORTRAN and C declarations:

FORTRAN and C Declarations

FORTRAN c

INTEGER*2 x short int x;
INTEGER X long int x;
LOGICAL X long int x;
BYTE X or LOGICAL*l x char x;
REAL X float x;
DOUBLE PRECISION x double x;
COMPLEX X struct { float r, i; } x;
DOUBLE COMPLEX x struct { double dr, di; }

CHARACTER*6 X char x[6];

A FORTRAN function of type INTEGER, LOGICAL, REAL, or DOUBLE
PRECISION is equivalent to (as far as returning values is concerned) a C
function that returns the corresponding type.

The FORTRAN function:

x;

[_~_c_o_M_P_L_E_X~F_u_N_c_T_r_o_N~F~(~·-·-·~)~~~~~~~~~~~~~~~-J
is equivalent to the C function:

f _ (temp, . . .)
struct { float r, i; } *temp;

And FORTRAN:

[_~_c_H_A_RA~C-T_E_R_*_l_S~F-U_N_c_T_r_o_N~G~(~·-·_·_)~~~~~~~~~~~~~-"J
is equivalent to C:

r

g_(result, length, ...)
char result [] ;
long int length;

and could be invoked in C with:

Revision A of 6 May 1988

184 Sun FORTRAN Programmer's Guide

Return a float

Since every character argument in the list is associated with an additional
argument giving the string's length, such FORTRAN strings need not terminate
with a null character, as required by C.

If MAIN declares REPEAT as an INTEGER, LOGICAL, REAL, or DOUBLE

PRECISION function, then the two initial arguments would not be present, so
the return value could be passed back to the FORTRAN program with a return
statement. In the current implementation of the C compiler it is impossible to
return afloat, since the language requires it be promoted to a double
whenever it is used in an expression and the value in a return statement is an
expression. To construct a C function that returns a FORTRAN REAL it is
necessary to use a trick as is illustrated below. The function incr _is
FORTRAN callable and returns a REAL value one greater than its REAL

argument.

incr.c:

int
/* returns a single-precision floating-point value */
incr_(float_ptr)
float *float_ptr;
{

float f;

f = *float_ptr;
f ++;
return *((int*)&f);

Thus, the FORTRAN program below:

testincr. f:

[REAL INCR
PRINT *, INCR(1.)
END

prints 2 . O O O O O O on standard output:

demo% f77 testincr.f incr.c
testincr.f:
testincr.f:

MAIN:
incr.c:
Linking:
demo% a.out

2.000000
demo% I

l

Revision A of 6 May 1988

Calling FORTRAN from C

Chapter 11 - The C-FOR1RAN Interface 185

The following example illustrates a C program that calls a FOR1RAN function.

main.c:

#include <stdio.h>

main()
{

char string[lOOJ, repeat_val[SO];
int repeat_(), repeat_len, i, count;

repeat_len = sizeof (repeat_val);
count = 10;
repeat_(repeat_val, repeat_len,

&count, sizeof ("*") -1);
"*" ,

strncpy(string,repeat_val,repeat_len);
for(i=repeat_len;i<lOO;i++) {

repeat_val[i] = ' ';

printf ("%s\n", repeat_val) ;

repeat.£:

FUNCTION REPEAT(C, N)
CHARACTER REPEAT*(*), C*(*)
IF (N.GT. LEN(REPEAT)) THEN

WRITE(0, '(A)') 'Repeat count is too large'
N = LEN(REPEAT)

ENDIF
REPEAT = ''
DO 10 I = 1, N

10 REPEAT(I:I) = C(l:l)
RETURN
END

This program can be compiled with the cc command as indicated:

demo% cc main.c repeat.£ -1F77 -1I77 ..;1U77 -le -lm

The observations made above now apply in reverse. The caller must set up more
actual arguments than are apparent as formal parameters to the FOR1RAN
function. Arguments that are not lengths of character strings must be passed by
address. The two statements following the call to repeat are equivalent to the
work done by the character assignment statement in repeat. f.

Note that the FOR1RAN function attempts to reference the stderr stream
(unit 0). Before a FOR1RAN program starts, the FORTRAN 1/0 library is
initialized to connect units 0, 5, and 6 to stderr, st din, and stdout,

Revision A of 6 May 1988

186 Sun FORTRAN Programmer's Guide

Sharing Input/Output
Streams

File Descriptors and stdio

respectively. In this example, the initialization does not occur since execution
begins with the C main. Thus output is written to a file named fort. 0 instead
of to the stderr stream.

The C program should initialize 1/0 by inserting the following line at the start of
the program:

(call f _init ()

This establishes the preconnection of units 0, 5, and 6. At the end of the
program, you can insert:

although it may not be strictly necessary.

]

With a C main program, some of the routines in the FORTRAN library may not
work correctly. In particular, the signal() routine, the getarg() rroutine, and
the iargc() function.

A C function called from a FORTRAN program must take the FORTRAN I/0
environment into consideration to perform 1/0 on open file descriptors. The
FORTRAN 1/0 library is implemented largely on top of the C standard 1/0
library. Every open unit in a FORTRAN program has an associated standard 1/0
file structure. For the st din, stdout, and stderr streams, the file structure
need not be explicitly referenced, so it is easy to share these streams between a
FORTRAN program and a C function (as illustrated in the first example).

It is more difficult to share a stream that a FORTRAN program explicitly opens,
since there is no way to obtain and pass the file structure. One possible solution
that allows shared writing is to call FLUSH (3F) to empty the stream associated
with a unit, and then to call GETFD (3F) to obtain the UNIX file descriptor
associated with that unit number. This file descriptor can then be passed to the C
function, which can use it as an argument to writ e(2) calls.

In almost every discussion of input and output in FORTRAN programs, I/0
channels are in terms of FORTRAN unit numbers. The I/0 system does not
actually deal with these units, but with SunOS file descriptors.* The FORTRAN
runtime system always translates from one to the other, so most FORTRAN
programs don't have to know about file descriptors.

In addition to FORTRAN units and SunOS file descriptors, many C programs use
a set of subroutines called standard II 0 (or stdio). Many of the functions of
the FORTRAN 1/0 system are implemented using standard 1/0, which in tum is
implemented using the SunOS 1/0 system calls. Some of the characteristics of
these systems are listed in Table 11-2 .

1 The information in this section is of interest mostly to users writing C routines that interface to FORTRAN
programs. More about this is covered in Chapter 11, The C-FORTRAN Interface.

Revision A of 6 May 1988

Table 11-2

File permissions

Chapter 11-The C-FOR1RAN Interface 187

Characteristics of Three 110 Systems

FORTRAN Standard 1/0 File SunOS File

Units Pointers Descriptors

Files Open opened for reading opened for reading; or opened for reading;

and writing opened for writing; or or opened for writ-

opened for both; or ing; or opened for

opened for appending both
see OPEN(3S)

Attributes formatted or unfor- always unformatted, always unformatted

matted but can be read or
written with format-
interpreting routines

Access direct or sequential direct access if the direct access if the

physical file represen- physical file

talion is direct access, representation is

but can always be read direct access, but

sequentially can always be read
sequentially

Structure record character stream character stream

Form arbitrary, nonnega- pointers to structures integers from 0-63

live integers in the user's address
space

In C, programmers traditionally open input files for reading and output files for

writing. Sometimes files are opened for both operations since SunOS lets you

open files with reading and/or writing permissions assigned to the owner or

others. In FOR1RAN it's not possible for the system to foresee what use you will

make of the file since there's no parameter to the OPEN statement that gives that

information. Thus, FORTRAN always attempts to OPEN a file with the maximum

permissions possible: first for both reading and writing, then for each separately.

This occurs transparently and should only be of concern if you try to perform a

READ, WRITE, or ENDFILE that you don't have permission for. Magnetic tape

operations are an exception to this general freedom, since you could have write

permission on a file while not having a write ring on the tape.

Revision A of 6 May 1988

12
Ratfor - A FORTRAN Preprocessor

Ratfor - A FORTRAN Preprocessor ... 191

12.1. Overview.. 191

12.2. Introduction .. 192

Using the rat for translator .. 193

Using the f 7 7 compiler .. 193

12.3. Language Description .. 193

Design.. 193

Statement grouping .. 194

The else clause ... 195

Nested if 's .. 196

Ambiguity in if-else ... 197

The switch statement... 198

The do statement .. 198

Using break and next .. 199

The w hi 1 e statement .. 200

The f 0 r statement ... 202

The repeat-until statement... 203

More on break and next ... 204

The return statement ... 204

Cosmetics .. 205

Free-form Input .. 205

Translation services 206

The define statement... 206

The include statement ... 207

Pitfalls, Botches, Blemishes and other Failings .. 208

12.4. Implementation .. 208

12.5. Experience .. 210

Good Things .. 210

Bad Things.. 211

12.6. Conclusions .. 212

12.1. Overview

12
Ratfor - A FOR TRAN Preprocessor

Since Ratfor was designed, the new FORTRAN 77 language has appeared.
FORTRAN 77 provides some of the control structures that were the major reasons
for Ratfor's existence and so Ratfor might not be as appropriate in the Sun
system (which supports FORTRAN 77) but is still useful for porting programs
written in it to Sun workstations.

FORTRAN has the advantages of universality and relative efficiency. The Ratfor
language attempts to conceal the main deficiencies of FORTRAN 66 while
retaining its desirable qualities by providing decent control flow statements.
Ratfor features include:

statement grouping
using { and } in the style of C

decision making
via if-else and switch statements

looping constructs
using while, for, do, and repeat-until statements

controlled exits from loops
using break and next statements

free-form input
multiple statements per line and automatic continuation

unobtrusive comments
signaled by a # sign anywhere on the line

translation
of>,>=, etc., into .GT., .GE., etc.

return (expression)
statement for functions

symbolic parameters
via the define statement

source file inclusion
via the include statement

191 Revision A of 6 May 1988

192 Sun FORTRAN Programmer's Guide

12.2. Introduction

Ratfor is implemented as a preprocessor that translates this language into
FORTRAN 66.

Once the control flow and cosmetic deficiencies of FORTRAN are hidden, the
resulting language is remarkably pleasant to use. Ratfor programs are markedly
easier to read, write, debug, maintain, and modify than their FORTRAN 66
equivalents.

You can easily write Ratfor programs that are portable to other environments.
Ratfor itself is written in this way, making it portable; versions of Ratfor are now
available on at least two dozen different types of computers at over 500
locations.

This chapter discusses design criteria for a FORTRAN preprocessor, the Ratfor
language and its implementation, and user experience.

FORTRAN is often chosen, since it is frequently the only language supported on a
local computer. It is the closest thing to a universal programming language
currently available - with care you can write large, truly portable FORTRAN 66
programs. Finally, FORTRAN 66 is often the most 'efficient' language available,
particularly for programs requiring much computation.

But FORTRAN can be unpleasant. Perhaps the worst deficiency is in the control
flow statements - conditional branches and loops, which express the logic of the
program. The conditional statements in FORTRAN are primitive. The arithmetic
if forces the user into at least two statement numbers and two (implied)
goto 's; it leads to unintelligible code. The logical if is better in that the test ~

part can be stated clearly, but is hopelessly restrictive because only one
FORTRAN statement can follow the if statement. And of course there can be
no ELSE part to a FORTRAN if - you can't specify an alternative action if the
if is not satisfied.

The FORTRAN do restricts the user to going forward in an arithmetic
progression. It is fine for' 1 to Nin steps of 1 (or 2 or ...)', but there is no direct
way to go backwards, or even (in ANSI FORTRAN) to go from 1 to N-1. The do
is also useless if one's problem doesn't map into an arithmetic progression.

The result of these failings is that FORTRAN programs must be written with
numerous labels and branches. The resulting code is particularly difficult to read
and understand, and thus hard to debug and modify.

Ratfor defines a new language that overcomes these deficiencies, and translates it
into the unpleasant one with a preprocessor. The preprocessor idea is not new. A
recent listing shows more than 50 preprocessors, at least half a dozen of which
are widely available.

1 This chapter is a revised and expanded version of a paper published in Software -Practice and
Experience, October 1975.

Revision A of 6 May 1988

Using the ratf or translator

Using the f 7 7 compiler

12.3. Language Description
Design

Chapter 12 - Ratfor - A FORTRAN Preprocessor 193

rat for is the basic translator, it takes either a list of file names or the standard
input and writes FORTRAN on the standard output. Options include - 6x, which
causes the character given for x to be used as a continuation character in column
6 (UNIX uses & in column 1), and -c, which copies Ratfor comments into the
generated FORTRAN. For example:

compiles the specified files. Files with names ending in . r are Ratfor source;
other files are assumed to be for the loader. The flags -c and - 6x described
above are recognized, as are

-c compile without loading

-£ save intermediate FORTRAN . f files

-r Ratfor only; implies -c and -f

-u flag undeclared variables (not universally available). Other flags are passed
on to the loader.

The £77 command accepts . r files and passes them to the ratfor
preprocessor before it compiles them. The -m4 option to £77 applies the M4

macro processor to each . r file before transforming it with the Ratfor
preprocessor. For example:

l •• __ d_e_rn_o_.1t_<_f_7_7_<_m_yma_._.··· ._in_.· .• _._.f_s\lb_·.· ·_· ·_1_•r_·.· •_s_\lb_ .. · _2_··_~ r_. ·_>s_ub_· _3_; £ __________)

The language is the same as standard FORTRAN 66 except for two aspects. First,
since control flow is central to any program regardless of the specific application,
the primary task of Ratfor is to conceal this part of FORTRAN from the user by
providing decent control flow structures. These structures are sufficient and
comfortable for structured programming without goto 's. Second, since the
preprocessor must examine an entire program to translate the control structure, it
is possible at the same time to clean up many of the 'cosmetic' deficiencies of
FORTRAN, to provide a language that is easier and more pleasant to read and
write.

Beyond these two aspects - control flow and cosmetics - Ratfor does nothing
about the host of other weaknesses of FORTRAN 66. Although it would be
straightforward to extend it to provide character strings, they are not needed by
everyone, and the preprocessor would be harder to implement. Throughout, the
design principle used has been that Ratfor doesn't know any FORTRAN. Any
language feature requiring that Ratfor really understand FORTRAN has been
omitted.

The rest of this chapter contains an informal description of the Ratfor language.
The control flow aspects and cosmetic changes will look familiar if you are used
to languages such as Algol, PL/I, and Pascal.

Revision A of 6 May 1988

194 Sun FORTRAN Programmer's Guide

Statement grouping FORTRAN 66 provides no way to group statements together, short of making
them into a subroutine. The standard construction 'if a condition is true, do this
group of things,' for example,

if (x > 100)
{ call error{"x>100"); err = 1; return }

can't be written directly in FORTRAN. Instead a programmer is forced to
translate this relatively clear thought into murky FORTRAN, by stating the
negative condition and branching around the group of statements:

10

if (x .le. 100) goto 10
call error(5hx>100)
err = 1
return

When the program doesn't work or must be modified, it must be translated back
into a clearer form before you can be sure what it's doing.

Ratfor eliminates this error-prone and confusing back and forth translation; the
first form is the way the computation is written in Ratfor. A group of statements
can be treated as a unit by enclosing them in braces { and } . This is true
throughout the language - wherever a single Ratfor statement can be used, there
can be several enclosed in braces. (Braces seem clearer and less obtrusive than ..,,,,.,,
begin and end, do and end.

Cosmetics contribute to the readability of code. The character'>' is clearer than
'.GT.', so Ratfor translates it appropriately. Although many FORTRAN compilers
pennit character strings in quotes (such as "x> 10 0") , they are not allowed
in ANSI FORTRAN, so Ratfor converts quoted strings into the right number of
nH's: computers count better than people do.

Ratfor is a free-fonn language- statements can appear anywhere on a line, and
several can appear on one line if they are separated by semicolons. The example
above could also be written as

if (x > 100) {
call error("x>100")
err = 1
return

In this case, no semicolon is needed at the end of each line, since Ratfor assumes
there is one statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement (Ratfor or
otherwise), no braces are needed:

Revision A of 6 May 1988

The e 1 s e clause

Chapter 12-Ratfor-A FORTRAN Preprocessor 195

[
if (y <= 0.0 & z <= 0.0)]

_______ w_r_it_e_(_6_, __ 2o_) __ y_, __ z ____________________________ __

No continuation is needed here because the statement on the first line is clearly
continued on the second. In general Ratfor continues lines when it seems
obvious that they are not yet done. (The continuation convention is discussed in
detail later.)

Although a free-form language allows freedom in formatting styles, it is wise to
pick one that is readable, then stick to it. In particular, proper indentation is vital
to make the logical structure of the program clear.

Ratfor provides an else statement to handle the construction 'if a condition is
true, do this, otherwise do that.'
r

if (a <= b)

{ sw O; write (6, 1) a, b
else

SW 1; write (6, 1) b, a }
)

This writes out the smaller of a and b, then the larger, and sets sw
appropriately.

The FORTRAN equivalent of this code is circuitous indeed:

if (a .gt. b) goto 10
SW = 0
write(6, 1) a, b
goto 20

10 SW = 1
write(6, 1) b, a

20

This is a mechanical translation, so shorter forms exist but all translations suffer
from the same problem: they are less clear and understandable than untranslated
code. To understand the FORTRAN version, you must scan the entire program to
make sure that no other statement branches to statements 10 or 20 before you
know that this is an if-else construction. With the Ratfor version, there is
no question about how you get to the parts of the statement, since the if-else
is a single unit that can be read, understood, or ignored as required.

As mentioned before, if the statement following an if or an else is a single
statement, then no braces are needed:
r

if (a <= b)

SW 0
else

SW 1

Revision A of 6 May 1988

196 Sun FORTRAN Programmer's Guide

Nested if's

The syntax of the if statement is

if (legal FORTRAN condition)
Ratfor statement

else
Ratfor statement

where the else part is optional. The legal FOR1RAN condition is anything
that can legally go into a FOR1RAN Logical if. Ratfor does not check this
clause, since it does not know enough FOR1RAN to know what is permitted. The
Ratfor statement is any Ratfor FOR1RAN statement, or a collection of them
surrounded by braces.

Since the statement that follows an if or an else can be any Ratfor
statement, it is possible for another if or else to follow it. As a useful
example, consider this problem: the variable f is to be set to -1 if x is less than
zero, to + 1 if x is greater than 100, and to 0 otherwise. In Ratfor, you would
write
r

if (x < 0)
f = -1

else if (x > 100)
f +1

else
f 0

Here the statement after the first else is another if-else. Logically it is
just a single statement, although it is rather complicated.

Any version written in straight FOR1RAN is necessarily indirect because
FOR1RAN does not let you say what you mean.

Following an else with an if is one way to write a multi-way branch in
Ratfor. In general, the structure

if (...)

else if (...)

else if (...)

else

provides a way to specify the choice of exactly one of several alternatives.
(Ratfor also provides a switch statement that does the same job in certain
special cases; in more general situations, you must make do with spare parts.)
The tests are laid out in sequence, and each one is followed by the code
associated with it. Read down the list of decisions until one is satisfied. The """""".

Revision A of 6 May 1988

Ambiguity in if-else

Chapter 12 - Ratfor - A FORTRAN Preprocessor 197

code associated with this condition is executed, and then the entire structure is
exited. The trailing else part handles the 'default' case, where none of the
other conditions apply. If there is no default action, this final else part is
omitted:

There is one thing to notice about complicated structures involving nested if's
and else's. Consider
r

if (x > 0) if (y > 0)
write(6, 1) x, y

else
write(6, 2) y

There are two if's and only one else, so you don't know which if goes
with the else.

This is a genuine ambiguity in Ratfor. The ambiguity is resolved by saying that
in such cases the else goes with the closest previous else' ed un- if. In
this case, the else goes with the inner if, as is indicated by the indentation.

It is a wise practice to resolve such cases by explicit braces. In the case above,
you would write

which does not change the meaning but leaves no doubt in the reader's mind. If
you want the other association, you must write

if (x > 0) {

if (y > 0)

write (6, 1) x, y

else
write(6, 2) y

Revision A of 6 May 1988

198 Sun FORTRAN Programmer's Guide

The switch statement

The do statement

The switch statement provides a clean way to express multi-way branches
that branch on the value of some integer-valued expression. The syntax is

switch (expression)

case exprl :
statements

case expr2, expr3
statements

default:
statements

Each case is followed by a list of comma-separated integer expressions. The
expression following switch is compared against the case expressions exprl,
expr2 , and so on in tum until one matches, at which time the statements
following that case are executed. Ifno case matches expression, and there is a
def au 1 t section, the statements in it are executed; if there is no def au 1 t,
nothing is done. In all situations, as soon as some block of statements is
executed, the entire switch is exited immediately. (Readers familiar with C
should beware that this behavior is not the same as the C switch.)

The do statement in Ratfor is quite similar to the do statement in FOR1RAN,
except that it uses no statement number. The statement number, serves only to
mark the end of the do, and this can be done just as easily with braces. Thus

do i = 1, n {
x(i) 0.0
y(i) 0.0
z(i) 0.0

is the same as

do 10 i = 1, n

x(i) 0.0
y (i) 0. 0
z(i) 0.0

10 continue

The syntax is:

[

do legal-FORTRAN-DO-text]

-~~~R_a_eft_or_s_m_te_me~nt~~~~~~~~~~~~~~~~~------
The part that follows the keyword do has to be something that can legally go
into a FOR1RAN do statement. Thus, if a local version of FORTRAN allows

Revision A of 6 May 1988

Using break and next

Chapter 12 - Ratfor - A FORTRAN Preprocessor 199

do limits to be expressions (which is not permitted in ANSI FORTRAN 66), they
can be used in a Ratfor do .

The Ratfor statement part is often enclosed in braces, but like the if, a single
statement need not have braces around it. This code sets an array to zero:

[

do i = 1, n J
-~x<_i>_=o_.o~~~~~~~
A slightly more complicated routine,

[
do i = 1, n

do j = 1, n
m(i, j) 0

sets the entire array rn to zero.

do i = 1, n
do j = 1, n

if (i < j)
m(i, j) -1

else if (i -- j)
m(i, j) 0

else
m(i, j) +l

sets the upper triangle of rn to -1, the diagonal to zero, and the lower triangle to
+ 1. (The operator == is 'equals', that is, '.EQ.'.) In each case, the statement that
follows the do is logically a single statement, even though complicated, and
thus needs no braces.

l

Ratfor provides a statement for leaving a loop early, and one for beginning the
next iteration. break causes an immediate exit from the do; in effect it is a
branch to the statement after the do. next is a branch to the bottom of the
loop, so it causes the next iteration to be done. For example, this code skips over
negative values in an array:

do i = 1, n {
if (x(i) < 0.0)

next
process positive element

break and next also work in the other Ratfor looping constructions which are
discussed in the next few sections.

break and next can be followed by an integer that indicates the level to break
or iterate the enclosing loop; thus,

Revision A of 6 May 1988

200 Sun FORTRAN Programmer's Guide

The while statement

(break 2 J
exits from two levels of enclosing loops, and break 1 is equivalent to

break. next 2 iterates the second enclosing loop. (Realistically, multi-level

break's and next 's are not likely to be much used because they lead to code

that is hard to understand and somewhat risky to change.)

One of the problems with the FORTRAN 66 do statement is that it generally

must be done at least once, regardless of its limits. If a loop begins

(~---D_o __ r __ = __ 2_, __ 1 ___ J

it is typically done once with I set to 2, even though common sense suggests
that perhaps it shouldn't be. Of course a Ratfor do can easily be preceded by a

test such as

if (j <= k)

do i = j, k

but is often overlooked by programmers.

A more serious problem with the do statement is that it encourages a program to

be written in terms of an arithmetic progression with small positive steps, even

though that may not be the best way to write it. If code has to be adjusted to fit

the requirements imposed by the FORTRAN do, it is that much harder to write

and understand.

To overcome these difficulties, Ratfor provides a while statement, which is

simply a loop: 'while some condition is true, repeat this group of statements.' It

has no preconceptions about why looping is happening. For example, the routine
to compute sin(x) using the Maclaurin series combines two termination criteria.

Revision A of 6 May 1988

\.

Chapter 12 - Ratfor - A FORTRAN Preprocessor 201

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x - x**3/3! + x**S/5! -

sin = x
term = x

i = 3
while (abs(term)>e & i<lOO) {

term= -term* x**2 I float(i*(i-1))
sin sin + term
i = i + 2

return
end

Notice that if the routine is entered with term already smaller than e, the loop
is done zero times, that is, no attempt is made to compute x**3; thus, a
potential underflow is avoided. Since the test is made at the top of a while
loop instead of the bottom, a special case disappears - the code works at one of
its boundaries. (The test i < 10 O is the other boundary - making sure the
routine stops after some maximum number of iterations.)

As an aside, a sharp character'#' in a line marks the beginning of a comment.
Comments and code can coexist on the same line, which is not possible with
FORTRAN's 'C in column 1' convention. Blank lines are also permitted anywhere
(they are not in FORTRAN 66) to emphasize the natural divisions of a program.

The syntax of the while statement is

\.

while (legal FORTRAN condition)
Ratfor statement

As with if, legal FORTRAN condition is something that can go into a
FOR1RAN logical if, and Ratfor statement is a single statement or multiple
statements in braces.

The while encourages a style of coding not normally practiced by FOR1RAN
programmers. For example, suppose next ch is a function that returns the next
input character both as a function value and in its argument. Then a loop to find
the first nonblank character is

[____ w_h_i_l_e---(n_e_x_t_c_h--(1-·c_h_) _____ i_·b_l_a_n_k __) ___________________________]

A semicolon by itself is a null statement, which is necessary here to mark the end
of the while; if it were not present, the while would control the next
statement. When the loop is exited, i ch contains the first nonblank. Of course
the same code can be written in FORTRAN as

Revision A of 6 May 1988

202 Sun FORTRAN Programmer's Guide

The for statement

100 if (nextch(ich) .eq. iblank) goto 100

but many FORTRAN programmers (and a few compilers) believe this line is

illegal. The language at one's disposal strongly influences how one thinks about

a problem.

The for statement is another Ratfor loop, which attempts to carry the
separation ofloop body from reason-for-looping a step further than the while.

A for statement allows explicit initialization and increment steps as part of the

statement. For example, a do loop is just

(_~_f_o_r~(-i~=~l-;~i~<-=~n-;~i~=~i~+~l-)~~~~~~~~~~~~~J
This is equivalent to

i = 1
while (i <= n)

i = i + 1

Initializing and incrementing i has been moved into the for statement,

making it easier to see at a glance what controls the loop.

The for and while versions have the advantage that they are done zero times

if n is less than 1; this is not true of the do.

The loop of the sine routine in the previous section can be rewritten with a for

as

for (i=3; abs(term) > e & i < 100; i=i+2)

term= -term* x**2 I float(i*(i-1))
sin = sin + term

The syntax of the for statement is

for (init ; condition ; increment
Ratfor statement

init is any single FORTRAN statement, which gets done once before the loop

begins. increment is any single FORTRAN statement that gets done at the end of

each pass through the loop before the test. condition is anything that is legal in a

logical if. Any of init, condition, and increment can be omitted, although the

semicolons must always be present. A nonexistent condition is treated as always

true, so "for (;;)"is an infinite repeat (But see the repeat-until in

the next section.)-'

Revision A of 6 May 1988

The repeat-until
statement

Chapter 12 - Ratfor - A FORTRAN Preprocessor 203

The for statement is particularly useful for such things as backward loops,
chaining along lists, and loops that might be done zero times, which are hard to
express with a do statement as well as obscure to write out with if 'sand
goto 's. For example, here is a backwards do loop that finds the last nonblank
character on a card:

for (i = 80; i > O; i = i - 1)
if (card(i) != blank)

break

(' !=' is the same as ·.NE.'). The code scans the columns from 80 down to 1. If a
nonblank is found, the loop is immediately exited. break and next work in
for's and while'sjust as in do's. If i reaches zero, the card is all blank.

This code is rather nasty to write with a regular FORTRAN do, since the loop
must go forward, and you must explicitly set up proper conditions when you fall
out of the loop. Forgetting this is a common error. Thus,

DO 10 J = 1, 80
I = 81 - J
IF (CARD(I) .NE. BLANK) GO TO 11

10 CONTINUE
I = 0

11

The version that uses the for handles the termination condition properly for
free; i is zero when you fall out of the for loop.

The increment in a for need not be an arithmetic progression; the following
program walks along a list (stored in an integer array ptr) until a zero pointer is
found, adding up elements from a parallel array of values:

sum= 0.0
for (i = first; i > 0; i

sum= sum + value(i)
ptr (i))

Notice that the code works correctly if the list is empty. Again, placing the test
at the top of a loop instead of the bottom eliminates a potential boundary error.

In spite of warnings, there are times when you really need a loop that tests at the
bottom after one pass through. This service is provided by the repeat­
until:

repeat
Ratfor statement

until (legal FORTRAN condition)

The Ratfor statement part is done once, then the condition is evaluated. If it is
.true., the loop is exited; if it is .false., another pass is made.

Revision A of 6 May 1988

204 Sun FORTRAN Programmer's Guide

More on break and next

The return statement

The until part is optional, so a bare repeat is the cleanest way to specify
an infinite loop. Of course such a loop must ultimately be broken by some '...-'
transfer of control such as stop, return, or break, or an implicit stop such
as running out of input with a READ statement.

As a matter of observed fact, the repeat-until statement is much less used
than the other looping constructions; in particular, it is typically outnumbered ten
to one by for and w hi 1 e. Be cautious about using it, for loops that test only
at the bottom often don't handle null cases well.

break exits immediately from do, while, for, and repeat-until.
next goes to the test part of do, while and repeat-until, and to the
increment step of a for.

The standard FORTRAN mechanism for returning a value from a function uses
the name of the function as a variable that can be assigned to. The last value
stored in it is the function value upon return. For example, here is a routine
equal that returns 1 if two arrays are identical, and zero if they differ. The
array ends are marked by the special value -1.

r

equal - compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for (i = 1; strl(i) == str2(i); i
if (strl (i) -1) {

equal = 1
return

equal 0
return
end

In many languages (e.g., PL/I) one instead says

i + 1)

[___ r_e_t_u_r_n_<_e_xp_r_e_ss_i_on_> ____________________ ~J
to return a value from a function. Since this is often clearer, Ratfor provides such
a return statement- in a function F, return (expression} is
equivalent to

[.___{_F_=_e_x_p_r_e_s_s_i_o_n_;_r_e_t_u_r_n--}--------------~J
For example, here is equal again:

Revision A of 6 May 1988

Cosmetics

Free-form Input

Chapter 12 - Ratfor - A FORTRAN Preprocessor 205

equal - compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer str1(100), str2(100)
integer i

for (i = 1; strl(i) == str2(i); i
if (st r1 (i) == -1)

return (1)
return(O)
end

i + 1)

If there is no parenthesized expression after return, a nonnal RETURN is
made. (Another version of equal is presented shortly.)

,

As we said above, the visual appearance of a language has a substantial effect on
how easy it is to read and understand. Accordingly, Ratfor provides a number of
cosmetic facilities that can be used to make programs more readable.

Statements can be placed anywhere on a line. Long statements are continued
automatically, as are long conditions in if, while, for, and until.
Blank lines are ignored. Multiple statements can appear on one line if they are
separated by semicolons. No semicolon is needed at the end of a line, if Ratfor
can make some reasonable guess about whether the statement ends there. Lines
ending with any of these characters

= + * & (
are assumed to be continued on the next line. Underscores are discarded wher­
ever they occur; all others remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a FORTRAN
label, and placed in columns 1-5 upon output. Thus

write (6, 100); 100 format ("hello")

is converted into

(
write(6, 100) J

____ 1_o_o __ f_o_r_m_a_t_<_s_h_h_e_1_1_0_> __________________________________ __

Revision A of 6 May 1988

206 Sun FORTRAN Programmer's Guide

Translation services

The define statement

Text enclosed in matching single or double quotes is converted to nH • • • but is
otherwise unaltered (except for formatting - it may get split across card
boundaries during the reformatting process). Within quoted strings, the
backslash'\' serves as an escape character: the next character is taken literally.
This provides a way to get quotes (and of course the backslash itself) into quoted
strings:

(___ "_\\\' ·_· ______]
is a string containing a backslash and an apostrophe. (This is not the standard
convention of doubled quotes, but it is easier to use and more general.)

Any line that begins with the character'%' is left absolutely unaltered except for
stripping off the '%' and moving the line one position to the left. This is useful
for inserting control cards, and other things that should not be transmogrified
(like an existing FORTRAN program). Use'%' only for ordinary statements, not
for the condition parts of if, while, etc., or the output may come out in an
unexpected place.

The following character translations are made, except within single or double
quotes or on a line beginning with a '%':

character translation character translation

-- .eq.
,_ . - .ne .

> .gt. >= .ge .
< .It. <= .le.
& .and. I .or.
! .not. A .not.

In addition, the following translations are provided for input devices with
restricted character sets.

character translation character translation

[{] }
($ { $) }

Any string of alphanumeric characters can be defined as a name; thereafter,
whenever that name occurs in the input (delimited by nonalphanumerics) it is
replaced by the rest of the definition line. (Comments and trailing whitespace are
stripped off). A defined name can be arbitrarily long, and must begin with a
letter.

define is typically used to create symbolic parameters:

Revision A of 6 May 1988

The inc 1 ude statement

Chapter 12- Ratfor-A FORTRAN Preprocessor 207

define
define

ROWS
COLS

100
50

dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS j > COLS)

Alternately, definitions can be written as

(_~_d_e_f_i_n_e~(R_o_w_s_,~1_0_0_)~~~~~~~~~~~~~~~~~~~---J
In this case, the defining text is everything after the comma up to the balancing
right parenthesis, which allows for multi-line definitions.

It is generally a wise practice to use symbolic parameters for most constants,
since they help clarify the function of what would otherwise be mysterious
numbers. As an example, here is the routine equal again, this time with
symbolic constants.

define YES 1
define NO 0
define EOS -1
define ARB 100

equal - compare strl to str2;
return YES if equal, NO if not

integer function equal(strl, str2)
integer strl(ARB), str2(ARB)
integer i

for (i = 1; strl(i) == str2(i); i
if (strl(i) == EOS)

return (YES)
return(NO)
end

The statement

i + 1)

inserts the file found on input stream file into the Raif or input in place of the
include statement. The standard usage is to place COMMON blocks on a file,
and include that file whenever a copy is needed:

Revision A of 6 May 1988

208 Sun FORTRAN Programmer's Guide

Pitfalls, Botches, Blemishes
and other Failings

12.4. Implementation

subroutine x
include commonblocks

end

subroutine y
include commonblocks

end

This ensures that all copies of the COMMON blocks are identical

Ratfor catches certain syntax errors, such as missing braces, else clauses
without an if, and most errors involving missing parentheses in statements.
Beyond that, since Ratfor knows no FORTRAN, the FORTRAN compiler reports
any errors, so you will need to occasionally have to relate a FORTRAN diagnostic
back to the Ratfor source.

Keywords are reserved- using if, else, etc., as variable names typically
wreak havoc. Don't leave spaces in keywords or use the Arithmetic if.

The FORTRAN nH convention is not recognized anywhere by Ratfor; use quotes
instead.

Ratfor was originally written in Con the UNIX operating system. The language is
specified by a context-free grammar, and the compiler constructed using the
YACC compiler-compiler.

The Ratfor grammar is simple and straightforward, being essentially

prog stat
I prog stat

stat if (...) stat
I if (...) stat else stat
I while (...) stat
I for (... ; ... ; ...) stat
I do ... stat
I repeat stat
I repeat stat until (...)
I switch (...) { case prog ...

default: prog }
return
break
next
digits stat
{ prog
anything unrecognizable

The observation that Ratfor knows no FORTRAN follows directly from the rule
that says a statement is 'anything unrecognizable.' In fact, most of FORTRAN

+~.!! Revision A of 6 May 1988

Chapter 12 - Ratfor - A FORTRAN Preprocessor 209

falls into this category, since any statement that does not begin with one of the
keywords is by definition 'unrecognizable.'

Code generation is also simple. If the first thing on a source line is not a
keyword (like if, else, etc.) the entire statement is simply copied to the
output with appropriate character translation and formatting. (Leading digits are
treated as a label.) Keywords cause only slightly more complicated actions. For
example, when if is recognized, two consecutive labels L and L+ 1 are
generated and the value of L is stacked. The condition is then isolated, and the
code

(~~-i-f~(_._n_o_t_.~<_c_o_n_d_i_t_i_o_n_)_)~g-o_t_o~L~~~~~~~~~~~~-----]
is output. The statement part of the if is then translated. When the end of the
statement is encountered (which may be some distance away and include nested
if's), the code

(L continue

is generated, unless there is an else clause, in which case the code is

[L

goto L+l
continue

In this latter case, the code

]

]

(__ ~L_+_l~c_o_n_t_i_n_u_e~~~~~~~~~~~~~~~~~~~~~--]
is produced after the statement part of the else . Code generation for the
various loops is equally simple.

One might argue that more care should be taken in code generation. For
example, if there is no trailing else,

should be left alone and not converted into

if (.not. (i .gt. 0)) goto 100
x = a

100 continue

But what are optimizing compilers for, if not to improve code? It is a rare
program where this kind of 'inefficiency' makes even a measurable difference.
In the few cases where it is important, the offending lines can be protected by

Revision A of 6 May 1988

210 Sun FORTRAN Programmer's Guide

12.5. Experience
Good Things

'%'.

The use of a compiler-compiler is definitely the preferred method of software
development. The language is well-defined, with few syntactic irregularities.
Implementation is quite simple; the original construction took under a week. The
language is sufficiently simple, however, that an ad hoc recognizer can be readily
constructed to do the same job if no compiler-compiler is available.

The C version of Ratfor is used on UNIX. C compilers are not as widely available
as FORTRAN, however, so there is also a Ratfor written in itself and originally
bootstrapped with the C version. The Ratfor version was written so it could be
translated into the portable subset of FORTRAN described in [2]. Thus it is
portable, having been run essentially without change on at least twelve distinct
machines. The main restrictions of the portable subset are: only one character
per machine word; subscripts in the form c*v±c; avoiding expressions in places
like do loops; consistency in subroutine argument usage and in COMMON
declarations. Ratfor itself does not generate nonstandard FORTRAN.

The Ratfor version is about 1500 lines of Ratfor (compared to about 1000 lines
of C); this compiles into 2500 lines of FORTRAN. This expansion ratio is
somewhat higher than average, since the compiled code contains unnecessary
occurrences of COMMON declarations. The execution time of the Ratfor version
is dominated by two routines that read and write cards. Oearly these routines
could be replaced by machine-coded local versions; unless this is done, the
efficiency of other parts of the translation process is largely irrelevant.

'It's so much better than FORTRAN' is the most common response of users when
asked how well Ratfor meets their needs. Although cynics might consider this to
be vacuous, it does seem to be true that decent control flow and cosmetics
convert FORTRAN 66 from a bad language into quite a reasonable one, assuming
that FORTRAN data structures are adequate for the task at hand.

Although there are no quantitative results, users feel that coding in Ratfor is at
least twice as fast as in FORTRAN. More important, debugging and subsequent
revision are much faster than in FORTRAN. Partly this is because the code can be
read. The looping statements that test at the top instead of the bottom seem to
eliminate or at least reduce the occurrence of a wide class of boundary errors.
And of course it is easy to do structured programming in Ratfor; this self­
discipline also contributes markedly to reliability.

One interesting and encouraging fact is that programs written in Ratfor tend to be
as readable as programs written in languages like Pascal. Once you are freed
from the shackles ofFORTRAN's clerical detail and rigid input format, it is easy to
write code that is readable, even esthetically pleasing. For example, here is a
Ratfor implementation of the linear table search discussed by Knuth in [14]:

Revision A of 6 May 1988

Bad Things

Chapter 12 - Ratfor - A FORTRAN Preprocessor 211

A(m+l) = x
for (i l; A(i) != x; i i + 1)

if (i > m)

m = i
B {i) 1

else
B{i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including a subset of the Ratfor
preprocessor itself, can be found in [13].

The biggest single problem is that the FORTRAN compiler detects many syntax
errors - not Ratfor. The compiler then prints a message in terms of the
generated FORTRAN, which in a few cases may be difficult to relate back to the
offending Ratfor line, especially if the implementation conceals the generated
FORTRAN. This problem could be dealt with by tagging each generated line with
some indication of the source line that created it, but this is inherently
implementation-dependent, so no action has yet been taken. Error message
interpretation is actually not as difficult as you might think. Since Ratfor
generates no variables (only a simple pattern of if's and goto's), data-related
errors like missing dimension statements are easy to find in FORTRAN.
Furthermore, Ratfor's ability to catch trivial syntactic errors like unbalanced
parentheses and quotes has steadily improved.

There are a number of implementation weaknesses that are a nuisance, especially
to new users. For example, keywords are reserved. This rarely makes any
difference, except for those hardy souls who want to use an Arithmetic if. A
few standard FORTRAN constructions are not accepted by Ratfor, which could be
a problem to users with many existing FOR1RAN programs. Protecting every
line with a '%' is not really a complete solution, although it serves as a stopgap.
The best long-term solution is provided by the program Struct [4], which
converts arbitrary FORTRAN programs into Ratfor.

Users who export programs often complain that the generated FORTRAN is
'unreadable' because it is not tastefully formatted and contains extraneous
CONTINUE statements. To some extent this can be ameliorated (Ratfor now has
an option to copy Ratfor comments into the generated FORTRAN), but it has
always seemed that effort is better spent on the input language than on the output
esthetics.

One final problem is partly attributable to success- since Ratfor is relatively
easy to modify, there are now several dialects of Ratfor. Fortunately, most of the
differences so far are in character set, or in invisible aspects like code generation.

Revision A of 6 May 1988

212 Sun FORTRAN Programmer's Guide

12.6. Conclusions Ratfor demonstrates that with modest effort it is possible to convert FORTRAN
from a bad language into a good one. A preprocessor is clearly a useful way to
improve the facilities of a base language.

When designing a language, it is important to concentrate on the essential
requirement of providing the user with the best language possible for a given
effort. One must avoid throwing in 'features' -things that the user can trivially
construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it seems
pointless for Ratfor to prepare a neatly formatted listing of its input or output.
You are presumably capable of the self-discipline required to prepare neat input
that reflects your thoughts. It is much more important that the language provide
free-form input so you can format it neatly. No one should read the output
anyway except in the most dire circumstances.

Revision A of 6 May 1988

A
ASCII Character Set

ASCII Character Set... 215

A
ASCII Character Set

dee oct hex name dee oet hex name dee oet hex name dee oct hex name

0 000 00 NUL 32 040 20 SP 64 IOO 40 @ 96 I40 60 '
I OOI OI SOH 33 04I 21 ! 65 101 41 A 97 141 61 a
2 002 02 STX 34 042 22 II

66 102 42 B 98 I42 62 b
3 003 03 ETX 35 043 23 # 67 103 43 c 99 143 63 c
4 004 04 EOT 36 044 24 $ 68 104 44 D 100 144 64 d
5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e
6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 ' 71 107 47 G 103 147 67 g
8 010 08 BS 40 050 28 (72 110 48 H 104 150 68 h
9 011 09 HT 41 05I 29) 73 111 49 I 105 151 69 i

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A j
11 013 OB VT 43 053 2B + 75 113 4B K 107 153 6B k
12 014 oc FF 44 054 2C

'
76 114 4C L 108 154 6C 1

I3 015 OD CR 45 055 20 - 77 115 40 M 109 155 60 m
14 016 OE so 46 056 2E 78 116 4E N 110 156 6E n
15 017 OF SI 47 057 2F I 79 117 4F 0 111 157 6F 0
I6 020 10 DLE 48 060 30 0 80 120 50 p 112 I60 70 p
17 02I 11 DCI 49 061 31 1 81 121 5I Q 113 I61 71 q
18 022 I2 DC2 50 062 32 2 82 I22 52 R 114 162 72 r
I9 023 I3 DC3 5I 063 33 3 83 I23 53 s II5 I63 73 s
20 024 14 DC4 52 064 34 4 84 124 54 T 116 164 74 t
21 025 15 NAK 53 065 35 5 85 125 55 u 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 v 118 I66 76 v
23 027 I7 ETB 55 067 37 7 87 127 57 w 1I9 167 77 w
24 030 18 CAN 56 070 38 8 88 I30 58 x 120 170 78 x
25 031 19 EM 57 071 39 9 89 131 59 y 121 171 79 y
26 032 IA SUB 58 072 3A 90 I32 5A z I22 I72 7A z
27 033 1B ESC 59 073 3B

' 91 133 5B [I23 I73 7B {
28 034 IC FS 60 074 3C < 92 134 5C \ 124 174 7C I
29 035 ID GS 61 075 30 = 93 135 50] 125 I75 70 }
30 036 1E RS 62 076 3E > 94 136 5E " 126 176 7E -
31 037 IF us 63 077 3F ? 95 137 5F 127 I77 7F DEL

215 Revision A of 6 May 1988

B
FORTRAN Statements

FORTRAN Statements ... 219

B
FOR TRAN Statements

The following table provides selected examples of all Sun FOR1RAN statements. The purpose of the table is to jog the memory on syntax details for the more common variations of each statement type.
In this table, the following conventions are used:

c is a character variable R is an real variable
CA is a character array N is an numeric variable
I is an integer variable Lis a logical variable
u is an external unit s is a switch variable

Table B-1 FORTRAN Statements

Name Examples Comments

Assign ASSIGN 9 TO I

Assignment c = "abc" Character c = s II "abc"
c = S(I:M)
L = Ll .OR. L2 Logical
L = I .LE. 80
N = N+l Arithmetic
CURR = NEXT See Record.
NEXT.ID = 82

Automatic AUTOMATIC A, B, c
AUTOMATIC REAL P, D, Q
IMPLICIT AUTOMATIC REAL (X-Z)

Backspace BACKSPACE I
BACKSPACE(UNIT=U)
BACKSPACE(UNIT=U, IOSTAT=I, ERR=9)

Block Data BLOCK DATA
BLOCK DATA COEFFS

Byte BYTE A, B, c
BYTE A, B, C(lO)

219 Revision A of 6 May 1988

220 Sun FORTRAN Programmer's Guide

TableB-1 FORTRAN Statements- Continued

Name Examples Comments

Call CALL p (A, B)
CALL p (A, B, *9) Alternate Return

CALL p

Character CHARACTER C*80, D*1(4)
CHARACTER*l6 A, B, c

Close CLOSE (UNIT= I)
CLOSE (UNIT=U, ERR=90, IOSTAT=I)

Common COMMON / DELTAS I H, P, T

COMMON X, Y, z
COMMON P, D, Q(l0,100)

Complex COMPLEX U, v
COMPLEX U(3, 6)
COMPLEX U*16 Double Complex

Continue 100 CONTINUE

Data DATA A, c I 4.01, "z" I
DATA (V(I) ,I=l,3) I. 7, . 8, .9/
DATA ARRAY(4,4) I 1. 0 I
DATA B,O,X,Y /B'0011111', 0'37', X'lf' I Z'lf' I

Dimension DIMENSION ARRAY(4,4)
DIMENSION V(lOOO), w (3)

Do DO 100 I = INIT, LAST, INCR
...
100 CONTINUE

DO I = INIT, LAST Unlabeled do

...
END DO

DO WHILE (DIFF .LE . DELTA) Do while

. . .
END DO

DO 100 WHILE (DIFF .LE . DELTA)
. . .
100 CONTINUE

Double DOUBLE COMPLEX U, v Complex*l6

Complex DOUBLE COMPLEX u (3, 6)

Double DOUBLE PRECISION A, D, Y(2) Real*8

Precision

Else ELSE See Block If.

Else If ELSE IF See Block If.

Revision A of 6 May 1988

Appendix B - FORTRAN Statements 221

Table B-1 FORTRAN Statements- Continued

Name Examples Comments

End END

End Do END DO See Do.
End.file ENDFILE (UNIT= I)

ENDFILE I
ENDFILE (UNIT=U, IOSTAT=I, ERR=9)

End If END IF See Block If
End Map END MAP See Map.
End Structure END STRUCTURE See Structure.
End Union END UNION See Union.
Entry ENTRY SCHLEP (X, Y)

ENTRY SCHLEP(Al, A2, *4)
ENTRY SCHLEP

Equivalence EQUIVALENCE (v (1) ' A(l,1))
EQUIVALENCE (v' A)
EQUIVALENCE (X,V(l0)), (P,D,Q)

External EXTERNAL RNGKTA, FIT

Format 10 FORMAT(II X, I3, F6.l, El2.2, A, L2)
10 FORMAT (2X, 2I3, 3F6.l, 4El2.2, 2A6, 3L2)
10 FORMAT(II D6.l, Gl2.2)
10 FORMAT(2D6. 1, 3Gl2.2)
10 FORMAT(2I3.3, 3G6.1E3, 4El2.2E3)
10 FORMAT('a quoted string', " another", I2)
10 FORMAT(18Ha hollerith string, I2)
10 FORMAT(lX, TlO, Al, T20, Al)
10 FORMAT(5X, TRlO, Al, TRlO, Al, TL5, Al)
10 FORMAT(" Init=", I2, : ' 3X, "Last=", I2)
10 FORMAT(lX, "Enter pathname " $) ' 10 FORMAT(F4.2, Q, 80 Al)
10 FORMAT ('Octal ' 06, ' Hex ' Z6) ' '

Function FUNCTION Z(A, B)
FUNCTION W(P,D, *9)
CHARACTER FUNCTION R*4(P,D,*9)
INTEGER*2 FUNCTION M(I, J)

Go To GO TO 99 Unconditional
GO TO I, (10, 50 I 99) Assigned
GO TO I
GO TO (10, 50' 99) ' I Computed
GO TO I

Revision A of 6 May 1988

222 Sun FORTRAN Programmer's Guide

Name

If

Implicit

Include

Inquire

Integer

Intrinsic

Logical

Map

Table B-1 FORTRAN Statements- Continued

Examples

IF (I-K) 10, 5 0, 9 0

IF (L) RETURN

IF (L) THEN
N=N+l
CALL CALC

ELSE
K=K+l
CALL DISP

END IF

IF (C .EQ. 'a') THEN
NA=NA+l
CALL APPEND

ELSE IF (C .EQ. 'b') THEN
NB=NB+l
CALL BEFORE

ELSE IF (C .EQ. 'c') THEN
NC=NC+l
CALL CENTER

END IF

IMPLICIT COMPLEX (U-W,Z)
IMPLICIT UNDEFINED (A-Z)

INCLUDE 'project02/header'

INQUIRE(UNIT=3, OPENED=OK)
INQUIRE(FILE='mydata', EXIST=OK)
INQUIRE(UNIT=3, OPENED=OK, IOSTAT=ERRNO)

INTEGER C
INTEGER C*2, D(4)
INTEGER*4 A, B, C

INTRINSIC SQRT, EXP

LOGICAL C
LOGICAL B*l, C*l
LOGICAL*l B, C
LOGICAL*4 A, B, C

MAP
CHARACTER *16 MAJOR

END MAP
MAP

INTEGER*2 CREDITS
CHARACTER*8 GRAD DATE

END MAP

Comments

Arithmetic if

Logical if

Block if

Block if
with else-if

See Structure and Union.

Revision A of 6 May 1988

Appendix B - FORTRAN Statements 223

Table B-2 More FORTRAN Statements

Name Examples Comments

Name list NAMELIST /CASE/ S, N, D

Open OPEN(UNIT=3, FILE="data.test")
OPEN(UNIT=3, IOSTAT=ERRNO)

Parameter PARAMETER (A="xyz") , (PI=3 .14)
PARAMETER (A="z", PI=3.14)
PARAMETER (X=ll, Y=X/3)

Pointer POINTER (P, v) , (I, x)

Program PROGRAM FIDDLE

Print PRINT * A, I List-directed ,
PRINT 10, A, I Formatted
PRINT 10, M Array M
PRINT 10, (M(I) ,I=J,K) Implied-DO
PRINT 10, C (I: K) Substring
PRINT '(A6,I3)', A, I Character constant fonnat
PRINT FMT=' (A6, I3) ', A, I Character variable fonnat
PRINT S, I Switch variable has
PRINT FMT=S, I fonnat number
PRINT G Namelist

Read READ * A, I List-directed ,
READ 1, A, I Formated
READ 10, M ArrayM
READ 10, (M (I) , I=J, K) Implied-DO
READ 10, C (I: K) Substring
READ '(A6,I3)', A, I Character constant fonnat
READ(1, 2) X, y Formatted read from a file
READ(UNIT=l, FMT=2) X,Y
READ(1, 2, ERR=8, END=9) X,Y
READ(UNIT=l, FMT=2, ERR=8, END= 9) X,Y
READ(* 2) X, y Formatted read from

,
standard input

READ(* 10 } M Array M ,
READ(* 10) (M (I) , I=J, K) Implied-DO '
READ(* 10) C (I: K) Substring ,
READ(1, *) x, y List-directed read from a file
READ(* *) X, y - from standard input

,
READ(1, '(A6,I3)') X, y Character constant fonnat
READ(1, FMT=' (A6, I3) ') X, y

READ(1, c) X, y Character variable fonnat
READ(1, FMT=C) X, y

Revision A of 6 May 1988

224 Sun FORTRAN Programmer's Guide

Table B-2 More FORTRAN Statements- Continued

Name Examples Comments

READ(1, s) X, y Switch variable has

READ(1, FMT=S) X, y fonnat number

READ(* G) N amelist read ,
READ(1, G) N amelist read from a file

READ(1, END=8, ERR=9) X, y Unfonnatted sequential
access

READ(1, REC=3) v Unfonnatted direct access

READ(1, 2, REC=3) v Fonnatted direct access

READ(CA, 1, END=8, ERR=9) X, y Internal fonnatted sequential
access

READ(CA, * END=8, ERR=9) X, y Internal list-directed ,
sequential access

READ(CA, REC=4, END=8, ERR=9) X, y Internal direct access

Real REAL R
REAL R*4, M (4)
REAL*8 A, B, c Double Precision

Record RECORD /PROD/ CURR, PRIOR, NEXT

Return RETURN Standard return

RETURN 2 Alternate return

Rewind REWIND 1
REWIND I
REWIND(UNIT=U, IOSTAT=I, ERR=9)

Save SAVE A, /B/, c
SAVE

Static STATIC A, B, c
STATIC REAL P, D, Q

IMPLICIT STATIC REAL (X-Z)

Stop STOP
STOP "all gone"

Structure STRUCTURE /PROD/
INTEGER*4 ID
CHARACTER*16 NAME
CHARACTER*8 MODEL

REAL*4 COST
REAL*4 PRICE

END STRUCTURE

Subroutine SUBROUTINE SHR(A, B, *9) Alternate Return

SUBROUTINE SHR(A, B }

SUBROUTINE SHR

Revision A of 6 May 1988

Appendix B-FORTRAN Statements 225

Table B-2 More FORTRAN Statements- Continued

Name Examples Comments

Union UNION See Structure.
MAP

CHARACTER*16 MAJOR
END MAP

MAP
INTEGER*2 CREDITS
CHARACTER*8 GRAD DATE

-

END MAP
END UNION

Write WRITE (1, 2) X, y Formatted write to a file
WRITE (UNIT=l, FMT=2) X, y

WRITE (1, 2, ERR=8, END=9) X, y

WRITE (UNIT=l, FMT=2, ERR=8, END=9) X, y

WRITE (* 2) X, y Formatted write to standard '
output

WRITE(* 10) M Array M '
WRITE (* 10) (M(I),I=J,K) Implied-DO '
WRITE (* 10) C (I: K) Substring '
WRITE (1, *) X, y List-directed write to a file
WRITE (* *) X, y - to standard output '
WRITE(1, '(A6,I3)') X, y Character constant format
WRITE (1, FMT=' (A6,I3)') x, y

WRITE (1, c) X, y Character variable format
WRITE (1, FMT=C) X, y

WRITE (1, s) X, y Switch variable has
WRITE (1, FMT=S) X, y format number

WRITE (* CASE) Namelist write ' WRITE (1, CASE) Namelist write to a file
WRITE (1, END=8, ERR=9) X, y Unformatted sequential

access

WRITE (1, REC=3) v Unformatted direct access

WRITE (1, 2, REC=3) v Formatted direct access

WRITE (CA, 1, END=8, ERR=9) x, y Internal formatted sequential
access

WRITE(CA, * END=8, ERR=9) X, y Internal list-directed '
sequential access

WRITE (CA, REC=4, END=8, ERR=9) x, y Internal direct access

Revision A of 6 May 1988

c
Intrinsic Functions

Intrinsic Functions ... 229

c
Intrinsic Functions

Table C-1 Sun FORTRAN Intrinsic Functions

Intrinsic Definition No.of Generic Specific Type of

Function Args Name Name Argument Function

Truncation int(a) 1 AINT AINT Real Real

See Note 1 DINT Double Double

Nearest int(a+.5) if ~o 1 AN INT AN INT Real Real

Whole int(a-.5) if a< 0 DNINT Double Double

Number

Nearest int(a+.5) if ~o 1 NINT NINT Real Integer

Integer int(a-.5) if a< 0 IDNINT Double Integer

Absolute lal 1 ABS IABS Integer Integer

Value ABS Real Real
DABS Double Double

See Note 6 CABS Complex Real
ZABS • Dcomplex Double

(ar2 + ai2)**(1/2) CDABS + Dcomplex Double

Remainder al-int(al/a2)*a2 2 MOD MOD Integer Integer

See Note 1 AMOD Real Real

DMOD Double Double

Transfer lall if a2;;::: 0 2 SIGN I SIGN Integer Integer

of Sign -lall if a2 < 0 SIGN Real Real
DSIGN Double Double

Positive al-a2 if al> a2 2 DIM IDIM Integer Integer

Difference 0 if al~ a2 DIM Real Real
DDIM Double Double

Double al* a2 2 DPROD Real Double

Precision
Product

Choosing max(al, a2, ...) 2:2 MAX MAXO Integer Integer

Largest AMAXl Real Real

Value DMAXl Double Double

AMAXO Integer Real
MAXl Real Integer

Choosing min(al, a2, ...) ;;::: 2 MIN MINO Integer Integer

Smallest AMINl Real Real

Value DMINl Double Double

AMINO Integer Real
MINl Real Integer

229 Revision A of 6 May 1988

230 Sun FORTRAN Programmer's Guide

Table C-1 Sun FORTRAN Intrinsic Functions- Continued

Intrinsic Definition No.of Generic Specific Type of
Function Args Name Name Argument Function
Type Conversion 1 INT - Integer Integer
Conversion to Integer INT Real Integer

int(a) IFIX Real Integer
See Note 1 I DINT Double Integer

- Complex Integer
- Dcomplex Integer

Conversion 1 REAL REAL Integer Real
to Real FLOAT Integer Real
See Note 2 - Real Real

SNGL Double Real
- Complex Real
- Dcomplex Real

Conversion 1 DBLE - Integer Double
to Double DREAL - Real Double
See Note 3 - Double Double

- Complex Double
- Dcomplex Double

Conversion 1or2 CMPLX - Integer Complex
to Complex - Real Complex
SeeNote4 - Double Complex

- Complex Complex
- Dcomplex Complex

Conversion 1or2 DCMPLX • - Integer Dcomplex
to - Real Dcomplex
Dcomplex - Double Dcomplex

- Complex Dcomplex
- Dcomplex Dcomplex

Conversion 1 I CHAR Character Integer
to Integer IACHAR +
See Note 5

Conversion 1 CHAR Integer Character
to Character ACHAR +
See Note 5

Table C-2 More Sun FORTRAN Intrinsic Functions

Intrinsic Definition No.of Generic Specific Type of
Function Args Name Name Argument Function
Imaginary ai 1 IMAG AI MAG Complex Real Part of a See Note 6 DIMAG + Dcomplex Double Complex

Conjugate (ar, -ai) 1 CON JG CON JG Complex Complex ofa See Note 6 DCONJG + Dcomplex Dcomplex Complex

Square Root a**(l/2) 1 SQRT SQRT Real Real
DSQRT Double Double
CSQRT Complex Complex

Revision A of 6 May 1988

Appendix C - Intrinsic Functions 231

Table C-2 More Sun FORTRAN Intrinsic Functions- Continued

Intrinsic Definition No.of Generic Specific Type of

Function Args Name Name Argument Function

ZSQRT • Dcomplex Dcomplex
CDSQRT • Dcomplex Dcomplex

Exponential e**a 1 EXP EXP Real Real
DEXP Double Double
CEXP Complex Complex
ZEXP • Dcomplex Dcomplex
CDEXP • Dcomplex Dcomplex

Natural log(a) 1 LOG ALOG Real Real
Logarithm DLOG Double Double

CLOG Complex Complex
ZLOG • Dcomplex Dcomplex
CDLOG • Dcomplex Dcomplex

Common loglO(a) 1 LOGlO ALOGlO Real Real
Logarithm DLOGlO Double Double

Table C-3 Sun FORTRAN Bitwise Functions

Intrinsic Definition No.of Generic Specific Type of

Function Args Name Name Argument Function

Bitwise Complement 1 NOT • Integer Integer
Operations
See Note 13 And 2 AND • Integer Integer

Inclusive Or 2 OR • Integer Integer

Exclusive Or 2 XOR • Integer Integer

Shift 2 ISHFT • Integer Integer
See Note 14

Left Shift 2 LSHIFT • Integer Integer
See Note 14

Right Shift 2 RSHIFT • Integer Integer
See Note 14

Bit Extraction 3 IBITS • Integer Integer

Bit Set 2 IBSET • Integer Integer

Bit Test 2 BTEST • Integer Logical

Bit Clear 2 IBCLR • Integer Integer

Circular Shift 3 ISHFTC • Integer Integer

Revision A of 6 May 1988

232 Sun FORTRAN Programmer's Guide

Table C-4 Sun FORTRAN Trigonometric Functions

Intrinsic Definition No.of Generic Specific Type of
Function Args Name Name Argument Function
Sine sin(a) 1 SIN SIN Real Real

OSIN Double Double
CSIN Complex Complex
ZSIN • Dcomplex Dcomplex
COSIN + Dcomplex Dcomplex

Sine sin(a) 1 SIND + SINO + Real Real
(degrees) OSINO + Double Double

Cosine cos(a) 1 cos cos Real Real
OCOS Double Double
ccos Complex Complex
zcos • Dcomplex Dcomplex
cocos • Dcomplex Dcomplex

Cosine cos(a) 1 COSD + COSO + Real Real
(degrees) OCOSO + Double Double

Tangent tan(a) 1 TAN TAN Real Real
OTAN Double Double

Tangent tan(a) 1 TAND + TANO • Real Real
(degrees) OTANO + Double Double

Arcsine arcsin(a) 1 ASIN ASIN Real Real
OAS IN Double Double

Arcsine arcsin(a) 1 ASIND + ASINO • Real Real
(degrees) OASINO + Double Double

Arccosine arccos(a) 1 ACOS ACOS Real Real
OACOS Double Double

Arccosine arccos(a) 1 ACOSD + ACOSO • Real Real
(degrees) OACOSO + Double Double

Arctangent arctan(a) 1 ATAN ATAN Real Real
OATAN Double Double

arctan(al/a2) 2 ATAN2 ATAN2 Real Real
OATAN2 Double Double

Arctangent arctan(a) 1 ATAND + ATANO + Real Real
(degrees) OATANO + Double Double

arctan(al/a2) 2 ATAN2D + ATAN20 + Real Real
OATAN2D + Double Double

Hyperbolic sinh(a) 1 SINE SINH Real Real
Sine DSINH Double Double

Hyperbolic cosh(a) 1 COSE COSH Real Real
Cosine DCOSH Double Double

• Hyperbolic tanh(a) 1 TANH TANH Real Real
Tangent OT ANH Double Double

Revision A of 6 May 1988

Appendix C-Intrinsic Functions 233

Table C-5 Sun FORTRAN Character Functions

Intrinsic Definition No.of Generic Specific Type of

Function Args Name Name Argument Function

Conversion Conversion 1 CHAR Integer Character

See to Character ACHAR +

Note5
Conversion 1 I CHAR Character Integer

to Integer IACHAR +

Index Location of 2 INDEX Character Integer

ofa Substring a2
Substring in String al

See Note 10

Length Length of 1 LEN Character Integer

Character Entity
See Note 11

Lexically al~ a2 2 LGE Character Logical

Greater
Than or See Note 12
Equal

Lexically al> a2 2 LGT Character Logical

Greater
Than See Note 12

Lexically al~ a2 2 LLE Character Logical

Less Than See Note 12
or Equal

Lexically al< a2 2 LLT Character Logical

LessThan See Note 12

Table C-6 Sun FORTRAN Miscellaneous Functions

Intrinsic Definition No.of Generic Specific Type of

Function Args Name Name Argument Function

Environ- Base of 1 EPBASE + - Integer Integer

mental Number System - Real Integer
Inquiries - Double Integer

See Note 15 Number of 1 EPPREC + - Integer Integer
Significant Bits - Real Integer

- Double Integer

Minimum 1 EPEMIN + - Real Integer

Exponent - Double Integer

Maximum 1 EPEMAX + - Real Integer

Exponent - Double Integer

Least Nonzero 1 EPTINY + - Real Real

Number - Double Double

Largest Number 1 EPHUGE + - Integer Integer

Representable - Real Real
- Double Double

Epsilon 1 EPMRSP + - Real Real

See Note 16 - Double Double

Revision A of 6 May 1988

234 Sun FORTRAN Programmer's Guide

Table C-6

Intrinsic Definition
Function

Location Address-of
See Note 17

Allocate Allocate
memory and
return the
address
See Note 17

Deallocate Deallocate
memory
allocated
byMALLOC

Sun FORTRAN Miscellaneous Functions- Continued

No.of Generic Specific Type of
Args Name Name Argument Function
1 LOC • Any Integer

1 MALLOC • Integer Integer

1 FREE • Any None.
This is a
subroutine.

Notes:

These tables and notes 1through12 are based on the "Table of Intrinsic
Functions," from ANSI X3.9-1978 Programming Language FORTRAN, with the
Sun FORTRAN extensions added. For other subroutines and functions, see also
the FORTRAN man pages, online or at the end of this manual.

General:

o Functions marked with a • are extensions to the standard.

o An intrinsic that takes an INTEGER argument accepts either INTEGER* 2
or INTEGER* 4.
An intrinsic that returns an INTEGER value returns the prevailing INTEGER
type: INTEGER* 4 unless the -i2 option is selected.
The exceptions are LOC and MALLOC, which always return an INTEGER*4.

o The abbreviation "Double" stands for Double Precision.

o The abbreviation "Dcomplex" stands for Double Precision Complex.

o A function with a generic name returns a value with the same type as the
argument - except for type conversion functions, the nearest integer
function, and absolute value of a complex argument. If there is more than
one argument, they must all be of the same type.

o If a function name is used as an actual argument, then it must be a specific
name.

o If a function name is used as a dummy argument, then it does not identify an
intrinsic function in the subprogram, and it has a data type according to the
same rules as for variables and arrays.

Revision A of 6 May 1988

Appendix C - Intrinsic Functions 235

(1) INT

If A is type integer, then INT (A) is A.

If A is type real or double precision then:
if I A I < 1, then INT (A) is 0
if I A I ~ 1, then

INT (A) is the greatest integer that
does not exceed the magnitude of A,

and whose sign is the same as the sign of A.

(Such a mathematical integer value may be too large
to fit in the computer integer type.)

If A is type complex or double complex then
apply the above rule to the real part of A.

If A is type real then IFIX (A) is the same as INT (A) .

(2) REAL

If A is type real, then REAL (A) is A.

If A is type integer or double precision, then
REAL (A) is as much precision of the significant part of A

as a real datum can contain.
If A is type complex, then REAL (A) is the real part of A .

If A is type double complex, then

(3) DBLE

REAL (A) is as much precision of the significant part of
the real part of A as a real datum can contain.

If A is type double precision, then DBLE (A) is A.

If A is type integer or real, then DBLE (A) is
as much precision of the significant part of A

as a double precision datum can contain.
If A is type complex, then DBLE (A) is

as much precision of the significant part of the real part of A

as a double precision datum can contain.
If A is type Dcomplex, then DBLE (A) is the real part of A.

Revision A of 6 May 1988

236 Sun FORTRAN Programmer's Guide

(4) CMPLX

If A is type complex, then CMPLX (A) is A.
If A is type integer, real, or double precision, then

CMPLX(A) isREAL(A) + Oi.
If A is type integer, real, or double precision, then

CMPLX(Al,A2) isREAL(Al) + REAL(A2)*i
If A is type double complex, then

CMPLX(A) is REAL(DBLE(A)) + i*REAL(DIMAG(A)) .

If CMP LX has two arguments, then
they must be of the same type, and
they may be one of integer, real, or double precision.

If CMP LX has one argument, then
it may be one of integer, real, double precision, complex,
or Dcomplex.

(4') DCMPLX

If A is type Dcomplex, then DCMPLX (A) is A.
If A is type integer, real, or double precision, then

DCMPLX(A) isDBLE(A) + Oi.
If Al and A2 are type integer, real, or double precision, then

DCMPLX(Al,A2) isDBLE(Al) + DBLE(A2)*i.

If DCMPLX has two arguments, then
they must be of the same type, and
they may be one of integer, real, or double precision.

If DCMPLX has one argument, then
it may be one of integer, real, double precision, complex,
or Dcomplex.

(5) ICHAR

ICHAR (A) is the position of A in the collating sequence.
The first position is 0, the last is N-1 , O ~ ICHAR (A) ~ N-1,
where N is the number of characters in the collating sequence,
and A is of type character oflength one. CHAR and I CHAR
are inverses in the following sense:

ICHAR(CHAR(I)) = I,forO ~I~ N-1.
CHAR (I CHAR (C)) = c, for any character c capable of
representation in the processor.

(6) Complex

A Complex value is expressed as an ordered pair of reals, (ar, ai),
where ar is the real part and ai is the imaginary part.

Revision A of 6 May 1988

(7)

(8)

Appendix C-Intrinsic Functions 237

Radians

All angles are expressed in radians, unless the "Intrinsic Function"
column includes the remark"(degrees)".

Complex Function

The result of a function of type complex is the principal value.

(9) Argument types

All arguments in an intrinsic function reference must be of the same
type.

(10) INDEX

INDEX (x, Y) is the place in x where Y starts. That is, it is the
starting position within character string x of the first occurrence of
character string Y .
If Y does not occur in x, then INDEX (x, Y) is 0.
If LEN (x) < LEN (y) ' then INDEX (x, y) is 0.

(11) Argument to LEN

The value of the argument of the LEN function need not be defined at the
time the function reference is executed.

(12) Lexical Compare

LGE (x, Y) is true if X=Y or if x follows Yin the collating sequence;
otherwise it is false.

LGT (x, Y) is true if x follows Yin the collating sequence;
otherwise it is false.

LLE (x, Y) is true if X=Y or if x precedes Yin the collating sequence;
otherwise it is false.

LLT (X, Y) is true if x precedes Yin the collating sequence;
otherwise it is false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the
shorter operand is considered as if it were extended on the right with
blanks.

(13) Bit Functions

Bitwise operations are described in Chapter 10- The VMS Exten­
sions.

Revision A of 6 May 1988

238 Sun FORTRAN Programmer's Guide

(14) SHIFT

LSHIFT shifts al logically left by a2 bits.
RSHIFT shifts al logically right by a2 bits.
I SHIFT shifts al logically right if a2 is positive and left if a2 is
negative.
The LSHIFT and RSHIFT functions are the FORTRAN analogs of
C's "and" operators. As in C, the semantics depend on the hardware.

(15) Environmental inquiries

Only the type of the argument is significant.

(16) Epsilon

Epsilon is the least e such that 1 . 0 + e -t:. 1 . 0 .

(17) LOC and MALLOC

The LOC function returns the 32-bit address of a variable or of an
external procedure. The function call MALLOC (n) allocates a
block of at least n bytes, and returns the 32-bit address of that block.

Revision A of 6 May 1988

D
FORTRAN Runtime Error Messages

FORTRAN Runtime Error Messages.. 241

D.1. Overview ... 241

D.2. SunOS Error Messages.. 241

D.3. Signal Handler Error Messages .. 241

D.4. 1/0 Error Messages .. 242

D.1. Overview

D.2. SunOS Error
Messages

D.3. Signal Handler Error
Messages

D
FOR TRAN Runtime Error Messages

The FORTRAN 1/0 library, the FORTRAN signal handler, and parts of the SunOS
operating system (when called by FORTRAN library routines) can all generate
FORTRAN error messages.

SunOS error messages include system call failures, C library errors, and shell
diagnostics. The system call error messages are found in intro (2) in the SunOS
Reference Manual. System calls made via the FORTRAN library do not produce
error messages directly. The following system routine in the FORTRAN library
calls C library routines which produce an error message:

[

CALL SYSTEM("rm /") J
-EN-D ----

The following message is printed:

(rm: •.;·•directory
J

Before beginning execution of a program, the FORTRAN library sets up a signal
handler (sigdie) for signals that could cause termination of the program.
sigdie prints a message that describes the signal, flushes any pending output,
and generates a core image.

Presently the only arithmetic exception caught is the INTEGER* 2 division with
a denominator of zero. All other arithmetic exceptions are silently ignored.

A signal handler error example follows when the subroutine s UB tries to access
parameters that are not passed to it:

CALL SUB ()
END
SUBROUTINE SUB(I,J,K)
I=J+K
RETURN
END

241 Revision A of 6 May 1988

242 Sun FORTRAN Programmer's Guide

D.4. IJO Error Messages

The following error message is printed:

*** Segmentation violation
Illegal instruction (core dumped)

The following error messages are generated by the FOR TRAN 1/0 library. The
error numbers are returned in the IOSTAT variable if the ERR return is taken.

As an example, the following program tries to do an unformatted write to a file
opened for formatted output:

[

WRITE (6) 1 J
..____END ___ ____.

and gets an error messages like the following:

sue: [103] unformattedio not allowed
logical unit 6, named 'stdout'
lately: writing sequential unformatted external IO
Illegal instruction (core<dumped)

100 error in format
See the error message output for the location of the error in the format. It
can be caused by more than 10 levels of nested parentheses or an extremely
long format statement.

101 illegal unit number
It is illegal to close logical unit 0. Negative unit numbers are not allowed.
The upper limit is 231-1.

102 formatted io not allowed
The logical unit was opened for unformatted 1/0.

103 unformatted io not allowed
The logical unit was opened for formatted 1/0.

104 direct io not allowed
The logical unit was opened for sequential access, or the logical record
length was specified as 0.

105 sequential io not allowed
The logical unit was opened for direct access 1/0.

106 can't backspace file
The file associated with the logical unit can't seek. It may be a device or a
pipe.

107 off beginning of record
The format specified a left tab beyond the beginning of an internal input
record.

Revision A of 6 May 1988

Appendix D - FOR1RAN Runtime Error Messages 24 3

108 can't stat file

The system can't return status information about the file. Perhaps the direc­
tory is unreadable.

109 no * after repeat count
Repeat counts in list-directed I/0 must be followed by an* with no blank
spaces.

110 off end of record
A formatted write tried to go beyond the logical end-of-record. An
unformatted read or write will also cause this.

111 truncation failed
The truncation of an external sequential file on close, backspace, or
rewind could not be done.

112 incomprehensible list input
List input has to be as specified in the declaration.

113 out of free space
The library dynamically creates buffers for internal use. You ran out of
memory for this (i.e., your program is too big).

114 unit not connected
The logical unit was not open.

115 read unexpected character
Certain format conversions can't tolerate nonnumeric data.

116 blank logical input field
logical data must be Tor F

117 'new' file exists
You tried to open an existing file with stat us=' new'.

118 can't find 'old' file
You tried to open a nonexistent file with status= ' old' .

119 unknown system error
Shouldn't happen, but

120 requires seek ability
Direct access requires seek ability. Sequential unformatted I/O requires seek
ability on the file due to the special data structure required. Tabbing left also
requires seek ability.

121 illegal argument
Certain arguments to open, etc. will be checked for legitimacy. Often only
non-default forms are looked for.

122 negative repeat count
The repeat count for list-directed input must be a positive integer.

Revision A of 6 May 1988

244 Sun FORTRAN Programmer's Guide

123 illegal operation for unit
An operation was requested, which was not possible for a device associated 'fl///////Jl//f

with the logical unit. This error is returned by the tape 1/0 routines if
attempting to read past end-of-tape, etc.

124 too many files open - no free descriptors
You tried to open one more file than the maximum number of files allowed
open. The current limit is 64.

125 attempted operation on unit that's not open
The logical unit was not open.

126 illegal inputfor namelist
A namelist read encountered an invalid data item.

Revision A of 6 May 1988

E
Bibliography

Bibliography ... 247

E
Bibliography

The following books or documents describe aspects of FORTRAN 66, FORTRAN
77, and related subjects. This list is not necessarily complete. No particular
endorsement is implied.

1. American National Standards Institute. 1978. American National Standard
Programming Language FORTRAN, ANSI X3.9-1978. New York.

2. -. 1966. American National Standard FORTRAN. New York.

3. Ageloff, Roy, and Richard Mojena. 1981. Applied FORTRAN 77 featuring
Structured Programming. Wadsworth.

4. Brainerd, Walter S., et al. 1978. FORTRAN 77 Programming. Harper and
Row.

5. Cray Research Inc. 1982. Cray-1 Computer Systems FORTRAN (CFf)
Reference Manual. SR-0009.

6. Day, A. C. 1979. Compatible Fortran. Cambridge University Press.

7. Digital Equipment Corporation. 1984. Programming in VAX FORTRAN.
[AA-D034D-TE].

8. Dock, V. Thomas. 1979. Structured FORTRAN 77 Programming. West.

9. Etter, D. M. 1984. Problem Solving with FORTRAN 77.
Benjamin/Cummings Publishing Company, Inc.

10. Hume, J. N., and R. C. Holt. 1979. Programming FORTRAN 77. Reston.

11. Katzan, Harry, Jr. 1978. FORTRAN-77. Van Nostrand-Reinhold.

247 Revision A of 6 May 1988

248 Sun FORTRAN Programmer's Guide

12. Kernighan, B. W. January 1977. RATFOR-A Preprocessor for a
Rational Fortran. Bell Laboratories Computing Science Technical Report .._,,,,

#55,

13. Kernighan, B. W., and P. J. Plauger. 1976. Software Tools. Addison­
Wesley.

14. Knuth, D. E. December 1974. Structured Programming with goto State­
ments. Computing Surveys.

15. Meissner, Loren P., and Elliott I. Organick. 1980. FORTRAN-77 Featuring
Structured Programming. Addison-Wesley.

16. Merchant, Michael J. 1979. ABC's of FORTRAN 77 Programming. Wads­
worth.

17. Page, Rex, and Richard Didday. 1980. FORTRAN 77 for Humans. West.

18. Wagener, Jerrold L. 1980. Principles of FORTRAN 77 Programming.
Wiley.

19. IEEE Standard For Binary Floating-Point Arithmetic, ANSI/IEEE Std 754- 'l///fllll/ll
1985, IEEE, NY, 1985.

Revision A of 6 May 1988

F
Manual Pages for FOR TRAN

Manual Pages for FORTRAN ... 251

F
Manual Pages for FORTRAN

251 Revision A of 6 May 1988

INTRO(1) USER COMMANDS

NAME

intro- introduction to FORTRAN Manual Pages

DESCRIPTION

This section includes the man pages for f77, f77cvt, fpr, and fsplit.

Sun Microsystems Last change: 18 Oct 1987

INTRO(!)

253

F77 (1) USER COMMANDS F77 (1)

NAME
f77 - Sun FOR1RAN compiler

SYNOPSIS
177 [-66] [-a] [-align _block] [-ansi] [-c] [-C] [-dryrun] [-Dname [=def]] [-e]

[float _option] [-fstore] [-f] [-F] [-g] [-help] [-i2] [-i4]
[-lpathname] [-llib] [-Ldir] [-misalign] [-N [cdlnqsx] nnn]
[-o outfile] [-onetrip] [-0 [123]] [-p] [-pg] [-pipe] [-Qoption pro g opt]
[-Qpath pathname] [-Qproduce sourcetype] [-S] [-temp=dir] [-time]
[-u] [-U] [-v] [-w[66]] source/tie ...

DESCRIPTION
177 is the Sun FORTRAN compiler, which translates programs written in the Sun FORTRAN programming
language into executable load modules or into relocatable binary programs for subsequent linking with
ld(l). Sun FORTRAN is a superset of FORTRAN 77, with many extensions, including those to provide com­
patibility with VMS FORTRAN (in conjunction with 177cvt(l)). In addition to the many flag arguments
(options), 177 accepts several types of files.

Files with names ending in .fare taken to be Sun FORTRAN source files; they are compiled, and each
object program is put in the current directory in a file with the same name as the source, with .o substituted
for .f.

Files with names ending in.Fare also taken to be Sun FORTRAN source files, but they are preprocessed by
the C preprocessor (equivalent to a cc -E command) before they are compiled by the 177 compiler.

Files with names ending in .c or .s are taken to be C or assembly source files and are compiled or assem­
bled, producing .o files.

Files with names ending in .ii are taken to be in-line expansion code template files; these are used to
expand calls to selected routines in-line when the -0 option is in effect.

Files with names ending in .vf or .for are assumed by the 177cvt(l) source code converter (not by the 177
compiler) to be valid VMS FORTRAN source files and are converted to source files acceptable to both Sun
FORTRAN and VMS FORTRAN compilers, except for possible VMS FORTRAN features which it can't con­
vert, which are reported by error messages.

OPTIONS

254

See ld(l) for link-time options.

-66 Report non-FORTRAN 66 constructs as errors.

-a Insert code to count how many times each basic block is executed. Invokes a runtime
recording mechanism that creates a .d file for every .f file (at normal termination). The .d
file accumulates execution data for the corresponding source file. The tcov(l) utility can
then be run on the source file to generate statistics about the program.

-align _block_ Cause the common block whose FORTRAN name is block to be page-aligned: its size is
increased to a whole number of pages, and its first byte is placed at the beginning of a
page. This option is passed on to the linker; it's a linker option. For example, the com­
mand "£ 7 7 -align - BUFFO_ GROWTH . F" causes BUFFO to be page-aligned.

-ansi Identify all non-ANSI extensions. Note that 177cvt provides an option to flag any Sun
FORTRAN extensions that it uses during the conversion of a VMS FORTRAN source file.

-c Suppress linking with ld(l) and produce a .o file for each source file. A single object file
can be named explicitly using the -o option.

-C Compile code to check that subscripts are within the declared array bounds.

-dryrun Show but do not execute the commands constructed by the compilation driver.

-Dname [=def] Define a symbol name to the C preprocessor, cpp(l). Equivalent to a #define directive in
the source. If no def is given, name is defined as '1' (.F suffix files only).

Last change: 10 April 1988 Sun Microsystems

F77(1)

-e

-f

float_ option

-F

-g

-help

-i2

-i4

-!pathname

-llib

-Ldir

-misalign

Sun Microsystems

USER COMMANDS F77 (1)

Accept extended source lines, up to 132 characters long.

Align local data and common blocks on 8-byte boundaries. Resulting code may not be
standard and may not be portable.

Floating-point code generation option. This option does not apply to the Sun-4, which
generates SPARC floating-point instructions. For the Sun-2 and Sun-3,fioat_option can
be one of:

-f68881
Generate in-line code for the Motorola MC68881 floating-point coprocessor
(Sun-3 only).

-ffpa Generate in-line code for the Sun-3 Floating-Point Accelerator board (Sun-3
only).

-fsky Generate in-line code for the Sky Floating-Point Processor (Sun-2 only).

-fsoft Generate software floating-point calls (Sun-2 and Sun-3 systems, for which this
is the default).

-fstore Insure that expressions allocated to extended precision registers are rounded to
storage precision whenever an assignment occurs in the source code. Only has
effect when -f68881 is specified. (Sun-3 only)

-fswitch
Generate runtime-switched floating-point calls. The compiled object code is
linked at runtime to routines that support one of the above types of floating-point
code. This was the default in previous releases. Only for use with programs
that are floating-point intensive and which must be portable to machines with
various floating-point options (Sun-2 or Sun-3).

Apply the C preprocessor to .F files. Put the result in corresponding .f files, but do not
compile them. No linking is done.

Produce additional symbol table information for dbx(l) and pass the -lg flag to ld(l).

Display an equivalent of this list of options.

Make the default size of integer and logical constants and variables two bytes.

Make the default size of integer and logical constants and variables four bytes (this is the
default).

Add pathname to the list of directories in which to search for #include files with relative
filenames (not beginning with/). The preprocessor first searches for #include files in the
directory containing source/de, then in directories named with -I options (if any), and
finally in /usr/include/177 (applies to processing of .F suffix files only).

Link with object library lib (for ld(l)).

Add dir to the list of directories containing object-library routines (for linking using
ld(l)).

Allow for misaligned data in memory. Use this option only if you get a warning that
COMMON or EQUIVALENCE statements cause data to be misaligned.
WARNING: With this option, the compiler will generate very much slower code for
references to dummy arguments. If you can, you should recode the indicated section
instead of recompiling with this option.

Last change: 10 April 1988 255

F77 (1)

256

USER COMMANDS F77 (1)

-N[cdlnqsx]nnn Make static tables in the compiler bigger. f77 complains if tables overflow and suggests

you apply one or more of these flags. These flags have the following meanings:

-o out.file

-one trip

-0[123]

c Maximum depth of nesting for control statements (for example, DO loops).

Default is 20.
d Maximum depth of nesting for data structures and unions. Default is 20.

Maximum number of continuation lines for a continued statement. The default is

19 (1 initial and 19 continuation).
n Maximum number of identifiers. Default is 1009.
q Maximum number of equivalenced variables. Default is 150.
s Maximum number of statement numbers. Default is 401.
x Maximum number of external names (common block, subroutine, and function

names). Default is 200.

Multiple -N options increase sizes of multiple tables.

Name the output file out.file. out.file must have the appropriate suffix for the type of file to

be produced by the compilation (see FILES, below). out.file cannot be the same as

source.file (the compiler will not overwrite the source file).

Compile DO loops so that they are performed at least once if reached. Otherwise, Sun

FORTRAN DO loops are not performed at all if the upper limit is smaller than the lower

limit.

Optimize the object code. This invokes both the global intermediate code optimizer and

the object code optimizer.
-01 Peephole Optimization only. Do not use -01 unless -02 and -03 result in

excessive compilation time, or running out of swap space.
-02 Partial optimization. Does a restricted set of global optimizations. Do not use

-02 unless -03 results in excessive compilation time, or running out of swap
space. (Same as -P)

-03 Global Optimization. (same as -0)

If the optimizer runs out of swap space, try any of the following possibly correc­

tive measures (listed in increasing order of difficulty):
Change from -03 to -02
Divide large, complicated routines into smaller, simpler ones.
Increase the limit for the stacksize: insert the line
"limit stacksize 8 megabytes"
into your .cshrc file.
Repartition you disk with two to four times as much swap space.
Backup everything first. You may well need help from your system
administrator to do this.

-p Prepare the object code to collect data for profiling with prof(l). Invokes a runtime

recording mechanism that produces a moo.out file (at normal termination).

-pg Prepare the object code to collect data for profiling with gprof(l). Invokes a runtime

recording mechanism that produces a gmon.out file (at normal termination).

-pipe Use pipes, rather than intermediate files between compilation stages. Very cpu-intensive.

-P See the -02 option.
-Qoption prog opt

Pass the option opt to the program prog. The option must be appropriate to that program

and may begin with a minus sign. prog can be one of: as, c2, cg, cpp, f77passl, iropt,
inline or Id.

Last change: 10 April 1988 Sun Microsystems

F77(1) USER COMMANDS F77 (1)

-Qpath pathname
Insert directory pathname into the compilation search path (to use alternate versions of
programs invoked during compilation). This path will also be searched first for certain
relocatable object files that are implicitly referenced by the compiler driver (such files as
crt.o and bb _link.o).

-Qproduce sourcetype
Produce source code of the type source type, where sourcetype can be one of:
.o Object file from as(l) .
.s Assembler source (from 177passl, inline, c2 or cg).

-S Compile the named programs, and leave the assembly language output on corresponding
files suffixed .s (no .o file is created).

-temp=dir

-time

-u

-u

-v

-w[66]

Set directory for temporary files to be dir.

Report execution times for the various compilation passes.

Make the default type of a variable 'undefined', rather than using the FORTRAN default
rules.

Do not convert upper case letters to lower case. The default is to convert upper case
letters to lower case, except within character string constants.

Verbose. Print the name of each pass as the compiler executes.

Suppress all warning messages. -w66 suppresses only FORTRAN 66 compatibility warn-
ings.

Other arguments are taken to be either linker option arguments, or 177-compatible object programs, typi­
cally produced by an earlier run, or libraries of 177-compatible routines. These programs, together with the
results of any compilations specified, are linked (in the order given) to produce an executable program in
the file specified by the -o option, or in a file named a.out if the -o option is not specified.

ENVIRONMENT

FILES

FLOAT_OPTION When no floating-point option is specified, the compiler uses the value of this environ­
ment variable (if set). Recognized values are: f68881, ffpa, fsky, fswitch and fsoft.

a.out
file .a
file.d
file .r
file .F
file .for
file .vf
file .ii
file.o
file .s
file .S
file .tcov
/Iib/c2
/lib/cg
/lib/compile
/Iib/cpp
/lib/crtO.o
/lib/Fcrtl.o
/Iib/gcrtO.o
/lib/Jibe.a
/Iib/mcrtO.o
/Iib/Mcrtl.o

executable output file
library of object files
tcov(l) test coverage input file
Sun FORTRAN source file
Sun FORTRAN source file for cpp(l)
VMS FORTRAN source file for 177cvt(l)
VMS FORTRAN source file for 177cvt(l)
inline expansion file
object file
assembler source file
assembler source for cpp(l)
output from tcov(l)
optional optimizer
Sun FORTRAN code generator
compiler command-line processing driver
macro preprocessor
runtime startup
startup code for -fsoft option
startup for gprof-profiling
standard library, see intro(3)
startup for profiling
startup code for-f68881 option

Sun Microsystems Last change: 10 April 1988 257

F77 (1)

/lib/Scrtl.o
/lib/W crtl.o
/usr/include/f77
/usr/bin/f77
/usr/bin/f77cvt
/usr/lib/f77passl
/usr/lib/libc _p.a
/usr/lib/libF77.a
/usr/lib/inline
/usr/lib/libl77 .a
/usr/lib/libm.a
/usr/lib/libpfc.a
/usr /lib/lib U77 .a
/tmp/*
moo.out
gm on.out

USER COMMANDS

startup code for -fsky option
startup code for -ff pa option
directory searched by the Sun FORTRAN INCLUDE statement
compiler command-line processing driver
VMS FORTRAN source code converter
Sun FORTRAN parser
profiling library, see intro(3)
Sun FORTRAN library: General - other than I/O or UNIX interface
inline expander of library calls
Sun FORTRAN library: I/O routines
math library
startup code for combined Sun Pascal and Sun FORTRAN programs
Sun FORTRAN library: interface to UNIX system calls
compiler temporary files
file produced for analysis by prof(l)
file produced for analysis by gprof(l)

F77 (1)

SEE ALSO
cc(l), f77cvt(l), fpr(l), fsplit(l), gprof(l), ld(l), prof(l)

Sun FORTRAN Programmer's Guide

Floating-Point Programmer's Guide for the Sun Workstation

DIAGNOSTICS
The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages may be
produced by the linker.

258 Last change: I 0 April 1988 Sun Microsystems

¥77CVT(1) USER COMMANDS ¥77CVT(l)

NAME
f77cvt - VMS FORTRAN to Sun FORTRAN source code converter

SYNOPSIS
177cvt [-b] [-d] [-D] [-e] [-E] [-i] [-Ncx] [-Ndx] [-Nix] [-P] [-s] [-v]

filename.vf I filename.for

DESCRIPTION
177cvt is the VMS FORTRAN source code converter. It converts source files written in valid VMS
FORTRAN into FORTRAN source files acceptable to both the Sun FORTRAN and VMS FORTRAN
compilers, except for possible VMS FORTRAN features which it can't convert, which are reported by error
messages. It optionally produces warning messages if Sun-specific FORTRAN extensions are generated.

The converter accepts input files with filenames ending in .vf or .for, in upper, lower or mixed case.

It produces output files with filenames ending in .f or .F depending on the -D option.

The converter accepts options that roughly correspond to the VMS FORTRAN compiler options.

A successful completion of 177cvt filename. vf can be followed immediately by 177 filename.f
or 177 filename.F, depending on the -D option.

OPTIONS
-b

-d

-D

-e

-E

-i

-Ncx

-Ndx

-Nix

-P
-s

-v

Sun Microsystems

Prevents the converter from creating BLOCK DAT A subprograms for initialized
COMMON variables.

Enables VMS FORTRAN debugging statements. If specified, lines with a D or d in
column 1 are converted into FORTRAN statements. If this option is not used, these
debugging statements are converted into comments.

Also enables VMS FORTRAN debugging statements, but with this option the debugging
statements are enclosed by a pair of preprocessor statements, as shown here:

#ifdef DEBUG

#endif

The preceding two options are mutually exclusive; a diagnostic will result if you
specify both of them.

Indicates that the input file(s) contains extended source lines (up to 132 characters long).
If your file contains extended lines and you omit this option, the source lines are
truncated to 72 characters.

Allows the output file(s) to contain extended source lines. If this option is not specified,
the output lines are broken into 72-column lines.

Inserts the text of INCLUDE files into the converted programs.

Sets x as the maximum number of levels that control structures can be nested.

Sets x as the maximum number of levels that data structures and unions can be nested.

Sets x as the maximum number of continuation lines for a continued statement. (If you
use -NISO, then you can have a total of 51 lines: one first line and 50 after it.) The default
is 19, 1 first line and 19 after it.

Suppresses the generation of preprocessor line numbers for dbx and 177.

Produces warning messages if Sun-specific FORTRAN extensions are generated.

Enables verbose mode; that is, the converter places a FORTRAN comment before each
converted line, describing the conversion of the source code.

Last change: 6 April 1988 259

F77CVT(1)

FILES
filename.f
filename.F
filename.for
filename.vf

SEE ALSO

USER COMMANDS

FORTRAN source file (output from f77cvt without the -D option)
FORTRAN source file (output from f77cvt with the -D option)
valid VMS FORTRAN source file (input to f77cvt)
valid VMS FORTRAN source file (input to f77cvt)

177(1), fpr(l), fsplit(l)
Sun FORTRAN Programmer's Guide

DIAGNOSTICS
The diagnostics produced by f77cvt itself are intended to be self-explanatory.

260 Last change: 6 April 1988

F77CVT(1)

Sun Microsystems

FPR(l) USER COMMANDS FPR(1)

NAME

fpr- print FORTRAN file

SYNOPSIS
fpr

DESCRIPTION

fpr transforms files formatted according to FORTRAN's carriage control conventions into files formatted
according to UNIX line printer conventions.

fpr copies its input onto its output, replacing the carriage control characters with characters that will
produce the intended effects when printed using lpr(l). The first character of each line determines the
vertical spacing as follows:

(blank) one line

0 two lines

1 to first line of next page

+ no advance

A blank line (that is, an empty line) is treated as if its first character is a blank. A blank that appears as a
carriage control character is deleted. A zero is changed to a newline. A one is changed to a form feed. The
effects of a"+" are simulated using backspaces.

Note that fpr is known as asa in UNIX System V.

EXAMPLES

a.out I fpr I lpr

fpr < 177.output I lpr

BUGS
Results are undefined for input lines longer than 170 characters.

Sun Microsystems Last change: 10 April 1988 261

FSPLIT(1) USER COMMANDS FSPLIT(1)

NAME
fsplit - split a multi-routine FORTRAN file into individual files

SYNOPSIS
fsplit [-e efile] ... [file]

DESCRIPTION
fsplit takes as input either a file or standard input containing FORTRAN source code. It attempts to split

the input into separate routine files of the form name.f. where name is the name of the program unit

(function, subroutine, block data or program). The name for unnamed block data subprograms has the

form blkdtaNNN.f where NNN is three digits and a file of this name does not already exist. For unnamed

main programs the name has the form mainNNN.f • If there is an error in classifying a program unit, or if

name.f already exists, the program unit will be put in a file of the form zzzNNN.f where zzzNNN.f does not

already exist.

Normally each subprogram unit is split into a separate file. When the -e option is used, only the specified

subprogram units are split into separate files. For example:

fsplit-e readit-e doit prog.f

will split readit and doit into separate files.

DIAGNOSTICS

BUGS

262

If names specified via the -e option are not found, a diagnostic is written to standard error.

fsplit assumes the subprogram name is on the first noncomment line of the subprogram unit. Nonstandard
source formats may confuse fsplit.

It is hard to use -e for unnamed main programs and block data subprograms since you must predict the

created file name.

Last change: 10 April 1988 Sun Microsystems

IN1R0(3F) FORTRAN LIBRARY ROUTINES INTR0(3F)

NAME
intro- introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the FOR TRAN runtime library. The functions listed here
provide an interface from f77 programs to the system in the same manner as the C library does for C
programs. They are automatically loaded as needed by the FORTRAN compiler f77 (1).

Most of these functions are in libU77.a. Some are in libF77.a or libl77.a. A few intrinsic functions are
described for the sake of completeness.

For efficiency, the SCCS ID strings are not normally included in the a.out file. To include them, simply
declare

EX1ERNAL f77lid

in any f77 module.

LIST OF FUNCTIONS
Name Appears on Page Description

abort abort(3F)
access access(3F)
alarm alarm(3F)
bit bit(3F)
chdir chdir(3F)
chmod chmod(3F)
ctime time(3F)
drand rand(3F)
dtime etime(3F)
etime etime(3F)
exit exit(3F)
f77 _ieee_environment

f77 _ftoatingpoint

fdate fdate(3F)
fgetc getc(3F)
fl max range(3F)
fl min range(3F)
flush flush(3F)
fork fork(3F)
fpecnt trpfpe(3F)
fputc putc(3F)
free free(3F)
fseek fseek(3F)
fstat stat(3F)
ftell fseek(3F)
gerror perror(3F)
getarg getarg(3F)
getc getc(3F)
getcwd getcwd(3F)
getenv getenv(3F)
getfd getfd(3F)
getgid getuid(3F)
getlog getlog(3F)

Sun Microsystems

terminate abruptly with memory image
determine accessibility of a file
execute a subroutine after a specified time
and, or, xor, not, rshift, lshift, bic, bis, bit, setbit functions
change default directory
change mode of a file
return system time
return random values
return elapsed execution time
return elapsed execution time
terminate process with status
f77 _ieee_environment(3F)
IEEE floating-point mode, status, and signals
f77 _floatingpoint(3F)
IEEE floating-point definitions
return date and time in an ASCII string
get a character from a logical unit
return extreme values
return extreme values
flush output to a logical unit
create a copy of this process
trap and repair floating-point faults
write a character to a FORTRAN logical unit
memory deallocator
reposition a file on a logical unit
get file status
reposition a file on a logical unit
get system error messages
return command line arguments
get a character from a logical unit
get pathname of current working directory
get value of environment variables
get the file descriptor of an external unit number
get user or group ID of the caller
get user's login name

Last change: 10 April 1988 263

INTR0(3F) FOR1RAN LIBRARY ROUTINES INTR0(3F)

264

getpid getpid(3F) get process id
getuid getuid(3F) get user or group ID of the caller
gmtime time(3F) return system time
hostnm hostnm(3F) get name of current host
iargc getarg(3F) return command line arguments
idate idate(3F) return date or time in numerical form
iermo perror(3F) get system error messages
index index(3F) return index of the first occurrence of character string a2 in character string al
inmax range(3F) return the maximum positive integer value
ioinit ioinit(3F) change f77 1/0 initialization
irand rand(3F) return random values
isatty ttynam(3F) find name of a terminal port
itime idate(3F) return date or time in numerical form
kill kill(3F) send a signal to a process
len index(3F) return declared length of character string
libm_single libm_single(3F)

single-precision Fortran entry points for all libm functions
libm_double libm_double(3F)

link
lnblnk
loc
long
ls tat

double-precision Fortran entry points for all libm functions
make a link to an existing file
return position of last non blank in character string
return the address of an object
integer object conversion
get file status
return system time
memory allocator
get system error messages
write a character to a FORTRAN logical unit
quick sort
return random values
rename a file

ltime
malloc
perror
putc
qsort
rand
rename
rindex
short
signal
sleep
stat
symlnk
system
tclose
time
topen
tread
trewin
tskipf
tstate
ttynam
twrite
unlink
wait

link(3F)
index(3F)
loc(3F)
long(3F)
stat(3F)
time(3F)
malloc(3F)
perror(3F)
putc(3F)
qsort(3F)
rand(3F)
rename(3F)
index(3F)
long(3F)
signal(3F)
sleep(3F)
stat(3F)
link(3F)
system(3F)
topen(3F)
time(3F)
topen(3F)
topen(3F)
topen(3F)
topen(3F)
topen(3F)
ttynam(3F)
topen(3F)
unlink(3F)
wait(3F)

return index of the last occurrence of character string a2 in character string al
integer object conversion
change the action for a signal
suspend execution for an interval
get file status
make a link to an existing file
execute a UNIX command
f77tape1/0
return system time
f77tape1/0
f77tape1/0
f77tape1/0
f77tape1/0
f77tape1/0
find name of a terminal port
f77tape1/0
remove a directory entry
wait for a process to terminate

Last change: 21 April 1988 Sun Microsystems

ABORT(3F) FORTRAN LIBRARY ROUTINES

NAME
abort- terminate abruptly with memory image

SYNOPSIS
subroutine abort (string)
character*(*) string

DESCRIPTION

ABORT(3F)

Abort cleans up the I/O buffers and then aborts producing a core file in the current directory. If string is
given, it is written to logical unit 0 preceded by ''abort:••.

FILES
/usr/lib/libF77 .a

SEE ALSO
abort(3)

Sun Microsystems Last change: 24 March 1988 265

ACCESS(3F) FORTRAN LIBRARY ROUTINES

NAME
access - detennine accessibility of a file

SYNOPSIS
integer function access (name, mode)
character•(*) name, mode

DESCRIPTION

ACCESS (3F)

Access checks the given file, name, for accessability with respect to the caller according to mode. Mode
may include in any order and in any combination one or more of:

FILES

r test for read permission

w test for write permission

x test for execute pennission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of the specified
modes. 0 is returned if the specified access would be successful.

/usr/lib/libU77.a

SEE ALSO
access(2), perror(3F)

266 Last change: 23 August 1983 Sun Microsystems

ALARM(3F) FOR1RAN LIBRARY ROUTINES

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc

DESCRIPTION

ALARM(3F)

This routine arranges for subroutine proc to be called after time seconds. If time is "O'', the alarm is turned
off and no routine will be called. The returned value will be the time remaining on the last alarm.

FILES
/usr /lib/Ii b U77 .a

SEE ALSO
alarm(3C), sleep(3F), signal(3F)

BUGS

A subroutine cannot pass its own name to alarm because of restrictions in the standard.

Sun Microsystems Last change: 16 February 1984 267

BIT(3F) FORTRAN LIBRARY ROUTINES BIT(3F)

NAME
bit - and, or, xor, not, rshift, lshift, bic, bis, bit, setbit functions

SYNOPSIS
(generic) function and (wordl, word2)

(generic) function or (wordl, word2)

(generic) function xor (wordl, word2)

(generic) function not (word)

(generic) function rshift (word, nbits)

(generic) function lshift (word, nbits)

subroutine hie (bitnum, word)
integer*4 bitnum, word

subroutine bis (bitnum, word)
integer*4 bitnum, word

subroutine setbit (bitnum, word, state)
integer*4 bitnum, word, state

logical function bit (bitnum, word)
integer*4 bitnum, word

DESCRIPTION

FILES

268

The and, or, xor, not, rshift, and /shift functions are generic functions expanded inline by the compiler.

Their arguments must be integer or logical values (short or long). The returned value has the data type of

the first argument.

Bits are numbered such that bit 0 is the least significant bit, and bit 31 is the rrwst significant.

and computes the bitwise 'and' of its arguments.

or computes the bitwise 'or' of its arguments.

xor computes the bitwise 'exclusive or' of its arguments.

not returns the bitwise complement of its argument.

lshift is a logical left shift with no end around carry.

rshift is an arithmatic right shift with sign extension. No test is made for a reasonable value of nbits.

Bic, bis, and setbit are external subroutines which operate on integer*4 arguments.

bis sets bitnum in word.

hie clears bitnum in word.

setbit sets bitnum in word to 1 if state is nonzero and clears it otherwise.

bit is an external function which tests bitnum in word and returns .true. if bitnum is a 1 (one), and

returns .false. if bitnum is a 0 (zero).

/usr/lib/libF77 .a

Last change: 31 March 1988 Sun Microsystems

CHDIR(3F) FORTRAN LIBRARY ROUTINES

NAME
chdir - change default directory

SYNOPSIS
integer function chdir (dirname)
character*(*) dirname

DESCRIPTION

CHDIR(3F)

The default directory for creating and locating files will be changed to dirname. Zero is returned if
successful; an error ccxle otherwise.

FILES
/usr/lib/libU77.a

SEE ALSO

BUGS

chdir(2), cd(I), perror(3F)

Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

Use of this function may cause inquire by unit to fail.

Certain FORTRAN file operations reopen files by name. Using chdir while doing 1/0 may cause the
runtime system to lose track of files created with relative pathnames (including files created by OPEN
statements without file names).

Sun Microsystems Last change: 24 March 1988 269

CHMOD(3F)

NAME
chmod - change mode of a file

SYNOPSIS

FORTRAN LIBRARY ROUTINES

integer function chmod (name, mode)
character*(*) name, mode

DESCRIPTION

CHMOD(3F)

This function changes the filesystem mode of flle name. Mode can be any specification recognized by
clvnod(l). Name must be a single pathname.

FILES

The normal returned value is 0. Any other value will be a system error number.

/usr /lib/Ii b U77 .a
/bin/chmod exec' ed to change the mode.

SEE ALSO
chmod(l)

BUGS
Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

270 Last change: 13 June 1983 Sun Microsystems

ETIME(3F) FORTRAN LIBRARY ROUTINES

NAME
etime, dtime - return elapsed execution time

SYNOPSIS
real function etime (tarray)
real tarray(2)

real function dtime (tarray)
real tarray(2)

DESCRIPTION

ETIME(3F)

These two routines return elapsed runtime in seconds for the calling process. Dtime returns the elapsed
time since the last call to dtime, or the start of execution on the first call.

The argument array returns user time in the first element and system time in the second element. Elapsed
time, the returned value, is the sum of user and system time.

The resolution is determined by the system clock frequency.

FILES
/usr/lib/libU77 .a

SEE ALSO
getrusage(2)

Sun Microsystems Last change: 9 January 1984 271

EXIT(3F) FORTRAN LIBRARY ROUTINES

NAME
exit - terminate process with status

SYNOPSIS
subroutine exit (status)
integer status

DESCRIPTION

EXIT(3F)

Exit flushes and closes all the process's files, and notifies the parent process if it is executing a wait. The
low-order 8 bits of status are available to the parent process. (Therefore status should be in the range 0 -
255)

This call will never return.

The C function exit may cause cleanup actions before the final 'sys exit'.

FILES
/usr/lib/libF77 .a

SEE ALSO
exit(2), fork(2), fork(3f), wait(2), wait(3f)

272 Last change: 13 June 1983 Sun Microsystems

F77 _FLOA TINGPOINT (3F) FOR1RAN LIBRARY ROUTINES F77 _FLOATINGPOINT (3F)

NAME
f77 _floatingpoint - Fortran IEEE floating-point definitions

SYNOPSIS
#include <177 /f77 _ floatingpoint.h>

DESCRIPTION

FILES

This file defines constants and types used to implement standard floating-point according to ANSI/IEEE
Std 754-1985. Use these constants and types to write more easily understood .F source files that will
undergo automatic preprocessing prior to Fortran compilation.

IEEE Rounding Modes:

fp_direction_type

fp_precision_type

SIGFPE handling:

sigfpe_code_type

sigfpe_handler_type

SIGFPE_DEF AULT

SIGFPE_IGNORE

The type of the IEEE rounding direction mode. Note that the order of
enumeration varies according to hardware.

The type of the IEEE rounding precision mode, which only applies on systems
that support extended precision such as Sun-3's with 68881 's.

The type of a SIGFPE code.

The type of a user-definable SIGFPE exception handler called to handle a
particular SIGFPE code.

A macro indicating the default SIGFPE exception handling, namely for IEEE
exceptions to continue with a default result, and to abort for other SIGFPE codes.

A macro indicating an alternate SIGFPE exception handling, namely to ignore and
continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception handling, namely to abort with
a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each exception is given a bit
number.

fp_exception_field_type The type intended to hold at least N_IEEE_EXCEPTION bits corresponding to
the IEEE exceptions numbered by fp _exception_ type. Thus fp _inexact
corresponds to the least significant bit and fp _invalid to the fifth least significant
bit. Some operations may set more than one exception.

IEEE Classification:

fp_class_type An enumeration of the various classes of IEEE floating-point values and symbols.

/usr/include/f77 /CT7 _floatingpoint.h

SEE ALSO
ieee_environment(3M), f77 _ieee_environment(3F)

Sun Microsystems Last change: 24 March 1988 273

F77 _IEEE_ENVIRONMENT (3F) FORTRAN LIBRARY ROUTINES F77 _IEEE_ENVIRONMENT (3F)

NAME

IEEE environment - mode, status, and signal handling subprograms for IEEE arithmetic

SYNOPSIS

#include d77 /177 _ ftoatingpoint.h>

integer function ieee_ flags(action,mode,in,out)
character*(*) action, mode, in, out

integer function ieee _ handler(action,exception,hdl)
character*(*) action, exception
sigf pe _handler_ type hdl

sigfpe _handler_ type function sigfpe(code, hdl)
sigfpe _code_ type code
sigf pe _handler_ type hdl

DESCRIPTION

These subprograms provide modes and status required to fully exploit ANSI/IEEE Std 754-1985 arithmetic
in a Fortran program. They correspond closely to the functions ieee _flags(3M), ieee _handler(3M), and
sigfpe(3).

EXAMPLES

274

The following examples illustrate syntax.

integer ieeer
character* 1 mode, out, in
ieeer = ieee_flags('clcarall' ,mode, in, out)

sets ieeer to 0, rounding direction to 'nearest', rounding precision to 'extended', and all accrued
exception-occurred status to zero.

character* 1 out, in
ieeer = ieee_flags('clear' ,'direction', in, out)

sets ieeer to 0, and rounding direction to 'nearest'.

character* 1 out
ieeer = ieee_ftags('set' ,'direction' ,'tozero' ,out)

sets ieeer to 0 and the rounding direction to 'tozero' unless the hardware does not support directed
rounding modes; then ieeer is set to 1.

character* 16 out
ieeer = ieee_flags('clear','exception','all',out)

sets ieeer to 0 and clears all accrued exception-occurred bits. If subsequently overflow, invalid, and
inexact exceptions are generated then

character* 16 out
ieeer = ieee_flags(' get',' exception',' overflow ',out)

sets ieeer to 25 and out to 'overflow'.

Last change: 23 March 1988 Sun Microsystems

F77 _IEEE_ENVIRONMENT (3F) FORTRAN LIBRARY ROUTINES F77 _IEEE_ENVIRONMENT (3F)

FILES

A user-specified signal handler might look like this:

integer function sample_handlcr (sig, code, sigcontext)
integer sig
integer code
integer sigcontext(S)

c Sample user-written sigfpe code handler.
c Prints a message and tenninates.
c sig .eq. SIGFPE always.
c The structure of sigcontext is defined in <signal.h>.

print*,' ieee exception code ',code,' occurred at pc ',sigcontext(4)
call abort(' ieee exception occurred ')
end

and it might be set up like this:

extern sample_handler
integer ieeer
ieeer = ieee_handler ('set', 'overflow', sample_handler)
if (ieeer .ne. 0) print*,' ieee_handler can not set overflow '

/usr/include/f77 /f77 _ftoatingpoint.h
/usr/lib/libm.a

SEE ALSO
floatingpoint(3), signal(3), sigfpe(3), f77 _floatingpoint(3F), ieee_flags(3M), ieee_handler(3M)

Sun Microsystems Last change: 23 March 1988 275

FDATE(3F) FORTRAN LIBRARY ROUTINES

NAME
f date - return date and time in an ASCII string

SYNOPSIS
subroutine f date (string)
character*24 string

character*24 function fdate()

DESCRIPTION

FDATE(3F)

Fdate returns the current date and time as a 24 character string in the format described under ctime(3).
Neither 'newline' nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a function, the calling routine must
define its type and length. For example:

FILES

character*24 fdate
write(*,*) fdate()

/usr/lib/libU77 .a

SEE ALSO
ctime(3), time(3F), idate(3F)

276 Last change: 9 January 1984 Sun Microsystems

.• ..._.,..

FLUSH(3F) FORTRAN LIBRARY ROUTINES

NAME
flush - flush output to a logical unit

SYNOPSIS
subroutine flush (lunit)

DESCRIPTION

FLUSH(3F)

Flush causes the contents of the buffer for logical unit /unit to be flushed to the associated file. This is most
useful for logical units 0 and 6 when they are both associated with the control terminal.

FILES
/usr/lib/libl77 .a

SEE ALSO
fclose(3S)

Sun Microsystems Last change: 13 June 1983 277

FORK(3F) FOR1RAN LIBRARY ROUTINES FORK(3F)

NAME
fork - create a copy of this process

SYNOPSIS
integer function fork()

DESCRIPTION

FILES

F ark creates a copy of the calling process. The only distinction between the 2 processes is that the value
returned to one of them (referred to as the 'parent' process) will be the process id of the copy. The copy is
usually referred to as the 'child' process. The value returned to the 'child' process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the contents of I/0
buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the system error code. See
perror(3F).

A corresponding exec routine has not been provided because there is no satisfactory way to retain open
logical units across the exec. However, the usual function of fork/exec can be performed using system(3F).

/usr/lib/libU77 .a

SEE ALSO
fork(2), wait(3F), kill(3F), system(3F), perror(3F)

278 Last change: 24 March 1988 Sun Microsystems

FSEEK(3F) FORTRAN LIBRARY ROUTINES

NAME
fseek, ftell - reposition a file on a logical unit

SYNOPSIS
integer function fseek (lunit, offset, from)
integer off set, from

integer function ftell (lunit)

DESCRIPTION

FSEEK(3F)

[unit must refer to an open logical unit. offset is an offset in bytes relative to the position specified by from.
Valid values for from are:

FILES

0 meaning 'beginning of the file'
1 meaning 'the current position'
2 meaning 'the end of the file'

The value returned by /seek will be 0 if successful, a system error code otherwise. (See perror(3F))

Ftell returns the current position of the file associated with the specified logical unit. The value is an offset,
in bytes, from the beginning of the file. If the value returned is negative, it indicates an error and will be
the negation of the system error code. (See perror(3F))

/usr/lib/lib U77 .a

SEE ALSO
fseek(3S), perror(3F)

Sun Microsystems Last change: 13 June 1983 279

GETARG(3F) FORTRAN LIBRARY ROUTINES

NAME

getarg, iargc - return command line arguments

SYNOPSIS
subroutine getarg (k, arg)
character*(*) arg

function iargc ()

DESCRIPTION

GETARG(3F)

A call to getarg will return the kth command line argument in character string arg. The 0th argument is the
command name.

large returns the index of the last command line argument.

FILES
/usr/lib/libU77.a

SEE ALSO
execve(2), getenv(3F)

280 Last change: 13 June 1983 Sun Microsystems

GETC(3F) FORTRAN LIBRARY ROUTINES

NAME

getc, fgetc - get a character from a logical unit

SYNOPSIS
integer function getc (char)
character char

integer function fgetc (lunit, char)
character char

DESCRIPTION

GETC(3F)

These routines return the next character from a file associated with a fortran logical unit, bypassing normal
fortran 1/0. Getc reads from logical unit 5, normally connected to the control terminal input.

The value of each function is a system status code. Zero indicates no error occured on the read; -1
indicates end of file was detected. A positive value will be either a UNIX system error code or an f77 I/0
error code. See perror(3F).

FILES
/usr/lib/libU77.a

SEE ALSO
getc(3S), intro(2), perror(3F)

Sun Microsystems Last change: 13 June 1983 281

GETCWD(3F) FORTRAN LIBRARY ROUTINES

NAME
getcwd - get pathname of current working directory

SYNOPSIS
integer function getcwd (dirname)
character*(*) dirname

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will be returned in dirname. The value
of the function will be zero if successful; an error code otherwise.

FILES
/usr/lib/libU77.a

SEE ALSO
chdir(3F), perror(3F), getwd(3)

BUGS
Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

282 Last change: 13 June 1983 Sun Microsystems

GETENV(3F) FOR'IRAN LIBRARY ROUTINES

NAME
getenv - get value of environment variables

SYNOPSIS
subroutine getenv (ename, evalue)
character*(*) ename, evalue

DESCRIPTION

GETENV(3F)

Getenv searches the environment list (see environ(5)) for a string of the form ename=value and returns
value in evalue if such a string is present, otherwise fills evalue with blanks.

FILES
/usr/lib/libU77 .a

SEE ALSO
execve(2), environ(5)

Sun Microsystems Last change: 13 June 1983 283

GETFD(3F) FORTRAN LIBRARY ROUTINES

NAME
getfd - get the file descriptor of an external unit number

SYNOPSIS
integer function getfd(unitn)
integer unitn

DESCRIPTION

GETFD(3F)

Getfd returns the 'file descriptor' of an external unit number if the unit is connected and -1 otherwise.

FILES
/usr/lib/libl77 .a

SEE ALSO
open(2)

284 Last change: 13 June 1983 Sun Microsystems

GETLOG(3F)

NAME
getlog - get user's login name

SYNOPSIS
subroutine getlog (name)
character*(*) name

FORTRAN LIBRARY ROUTINES

character*(*) function getlogO

DESCRIPTION

GETLOG(3F)

Get/og will return the user's login name or all blanks if the process is running detached from a terminal.

FILES
/usr/lib/libU77.a

SEE ALSO
getlogin(3)

Sun Microsystems Last change: 13 June 1983 285

GETPID(3F)

NAME
getpid - get process id

SYNOPSIS
integer function getpid()

DESCRIPTION

FORTRAN LIBRARY ROUTINES

Getpid returns the process ID number of the current process.

FILES
/usr/lib/libU77 .a

SEE ALSO
getpid(2)

286 Last change: 13 June 1983

GETPID(3F)

Sun Microsystems

GETUID(3F) FOR1RAN LIBRARY ROUTINES

NAME
getuid, getgid - get user or group ID of the caller

SYNOPSIS
integer function getuid()

integer function getgid()

DESCRIPTION
These functions return the real user or group ID of the user of the process.

FILES
/usr/lib/libU77.a

SEE ALSO
gctuid(2)

Sun Microsystems Last change: 13 June 1983

GETUID(3F)

287

HOSTNM(3F) FORTRAN LIBRARY ROUTINES

NAME
hostnm - get name of current host

SYNOPSIS
integer function hostnm (name)
character* (*) name

DESCRIPTION

HOSTNM(3F)

This function puts the name of the current host into character string name. The return value should be 0;
any other value indicates an error.

FILES
/usr/lib/libU77.a

SEE ALSO
gethostname(2)

288 Last change: 13 June 1983 Sun Microsystems

IDATE(3F) FOR1RAN LIBRARY ROUTINES

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
subroutine idate (iarray)
integer iarray(3)

subroutine itime (iarray)
integer iarray(3)

DESCRIPTION

IDATE (3F)

/date returns the current date in iarray. The order is: day, mon, year. Month will be in the range 1-12. Year
will be~ 1969.

/time returns the current time in iarray. The order is: hour, minute, second.

FILES
/usr /lib/lib U77 .a

SEE ALSO
ctime(3F), fdate(3F)

Sun Microsystems Last change: 13 June 1983 289

INDEX(3F) FORTRAN LIBRARY ROUTINES INDEX(3F)

NAME
index, rindex, lnblnk, lcn - tell about character strings

SYNOPSIS
(intrinsic) function index (string, substr)
character*(*) string, substr

integer function rindex (string, substr)
character*(*) string, substr

function lnblnk (string)
character*(*) string

(intrinsic) function len (string)
character*(*) string

DESCRIPTION

FILES

290

Index (rind.ex) returns the index of the first (last) occurrence of the substring substr in string, or zero if it
does not occur. Index is an f77 intrinsic function; rindex is a library routine.

Lnblnk returns the index of the last non-blank character in string. This is useful since all f77 character
objects are fixed length, blank padded. Intrinsic function Zen returns the declared size of the character
string argument.

/usr/lib/libF77 .a

Last change: 23 March 1988 Sun Microsystems

IOINIT (3F) FORTRAN LIBRARY ROUTINES IOINIT(3F)

NAME
ioinit- change f77 1/0 initialization

SYNOPSIS
logical function ioinit (cctl, bzro, apnd, prefix, vrbose)
logical cctl, bzro, apnd, vrbose
character*(*) prefix

DESCRIPTION
This routine will initialize several global parameters in the f77 1/0 system, and attach externally defined
files to logical units at run time. This connection exists only until broken; if you close the unit, then the
connection no longers holds. The effect of the flag arguments applies to logical units opened after ioinit is
called. The exception is the preassigned units, 5 and 6, to which cctl and bzro will apply at any time. ioinit
is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cctl is .true. then carriage control will
be recognized on formatted output to all logical units except unit 0, the diagnostic channel. Otherwise the
default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then such blanks
will be treated as zero's. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is sometimes
necessary or convenient to open at the END-OF-FILE so that a write will append to the existing data. If
apnd is .true. then files opened subsequently on any logical unit will be positioned at their end upon
opening. A value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when a program
is run. There is no such automatic association in f77. However, if the argument prefix is a non-blank
string, then names of the form prefixNN will be sought in the program environment. The value associated
with each such name found will be used to open logical unit NN for formatted sequential access.

For example, if the program myprogram has the call:

call ioinit (.true., .false., .false., 'FORT', .false.)

then when the following sequence

% setenv FORTOl mydata
% setenv FORT12 myresults
% myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresults. Both files
would be positioned at their beginning. Any formatted output would have column 1 removed and
interpreted as carriage control. Embedded and trailing blanks would be ignored on input.

If the argument vrbose is .true. then ioinit will report on its activity.

The effect of

call ioinit (.true., .true., .false.,", .false.)

can be achieved without the actual call by including ''-1166'' on thej77 command line. This gives carriage
control on all logical units except 0, causes files to be opened at their beginning, and causes blanks to be
interpreted as zero's.

The internal flags are stored in a labeled common block with the following definition:

integer*2 ieof, ictl, ibzr

Sun Microsystems Last change: 07 April 88 291

IOINIT (3F) FORTRAN LIBRARY ROUTINES IOINIT(3F)

FILES

common /ioiflg/ ieof, ictl, ibzr

/usr/lib/libI77 .a
/usr/lib/libI66.a

f77 I/O library
sets older fortran I/0 modes

SEE ALSO

BUGS

292

getarg(3F), getenv(3F), "Introduction to the f77 I/0 Library"

Prefix can be no longer than 30 characters. A pathname associated with an environment name can be no
longer than 255 characters.

The '' +'' carriage control does not work.

Last change: 07 April 88 Sun Microsystems

KILL(3F)

NAME
kill - send a signal to a process

SYNOPSIS
function kill (pid, signum)
integer pid, signum

DESCRIPTION

FORTRAN LIBRARY ROUTINES KILL(3F)

Pid must be the process id of one of the user's processes. Signum must be a valid signal number (see
signal(3)). The returned value will be 0 if successful; an error code otherwise.

FILES
/usr/lib/libU77 .a

SEE ALSO
kill(2), signal(3), signal(3F), fork(3F), pcrror(3F)

Sun Microsystems Last change: 26 August 1983 293

LIBM_DOUBLE (3F) FORTRAN LIBRARY ROUTINES

NAME

libm_doublc - Double-precision Fortran access to libm functions

SYNOPSIS

294

#include d77 /f77 _ floatingpoint.h>

doubleprecision function d _ acosh (x)
doubleprecision function d _ asinh (x)
doubleprecision function d _ atanh (x)
doubleprecision function d _ cbrt (x)
doubleprecision function d _ ceil (x)
fp_class_type function id_fp_class (x)
doubleprecision function d _ copysign (x,y)
doubleprecision function d _ erf (x)
doubleprecision function d _ erfc (x)
doubleprecision function d _ expm 1 (x)
integer function id_ finite (x)
doubleprecision function d _floor (x)
doubleprecision function d _ hypot (x,y)
integer function id _ilogb (x)
integer function id _irint (x)
integer function id_ isinf (x)
integer function id_ isnan (x)
integer function id_ isnormal (x)
integer function id_ issubnormal (x)
integer function id_ iszero (x)
doubleprecision function d _infinity ()
doubleprecision function d _jO (x)
doubleprecision function d _jl (x)
doubleprecision function d _jn (n,x)
doubleprecision function d _lgamma (x)
doubleprecision function d _logb (x)
doubleprecision function d _loglp (x)
doubleprecision function d_log2 (x)
doubleprecision function d _max_ normal ()
doubleprecision function d _max_ subnormal ()
doubleprecision function d_min_normal O
doubleprecision function d _min_ subnormal O
doubleprecision function d _ nextafter (x,y)
doubleprecision function d _quiet_ nan (n)
doubleprecision function d _remainder (x,y)
doubleprecision function d _rint (x)
doubleprecision function d_scalb (x,y)
doubleprecision function d _ scalbn (x,n)
doubleprecision function d _signaling_ nan (n)
integer function id_ sign bit (x)
doubleprecision function d_significand (x)
subroutine d _sincos(x, s, c)
doubleprecision function d _yO (x)
doubleprecision function d _yl (x)
doubleprecision function d _yn (n,x)

doubleprecision x, y, s, c
integer n

Last change: 19 March 1988

LIBM_DOUBLE (3F)

Sun Microsystems

LIBM_DOUBLE (3F) FORTRAN LIBRARY ROUTINES LIBM_DOUBLE (3F)

DESCRIPTION
These functions provide access to double-precision libm functions that do not correspond to standard
Fortran generic intrinsic functions.

FILES
/usr/lib/libm.a

SEE ALSO
intro(3M)

Sun Microsystems Last change: 19 March 1988 295

LIBM_SINGLE (3F) FORTRAN LIBRARY ROUTINES

NAME

libm_single - Single-precision Fortran access to libm functions

SYNOPSIS

296

#include d77 /f77 _ floatingpoint.h>

real function r _acosh (x)
real function r _ asinh (x)
real function r _ atanh (x)
real function r _ cbrt (x)
real function r _ ceil (x)
fp _class_ type function ir _f p _class (x)
real function r _ copysign (x,y)
real function r _ erf (x)
real function r _ erfc (x)
real function r _ expm 1 (x)
integer function ir _finite (x)
real function r _floor (x)
real function r _ hypot (x,y)
integer function ir _ilogb (x)
integer function ir _irint (x)
integer function ir _ isinf (x)
integer function ir _isnan (x)
integer function ir _isnormal (x)
integer function ir _issubnormal (x)
integer function ir _ iszero (x)
real function r _infinity ()
real function r _jO (x)
real function r _jl (x)
real function r _jn (n,x)
real function r _I gamma (x)
real function r _logb (x)
real function r _loglp (x)
real function r _log2 (x)
real function r _max_ normal ()
real function r_max_subnormal ()
real function r _min_ normal ()
real function r_min_subnormal ()
real function r _ nextafter (x,y)
real function r _quiet_ nan (n)
real function r _remainder (x,y)
real function r _rint (x)
real function r _scalb (x,y)
real function r _ scalbn (x,n)
real function r _signaling_ nan (n)
integer function ir _signbit (x)
real function r _ significand (x)
subroutine r _sincos(x, s, c)
real function r _yO (x)
real function r _yl (x)
real function r _yn (n,x)

real x, y, s, c
integer n

Last change: 19 March 1988

LIBM_SINGLE (3F)

Sun Microsystems

LIBM_SINGLE (3F) FORTRAN LIBRARY ROUTINES LIBM_SINGLE (3F)

DESCRIPTION
These functions provide access to single-precision libm functions that do not correspond to standard
Fortran generic intrinsic functions.

FILES
/usr/lib/libm.a

SEE ALSO
intro(3M), single_precision(3M)

Sun Microsystems Last change: 19 March 1988 297

LINK(3F) FORTRAN LIBRARY ROUTINES

NAME
link, symlnk - make a link to an existing file

SYNOPSIS
function link (namel, name2)
character*(*) namel, name2

integer function symlnk (namel, name2)
character*(*) namel, name2

DESCRIPTION

LINK (3F)

Name] must be the pathname of an existing file. Name2 is a pathname to be linked to file name]. Name2
must not already exist. The returned value will be 0 if successful; a system error code otherwise.

Symlnk creates a symbolic link to name].

FILES
/usr/lib/libU77 .a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS

Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

298 Last change: 13 June 1983 Sun Microsystems

LOC(3F) FORTRAN LIBRARY ROUTINES

NAME
loc - return the address of an object

SYNOPSIS
function loc (arg)

DESCRIPTION
The returned value will be the address of arg.

FILES
/usr/lib/libU77 .a

Sun Microsystems Last change: 13 June 1983

LOC(3F)

299

LONG(3F) FORTRAN LIBRARY ROUTINES

NAME
long, short - integer object conversion

SYNOPSIS
integer*4 function long (int2)
integer*2 int2

integer*2 function short (int4)
integer*4 int4

DESCRIPTION

LONG(3F)

These functions provide conversion between short and long integer objects. Long is useful when constants
are used in calls to library routines and the code is to be compiled with '-i2'. Short is useful in similar
context when an otherwise long object must be passed as a short integer.

FILES
/usr/lib/libF77 .a

300 Last change: 9 January 1984 Sun Microsystems

PERROR(3F) FOR1RAN LIBRARY ROUTINES PERROR(3F)

NAME

perror, gerror, ierrno - get system error messages

SYNOPSIS

subroutine perror (string)
character*(*) string

subroutine gerror (string)
character*(*) string

character*(*) function gerror()

function ierrno()

DESCRIPTION

FILES

Perror will write a message to fortran logical unit 0 appropriate to the last detected system error. String
will be written preceding the standard error message.

Gerror returns the system error message in character variable string. Gerror may be called either as a
subroutine or as a function.

Ierrno will return the error number of the last detected system error. This number is updated only when an
error actually occurs. Most routines and 1/0 statements that might generate such errors return an error code
after the call; that value is a more reliable indicator of what caused the error condition.

/usr/lib/libU77.a

SEE ALSO

intro(2), perror(3), "Introduction to the f77 1/0 Library"

BUGS

String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

NOTES

UNIX system error codes are described in intro(2). The f77 1/0 error codes and their meanings are:

100 "error in format"
101 "illegal unit number"
102 "formatted io not allowed"
103 "unformatted io not allowed"
104 "direct io not allowed"
105 "sequential io not allowed"
106 ' 'can't backspace file' '
107 ''off beginning of record''
108 "can't stat file"
109 ''no* after repeat count''
110 "off end ofrecord"
111 "truncation failed"
112 ''incomprehensible list input''
113 "out of free space"
114 ''unit not connected''
115 ''read unexpected character''
116 "blank logical input field"
117 '"new' file exists"
118 "can't find 'old' file"
119 "unknown system error"

Sun Microsystems Last change: 24 March 1988 301

PERROR(3F) FORTRAN LIBRARY ROUTINES PERROR(3F)

120 "requires seek ability"
121 "illegal argument"
122 "negative repeat count"
123 "illegal operation for unit"
124 "too many files open - no free descriptors"
125 "attempted operation on unit that's not open"
126 "illegal input for namelist"

302 Last change: 24 March 1988 Sun Microsystems

PUTC(3F) FORTRAN LIBRARY ROUTINES

NAME
putc, fputc - write a character to a FORTRAN logical unit

SYNOPSIS
integer function putc (char)
character char

integer function fputc (lunit, char)
character char

DESCRIPTION

PUTC(3F)

These funtions write a character to the file associated with a FORTRAN logical unit bypassing normal
FORTRAN 1/0. Putc writes to logical unit 6, normally connected to the control terminal output.

The value of each function will be zero unless some error occurred; a system error code otherwise. See
perror(3F).

FILES
/usr/lib/libU77 .a

SEE ALSO
putc(3S), intro(2), perror(3F)

Sun Microsystems Last change: 13 June 1983 303

QSORT(3F) FORTRAN LIBRARY ROUTINES

NAME
qsort- quick sort

SYNOPSIS
subroutine qsort (array, len, isize, compar)
external compar
integer*2 compar

DESCRIPTION

QSORT(3F)

One dimensional array contains the elements to be sorted. !en is the number of elements in the array. isize
is the size of an element, typically -

FILES

4 for integer and real
8 for double precision or complex
16 for double complex
(length of character object) for character arrays

Compar is the name of a user supplied integer*2 function that will determine the sorting order. This
function will be called with 2 arguments that will be elements of array. The function must return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

/usr/lib/libU77.a

SEE ALSO
qsort(3)

304 Last change: 13 June 1983 Sun Microsystems

RAND(3F) FORTRAN LIBRARY ROUTINES

NAME
rand, drand, irand - return random values

SYNOPSIS
function irand (iftag)

function rand (iftag)

double precision function drand (iflag)

integer*4 iftag

DESCRIPTION
These functions use random(3) to generate sequences of random numbers.
If ijiag is 'O', the generator returns the next random number in the sequence.
If ijiag is '1 ', the generator is restarted and the first random value is returned.

RAND(3F)

If ijiag is otherwise non-zero, it is used as a new seed for the random number generator, and the first new
random value is returned. The three functions share the same 256 byte state array.

!rand returns positive integers in the range 0 through 2147483647. Rand and drand return values in the
range 0.0 through 1.0 .

FILES
/usr/lib/libF77 .a

SEE ALSO
random(3)

Sun Microsystems Last change: 30 March 1988 305

RANGE(3F) FORTRAN LIBRARY ROUTINES

NAME
inmax - return maximum positive integer

SYNOPSIS
function inmaxO

DESCRIPTION
Function inmax returns the maximum positive integer value, 2147483647.

FILES
/usr/lib/libF77 .a

SEE ALSO
libm_single(3f), libm_double(3f).

306 Last change: 23 March 1988

RANGE(3F)

Sun Microsystems

RENAME(3F) FORTRAN LIBRARY ROUTINES

. .._.,, NAME

rename - rename a file

SYNOPSIS
integer function rename (from, to)
character*(*) from, to

DESCRIPTION

RENAME(3F)

From must be the pathname of an existing file. To will become the new pathname for the file. If to exists,
then both from and to must be the same type of file, and must reside on the same filesystem. If to exists, it
will be removed first.

The returned value will be 0 if successful; a system error code otherwise.

FILES

/usr/lib/lib U77 .a

SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXP ATHLEN as defined in <sys/param.h>.

Sun Microsystems Last change: 13 June 1983 307

SIGNAL(3F) FORTRAN LIBRARY ROUTINES SIGNAL(3F)

NAME
signal - change the action for a signal

SYNOPSIS
integer function signal(signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signal(3)) the default action is usually to clean up and abort. The user
may choose to write an alternative signal handling routine. A call to signal is the way this alternate action
is specified to the system.

Signum is the signal number (sec signal(3)). If flag is negative, then proc must be the name of the user
signal handling routine. If flag is zero or positive, then proc is ignored and the value of flag is passed to the
system as the signal action definition. In particular, this is how previously saved signal actions can be
restored. Two possible values for flag have specific meanings: 0 means "use the default action" (See
NOTES below), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the address of a
routine that was to have been called on occurrence of the given signal. The returned value can be used in
subsequent calls to signal in order to restore a previous action definition. A negative returned value is the
negation of a system error code. (See perror(3F))

/usr/lib/libU77 .a

SEE ALSO

NOTES

308

kill(l), signal(3), ki11(3F)

f77 arranges to trap certain signals when a process is started. The only way to restore the default f77 action
is to save the returned value from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer argument.

Last change: 26 August 1983 Sun Microsystems

SLEEP(3F) FORTRAN LIBRARY ROUTINES

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine sleep (itime)

DESCRIPTION

SLEEP(3F)

Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to 1 second
less than itime due to granularity in system timekeeping.

FILES
/usr/lib/libU77.a

SEE ALSO
sleep(3)

Sun Microsystems Last change: 13 June 1983 309

STAT(3F) FORTRAN LIBRARY ROUTINES

NAME
stat, lstat, fstat - get file status

SYNOPSIS
integer function stat (name, statb)
character*(*) name
integer statb(l3)

integer function lstat (name, statb)
character*(*) name
integer statb(l3)

integer function fstat (lunit, statb)
integer statb(13)

DESCRIPTION
These routines return detailed information about a file.
Stat and /stat do the inquiry by filename.
fstat does the inquiry by FORTRAN logical /unit.
The value of each function is zero if successful, and an error code otherwise.
The variable 'statb' receives the stat structure for the file.

Calling Sequences:

stat:
integer stat, statb(l3)
character name*(*)
ierr = stat (name, statb)

fstat:
integer fstat, logunit, statb(l3)
ierr = fstat (logunit, statb)

/stat :
integer lstat, statb(l3)
character name*(*)
ierr = lstat (name, statb)

The meaning of the information returned in array statb is as described for the structure stat under stat(2).
Spare values are not included. The order is shown below:

statb(l)
statb(2)
statb(3)
statb(4)
statb(5)
statb(6)
statb(7)
statb(8)
statb(9)
statb(lO)
statb(l 1)
statb(12)
statb(13)

device inode resides on
this inode's number
protection
number of hard links to the file
user-id of owner
group-id of owner
the device type, for inode that is device
total size of file
file last access time
file last modify time
file last status change time
optimal blocksize for file system i/o ops
actual number of blocks allocated

STAT(3F)

310 Last change: 31 March 1988 Sun Microsystems

STAT(3F)

FILES
/usr/lib/libU77 .a

SEE ALSO

FORTRAN LIBRARY ROUTINES

stat(2), access(3F), perror(3F), time(3F)

BUGS
Pathnames can be no longer than MAXP A THLEN as defined in <sys/param.h>.

Sun Microsystems Last change: 31 March 1988

STAT(3F)

311

SYSTEM(3F) FORTRAN LIBRARY ROUTINES

NAME

system - execute a UNIX command

SYNOPSIS
integer function system (string)
character*(*) string

DESCRIPTION

SYSTEM(3F)

System causes string to be given to your shell as input as if the string had been typed as a command. If
environment variable SHELL is found, its value will be used as the command interpreter (shell); otherwise
sh(l) is used.

FILES

The current process waits until the command terminates. The returned value will be the exit status of the
shell. See wait(2) for an explanation of this value.

/usr/lib/libU77.a

SEE ALSO

execve(2), wait(2), system(3)

BUGS

String can not be longer than NCARGS-50 characters, as defined in <sys/param.h>.

312 Last change: 13 June 1983 Sun Microsystems

TIME(3F) FOR1RAN LIBRARY ROUTINES

NAME
time, ctime, ltime, gmtime - return system time

SYNOPSIS
integer function time()

character*24 function ctime (stime)
integer*4 stime

subroutine ltime (stime, tarray)
integer*4 stime, tarray(9)

subroutine gmtime (stime, tarray)
integer*4 stime, tarray(9)

DESCRIPTION

TIME(3F)

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the value of the
UNIX system clock.

FILES

Ctime converts a system time to a 24 character ASCII string. The format is described under ctime(3). No
'newline' or NULL will be included.

Ltime and gmtime dissect a UNIX time into month, day, etc., either for the local time zone or as GMT. The
order and meaning of the 9 elements returned in tarray is described under ctime(3).

/usr/lib/libU77 .a

SEE ALSO
ctime(3), idate(3F), fdate(3F)

Sun Microsystems Last change: 23 March 1988 313

TOPEN(3F) FORTRAN LIBRARY ROUTINES TOPEN(3F)

NAME
topen, tclose, tread, twrite, trewin, tskipf, tstate - f77 tape 1/0

SYNOPSIS
integer function topen (tlu, devnam, label)
integer tlu
character*(*) devnam
logical label

integer function tclose (tlu)
integer tlu

integer function tread (tlu, buffer)
integer tlu
character*(*) buffer

integer function twrite (tlu, buffer)
integer tlu
character*(*) buffer

integer function trewin (tlu)
integer tlu

integer function tskipf (tlu, nfiles, nrecs)
integer tlu, nfiles, nrecs

integer function tstate (tlu, fileno, recno, errf, eoff, eotf, tcsr)
integer tlu, fileno, recno, tcsr
logical errf, eoff, eotf

DESCRIPTION

314

These functions provide a simple interface between f77 and magnetic tape devices. A "tape logical unit",
tlu, is "topen"ed in much the same way as a normal f77 logical unit is "open"ed. All other operations are
performed via the tlu. The tlu has no relationship at all to any normal f77 logical unit.

Topen associates a device name with a tlu. Tiu must be in the range 0 to 3. The logical argument label
should indicate whether the tape includes a tape label. This is used by trewin below. Topen does not move
the tape. The normal returned value is 0. If the value of the function is negative, an error has occured. See
perror(3f) for details.

Tclose closes the tape device channel and removes its association with tlu. The normal returned value is 0.
A negative value indicates an error.

Tread reads the next physical record from tape to buffer. Buffer must be of type character. The size of
buffer should be large enough to hold the largest physical record to be read. The actual number of bytes
read will be returned as the value of the function. If the value is 0, the end-of-file has been detected. A
negative value indicates an error.

Twrite writes a physical record to tape from buff er. The physical record length will be the size of buffer.
Buffer must be of type character. The number of bytes written will be returned. A value of 0 or negative
indicates an error.

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the tape is a labelled
tape (see topen above) then the label is skipped over after rewinding. The normal returned value is 0. A
negative value indicates an error.

Last change: 13 June 1983 Sun Microsystems

TOPEN(3F) FORTRAN LIBRARY ROUTINES TOPEN(3F)

FILES

Tskipf allows the user to skip over files and/or records. First, nfiles end-of-file marks are skipped. If the
current file is at EOF, this counts as 1 file to skip. (Note: This is the way to reset the EOF status for a tlu.)
Next, nrecs physical records are skipped over. The normal returned value is 0. A negative value indicates
an error.

Finally, tstate allows the user to determine the logical state of the tape 1/0 channel and to see the tape drive
control status register. The values of fileno and recno will be returned and indicate the current file and
record number. The logical values errf, eoff, and eotf indicate an error has occurred, the current file is at
EOF, or the tape has reached logical end-of-tape. End-of-tape (EQT) is indicated by an empty file, often
referred to as a double EOF mark. It is not allowed to read past EOT although it is allowed to write. The
value of tcsr will reflect the tape drive control status register. See tm(4S) for details.

/usr/lib/libU77 .a

SEE ALSO
tm(4S), perror(3f)

Sun Microsystems Last change: 13 June 1983 315

TTYNAM(3F) FORTRAN LIBRARY ROUTINES

NAME
ttynam, isatty- find name of a terminal port

SYNOPSIS
character*(*) function ttynam (I unit)

logical function isatty (lunit)

DESCRIPTION

TTYNAM(3F)

Ttynam returns a blank padded path name of the terminal device associated with logical unit /unit.

FILES

I satty returns .true. if /unit is associated with a terminal device, .false. otherwise.

/dev/*
/usr/lib/libU77 .a

DIAGNOSTICS

316

Ttynam returns an empty string (all blanks) if /unit is not associated with a terminal device in directory
'/dev'.

Last change: 13 June 1983 Sun Microsystems

UNLINK(3F) FORTRAN LIBRARY ROUTINES

NAME
unlink- remove a directory entry

SYNOPSIS
integer function unlink (name)
character*(*) name

DESCRIPTION

UNLINK(3F)

Unlink causes the directory entry specified by pathname name to be removed. If this was the last link to
the file, the contents of the file are lost. The returned value will be zero if successful; a system error code
otherwise.

FILES
/usr /lib/lib U77. a

SEE ALSO
unlink(2), link(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Sun Microsystems Last change: 13 June 1983 317

WAIT(3F) FORTRAN LIBRARY ROUTINES

NAME
wait- wait for a process to terminate

SYNOPSIS
integer function wait (status)
integer status

DESCRIPTION

WAIT(3F)

Wait causes its caller to be suspended until a signal is received or one of its child processes terminates. If
any child has terminated since the last wait, return is immediate; if there are no children, return is
immediate with an error code.

FILES

If the returned value is positive, it is the process ID of the child and status is its termination status (see
wait(2)). If the returned value is negative, it is the negation of a system error code.

/usr/lib/libU77 .a

SEE ALSO
wait(2), signal(3F), kill(3F), perror(3F)

318 Last change: 13 June 1983 Sun Microsystems

Index

Special Characters
$ edit descriptor, 102
$ in names, 25
%DESCR, f77cvt,161
%FILL, 43
%REF, f77cvt, 161
%VAL, f77cvt, 161
& altemateretum, f77cvt,160
& NAME LI ST delimiter, 94
' direct-access record specifier, f 7 7 cvt, 161
-6 6 f7 7 option, 18
-68881 f77 option, 19
-a f77 option, 18
-align f77 option, 18
-ansi extensions, CT7 option, 18
-c f77 option, 18
-C f77 option, 18
-D f77 option, 18
-D option, 119
-d f7 7 cvt option, 156
-D f7 7 cvt option, 156
-dryrun f77 option, 18
-e f77 option, 18
-E f7 7 cvt option, 156
-e f7 7 cvt option, 156
-f f77 option, 18
-fjloat_option f77 option, 18
-fpa f77 option, 19
-g f77 option, 19
-help f77 option, 19
-i f7 7cvt option, 156
-i2 f7 7 option, 19
-i 4 f 7 7 option, 19
- Idir f7 7 option, 20
- !path f7 7 option, 20
- lx f77 option, 20
-misalign f77 option, 20
-N c f7 7 option, 20
-Ne f77cvt option, 156
-Nd f7 7 option, 20
-Nd f7 7 cvt option, 156
-N l f7 7 option, 20
-Nl f77cvt option, 156
-Nn f7 7 option, 20

-319-

-Nq f77 option, 20
- N s f7 7 option, 20
- Nx f 7 7 option, 20
-o f7 7 option, 21
-0 f7 7 option, 21
-01 f77 option, 21
-02 f77 option, 21
-03 f77 option, 21
-onetrip f7 7 option, 21
-p f7 7 option, 21
- P f7 7 cvt option, 156
-pg f7 7 option, 21
-pipe f77 option, 21
-Qopt ion f7 7 option, 22
-Qpath f77 option, 22
-Qproduce f77 option, 22
-s f7 7 option, 22
-s f77cvt option, 156
-sky f77 option, 19
-soft f7 7 option, 19
-store f77 option, 19
-switch f77 option, 19
-temp f7 7 option, 22
-time f7 7 option, 22
-u f 7 7 option, 22, 29
- U f7 7 option, 22
-v f7 7 option, 22, 156
-w f7 7 option, 22
-w66 pgf77 option, 22
. field and record reference, 44
. F suffix, 119
I in list-directed input, 90
II concatenate string, 31

array bounds, 37
edit descriptor, 109
substring operator, 31

? NAMELIST prompt for names, 97
\ in character string, f7 7 cvt, 162
_ in names, 25

6
-66 f77 option, 18
-68881 f77 option, 19

Index - Continued

A
-a f77 option, 18
ACCEPT input statement, f7 7 cvt, 160
Access

named files, 98
unnamed files, 99

Access on multi-file tapes, 114
adb

debug,4, 146
Address

assignment, pointers, 38
by MALLOC, 39

Adjustable
array bounds, 37

Alias, 117
-align f7 7 option, 18
Align field, 43
Alignment in structures, 43
Alignment of variables, 28
Allocation of storage, 28
Allowed

1/0 combinations, 7 4
Alpha editing, 101
Alternate

return, f77cvt, 160
returns, 55

ANSI extensions, 18
Apostrophe

in character constants, 30
Arguments

fields, 44
records, 44

Arguments omitted, f 7 7 cvt, 158
Arithmetic

Operations on extreme values, 49
with pointers, 39

Array
adjustable bounds, 37
bounds, 37
dimensions, 37
elements, NAMELIST, not allowed in list, 92
input by NAMELIST, 97

Ask for namelist names, 97
Asterisks in hex and octal output, 105
AUTOMATIC

statement, 36
variables, 36

B
B constant indicator, 32
-b f77cvt option, 156
Backslash

Escape sequences, 30
in character string, f77cvt, 162

Backspace statement
BACKSPACE, 86

Based variable, 37
Binary constants, 32
Binary initialization, 32
Bit-wise operators, 34

-320-

Blank control, 101
Blank fields in octal or hex input, 104, 105
BLOCK DATA

initialize, f 7 7 cvt, 157
names, 25, 56

Boundary for variable alignment, 28
Bounds on arrays, 37
Byte data type

BYTE data type, 25

c
C preprocessor, 119

example, 119
C with FORTRAN

C with FORTRAN, 3
-c f7 7 option, 18
-C f7 7 option, 18
Carriage return, 102
Carriagecontrol, 102

on all files, 7 6
Character

boundary, 28
concatenate, 31
constant delimiter, 95
constant, NAMELIST, 96
constants, 30
data type, 26
declared length, 26
declaring the length, 26
dummy argument, 26
FILE= specifier, f77cvt, 158
format specifier, f 7 7 cvt, 158
Hollerith data, 30
join, 31
packing, 26
substring, 31
valid characters in names, 25

Close statement
CLOSE statement, 81

Colon(:)
array bounds, 37
edit descriptor, 109
substring operator, 31

Commands
compiler, 13
f77, 13
f77cvt, 155
Source code converter, 155

Commas in formatted input, 102
Comments embedded, f 7 7 cvt, 157
COMMON initialize, f77cvt, 157
Compiler

command, 13
f77, 254
usage, 13

Complete pathname, 67
Complex constant in NAMELIST, 96
Complex powers, 32
Computed GO TO expressions, 34
Concatenate strings, 31
Conditional termination control, 109

Consecutive
commas, NAMELIST, 96, 97
operators, f 7 7 cvt, 158

Constant
expressions, 34
names (symbolic constants), 25
octal integer, f 7 7 cvt, 159
radix-50, f7 7 cvt, 157
typeless numeric, f 7 7 cvt, 159
values in NAMELIST, 96

Continuation lines, number of
f77, 15, 20
f77cvt, 156

Converter
f77cvt - VMS FORTRAN source code converter, 259
files, 254
input files, 155
options, 156
output files, 155
overview, 154
usage, 155

Copy NAMELI ST, 97
Create

library, 129
SCCS files, 123

Current working directory, 66

D
-D f77 option, 18
-D option, 119
-d f77cvt option, 156
-D f77cvt option, 156
Data representation

double precision, 48
real number, 48
signed infinity, 48

Data type
BYTE, 25
DOUBLE COMPLEX,27
LOGICAL*l, 25
short integer, 27

Data, namelist syntax, 94 thru 97
dbx, 140

commands, 140
debug,4

dbx line numbers, f77cvt, 161
dbxtool debug, 4
dd conversion utility, 113
Deallocate memory by FREE, 39
Debug

adb,4
compiler flags, 147
dbx,4
dbxtool, 4
extensions, 144, 146
f7 7 cvt option, 156
options, 139
parameter, 145, 146
pointer, 145
record, 144
statement, f77cvt, 157
structure, 144

Index-ConJinued

Decimal points not allowed in octal or hex input, 104
Declaration

field, 42
initialize in, f77cvt, 158
map, 47
record, 43
structure, 42
union, 47

DECODE, f77cvt, 160
Defaults for field descriptors, 110, 111
Delimiter

character constant, 95
NAMELIST: $or&, 94

%DESCR, f77cvt,161
Differences

VMS, 153
Dimension arrays, 37
Direct

1/0, 87
1/0 record specifier, f77cvt, 161

Directory, 66
current working, 66

DISPOSE option for CLOSE, f77cvt, 161
DO loop

-321-

bounds,34
DO WHILE, 57
END DO, 56
extended range removed, 58
indefinite, 56
iterations, 56
one-trip, 56
unlabeled", 56
variables, 56
WHILE, 57

Dollar edit descriptor, 102
Dollar sign in names, 25
DOUBLE COMPLEX

data type, 27
functions, 27

Double precision
data representation, 48

-dry run f7 7 option, 18
Dummy arguments

NAMELIST, not allowed in list, 92

E
-e f7 7 option, 18
-e f77cvt option, 156
-e f77 option, 15
Else statement

ELSE statement, 59
Else-if statement

ELSE- IF statement, 59
Embedded comments, f77cvt, 157
Empty spaces in structures, 43
ENCODE, f77cvt,160
END DO, 56
End-if statement

END-IF statement, 59
Endfile statement

ENDFILE statement, 87

Index - Continued

ENTRY
statement, 58

Environment getenv
Environment getenv, 99

Equivalence, 36
Error handling, 4
Errors IO

Errors I/0, 74
Escape sequences, 30
Ew .dEe format, 109
Exception processing, 4
Exponentiation, 32
Exponents not allowed in octal or hex input, 104
Expressions

constant, 34
Extended source lines

f7 7 option, 15
f77cvt option, 156

Extensions, non-ANSI, 18
External statement

EXTERNAL statement, 60
Extract substring, 31
Extreme exponent data representation, 48

F
-f f77 option, 18, 155
. F suffix, 119
£77

usage, 13
f77 differences, 153
f77 _ftoatingpoint

Fortran IEEE floating-point definitions, 273
f77cvt

%DESCR, 161
%LOC, 161
%REF, 161
%VAL, 161
& alternate return, 160
ACCEPT input statement, 160
alternate return, 160
BLOCK DATA initialize, 157
comments embedded, 157
COMMON initialize, 157
consecutive operators, 158
dbx line numbers , 161
debug statement, 157
DECODE, 160
DESCR, 161
direct-access record specifier, 161
DISPOSE option for CLOSE, 161
embedded comments, 157
ENCODE, 160
FILE= specifier, 158
function length specifier, 160
illegal REAL expressions, 159
IMPLICIT NONE, 157
INCLUDE, 162
initialize in declarations, 158
input files, 155
line numbers for dbx, 161
lines in tab-format, 157

-322-

f77cvt, continued
LOC, 161
NAME option for OPEN and INQUIRE, 161
non-character FILE= specifier, 158
non-character format specifier, 158
octal integer constant, 159
omitted arguments, 158
output files, 155
overview, 154
PARAMETER, 157
Q, REAL* 16 literals, 158
radix-50 constant, 157
REAL* 16, 158
REF, 161
return alternate, 160
samples, 163 thru 166
tab-format source, 157
TYPE option for OPEN and INQUIRE, 161
TYPE output statement, 160
typeless numeric constant, 159
usage, 155
VAL, 161
VIRTUAL, 157

f77cvt with f77, 155
- fjloat _option f 7 7 option, 18
Field, 42

align, 43
as argument, 44
declaration, 42
dimensioning in type statements, 43
EQUIVALENCE, not allowed in, 44
in a map, 48
in COMMON, 44
in DIMENSION, 44
list, 42
name %FI LL, 43
NAMEL IS T, not allowed in, 44
offset, 43
reference, 44
SAVE, not allowed in, 44
type, 43

Field-list, 42
File

carriage-control on all files, 7 6
directory, 66
f 7 7 cvt input files, 155
f 7 7 cvt output files, 155
internal, 88
pipe, 69
preattached. 76
print files, 76
redirection, 68
scratch, 76
split - f split, 4
standard error, 100
standard input, 100
standard output, 100
system, 65
types, 74

FILE= specifier, f77cvt, 158
Filenames, 66, 98

passing to programs, 100
Files

Files, continued
converter,254
split FORTRAN file- fsplit, 262

%FILL, 43
Filling with asterisks or spaces, hex and octal output, 105
floatingpoint

IEEE floating-point definitions, 273
.FOR f7 7 cvt input files, 155
Format

$, 102
:, 109
A, 101
B, 101
BN, 101
BZ, 101
defaults for field descriptors, 110, 111
nH, 103
nT, 108
0, 103
s, 108
Q, 107
R, 106
S, 108
SP, 108
specifier, f7 7 cvt, 158
SS, 108
SU, 108
summary, 112
T, 108
TLn, 108
TRn, 108
vertical control, 109
Z, 103

Formats, 101 thru 112
Formatted l/O, 89
Forms of IO

Forms of l/O, 74
FORTRAN

f 7 7 command, 254
f77cvt - VMS FORTRAN source code converter, 259
print file - fpr, 261
split file - f split, 262

-fpa f77 option, 19
fpr

FORTRAN print, 4
print FORTRAN file, 261

FREE, 39
fsplit

FORTRAN file split, 4
fsplit - split FORTRAN file, 262
Function

MALLOC, 39
DOUBLE COMPLEX,27
length specifier, f7 7 c vt, 160
names, 25

G
-g f77 option, 19
GE TC library routine, 114
getcwd, 66
getenv environment

getenv environment, 99

-323-

Global optimization , 3
Gw .dEe format, 109

H
-help f77 option, 19
Hex and octal

format, 103
format samples, 105
input, 104
output, 105

Hexadecimal
constants, 32
initialization, 32
representation of selected numbers, 49

Hierarchical file system, 65
Hollerith

character strings, 30
nH, 103

I
-i2 f77 option, 19

short integer, 27
-i4 f77 option, 19
- Idir f 7 7 option, 20
IEEE error handling, 4
If-then-else statement

IF-THEN-ELSE statement, 59
Illegal REAL expressions, f 7 7 cvt, 159
Implicit

statement, 29
typing, 29
undefined, 29

IMPLICIT NONE, f77cvt, 157
Include in f77cvt

INCLUDE in f77cvt, 162
Indefinite DO loop, 57
Initialize in

COMMON, f77cvt, 157
BLOCK DATA, f77cvt, 157
declaration, f77cvt, 158

Input files
f77cvt, 155

Inquire
by file, 81
UNIT, 81
options summary, 85

INQUIRE
statement, 81 thru 86

Inquire option
ACCESS, 82
BLANK, 83
defaults, 83
DIRECT, 82
ERR, 82
EXIST, 82
FILE, 82
FORM, 82
FORMATTED, 83
IOSTAT, 82
NAME, 82
NAMED, 82

Index - Continued

Index - Continued

Inquire option, continued
NEXTREC, 83
none for permissions, 84
NUMBER, 82
OPENED, 82
RECL, 83
SEQUENTIAL, 82
UNFORMATTED, 83
UNIT, 82

Inserting SCCS ID keywords, 122
Integer

INTEGER and LOGICAL mixed, 33
INTEGER

INTEGER operand LOGICAL operator, 34
INTEGER and LOGICAL mixed, 34
Internal files, 88
Internal I/0, 91
INTRINSIC

statement, 60
Intrinsic function

MALLOC, 39
in PARAMETER statement,35

Intrinsic functions, 229 thru 238
Intrinsics, f77cvt, 161
l/O

combinations allowed, 74
errors, 74
forms, 74
summary, 75

IO modes
l/O modes, 7 4

l/O redirection, 68
IOINIT, 76
- I path f7 7 option, 20
Iterations do loop

Iterations DO loop, 56
Iw .m format, 109

J
Join strings, 31

L
Leading spaces or zeros, hex and octal output, 105
LEN

declared length, 26
Length

LEN function, 26
getting character length, 26
input string or record, 107
names, 25
of line, f7 7 option, 15
source line, f77cvt option, 156
specifier, functions, f 7 7 cvt, 160

Levels for data structures
f77, 20

Library
create, 129
loaded, 128
random, 129
relocatable, 127
replace, 129

-324-

Library, continued
sequential, 128

Line
length, f 7 7 option, 15
length, f7 7 cvt option, 156
numbers for dbx, f 7 7 cvt, 161
tab-format, f7 7 cvt, 157

List-Directed l/0, 90
Literals type REAL*l6, f77cvt, 158
Loaded

library, 128
%LOC, f77cvt, 161
Logical

LOG I CAL* 1 data type, 25
LOGICAL and INTEGER mixed, 33
filenames in the INCLUDE, 162
unit pre attached, 7 6
units, 73

LOG I CAL and INTEGER mixed, 34
Long source lines

f77 option, 15
f77cvt option, 156

- lx f77 option, 20

M
Macros with make, 120
Mag tape I/0, 112
Main program name, 60
make, 118
Making SCCS directory, 122
MALLOC, 39
MAP

declaration, 4 7, 48
Math errors, 4
Memory

get by MALLOC, 39
release by FREE, 39

-misalign f77 option, 20
Mixed INTEGER and LOGICAL, 33, 34
Modes IO

Modes l/O, 74
Modifying carriage control, 102
Modula-2 with FORTRAN

Modula-2 with FORTRAN, 3

N
NAME option for OPEN and INQUIRE, f77cvt, 161
Named

Block Data, 56
NAMELIST

$,94
&,94
array,95,97
ask for names, 97
character, 95
character constant, 96
column one, 94
complex constant, 96
consecutive commas, 96, 97
copy,97
data, 94 thru 97

NAMELIST, continued
data syntax, 95
delimiter $ or &, 94
END, 94
end of record, 94
group-name, 92
hexadecimal not allowed, 96
hollerith not allowed, 96
input, 94
namelist-specifier, 92
NML=, 92
null data item, 96
octal not allowed, 96
output, 92
prompt for names, 97
READ, 94
repeat, 97
restrictions, 92
skip, 97
statement, 92
string, 95
substring, 95
syntax, 92
WRITE, 92

Names, 25
f7 7 cvt input files, 155
f77cvt output files, 155

-N c f7 7 option, 20
-Ne f77cvt option, 156
- Nd f7 7 option, 20
-Nd f77cvt option, 156
Negative values, hex and octal output, 105
Nested substructure, 45
nH format specifier, 103
nH Hollerith character strings

nH Hollerith character strings, 30
-N l f7 7 option, 20
-Nl f77cvt option, 156
NML=, 92
-N n f7 7 option, 20
Non-ANSI extensions, 18
Non-character

FI LE= specifier, f7 7 cvt, 15 8
format specifier, f7 7 cvt, 158

-Nq f7 7 option, 20
-N s f7 7 option, 20
Null value, NAMELIST, 96
Number

of characters remaining, 107
of continuation lines, 15, 20
f77cvt, 156
of levels for data structures, f 7 7, 20

Numbers for dbx, f77cvt, 161
Numeric constant, typeless, f77cvt, 159
-Nx f7 7 option, 20

0
0

constant indicator, 32
edit descriptor, 103

-o £77 option, 21

-325-

-0 f7 7 option, 21
-01 f77 option, 21
-02 f77 option, 21
-03 f7 7 option, 21
Octal

constants, 32
initialization, 32

Octal and hex
format, 103
format samples, 105
input, 104
output, 105

Offset of fields, 43
Omitted arguments, f7 7 cvt, 158
One-trip

DO loop, 56
-onetrip f7 7 option, 21
OPEN specifier

ACCESS, 79
BLANK, 80
ERR, 80
FILE, 78
FILEOPT, 80
FORM, 79
IOSTAT, 80
RECL, 79
STATUS, 80
UNIT, 78

Operator
II concatenate string, 31
: substring, 31

Operators
with extreme values, 49

Optimization
global, 3
peephole, 3
problems with pointers, 40

Option
-e, £77, 15
ansi, 18
debug, f77cvt, 156
DISPOSE for CLOSE, f77cvt, 161
i2 short integer, 27
level of control structure, f 7 7, 20
level of control structure, cvt, 156
level of data structure, f 7 7 cvt, 156
list for f7 7 cvt, 156
long line, f7 7, 15
long line, f7 7 cvt, 156

Index Continued

NAME for OPEN and INQUIRE, f77cvt, 161
number of continuation lines, f77, 15, 20
number of continuation lines, f 7 7 cvt, 156
number of levels for data structures, f 7 7, 20
preprocesser lines for dbx, f7 7 cvt, 156
Sun-specific features, f7 7 cvt, 156
verbose mode, f77cvt, 156

Options
useful for debugging, 139

Other bases, 106
Output files

f77cvt, 155
Overriding Macro Values, 121

Index - Continued

p
-p f 77 option, 21
-P f77cvt option, 156
P edit descriptor, 108
Packing

character, 26
Parameter

debug, 145, 146
f77cvt, 157
intrinsic functions, 35
names, 25
statement, 35
statement in structures, 43

Parameters, 35
Pascal with FORTRAN

Pascal with FORTRAN, 3
Passing filenames to programs, 100
path, 65
Pathname, 67

absolute, 67
complete, 67
relative, 67

Peephole optimization , 3
Permissions by ACCESS, 84
-pg f7 7 option, 21
-pipe f77 option, 21
Pipes, 69
Piping, 69
Pointer, 37

address assignment, 38
address by LOC, 38
address by MALLOC, 38
arithmetic,39
debug, 145
NAMELIST, not allowed in list, 92
problems with optimization, 40
restrictions, 40
statement, 37
usage, 38

Pointer-based variable, 37, 40
NAMELIST, not allowed in list, 92

Porting, 130
carriage-control, 133
file-equates, 133
formats, 133

Preattached
files, 76
logical units, 76

Preconnected
units, 100

Print
FORTRAN file - fpr, 261
fpr,4

Print files, 76
Profiling tools, 148
Program

names, 25
statement, 60

Programming languages
print FORTRAN file - fpr, 261
split FORTRAN file- fsplit, 262

-326-

Prompt for namelist names, 97
pwd, 66

Q
Q

edit descriptor, f 7 7, 107
type REAL*16 literals, f77cvt, 158

-Qopt ion f7 7 option, 22
-Qpath f77 option, 22
-Qproduce f77 option, 22
Quote

in character constants, 30

R
R edit descriptor, 106
Radix control, 106
Radix-50 constant, f 7 7 cvt, 157
Random

I/0, 87
librcry, 129

Ratfor, 191thru212
Real

data representation of reals, 48
REAL expressions, illegal, f7 7 cvt, 159
REAL*16, f77cvt,158

Record, 42
as argument, 44
DATA, not allowed in, 44
debug, 144
EQUIVALENCE, not allowed in, 44
in COMMON, 44
in DIMENSION, 44
NAMELIST, not allowed in, 44
NAMELIST, not allowed in list, 92
reference, 44
SAVE, not allowed in, 44
specifier, direct-access, f77cvt, 161
statement, 43

Recursion, 60
Redirection, 68
%REF, f77cvt,161
Reference

field, 44
record, 44

Relative pathname, 67
Release memory by FREE, 39
Relocatable library, 127
Remaining characters, 107
Repeat NAMELI ST, 97
Replace library, 129
Representation of data, 48
Requesting namelist names, 97
Restrictions

fields, 43
hex and octal output, 105
NAMELIST, 92
names, 25
pointers, 40
Q edit descriptor, 108
records, 44
structures, 42

Restrictions, continued
substructures, 46

alternate, f77cvt
alternate, f77 cvt, 160
alternates, 55

REWIND
statement, 86

root, 65

s
-S £77 option, 22
-s f77cvt option, 156
S edit descriptor, 108
Same line response, 102
Save statement

SAVE statement, 36
Scale control, 108
SCCS, 122
SCCS

checking in files, 127
checking out files, 127
inserting keywords, 122
making directory, 122
Putting Files under SCCS, 122

Scratch files, 76
Sequential library, 128
Shell script, 117
Short integer data type, 27
Sign control, 108
Signal handling, 4
Signed infinity data representation, 48
Signs not allowed in octal or hex input, 104
Size - getting character length, 26
Skip NAMELIST, 97
-sky f7 7 option, 19
-soft f77 option, 19
Source code converter

input files, 155
options, 156
output files, 155
overview, 154
usage, 155

Source lines, long
f77 option, 15
f 7 7 cvt option, 156

Source tab-format, f77cvt, 157
SP edit descriptor, 108
Spaces, leading, hex and octal output, 105
Special characters, 30
SS edit descriptor, 108
Standard

uo piping, 69
input, 68
output, 68
units, 73

STATIC
statement, 36
variables, 36

stderr, 73
stdin, 73

-327-

stdout, 73
Storage allocation, 28
-store £77 option, 19
String

concatenate, 31
join, 31
NAMELIST, 95

Strings in list-directed 1/0, 91
Structure, 42

alignment, 43
debug, 144
dummy field, 43
empty space, 43
name,42
NAMELIST, not allowed in list, 92
nested, 45
not allowed as a substructure of itself, 46
substructure, 45
union, 47

SU edit descriptor, 108
Subprogram names, 25
Subroutine FREE, 39
Subroutine names, 25
Subscripts, 34
Substring, 31

NAMELIST, 95
NAMELIST, not allowed in list, 92

Substructure, 45
map, 47
union,47

Suffix rules in make, 121
Summary of Formats, 112
Suppress carriage return, 102
-switch £77 option, 19
Symbolic constant names, 25
Syntax

CLOSE statement, 81
compiler, 13
£77, 13
f77cvt, 155
field Reference, 44
INQUIRE statement, 81
maps,47
NAMELIST input, 94
NAMELIST input data, 94 thru 97
NAMELIST output, 92
NAMELIST statement, 92
OPEN statement, 77
pointers, 37
record reference, 44
records, 43
Source code converter, 155
structures, 42
unions, 47

T
T edit descriptor, 108
Tab control, 108
Tab-format source, £77 cvt, 157
Tape file representation, 113
-temp f77 option, 22

Index ConJinued

Index-Continued

Terminal 1/0, 102
Termination control, 109
-time f7 7 option, 22
Time functions, 130
Transporting, 130

carriage-control, 133
file-equates, 133
formats, 133

Trap errors, 4
Tree, 65
Two consecutive operators, £7 7 cvt, 158
Type for field names, 43
TYPE option for OPEN and INQUIRE, f7 7 cvt, 161
TYPE output statement, f77cvt, 160
Type REAL*l6, f77cvt, 158
Typeless numeric constant, f 7 7 cvt, 159
Types of files, 74

u
-u f 7 7 option, 22, 29
-U f 77 option, 22
Unary+or-, f77cvt, 158
Underscore in names, 25
Unformatted I/0, 89
Union declaration, 47
Unit

Logical unit preattached, 76
preconnected units, 100

Unlabeled DO loop, 56
Usage

compiler, 13
f77, 13
f77cvt, 155
pointer, 38
Source code converter, 155

Using TOPEN, 113

v
-v f7 7 option, 22, 156
%VAL, f77cvt,161
Valid characters in names, 25
Variable

alignment , 28
automatic, 36
boundary, 28
names, 25
static, 36
type REAL*l6, f77cvt, 158

Vertical format control, 109
.VF f7 7cvt input files, 155
VIRTUAL, f77cvt, 157
VMS

differences, 153
f77cvt - VMS FORTRAN source code converter, 259
features not supported, 167
intrinsics, 169 thru 175

-328-

w
-w f 7 7 option, 22
w de defaults, 110
-w66 £77 option, 22
Width defaults for field descriptors, 110, 111
Word boundary, 28

x
X constant indicator, 32

z
z

constant indicator, 32
edit descriptor, 103

Zeros, leading, hex and octal output, 105

Revision History

Version Date Comments

1 12 November 1986 a release preceding Release 4.0 FCS.
50 15 May 1987 Beta Release Notes Only.
A 4 Sept 1987 FCS Release Notes Only.
A 11March1988 1.1 4.0 alpha - full manual
A 21March1988 1.1 4.0 beta - full manual
A 6 May 1988 1.1 4.0 FCS full manual

:

Corporate Headquarters
Sun Microsystems, Inc.
2550 Garcia Avenue
Mountai n View, CA 94043
415 960-1300
TLX 37-29639

For U.S. Sales Office
locations, call:
800 821-4643
In CA : 800 821-4642

European Headquarters
Sun Microsystems E urope, Inc.
Sun Hou e
31-41 Pembroke Broadway
Camberley
Surrey GU15 3XD
E ngland
0276 62111
TLX859017

Australia: (02) 436 4699
Canada: 416 477-6745
France: (1) 46 30 23 24
Germany: (089) 95094-0
Japan: (03) 221-7021
Nordic Countries: (08) 764 78 10
Switzerland: (1) 82 89 555
The Netherlands: 02155 24888
UK: 0276 62 111

Europe, Middle East, and Africa ,
call European Headquarters:
0276 62111

Elsewhere in the world,
call Corporate Headquarters:
415 960-1300
Interconti nenta l Sale

	Blank Page
	Blank Page

