
®

Sun-4 Assembly Language Reference Manual

Part Number: 800-3086-10
Revision A of 27 March, 1990

Contents

Chapter 1 Assembler Syntax .. 1

1.1. Introduction ... 1

1.2. Oilier References .. 1

1.3. A Short Example .. 1

1.4. Syntax Notation .. 2

1.5. Statement Syntax ... 2

1.6. Lexical Features ... 2

Case Distinction ... 3

Comments... 3

Numbers... 3

Strings.. 3

Symbol Names ... 3

Labels .. 4

Special Symbols .. 4

Operators and Expressions .. 5

1. 7. as Error Messages .. 5

Chapter 2 Instruction-Set Mapping .. ~;.,", , ;·.,.,;;.;;,

2.1. Table Notation ... ,• , ,~ ... ;;,~;,,;, ,, ... '..,;·~·''·

2.2. Integer Instructions ... ;,.,,,.,; .. H+;,; .. ,.,,'.,,.,.,,, •• ,. ... ~.~'.';';;.; .. ~·«'<'''

2. 3. Floating-Point Instructions ... '"''''"''''"«''·;·,.; ,,;,,,.,. , ~ •• ,1,,.; ... ,".''

2.4. Coprocessor Instructions .. ; .. , ... <;:;~ , •• , ;.,;, ;.;,,;, .. :, ;:,:;:,;,·

2.5. Syntl1.etic Instructions .. ;; . .,;;,.,, .. : , :;;;,;,;,;,., .. ,

2.6. Leaf Procedures .. ;,;,.':"·, .. ~

-iii-

Contents Continued

23

Tables

Table 1-1 Special Symbols ... 4

Table 2-1 Notation ... 7

Table 2-2 SPARC to Assembly Language Mapping.. 9

Table 2-3 Floating-point Instructions ... 14

Table 2-4 Coprocessor Instructions .. 15

Table 2-5 Synthetic Instruction to Hardware Instruction Mapping 15

Table A-1 List of Pseudo-Operations ... 19

-v-

1.1. Introduction

1.2. Other References

1.3. A Short Example

I*

Assembler Syntax

Sun Microsystems' Assembler takes assembly language programs, as
specified in this document, and produces relocatable object files for processing
by the Sun-4 link editor. The assembly language described in this document
corresponds with the SP ARC instruction set defined in the SP ARC™ Architecture
Manual, Version 8, is intended for use on Sun-4s and SPARCStations.

You should also become familiar with the manual pages as(l), ld(l), cpp(l),
a.out(5), and the SP ARC Architecture Manual.

The following example illustrates how a short assembly language program might
look.

* a s program to copy a
* showing correct syntax,
*pseudo-operations: .seg, . .asciz, .
* synthetic instructions: set, ret, retl, mov, inc, deccc, nop
* numeric label: 1
* symbolic substitution: WINDOWSIZE

*I

main:

.seg "text"

.global

-WINDOWSIZE,
str, %0
out, %ol

source
destination location

save
set
set
call
mov 24, %02 slot, to copy

ret
restore %00, O, %00 return value from main

.global _bcopy

sun
mlcrosystems

1 Revision A of 27 March, 1990

to address

str

instruction is an
....... ,,, and comment is any text

March,

Case Distinction

Comments

Numbers

1 - Assembler 3

Upper and lower case are distinct everywhere, except in the names of special
symbols (see below), where there is no case distinction.

A comment is preceded by an exclamation mark; the''!'' and all following char­
acters up to the end of the line are ignored. C-style comments with ''I* . .. *I''
are also permitted, and may span multiple lines.

Decimal, hexadecimal, and octal numeric constants are recognized, and are writ­
ten as in the C language. For floating-point pseudo operations, floating-point
constants are written with Or or OR (for REAL) followed by a string acceptable
to atof(3): an optional sign followed by a nonempty string of digits with
optional decimal point and optional exponent, or followed by a special name, as
shown below.

The special names Ornan and Or inf represent the special floating-point values
Not-A-Number and INFinity, respectively. Negative Not-A-Number and Nega-
tive INFinity are specified as Or-nan and 0 respectively.

NOTE Notice that the names of these floating-point constants begin with a zero, not the
letter " 0 "

Strings Strings may be quoted with either double-quote (") or single-quote (') marks.

Symbol Names

When used in an expression, the numeric value of a string is the numeric value of
the ASCII representation of its first character.

The suggested style is to use single quote marks for the ASCII value of a single
character, and double quote marks for quoted-string operands, such as used by
pseudo-ops. Here is some assembly code in the suggested style:

add
.seg

,'a'-'A' ,%gl
"data"

.ascii "a

.byte 'M'

+ ('a' - 'A') -->

The following escape codes are recognized in strings; they are derived from C:

\b backspace
form feed

\n newline (linefeed)
carriage return

\t horizontal tab
\nnn octal value nnn

The syntax for a symbol name

Upper-case and lower-case letters are distinct, and the underscore, dollar sign,
and period are treated as alphabetic characters.

~\sun ~ rnicrosysterns
Revision A of 27 March, 1990

Labels that a label is

whereas normal

as

March,

Operators and Expressions

1. 7. as Error Messages

Chapter 1 - Assembler Syntax 5

substitutions, such as

(~_*_d_e_f_i_·n_e __ p_s_r __ %_P_s_R __]

The special symbols %hi and %lo are true unary operators which can be used in
any expression, and like other unary operators have higher precedence than
binary operations. For example:

%hi a+b
%lo a+b

(%hi a)+b
(%lo a)+b

It is a good idea to enclose operands of %hi or %lo in parentheses to avoid
ambiguity. For example:

(___ %_h_i_(a_) __ + __ b __]

The following operators are recognized in constant expressions:

Binary Operators Unary Operators

+ Integer Addition + (no effect)
- Integer Subtraction - 2' s Complement

* Integer Multiplication - l's Complement
I Integer Di vision %lo (see above)
% Modulo %hi (see above)
.... Exclusive OR
<< Left Shift
>> Right Shift
& Bitwise AND
I Bitwise OR

Note that the modulo operator % must not be immediately followed by a letter or
digit, to avoid confusion with register names or with %hi or% lo. The modulo
operator is typically followed by a space or left parenthesis.

Although the above operators have the same precedence as in the C language,
parenthesization of expressions is recommended to avoid ambiguity.

Messages generated by the assembler are generally self explanatory and give
sufficient information to allow one to correct a problem. Certain conditions will
cause the assembler to issue warnings associated with delay slots following Con­
trol Transfer Instructions (CTis):

o set instructions in delay slots

o labels in delay slots

o segments that end in control/transfer instructions

~\sun ~ microsystems
Revision A of 27 March, 1990

6

Instruction-Set Mapping

The tables in this chapter describe the relationship between hardware instructions
of the SPARC architecture, as defined in SPARC Processor Architecture, and the
instruction set used by Sun Microsystems' SPARC Assembler.

2.1. Table Notation The following table describes the notation esed in the tables in the rest of the
chapter to describe the instruction set of the assembler.

Table 2-1 Notation

Symbol Describes Comment

reg %r0 ... %r31
%g0 ... (same as %r0 ... %r7)
%00 ... %07 (same as %r8 ... %r15)
%10 ... %17 ~ameas%r16 . .. %r23)
%i0 ... %i7 (same as %r2 4 ... %r 31)

freg %£0 ... %£31
~

creg %c0 ... %c31

value (an expression involving at most one relocatable symbol)

const13 value (a signed constant which fits in 13 bits)

const22 value (a constant which fits in 22 bits)

asi value (alternate address space identifier; an unsigned 8-bit value)

reg rd Destination register.

regrsl' regrs2 Source register 1, source register 2.

regaddr reg rsl Address formed with register contents only.
reg +reg rsl rs2

address regrsl + regrs2 Address formed from register contents,
reg + const13 immediate constant, or both. rsl
reg - constl 3 rsl
constl3 + reg
const13

rsl

~\su ~ microsystems
7 Revision A of 27 March, 1990

8

Table 2-1

table outlines the correspondence between SPARC hardware
........... ..,io.•·""· instructions and assembly language instructions. The following

b­

h-

to assembler mnemonics (and in upper case for

c - reterenc1mg coprocessor re_g;1st(~rs.

to a destination register in the argument list of an

to a source reg:isu~r in the argument list of an

aeJ~uniea so that a destination operand (if
'Y'.ot·o.,..:>nr·o to a memory location, is

...,,, ,....., . .,..,. ({})mark optional arguments. Square brack­
the addressed memory location are

All Bice nszrw::ulms n°•~r.,.1 n,f)'" in the following table, may indicate
that the annul bit is to be set by avzJenamti' ",a" to the opcode; e.g. "bgeu, a
label".

Bf cc

Revision A of 27 March, 1990

9

Table 2-2 SPARC to Assembly Language Mapping

SPARC Mnemonic Argument List Name Comments

ADD add reg , reg or imm, reg Add
AD Dec add cc

rsl - - , rd
Add and modify ice , reg_ or _zmm, regrd

ADDX addx , reg_ or _imm, Add with carry
ADDXcc addxcc r reg or imm' reg - - rd

AND and regrsl r And
AND cc andcc reg rs] f

ANDN andn reg rs] I

ANDNcc andncc reg , reg or imm, rsl - -

Bice bn{, a} label Branch on integer condi- (branch never)
tion codes

bne{,a} label (synonym: bnz)
be{, a} label (synonym: bz)
bg{, a} label

Bice ble{,a}
bge {,a}
bl{, a} label
bgu{, a} label
bleu{, a}
bee{, a} label (synonym: bgeu)
bes{, a} label (synonym: blu)
bpos {,a} label
bneg{, a} label
bvc {,a} label
bvs {,a} label
ba {,a} label (synonym: b)

CALL call label{, n} (n = # of out registers used
as arguments)

CBccc cbn{, a} label Branch on coprocessor (branch never)
cb3{, a} label condition codes
cb2 {,a} label
cb23 {,a} label
cbl {,a} label
cb13{,a} label
cb12{,a} label
cb123{,a} label
cbO{,a} label
cb03{,a} label
cb02{,a} label
cb023{, a}
cbOl{, a} label
cb013{, label

12 {, label
cba{, a} label

Revision A of 27 March, 1990

must be

LDSTUBA

11

Table 2-2 SPARC to Assembly Language Mapping- Continued

SPARC Mnemonic Argument List Name Comments

MULScc mulscc reg , reg or imm, reg Multiply step (and modify rsl - - rd
ice)

NOP nop no operation

OR or reg , reg or imm, reg Inclusive or
OR cc

rsl - - . rd
or cc reg , reg or zmm, reg

ORN
rsl - - . rd

orn reg , reg or zmm, reg
ORN cc

rs] - - . rd
orncc regrsJ' reg_ or _zmm, regrd

RDASR rd %asrn rs]' regrd
RDY rd f regrd (see synthetic instructions)
RDPSR rd f regrd (see synthetic instructions)
RDWIM rd %wim, reg (see synthetic instructions) rd

(see synthetic instructions) RDTBR rd %tbr, reg rd

RESTORE restore reg , reg or imm, reg (see synthetic instructions) rs] - - rd

RETT rett address Return from trap

SAVE save reg , reg or imm, rd (see synthetic instructions) rs] - -

SDIV sdiv reg , reg or imm, signed divide
SDIVcc sdiv

rsl - - .
signed divide and modify regrsl, reg_ or _zmm, regrd
ice

SMUL smul reg , reg or imm, reg signed multiply rsl - - rd
SMULcc smulcc reg , reg or imm, reg signed multiply and modify rs] - - rd

ice

SETHI set hi const22, reg rd Set 22 bits of r regis-
ter

set hi %hi (value) , reg (see synthetic instructions) rd

SLL sll reg , reg or imm, reg Shift left logical rsl - - rd
SRL srl reg , reg or imm, Shift right rsl - -
SRA sra reg , imm, rd Shift right arithmetic rs] -

STB stb regaddr, [address] Store byte. (synonyms: stub, stsb)
STH sth regaddr, [address J (synonyms: st uh, stsh)
ST st reg , [address J rd
STD std reg , [address J (reg must be even) rd rd
STF st freg r [address] rd
STDF std freg , [address J rd
STFSR st %£ sr, [address] Store floating-point status

register
STDFQ std fq, [address] Store double floating-point

queue
STC st creg , [address] Store coprocessor rd

~\su ,~ microsystems
Revision A of 27 March, 1990

12

SUB
SUBcc
SUBX
SUBXcc

TADDcc

TADDccTV

UMUL

st

March,

13

Table 2-2 SPARC to Assembly Language Mapping- Continued

SPARC Mnemonic Argument List Name Comments

UMULcc umulcc reg , reg or imm, reg unsigned multiply and rs] - - rd
modify ice

UNIMP unimp const22 Unimplemented instruction

WRASR wr reg or imm, %asrn - - rs]
WRY wr reg , reg or imm, %y (see synthetic instructions) rsl - -
WRPSR wr reg , reg or imm, %psr (see synthetic instructions) rsl - -
WRWIM wr reg , reg or imm, %wim (see synthetic instructions) rsl - -
WRTBR wr reg , reg or imm, %tbr (see synthetic instructions) rsl - -

XNOR xnor reg , reg or imm, reg Exclusive nor
XNORcc

rsl - - . rd
xnorcc regrsl, reg_or _zmm, regrd

XOR xor reg , reg or imm, reg Exclusive or
XORcc

rsl - - . rd
xorcc regrsl, reg_ or _zmm, regrd

NOTE Trap numbers 16-31 are available for use by the user, and will not be usurped by
Sun. Currently-defined trap numbers are those defined in

2.3. Floating-Point
Instructions

/usr I include/ sun4 /trap. h, as follows:

OxOO ST SYSCALL

OxOl ST BREAKPOINT

Ox02 ST DIVO

Ox03 ST FLUSH WINDOWS

Ox04 ST CLEAN WINDOWS

Ox05 ST RANGE CHECK

Ox06 ST FIX ALIGN

Ox07 ST INT OVERFLOW

In the table below, the types of numbers being manipulated by an instruction are
denoted by the following lowercase letters:

i -integer

s-single

d-double

q-quad

In some cases where more than numeric type is involved, each instruction in a
group is described. Otherwise, only the first member of a group is described.

~\sun ~ microsystems
Revision A of 27 March, 1990

Mnemonic

15

Table 2-3 Floating-point Instructions- Continued

SPARC Mnemonic Argument List Description

FCMPEs f cmpes freg , freg Compare, Generate exception if unordered. rsl rs2
FCMPEd f cmped fregrsl, fregrs2
FCMPEq f cmpeq freg , freg rsl rs2

2.4. Coprocessor
Instructions

All cpopn instructions take all operands from and return all results to coproces­
sor registers. The data types supported by the coprocessor are coprocessor­
dependent. Operand alignment is coprocessor-dependent.

SPARC

CPopl
CPop2

If the EC field of the PSR is 0, or if no coprocessor is present, a cpopn instruc­
tion causes a cp_disabled trap.

The conditions causing a cp _except ion trap are coprocessor-dependent.

NOTE A non- cpopn (non-coprocessor-operate) instruction must be executed between
a cpop2 instruction and a subsequent cbccc instruction.

Table 2-4 Coprocessor Instructions

Mnemonic Argument List Name Comments

cpopl opd,reg ,reg ,reg Coprocessor operation rsl rs2 rd
cpop2 opd, reg , reg , reg Coprocessor operation (may modify ccc's) rsl rs2 rd

2.5. Synthetic Instructions This secti9n describes the mapping of synthetic instructions to hardware instruc­
tions.

Table 2-5 Synthetic Instruction to Hardware Instruction Mapping

Synthetic Instruction Hardware Equivalent(s) Comment

cmp regrsl, reg_or _imm sub cc .reg , reg or imm, %g0 rsl - - (compare)

jmp address jmpl address, %g0

call reg_or_imm jmpl reg_or _imm, %07

tst regrsl or cc reg , %g0, %g0 (test) rsl
ret jmpl %i7+8,%g0 (returnfrom subroutine)
retl jmpl %o7+8,%g0 (return from leaf subroutine)

restore restore %g0,%g0,%g0 (trivial restore)
save save %g0,%g0,%g0 (trivial save)

Warning: trivial save
should only be used in kernel
code!

set value, reg or , value, reg (if-4096 $;value$; 4095) rd rd

•\sun ~ microsystems
Revision A of 27 March, 1990

16

set

set

not

not

neg

neg

inc
inc
inccc

inc cc

dee

dee
dee cc

dee cc

btst

clrh
clr

mov
mov
mov
mov
mov
mov
mov
mov
mov

2-5

·do not use set in
slot.

constl3 and

sub

constl3,

const13, and

A 1990

2.6. Leaf Procedures

Chapter 2 - Instruction-Set Mapping 17

Leaf procedures are the outermost routines on the tree of a program, as a tree's
leaf is at the end of a stem on the branch of a tree.

Some leaf procedures can be made to operate without their own register window
or stack frame, using their caller's instead. Such a leaf procedure is called an
optimized leaf procedure. This can be done when the candidate procedure
meets all of the following conditions:

o it contains no CALLS or JMPLs to other procedures

o it contains no references to % sp, except in its SAVE instruction

o it contains no references to % f p

o it refers to, or can be made to refer to, no more than 8 of the 32 integer regis­
ters, inclusive of % o 7, the "return address".

If a procedure conforms to all of the above conditions, it can be made to operate
using its caller's stack frame and registers an optimization that saves both time
and space. When optimized, the procedure may only safely use registers which
its caller already assumes to be volatile across a procedure call: %00 ... %05,
%07, and %gl. This may be expanded to registers %gl ... %g7 if SPARC ABI
compliance isn't required.

Leaf routines are most useful when they prevent expensive window
overflow/underflow situations, saving many tens of cycles each.

tt\sun ~ microsystems
Revision A of 27 March, 1990

1

Pseudo-Operations

The following pseudo-operations are supported by the Sun-4 assembler:

Table A-1 List of Pseudo-Operations

Mnemonic Argument(s) Description

.alias Turns off preceding . noalias. (Compiler-generated
only.)

.noalias %regl, %reg2 %regl and %reg2 will not alias each other (point to the
same destination) until a . alias is issued. (Compiler-
generated only.)

.ascii "string" [f "string n] * Generates the given sequence(s) of characters.

.asciz "string" [,"string"]* Generates the given sequence(s) of ASCII characters, with
each string followed by a null byte.

.optim "string" Any optimization that can also be given as a flag in the com-
mand line, such as -0 [n] with n = {0,1,2,3}. (Compiler-
generated only.)

.seg "string" Changes the current segment to the one named, and sets the
location counter to the location of the next available byte in
that segment. The default segment at the beginning of
assembly is text. Currently, only segments text, data,
datal, and bss are supported.

n Increments the location counter by n, which allocates n bytes
of empty space in the current segment.

.align boundary Aligns the location counter on a 0-mod-boundary boundary;
boundary may be 1 (which has no effect), 2, 4, or 8.

.byte 8bitval [, 8bitval] * Generates (a sequence of) initialized bytes in the current seg-
ment.

.half 16bitval [, l 6bitval] * Generates (a sequence of) initialized halfwords in the current
segment. The location counter must already be aligned on a
halfword boundary (use .

19 Revision A of27 March, 1990

.word

.s

.double

.global

.common

. reserve

32bitval

a FOR TRAN-sty le
is "b s s" or not specified, then

the bss or the data
is defined else­

supported .

Mnemonic

.proc

.stabs

.stabn

. stabd

Appendix A - Pseudo-Operations 21

Table A-1 List of Pseudo-Operations- Continued

Argument(s)

n

"string", const4, 0, constl6, const32

const4, 0, canst] 6, const32

const4, 0, constl 6

Description

Signals the beginning of a "procedure" (unit of optimization)
to the peephole optimizer in the Sun-4 assembler; n specifies
which registers will contain useful information upon return
from the procedure, as follows:

0 no return value
6 return value in % f 0
7 return value in % f 0 and % f 1

(other) return value in %i0 (caller's %00)

The pseudo-operation . pro c may be produced by code
generators for higher-level languages. See note below.

Inserts a symbol table entry consisting of "string", followed
by a 4-bit constant const4, a literal zero, a 16-bit constant
constl6, and a 32-bit constant const32. Used by Sun com­
pilers only to pass information through the object file to
symbolic debuggers.

Inserts a symbol table entry consisting of a 4-bit numeric
entry const4, followed by a literal zero, a 16-bit constant
constl 6, and a 32-bit constant const32. Used by Sun com­
pilers only to pass line-number information through the
object file to symbolic debuggers.

Inserts a symbol-table entry consisting of a 4-bit numeric
entry const4, followed by a literal zero and a 16-bit constant
constl6. Used by Sun compilers only to pass location­
counter information through the object file to symbolic
debuggers.

symbol_ name = constant_expression Assigns the value of constant expression to symbol name.

NOTE Since peephole optimization is not performed on hand-written assembly­
language code, there is no need for . proc statements in such code.

Revision A of 27 March, 1990

22

B.1. as Options

The Sun-4 Assembler

You invoke as as follows:

[~~--a_s __ [_o_p_u_on_s_J __ [_in_p_u_¢_k_J ________ ~--------------------~-----]
as translates the assembly language source files, inputfzle into an executable
object file, obj.file. The Sun-4 assembler recognizes the filename argument'-' as
the standard input.

All undefined symbols in the assembly are treated as global.

The Sun-4 assembler supports macros, #include files, and symbolic substitu­
tion through use of the C preprocessor cpp. The assembler invokes the prepro­
cessor before assembly begins if it has been specified from the command line as
an option (see -P below).

- L Save defined labels beginning with an L, which are normally discarded to
save space in the resultant symbol table. The compilers generate many such
temporary labels.

-R Make the initialized data segment read-only by concatenating it to the text
segment.

-o objfile
The next argument is taken as the name of the object file to be produced. If
the -o flag isn't used, the object file is named a. out.

- P Run cpp, the C preprocessor, on the files being assembled. The preproces­
sor is run separately on each input file, not on their concatenation. The
preprocessor output is passed to the assembler.

-k Generate position-independent code as required by

WARNING Don't apply the -kflag to hand-coded assembler programs unless they are
written to be position-independent.

~\sun ~ microsystems
23 Revision A of 27 March, 1990

24

-Dname

to the cpp preprocessor,
are

-s
output. This is

...
13

.. '
113

''"' optimized code.
from appearing

Index

Special Characters
atof(3), 3

A
as, 23
assembler

and cpp, 23
case distinction, 3
comments, 3
coprocessor instructions, 15
delay slots, 5
error messages, 5
expressions, 5
hardware instructions, 8
#include files, 23
instruction-set, 7
invoking, 23
labels, 4
leaf procedure, 17
lexical features, 2
numbers, 3
operators, 5
optimization, 21
options, 23
pseudo-operations, 19
register routines, 17
special symbols, 4
strings, 3
symbol names, 3
syntax, 1
synthetic instructions, 15

B
bss, 19

c
COMMON, 19
coprocessor instructions, 15
cp _disabled trap, 15
cp_exceptiontrap, 15

D
data, 19
datal, 19
delay slots, 5

-25-

E
error messages, 5
expressions, 5

F
f77,4
floating-point constant

Or-inf, 3
Or-nan, 3
Orinf, 3
Oman, 3

floating-point instructions, 13 thru 15

hardware instructions
floating-point, 13
integer, 8

I
instruction-set mapping, 7
instructions

coprocessor operate (CPop), 15
integer instructions, 8 thru 13

L

operators, 5
optimization, 21
options

assembler, 23 thru 24

p
pseudo-operations, 19

= '21
. alias, 19
. align, 19
. ascii, 19
.asciz, 19
.byte, 19
. common, 20
.double, 20
. empty, 6, 20
~~~;~u~. 20 

.half, 19 

. noalias, 19 



I 

Index-Continued 

.proc, 

.quad, 20 

.reserve,20 

. seg, 19 

. single, 20 
19 

. stabd, 

. stabn, 

. stabs, 

.word, 

routines 
RESTORE, 
SAVE, 

GLOBAL, 
OUT, 

RESTORE, 

s 
17 

statement syntax, 2 
syntax, 1 

assembler, 

statement, 

text, 
traps 

T 


