
®

Part Number: 800-3807-10
Revision A of 27 March, 1990

-Printed in

the U.S. government
of the Rights in

and in

Contents

Chapter 1 Introduction .. 1

1.1. Using the Assembler.. l

1.2. Notation ... 2

Chapter 2 Elements of Assembly Language .. 5

2.1. Character 5

2.2. Identifiers .. 5

2.3. Numeric Labels ... 6

2.4. Local Labels ... 6

2.5. Scope of Labels 6

2.6. Constants .. 7

2. 7. Numeric Constants .. 7

2.8. String Constants ... 8

2.9. Assembly Location Counter.. 8

Chapter 3 Expressions... 11

3.1. Operators .. 11

3.2. Terms 12

Expressions 12

Absolute, Relocatable, and External Expressions ,................................... 12

Chapter 4 Assembly Language Program Layout 15

4.1. Label Field .. , .. .

4.2. Operation Code

-iii-

15

16

Contents - c:ontz,nut~a

1.

of

5.6. Area

an External Identifier

a Common Area

5.

5.1

5.12.

13. ID

17

18

22

23

23

24

25

25

26

26

27

27

28

29

30

37

Contents - Continued

Appendix C FP A Assembler Syntax .. 65

C.1. Instruction Syntax .. 65

C.2. Register Syntax.. 66

C.3. Operand Types ... 66

C.4. Two-Operand Instructions ... 66

C.5. Three-Operand Instructions .. 67

C.6. Four-Operand Instructions ... 68

C. 7. Other Instructions ... 72

C.8. Restrictions and Errors .. 72

C.9. Instruction Set Summary.. 73

Index... 77

-v-

Tables

Table 3-1 Unary Operators in Expressions .. 11

Table 3-2 Binary Operators in Expressions... 11

Table 5-1 Assembler Directives... 21

Table 6-1 Addressing Modes ... 32

Table 6-2 Addressing Categories .. 34

Table B-1 List of MC680x0 Instruction Codes ... 44

Table B-2 MC68881 Instructions supported by as .. 52

Table C-1 Other Instructions .. 72

Table C-2 Floating-Point Instructions .. 73

Table C-3 FP A+ Instructions ... 76

-vii-

What as Provides

Scope of This Manual

Audience

Preface

This manual is the Programmer's Reference Manual for as - the assembler for
Sun-3 workstation running the SunOS operating system. as converts source pro­
grams written in assembly language into a form that the linker utility, ld(l) will
tum into a runnable program.

as provides assembly language programmers with a minimal set of facilities to
write programs in assembly language. Since most programming is done in high­
level languages, as doesn't provide any elaborate macro facilities or conditional
assembly features. It is assumed that the volume of assembly code produced is
so small that these facilities aren't required. If they are needed, you can use the
C preprocessor (see cpp(l)) to provide them.

This manual describes the syntax and usage of the as assembler for the
MC68020 and MC68030 microprocessors, the MC6888 l floating-point coproces­
sor, and Sun's Floating-Point Accelerators (FPA and FPA+). The basic format of
as is loosely based on the Digital Equipment Corporation's Macro-11 assembler
described in DEC's publication DEC-11-0MACA-A-D. It also contains elements
of the UNIXt PDP-11 as assembler. The instruction mnemonics and effective
address format are based on a Motorola publication on the MC68000: the
MACSS MC68000 Design Specification Instruction Set Processor dated June 30,
1979.

This is a reference manual as opposed to a treatise on writing in assembly
language. It assumes that you are familiar with the concepts of machine

t UNIX is a registered trademark of AT&T.

-ix-

It also assumes
1rac·•t-.-.·11"f'1,,-,.n sets

Manual.

Manual.

Manual.

1.1. Using the Assembler

Warning

1
Introduction

By convention, the assembly language source code of the program should be in
one or more files with a . s suffix. Suppose that your program is in two files
called parts.sand rest. s. To run the assembler, type the command:

(tutorial% as parts.s rest.s]
as runs silently (if there are no errors), and generates a file called a. out, unless
the -o option is used.

as also accepts several command-line options. These are:

-ofile Place the output of the assembler in file instead of a.out.

-m68010 This is the default on Sun-2 systems. Accept only the MC68010
instruction set and addressing modes. This also puts the MC68010
machine type tag into the output file.

-m68020 This is the default on Sun-3 systems. Accept the full MC68020,
MC68030, MC68881, and Sun FPA and FPA+ instruction sets and
addressing modes. Includes the MC68010 instruction set and
addressing modes as a subset, and also puts the MC68020 machine
type tag into the output file.

-k Generate position-independent code as required by

(cc -pic/-PIC

Don't apply the -k flag to hand-coded assembler programs unless they are writ­
ten to be position-independent.

-0 Perform span-dependent instruction resolution over each entire file,
rather than just over each procedure (see the description of the
. proc pseudo-operation in Chapter 5).

-R Make initialized data segments read-only (actually the assembler
places them at the end of the . text area).

]

Warning The -R flag should not be used in any program that uses the . stabx directive.

1 Revision A of 27 March, 1990

assembler

Form

1 - Introduction 3

(<thing>.]

denotes one or more occurrences of <thing>.
Syntactic objects occurring one after the other, as in:

[~<_fi_r_s_tt_h_in_g_> _____ <_s_e_c_on_d __ tm_·_ng_> ______________________________________ J

simply means an occurrence of first thing followed by second thing. Syntactic
elements separated by a vertical bar sign (I), as in:

[~<_z_e_u_er_> ___ ' _<_d_i_gz-'t> __ J

mean an occurrence of <letter> or <digit> but not both. Brackets and braces
define the order of interpretation. Brackets also indicate that the syntax
described by the subexpression they enclose is optional. That is:

denotes zero or one occurrences of <thing>, while {and} are used for grouping
so that

{ <thing one> I <thing two> } <thing three>

denotes a <thing one> or a <thing two>, followed by a <thing three>.

•\sun ~~ microsystems
Revision A of 27 March, 1990

4

Revision A of 27 1990

2.1. Character Set

2.2. Identifiers

Elements of Assembly Language

This chapter covers the lexical elements which comprise an assembly language
program. (Chapter 3 discusses the rules for expression and operand formation.)
Topics covered in this chapter are:

o The character set that the assembler recognizes,

o Rules for identifiers and labels,

o Syntax for numeric constants,

o Syntax for string constants,

o The assembly location counter.

An assembly language program is ultimately constructed from characters. Char­
acters are combined to make up lexical elements or tokens of the language. Com­
binations of tokens form assembly language statements, and sequences of state­
ments form an assembly language program. This section describes the basic lexi­
cal elements of as.

as recognizes the following character set:

o The letters A through Z and a through z.

o The digits 0 through 9.

o The ASCII graphic characters - the printing characters other than letters
and digits.

o The ASCII non-graphics: space, tab, carriage return, and newline (also
known as linefeed).

Identifiers are used to tag assembler statements (where they are called labels), as
location tags for data, and as the symbolic names of constants.

An identifier in an as program is a sequence of from 1 to 255 characters from the
set:

o Upper case letters A through z.

o Lower case letters a through z.

o Digits 0 through 9.

•\sun ~~ microsystems
5 Revision A of 27 March, 1990

6

o The characters underline and dollar (

The first character of identifier must be numeric. Other than that restric-
there are few other to note:

D

D case letters and lower case letters are so that
and KIT are two different identifiers.

D characters are reserved for pur-
and should not appear in user-defined

Here are

MAXNAME

to a control

The scope of a label is the 'distance' over
program which may reference it. An

of the

program or is
is ...,....,,"_.~

1990

first: addl dO,dl

100$: addqw #7 ,d3
bees 100$

second: andl :ff:Ox7ff ,d4

100$: cmpw dl,d3
beqs 100$

third: movw d0,d7
beqs 100$

2.6. Constants

Chapter 2 - Elements of Assembly Language 7

local labels associated with the current location counter are discarded, and a new
local label scope is created. The following example illustrates the scopes of the
different kinds of labels:

creates a new local label scope

first appearance of 100$
branches to the label above

above 100$ has gone away

this is a different 100$
branches to the previous instruction

now 100$ has gone away again
generates an error message if no 100$ below

The labels first, second, and third all have a scope which is the entire
source file containing them. The first appearance of the local label 1 0 0 $ has a
scope which extends between first and second.
The second appearance of the local label 1 O O $ has a scope which extends

between second and third. After the appearance of the label third, the
branch to 1 O O $ will generate an error message because that label is no longer
defined in this scope.

There are two forms of constants available to as users, namely numeric con­
stants and string constants. All constants are considered absolute quantities
when they appear in an expression (see Section 3.4 for a discussion on absolute
and relocatable expressions).

"

2.7. Numeric Constants as assumes that any token which starts with a digit is a numeric constant. as
accepts numeric quantities in decimal (base 10), hexadecimal (base 16), and octal
(base 8) radices, and floating-point quantities. Numeric constants can represent
quantities up to 32 bits in length.

Decimal numbers consist of between one and ten decimal digits (in the range 0
through 9). The range of decimal numbers is between-2,147,483,648 and
2,147,483,647. Note that you can't have commas in decimal numbers even
though they are shown here for readability. Note also that decimal numbers can't
be written with leading zeros, because a numeric constant starting with a zero is
taken as either an octal constant or a hexadecimal constant, as described below.

Hexadecimal constants start with the notation Ox or OX (zero-ex) and can then
have between one and eight hexadecimal digits. The hexadecimal digits consist
of the decimal digits 0 through 9 and the letters a through f or A through
F.

Octal constants start with the digit O. There can then be from one to 11 octal
digits (0 through 7) in the number. But note that 11 octal digits is 33 bits, so the
largest octal number is 037777777777.

~\sun ~ microsystems
Revision A of 27 March, 1990

8

which may be followed
a The

s

two
a backslash

bac:kslash followed

of the more common non-printing

March, 1990

9

reserves 256 bytes (100 hexadecimal) of storage, with the address of the first byte
as the value of Table. This is exactly equivalent to using . (the preferred
syntax) as follows:

The value of dot is always relative to the start of the current control section. For
example,

doesn't set dot to absolute location OxlOOO, but to location OxlOOO relative to the
start of the current control section. This practice is not recommended.

<t\sun ~ microsystems
Revision A of 27 March, 1990

10

Revision A of 27 March, 1990

3.1. Operators

Table 3-1

Table 3-2

Expressions

Expressions are combinations of operands (numeric constants and identifiers) and
operators, forming new values. The sections below define the operators which
as provides, then gives the rules for combining terms into expressions.

Identifiers and numeric constants can be combined, via arithmetic operators, to
form expressions. as provides unary operators and binary operators, as
described below.

Unary Operators in Expressions

Operator Function Description

- unary minus Two's complement of its argument.

- logical negation One's complement of its argument.

Binary Operators in Expressions

Operator Function Description

+ addition Arithmetic addition of its arguments.

- subtraction Arithmetic subtraction of its arguments.

* multi plication Arithmetic multiplication of its arguments.

I division Arithmetic division of its arguments. Note that
division in as is integer division, which trun-
cates towards zero.

Each operator works on 32-bit numbers. If the value of a particular term occu­
pies only 8 bits or 16 bits, it is sign extended to a full 32-bit value.

~\sun ~ microsystems
11 Revision A of27 March, 1990

12

may any the

0

o An identifier.

D

--positive

An

value directive or a movem
bits of the value are used.

of zero. In this

Chapter 3 - Expressions 13

o A relocatable expression minus a relocatable term is absolute, if both items
belong to the same program section.

An expression is relocatable if its value is fixed relative to a base address, but
will be adjusted by an offset value when it is linked or loaded into memory. All
labels of a program defined in relocatable sections are relocatable terms.

Expressions containing relocatable terms must only have constants added or sub­
tracted to their values. For example, assuming the identifiers widget and
bli vet were defined in a relocatable section of the program, then the following
demonstrates the use of relocatable expressions:

Expression Description

widget is a simple relocatable term. Its value is an offset from
the base address of the current control section.

widget+5 is a simple relocatable expression. Since the value of
widget is an offset from the base address of the current
control section, adding a constant to it does not change
its relocatable status.

widget*2 Not relocatable. Multiplying a relocatable term by a
constant invalidates the relocatable status.

2-widget Not relocatable, since the expression cannot be linked by
adding widget's offset to it.

widget-blivet Absolute, since the offsets added to widget and
bli vet cancel each other out.

An expression is external (or global) if it contains an external identifier not
defined in the current program. With one exception, the same restrictions on
expressions containing relocatable identifiers apply to expressions containing
external identifiers. The exception is that the expression

(widget-blivet

is incorrect when both widget and bli vet are external identifiers -you
cannot subtract two external relocatable expressions. In addition, you cannot
multiply or divide any relocatable expression.

]

Revision A of 27 March, 1990

14

A of 27 March, 1990

4.1. Label Field

Assembly Language

An as program consists of a series of statements. Several statements can be
written on one line, but statements cannot cross line boundaries. The format of a
statement is:

It is possible to have a statement which consists only a label field.

The fields of a statement can be separated by spaces or tabs. There must be at
least one space or tab separating the opcode field from the operand field, but
spaces are unnecessary elsewhere. Spaces may appear in the operand field.
Spaces and tabs are significant when they appear in a character string (for
instance, as the operand of an . as c ii pseudo-op) or in a character constant. In
these cases, a space or tab stands for itself.

A line is a sequence of zero or more statements, optionally followed by a com­
ment, ending with a< newline> character. A line can be up to 4096 characters
long. Multiple statements on a line are separated by semicolons. Blank lines are
allowed. The form of a line is:

Labels are identifiers which the programmer may use to tag the locations of pro­
gram and data objects. The format of a< label field> is:

If present, a label always occurs first in a statement and must be followed by a
colon:

~\sun ~ microsystems
15 Revision A of27 March, 1990

16

Operation

appear in the same source statement, each one being

definitions in statement is called the

is encountered in the program, the that label the

The 'V'-'''-'-''4,

the statement

Note

,,.,.,.,.,,h,.. counter. The a is relocatable.
ass.1gr1ed when the program is linked with the system

""T'\"'.,.. ... ,,.,,,...,,.. code field from the fol­
.., u,cu ... 1...•~ or tabs are unnecessary between the

recommended to readability

Conventions used in as for 1m;tnLctJ,on
..._..ua1.11J1,;a 6 and a list of the instructions is

the assem­
space for

,......,._ ,..,...,.,,,. field are in

mIJterr1onl1cs gives rise to

case behavior
1d<:mt1ne~rs. where both upper and lower case letters may

4.3. Operand Field

Chapter 4 - Assembly Language Program Layout 17

An alternate coprocessor id can be specified for MC68881 instructions by
appending @id to the opcode, such as fadd@2. If you don't do this, the copro­
cessor id specified by the most recent . cpid pseudo-operation is used. (See
Chapter 5.)

Similarly, branch instructions can use a long or short offset specifier to indicate
the destination. So the beq instruction uses a 16-bit offset, whereas the beqs
uses a short (8-bit) offset.

Note that this implementation of as provides an extended set of branch instruc­
tions which start with the letter j instead of b. If the programmer uses the j
forms, the assembler computes the offset size for the instruction. See Section 1.1
for the assembler options which control this.

The operand field of an assembly language statement supplies the arguments to
the machine instruction or assembler directive.

as makes a distinction between the <operand field> and individual <operands>
in a machine instruction or assembler directive. Some machine instructions and
assembler directives require two or more arguments, and each of these is referred
to as an ''operand''.

In general, an operand field consists of zero or more operands, and in all cases,
operands are separated by commas. In other words, the format of an <operand
field> is:

The general format of the operand field for machine instructions is the same for
all instructions, and is described in Chapter 6. The format of the operand field
for assembler directives depends on the directive itself, and is included in the
directive's description in Chapter 5 of this manual.

Depending upon the machine instruction or assembler directive, the operand field
consists of one or more operands. The kinds of objects which can form an
operand are:

D Registers

D Register pairs

D Addresses

D String constants

D Floating-point constants

D Register lists

D Expressions

Register operands in a machine instruction refer to the machine registers of the
processor or coprocessor.

sun
microsystems

Revision A of27 March, 1990

18

Comment

4.5. Assignment
Statements

Note that names must be in lower case; as does not register
names in upper case or a of upper case lower case.

and con-

inr""'"''"''""'' a means for the programmer to comments in the source code.
ret>re:serlt;lrt,g comments.

other way to introduce a comment is when a comment appears on a line
with a statement. The comment field is indicated the presence of the vertical
bar character () after the source statement.

The comment field consists of all Ch<lfa~::ters on a source line and fol-
the comment character. The""'""'"'"'' '"' "~·"'·"' ... ""'" the comment field .

..,, ... may in comment exception the
<newline> which starts a new line.

U • .U .. .l.fo',U<UM.V source line can vVJl.l.iJ.l.1.:u. a comment For exam-
two statements,,,,...,.._, ,.,.,to the """'"'n-.hlor•

vectora
vectorb
CRLF

OxFFFE

expression to a
ass1,gr1mtmt statement

use dO as

direct may be redefined later in the pro-
value is the result of the last such statement.

in

Revision A of 27 March, 1990

4.6. Self-Modifying Code

Chapter 4 - Assembly Language Program Layout 19

A local identifier may be defined by direct assignment, though this doesn't make
much sense.

Register identifiers may not be redefined.

An identifier which has already been used as a label may not be redefined, since
this would be tantamount to redefining the address of a place in the program. In
addition, an identifier which has been defined in a direct assignment statement
cannot later be used as a label. Both situations give rise to assembler error mes­
sages.

If the <expression> in a direct assignment is absolute, the identifier is also abso­
lute, and may be treated as a constant in subsequent expressions. If the < expres­
sion> is relocatable, however, the < identifier> is also relocatable, and it is con­
sidered to be declared in the same program section as the expression.

If the <expression> contains an external identifier, the identifier defined by direct
assignment is also considered external. For example:

• globl X
holder = X

X is declared as external identifier
holder becomes an external identifier

assigns the value of X (zero if it is undefined) to holder and makes holder an
external identifier. External identifiers may be defined by direct assignment.

If you intend to write programs that must modify their own code, you must be
able to flush the processor's cache to make sure that the code the program has
just modified is not overwritten by a cache fill.

Flushing the cache is done by using a special trap to request SunOS to do the
operation; trap #2. (Note that this is not system call #2, which is trap #0 with the
value 2 in register dO .) Here are some sample definitions and usage relating to
cache flushing:

~\sun ~ microsystems
Revision A of27 March, 1990

20

Ox20 instruction 0 call)
Ox21 Trap instruction 1
Ox22 instruction 2 (cache flush)

You

Ox0010
OxOOOl +

Oxl 00
Ox21
Ox02
Ox04

+

a program

Please note that this sort of,..,. ,,. .. ,.,, ... ,.., could have dire consequences if not prop­
used.

Revision A of 27 March, 1990

Table 5-1

5
Assembler Directives

Assembler directives are also known as pseudo operations or pseudo-ops.
Pseudo-ops are used to direct the actions of the assembler, and to achieve effects
such as generating data. The pseudo-ops available in as are listed in Table 5-1
below.

Assembler Directives

Pseudo- Description Operation

. ascii Generates a sequence of ASCII characters .

. asciz Generates a sequence of ASCII characters, terminated by a zero byte .

. byte Generates a sequence of bytes in data storage .

. bytez Generates a sequence of bytes in data storage initialized to zero .

. word Generates a sequence of words in data storage .

. long Generates a sequence of long words in data storage .

.single Generates a sequence of single-precision floating-point constants in
data storage.

.double Generates a sequence of double-precision floating-point constants in
data storage.

.text Specifies that the following generated code be placed in the text control
section until further notice.

.data Specifies that the following generated code be placed in the data con-
trol section until further notice.

.datal Specifies that the following generated code be placed in the data] con-
trol section until further notice.

.data2 Specifies that the following generated code be placed in the data2 con-
trol section until further notice.

.bss Specifies that space will be reserved in the bss control section until
further notice.

. globl Declares an identifier as global (external) .

. cormn Declares the name and size of a common area .

21 Revision A of 27 March, 1990

22

Table 5-1

5.1. . as i - Generate
Character

Octal Code Generated:

150 145 154 154 157 040
164 150 145 162 145

127 141 162 156 151 156
147 055 007 007 040 012

141 142 143 144 145 146
147

Assembler Directives- Continued

Pseudo­
Operation

. lcomm

. even

.stabx

Reserves a specified amount of space in the bss control section .

Advances the current location counter a specified amount.

Forces current location counter to next one-, two-, four- or eight-byte

Forces current location counter to next word (even-byte) boundary .

Builds special symbol table entries. These directives are included for
the benefit of compilers which information for the symbolic
debuggers dbx and dbxtool.

assembler directives are discussed in detail in the following sections.

The . ascii directive translates character strings into their ASCII equivalents
for use in the program. The format of the . ascii directive is:

<character contains any character or escape sequence which can appear
in a character string. Obviously, a newline must not appear within the character
string. A newline can be represented the escape sequence \012. The following
examples illustrate the use the . ascii

Statement:

.ascii "hello there"

.ascii 007\007 \012"

.ascii

Revision A of 27 March, 1990

5.2 .. asciz - Generate
Zero-Terminated
Sequence of Character
Data

Octal Code Generated:

110 145 154 154 157 040
127 157 162 144 041 000

124 150 105 040 107 162
145 141 164 040 120 122
117 115 160 153 151 156
040 163 164 162 151 153
145 163 040 141 147 141
151 156 041 000

5.3. Directives to Generate
Data

Chapter 5 - Assembler Directives 23

The . asciz directive is equivalent to the . ascii directive except that a zero
byte is automatically appended as the final character of the string. This feature is
intended for generating strings which C programs can use. The following exam­
ples illustrate the use of the . asciz directive:

Statement:

.asciz "Hello World!"

.asciz "The Great PROMpkin strikes again!"

The . byte, . word, . long, . single, and . double directives reserve
storage locations and initialize them with specified values.

The format of the various forms of data generation statements are:

[<label>: J . byte [<expression> J [, <expression>] ...

[<label>:] .bytez <number>

[<label>:] .word [<expression> J [, <expression> J • • •

[<label>: J . long [<expression> J [, <expression> J •••

[<label>:] . single [<expression>] [, <expression>] ...

[<label>:] .double [<expression>] [, <expression>] ...

The . byte directive reserves one byte (8 bits) for each expression in the
operand field, and initializes it to the low-order 8 bits of the corresponding
expression's value.

The . bytez directive reserves <number> bytes (8 bits), and initializes them to
zero.

The . word directive reserves one word (16 bits) for each expression's value in
the operand field, and initializes it to the low-order 16 bits of the corresponding
expression's value.

The . long directive reserves one long word (32 bits) for each expression in the
operand field, and initializes it to the value of the corresponding expression's
value.

sun
microsystems

Revision A of 27 March, 1990

24

5.4.

r1.,,..,"",.,.f-'""' reserves one word for each ex1pre:ss1.on
u.uw.aJl.1£.\,,., it to the low-order 32 bits of the crnrre~mond:mg

and da t a2, change the

view programs as divided into three distinct sections

exception that
its size is com-

1990

5.5. . skip - Advance the
Location Counter

5.6 .. lcomm -Reserve
Space in bss Area

5 - Assembler Directives 25

.text place next instruction
code: movw dl,d2 in text section

.data now generate data in
grab: 27 data section

.text now revert to text
more: addw d2,dl section

.data now back to data section
hold: .byte 4

During the first pass, as creates the intermediate output in two separate chunks:
one for the text section and one for the data section. In the text section, code
immediately precedes more; in the data section, grab immediately precedes
hold. At the end of the first pass, as rearranges all the addresses so that the
sections are sent to the output file in the order: text, data and bss.

The resulting output file is an executable image file with all addresses correctly
resolved, with the exception of undefined . globl's and . comm's.

For more information on the format of the assembler's output file, consult the
a.out(5) entry in the System Programmer's Reference Manual.

The . skip directive reserves storage by advancing the current location counter
a specified amount. The format of the . skip directive is:

([<label>: J . skip <size>

where <size> is the number of bytes by which the location counter should be
advanced. The . skip directive is equivalent to performing direct assignment
on the location counter. For instance, a . skip directive like this:

reserves 1000 bytes of storage, with the value of Table equal to the address of
the first byte.

The . lcomm directive is a compact way to get a specific amount of space
reserved in the bss area. The format of the . lcomm directive is:

where <name> is the name of the area to reserve, and <size> is the number of
bytes to reserve. The . lcomm directive specifically reserves the space in the bss
area, regardless of which location counter is currently in effect.

A . lcomm directive like this:

]

~\sun ~ microsystems
Revision A of 27 March, 1990

...,...,,,,, ... "j'"" with the
directive. The comm

The format

.,.,.,.,,,....,.,,.,..,,,,,statements aec~1m~e the array TABLE and the routine
and then them locations in the current con-

a common area, for cmnoirn­
use common. The format

is

1990

5.9 .. align -Force
Location Counter to
Particular Byte
Boundary

5.10. . even - Force
Location Counter to
Even Byte Boundary

5.11 .. stabx -Build
Special Symbol Table
Entry

5 - Assembler Directives 27

may appear in several load modules), allocates storage for it in the final bss sec­
tion, and resolves linkages. If, however, <name> appears as a global symbol
(label) in any module of the program, all references to <name> are linked to it,
and no additional space is allocated in the bss area.

The . align directive advances the location counter to the next one-, two-, four­
or eight-byte boundary, if it is not currently on such a boundary. Intervening
bytes are filled with zeros. The format of the . align directive is:

(. align <size> J
where <size> must be an assembler expression which evaluates to 1, 2, 4 or 8.

If you choose to use the . align 4 or align 8 directives, you must use the -
J flag when you assemble your program; the assembler does span-dependent
instruction resolution, and using align 4 or align 8 changes the address of
jump targets.

This directive is necessary because

o Word and long word data values must lie on even-byte boundaries

o Machine instructions must start on even-byte boundaries

o The MC68020 and MC68030 operate much more efficiently if word and
long word data are on even-byte and four-byte boundaries, respectively.

The . even directive advances the location counter to the next even-byte boun­
dary, if its current value is odd. This directive is provided because word and long
word data values must lie on even-byte boundaries, and also because machine
instructions must start on even-byte boundaries. . even is equivalent to
.align 2.

(___ .eve_n _____]

The . stabx directives are provided for the use of compilers which can generate
information for the symbolic debuggers dbx and dbxtool. The directives
. stabs, . stabd, and . stabn build various types of symbol table entries.

The . stabx directives have the following forms:

. stabs name, type, 0, desc, value

. st abn type, 0 , desc, value

or

Revision A of 27 March, 1990

28

The
MC68881 instructions

of

or source line.
variable or or the

can save
<A, must not cross proc

in a program, value
more than one co1Dro,cei;;sor.

value

1 is assumed. Since no
need to use

6.1. Instruction Mnemonics

6.2. Extended Branch
Instruction Mnemonics

Instructions and Addressing Modes

This chapter describes the conventions used in as to specify instruction
mnemonics and addressing modes. The information in this chapter is specific to
the machine instructions and addressing modes of the MC68010, MC68020, and
MC68030 microprocessors and the MC68881 and MC68882 coprocessors. See
Appendix C for information on the Sun FPA and FPA+'s instruction sets and
addressing modes.

The instruction mnemonics that as uses are based on the mnemonics described
in the relevant Motorola processor manuals. However, as deviates from them in
several areas.

Most of the MC68010, MC68020 and MC68030 instructions can apply to byte,
word or long operands. Instead of using a qualifier of . b, . w, or . l to indicate
byte, word, or long as in the Motorola assembler, as appends a suffix to the nor­
mal instruction mnemonic, thereby creating a separate mnemonic to indicate
which length operand was intended.

For example, there are three mnemonics for the or instruction: orb, orw, and
or 1, meaning or byte, or word, and or long, respectively.

Instruction mnemonics for instructions with unusual opcodes may have addi­
tional suffixes. Thus in addition to the normal add variations, there also exist
addqb, addqw and addql for the add quick instruction.

Branch instructions come in two flavors for the MC68010, byte (or short) and
word, and an additional flavor, long, for the MC68020. Append the suffix s to
the word mnemonic to specify the short version of the instruction. For example,
beq refers to the word version of the Branch if Equal instruction, beqs refers to
the short version, and beql refers to the long version.

as supports extended branch instructions in addition to the instructions which
explicitly specify the instruction length. These instruction's names are, in most
cases, constructed from the word versions by replacing the b with j. For
example, compare beq with j eq.

as 's rules for handling branch instructions are as follows:

o as automatically generates the corresponding short branch instruction if the
operand of the extended branch instruction is a simple address in the text
segment, and the offset to that address is sufficiently small.

~\sun ~~ microsystems
29 Revision A of 27 March, 1990

30

D

D

3. Ifthe

Table 6-1

an
dn
ri
f i

d

L

s

are

that Note that
The notations used in

as r i : L : s, indi-
may not : s

you
in

March,

Chapter 6 - Instructions and Addressing Modes 31

In the table where both d and d' are specified, d corresponds to an MC68020 or
MC68030 outer displacement and d' corresponds to an MC68020 or MC68030
base displacement.

xxx refers to a constant expression.

Certain instructions, particularly move, accept a variety of special registers
including:

Name Register
sp stack pointer, which is equivalent to a 7
sr status register
cc condition codes of the status register

usp user stack pointer
pc program counter
sf c source function code register
df c destination function code register

f pcr floating-point control register
fpsr floating-point status register
fpiar floating-point instruction address register

The memory-indirect and program-counter memory-indirect addressing modes
listed in the following tables are useable only with the MC68020 and MC68030.

In each of these addressing modes, up to four user-specified values are used to
generate the final operand address:

o base register

o base displacement

o index register

o outer dispacement

All four user-specified values are optional. Both base and outer displacements
may be null, word or long. When a displacement is null, or an element is
suppressed, its value is taken as zero in the effective address calculation.

In the case of memory-indirect addressing, an address register (an) is used as a
base register, and its value can be adjusted by an optional base displacement (d').
An index register (ri) specifies an index operand (ri: L: s) and finally, an outer
displacement (d) can be added to the address operand, yielding the effective
address.

Program-counter memory-indirect mode is exactly the same. The only difference
is that the program counter is used as the base register.

Some examples of these addressing modes follow:

•\sun ~ microsystems
Revision A of 27 March, 1990

32

Deferred

List

Postincrement

Predecrement

Word Index

Index

Absolute Short

Absolute

PC

Indirect

Pre-Indexed

Pre-Indexed

Indirect

Post-Indexed

In the table

an@

an@+

an@-

an@

an@

an@ (d,

xx:x:w

xx:x:l

pc@ (d)

pc@

pc@

pc@(d:

an@

that the notation means ri and while ri rj means

:L w 4}@ 4 l),d3

l)@ :w,d2:1: ,d3

1:4) @(14:w)

@ :w,d4 w:

March,

Table 6-1

Mode

Normal

Immediate

6 - Instructions and Ad1dressiru! Modes 33

Addressing Modes- Continued

Notation Example

identifier movw widget,d3

#.xxx movw #27+3,d3

Normal mode assembles as PC-relative if the assembler can determine that this is
appropriate, otheiwise it assembles as either absolute short or absolute long,
under control of the -d2 command line option.

The Motorola manuals present different mnemonics (and in fact different forms
of the actual machine instructions) for instructions that use the literal effective
address as data instead of using the contents of the effective address. For
instance, they use the mnemonic a dda for add address. as does not make
these distinctions because it can determine the type of opcode required from the
form of the operand. Thus an instruction of the form:

assembles to the add address instruction because as can determine that aO is an
address register.

assembles to an add immediate instruction because as can determine that
right_ now is a constant.

Because of this determination of operand forms, some of the mnemonics listed in
the Motorola manuals are missing from the set of mnemonics that as recognizes.

Certain classes of instructions accept only subsets of the addressing modes
above. For example, the add instruction does not accept a PC-relative address as
a destination, and register lists may be used only with the movem and fmovem
instructions.

as tries to check all these restrictions and generates the illegal operand error
code for instructions that do not satisfy the address mode restrictions.

6.4. Addressing Categories The processors group the effective address modes into categories derived from
the manner in which they are used to address operands. Note the distinction
between address modes and address categories. There are 14 addressing modes
in the MC68010 and 18 in the MC68020 and MC68030, and they fall into one or
more of four addressing categories. The addressing categories are defined here,
followed by a table summarizing the grouping of the addressing modes into
categories. Note that register lists can be used only in the movem and fmovem

~\sun ~ microsystems
Revision A of 27 March, 1990

34

Addressing

Mode

Register Direct

A-Register Indirect

A-Register Indirect

with Displacement

A-Register Indirect

with Word Index

A-Register Indirect

with Long Index

A-Register Indirect

with Post Increment

A-Register Indirect

with Pre Decrement

A-Register Indirect

with Displacement

A-Register Indirect

with Word Index

Table 6-2

instructions.

Category Meaning

Data means that the addressing mode is used to refer to data operands.

Memory means that the addressing mode can refer to memory operands .
..... ..,,,...,,.. .. .,.,,,,.,.,include all the indirect address modes and
all the absolute address ,,.

Alterable means that the addressing mode refers to operands which are
writeable (alterable). This category takes in every addressing
mode except the PC-relative addressing modes and the immedi­
ate address

means that addressing mode refers to memory operands with
no size specification.

Some addressing categories can be intersected to make more restrictive ones.
For example, the Motorola MC68010 manual mentions the Data Alterable
Addressing Mode to mean that the particular instruction can only use those
modes which provide data addressing are alterable as well.

Addressing

Assembler Data Memory Control Alterable MC68020

andMC68030

Only

an, dn, sp, pc,
cc, sr, usp x x
an@ x x
an@ (d: L) x x x x x

an@ (d: L, ri : w : s) x x x x x

an@ (d: L, ri: l: s) x x x x x

an@+ x x x

an@- x x x

an@ x x x x

an@ (d, ri: w) x x x x

Revision A of 27 March, 1990

Chapter 6 - Instructions and Addressing Modes 35

Table 6-2 Addressing Categories- Continued

Addressing Assembler Data Memory Control Alterable MC68020

andMC68030

Mode Syntax Only

A-Register Indirect an@ (d, ri: 1) x x x x
with Long Index

Memory-Indirect an@ (d:L)@ (d': L, ri: L: s) x x x x x
Post-Indexed

Memory-Indirect an@ (d' : L, ri: L : s) @ (d: L) x x x x x
Pre-Indexed

Absolute Short xxx:w x x x x
Absolute Long xxx: 1 x x x x
PC-relative pc@ (d) x x x
PC-Indirect pc@(d:L) x x x x
with Displacement

PC-relative with pc@ (d, ri: w) x x x
Word Index

PC-Indirect with pc@ (d : L, ri : w : s) x x x x
Word Index

PC-relative pc@ (d, ri: 1) x x x
with Long Index

PC-Indirect with pc@(d:L,ri:l:s) x x x x
Long Index

PC-Memory Indirect pc@ (d:L)@ (d' :L, ri:L:s) x x x x x
Post-Indexed

PC-Memory Indirect pc@(d' :L,ri:L:s)@(d:L) x x x x x
Pre-Indexed

Immediate Data :/l=nnn x x

Revision A of27 March, 1990

March,

A.1. Usage Errors

A.2. Assembler Error
Messages

as Error Codes

Cannot open output file
The specified output file cannot be created. Check that the permissions
allow opening this file.

Cannot open source file
The assembler cannot open the specified source file. Check the spelling, that
the pathname supplied is correct, and that you have read permission for the

No input file
One or more input files must be specified- as cannot accept the output of
a pipe as its input.

Too many file names given
The assembler cannot cope with more than one source file. Break the job
into smaller stages.

Unknown option 'x' ignored
as does not recognize the option x. Valid options are listed in Section 1.1 of
this manual. If you are using either cc or f 7 7 to assemble a . s file, you
should specify any . as options that you want to use by using -Qoption
as <option>.

If as detects any errors during the assembly process, it prints out a message of
the form:

Error messages are sent to standard error. Here is a list of as error codes, and
their possible causes.

Illegal .align
The expression following a . align evaluates to some value other than 1, 2,

~\sun ~~ microsystems
37 Revision A of 27 March, 1990

38

Invalid a.'\.~:unim11?nr
An am~m1ot

Invalid nn.o,,,./lrnn

are be sure to do the assem01v with the -J

...,.1._. ,_ .. ,..1,, using an 8 or 9
constant operand is

The ,.,.,,i used is not consistent with the instruction used - for ""v~1 ~"' 1 ""·

Invalid
A.,..,,.,... .. .,, .. ,,. .. name was found where one should not appear-for exc:1m1J1e:

Note
to express a list

A of 27 1990

containing just a single register, you must write its name twice separated by
a slash, e.g. f p O If p O.

Invalid string
An invalid string was encountered in an . ascii or . asciz directive.

o Make sure the string is enclosed in double quotes.

o Remember that you must use the sequence \" to represent a quote inside
a string.

Invalid symbol
An operand that should be a symbol is not - for example:

because the constant 3 is not a symbol.

Invalid Term
The expression evaluator could not find a valid term: a symbol, constant or
<expression>. An invalid prefix to a number or a bad symbol name in an
operand generates this message.

Line too long
A statement was found which has more than 4096 characters before the new­
line character.

Missing close-paren ')'
An unmatched '(' was found in an expression.

Multiply defined symbol

o An identifier appears twice as a label.

o An attempt was made to redefine a label using a direct assignment state­
ment.

o An attempt was made to use, as a label, an identifier which was previ­
ously defined in a direct assignment statement.

Multiply Defined Symbol (Phase Error)
This rarely occurring message indicates an inconsistency in the assembler.
Report it to Sun Microsystems Customer Support if it occurs.

Non-relocatable expression
If an expression contains a relocatable symbol (a label, for instance), the
only operations that can be applied to it are the addition of absolute

+~;!!.!! Revision A of27 March, 1990

40

pro-

to an even

table. Divide the pro-

reference than

labels usually start with the letter 'L' and should be defined in this assembly.
The absence of such a definition usually indicates a compiler code genera­
tion error. This message is also generated by the use of symbols such as n$
if n$ has not been defined.

Unqualified forward reference
The displacement field in an MC68020 based/indexed address mode con­
tains an unqualified forward reference. Note that the displacement in a
based/indexed address mode for the MC68020 instruction set can contain a
forward or external reference only if the length specifier is present. The
length specifier should be : 1 (long). This type of error will generally also
cause Multiply defined symbol (Phase error).

Undefined Symbol
A label reference to an undefined local label was found.

Wrong number of operands
Check Appendix B for the correct number of operands for the current
ins true ti on.

~\sun ~ microsystems
Revision A of 27 March, 1990

42

Revision A of 27 March, 1990

List of as Opcodes

This appendix is a list of the instruction mnemonics accepted by as, grouped
alphabetically. The list is divided into two tables, the first covers the MC680x0
processor's instructions, the second covers the MC68881 and MC68882
floating-point coprocessors' instructions. For more information about floating­
point programming, see the Floating-Point Programmer's Guide.

Each entry describes the following things:

o The mnemonics for the instruction,

o The generic name of the instruction,

o The assembly language syntax and the variations on the instruction,

o Whether the instruction is specific to the MC68020, or has extended capabil-
ities on the MC68020 compared to the MC68010.

The syntax for as machine instructions differs somewhat from the instruction
layouts and categories shown in the Motorola processor manuals. For example,
as provides a single set of mnemonics for add (add binary), adda (add
address), and addi (add immediate), differentiated only by the length of the
operands. In general, as selects the appropriate instruction from the form of the
operands.

Here is a brief explanation of the notations used below.

o An instruction of the form add.X in the assembly language syntax column
means that the instruction is coded as addb, addw, addl, etc.

o An operand field of an means any A-register.

o An operand field of dn means any D-register.

o An operand field of rn means any A- or D-register.

o An operand field of fn means any floating-point register.

o An operand field of en means any control register.

o An operand field of ea means an effective address designated by one of the
permissible addressing modes. Consult the relevant Motorola processor
manual for details of the allowed addressing modes for each instruction.

~\sun ~ microsystems
43 Revision A of27 March, 1990

44

abed

ad db

addw

addl

addqb

addqw

addql

addxb

addxw

addxl

an db

45

B-1

Mnemonic Operation Name Syntax Processor
andw andX dn,ea

andl andX #data, dn

as lb arithmetic shift left aslX dX,dy

aslw aslX #data, dy

asll aslX ea

asrb arithmetic shift right asrX dx,dy

asrw asrX #data, dy

asrl asrX ea

bee branch conditionally bccX label

bccl MC68020/030

bees

bchg test a bit and change bchg dn,ea

bchg #data, ea

bclr test a bit and clear bclr dn,ea

bclr #data, ea

bk pt breakpoint bk pt #data MC68020/030

bset test a bit and set bset dn,ea

bset #data, ea

btst test a bit btst dn,ea

btst #data, ea

bf chg test a bit field and change bf chg ea {offset: width} MC68020/030

bf clr test a bit field and clear bf clr width} MC68020/030

bfexts extract a bit field signed bf exts ea{ ,dn MC68020/030

bfextu extract a bit field unsigned bfextu ea {offset: width} ,dn MC68020/030

bfff o find first one in bit field bff f o ea {offset: width} ,dn MC68020/030

bf ins insert a bit field bf ins dn, ea{offset:width} MC68020/030

bf set test a bit field and set bf set width} MC68020/030

bftst test a bit field bftst width} MC68020/030

bes branch carry set bcsX ea

bcsl MC68020/030

bcss

beq branch on equal ea

beql MC68020/030

beqs

bge branch greater or equal ea

bgel MC68020/030

s n Revision A of 27 March, 1990
microsystems

46

Table B-1 List

Mnemonic Or-· .,.,w:~ .. Name Syntax Processor
bges branch greater or equal

bgt branch greater than ea

bgtl MC68020/030

bgts

bhi branch higher bhiX ea

bhil MC68020/030

bhis

ble branch less than or equal ea

bl el MC68020/030

bl es

bls branch lower or same blsX ea

blsl MC68020/030

blt branch less than bltX

bltl

bl ts

bmi branch minus bmiX

brnil

bmis

bne branch not equal ea

bnel MC68020/030

bnes

bpl branch positive ea

bpll MC68020/030

bpls

bra branch always label

bral MC68020/030

bras

bsr subroutine branch bsrX label

bsrl MC68020/030

bsrs

bvc branch overflow clear ea

bvcl MC68020/030

bvcs

bvs branch overflow set bvsX ea

bvsl MC68020/030

bvss

callm module callm #data, MC68020/030

cas2b compare & swap
, du2 (rnl : (rn2) MC68020/030

~ - -
cas21 MC68020/030

Revision A of 27 1990

Mnemonic
cas2w

casb

casl

casw

ch kb

chkw

chkl

chk2b

chk21

chk2w

clrb

clrw

clrl

cmp2b

cmp21

cmp2w

cmprnb

cmpmw

cmpml

cmpb

cmpw

cmpl

db cc

dbcs

dbeq

dbf

dbge

db gt

db hi

db le

db ls

dblt

db mi

dbne

db pl

dbra

dbt

dbvc

dbvs

divs

divsl

divsll

Table B-1 List of MC680x0 Instruction Codes-Continued

Operation Name Syntax
compare & swap with operand

compare & swap with operand casX de, du, ea

check register against bounds chkX ea,dn

check register against bounds chk2X ea, rn

clear an operand clrX ea

compare register against bounds cmp2X ea, rn

compare memory cmprnX ay@+, ax@+

arithmetic compare cmpX ea,dn

cmpX #data, ea

decrement & branch on carry clear db cc dn, label
II on carry set dbcs dn, label

" on equal dbeq dn, label

" on false dbf dn, label
II on greater than or equal dbge dn, label

" on greater than db gt dn, label
II on high db hi dn, label

" on less than or equal db le dn, label
II on low or same db ls dn, label
II on less than dblt dn, label
II on minus db mi dn, label
II on not equal dbne dn, label

" on plus db pl dn, label

" always (same as dbf) dbra dn, label
II on True dbt dn, label
II on overflow clear dbvc dn, label

" on overflow set dbvs dn, label

divide divs ea,dn

divsX ea,dn

divsX ea,dq

~\sun ~ microsystems

47

Processor
MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

Revision A of 27 March, 1990

48

di vu

divul

divuw

divull

eorb

eorw

eorl

exg

extbl

extw

extl

jmp

jcs

jeq

jge

jgt

jhi

jle

jmi

jne

jpl

jra

jbsr

jvc

jvs

lea

link

lslw

lsll

lsrb

lsrw

Table List

divsX ea, dr: dq

ea,dn

divuX ea, dn

#daJa, ea

#data,

#data, sr

Processor
MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

MC68020/030

49

Table B-1 List of MC680x0 Instruction Codes- Continued

Mnemonic Operation Name Syntax Processor
lsrl logical shift right lsrX ea

mo vb move data movX ea, ea

movl

movw movX #data, dn

movw move from condition code register movw cc, ea

movw move from status register movw sr,ea

move move to/from control register move rn, er

move cr,rn

move ml move multiple registers movemX #mask, ea

movemw movemX ea, #mask

movemX ea, reglist

movemX reglist, ea

movepl move ripher movepX dn, an@ (d)

movepw movepX an@ (d), dn

moveq move quick moveq #data, dn

movsb move to/from address space movsX rn,ea

movsw movsX ea, rn

movsl

mu ls signed multiply mu ls ea,dn

mulslw mulsX ea,dl MC68020/030

mulsll mulsX ea, dh: dl MC68020/030

mulu unsigned multiply mulu ea,dn

mulul muluX ea,dl MC68020/030

muluX ea, dh:dl MC68020/030

nbcd negate decimal with extend nbcd ea

negb negate binary ea

negw

negl

negxb negate with extend negxX ea

negxw

negxl

nop no operation nop

notb logical complement notX ea

notw

notl

orb inclusive or orX ea,dn

orw orX dn,ea

orl or #data, ea

orb #data, cc

sun
microsystems

Revision A of 27 March, 1990

B-1 List

Mnemonic Op.., • ..,, .. :.., ... Name Syntax Processor
inclusive or orw #data,sr

pack pack pack ax@-, #data MC68020/030

pack dx, dy, #data MC68020/030

pea push effective address pea ea

reset device reset

rolb left rolX dx,dy

rolw rotate left rolX #data, dy

roll rolX ea

rorb rnr;::iri::. right rorX dx,

rorw rorX #data, dy

rorl rorX ea

roxlb left with extend roxlX dx,dy

roxlw roxlX #data, dy

roxll roxlX ea

roxrb rotate right with extend roxrX dx,dy

roxrw roxrX #data, dy

roxrl roxrX ea

rtd return and deallocate parameters rtd #data
rte return from exception rte

rtm return from module rtm rn MC68020/030

rtr return and restore codes rtr

rts return from subroutine rts

rts #n

sbcd subtract decimal with extend sbcd dy,dx

sbcd ,ax@-

stop machine stop #xxx

subb arithmetic subtract subX ea,dn

subw subX dn,ea

subX ea, an

subl subX #data, ea

st set all ones st ea

sf all zeros sf ea

shi shi ea

sls set lower or same sls ea

sec set carry sec ea

scs set carry set scs ea

sne equal sne ea

seq equal seq ea

SVC set overflow ea

svs set svs ea

Revision A of 27 March, 1990

Mnemonic
spl

smi

sge

slt

sgt

sle

subqb

subqw

subql

subxb

subxw

subxl

swap

tas

trap

trapcc

trapccl

trapccw

trapcs

trapcsl

trapcsw

trapeq

trapeql

trapeqw

trap£

trapf l

trapfw

trapge

trapgel

trapgew

trapgt

trapgtl

trapgt

Appendix B - List of as Opcodes 51

Table B-1 List of MC680x0 Instruction Codes- Continued

Operation Name Syntax Processor
set plus spl ea

set minus smi ea

set greater or equal sge ea

set less than slt ea

set greater than sgt ea

set less than or equal sle ea

subtract quick subqX #data, ea

subtract quick

subtract extended subxX dy,dx

subxX ay@-, ax@-

swap register halves swap dn

test operand then set tas ea

trap trap #vector

trap on carry clear trapccX MC68020/030

trapccX :fl: data MC68020/030

MC68020/030

trap on carry set trapcsx MC68020/030

trapcsX :fl: data MC68020/030

MC68020/030

trap on equal trapeqX MC68020/030

trapeqX :fl: data MC68020/030

MC68020/030

trap on never true trapfX MC68020/030

trapfX :fl: data MC68020/030

MC68020/030

trap on greater or equal trapgeX MC68020/030

trapgeX :fl: data MC68020/030

MC68020/030

trap on greater trapgtX MC68020/030

trapgtX :fl: data MC68020/030

The following table describes the MC68881 instruction mnemonics supported by
as.
Each mnemonic indicates the data type that it operates on by the last character of
the mnemonic:

o b indicates a byte format instruction

~\sun ~~ microsystems
Revision A of 27 March, 1990

52

fabsl

fabss

fabsp

f absw

f absb

f acosx

f acosl

facosw

facosb

faddx

f adds

faddp

f addw

faddd

f addb

fasinx

f asinl

f asins

fasinp

fasinw

fasinb

f atanx

f atanl

fa tans

f atanp

fatanw

instruction

March,

53

Table B-2 MC68881 Instructions supported by as- Continued

Mnemonic Operation Name Syntax

fatand arc tangent

f atanb

fatanhx hyperbolic arc tangent fatanhx ea, fn

f atanhl fatanhx fm, fn

fatanhs fatanhy ea, fn

fatanhp hyperbolic arc tangent (contd.)

f atanhw

fatanhd

f atanhb

fbcc branch conditionally fbcc label

fbeq (equal)

fbeql

fbf (false)

fbfl

fbgt (greater than)

fbgtl

fble (less than or equal)

fblel

fblt (less than)

fbltl

f bge (greater than or equal)

fbgel

fbgl (greater than or less)

fbgll

fbgle (greater less or equal)

fbglel

f bgt (greater than)

fbne (not equal)

fbnel

fbneq (not (equal))

fbneql

fbnge (not greater than or equal)

fbngel

fbngl (not greater than or less)

fbngll

fbngle (not greater than, less or equal)

fbnglel

fbngt (not greater than)

fbngtl

fbnle (not less than or equal)

fbnlel

fbnlt (not less than)

fbnltl

fbt (true)

~\sun ~ microsystems
Revision A of27 March, 1990

54

Mnemonic

fbtl

fbor

fborl

fbocc

fboge

fbogel

fbogl

fbogll

fbogt

fbogtl

fbole

fbolel

fbolt

fboltl

fbcc

fbseq

fbseql

fbsf

fbsf l

fbsne

fbsnel

fbst

fbstl

fbucc

fbueq

fbueql

f buge

fbugel

fbugt

fbugtl

fbule

fbulel

fbult

fbultl

fbun

fbunl

fcmpx

f cmpl

f cmps

f cmpp

f cmpw

fcmpd

f cmpb

Table B-2

branch ordered cor1d1t10nall)

greater or

(or·aeirea greater or

less or

(un:orcten::a greater than)

cun1orc1erf:d less

compare

fbocc label

fbscc label

fbucc label

fcmpx ea, fn

fcmpx fm, fn

fcmpy ea, fn

Aof27 1990

Appendix B - List of as Opcodes 55

Table B-2 MC68881 Instructions supported by as- Continued

Mnemonic Operation Name Syntax

f cosx cosine fcosx ea, fn

f cosl fcosx fm,fn

f coss fcosy ea, fn

f cosp

f cosw

f cosd

f cosb

f coshx hyperbolic cosine fcoshx ea, fn

f coshl fcoshx fm, fn

f coshs fcoshy ea, fn

f coshp

fcoshw hyperbolic cosine (contd.)

f coshd

f coshb

fdbcc decrement & branch on condition fdbcc dn, label
f dbeq (equal)

f dbne (not equal)

fdbgt (greater than)

f dbngt (not greater than)

f dbge (greater or equal)

fdbnge (not greater or equal)

fdblt (less than)

fdbnlt (not less than)

f dble (less or equal)

fdbnle (not less or equal)

fdbgl (greater or less)

fdbngl (not greater or less)

f dbgle (greater, less or equal)

fdbngle (not greater, less or equal)

f dbogt (ordered greater than)

f dbule (unordered less or equal)

f dboge (unordered greater or equal)

fdbult (unordered less than)

fdbolt (ordered less than)

f dbuge (unordered greater or equal)

f dbole (ordered less or equal)

f dbugt (unordered greater than)

fdbogl (ordered greater or less)

f dbueq (unordered equal)

f dbor (ordered)

f dbun (unordered)

f dbf (false)

fdbt (true)

fdbsf (signalling false)

•\sun ~ microsystems
Revision A of27 March, 1990

f dbst

fdbseq

f dbsne

fdivl

fdivs

fdivp

fdivw

fdivd

fdivb

f etoxx

fetoxl

f etoxs

fetoxp

f etoxw

f etoxd

f etoxb

fetoxmlx

f etoxmll

fetoxmls

fetoxmlp

fetoxmlw

f etoxmld

f etoxmlb

f getexpx

fgetexpl

f getexps

f getexpp

fgetexpw

fgetexpd

fgetexpb

fgetrnanx

fgetmanl

fgetmans

f getmanp

fgetmanw

f getmand

fgetmanb

f intl

f intp

Table B-2 Continued

fdivx fm, fn

ea, fn

f etoxx f n

fetoxx fm, fn

fetoxy ea, fn

f n

fetoxmlx fm,fn

fetoxrnly ea, fn

fgetexpy ea,

fgetmanx ea, fn

fgetmanx fn

ea, fn

March,

57

Table B-2 MC68881 Instructions supported by as-Continued

Mnemonic Operation Name Syntax

fintd integer part

fintb

f intrx integer part, round toward 0 fintrx ea, fn

fintrzl fintrx fm, fn

f intrzs fintry ea, fn

f intrzp

fintrzw

fintrzd

fintrzb

fjcc jump on condition f jcc label

f jeq (equal)

f jne (not equal)

fjneq (not equal or equal)

f jgt (greater than)

fjngt (not greater than)

f jge (greater or equal)

f jnge (not greater or equal)

fjlt (less than)

fjnlt (not less than)

fjle (less or equal)

f jnle (not less or equal)

f jgl (greater or less)

f jngl (not greater or less)

fjgle (greater, less or equal)

f jngle (not greater, less or equal)

fjogt (ordered greater than)

fjule (unordered less or equal)

f joge (ordered greater or equal)

fjult (unordered less than)

fjolt (ordered less than)

f juge (unordered greater or equal)

f jole (ordered less or equal)

fjugt (unordered greater than)

fjogl (ordered greater or less)

fjueq (unordered equal)

fjor (ordered)

f jun (unordered)

fjf (false)

f jt (true)

fjsf (signalling false)

fjst (signalling true)

fjseq (signalling equal)

fjsne (signalling not equal)

floglOx log10 floglOx ea, fn

~\sun ~ microsystems
Revision A of 27 March, 1990

58

Table B-2 MC68881 lnstructions supported by as-Continued

Mnemonic Operation Name Syntax

floglOl floglOx fm, fn

floglOs floglOy fn

floglOp
floglOw

floglOd

floglOb

f log2x flog2x ea,fn

flog21 flog2x fm,fn

f log2s flog2y ea, fn

flog2p
flog2w

flog2d

flog2b

f lognx flognx ea,fn

flognl flognx fm,fn

f logns flogny ea, fn

f lognp

f lognw

f lognd

f lognb

f lognplx flognplx ea, fn

flognpll f lognplx fm, fn

f lognpls flognply ea, fn

flognplp

f lognplw

f lognpld

flognplb

f modx modulo fmodx ea, fn

f modl fmodx fm, fn

f mods fmody ea, fn

f modp

f modw

f modd

f modb

f movex movefp fmovex ea, fn

f movel fmovex fm, ea

f moves f movey ea, f n

fmovep

f movew

f moved

f moveb

f movecrx move constant ROM fmovecrx #ccc, f n

Revision A of 27 March, 1990

Mnemonic

f movemx

f moveml

f movem

f mulx

fmull

fmuls

f mulp

fmulw

fmuld

fmulb

f negx

fnegl

fnegs

fnegp

f negw

fnegd

fnegb

f nop

fremx

f reml

f rems
fremp
fremw
f remd

f remb

f restore

fsave

f scalex

f scalel

f scales

fscalep

f scalew

£scaled

f scaleb

fscc

f seq

Table B-2 MC68881 Instructions supported by as- Continued

Operation Name

move multiple data registers

multiply

multiply (conJd.)

negate

no operation

IEEE remainder

restore internal state

save internal state

scale exponent

set according to condition

(equal)

f sne (not equal)

f sneq (not equal or equal)

f s gt (greater than)
f sngt (not greater than)

f sge (greater or equal)

f snge (not greater or equal)

Syntax

fmovemy ea, list

fmovemx list, ea

fmoveml ea, dn

fmovem dn, ea

fmulx ea, fn

fmulx fm, fn

fmuly ea, fn

fnegx ea, fn

fnegx fm, fn

fnegy ea, fn

fnop

fremx ea, fn

fremx fm, fn

fremy ea, fn

£restore ea

fsave ea

fscalex ea, fn

fscalex fm, fn

f scaley ea, fn

fscc ea

S ll fl Revision A of 27 March, 1990
microsystems

fsnlt

f sle

f snle

f sgl

f sgle

fsngle

f sogt

f sule

f soge

fsolt

fsogl

fsueq

f sor

fsun

f sf

fst

fssf

fsst

f sseq

fssne

fsgldivx

fsgldivs

fsgldivl

fsgldivp

fsgldivw

f sglmulx

fsglmuls

f sglmull

f sglmulp

f sglmulw

f sglmulb

fsinx

f sinl

f sins

f sinw

f sind

Table B-2 as-Continued

fsgldivx ea, fn

fsgldi vx fm, fn

fsgldivy ea, fn

f sglmulx ea, fn

fsglmulx fm,fn

fsglmuly ea, fn

ea, fn

fm,fn

ea, fn

of 27 March, 1990

Table B-2 MC68881 Instructions supported by as- Continued

Mnemonic Operation Name Syntax

f sinb sin

fsincosx simultaneous sine and cosine fsincosx ea,fc:fs

f sincosl fsincosx fm,fc:fs

f sincoss fsincosy ea, fc: fs

f sincosp

f sincosw simultaneous sine and cosine (contd.)

fsincosd

f sincosb

fsinhx hyperbolic sine f sinhx ea, fn

f sinhs fsinhx fm, fn

f sinhp f sinhy ea, fn

fsinhw

f sinhd

f sinhb

fsqrtx square root f sqrtx ea, fn

f sqrtl f sqrtx fm, fn

fsqrts fsqrty ea, fn

f sqrtp

fsqrtw

f sqrtd

f sqrtb

fsubx subtract fsubx ea, fn

f subl fsubx fm, fn

fsubs fsuby ea, fn

f subp

f subw

f subd

f subb

ftanx tangent ftanx ea, fn

ftanl ftanx fm, fn
ft ans ftany ea, fn

ftanp

ftanw

ft and

ftanb

ftanhx hyperbolic tangent ftanhx ea, fn

ftanhl ftanhx fm, fn

ftanhs f tanhy ea, fn

f tanhp

ftanhw
f tanhd

ftanhb

sun Revision A of 27 March, 1990
microsysterns

62

Mnemonic

ftentoxx

ftentoxl

ftentoxs

ftentoxp

ftentoxw

ftentoxd

ftentoxb

ftrapcc

ftrapeq

ftrapeqw

ftrapeql

ftrapne

ftrapnew

ftrapnel

ftrapgt

ftrapgtw

ftrapgtl

ftrapngt

ftrapngtw

ftrapngtl

ftrapge

ftrapgew

ftrapgel

ftrapnge

ftrapngew

ftrapngel

ftraplt

ftrapltl

ftrapnlt

ftrapnltw

ftrapnltl

ftraple

ftraplew

ftraplel

ftrapnle

ftrapnlew

ftrapnlel

ftrapgl

ftrapglw

ftrapgll

ftrapngl

ftrapnglw

ftrapngll

ftrapgle

B-2 Instructions supported

greater

or

greater or

less

than or

less than

than or

than or

Syntax

ftentoxx ea, fn

ftentoxx fm, fn

ftentoxy ea, f n

ftrapcc

ftrapcc #data

Revision A of 27 March, 1990

Appendix B - List of as Opcodes 63

Table B-2 MC68881 Instructions supported by as- Continued

Mnemonic Operation Name Syntax

ftrapglew

ftrapglel

ftrapngle (not greater, less or equal)

ftrapnglew

ftrapnglel

ftrapogt (ordered greater than)

ftrapogtw

ftrapogtl

ftrapule (unordered less or equal)

ftrapulew

ftrapulel

ftrapoge (ordered greater or equal)

ftrapogew

ftrapogel

ftrapult (unordered less than)

ftrapultw

ftrapultl

ftrapolt (ordered less than)

ftrapoltw

ftrapoltl

ftrapuge (unordered greater or equal)

ftrapugew

ftrapugel

ftrapole (ordered less or equal)

ftrapolew

ftrapolel

ftrapugt (unordered greater than)

ftrapugtw

ftrapugtl

ftrapogl (ordered greater or less)

ftrapoglw

ftrapogll

ftrapueq (unordered equal)

ftrapueqw

ftrapueql

ftrapor (ordered)
f ftraporw

ftraporl

tr a pun (unordered)

ftrapunw

ftrapunl

ftrapf (false)

ftrapfw

ftrapfl

ft rapt (true)

~\sun ~ microsystems
Revision A of27 March, 1990

64

ftraptw

ftraptl

ftrapsf

ftraptw

ft raps fl

ftrapst

ftrapsfw

ftrapstl

ftrapseq

ftrapseqw

ftrapseql

ftrapsne

ftrapsnew

ftrapsnel

ftstx

ftstl

ftsts

ftstp

ftstw

ft std

ftstb

ftwotoxx

ftwotoxl

ftwotoxs ea, fn

ftwotoxp

ftwotoxw

ftwotoxd

ftwotoxb

C.1. Instruction Syntax

c
FP A Assembler Syntax

This appendix describes the Sun Floating-Point Accelerator (FP A) support exten­
sions to as included in Sun software release 3.1 and later.

The extensions to as are described in general, with discussions of two-, three-,
and four-operand instruction examples. Some instructions covered separately
don't follow the formats described at the beginning of the appendix. The appen­
dix includes restrictions and potential errors, followed by a summary of sup­
ported floating-point instructions.

The general format for floating-point instructions is

(fpopt@A operands

where

f p indicates an FP A instruction.

op is the opcode name.

t is the operand type, either single (s) or double (d).

]

The @A part of the instruction is optional. When present, A specifies the address
register which contains the base address for the FPA and can be in the range 0 .. 7.
If this form is used, a previous instruction must load the FP A address
(OxeOOOOOOO) into the specified address register.

If @A is not present, then absolute long addressing is used to refer to the FP A.
This form is more efficient for short routines.

Depending on the instruction, there may be from zero to four operands specified.
The operands can be any of the following forms:

o Any MC68020 effective address, with the exception that absolute short
addresses are not allowed for double-precision values.

o If either of the data register or the address register is used to hold a double­
precision value, then the value will be in a register pair and both registers,
separated by a colon, must be specified in the instruction. For example:

[~----fp--ad_d_d ____ d_o __ :d_i_, __ f_p_a_o __________________________________ _,]

65 Revision A of 27 March, 1990

is the

""''"'"'"',, to specify that the
where n is

Register ... ,

as

D S

D

.......... l"-'""·'"'• absolute square
flQiatlflg-})01Jl1t N"'ln'iJ'PrCll"'ln from single to double

If Xis an FP A which is in the constant then it can be in the range
0 to 511. If it is not in constant it is one of FP A data registers.
If Xis an FPA is one of the 32 data registers.

FP A registers the range 0

Instruction Computes

are reverse subtract and

Revision A of 27 March, 1990

C.5. Three-Operand
Instructions

The opcodes for sine, cosine, a tan, e x, e x-1, ln (x),
ln (l+x), sqrt (x), and sincos (x) are all supported as command­
register type instructions:

(fpopt fpax, fpan J

where t= s or d.

f pax is either a floating-point register or a register in the constant RAM (which
is specified as %number). For the sincos instruction, the destination operand
is actually a register pair:

(~f_p_s_i_·n_c_o_s_t ___ f_p_a_x_, __ f_p_a_c_:_f_p_a_s __________________________________ J

where fpac is the cosine's destination and fpas is the sine's destination.

The opcodes +, -, *, I are supported in extended and command-register forms as

(fpop3t X, fpam, fpan J

where t = s or d and X is an <effective address> for an extended instruction or
a floating-point register for a command-register type of instruction.

In the command-register form, X and fpam can indicate a register number in
the constant RAM. That is, they can either be in the range 0 to 511 or in the
range 0 to 31. In the extended instruction form, f pam and fpan must be in
the range 0 to 15. In the above format the positions of X and fpam can be
exchanged for the commutative operators add and multiply (the result of the
operation remains the same).

For example,

[_f_p_a_2 __ ~ ___ <_effi __ ec_t_iv_e_a_d_d_re_s_s> __ + __ £_p_a __ 1 ______________________________ _.J

can be represented by either of the following forms:

fpadd3s
fpadd3s

<effective address>, fpal, fpa2
fpa 1, <effective address>, fpa2

The same rule applies to subtract and divide operations. However, they are not
commutative, so different answers result from each order. For example,

(fpa2 f- fpal - <effective address> J

must be coded as:

fpsub3s <effective address>, f pa 1, f pa2

~\sun ~ microsystems
Revision A of 27 March, 1990

68

whereas

must be

andX

fpma{s,d}
fpma{s,d}
fpma{s,d}
f pmas

fpms{s,.d}
fpms{s,d}
fpms{s,d}
fpmss

reg4,
<eal>,

Instruction

' , <ea2>,

Meaning

regl r reg3 + (reg2 *operand)
regl r operand+ (reg3 * reg2)
regl r reg3 + (reg2 * reg4)
regl r operand.2 + (reg2 * operandl)

The fpma instruction, where m stands for multiply, and a stands for add, can
be generalized as

where tis s or d, and Xis an <effective address> or one of the floating-point
data registers. In the extended type of instruction, the positions of X and fpay
can be exchanged. Also, for single precision either the first and third operands or
the second and third operands can be effective addresses. Note that, for example,

is equivalent to the following sequence of instructions

where temp is a temporary register.

Instruction

reg2, ,
, <effective address>,

f

, <ea2>,

r reg3 - (reg2 * operand)
regl r operand - (reg3 * reg2)
regl r reg3 - (reg2 * reg4)
regl r operand.2 - (reg2 * operandl)

The instruction, where m stands for multiply, and s stands for subtract,
can be generalized as

where tis s or d, and Xis an <effective address> or one of the floating-point
data In the extended type of instruction, the positions of X and fpay
can be exchanged. Also, in single-precision two-memory instructions, either the

and third operands or the second and third operands can be effective
Note that, for example,

Revision A of 27 March, 1990

70

is sequence instructions

where t is s or and X is an
data In the extended
can

Instruction

and r stands for reverse

address> or one of the floating-point
...,., the of X and

In ne-Jle-tJre1c1s1ton extended form either the and third operands or the second
'""""'"' .. ,..,...,-f,, can Note

where t is s or and is an
data In the extended
can

and m stands for multiply, can

address> or one of the floating-point
the positions and

Revision A of 27 March, 1990

r

fpam{s,d}
fpam{s,d}
fpam{s,d}
f pams

fpsm{s,d}
fpsm{s,d}
fpsm{s,d}
fpsm{s,d}
fpsm{s,d}
f psms
f psms

Instruction

<effective address>, reg2, reg3, regl
reg2, reg3, <effective address>, regl
reg4, reg2, reg3, regl

Meaning

regl -E- reg3 * (reg2 +operand)
reg 1 -E- operand * (reg3 + reg2)
regl -E- reg3 * (reg2 + reg4)

<eal>, reg2, <ea2>, regl regl -E- operand2 * (reg2 +operand!)

In single-precision two-memory instructions, either the first and third operands or
the second and third operands can be effective addresses. Note that, for example,

(fpams fpal, fpa2, fpa3, fpa4 J

is equivalent to the following sequence of instructions:
r

fpadd3s
fpmul3s
f pmoves

fpal, fpa2, temp
temp, fpa3, temp
temp, fpa4

The fpsm instruction, where s stands for subtract, and m stands for multiply,
can be generalized as

(fpsmt X, fpax, fpay, fpan J

where tis s or d, and Xis an effective address or one of the floating-point data
registers. In the extended type of instruction, the positions of X and fpay can
be exchanged. The special cases for single-precision instructions are that either
the first and third operands or the second and third operands can be effective
addresses.

Instruction

<effective address>, reg2, reg3, regl
reg2, reg3, <effective address>, regl
reg4, reg2, reg3, regl
reg2, <effective address>, reg3, regl
reg2, reg4, reg3, regl
<eal>, reg2, <ea2>, regl
reg2, <ea]>, <ea2>, regl

Note that, for example,

Meaning

regl -E- reg3 * (reg2 - operand)
regl -E- operand* (reg3 - reg2)
regl -E- reg3 * (reg2 - reg4)
regl -E- reg3 * (-reg2 +operand)
regl -E- reg3 * (-reg2 + reg4)
reg 1 -E- operand2 * (reg2 - operand!)
regl -E- operand2 * (-reg2 +operand!)

(fpsms dO, fpal, fpa2, fpa3

is equivalent to the following sequence of instructions:

J

~\sun ~ microsystems
Revision A of 27 March, 1990

72

f pnop

fptstt

fpcmpt

fpmcmpt

fpmovet

fpmove2t

fpmove3t

fpmove4t

fpdot2t

fpdot3t

fpdot4t

fptran2t

fptran3t

fptran4t

f pmove

f pmove

f pmove

fpmove

fpmovet

fpmovet

x, fpam

fpam

fpam,

fpam,

fpam,

fpam, fpan

fpax,

fpax, fpay, fpan

fpax,

fpam,

fpastatus,

fpam,

In aouoie~·nr1ec..,JI."'''-''"'·
Of U.U'U..l~_,Cli::l J.vj:;;,J..::>LVJ.

In of them the last operand is
cmp and mcmp where is

address or an FP A data register
t can s,

with operand

2x2 matrix move

3x3 matrix move

4x4 matrix move

+

+

transpose 2x2 matrix

transpose 3x3 matrix

transpose 4x4 matrix

read mode

Revision A of 27 1990

Instruction Set
Summary

Table C-2

Instruction Operand
fpnegs x, fpan

fpnegd f pan

fpabss x, f pan

f pabsd x, f pan

fpltos x, fpan

fpltod x, f pan

fpstol x, f pan

fpdtol x, f pan

fpstod x, fpan

fpdtos x, f pan

f psqrs x, f pan

fpsqrd x, fpan

f padds x, fpan

fpadd3s x, f pam, f pan

f paddd X, f pan

f padd3d x, fpam, f pan

f psubs x, f pan

fpsub3s x, f pam, f pan

fprsubs <ea>, f pan

f psubd x, f pan

fpsub3d x, f pam, fpan

f prsubd <ea>, f pan

fpmuls x, f pan

fpmul3s x, f pam, f pan

f pmuld x, f pan

f pmul3d x, f pam, f pan

fpdivs X, fpan

fpdiv3s x, f pam, f pan

fprdivs <ea>, f pan

73

For most instructions where one operand is an effective address, the register
range is 0 to 15. If all operands are FPA registers, then the register range is 0 to
31. For constant RAM registers, the range is 0 to 511. as reports an invalid
operand error when any of these registers are not within the permitted range.

In the following table, Xis any valid MC68020 or MC68030 effective address
(the form (xxx) : w is not allowed for double) or FPA register. In some three- or
four-address instructions the position of the X and one of the FP A registers can
be exchanged. This is shown in the fourth column of the following table.

Floating-Point Instructions

Operation Alternative
negate single

negate double

absolute value single

absolute value double

convert integer to

convert integer to double

convert single to integer

convert double to integer

convert single to double

convert double to single

square single

square double

add single

add single f pam, x, f pan

add double

add double fpam, x, f pan

subtract single

subtract single f pam, x, f pan

reverse subtract single

subtract double

subtract double fpam, x, fpan

reverse subtract double

multiply single

multiply single fpam, x, f pan

multiply double

multiply double f pam, x, f pan

divide single

divide single f pam, x, f pan

reverse divide single

~\sun ~~ microsystems
Revision A of27 March, 1990

74

Instruction
fpdivd

fpdiv3d

f pnop

fptsts

fptstd

fpcmps

f pcmpd

fpmcmps

f pmcmpd

fps ins

fps ind

fpcoss

fpcosd

fpatans

f patand

f petoxs

fpetoxd

fpetoxmls

f petoxrnld

f plogns

f plognd

fplognpls

fplognpld

fpsincoss

fpsincosd

f pmas

f prnad

fpmss

fpmsd

f pmrs

f pmrd

Table

X, fpan

X, fpam, fpan

<ea>, fpan

x
x

X, fpam

X, fpam

X, fpam

X, fpam

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, fpan

fpax, f pac: fpas

fpax, fpac:fpas

fpax,

fpax,

fpax,

f pan

f pan

f pan

X, fpax, fpay, fpan

f pan

X, fpax,

Instructions- Continued

divide double

divide double

reverse divide double

nop

compare with 0

double compare with 0

compare

double compare

0 eration

magmltUdle compare

magmltucle compare

sine

sine double

cosine

cosine double

a tan
atan double

e"x

e"x double

e"x-1

e"x-1 double

~ sine (x)

~ sine (x)

fpan ~ (fpax * X} +

fpan ~ (fpax * X} +

f pan ~ - (fpax * x)

fpan ~ fpay - (fpax * x)

fpan ~ (fpax * x) - fpay

f pan

Alternative

fpam, X, fpan

fpax, X, fpay, fpan

fpay, fpax, X, fpan

X, fpax, X, fpan

fpax, X, X, fpan

fpax, fpay, fpan

fpay, fpax, X, fpan

fpax, X, fpay, fpan

fpay, fpax, X, fpan

X, fpax, X, fpan

fpax, X, X, fpan

fpax, X, fpay, fpan

fpay, fpax, X, fpan

fpax, X, fpay, fpan

fpay, fpax, X, fpan

X, fpax, X, fpan

fpax, X, X, fpan

fpax, X, fpay, fpan

fpay, fpax, X, fpan

Revision A of 27 March, 1990

Instruction

f pams

fpamd

f psms

f psmd

f pmoves

f pmoved

f pmovel

f pmoves

f pmoved

fpmove2s

f pmove2d

fpmove3s

fpmove3d

fpmove4s

fpmove4d

fpdot2s

fpdot2d

fpdot3s

f pdot3d

fpdot4s

fpdot4d

fptran2s

fptran2d

fptran3s

fptran3d

fptran4s

f ptran4d

Table C-2 Floating-Point Instructions- Continued

Operand Operation

X, fpax, fpay, fpan fpan ~ (fpax + x) * fpay

x, fpax, fpay, f pan fpan ~ (fpax + x) * fpay

x, fpax, fpay, f pan f pan ~ (fpax - x) * fpay

X, fpax, fpay, fpan fpan ~ (fpax - x) * fpay

<ea>, f pan write to a register, single

<ea>, f pan write to a register, double

<ea>, f pan write to a register, integer

fpam, <ea> read a register, single

fpam, <ea> read a register, double

fpam, f pan 2x2 matrix move, single

fpam, f pan 2x2 matrix move, double

f pam, f pan 3x3 matrix move, single

fpam, f pan 3x3 matrix move, double

fpam, fpan 4x4 matrix move, single

fpam, f pan 4x4 matrix move, double

fpax, fpay, f pan f pan ~ fpax*fpay + (fpax+l) * (fpay+l)
fpax, fpay, f pan f pan ~ fpax*fpay + (fpax+l) * (fpay+l)
fpax, fpay, f pan f pan ~ fpax*fpay + (fpax+l) * (fpay+l)

(fpax+2) * (fpay+2)
fpax, fpay, f pan fpan ~ fpax*fpay + (fpax+l) * (fpay+l)

(fpax+2) * {fpay+2)

fpax, fpay, f pan fpan ~ fpax*fpay + (fpax+l)*(fpay+l} +
(fpax+2)*(fpay+2) + (fpax+3)*(fpay+3)

fpax, fpay, f pan fpan ~ fpax*fpay + (fpax+l)*(fpay+l) +
(fpax+2) * (fpay+2) + (fpax+3)*(fpay+3)

fpam, f pan transpose 2x2 matrix, single

fpam, fpan transpose 2x2 matrix, double

fpam, f pan transpose 3x3 matrix, single

fpam, fpan transpose 3x3 matrix, double

fpam, f pan transpose 4x4 matrix, single

fpam, fpan transpose 4x4 matrix, double

~\sun ~ microsystems

+

+

75

Alternative

fpax, X, fpay, fpan

fpay, fpax, X, fpan

X, fpax, X, fpan

fpax, x, x, f pan

fpax, x, fpay, f pan
fpay, fpax, X, f pan

fpax, X, fpay, fpan

fpay, fpax, X, fpan

X, fpax, X, fpan

fpax, X, X, fpan

fpax, X, fpay, fpan

fpay, fpax, X, fpan

Revision A of 27 March, 1990

fpmove

f pmove

f pmove

The ~AA,,..,A&A,_A

Table

and"""'""""·-" no1at1m,e~-po111t r>T"\""lr•..1n

Instructions-- Continued

Instructions

coprocessor usage

fpam, fpan

aO@ fpam, fpan

set. The newer FP A+ is based on the TI 8847
and square root. The new cmnp.tex math instruc-

and

square root

hypoteneuse

complex

complex absolute value

complex

complex

complex

complex

Revision A of 27 1990

Index

absolute expressions, 12 thru 13
addressing categories, 33 thru 35

alterable, 33
control, 33
data, 33
memory, 33

addressing modes, 30 thru 33
. a 1 i gn directive, 27
. ascii directive, 22
. asciz directive, 23
assembler directives, 21thru28

. align, 27

. ascii, 22

. asciz, 23

.bss, 24

.byte, 23

. comm, 26

. data, 24

.even, 27

. globl, 26

. lcomm, 25

. long, 23

.proc, 28

. skip, 25

.text, 24

.word, 23
assembler options, 1 thru 2

-d2,2
-h,2
-j,2
-k, 1
-L,2
-m68010, 1
-m68020, 1
-m68020, 1
-o, 1
-R, l

assignment statements, 18 thru 19

B
basic elements, 5 thru 9
. bs s directive, 24
. byte directive, 23

-77-

c
character set, 5
code

self-modifying, 19 thru 20
. comm directive, 26
comment field, 18
constants, 7 thru 8

decimal, 7
floating-point, 8
hexadecimal, 7
numeric, 7
octal, 7
string, 8

-d2 option, 2
. data directive, 24
decimal constants, 7
direct assignment, 18 thru 19
directives, 21 thru 28

.align, 27

.ascii, 22

. asciz, 23

.bss, 24

.byte, 23

. comm, 26

.data, 24

.even, 27

. globl, 26

. lcomm, 25

. long, 23

.proc, 28

. skip, 25

.text, 24

.word, 23

E
Error Codes, 37
. even directive, 27
expressions, 11 thru 13

absolute, 12 thru 13
external, 12 thru 13
operators, 11
relocatable, 12 thru 13
terms, 12

external expressions, 12 thru 13

Index - Continued

F
no:anr1!!-1)011nr constants,
PP A Assembler 65 thru 72

-h 2
hexadecimal constants,

I

Instruction
Instructions,

L
-L 2
label field, 15 thru 16

6 thru 7
6

scope,
. lcomm directive, 25
lexical elements, 5 thru
lines, 15
local 6
location counter, 8
. long 23

-m68010
-m68020

notation, 2 thru 3
numeric constants, 7
numeric 6

-o
octal constants, 7

field, 17 thru 18

-k,
-d2, 2
-h,2

2
-L,2
-m68010,
-m6802

66
16 thru

p

thru 20

fpsr, 31

Index - ConJinued

u
Usage Errors, 37

w
. word directive, 23

-79-

