
4:\sun®
~ microsystems

Sun FORTRAN Release Notes

#•sun®
• microsystems

Sun FORTRAN Release Notes

The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks
of Sun Microsystems, Inc. ...,,.f//I
Sun, Sun-2, Sun-3, Sun-4, Sun386i, Suninstall, SunOS, Sun View, NFS, NeWS,
and SP ARC are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations.

Copyright© 1986, 1987, 1988 Sun Microsystems, Inc. - Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical -
including photocopying, recording, taping, or storage in an information retrieval
system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(l)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This software and documentation is based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of Cali­
fornia. We acknowledge the following individuals and institutions for their role
in its development: The Regents of the University of California, the Electrical
Engineering and Computer Sciences Department at the Berkeley Campus of the
University of California, and Other Contributors.

Contents

Preface vii

Chapter 1 Introduction .. 3

1.1. Overview .. 3

1.2. Revision Components ... 3

1.3. Relationship with Other Sun Products .. 3

Chapter 2 New Features .. 7

2.1. The Logical Right Shift Pseudo-function LRSHFT 7

2.2. Variable Expressions in FORMAT Statements .. 7

2.3. The OPTIONS Statement ... 8

2.4. Initializing in Type Declarations .. 9

2.5. Initializing Fields of Record Structures .. 10

2.6. The Zero Extend Function ZEXT ... 11

2.7. The VMS FORTRAN System Routines.. 11

Usage ... 11

Summary.. 11

DATE ... :...................... 12

IDA TE ... ;;~ ~ ; ... ;;.......... 13

SECNDS .. ;; ... · .. ;•.;: ;.;· .. •~ ;;:......... 14

TIME ... ;: ... : ;· : ~·.;;..... 15

RAN ... ; ,;.~ .. • ;;~;.; ~ •..... 16

MVBITS ... ;......... 17

Appendix A Errata and Addenda···'························· 21

- iii-

Contents - Continued

A.I. Using the Compiler .. . 21 ..,,,
A.2. Data Structures and Expressions .. . 23

A.3. Input and Output .. . 25

OPEN .. . 25

Accessing Files 27

A.4. Program Development .. . 29

A.5. The C-FORTRAN Interface .. . 31

A.6. I77 Man Pages 33

A. 7. ratf or Man Page .. . 35

A.8. abort Man Page 37

A.9. f77 _ieee_environment Man Pages 39

-iv-

Tables

Table 2-1 Zero-Extend Functions ... 11

Table 2-2 Summary: VMS FORTRAN System Routines .. 11

-v-

Purpose and Audience

Conventions in Text

Organization

Pref ace

This manual describes the changes and extensions in Sun FORTRAN 1.2. We
TM

assume you are familiar with the previous Sun FORTRAN and the SunOS file
system. See also the Sun FORTRAN Programmer's Guide.

Note the following conventions we use in this manual to display information:

o Plain typewriter font indicates commands, prompts, and
programming statements.

o Bold typewriter font indicates user input.

o I tali cs indicates general arguments or parameters that you should replace
with the appropriate input. Italics are also used to indicate emphasis.

o Examples of coding are set in white boxes. Examples with user interaction
are set in gray boxes to indicate the workstation screen. For example:

The basic Sun OS prompt is merely the percent sign (%). However,
most Sun workstations have distinct host names and our examples are
more easily distinguished if we use a symbol longer than a % sign.
For this reason, examples in this manual use demo% to denote the
system prompt.

This manual consists of the following parts:

Chapter I is an overview of the changes and extensions.

Chapter 2 describes the changes and features.

Appendix A lists errata and addenda.

-vii-

1

Introduction

Introduction ... 3

1.1. Overview.. 3

1.2. Revision Components ... 3

1.3. Relationship with Other Sun Products .. 3

1.1. Overview

1.2. Revision Components

1.3. Relationship with
Other Sun Products

1
Introduction

This release adds various features and improvements to Sun FOR1RAN.

The new release consists of the previous Sun FOR1RAN compiler and library
with extensions added.

o The logical right shift function LRSHIFT

o Variable expressions in FORMAT statements

0 The OPTIONS statement

o Initializing variables in type statements

o Initializing fields of structured records

o The intrinsic function ZEXT

o The VMS FOR1RAN system routines

DATE, IDATE, SECNDS, TIME, RAN, and MVBITS

This Sun FOR1RAN executes on all Sun-3™ and Sun-4™ systems under
SunOS 4.0 and later.

3 Revision A of 27 January 1989

2
New Features

New Features ... 7

2.1. The Logical Right Shift Pseudo-function LRSHFT 7

2.2. Variable Expressiorn in FORMAT Statements .. 7

2.3. The OPTIONS Statement ... 8

2.4. Initializing in Type Declaratiorn .. 9

2.5. Initializing Fields of Record Structures .. 10

2.6. The Zero Extend Function ZEXT ... 11

2.7. The VMS FORTRAN System Routines.. 11

Usage ... 11

Summary.. 11

DATE... 12

IDATE ... 13

SECNDS .. 14

TIME.. 15

RAN.. 16

MVBITS .. 17

2.1. The Logical Right
Shift Pseudo-function
LRSHFT

2.2. Variable Expressions
in FORMAT Statements

2
New Features

Sun FOR1RAN now has a logical right shift pseudo-function, LRSHFT, that
compiles into inline code.

The general form is:

LRSHFT (al, a2)

where LRSHFT shifts al logically right by a2 bits.

The shift functions are summarized here:

LSHIFT shifts al logically left by a2 bits. (inline code)
LRSHFT shifts al logically right by a2 bits. (inline code)
RSHIFT shifts al arithmetically* right by a2 bits. (inline code)
I SHIFT shifts al logically right if a2 > O and left if a2 < 0.

In general, inside a FORMAT statement, any integer constant can be replaced by
an arbitrary expression; the single exception is the "n" in an "nH ... " edit
descriptor. The expression itself must be inclosed in angle brackets.

For example, the" 6" in:

[1 FORMAT(3F6.1

can be replaced by the variable "N", as in:

]

(~~~l~-F-O-RMA~-T-(~3-F_<_N_>_._1~)~~~~~~~~~~~~~~~~__,]
or by the slightly more complicated expression "2 *N+M", as in:

[-~~1~-F-O-RMA~-T-(~3-F_<_2_*_N_+M~>_._1~)~~~~~~~~~~~~~~---]
Similarly, the "3" or "l" can be replaced by any expression.

• The Sun FORTRAN Programmer's Guide, page 238, describes RSHIFT as doing a logical right shift.
That is an error. RSHIFT does an aritlrlmtic right shift.

7 Revision A of 27 January 1989

8 Sun FORTRAN Release Notes

2.3. The OPTIONS
Statement

Rules and Restrictions for Variable Expressions in FORMAT 's

o The expression is reevaluated each time it is encountered during a format
scan.

o If necessary, the expression is converted to integer type.

o Any valid FORTRAN expression is allowed, including function calls.

o Variable expressions are not allowed in formats generated at runtime.

The OPTIONS statement overrides certain compiler command-line options.
The general form is:

[~~~o-P_T_r_o_N_s~l-q_u_al_ifie~r-U_q_u_a_lifi_e_r_._ .. J~------~--~----~--~--~----]
The OPTIONS statement qualifiers recognized by Sun FORTRAN are:

Qualifier

/[NO]G_FLOATING
/[NO]I4
/[NO]f77
/CHECK=ALL
/CHECK=[NO]OVERFLOW
/CHECK=[NO]BOUNDS
/CHECK=[NO]UNDERFLOW
/CHECK=NONE
/NOCHECK
/[NO]EXTEND_SOURCE

Action Taken

None (not implemented)
Enables/Disables the -i2 option
Enables/Disables the - 6 6 option
Enables the -C option
None (not implemented)
Enables the -c option
None (not implemented) -""'1J/l/lf
Disables the -C option
Disables the -C option
Disables the -e option

Rules and Restrictions for OPTIONS Statements

o The OPTIONS statement must be the.first statement in a program unit. Note
that this means it must be before the BLOCK DATA, FUNCTION,
PROGRAM, and SUBROUTINE statements.

o The options set by the OPTIONS statement override the values from the
compiler command-line.

o The options set by the OPTIONS statement endure for that program unit
only.

o A qualifier can be abbreviated to four or more characters.

o Upper or lower case is not significant.

Revision A of 27 January 1989

2.4. Initializing in Type
·~ Declarations

Chapter 2 - New Features 9

You can initialize variables in a typed data declaration, as in a DATA statement.
The general fonn is:

type VariableName I constant I ...

or

type ArrayName I constant, .. . I

or

type ArrayName I r*constant I

where r is a repeat factor.

For example:

CHARACTER LABEL*12 I "Standard"
COMPLEX STRESSPT / (0.0, 1. 0
INTEGER COUNT / 99 /, z I 1
REAL PRICE / 0.0 /, COST I
REAL LIST(8) I 0. 0, 6*1.0,

I
) I
I
0.0
0.0

Rules and Restrictions for Data Type Initialization

I
I

o For a simple variable, there must be exactly one constant.

o If any element of an array is initialized, all must be.

o You can use an integer as a repeatfactor, followed by an asterisk(*),
followed by a constant. (In the example above, six values of 1.0 are stored
into array elements 2, 3, 4, 5, 6, and 7 of LIST.)

o If a variable or array is declared AUTOMATIC, then it cannot be initialized.

o A pointer-based variable or array cannot be initialized. For example, with:

[-~~P-I~-T_I~-~-~-~~-a_x_/_'_4_a_/_>~~~~~~~~~~~~~~~~~~~-]
You get a compiler warning message, and a does not get initialized.

o If a variable or array is not initialized, its value(s) are undefined.

Revision A of 27 January 1989

10 Sun FORTRAN Release Notes

2.5. Initializing Fields of
Record Structures

You can initialize fields in a structured record, as long as the field declaration is a
typed data declaration. For example: .._.,,

STRUCTURE /PRODUCT/
INTEGER*4 ID I 99 I
CHARACTER*16 NAME
CHARACTER*8 MODEL
REAL*4 COST
REAL*4 PRICE

END STRUCTURE

Every record that is declared to have the structure PRODUCT will have its ID
field initialized to 9 9. For example:

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(l0)

This puts 9 9 into the ID field of records CURRENT, PRIOR, NEXT, and each of
the 10 records of the array LINE.

Rules and Restrictions for Field Initialization

o The structure can be a substructure or union.

o If a record is declared AUTOMA TI c, then its fields cannot be initialized.

o A pointer-based record or record field cannot be initialized.
For example, with:

STRUCTURE I prod I
INTEGER*4 i / 4 /
CHARACTER*l tag

END prod
RECORD I prod I a, b
POINTER (x, a)

You get a compiler warning message, and a . i does not get
initialized.

o If a field is unnamed or not initialized, its value is undefined.

Revision A of 27 January 1989

2.6. The Zero Extend
. ..._..,. Function ZEXT

Table 2-1

2.7. The VMS FORTRAN
System Routines

Usage

Summary
Table 2-2

Name Definition

DATE Date
as dd-mmm-yy

I DATE Date
as d, m, y

SECNDS Time of day
or elapsed time

TIME Current time
as hhmmss

RAN Random
number

MVBITS Move bit field

Chapter 2 - New Features 11

The following zero-extend functions are now recognized by Sun FORTRAN. The

first unused high-order bit is set to zero and extended toward the higher-order end

to the width indicated in the table.

Zero-Extend Functions

Name Gen/Spec Function Arg Type Result Type

ZEXT generic zero-extend - -

IZEXT specific zero-extend LOGICAL*l INTEGER*2
orINTEGER*2

JZEXT specific zero-extend LOGICAL INTEGER*4
or INTEGER

These routines provide compatibility with VMS FORTRAN system routines.

To use these routines you must include the -1V77 option on the £77 command
line, in which case you will also get the VMS versions of IDATE and TIME,
instead of the Sun versions. For example:

(_~_d_e_m_o_%~f-7-7~m-yp_r_v_g_._f~--1V~7-7~~~~~~~~~~~~~~~~J

Summary: VMS FORTRAN System Routines

Calling Sequence Argument Returned
Type Type

CALL DATE(c) CHARACTER*9 n/a

CALL IDATE(d, m, y) INTEGER n/a

t = SECNDS(u) REAL REAL

CALL TIME(t) CHARACTER*8 n/a

r = RAN (s) INTEGER*4 REAL

CALL MVBITS(src,il,n, des,i2) INTEGER n/a

The error condition subroutine ERRSNS is not provided on Sun systems because

it is totally specific to the VMS operating system. The terminate program
subroutine EXIT was already provided by SunOS.

+~.!! Revision A of 27 January 1989

12 Sun FORTRAN Release Notes

DATE

Usage

Example

Get the current system date as a character string.

CALL DATE(c)

where:

c is a variable, array, array element, or character substring of type
CHARACTER*9.

The form of the returned string c is dd-mnun-yy, where:

dd is the day of the month, as a 2-digit integer.

mmm is the month name as a 3-letter abbreviation.

yy is the year, as a 2-digit integer.

demo% cat datl.f
* datl.f -- Get the date as a character string.

CHARACTER c*9
CALL DATE (c)
WRITE(*,"(' The date today is:
END

demo% £77 datl.f -1V77
datl.f:

MAIN:
demo% a.out

The date today is: 23-Sep-88
demo%

A9) ") c

Revision A of 27 January 1989

IDA TE

Usage

Example

Chapter 2 - New Features 13

Get the current system date as three integers for month, day, and year.

CALL IDATE(m, d, y)

where m, d, and y are variables of type INTEGER.

and where:

m is the month.

dis the day.

y is the year.

demo% cat idal.f
* idal.f -- Get the date as three integers m, d, y.

INTEGER m, d, y
CALL IDATE (m, d, y)
WRITE (*, "(' The date is: , ,3i3)") m, d, y
END

demo% £77 idal.f -1V77
idal. f:

MAIN:
demo% a.out

The date is:
demo%

9 23 88

Revision A of 27 January 1989

14 Sun FORTRAN Release Notes

SECNDS

Usage

Example

Remarks

Get the system time in seconds, minus the value of the argument.

t = SECNDS (t 0)

where:

t 0 is a constant, variable, or array element of type REAL, and
SECNDS returns a value of type REAL. The returned value is the number of
seconds since midnight, minus the argument supplied by the user.

demo% cat secl.f
REAL elapsed, tO, tl, x, y
tO 0.0
t1 SECNDS(tO
y 0.1
DO I = 1, 1000

x = ASIN(y
END DO
elapsed= SECNDS(tl)
WRITE (*, 1) elapsed

1 FORMAT (' 1000 arcsines: ' F12.6, ' sec')
END

demo% £77 secl.f -lV77
secl. f:

MAIN:
demo% a.out

1000 arcsines:
demo%

6.699141 sec

o The returned value from SECNDS is accurate to 0.01 second.

o The value is the number of seconds from midnight, and it correctly spans
midnight.

o Some precision may be lost for small time intervals near the end of the day.

Revision A of 27 January 1989

TIME

Usage

Example

Chapter 2-New Features 15

Get the current system time as a CHARACTER string.

CALL TIME(t)

where t, is a variable, array, array element, or character substring, and is of type

CHARACTER* 8.

The string returned is of the form hh : mm: s s, where each of hh, mm, and s s are

2-digits, and where:

r

hh is the hour.

mm is the minute.

s s is the second.

demo% cat timl.f
* timl.f -- Get current time as a character string.

CHARACTER t*8
CALL TIME(t)

WRITE (*, "(' The time is:
END

demo% £77 timl.f -1V77
timl.f:

MAIN:
demo% a.out

The time is: 08:14:13
demo%

A8) ") t

Revision A of 27 January 1989

16 Sun FORTRAN Release Notes

RAN

Usage

Example

Remarks

Generate a random number between 0 and 1; repeated calls to RAN generate a
sequence of random numbers with a unifonn distribution.

r = RAN(i)

where: r is a variable of type REAL, and i is a variable or array element of type
INTEGER*4.

r

demo% cat ranl.f
* ranl.f -- Generate random numbers.

INTEGER i, n
REAL r (10)
i = 760013
DO n = 1, 10

r(n) = RAN (i)
END DO
WRITE (*I " (5 Fl 1 . 6) n r
END

demo% £77 ranl.f -1V77
ranl.f:
MAIN:

demo% a.out

0

0

0

0

0

0

0

0 .222058
0.060174

demo%

0.299851
0.149466

0.390777
0.444353

The range includes 0.0 and excludes 1.0 .

0.607055
0.002982

0.653188
0.976519

The algorithm is a multiplicative congruential type general random number
generator.

In general, the value of i is set once during execution of the calling
program.

The initial value of i should be a large odd integer.

Each call to RAN gets the next random number in the sequence.

To get a different sequence of random numbers each time you run the
program, you must set the argument to a different initial value for each run.

The argument is used by RAN to store a value for the calculation of the next
random number according to the following algorithm:

(_____ s_E_E_D __ = __ 6_9_o_9 __ * __ s_E_E_D __ + __ 1 __ <_M_o_D __ 2_*_*_3_2_) ____________________ ~]
0 SEED contains a 32-bit number, and the high-order 24 bits are converted to

floating point, and that value is returned.

Revision A of 27 January 1989

MVBITS

Usage

Example

Remarks

Chapter 2 - New Features 17

Move a bit field

CALL MVBITS(src, inil, nbits, des, ini2)

where src, inil, nbits, des, and ini2, are of type INTEGER,

and where:

src is the variable or array element that is the source.

inil is an expression for the initial bit position in the source.

nbi ts is the number of bits to move.

des is the variable or array element that is the destination.

ini2 is an expression for the initial bit position in the destination.

demo% cat mvbl.f
* mvbl.f -- From src,
* to des,

initial bit 0, move 3 bits
initial bit 3.

* src des
* 543210 543210
* 000111 000001

<-- Bit numbers (VMS convention)

<-- Values before move

* 000111 111001 <--
INTEGER src, inil,
DATA src, inil,

& I 7, o,
CALL MVBITS (src,
WRITE (*," (5o3) ")
END

demo% f77 mvbl.f -1V77
mvbl. f:

MAIN:
demo% a.out

7 0 3 71 3
demo%

Values after move
nbits, des, ini2
nbits, des, ini2

3, 1, 3 I
inil, nbits, des, ini2

src, inil, nbits, des, ini2

o Bits are numbered according to VMS conventions: from low-ordered end
(see example above).

o MVBITS changes only bits ini2 through ini2+nbits-1 of the des

location, and no bits of the src location.

o Restrictions: ini l+nbits <32 and ini2+nbits5'32

Revision A of 27 January 1989

A
Errata and Addenda

Errata and Addenda .. 21

A.1. Using the Compiler ... 21

A.2. Data Structures and Expressions ... 23

A.3. Input and Output ... 25

OPEN... 25

Accessing Files .. 27

A.4. Program Development ... 29

A.5. The C-FOR1RAN Interface ... 31_...,
A.6. f77 Man Pages .. 33

A.7. ratfor Man Page ... 35

A.8. abort Man Page .. 37

A.9. f77 _ieee_environment Man Pages .. 39

A.1. Using the Compiler

A
Errata and Addenda

The following pages are Errata and Addenda for the Sun FORTRAN
Programmer's Guide, Part Number: 800-2163-10.

Pages 15-22

Action: Remove pages 15 through 22 from the Sun FORTRAN Programmer's
Guide, and replace them with the new pages 15 through 22 that follow.

Description of Changes

In Section 3.4, added information related to the FORTRANCASE

environment variable (old pages 15 and 16).

In Section 3.7, inserted the -dalign option (old page 18), for the
-misalign option, moved the restriction to Sun-4 (old page 20),
inserted the -pic/PIC options (old page 21), and inserted the
optional optimizer file opt im under -Qoption, and -Qproduce
(old page 22).

Minor formatting corrections on pages 18-22.

21 Revision A of 27 January 1989

22 Sun FORTRAN Release Notes

Revision A of 27 January 1989

Continuation Lines

Extended Lines

Padding

Chapter 3 - Using the Compiler 15

The default maximum number of continuation lines is 19 (1 initial and 19
continuation). See the Nln option, below.

The compiler includes an option to accept extended source lines, with up to 132
characters. By default, it ignores any characters after column 72. To specify the
recognition of extended source lines, use the -e option, as in this example:

(____ d_e_m_o_% __ £_7_7 __ -_e_·_p_r_o_g_._f _____________________________________ ~J

Padding is significant in lines such as:

1 2 3 4 5 6 7

C23456789012345678901234567890123456789012345678901234567890123456789012

DATA SIXTYH/60H
1 I

3.4. Upper and Lower Case

Case with INQUIRE

In the standard, there are only 26 letters - FORTRAN 77 is a one-case language.
Consistent with ordinary UNIX system usage, this compiler accepts upper-case or
lower-case input. That is, the program source file can be in either lower-case or
upper-case, or any mixture, but note the following general rules concerning case:

o The normal action of the compiler is to maintain names of procedures and
names of variables in lower-case. (The -u option prevents this. In this -u
mode, it is possible to specify external names with upper-case letters in
them, and to have distinct variables differing only in case.)

o The compiler does not translate characters inside character-string constants.

o By default, the strings returned by INQUIRE are in upper-case.

o The debugger dbxtool does not convert to lower-case.

Since strings returned by INQUIRE are, by default, in upper-case, use of
INQUIRE needs some caution regarding case. For example:

demo% cat inql.f
* inql.f Inquire with UPPER and lower-case

CHARACTER ANSWER*l5
INQUIRE (6, SEQUENTIAL=ANSWER
IF (ANSWER .EQ. 'YES') PRINT *, 'CAPS MATCH'
IF (ANSWER .EQ. 'yes') PRINT * f , lowers match'
END

demo% £77 inql.f
inql. f:

MAIN:
demo% a.out

CAPS MATCH
demo% I

Revision A of 27 January 1989

16 Sun FORTRAN Release Notes

Case of Run-time Strings

Case with dbxtool

3.5. Routines per File

Note that this applies only to the . o
modules in libraries. Files explicitly
named in the link command are
unconditionally loaded.

The match on upper-case is successful; the match on lower-case fails. You
should probably be alert to such distinctions.

You can use the environment variable FORTRANCASE to set upper or lower case
for strings generated at run-time Oogical variables, the E in floating point
numbers, and strings returned by the INQUIRE statement). For example:

(~~-d_e_m_o_~_o_s_e_t_e_n_v~_F_o_R_T_RAN~-CA~S-E~l-o_w_e_r~~~~~~---~~~~~~___..J
Use of the debugger dbxtool also requires some caution regarding case.* If
your source file is in upper-case, then before you use dbxtool you should
either tell f 7 7 to use upper-case, for example:

demo% £77 -U inql.f
inql. f:

MAIN:
demo% I

or use the tr command to translate the source file from upper-case to lower-case
or vice versa. For example, to read the upper-case source file SBENCH. f and
write the lower-case source file sbench. f:

(~---d_e_m_o_~_o_t_r __ A __ -_z_.·_a_-_z __ <_·_s_a_E_N_c_H_.~f--> __ s_b_e_n __ c_h_._f.__ __ ..._ __ ..._ ________ ~J
If your programs have bugs, dbxtool is useful. Most who have tried it found it
was more than worth the bother of recompiling with the -u option.

The scope ofFOR1RAN variables and routines (as compared with C) has nothing
to do with the files they reside in, so a source file can contain any number of
compilation units (main programs, functions, or subroutines). However, there are
two good reasons to keep each compilation unit in a separate source file:

0

0

Reduce the compilation overhead of changing one procedure.

Minimize loading of unreferenced functions.

f 7 7 produces one . o file for each . f file it processes. If any routine
in the . o file is referenced, the linker ld copies in the entire . o file,
loading all routines, referenced or not.

For example, suppose we have two files: subs. f and main. f:

File subs . f has routines a and b .
File main. f has a main program that calls a but not b.

* This debugger displays variable names so the users can select the variable they want displayed. It gets the
variable names from the source file, so if the source has them in upper and the compiler has them in lower, then
dbxtool cannot find the selected variable.

Revision A of 27 January 1989

Chapter 3 - Using the Compiler 17
~~~~~

~~~~~
~~~~~

~~~~~
~~~~~

~~~~~
~~~-

3.6. Other Files 

Table 3-1 

Language Preprocessor 

The command: 

(~~~~-d_e_m_o_%_._£_7_7_ma~·-in~.f~s-ub~-·£~~~~~~~~~-"-~~~~-----J 
produces an a . out file that contains the code for subroutine b even 

though b is not referenced. 

The f split command can be used to break up multiple-routine source files into 

a series of files, one routine per file. 

The f 7 7 command recognizes several other kinds of files. The table below 

summarizes the filename extensions that f 7 7 understands. 

Filename Suffixes Sun FORTRAN Understands 

Suffix Language Action 

.£ FORTRAN Compile FORTRAN source files, put object files in 

current directory, default name of object file is that 

of the source but with . o suffix. 

.F FORTRAN Process FORTRAN source files by the C 

preprocessor before compiling by f 7 7 . 

.c c C source files are compiled by the C compiler. The 

f 7 7 and cc commands generate slightly different 

loading sequences, since FORTRAN programs need 

a few extra libraries and a different startup routine 

than do C programs. 

.s Assembler Process assembly-language source files by the 

assembler as. 

.il In-line Expansion Process in-line expansion code template files. 

These are used to expand calls to selected routines 

in-line when the -0 option is used. 

.o Object Files Pass object files through to the linker. 

Note: Files with none of the above filename suffixes are passed to the linker. 

The cpp program is the C language preprocessor, which is invoked during the 

first pass of a FORTRAN compilation if the source filename has the . F extension. 

Its main uses here are for constant definitions and conditional compilation. See 

cpp (1), or the -Dname option in Compiler Options, in the next section.) 

Revision A of 27 January 1989 



18 Sun FORTRAN Release Notes 

3.7. Compiler Options The list below contains the options that f 7 7 understands. Note that the compiler 
option -help displays essentially the same list, as does the man £77 
command. (See the Manual Pages, online or in the appendices.) 

-66 Report non-FORTRAN 66 constructs as errors. 

-a Insert code to count how many times each basic block is executed. 
Invokes a runtime recording mechanism that creates a . d file for every . f 
file (at normal termination). The . d file accumulates execution data for 
the corresponding source file. The tcov(l) utility can then be run on the 
source file to generate statistics about the program. 

-align _block_ 
Cause the common block whose FORTRAN name is block to be page­
aligned: its size is increased to a whole number of pages, and its first byte 
is placed at the beginning of a page. For example, the command 
"£77 -align _BUFFO_ GROWTH.F" causes BUFFO to be page­
aligned. This option applies to uninitialized data only: if any variable of 
the common block is initialized in a DATA statement, then the block will 
not be aligned. This option is passed to the linker. 

-ansi 
Identify all non-ANSI extensions. Note that f 7 7 cvt provides an option to 
flag any Sun FORTRAN extensions that it uses during the conversion of a 
VMS FORTRAN source file. 
For more on f 7 7 c vt, see Section 10.4 - "The Source Code Converter." 

-c Suppress linking and produce a . o file for each source file. 

-C Compile code to check that subscripts are within declared array bounds. 
-dalign 

Sun-4 ™ only. Generate double load/store instructions wherever possible 
for faster execution. Using this option automatically triggers the-£ option 
(see below) to cause all double typed data to be double aligned. With 
-da1ign, you may not get ANSI standard FORTRAN alignment - a 
tradeoff of portability for speed. See also "Shared Libraries" in 
Programming Utilities and Libraries. 

-dry run 
Show but do not execute commands constructed by the compiler driver. 

-Dname=def 
-Dname 

Define name to the C preprocessor, as if by "#define". If no definition is 
given, the name is defined as" 1" (. F files only). 

-e Accept extended source lines, up to 132 characters long. 

-£ Align local data and COMMON blocks on 8-byte boundaries. Resulting 
code may not be standard and may not be portable. · 

Revision A of 27 January 1989 



Chapter 3 - Using the Compiler 19 

-£float option 
TM TM 

Sun-2 or Sun-3 only. See the Sun Floating-Point Programmer's Guide. 

-£68881 
Generate code that assumes the presence of the Sun Floating-Point 

Accelerator (Sun-3 only). 

-f fpa 
Generate code that assumes the presence of the Sun-3 floating-point 

accelerator board (Sun-3 only). 

-f sky 
Generate code that assumes the presence of a Sky™ Floating-Point 

Processor board. Programs compiled with this option can only be run 

in systems that have a Sky board installed. (Sun-2 only). 

-£soft 
Generate code that uses software floating-point calls (this is the 

default). 

-£store 
Insure that expressions allocated to extended-precision registers are 

rounded to storage precision whenever an assignment occurs in the 

source code. Only has effect when -f68881 is specified (Sun-3 only). 

-£switch 
Run-time-switched floating-point calls. The compiled object code is 

linked at runtime to routines that support the FP A, MC68881, Sky 

floating-point board, or software-floating-point calls, depending on the 

system that is running the program (Sun-2 or Sun-3). 

-F Apply the C preprocessor to relevant files and put the result in the file with 

the suffix changed to . f, but do not compile. 

-q Produce additional symbol table information for dbx or dbxt oo 1. 

Also, pass the -lg file to ld (1). 

-help Display an equivalent of this list of options. 

-i2 Make the default size of integer and logical constants and variables 

short (2 bytes). 

-i4 Make the default size of integer and logical constants and variables four 
bytes (this is the default). 

-I path 
Add path to the list of directories in which to search for '#inc 1 ude' files 

with relative pathnames (not beginning with/). Search first for 

'#include' files whose names do not begin with'/' in the directory 

containing the source file, then in directories named in -I options, and 

finally in directories on a standard list (. F suffix files only). Note that this 

does not affect FORTRAN's INCLUDE statement, only the C 

preprocessor's. For example, "£77 -I/usr/applib growth.£" 
causes the compiler to search for '#include' files in /usr/applib. 

Revision A of 27 January 1989 



20 Sun FORTRAN Release Notes 

-1x Link with object library I 1ibI1 ibx. a, where x is a string. If that does 
not exist, then ld tries /usr I lib/ libx. a (see ld (1)). 

-Ldir 
Add dir to the list of directories containing object-library routines (for 
linking using ld(l)). 

-misalign 

r 

r 

Sun-4 only. Allow for misaligned data in memory. Use this option only if 
you get a warning that COMMON or EQUIVALENCE statements cause data 
to be misaligned. WARNING: With this option, the compiler will 
generate much slower code for references to dummy arguments. If you 
can, you should recode the indicated section instead of recompiling with 
this option. For example, the program 

INTEGER*2 I(4) 
REAL Rl, R2 
EQUIVALENCE (Rl, I(l)), (R2, I(2)) 
END 

causes the error message 

"misalign.f", line 4: Error: bad alignment for "r2" 
forced by equivalence 

-N[cd1nqsx]nnn 
Make static tables in the compiler bigger. f 7 7 complains if tables 
overflow and suggests you apply one or more of these flags. These flags 
have the following meanings: 

c Maximum depth of nesting for control statements (for example, DO 
loops). The default is 20. 

d Maximum depth of nesting for data structures and unions. 
The default is 20. 

1 Maximum number of continuation lines for a continued statement. 
The default is 19 (1 initial and 19 continuation). 

n Maximum number of identifiers. The default is 1009. 

q Maximum number of equivalenced variables. The default is 150. 

s Maximum number of statement numbers. The default is 401. 

x Maximum number of external names (common block names, subrou­
tine and function names). The default is 200. 

-o output 
Name the final output file output instead of a. out. 

Revision A of 27 January 1989 



Chapter 3 - Using the Compiler 21 

-onetrip 
Compile DO loops so that they are perfonned at least once if reached. 
Sun FORTRAN DO loops are not perfonned at all if the upper limit is 

smaller than the lower limit, unlike FORTRAN 66 DO loops. 

-On Optimize the object code. If you use -g, then -On is ignored. 

--01 Peephole optimization only. Do not use --01 unless --02 and --03 

result in excessive compilation time, or running out of swap space. 

--02 Partial optimization. Does a restricted set of global optimizations. 

Do not use --02 unless --03 results in excessive compilation time, or 

running out of swap space. 

--03 Global Optimization. (same as --0) 

Note: 
If the optimizer runs out of swap space, try any of the following 

possibly corrective measures (listed in increasing order of difficulty): 

o Change from -03 to -02. 

o Divide large, complicated routines into smaller, simpler ones. 

o Increase the limit for the stacksize: insert the line 
"limit stacksize 8 megabytes" into your. cshrc 

file. 

o Repartition your disk with two to four times as much swap 

space. Backup everything first. You may well need help from 
your system administrator to do this. 

-p Prepare object files for profiling, see prof (1). 

-pg Produce counting code in the manner of -p, but invoke a runtime 

-pie 

-PIC 

recording mechanism that keeps more extensive statistics and produces a 

gmon. out file at nonnal tennination. An execution profile can then be 
generated by use of gprof (1). 

Produce position-independent code. Each reference to a global datum is 
generated as a dereference of a pointer in the global offset table. Each 
function call is generated in pc-relative addressing mode through a 
procedure linkage table. The size of the global offset table is limited to 
64K on MC68000-family processors, or to 8K on SPARC processors. 

Similar to -pie, but allows the global offset table to span the range of 

32-bit addresses. This is for use in those rare cases where there are too 

many global data objects for -pie. 

-pipe 
Use pipes, rather than intennediate files between compilation stages. Very 

cpu-intensive. 

Revision A of 27 January 1989 



22 Sun FORTRAN Release Notes 

Unrecognized Arguments 

-P Partial optimization. (same as -02) 

-Qoption prog opt 

Pass the option opt to the program prog. The option must be appropriate 
to that program and may begin with a minus sign. prog can be one of: as, 

* c2,cg,cpp,f77passl,iropt,inline,ld,oroptirn. 

-Qpath pathname 
Insert the directory pathname into the compilation search path (to use 
alternate versions of programs invoked during compilation). This path will 
also be searched first for certain relocatable object files that are implicitly 
referenced by the compiler driver (such files as * crt * . o and 
bb link. o). 

-Qproduce sourcetype 
Produce source code of the type source type, where sourcetype is one of: 
. o Object file from as (1). 
. s Assembler source (from f77passl, inline, c2, cg, or optirn.) * 

-s Compile the named programs, and leave the assembly-language output on 
corresponding files suffixed with . s (no . o file is created). 

-temp=dir 
Set directory for temporary files to be dir. 

-time 
Report execution times for the various compilation passes. 

-u Make the default type of variables 'undefined', rather than using FOR­
TRAN implicit typing. 

-u Do not convert upper-case letters to lower-case, but leave them in the 
original case. The default is to convert to lower-case except within 
character-string constants. 

-v Print the name of each pass as the compiler executes. 

-w Suppress all warning messages. 

-w66 
Suppress only messages generated by programs using obsolete FORTRAN 
66 features. 

Other arguments are taken to be either linker option arguments or names of 
f 7 7 -compatible object programs, typically produced by an earlier run, or 
perhaps libraries off 7 7 -compatible routines. These programs, together with the 
results of any compilations specified, are linked (in the order given) to produce 
an executable program called (by default) a. out or with a filename specified by 
the -o option. 

* For a Sun-2, Sun-3, or Sun-4, the optimizer file is i rapt; for a Sun386i,"' it is opt im. 

Revision A of 27 January 1989 



A.2. Data Structures and 
Expressions 

Appendix A - Errata and Addenda 23 

Pages 4 3 and 44 

Action: Remove pages 43 and 44 from the Sun FORTRAN Programmer's Guide, 
and replace them with the new pages 43 and 44 that follow. 

Description of Changes 

Formatting corrections on page 43. 

Revision A of 27 January 1989 



24 Sun FORTRAN Release Notes 

Revision A of 27 January 1989 



Record declaration 

Chapter 4 - Data Structures and Expressions 43 

o The only statements allowed between the STRUCTURE statement and the 

END STRUCTURE statement are.field-declaration statements and 
PARAMETER statements. A PARAMETER statement inside a structure 

declaration block is equivalent to one outside. 

Rules and restrictions for fields 

Fields that are type declarations use the identical syntax of normal FOR1RAN 

type statements, and all Sun FOR1RAN types are allowed, subject to the 
following rules and restrictions: 

o Any dimensioning needed must be in the type statement. The DIMENSION 

statement has no effect on field names. 

o You can specify the pseudo-name %FILL for a field name to align fields in 

a record. 

o You must explicitly type all field names. The IMPLICIT statement does 

not apply to statements in a STRUCTURE declaration, nor do the implicit 

I' J' K, L, M, N rules apply. 

o You can't use arrays with adjustable or assumed size in field declarations, 

nor can you include passed-length CHARACTER declarations. 

o Field offsets - In a structure declaration, the offset of field n is the offset of 

the preceding field, plus the length of the preceding field, possibly corrected 

for any adjustments made to maintain alignment. For a summary of storage 
allocation, see the Subsection "Storage Allocation" in Section 4. 3 - "Data 

Types." 

The RECORD statement declares variables to be records with a specified 

structure, or declares arrays to be arrays of such records. The syntax of a 

RECORD statement is as follows: 

RECORD I structure-name I record-list 
[ , I structure-name I record-list J 

[ , I structure-name I record-list J 

where structure-name is the name of a previously declared structure, and 
record-list is a list of variables, arrays, or arrays with dimensioning and index 

ranges, separated by commas. 

For example, using the structure in the example above: 

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(lO) 

Each of the three variables CURRENT, PRIOR, and NEXT is a record which has 

the PRODUCT structure, and LINE is an array of 10 such records. 

Revision A of 27 January 1989 



44 Sun FORTRAN Release Notes 

Record and field reference 

Rules and restrictions for records 

o Each record is allocated separately in memory. 

o Initially, records have undefined values. 

o Records, record fields, record arrays, and record-array elements are allowed 
as arguments and dummy arguments. When you pass records as arguments, 
their fields must match in type, order, and dimension. The record 
declarations in the calling and called procedures must match. Within a 
union declaration, the order of the map fields is not relevant - see "Unions 
and maps," later in this section. 

o Records and record fields are allowed in COMMON and DIMENSION 
statements. 

o Records and record fields are not allowed in DATA, EQUIVALENCE, 
NAMELIST, or SAVE statements. 

You can refer to a whole record, or to an individual field in a record, and since 
structures can be nested, a field can itself be a structure, so you can refer to fields 
within fields, within fields, etc. The syntax of record and field reference is as 
follows: 

record-name [ .field-name J • • • [ .field-name J 

where record-name is the name of a previously defined record variable, and each 
field-name is the name of a field in the record immediately to the left. ..,,,_, 

Examples of references are given below, based on the structure and records of the 
above two examples: 

RECORD /PRODUCT/ CURRENT, PRIOR, NEXT, LINE(lO) 

CURRENT NEXT 
LINE(l) CURRENT 
WRITE ( 9 ) CURRENT 
NEXT. ID 82 

In this example, the first assignment statement copies one whole record (all five 
fields) to another record, the second assignment statement copies a whole record 
into the first element of an array of records, the WRITE statement writes a whole 
record, and the last statement sets the ID of one record to 82. 

A complete sample program is listed below to show structure and record 
declarations, record and field assignments, and field output: 

Revision A of 27 January 1989 



A.3. Input and Output 

OPEN 

Appendix A - Errata and Addenda 25 

Action: Remove pages 79 and 80 from the Sun FORTRAN Programmer's Guide, 
and replace them with the new pages 79 and 80 that follow. 

Description of Changes 

On page 79, clarified opening sequential access files with RECL. 

Revision A of 27 January 1989 



26 Sun FORTRAN Release Notes 

Revision A of 27 January 1989 



Chapter 7 - Input and Output 79 

ACCESS Optional character expression; one of: APPEND, DIRECT, or 
SEQUENTIAL. The default is SEQUENTIAL. 

FORM 

RECL 

If ACCESS='APPEND' is specified: 

D SEQUENTIAL and FILEOPT='EOF' are assumed. This is 
for opening a file to append records to an existing 
sequential-access file. This is a Sun FORTRAN extension. 

If ACCESS='DIRECT' is specified: 

o RECL must also be given, since all 1/0 transfers are done in 
multiples of fixed-size records. 

o Only directly accessible files are allowed; thus, tty, pipes, 
and magnetic tape are not allowed. 

o If FORM is not specified, unformatted transfer is assumed. 

o If FORM='UNFORMATTED', the size of each transfer 
depends upon the data transferred. 

If ACCESS='SEQUENTIAL': 

o RECL is ignored; a runtime warning is issued. The ANSI 

standard prohibits RECL for sequential access. 

o No padding of records is done. 

o Files don't have to be randomly accessible; thus tty, pipes, 
and tapes can be used. 

o If FORM is not specified, formatted transfer is assumed. 

o If FORM='FORMATTED', each record is terminated with a 
newline (\n) character. This means that each record actually 
has one extra character. 

0 If FORM='PRINT', the file acts like a 
FORM='FORMATTED' file, except for the interpretation of 
column- I characters on output (0 = double space, 
1 =form feed, and blank= single space). 

o If FORM='UNFORMATTED', each record is preceded and 
terminated with an INTEGER*4 count, making each record 
8 characters longer than normal. This convention is not 
shared with other SunOS programs, so is useful only for 
communicating between FORTRAN programs. 

An optional character expression. The options are 'FORMATTED', 
'UNFORMATTED', or 'PRINT'. 
If not specified, 'FORMATTED' is assumed. 
Interacts with ACCESS. 

"RECL=n" specifies a record length of n characters. 
Required if ACCESS='DIRECT'; ignored otherwise. See 
ACCESS=' SEQUENTIAL' above. 

Revision A of 27 January 1989 



80 Sun FORTRAN Release Notes 

Each WRITE defines one record and each READ reads one record 
(unread characters are flushed). 

ERR An optional clause, with an integer statement label to branch to if 
an error occurs during the OPEN. 

I OS TAT An optional clause, with an integer variable that receives the 
error status from an OPEN. 

Note: If you want to avoid aborting the program when an error 
occurs on an OPEN, then include an ERR=label or an 
IOSTAT=name. 

BLANK An optional character expression that indicates how blanks are 
treated. For formatted input only; the options are 'ZERO' (blanks 
treated as zeroes), and 'NULL' (blanks ignored during numeric 
conversion). If not specified, 'NULL' is assumed. 

STATUS An optional character expression. Possible values are: 

o 'OLD' - the file already exists (nonexistence is an error). 
For example: STATUS=, OLD, 

o 'NEW' - the file doesn't exist (existence is an error) 
Note: 'FILE=name' is required. 

o 'UNKNOWN' - existence is unknown (the default). 

o 'SCRATCH' - In general, if you open a file with 
STATUS=' SCRATCH', then the file will be removed when 
it is closed. 
Note: The standard prohibits opening a named file as 
scratch, that is if the OPEN statement has a FILE=name 
option, then it cannot have a STATUS='SCRATCH' option. 
Sun FORTRAN allows opening named files as scratch, but 
such files will be removed when closed or at program termi­
nation unless there is an explicit CLOSE statement with the 
option STATUS='KEEP'. 

FILEOPT An optional character expression. The options are: 

o 'NOP AD' - don't extend records with blanks if you read 
past the end-of-record (formatted input only). That is, a 
short record causes an abort with an error message, rather 
than just filling with trailing blanks and continuing. 

o 'BUFFER=n' - This suboption is for magnetic tape only. It 
sets the size of the I/O buffer to use. It is necessary only 
when writing, since the I/O system defaults to 64K-character 
buffers for tape, allowing reads to anything smaller than that. 
WARNING: It must be at least 8 characters greater than the 
largest record you write to avoid spanning tape blocks. 

o 'EOF' - opens a file at end-of-file rather than at the begin­
ning (useful for appending data to the file). 

Revision A of 27 January 1989 



Accessing Files 

Appendix A - Errata and Addenda 2 7 

Action: Remove pages 99 and 100 from the Sun FORTRAN Programmer's 
Guide, and replace them with the new pages 99 and 100 that follow. 

Description of Changes 

On page 99, moved ampersands to column one. 

Revision A of 27 January 1989 



28 Sun FORTRAN Release Notes 

Revision A of 27 January 1989 



Accessing Unnamed Files 

Opened as scratch 

Chapter 7 - Input and Output 99 

o character expressions, such as: 
FILE=PREFIX (: LNBLNK (PREFIX)) II'/' II 

& NAME (: LNBLNK (NAME)), ... 

Some ways a program can get filenames are: 

o By reading from a file or terminal keyboard, such as: 
READ( 4, 401) FILNAM 

o From the command line, such as: 
CALL GETARG( ARGNUMBER, FILNAM) 

o From the environment, such as: 
CALL GETENV( STRING, FILNAM ) 

The example below shows one way to construct a filename: 

c 

CHARACTER*l024 FUNCTION FULLNAME ( NAME 
CHARACTER*(*) NAME 
CHARACTER*1024 PREFIX 

C In path names starting with r-;r: 
C replace the tilde with the home directory name; 
C prefix relative pathname by path to current directory; 
C leave absolute path names unchanged. 
c 

IF ( NAME(l:l) .EQ. '/')THEN 
FULLNAME = NAME 

ELSE IF ( NAME ( 1 : 2) . EQ. ' - /' ) THEN 
CALL GETENV( 'HOME', PREFIX ) 
FULLNAME PREFIX(:LNBLNK(PREFIX)) // 

& NAME(2:LNBLNK(NAME)) 

& 

ELSE 
CALL GETCWD( PREFIX ) 
FULLNAME 

END IF 
END 

PREFIX(:LNBLNK(PREFIX)) // 
'/' II NAME(:LNBLNK(NAME)) 

When a program opens a FORTRAN file without a name, the runtime system 
supplies a filename. There are several ways it can do this. 

If you specify STATUS=' SCRATCH' in the OPEN statement, then the system 
opens a file with a name of the form tmp . F AAAxnnnnn, where nnnnn is 
replaced by the current process ID, AAA is a string of three characters, and x is a 
letter, the AAA and x make the filename unique. This file is deleted upon 
termination of the program or execution of a CLOSE statement, unless 
STATUS=' KEEP' is specified in the CLOSE statement. 

Revision A of 27 January 1989 



l 00 Sun FORTRAN Release Notes 

Already open 

Other 

Passing filenames to programs 

Prcconnected units 

Other units 

If a FORTRAi~ program has a file already open, an OPEN statement that specifies 
only the file's logical unit number and the parameters to change can be used to 
change some of the file's parameters (specifically, BLANK and FORM). The 
system determines that it should not really OPEN a new file, but just change the 
parameter values. Thus, this looks like a case where the runtime system would 
make up a name, but it docs not. 

In all other cases, the runtime system OPENS a file with a name of the form 
fort. n, where n is the logical unit number given in the OPEN statement. 

The SunOS file system does not have any notion of temporary filename binding 
(or file equating) as some other systems do. Filename binding is the facility that 
is often used to associate a FORTRAN logical unit number with a physical file 
without changing the program. This mechanism evolved to communicate 
filenames more easily to the running program, because in FORTRAN 66 you 
could not open files by name. With SunOS or with UNIX there are several 
satisfactory ways to communicate filenames to a FORTRAN program including 
command-line arguments and environment-variable values. For example, see the 
file ioini t. fin libI7 7, which is discussed in Section 7.2, under 
Subsection "Logical Unit Preattachment." The program can then use those 
logical names to open the files. The next section describes two additional ways 
to change a program's input and output files without changing the program, 
called redirection and piping. 

When a FORTRAN program begins execution under SunOS, there are usually 
three units already open. These are called preconnected units. Their names are 
standard input, standard output, and standard error. In FORTRAN programs: 

o standard input is logical unit 5 

o standard output is logical unit 6 

o standard error is logical unit 0 

All three are connected to your workstation or window, unless file redirection or 
piping is done at the command level. 

All other units are preconnected to files named fort. n where n is the 
corresponding unit number. These files need not exist, and are created only if the 
units arc actually used, and if the first action to the unit is a WRITE or PRINT. 
That is, only if an OPEN statement does not override the preconnected name 
before any WRITE or PRINT is issued for that unit. For example, the program: 

[ 

WRITE( 15 ) 2 ] 
..__END ___ _ 

writes a single unformatted record on the fort .15 file. 

Revision A of 27 January 1989 



A.4. Program Development 

Appendix A- Errata and Addenda 29 

Action: Remove pages 131 and 132 from the Sun FORTRAN Programmer's 
Guide, and replace them with the new pages 131and132 that follow. 

Description of Changes 

On page 132, moved ampersands to column one, and in the last 
format changed double quote to single quote. 

Revision A of 27 January 1989 



30 Sun FORTRAN Release Notes 

Revision A of 27 January 1989 



Table 8-1 

Chapter 8 - Program Development 131 

Time Functions Available to FORTRAN 

Name Function Man Page 

TIME Returns the number of time (3f) 

seconds elapsed since 1 
January, 1970 

FD ATE Returns the current time fdate(3f) 

and date as a character 
string 

I DATE Returns the current idate(3f) 

month, day, and year in 
an integer array 

I TIME Returns the current hour, itime (3f) 

minute, and second in an 
integer array 

CTIME Converts time returned ctime(3f) 

by time function to 

character string 

LTIME Converts time returned ltime (3f) 

by time function to 

local time 

GMT I ME Converts time returned gmtime (3f) 

by time function to 

Greenwich time 

ETIME Returns elapsed user and etime (3f) 

system time for program 
execution 

DTIME Returns elapsed user and dtime (3f) 

system time since last 
call to dtime 

The following program is an example of how to implement FORTRAN time 
functions that might appear on other systems: 

Revision A of 27 January 1989 



132 Sun FORTRAN Release Notes 

SUBROUTINE STARTCLOCK 
COMMON / MYCLOCK / MYTIME 
INTEGER MYTIME 
INTEGER TIME 
MYTIME = TIME () 
RETURN 
END 

FUNCTION WALLCLOCK 
INTEGER WALLCLOCK 
COMMON / MYCLOCK / MYTIME 
INTEGER MYTIME 
INTEGER TIME 
INTEGER NEWTIME 
NEWTIME =TIME() 
WALLCLOCK = NEWTIME - MYTIME 
MYTIME = NEWTIME 
RETURN 
END 

PROGRAM TESTTIME 
C Play with some system timing functions 

INTEGER WALLCLOCK, ELAPSED 
CHARACTER*24 GREETING 
REAL DTIME 
REAL TIMEDIFF, TIMEARRAY(2) 

C Print a heading 
CALL FDATE( GREETING 
WRITE( 6, 10 ) GREETING 

10 FORMAT(' 1 Hi, it" s ' , A24 /) 
C See how long an 'ls' takes, in seconds 

CALL STARTCLOCK 
CALL SYSTEM( 'ls' ) 
ELAPSED = WALLCLOCK() 
WRITE( 6, 20 ) ELAPSED 

20 FORMAT(//,'Elapsed time' I4, ' seconds'///) 
C Now test the CPU time for some trivial computing 

TIMEDIFF = DTIME( TIMEARRAY ) 
Q = 0.01 
DO 30 I = 1, 1000 

Q = ATAN( Q ) 
30 CONTINUE 

TIMEDIFF = DTIME( TIMEARRAY ) 
WRITE( 6, 40 ) TIMEDIFF 

40 FORMAT(//,'Computing ATAN(Q) 1000 times', 
& I 'took', F6.3,' seconds.'/) 

END 

Revision A of 27 January 1989 



A.5. The C-FORTRAN 
.....,.. Interface 

Appendix A - Errata and Addenda 31 

Action: Remove pages 183 and 184 from the Sun FORTRAN Programmer's 
Guide, and replace them with the new pages 183 and 184 that follow. 

Description of Changes 

On page 184, under "Return a float", revised description and 
examples to cover all Sun architectures. 

Revision A of 27 January 1989 



32 Sun FORTRAN Release Notes 

Revision A of 27 January 1989 



Arrays 

Calling C from FORTRAN 

Repeat a character 

The compiler appends a trailing 
underscore to all external names in 
FORTRAN programs, so you need to 
add an underscore to the name of 
the C function called. 

The function's returned character 
string is passed by the two extra 
arguments retval ptr and 
retval len, a pornter to the start 
of the string and the string's length. 

The character-string argument is 
passed with char pt r and 
char_len , the firstpoints to the 
string start and the second gives 
the string's length. The repeat 
factor is passed as n _pt r. 

Chapter 11 - The C-FORTRAN Interface 183 

AC array always starts at zero, but a FORTRAN array starts at 1, by default, so in 

the above example, FORTRAN B ( 2) is equivalent to C b [ 1 J . FORTRAN 

arrays are stored in column-major order, C arrays in row-major order. 

The following examples illustrate FORTRAN programs that call C functions. 

The called function has the task of building a character string by repeating a 

character N times, where the character and N are arguments. 

main.£: 

CHARACTER STRING*lOO, REPEAT*SO 
STRING= REPEAT ( '*', 10 ) 
PRINT *, STRING 
END 

File repeat. c: 

If repeat were a FORTRAN function, the compiler would hide the details of 
managing character strings; however, since repeat is written in C, the 
housekeeping must be explicit: 

#include <stdio.h> 

repeat_(retval_ptr, retval_len, char_ptr, n_ptr, char_len) 

char *retval_ptr, *char_ptr; 
int retval len, *n_ptr, char len; 

int count, i; 
char *cp; 

count = *n_ptr; 
if (count > retval_len) 

fprintf( stderr, "repeat count too large\n"); 
count = retval_len; 

cp = retval_ptr; 
for (i=O; i<count; i++) 

*cp++ = *char_ptr; 

for (i=count; i<retval_len; i++) { 
*cp++ = , , ; 

This program can be compiled with the £77 command: 

[_~_d_e_m~o-%~f-7-7~ma~i~n~.f-·~r_e_p_e_a_t~·-c~~~~---'~~~~~~~~~~~__.J 
Revision A of 27 January 1989 



184 Sun FORTRAN Rclea<>e Notes 

Return afloat 

r 

* testincrl.f 
REAL incr, R, S 
R = 1. 0 
S = incr( R 
PRINT *, S 
STOP 
END 

* testincr2.f 
POINTER ( P, S ) 
REAL R, S 
R = 1. 0 
P = incr( R 
PRINT *, S 
STOP 
END 

Since every character argument in the list is associated with an additional 
argument giving the string's length, such FORTRAN strings need not terminate 
with a null character, as required by C. 

If MAIN declares REPEAT as an INTEGER, LOGICAL, REAL, or DOUBLE 
PRECISION function, then the two initial arguments would not be present, so 
the return value could be passed back to the FORTRAN program with a return 

* statement. To return a float, and have it work on all Sun architectures , use the 
macros from the math. h header file, as in the following example: 

/* incrl.c: return a float */ 
#include <math.h> 
FLOATFUNCTIONTYPE incr ( f loat_ptr 
float *f loat_ptr 
{ 

float f ; 
f = *f loat_ptr ; 
f ++ ; 
RETURNFLOAT ( f ) 

To return a pointer to a float (also works on all Sun architectures): 

/* incr2.c: return a pointer a float */ 
static float f ; 
float *incr_( float_ptr 
float *f loat_ptr ; 

f = *f loat_ptr 
f ++ ; 
return &f ; 

Either one of the above pairs prints 2 . 0 0 0 0 0 0. For example: 

demo% f77 testincrl.f incrl.c 
testincrl.f: 
testincrl.f: 

MAIN: 
incrl.c: 
Linking: 
demo% a.out 

2.000000 
demo% I 

* If C returns a float, C promotes it to a double; different architectures handle this differently. 

Revision A of 27 January 1989 



Appendix A- Errata and Addenda 33 
~~~~~~~~~~--~~~~~~~~~~~~~~~~~~~~~~ 

A.6. f77 Man Pages ,.._..,. Action: Remove pages 253 through 258 from the Sun FORTRAN Programmer's
Guide, and replace them with the new pages 253 through 258 that follow.

Description of Changes

Inserted the optional optimizer file optim under -Qoption,
-Qproduce, and FILES.

Inserted the options -dalign, -pie, and -PIC.

Inserted the note that -misalign is restricted to the Sun-4.

Revision A of 27 January 1989

34 Sun FORTRAN Release Notes

Revision A of 27 January 1989

INTRO(1) USER COMMANDS

NAME
intro - introduction to FOR TRAN Manual Pages

DESCRIPTION
This section includes the man pages for fi7, fi7 cvt, fpr, fsplit, and ratf or.

Sun Microsystems Last change: 18 Oct 1987

INTRO (1)

253

F77 (I) USER COMMANDS F77 (I)

~AME

f77 - Sun FORTRAN compiler

SYNOPSIS

n1 [-66 J [-a] [-align _block] [-ansi] [-c] [-C] [-dalign] [-dryrun] [-Dname [=def]] [-e]
[float _option] [-fstore] [-f] [-F] [-g] [-help] [-i2] [-i4]
[-Ipathname] [-llib] [-Ldir] [-misalign] [-N[cdlnqsx]nnn]
[-o out.file] [-onetrip l [-·O [123]] f -p] [-pg] [-pie l [-PIC] [-pipe]
[-Qoption prog opt] [-Qpath pathname] [-Qproduce sourcetype] [-S] [-temp=dir]
[-time] [-u] [-U] [-v] [-w [66]] sourcefile ...

DESCRIPTION

n7 is the Sun FORTRAN compiler, which translates programs written in the Sun FORTRAN programming
language into executable load modules or into relocatable binary programs for subsequent linking with
ld(l). Sun FORTRAN is a superset of FORTRAN 77, with many extensions, including those to provide com­
patibility with VMS FORTRAN (in conjunction with n7cvt(l)). In addition to the many flag arguments
(options), n1 accepts several types of files.

Files with names ending in .f are taken to be Sun FORTRAN source files; they are compiled, and each
object program is put in the current qirectory in a file with the same name as the source, with .o substituted
for .f.

Files with names ending in.Fare also taken to be Sun FORTRAN source files, but they are preprocessed by
the C preprocessor (equivalent to a cc -E command) before they are compiled by the n1 compiler.

Files with names ending in .c or .s are taken to be C or assembly source files and are compiled or assem­
bled, producing .o files.

Files with names ending in .ii are taken to be in-line expansion code template files; these are used to
expand calls to selected routines in-line when the -0 option is in effect.

Files with names ending in .vf or .for arc assumed by the n7cvt(l) source code converter (not by the n1
compiler) to be valid VMS FORTRAN source files and are converted to source files acceptable to both Sun
FORTRAN and VMS FORTRAN compilers, except for possible VMS FORTRAN features which it can't con­
vert, which are reported by error messages.

OPTIONS

254

See ld(l) for link-time options.

-66

-a
Report non-FORTRAN 66 constructs as errors.

Insert code to count how many times each basic block is executed. Invokes a runtime
recording mechanism that creates a .d file for every .f file (at normal termination). The .d
file accumulates execution data for the corresponding source file. The tcov(l) utility can
then be run on the source file to generate statistics about the program.

-align _block_ Cause the common block whose FORTRAN name is block to be page-aligned: its size is
increased to a whole number of pages, and its first byte is placed at the beginning of a
page. This option is passed on to the linker; it's a linker option. For example, the com­
mand "f77 -align _BUFFO_ GROWTH. F" causes BUFFO to be page-aligned.

-ansi

-c

-C

Identify all non-ANSI extensions. Note that n7cvt provides an option to flag any Sun
FORTRAN extensions that it uses during the conversion of a VMS FORTRAN source file.

Suppress linking with Id(l) and produce a .o file for each source file. A single object file
can be named explicitly using the -o option.

Compile code to check that subscripts are within the declared array bounds.

Last change: 16 September 1988 Sun Microsystems

F77 (1)

-dalign

USER COMMANDS F77 (1)

Generate double load/store instructions wherever possible to give faster execution. Using
this option automatically triggers the -f option (see below) to cause all double typed data
to be double aligned. Note that with the -dalign option, you may not get the usual align­
ment guaranteed by ANSI standard FORTRAN so you may be sacrificing portability to
gain speed. See also "Shared Libraries" in Programming Utilities and Libraries.
(Sun-4 only).

-dryrun Show but do not execute the commands constructed by the compilation driver.

-Dname [=def] Define a symbol name to the C preprocessor, cpp(l). Equivalent to a #define directive in

-e

-f

float_ option

-F

-g

-help

-i2

-i4

-!pathname

-llib

-Ldir

the source. If no def is given, name is defined as '1' (.F suffix files only).

Accept extended source lines, up to 132 characters long.

Align local data and common blocks on 8-byte boundaries. Resulting code may not be
standard and may not be portable.

Floating-point code generation option. This option does not apply to the Sun-4, which
generates SPARC floating-point instructions. For the Sun-2 and Sun-3, float _option can
be one of:

-f68881
Generate in-line code for the Motorola MC68881 floating-point coprocessor
(Sun-3 only).

-ffpa Generate in-line code for the Sun-3 Floating-Point Accelerator board (Sun-3
only).

-fsky Generate in-line code for the Sky Floating-Point Processor (Sun-2 only).

-fsoft Generate software floating-point calls (Sun-2 and Sun-3 systems, for which this
is the default).

-fstore Insure that expressions allocated to extended precision registers are rounded to
storage precision whenever an assignment occurs in the source code. Only has
effect when -f68881 is specified. (Sun-3 only)

-fswitch
Generate runtime-switched floating-point calls. The compiled object code is
linked at runtime to routines that support one of the above types of floating-point
code. This was the default in previous releases. Only for use with programs
that are floating-point intensive and which must be portable to machines with
various floating-point options (Sun-2 or Sun-3).

Apply the C preprocessor to .F files. Put the result in corresponding .f files, but do not
compile them. No linking is done.

Produce additional symbol table information for dbx(l) and pass the -lg flag to ld(l).

Display an equivalent of this list of options.

Make the default size of integer and logical constants and variables two bytes.

Make the default size of integer and logical constants and variables four bytes (this is the
default).

Add pathname to the list of directories in which to search for #include files with relative
filenames (not beginning with/). The preprocessor first searches for #include files in the
directory containing sourcefile, then in directories named with -I options (if any), and
finally in /usr/include/f77 (applies to processing of .F suffix files only).

Link with object library lib (for ld(l)).

Add dir to the list of directories containing object-library routines (for linking using
ld(l)).

Sun Microsystems Last change: 16 September 1988 255

F77 (1)

256

USER COMMANDS F77 (1)

-misalign Sun-4 only. Allow for misaligned data in memory. Use this option only if you get a
warning that COMMON or EQUIVALENCE statements cause data to be misaligned.
WARNING: With this option, the compiler will generate very much slower code for
references to dummy arguments. If you can, you should recode the indicated section
instead of recompiling with this option.

-N[cdlnqsx]nnn Make static tables in the compiler bigger. f77 complains if tables overflow and suggests
you apply one or more of these flags. These flags have the following meanings:

-o outfile

-onetrip

-0[123]

-p

-pg

-pie

c Maximum depth of nesting for control statements (for example, DO loops).
Default is 20.

d Maximum depth of nesting for data structures and unions. Default is 20.
Maximum number of continuation lines for a continued statement. The default is
19 (1 initial and 19 continuation).

n Maximum number of identifiers. Default is 1009.
q Maximum number of equivalenced variables. Default is 150.
s Maximum number of statement numbers. Default is 401.
x Maximum number of external names (common block, subroutine, and function

names). Default is 200.

Multiple -N options increase sizes of multiple tables.

Name the output file outfile. outfile must have the appropriate suffix for the type of file to
be produced by the compilation (see FILES, below). outfile cannot be the same as
source/tie (the compiler will not overwrite the source file).

Compile DO loops so that they are performed at least once if reached. Otherwise, Sun
FORTRAN DO loops are not performed at all if the upper limit is smaller than the lower
limit.

Optimize the object code. This invokes both the global intermediate code optimizer and
the object code optimizer.
-01 Peephole Optimization only. Do not use -01 unless -02 and -03 result in

excessive compilation time, or running out of swap space.
-02 Partial optimization. Does a restricted set of global optimizations. Do not use

-02 unless -03 results in excessive compilation time, or running out of swap
space. (Same as -P)

-03 Global Optimization. (same as -0)

If the optimizer runs out of swap space, try any of the following possibly correc­
tive measures (listed in increasing order of difficulty):

1. Change from -03 to -02 .
2. Divide large, complicated routines into smaller, simpler ones.
3. Increase the limit for the stacksize: insert the line

"limit stacksize 8 megabytes" into your .cshrc file.
4. Repartition you disk with two to four times as much swap space.

Backup everything first.
You may well need help from your system administrator to do this.

Prepare the object code to collect data for profiling with prof(l). Invokes a runtime
recording mechanism that produces a moo.out file (at normal termination).
Prepare the object code to collect data for profiling with gprof(l). Invokes a runtime
recording mechanism that produces a gmon.out file (at normal termination).
Produce position-independent code. Each reference to a global datum is generated as a
dereference of a pointer in the global off set table. Each function call is generated in pc­
relative addressing mode through a procedure linkage table. The size of the global offset
table is limited to 64K on MC68000-family processors, or to 8K on SPARC processors.

Last change: 16 September 1988 Sun Microsystems

F77 (1) USER COMMANDS F77 (1)

-PIC Similar to -pie, but allows the global offset table to span the range of 32-bit addresses.
This is for use in those rare cases where there are too many global data objects for -pie .

-pipe Use pipes, rather than intermediate files between compilation stages. Very cpu-intensive.
-P See the -02 option.
-Qoption pro g opt

Pass the option opt to the program prog. The option must be appropriate to that program
and may begin with a minus sign. prog can be one of: as, c2, cg, cpp, f77passl, iropt,
inline, Id, or optim.

-Qpath pathname
Insert directory pathname into the compilation search path (to use alternate versions of
programs invoked during compilation). This path will also be searched first for certain
relocatable object files that are implicitly referenced by the compiler driver (such files as
crt.o and bb _link.o).

-Qproduce sourcetype

-S

-temp=dir

-time

-u

-U

-v

-w[66]

Produce source code of the type source type, where sourcetype can be one of:
.o Object file from as(l) .
.s Assembler source (from f77passl, inline, c2, cg, or optim).

Compile the named programs, and leave the assembly language output on corresponding
files suffixed .s (no .o file is created).

Set directory for temporary files to be dir.

Report execution times for the various compilation passes.

Make the default type of a variable 'undefined', rather than using the FORTRAN default
rules.

Do not convert upper case letters to lower case. The default is to convert upper case
letters to lower case, except within character string constants.

Verbose. Print the name of each pass as the compiler executes.

Suppress all warning messages. -w66 suppresses only FORTRAN 66 compatibility warn­
ings.

Other arguments are taken to be either linker option arguments, or 177-compatible object programs, typi­
cally produced by an earlier run, or libraries of r77-compatible routines. These programs, together with the
results of any compilations specified, are linked (in the order given) to produce an executable program in
the file specified by the -o option, or in a file named a.out if the -o option is not specified.

ENVIRONMENT

FILES

FLOAT_OPTION When no floating-point option is specified, the compiler uses the value of this environ­
ment variable (if set). Recognized values are: f68881, ffpa, fsky, fswitch and fsoft.

a.out
file .a
file .d
file .r
file .F
file .for
file .vf
file .ii
file .o
file .s
file .S
file .tcov
/lib/c2
/lib/cg

executable output file
library of object files
tcov(l) test coverage input file
Sun FORTRAN source file
Sun FORTRAN source file for cpp(l)
VMS FORTRAN source file for f77cvt(l)
VMS FORTRAN source file for f77cvt(l)
inline expansion file
object file
assembler source file
assembler source for cpp(l)
output from tcov(l)
optional optimizer for Sun-2, Sun-3, or Sun-4.
Sun FORTRAN code generator

Sun Microsystems Last change: 16 September 1988 257

F77 (1)

/lib/compile
/Iib/cpp
/Iib/crtO.o
/Iib/Fcrtl.o
/Iib/gcrtO.o
/lib/Jibe.a
/Iib/mcrtO.o
/lib/Mcrtl.o
/lib/optim
/lib/Scrtl.o
/Iib/Wcrtl.o
/usr/include/f77
/usr/bin/f77
/usr/bin/f77cvt
/usr/lib/f77passl
/usr/lib/libc _p.a
I usr /lib/lib F77 .a
/usr/lib/inline
/usr/lib/libl77.a
/usr/Iib/libm.a
/usr/lib/libpfc.a
/usr/lib/lib U77.a
/tmp/*
mon.out
gm on.out

USER COMMANDS

compiler command-line processing driver
macro preprocessor
runtime startup
startup code for -f soft option
startup for gprof-profiling
standard library, see intro(3)
startup for profiling
startup code for -f6888 l option
optional optimizer for Sun386i.
startup code for -f sky option
startup code for -ff pa option
directory searched by the Sun FORTRAN INCLUDE statement
compiler command-line processing driver
VMS FORTRAN source code converter
Sun FORTRAN parser
profiling library, see intro(3)
Sun FORTRAN library: General - other than 1/0 or UNIX interface
inline expander of library calls
Sun FORTRAN library: 1/0 routines
math library
startup code for combined Sun Pascal and Sun FORTRAN programs
Sun FORTRAN library: interface to UNIX system calls
compiler temporary files
file produced for analysis by prof(l)
file produced for analysis by gprof(l)

F77 (1)

SEE ALSO

cc(l), f77cvt(l), fpr(l), fsplit(l), gprof(l), ld(l), prof(l)

Sun FORTRAN Programmer's Guide

Floating-Point Programmer's Guide for the Sun Workstation

Programming Utilities and Libraries

DIAGNOSTICS

258

The diagnostics produced by f77 itself are intended to be self-explanatory. Occasional messages may be
produced by the linker.

Last change: 16 September 1988 Sun Microsystems

A. 7. ratfor Man Page

Appendix A - Errata and Addenda 35

Action: After page 262 of the Sun FORTRAN Programmer's Guide, insert the
page 262a that follows:

Revision A of 27 January 1989

36 Sun FORTRAN Release Notes

Revision A of 27 January 1989

RATFOR(l)

NAME
ratfor - rational FORTRAN dialect

SYNOPSIS

USER COMMANDS

ratfor [-6c] [-C] [-h] [filename ...]

DESCRIPTION

RATFOR(!)

ratfor converts the rational FORTRAN dialect into standard FORTRAN 77. It provides control flow con­
structs essentially identical to those in C. See the Sun FORTRAN Programmer's Guide for a description of
the Ratfor language.

OPTIONS
-6c Use the character c as the continuation character in column 6 when translating to FORTRAN. The

default is to use the & character as a continuation character.

-C Pass Ratfor comments through to the translated code.

-h Translate Ratfor string constants to Hollerith constants of the form nnn h string. Otherwise just
pass the strings through to the translated code.

SEE ALSO
f77(1)

Ratfor in the Sun FORTRAN Programmer's Guide

Sun Microsystems Last change: 5 May 1988 262a

A.8. abort Man Page

Appendix A - Errata and Addenda 3 7

Action: Remove pages 265 and 266 from the Sun FORTRAN Programmer's

Guide, and replace them with the new pages 265 and 266 that follow.

Description of Changes

Removed all references to the optional argument string.

Revision A of 27 January 1989

38 Sun FORTRAN Release Notes

Revision A of 27 January 1989

ABORT(3F) FORTRAN LIBRARY ROUTINES

NAME
abort- terminate abruptly with memory image

SYNOPSIS
subroutine abort

DESCRIPTION
Abort cleans up the 1/0 buffers and then aborts producing a core file in the current directory.

FILES
/usr/lib/libF77 .a

SEE ALSO
abort(3)

Sun Microsystems Last change: 14 September 1988

ABORT(3F)

265

ACCESS(3F) FORTRAN LIBRARY ROUTINES

NAME

access - determine accessibility of a file

SYNOPSIS

integer function access (name, mode)
character*(*) name, mode

DESCRIPTION

ACCESS (3F)

Access checks the given file, name, for accessability with respect to the caller according to mode. Mode
may include in any order and in any combination one or more of:

FILES

r test for read permission

w test for write permission

x test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of the specified
modes. 0 is returned if the specified access would be successful.

/usr /lib/Ii b U77 .a

SEE ALSO

access(2), perror(3F)

266 Last change: 23 August 1983 Sun Microsystems

A.9. f77 ieee environment - -
~ Man Pages

Appendix A - Errata and Addenda 39

Action: Remove pages 273 through 276 from the Sun FORTRAN Programmer's

Guide, and replace them with the new pages 273 through 276 that follow.

Description of Changes

In the f7 7 _iee _ environrnent man pages, on page 275: inserted

passing sig and code by value, using the loc function, and

changed "extern sample _handler" to

"external sarnple_handler".

Revision A of 27 January 1989

40 Sun FORTRAN Release Notes

Revision A of 27 January 1989

F77 _FLOA TINGPOINT (3F) FORTRAN LIBRARY ROUTINES F77 _FLOATINGPOINT (3F)

NAME

f77 _floatingpoint - Fortran IEEE floating-point definitions

SYNOPSIS
#include d77 /f77 _ floatingpoint.h>

DESCRIPTION

FILES

This file defines constants and types used to implement standard floating-point according to ANSI/IEEE
Std 754-1985. Use these constants and types to write more easily understood .F source files that will
undergo automatic preprocessing prior to Fortran compilation.

IEEE Rounding Modes:

fp _direction_ type

fp_precision_type

SIGFPE handling:

sigfpe_code_type

sigfpe_handler_type

SIGFPE_DEFAULT

SIGFPE_IGNORE

The type of the IEEE rounding direction mode. Note that the order of
enumeration varies according to hardware.

The type of the IEEE rounding precision mode, which only applies on systems
that support extended precision such as Sun-3's with 68881 's.

The type of a SIGFPE code.

The type of a user-definable SIGFPE exception handler called to handle a
particular SIGFPE code.

A macro indicating the default SIGFPE exception handling, namely for IEEE
exceptions to continue with a default result, and to abort for other SIGFPE codes.

A macro indicating an alternate SIGFPE exception handling, namely to ignore and
continue execution.

SIGFPE_ABORT A macro indicating an alternate SIGFPE exception handling, namely to abort with
a core dump.

IEEE Exception Handling:

N_IEEE_EXCEPTION The number of distinct IEEE floating-point exceptions.

fp_exception_type The type of the N_IEEE_EXCEPTION exceptions. Each exception is given a bit
number.

fp_exception_field_type The type intended to hold at least N_IEEE_EXCEPTION bits corresponding to
the IEEE exceptions numbered by fp _exception _type. Thus fp _inexact
corresponds to the least significant bit and f p _invalid to the fifth least significant
bit. Some operations may set more than one exception.

IEEE Classification:

fp_class_type An enumeration of the various classes of IEEE floating-point values and symbols.

/usr/include/f77 /f77 _floatingpoint.h

SEE ALSO
ieee_environment(3M), f77 _ieee_environment(3F)

Sun Microsystems Last change: 24 March 1988 273

F77 _IEEE_ENVIRONMENT (3F) FORTRAN LIBRARY ROUTINES F77 _IEEE_ENVIRONMENT (3F)

NAME

IEEE environment - mode, status, and signal handling subprograms for IEEE arithmetic

SYNOPSIS
#include d77 /177 _ floatingpoint.h>

integer function ieee _ flags(action,mode,in,out)
character*(*) action, mode, in, out

integer function ieee _ handler(action,exception,hdl)
character*(*) action, exception
sigfpe _handler_ type hdl

sigfpe _handler_ type function sigfpe(code, hdl)
sigfpe _code_ type code
sigfpe _handler_ type hdl

DESCRIPTION

These subprograms provide modes and status required to fully exploit ANSI/IEEE Std 754-1985 arithmetic
in a FORTRAN program. They correspond closely to the functions ieee _flags(3M), ieee _ handler(3M), and
sigfpe(3).

EXAMPLES

274

The following examples illustrate syntax.

integer ieeer
character* 1 mode, out, in
ieeer = ieee_flags('clearall' ,mode, in, out)

sets ieeer to 0, rounding direction to 'nearest', rounding precision to 'extended', and all accrued
exception-occurred status to zero.

character* 1 out, in
ieeer = ieee_ftags('clear','direction', in, out)

sets ieeer to 0, and rounding direction to 'nearest'.

character* 1 out
ieeer = ieee_ffags('set' ,'direction' ,'tozero' ,out)

sets ieeer to 0 and the rounding direction to 'tozero' unless the hardware does not support directed
rounding modes; then ieeer is set to 1.

character* 16 out
ieeer = ieee_ffags('clear' ,'exception' ,'all' ,out)

sets ieeer to 0 and clears all accrued exception-occurred bits. If subsequently overflow, invalid, and
inexact exceptions are generated then

character* 16 out
ieeer = ieee _flags(' get',' exception',' overflow' ,out)

sets ieeer to 25 and out to 'overflow'.

Last change: 22 September 1988 Sun Microsystems

F77 _IEEE_ENVIRONMENT (3F) FORTRAN LIBRARY ROUTINES F77 _IEEE_ENVIRONMENT (3F)

FILES

A user-specified signal handler might look like this:

integer function sample_handler (sig, code, sigcontext)
integer sig
integer code
integer sigcontext(5)

c Sample user-written sigfpe code handler.
c Prints a message and terminates.
c sig .eq. SIGFPE always.
c The structure of sigcontext is defined in <signal.h>.

print*, 'ieee exception code', loc(code), 'occurred at pc', sigcontext(4)
call abort
end

and it might be set up like this:

external sample_handler
integer ieecr
ieeer = ieee_handler ('set', 'overflow', sample_handler)
if (ieeer .ne. 0) print *,' ieee_handler can not set overflow '

NOTE: UNIX invokes signal handlers by passing sig and code by value. If you write a signal handler
function in FORTRAN as in the example, you can access these values with the loc function.

/usr/include/f77 /f77 _ftoatingpoint.h
/usr/lib/libm.a

SEE ALSO
ftoatingpoint(3), signal(3), sigfpe(3), f77 _ftoatingpoint(3F), ieee_ftags(3M), ieee_handler(3M)

Sun Microsystems Last change: 22 September 1988 275

FDATE(3F) FOR1RAN LIBRARY ROUTINES

NAME
fdate - return date and time in an ASCII string

SYNOPSIS
subroutine f date (string)
character*24 string

character*24 function fdate()

DESCRIPTION

FDATE (3F)

Fdate returns the current date and time as a 24 character string in the format described under ctime(3).
Neither 'newline' nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a function, the calling routine must
define its type and length. For example:

FILES

character*24 fdate
write(*,*) fdate()

/usr/lib/1ibU77 .a

SEE ALSO
ctime(3), time(3F), idate(3F)

276 Last change: 9 January 1984 Sun Microsystems

Sy terns for Open Computing TM

Corporate Headquarters
Sun Microsystems, Inc.
2SSO Garcia Avenue
Mountai n View, A 94043
4 lS 960- 1300
T LX 37-29639

For U.S. Sales Office
locations, call:
00 21-4643

In A : 80082 1-4642

European Headquarters
Sun Microsystems urope. 1 nc.
Bagshot Manor
G reen Lane
Bagshot
urrey,GU 19S L

England
0276S l440
TLX S90 17

Australia: (02) 436 4699
Canada: 4 16 477-674S
France: (1) 46 30 23 24
Germany: (089) 9S094-0
Japan : (03) 22 1-702 1

ordic Countries: (08) 764 78 10
Switzerland: (1) 82 89 SSS
The etherlands: 02 1 SS 24888

K: 027662 111

Europe, Middle East , and Africa,
call European Headquarters:
0276-Sl440

Elsewhere in the world ,
call Corporate Headquarters:
4 lS 960- 1300
1 ntercontinental Sales

