
6sun®
• microsystems

STREAMS Programming

Part Number: 800-3826-10
Revision A of 27 March, 1990

The Sun logo, Sun Microsystems, Sun Workstation, NFS, and TOPS are
registered trademarks of Sun Microsystems, Inc.

Sun, Sun-2, Sun-3, Sun-4, Sun386i, SPARCstation, SPARCserver, NeWS, NSE,
OpenWindows, SPARC, Sunlnstall, SunLink, SunNet, SunOS, SunPro, and Sun­
View are trademarks of Sun Microsystems, Inc.

UNIX is a registered trademark of AT&T; OPEN LOOK is a trademark of AT&T.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations, and
Sun Microsystems, Inc. disclaims any responsibility for specifying which marks
are owned by which companies or organizations.

VMEbus is a trademark of Motorola, Incorporated.

VAX is a trademark of Digital Equipment Corporation.

IBM-PC and IBM 370 are trademarks of International Business Machines Cor­
poration.

Cray is a trademark of Cray Research.

All other products or services mentioned in this document are identified by the
trademarks or service marks of their respective companies or organizations

The Network Information Service (NIS) was formerly known as Sun Yellow
Pages. The functionality of the two remains the same, only the name has
changed. The name Yellow Pages™ is a registered trademark in the United
Kingdom of British Telecommunications pie and may not be used without per­
mission.

Copyright© 1990 Sun Microsystems, Inc. -Printed in U.S.A.

All rights reserved. No part of this work covered by copyright hereon may be
reproduced in any form or by any means - graphic, electronic, or mechanical -
including photocopying, recording, taping, or storage in an information retrieval
system, without the prior written permission of the copyright owner.

Restricted rights legend: use, duplication, or disclosure by the U.S. government
is subject to restrictions set forth in subparagraph (c)(l)(ii) of the Rights in
Technical Data and Computer Software clause at DF ARS 52.227-7013 and in
similar clauses in the FAR and NASA FAR Supplement.

The Sun Graphical User Interface was developed by Sun Microsystems, Inc. for
its users and licensees. Sun acknowledges the pioneering efforts of Xerox in
researching and developing the concept of visual or graphical user interfaces for
the computer industry. Sun holds a non-exclusive license from Xerox to the
Xerox Graphical User Interface, which license also covers Sun's licensees.

This product is protected by one or more of the following U.S. patents: 4,777,485
4,688,190 4,527,232 4,745,407 4,679,014 4,435,792 4,719,569 4,550,368 in
addition to foreign patents and applications pending.

.: .. ·.::.·.: : :) i ... \ ... tt.x .s .. :;:frJ Li, ... :)r'Y'..,' 1 1.. .. : :i:)'-•. :K: .. ::k,:..:::i:,:,:· :.;;.:,;hwh .. t, . ../ .. :i::;,, '::·" ·' '.'::;,,.:i:,t ... ~ ·fr·.···:· .:. •. :·~·"fl·.·~.·.·;

Contents

Chapter 1 Introduction.. 1
1.1. Manual Overview .. 1

1.2. STREAMS Context.. 1

1.3. A Basic View of a stream ... 3

. System Calls .. 4

1.4. Benefits of STREAMS .. 5

Creating Setvice Interfaces 5

Manipulating Modules ... 6

Protocol Portability 6

Protocol Substitution .. 7

Protocol Migration ... 7

Module Reusability ... 7

1.5. An Advanced View of a stream ... 8

Stream Head ... 9

Modules.. 9

stream End .. 10

1.6. Building a stream 11

Expanded streams .. , ;.: , ,,, ..

Pushable Modules ... ,,:, .. , ;, ,., ,:,.,, ; , .. :

1.7. Basic User Level Functions ,.,,;,,,•.• .:;;,; ... ,,;;,,, ;.;;,;.:;;.,.:,«:

STREAMS System Calls .. ;;.,.;.;., , ,., ; ... :;,."'·········· .. ··.•'".:.>·

An Asynchronous Protocol stream Example ··:··,,. ,:, :.·

Initializing the stream .. ;;,;., :.;·.,,: ... ;;;;.,; 14

Message Types .. ;;;;,,,,.; 15

-111-

Contents - Continued

Sending and Receiving Messages.. 16

Using Messages in the Example ... 16

Other User Functions .. 19

1.8. Kernel Level Functions.. 19

Messages .. 19

Message Allocation 21

Put and Service Procedures ... 22

Put Procedures ... 22

Service Procedures ... 22

Kernel Processing ... 23

Read Side Processing .. 24

Driver Processing .. 24

CBARPROC ... 24

CANONPROC .. 25

Write Side Processing... 25

Analysis .. 26

1.9. Oilier Facilities .. 26

Message Queue Priority .. 26

Flow Control .. 27

Multiplexing .. 29

Monitoring .. 31

Error and Trace Logging .. 32

1.10. Driver Design Comparisons ... 33

Environment .. 34

Drivers... 34

Modules.. 34

1.11. Glossary .. 35

Chapter 2 STREAMS Applications Programming ... 37

2 .1. Introduction 37

STREAMS Overview ... 37

Development Facilities .. 39

2.2. Basic Operations .. 40

-iv-

Contents- Continued

A Simple Stream... 40

Inserting Modules ... 42

Module an.d Driver Control ... 43

2.3. Advanced Operations .. 46

Advanced Input/Output Facilities ... 46

Input/Output Polling 46

Asynchronous Input/Output .. 49

Clone Open ... 50

2.4. Multiplexed Streams.. 50

Multiplexor Configurations ... 50

Building a Multiplexor .. 52

Disman.tling a Multiplexor .. 57

Routing Data Through a Multiplexor .. 58

2.5. Message Han.dling ... 59

Service Interface Messages ... 59

Service Interfaces .. 59

The Message Interface ... 60

Datagram Service Interface Example .. 62

Accessing the Datagram Provider .. 64

Closing the Service .. 67

Sending a Datagram ... 67

Receiving a Datagram .. 68

Chapter 3 STREAMS Module and Driver Programming 71

3.1. Introduction... 71

Development Facilities .. 72

3.2. S1REAMS Meehan.ism .. 72

Stream Construction 73

Opening a Stream ... 75

Adding and Removing Modules .. 76

Closing.. 76

3.3. Modules ... 77

Module Declarations ... 77

-v-

Contents - Continued

Module Procedures .. 79

Module and Driver Environment ... 80

3.4. Messages ... 81

Message Fonnat ... 81

Message Generation and Reception .. 83

Filter Module Declarations ... 83

bappend () Subroutine .. 84

Message Allocation ... 85

Put Procedure .. 86

3.5. Message Queues and Service Procedures.. 87

The queue_ t Structure ... 87

Service Procedures ... 88

Message Queues and Message Priority ,................................... 89

Flow Control .. 89

Example .. 90

Procedures ... 91

3.6. Drivers ... 94

Overview of Drivers .. 94

Driver Flow Control .. 95

Driver Progra.Illming ... 96

Driver Declarations .. 96

Driver Open .. 98

Driver Processing Procedures .. 99

Driver Flush Handling .. 100

Driver Interrupt ... 100

Driver and Module Ioctls ... 101

Driver Close... 103

3. 7. Example Driver ... 104

Cloning ... 104

Loop-Around Driver ... 104

Write Put Procedure... 107

Service Procedures ... 110

Close ... 111

-vi-

Contents- Continued

3.8. Multiplexing ... 111

Multiplexing Configurations .. 112

Connecting Lower Streams ... 113

Disconnecting Lower Streams ... 114

Multiplexor Construction Example .. 115

Multiplexing Driver ... 117

Upper Write Put Procedure.. 120

Lower QUEUE Write Service Procedure .. 123

Lower Read Put Procedure .. 125

3.9. Service Interface... 127

Definition ... 127

Message Usage ... 127

Example.. 128

Declarations .. 128

Service Interface Procedure 130

3.10. Advanced Topics... 132

Recovering From No Buffers... 132

Advanced Flow Control .. 135

Signals ... 135

Control of Stream Head Processing ... 136

Read Options .. 136

Write Offset .. 137

Chapter 4 Sun0S STREAMS Topics .. 139

4.1. Configuring STREAMS Drivers ... 139

Module Configuration .. 140

Tunable Parameters ... 141

System Error Messages ... 141

4.2. STREAMS in SunOS .. 142

STREAM Modules .. 142

SunOS STREAMS Extension.. 143

STREAMS Portability.. 143

User Line Disciplines 144

-vii-

Contents - Continued

Appendix A Supplementary STREAMS Material .. 147

A.1. Kernel Structures .. 14 7

streamtab ... 147

QUEUE Structures ... 14 7

A.2. Message Structures .. 149

iocblk ... 149

linkblk .. 150

A.3. Message Types ... 150

Ordinary Messages ... 150

High Priority Messages ... 156

A.4. Utilities ... 158

Buffer Allocation Priority.. 159

adjmsg () -Trim Bytes in a Message ... 159

allocb () - Allocate a Message Block ... 160

backq () - Get Pointer to Queue Behind a Given Queue 160

bufcall () - Recover from Failure of allocb () 160

canput () - Test for Room in a Queue ... 160

copyb () - Copy a Message Block ... 161

copymsg () - Copy a Message ... 161

datamsg () - Test Whether Message is a Data Message 161

dupb () -Duplicate a Message Block Descriptor.............................. 161

dupmsg () - Duplicate a Message ... 162

enableok () - Re-allow Queue to be Scheduled 162

esballoc () - Extended STREAMS Buffer Allocation 162

esbbcall () - bufcall for extended buffers ... 162

f 1 ushq () - Flush a Queue ... 163

f reeb () - Free a Message Block ... 163

freemsg () -Free All Message Blocks in a Message.................... 163

getq () - Get a Message from a Queue ... 163

insq () - Put a Message at a Specific Place in a Queue 164

linkb () - Concatenate Two Messages into One 164

msgdsize() -GetNumberofDataBytesinaMessage 164

noenable () - Prevent a Queue from Being Scheduled 164

- viii-

Contents - Continued

OTHERQ () - Get Pointer to the Mate Queue ... 164

pu11upmsg () - Concatenate Bytes in a Message........................... 165

putbq () - Return a Message to the Beginning of a Queue 165

putct1 () - Put a Control Message .. 165

putct11 () -Put One-byte Parameter Control Message 165

putnext () -Put a Message to the Next Queue................................ 166

putq () - Put a Message on a Queue ... 166

qenab1e () - Enable a Queue .. 166

qrep1y () -Send Reverse-Direction Message................................... 167

qsize () - Find the Number of Messages on a Queue 167

RD () - Get Pointer to the Read Queue .. 167

nnvb () - Remove a Message Block from a Message 167

nnvq () - Remove a Message from a Queue ... 167

splstr () - Set Processor Level ... 168

testb () - Check for an Available Buffer... 168

unbufca11 () -Cancel an outstanding bufcall request......... 168

unlinkb () - Remove Message Block from Message Head 168

WR() - Get Pointer to the Write Queue... 168

A.5. Design Guidelines .. 169

General Rules .. 169

System Calls .. 170

Data Structures 170

Header Files ... 170

Accessible Symbols and Functions .. 171

Rules for Put and Service Procedures ... 172

A.6. S1REAMS Glossary ... 173

Index... 177

-ix-

Figures

Figure 1-1 Basic stream .. 3

Figure 1-2 STREAMS-Related Manual Pages... 5

Figure 1-3 Protocol Module Portability ... 6

Figure 1-4 Protocol Migration .. 7

Figure 1-5 Module Reusability ... 8

Figure 1-6 stream In More Detail .. 9

Figure 1-7 Setting Up a stream ... 11

Figure 1-8 Idle stream Configuration for Example ... 15

Figure 1-9 Asynchronous Terminal streams ... 18

Figure 1-10 A Message ... 20

Figure 1-11 Messages on a Message Queue .. 21

Figure 1-12 Operational stream for Example ... 23

Figure 1-13 Module Put and Service Procedures ... 24

Figure 1-14 STREAMS Message Priority .. 27

Figure 1-15 Flow Control .. 28

Figure 1-16 Internet Multiplexing stream .. 29

Figure 1-17 X.25 Multiplexing stream .. ,.,,,,,,,., ... ,

Figure 1-18 Error and Trace Logging .. : ... , .. , ,,,,.;;.,.;;,:;·,,,

Figure 2-1 Basic Stream .. .,;; ",·"···, ;."'''""··· .. "'"i·····';,

Figure 2-2 Stream to Communications Driver , .. · ..•.... , ... ,,.;, ;a. ,, , •. ;,,, ::,::,,·.

Figure 2-3 Case Converter Module .. , ,.,, ... , .. , ,., ,, ,,·.

Figure 2-4 Many-to-one Multiplexor ... ,.; ... ;;:.;,;;; ,; .. .

Figure 2-5 One-to-many Multiplexor··'""'··'"';

-xi-

Figures - Continued

Figure 2-6 Many-to-many Multiplexor .. 51

Figure 2-7 Protocol Multiplexor .. 52

Figure 2-8 Before Link .. 53

Figure 2-9 IP Multiplexor After First Link .. 54

Figure 2-10 IP Multiplexor ... 55

Figure 2-11 TP Multiplexor .. 56

Figure 2-12 Protocol Substitution ... 59

Figure 2-13 Service Interface .. 60

Figure 3-1 Downstream Stream Construction .. 73

Figure 3-2 QUEUE data structures .. 74

Figure 3-3 Message Form and Linkage ... 82

Figure 3-4 Message Queue Priority ... 89

Figure 3-5 Device Driver Streams .. 95

Figure 3-6 Loop Around Streams .. 105

Figure 3-7 Internet Multiplexor Before Connecting... 115

Figure 3-8 Internet Multiplexor After Connecting .. 116

Figure 3-9 Example Multiplexor Configuration ... 120

Figure A-1 M_PROTO and M_PCPROTO Message Structure.............................. 151

-xii-

1.1. Manual Overview

1.2. STREAMS Context

1
Introduction

This manual is a guide to adding drivers for serial communication devices to the
Sun0S kernel. It is divided into two sections.

o STREAMS Programming, discusses topics relevant to the construction and
installation of STREAMS drivers and modules.

o STREAMS Supplementary Material, summarizes the kernel structures com­
monly found in STREAMS development.

Chapter 1 is an introduction to the STREAMS mechanism.

Chapter 2 describes the development of user-level STREAMS applications.

Chapter 3 discusses, in detail, the development of STREAMS drivers and
modules.

Chapter 4 discusses those aspects of the STREAMS mechanism that are unique to
SunOS. It covers the few STREAMS-specific configuration topics.

Appendix A contains supplementary STREAMS material, including kernel and
message structures, message types, and utilities.

STREAMS was designed to systematize the existing UNIX character 1/0 mechan­
ism and to support the development of communications services.

STREAMS consist of a set of system calls, kernel resources and kernel routines.
For detailed information about the STREAMS-kernel interface, about the internal
structure of STREAMS modules and about STREAMS driver programming, see
the following sections.

The UNIX system was originally designed as a general-purpose, multi-user,
interactive operating system for minicomputers. Initially developed in the
1970's, the system's communications environment included slow to medium
speed, asynchronous terminal devices. The original design, the communications
environment, and hardware state of the art influenced the character 1/0 mechan­
ism but the character 1/0 area did not require the same emphasis on modularity
and performance as other areas of the system.

Revision A, of 27 March 1990

2 STREAMS Programming

Support for a broader range of devices, speeds, modes, and protocols has since
been incorporated into the system, but the original character 1/0 mechanism,
which processes one character at a time, made such development difficult. Addi­
tionally, a paucity of tools and the absence of a framework for incorporating con­
temporary networking protocols added to the difficulty.

Attempts to compensate for the above problems have led to diverse, ad-hoc
implementations; for example, protocol drivers are often intertwined with the
hardware configuration in which they were developed. As a result, functionally
equivalent protocol software often cannot interface with alternate implementa­
tions of adjacent protocol layers. Portability, adaptability, and reuse of software
have been hindered.

STREAMS, a general, flexible facility and a set of tools for development of UNIX
system communication services, is intended to remedy these problems.
STREAMS supports services ranging from complete networking protocol suites to
individual device drivers.

STREAMS defines standard interfaces for character 1/0 within the kernel, and
between the kernel and the rest of the system. The associated mechanism is sim­
ple and open-ended. It consists of a set of system calls, kernel resources, and
kernel utility routines. The standard interface and open-ended mechanism enable
modular, portable development and easy integration of higher performance net­
work services and their components. STREAMS does not impose any specific
network architecture. Instead, it provides a powerful framework with a con­
sistent user interface that is compatible with the existing character 1/0
interface-which is still available.

STREAMS modularity and design reflect the "layers and options" characteristics
of contemporary networking architectures. The basic components in a STREAMS
implementation are referred to as modules. These modules, which reside in the
kernel, offer a set of processing functions and associated service interfaces.
From user level, modules can be dynamically selected and interconnected to pro­
vide any rational processing sequence. Kernel programming, assembly, and link
editing are not required to create the interconnection. Modules can also be
dynamically "plugged into" existing connections from user level. STREAMS
modularity allows:

o User level programs that are independent of underlying protocols and physi­
cal communication media.

o Network architectures and higher level protocols that are independent of
underlying protocols, drivers, and physical communication media.

o Higher level services that can be created by selecting and connecting lower
level services and protocols.

o Enhanced portability of protocol modules resulting from STREAMS' well-
defined structure and interface standards.

In addition to modularity, STREAMS provides developers with integral functions,
a library of utility routines, and facilities that expedite software design and
implementation. The principal facilities are:

Revision A, of 27 March 1990

1.3. A Basic View of a
stream

Figure 1-1

Chapter 1 - Introduction 3

o Buffer management - To maintain STREAMS' own, independent buffer
pool.

o Flow control - To conserve STREAMS' memory and processing resources.

o Scheduling - To incorporate STREAMS' own scheduling mechanism.

o Multiplexing- For processing interleaved data streams, such as occur in
SNA, X.25, and windows.

o Asynchronous operation of STREAMS and user processes - Allows
STREAMS-related operations to be performed efficiently from user level.

o Error and trace loggers - For debugging and administrative functions.

"STREAMS" is a collection of system calls, kernel resources, and kernel utility
routines that can create, use, and dismantle a "stream". A stream is a full-duplex
processing and data transfer path between a driver in kernel space and a process
in user space (see Figure 1-1).

Basic stream

Stream
Head

Module

Driver

User
Process

External
Interface

__ User Space __ _

Kernel Space

! downstream

(optional)

t upstream

A stream has three parts: A stream head, module(s) (optional), and a driver (also
referred to as the stream end). The stream head provides the interface between
the stream and user processes. Its principal function is to process STREAMS­
related user system calls. A module processes data that travel between the
stream head and driver. A STREAMS driver may be a device driver, providing
the services of an external 1/0 device, or an internal software driver, commonly
called a pseudo-device driver.

Revision A, of 27 March 1990

4 STREAMS Programming

System Calls

Using a combination of system calls, kernel routines, and kernel utilities,
STREAMS passes data between a driver and the stream head in the form of mes­
sages. Messages that are passed from the stream head toward the driver are said
to travel downstream, and messages passed in the other direction travel upstream.

The stream head transfers data between the data space of a user process and
STREAMS kernel data space. Data sent to a driver from a user process are pack­
aged into STREAMS messages and passed downstream. Messages arriving at the
stream head from downstream are processed by the stream head, and data are
copied into user buffers. STREAMS can insert one or more modules into a stream
between the stream head and driver to perform intermediate processing of data
passing between the stream head and driver.

Applications programmers can use the STREAMS facilities via a set of system
calls. This system call interface is upward compatible with the existing character
1/0 facilities. The open (2) system call will recognize a STREAMS file and
create a stream to the specified driver. A user process can send and receive data
using read (2) and write (2) in the same manner as with character files and
devices. The ioctl (2) system call enables application programs to perform
functions specific to a particular device. In addition, a set of generic STREAMS
ioctl () commands (see streamio(4)) supports a variety of functions for
accessing and controlling streams. A close (2) will dismantle a stream.

open (), close (), read (),write (), and ioctl () support the basic set
of operations on streams. In addition, new system calls support advanced
STREAMS facilities. The poll (2) system call enables an application program
to poll multiple streams for various events. When used with the STREAMS
I_ SETS IG ioctl () command, poll () allows an application to process 1/0
in an asynchronous manner. The putmsg (2) and getmsg (2) system calls
enable application programs to interact with STREAMS modules and drivers
through a service interface (described next).

These calls are discussed in this section and, in more detail, the sections that fol­
low. They are precisely specified in the following manual pages:

Revision A, of 27 March 1990

Figure 1-2

1.4. Benefits of STREAMS

Creating Service Interfaces

Chapter 1 - Introduction 5

STREAMS-Related Manual Pages

Man Page
open.2

close.2
read.2

write.2
putmsg.2
getmsg.2

poll.2
clone.4

streamio.4
termio.4

ttcompat. 4m
ldterm. 4m

kbd. 4s
kb.4m

mouse.4s
ms.4m
pty.4

console.4s
mti. 4s

zs.4s
nit.4p

nit if.4m
nit__pf. 4m

nit buf. 4m

Description
Open a stream
Close a stream
Read from a stream
Write to a stream
Send a message on a stream
Get next message off a stream
STREAMS input/output multiplexing
Open any minor device on a STREAMS driver
STREAMS ioctl commands
General terminal interface
V7 /4BSD compatibility STREAMS module
Standard terminal STREAMS module
Sun keyboard device
Sun keyboard STREAMS module
Sun mouse device
Sun mouse STREAMS module
Pseudo terminal driver
Sun console driver and terminal emulator
Systech MTI-800/1600 multi-terminal interface
Zilog 8530 SCC serial communications drive
Network Interface Tap (NIT) Protocol
STREAMS NIT device interface
STREAMS NIT packet filtering module
STREAMS NIT buffering module

STREAMS offers two major benefits for applications programmers: easy creation
of modules that offer standard data communications services, and the ability to
manipulate those modules on a stream.

One benefit of STREAMS is that it simplifies the creation of modules that present
a service interface to any neighboring application program, module, or device
driver. A service interface is defined at the boundary between two neighbors. In
STREAMS, a service interface is a specified set of messages and the rules for
allowable sequences of these messages across the boundary. A module that
implements a service interface will receive a message from a neighbor and
respond with an appropriate action (for example, send back a request to
retransmit) based on the specific message received and the preceding sequence of
messages.

STREAMS provides features that make it easier to design various application
processes and modules to common service interfaces. If these modules are writ­
ten to comply with industry-standard service interfaces, they are called protocol
modules.

Revision A, of 27 March 1990

6 STREAMS Programming

Manipulating Modules

Protocol Portability

Figure 1-3

In general, any two modules can be connected anywhere in a stream. However,
rational sequences are generally constructed by connecting modules with compa­
tible protocol service interfaces. For example, a module that implements an X.25
protocol layer, as shown in Figure 1-3, presents a protocol service interface at its
input and output sides. In this case, other modules should only be connected to
the input and output side if they have the compatible X.25 service interface.

STREAMS provides the capabilities to manipulate modules from user level, to
interchange modules with common service interfaces, and to present a service
interface to a stream user process. As mentioned above, these capabilities yield
benefits when implementing networking services and protocols, including:

o User level programs can be independent of underlying protocols and physi­
cal communication media.

o Network architectures and higher level protocols can be independent of
underlying protocols, drivers and physical communication media.

o Higher level services can be created by selecting and connecting lower level
services and protocols. Below are examples of the benefits of STREAMS
capabilities to developers for creating service interfaces and manipulating
modules.

Figure 1-3 shows how the same X.25 protocol module can be used with different
drivers on different machines by implementing compatible service interfaces.
The X.25 protocol module interfaces are Connection Oriented Network Service
(CONS) and Link Access Protocol - Balanced (LAPB) driver.

Protocol Module Portability

MACHINEA

------ ------

X.25
Protocol Layer

Module
j \

------ ------
,~

I
LAPB

1

Driver
Machine A

\ j

CONS
INTERFACE

SAME

MODULE

LAPB
INTERFACE

DIFFERENT
ORNER

MACHINEB

------ ------

X.25
Protocol Layer

Module

'~
------ ------

1~

I
LAPB '
Driver

Machine B
\ '

Revision A, of 27 March 1990

Protocol Substitution

Protocol Migration

Chapter 1 - Introduction 7

Alternative protocol modules (and device drivers) can be interchanged on the
same machine if they are implemented to an equivalent service interface(s).

Figure 14 illustrates how STREAMS can migrate functions between kernel
software and front end firmware. A common downstream service interface
allows the transport protocol module to be independent of the number or type of
modules below. The same transport module will connect without modification to
either an X.25 module or X.25 driver that has the same service interface.

By shifting functions between software and firmware, developers can produce
cost effective, functionally equivalent systems over a wide range of
configurations. They can rapidly incorporate technological advances. The same
transport protocol module can be used on a lower capacity machine, where
economics may preclude the use of front-end hardware, and also on a larger scale
system where a front-end is economically justified.

Figure 1-4 Protocol Migration

Module Reusability

Class 1
Transport
Protocol

------- -------,,
X.25

Packet Layer
Protocol

j ~

,,
I ' LAPB

- Driver ..
\ '

SAME
MODULES

CONS
Interface

KERNEL

HARDWARE

I

\

Class 1
Transport
Protocol

,~
X.25

Packet Layer
Driver

'
I- - - -

J

Figure 1-5 shows the same canonical module (for example, one that provides
delete and kill processing on character strings) reused in two different streams.
This module would typically be implemented as a filter, with no downstream ser­
vice interface. In both cases, a TTY interface is presented to the stream's user
process since the module is nearest the stream head.

Revision A, of 27 March 1990

8 STREAMS Programming

Figure 1-5

1.5. An Advanced View of
a stream

Module Reus ability

User
Process

- - - - - - - - - -
"
w

Canonical
Module

j~

1~

Class 1
Transport
Protocol

,,

,,
X.25

Packet Layer
Protocol

j~

1~

I

LAPB
Driver

\

1

SAME
INTERFACE

SAME
MODULE

User
Process

- - - - - ,------
' ~
w

Canonical
Module

j~

·~
I Raw 1

TTY

\
Driver

j

I

The STREAMS mechanism constructs a stream by serially connecting kernel
resident STREAMS components, each constructed from a specific set of struc­
tures. As described earlier and shown in Figure 1-6, the primary STREAMS com­
ponents are the stream head, optional module(s), and stream end.

Revision A, of 27 March 1990

Figure 1-6

Stream Head

Modules

Chapter 1 - Introduction 9

stream In More Detail

_____________ ~ ___ User Space ___ _

Module

B

Module

A

Strdam

Head
Kernel Space

...................................
: "Bd" "Bu" : . .

:···~~-----,
................................... . .
: QUEUE QUEUE : . .
: "Ad" "Au" : . .

Message

"Bu"

----~--.:=.· .. •:•
Message

"Ad"

Module

External

Interface

stream

End

The stream head provides the interface between the stream and an application
program. The stream head processes STREAMS-related system calls from the
application and performs the bidirectional transfer of data and information
between the application (in user space) and messages (in STREAMS' kernel
space).

Messages are the only means of transferring data and communicating within a
stream. A STREAMS message contains data, status/control information, or a
combination of the two. Each message includes a specified message type indica­
tor that identifies the contents.

A module performs intermediate transformations on messages passing between
stream head and driver. There may be zero or more modules in a stream (zero
when the driver performs all the required character and device processing).

Each module is constructed from a pair of QUEUE structures (see Au/ Ad and
Bu/Bd in Figure 1-6). A pair is required to implement the bidirectional and sym­
metrical attributes of a stream. One QUEUE performs functions on messages
passing upstream through the module (Au and Bu in Figure 1-6). The other set
(Ad and Bd) performs another set of functions on downstream messages. (A

Revision A, of 27 March 1990

10 STREAMS Programming

stream End

QUEUE, which is part of a module, is different from a message queue, which is
described later.)

Each of the two QUEUEs in a module will generally have distinct functions, that
is, unrelated processing procedures and data. The QUEUEs operate indepen­
dently so that Au will not know if a message passes through Ad unless Ad is pro­
grammed to inform it. Messages and data can be shared only if the developer
specifically programs the module functions to perform the sharing.

Each QUEUE can directly access the adjacent QUEUE in the direction of message
flow (for example, Au to Bu or stream head to Bd). In addition, within a module,
a QUEUE can readily locate its mate and access its messages (for example, for
echoing) and data.

Each QUEUE in a module may contain or point to messages, processing pro­
cedures, or data:

o Messages - These are dynamically attached to the QUEUE on a linked list
("message queue", see Au and Bd in Figure 1-6) as they pass through the
module.

o Processing procedures - A put procedure, to process messages, must be
incorporated in each QUEUE. An optional service procedure, to share the
message processing with the put procedure, can also be incorporated.
According to their function, the procedures can send messages upstream
and/or downstream, and they can also modify the private data in their
module.

o Data - Developers may provide private data if required by the QUEUE to
perform message processing (for example, state information and translation
tables).

In general, each of the two QUEUEs in a module has a distinct set of all of these
elements. Additional module elements will be described later. Although dep­
icted as distinct from modules (see Figure 1-6), a stream head and the stream end
also contain a pair of QUEUEs.

A stream end is a module in which the module's processing procedures are the
driver routines. The procedures in the stream end are different from those in
other modules because they are accessible from an external cievice and because
the STREAMS mechanism allows multiple streams to be connected to the same
driver.

The driver can be a device driver, providing an interface between kernel space
and an external communications device, or an internal pseudo-device driver. A
pseudo-device driver is not directly related to any external device, and it per­
forms functions internal to the kernel. The multiplexing driver discussed in the
Other Facilities section is a pseudo-device driver.

Device drivers must transform all data and status/control information between
STREAMS message formats and their external representation. Differences
between STREAMS and character device drivers are discussed in the Driver
Design Comparisons section.

Revision A, of 27 March 1990

1.6. Building a stream

Figure 1-7

Expanded streams

Chapter 1 - Introduction 11

A stream is created on the first open (2) system call to a character special file
corresponding to a STREAMS driver. A STREAMS device is distinguished from
other character devices by a field contained in the associated cdevsw device
table entry.

A stream is usually built in two steps. Step one creates a minimal stream consist­
ing of just the stream head and device driver, and step two adds modules to pro­
duce an expanded stream (see Figure 1-7). The first step has three parts: head
and driver structures are allocated and initialized; the modules in the head and
end are linked to each other to form a stream; the driver open routine is called.

Setting Up a stream

Minimal
STREAM

STR~AM ..

HEAD
j~

,v

I QUEUp pair I
raw TTY

device driver

Expanded
STREAM

STREAM
HEAD

CANO~ROC
module

QUEUp pair

raw TTY
device driver

If the driver performs all character and device processing required, no modules
need be added to a stream. Examples of STREAMS drivers include a raw tty
driver (one that passes along input characters without change) and a driver with
multiple streams open to it (corresponding to multiple minor devices opened to a
character device driver).

When the driver receives characters from the device, it places them into mes­
sages. The messages are then transferred to the next stream component, the
stream head, which extracts the contents of the message and copies them to user
space. Similar processing occurs for downstream character output; the stream
head copies data from user space into messages and sends them to the driver.

As the second step in building a stream, modules can be added to the stream. In
the right-hand stream in Figure 1-7, the CANONPROC module was added to
provide additional processing on the characters sent between head and driver.

Modules are added and removed from a stream in last-in-first-out (LIFO) order.
They are inserted and deleted at the stream head via the ioctl (2) system call.
In the stream on the left of Figure 1-5, the X.25 module was the first added to the
stream, followed by Class 1 Transport and Canonical modules. To replace the
Class 1 module with a Class O module, the Canonical module would have to be

Revision A, of 27 March 1990

12 STREAMS Programming

Subsequent use of the word
"module" will ref er to those push­
able modules between stream head
and end.

Pushable Modules

removed first, then the Class 1 module, then a Class O module would be added
and the Canonical module put back.

Because adding and removing modules resembles stack operations, the add is
called a push and the remove a pop. Push and pop are two of the ioctl ()
functions included in the STREAMS subset of ioctl () system calls. These
commands perform various manipulations and operations on streams. The
modules manipulated in this manner are called pushable modules, in contrast to
the modules contained in the stream head and end. This stack terminology
applies only to the setup, modification, and breakdown of a stream.

The stream head processes the ioctl () and executes the push, which is analo­
gous to opening the stream driver. Modules are referenced by a unique symbolic
name, contained in the STREAMS fmodsw module table (similar to the cdevsw
table associated with a device file). The module table and module name are
internal to STREAMS and are accessible from user space only through STREAMS
ioctl () system calls. The fmodsw table.points to the module template in the
kernel. When a module is pushed, the template is located, the module structures
for both QUEUES are allocated, and the template values are copied into the struc­
tures.

In addition to the module elements described in A Basic View of a stream, each
module contains pointers to an open routine and a close routine. The open is
called when the module is pushed, and the close is called when the module is
popped. Module open and close procedures are similar to a driver open and
close.

As in other files, a STREAMS file is closed when the last process open to it closes
the file by a close (2) system call. This system call causes the stream to be
dismantled (modules popped and the driver close executed).

Modules are pushed onto a stream to provide special functions and/or additional
protocol layers. In Figure 1-7, the stream on the left is opened in a minimal
configuration with a raw tty driver and no other module added. The driver
receives one character at a time from the device, places the character in a mes­
sage, and sends the message upstream. The stream head receives the message,
extracts the single character, and copies it into the reading process buffer to send
to the user process in response to a read (2) system call. When the user pro­
cess wants to send characters back to the driver, it issues a write (2) system
call, and the characters are sent to the stream head. The head copies the charac­
ters into one or more multi-character messages and sends them downstream. An
application program requiring no further kernel character processing would use
this minimal stream.

A user requiring a more terminal-like interface would need to insert a module to
perform functions such as echoing, character-erase, and line-kill. Assuming that
the CANONPROC module in Figure 1-7 fulfills this need, the application pro­
gram first opens a raw tty stream. Then, the CANONPROC module is pushed
above the driver to create a stream of the form shown on the right of the figure.
The driver is not aware that a module has been placed above it and therefore con­
tinues to send single character messages upstream. The module receives single

Revision A, of 27 March 1990

1.7. Basic User Level
Functions

STREAMS System Calls

Chapter 1 - Introduction 13

character messages from the driver, processes the characters, and accumulates
them into line strings. Each line is placed into a message and sent to the stream
head. The head now finds more than one character in the messages it receives
from downstream.

stream head implementation accommodates this change in format automatically
and transfers the multiple-character data into user space. The stream head also
keeps track of messages partially transferred into user space (for example, when
the current user read () buffer can only hold part of the current message).
Downstream operation is not affected: the head sends, and the driver receives,
multiple character messages.

Note that the stream head provides the interface between the stream and user pro­
cess. Modules and drivers do not have to implement user interface functions
other than open and close.

After a stream has been opened, STREAMS-related system calls allow a user pro­
cess to insert and delete (push and pop) modules. That process can then com­
municate with and control the operation of the stream head, modules, and
drivers, and can send and receive messages containing data and control informa­
tion. This section presents an example of some of the basic functions available
to STREAMS-based applications via the system calls. Additional functions are
described at the end of this section and in the Other Facilities section.

The full set of STREAMS-related system calls is:

open()
Open a stream

close()
Close a stream

read()
Read data from a stream

write()
Write data to a stream

ioctl()
Control a stream

getmsg()
Receive the message at stream head

putmsg()
Send a message downstream

poll()
Notify the application program when selected events occur on a stream

The following two-part example describes a stream that controls the data com­
munication characteristics of a connection between an asynchronous terminal and

Revision A, of 27 March 1990

14 STREAMS Programming

An Asynchronous Protocol
stream Example

Initializing the stream

a tty port. It illustrates basic user level STREAMS features, then shows how mes­
sages can be used. The Kernel Level Functions section discusses the kernel
stream operations corresponding to the user operations described in this introduc­
tion.

In the example, our computer supports different kinds of asynchronous terminals,
each logging in on its own port. The port hardware is limited in function; for
example, it detects and reports line and modem status, but does not check parity.

Communications software support for these terminals is provided via a
STREAMS implemented asynchronous protocol. The protocol includes a variety
of options that are set when a terminal operator dials in to log on. The options
are determined by a getty-type STREAMS user process, getstrm (), which
analyzes data sent to it through a series of dialogs (prompts and responses)
between the process and terminal operator.

The process sets the terminal options for the duration of the connection by push­
ing modules onto the stream or by sending control messages to cause changes in
modules (or in the device driver) already on the stream. The options supported
include:

o ASCII or EBCDIC character codes

o For ASCII code, the parity (odd, even or none)

o Echo or not echo input characters

o Canonical input and output processing or transparent (raw) character han­
dling

These options are set with the following modules:

CBARPROC
Provides input character processing functions, including dynamically sett­
able (via control messages passed to the module) character echo and parity
checking. The module's default settings are to echo characters and not
check character parity.

CANONPROC
Performs canonical processing on ASCII characters upstream and down­
stream (note that this performs some processing in a different manner from
the standard UNIX character 1/0 tty subsystem).

ASCEBC
Translates EBCDIC code to ASCII upstream and ASCII to EBCDIC down­
stream.

At system initialization a user process, getstrm (), is created for each tty port.
getstrm () opens a stream to its port and pushes the CHARPROC module onto
the stream by use of an ioctl () !_PUSH command. Then, the process issues
a getmsg () system call to the stream and sleeps until a message reaches the
stream head. The stream is now in its idle state.

Revision A, of 27 March 1990

Figure 1-8

Message Types

Chapter 1-lntroduction 15

The initial idle stream, shown in Figure 1-8, contains only one pushable module,
CHARPROC. The device driver is a limited function raw tty driver connected to a
limited-function communication port. The driver and port transparently transmit
and receive one unbuffered character at a time.

Idle stream Configuration/or Example

~
--~] ____ _

CHARpROC
module

QUEUJ3 Pair

raw TTY
device driver

Upon receipt of initial input from a tty port, getstrm () establishes a connec­
tion with the terminal, analyzes the option requests, verifies them, and issues
STREAMS system calls to set the options. After setting up the options,
getstrm () creates a user application process. Later, when the user terminates
that application, get strm () restores the stream to its idle state by use of sys­
tem calls.

The next step is to analyze in more detail how the stream sets up the communica­
tions options. Before doing so, let's examine how messages are handled in
STREAMS.

All STREAMS messages are assigned message types to indicate their intended use
by modules and drivers and to determine their handling by the stream head. A
driver or module can assign most types to a message it generates, and a module
can modify a message's type during processing. The stream head will convert
certain system calls to specified message types and send them downstream, and it
will respond to other calls by copying the contents of certain message types that
were sent upstream. Messages exist only in the kernel, so a user process can only
send and receive buffers. The process is not explicitly aware of the message
type, but it may be aware of message boundaries, depending on the system call
used (see the distinction between getmsg () and read () in the next section).

Most message types are internal to STREAMS and can only be passed from one
STREAMS module to another. A few message types, including M_DATA,

M _ PROTO, and M _ PCPROTO, can also be passed between a stream and user

Revision A, of 27 March 1990

16 STREAMS Programming

Sending and Receiving
Messages

Using Messages in the Example

processes. M_DATA messages carry data within a stream and between a stream
and a user process. M_PROTO or M_PCPROTO messages carry both data and
control information. However, the distinction between control information and
data is generally determined by the developer when implementing a particular
stream. Control information includes service intetface information, carried
between two stream entities that present service intetfaces, and condition or
status information, which may be sent between any two stream entities regardless
of their intetface. An M_PCPROTO message has the same general use as an
M _ PROTO, but the former moves faster through a stream (see Message Queue
Priority in the Other Facilities section).

putmsg () is a STREAMS-related system call that sends messages; it is similar
to write (). putmsg () provides a data buffer which is converted into an
M _ DATA message, and can also provide a separate control buffer to be placed
into anM_PROTO orM_PCPROTO block. write () provides byte-stream data
to be converted into M_DATA messages.

getmsg () is a STREAMS-related system call that accepts messages; it is similar
to read () . One difference between the two calls is that read () accepts only
data (messages sent upstream to the stream head as message type M_DATA), such
as the characters entered from the terminal. getmsg () can simultaneously
accept both data and control information (messages sent upstream as types
M_PROTO or M_PCPROTO). getmsg () also differs from read () in that it
preserves message boundaries so that the same boundaries exist above and below
the stream head (that is, between a user process and a stream). read () gen­
erally ignores message boundaries, processing data as a byte stream.

Certain STREAMS ioctl () commands, such as I_STR, also cause messages to
be sent or received on the stream. I_ S TR provides the general "ioctl" capability
of the character 1/0 subsystem. A user process above the stream head can issue
putmsg (), getmsg (), the I_STR ioctl () command, and certain other
STREAMS related system calls. Other STREAMS ioctl' s petform functions
that include changing the state of the stream head, pushing and popping modules,
or returning special information.

In addition to message types that explicitly transfer data to a process, some mes­
sages sent upstream result in information transfer. When these messages reach
the stream head, they are transformed into various forms and sent to the user pro­
cess. The forms include signals, error codes, and call return values.

Returning to the asynchronous protocol example, the stream was in its idle
configuration (see Figure 1-8). getstrm () had issued a getmsg () and was
sleeping until the arrival of a message from the stream head. Such a message
would result from the driver detecting activity on the associated tty port.

An incoming call arrives at port one and causes a ring detect signal in the
modem. The driver receives the ring signal, answers the call, and sends upstream
an M PROTO message containing information indicating an incoming call.
get;trm () is notified of all incoming calls, although it can choose to refuse
the call because of system limits. In this idle state, getstrm () will also accept
M _ PROTO messages indicating, for example, error conditions such as detection

Revision A, of 27 March 1990

Chapter 1 - Introduction 17

of line or modem problems on the idle line.

The M _ PROTO message containing notification of the incoming call flows
upstream from the driver into CHARPROC. CHARPROC inspects the message
type, determines that message processing is not required, and passes the
unmodified message upstream to the stream head. The stream head copies the
message into the getmsg () buffers (one buffer for control information, the
other for data) associated with getstrm () and wakes up the process.
getstrm () sends its acceptance of the incoming call with a putmsg () sys­
tem call which results in a downstream M _PROTO message to the driver.

Then, get strm () sends a prompt to the operator with a write () and issues a
getmsg () to receive the response. A read () could have been used to receive
the response, but the getmsg () call allows concurrent monitoring for control
(M_PROTO and M_PCPROTO) information. getstrm () will now sleep until
the response characters, or information regarding possible error conditions
detected by modules or driver, are sent upstream.

The first response, sent upstream in an M_DATA block, indicates that the code set
is ASCII and that canonical processing is requested. get strm () implements
these options by pushing CANONPROC onto the stream, above CHARPROC, to
perform canonical processing on the input ASCII characters.

The response to the next prompt requests even parity checking. getstrm ()
sends an ioctl () I_STR command to CHARPROC, requesting the module to
perform even parity checking on upstream characters. When the dialog indicates
protocol option setting is complete, getstrm () creates an application process.
At the end of the connection, getstrm () will pop CANONPROC and then send
a I_STR to CHARPROC requesting the module to restore the no-parity idle state
(CHARPROC remains on the stream).

As a result of the above dialogs, the terminal at port one operates in the following
configuration:

o ASCII, even parity

o Echo

o Canonical processing

In similar fashion, an operator at a different type of terminal on port two requests
a different set of options, resulting in the following configuration:

D EBCDIC

o No Echo

o Canonical processing

The resultant streams for the two ports are shown in Figure 1-9. For port one, on
the left, the modules in the stream are CANONPROC and CHARPROC.

For port two, on the right, the resultant modules are CANONPROC, ASCEBC and
CHARPROC. ASCEBC has been pushed on this stream to translate between the
ASCII interface at the downstream side of CANONPROC and the EBCDIC inter­
face of the upstream output side of CHARPROC. In addition, get strm () has

Revision A, of 27 March 1990

18 STREAMS Programming

sent an I_ S TR to the CHARPROC module in this stream requesting it to disable
echo. The resultant modification to CHARPROC' s functions is indicated by the
word "modified" in the right stream of Figure 1-9.

Figure 1-9 Asynchronous Terminal streams

User
Process

STREAM
HEAD

CANOm>ROC

CHARl>ROC

QUEUpPair

PORT
1

RAW TTY
DRIVER

User
Process

ST~AM
HEAD

CANOm>ROC

ASCEBC

CHAR?ROC
(mod!fied)

QUEUpPair

PORT
2

User Space
----------Kernel Space

Since CHARPROC is now performing no function for port two, it might have
been popped from the stream to be reinserted by getstrm (} at the end of con­
nection. However, the low overhead of STREAMS does not require its removal.
The module remains on the stream, passing messages unmodified between
ASCEBC and the driver. At the end of the connection, getstrm (} restores this
stream to its idle configuration of Figure 1-8 by popping the added modules and
then sending an I_STR to CHARPROC to restore the echo default.

Note that the tty driver shown in Figure 1-9 handles minor devices. Each minor
device has a distinct stream connected from user space to the driver. This ability
to handle multiple devices is a standard STREAMS feature, similar to the minor
device mechanism in character 1/0 device drivers.

Revision A, of 27 March 1990

Other User Functions

1.8. Kernel Level
Functions

Messages

Chapter 1 - Introduction 19

The previous example illustrates basic STREAMS concepts. Alternate, more
efficient, STREAMS calls or mechanisms could have been used in place of those
described earlier. Some of the alternatives are described in the Other Facilities
section. For details, see following chapters and the SunOS Reference Manual.

For example, the initialization process that created a get strm () for each tty
port could have been implemented as a "supergetty" by use of the STREAMS­
related poll () system call. As described in the Other Facilities section,
poll () allows a single process to efficiently monitor and control multiple
streams. The "supergetty" process would handle all of the stream and terminal
protocol initialization and would create application processes only for established
connections.

The M _PROTO notification sent to getstrm () could have been sent by the
driver as an M _SIG message that causes a specified signal to be sent to the pro­
cess. As discussed previously under Message Types, error and status information
can also be sent upstream from a driver or module to user processes via different
message types. These messages will be transformed by the stream head into a
signal or error code.

Finally, an ioctl I_STR command could have been used in place of a
putmsg M_PROTO message to send information to a driver. The sending pro­
cess must receive an explicit response from an I_ STR by a specified time period
or an error will be returned. A response message must be sent upstream by the
destination module or driver to be translated into the user response by the stream
head.

This section introduces the use of the STREAMS mechanism in the kernel and
describes some of the tools provided by STREAMS to assist in the development
of modules and drivers. In addition to the basic message passing mechanism and
QUEUE stream linkage described previously, the STREAMS mechanism consists
of various facilities including buffer management, the STREAMS scheduler, pro­
cessing and message priority, flow control, and multiplexing. Over 30 STREAMS
utility routines and macros are available to manipulate and utilize these facilities.

The key elements of a STREAMS kernel implementation are the processing rou­
tines in the module and drivers, and the preparation of required data structures.
The structures are described in the STREAMS section of Writing Device Drivers.
The following sections provide further information on messages and on the pro­
cessing routines that operate on them. The example of the previous section is
continued, associating the user-level operations described there with kernel
operations.

As shown in Figure 1-10, a STREAMS message consists of one or more linked
message blocks. That is, the first message block of a message may be attached to
other message blocks that are part of the same message. Multiple blocks in a
message can occur, for example, as the result of processing that adds header or
trailer data to the data contained in the message, or because of message buffer
size limitations which cause the data to span multiple blocks. When a message is
composed of multiple message blocks, the message type of the first block deter­
mines the type of the entire message, regardless of the types of the attached

Revision A, of 27 March 1990

20 STREAMS Programming

Figure 1-10

message blocks.

A Message

Message
Block
(type)

,,

Message
Block

\I

Message
Block

I

I
V

STREAMS allocates a message as a single block containing a buffer of a certain
size (see the next section). If the data for a message exceed the size of the buffer
containing the data, the procedure can allocate a new block containing a larger
buffer, copy the current data to it, insert the new data and de-allocate the old
block. Alternately, the procedure can allocate an additional (smaller) block,
place the new data in the new message block and link it after or before the initial
message block. Both alternatives yield one new message.

Messages can exist standalone, as shown in Figure 1-10 when the message is
being processed by a procedure. Alternately, a message can await processing on
a linked list of messages, called a message queue, in a QUEUE. In Figure 1-11,
Message 1 is linked to Message 2.

Revision A, of 27 March 1990

Figure 1-11

Message Allocation

Messages on a Message Queue

I
I queue ,

header <- - - r

Message
Block
(type)

Message
Block

Message
Block

Message
1

next
message

Chapter 1 - Introduction 21

Message
Block
(type)

Message
Block

Message
2

next
- - - - - - - - - -> message

When a message is on a queue, the first block of the message contains links to
preceding and succeeding messages on the same message queue, in addition to
containing a link to the second block of the message (if present). The message
queue head and tail are contained in the QUEUE.

STREAMS utility routines enable developers to manipulate messages and mes­
sage queues.

STREAMS maintains its own storage pool for messages. A procedure can request
the allocation of a message of a specified size at one of three message pool priori­
ties. The allocb () utility will return a message containing a single block with
a buffer of at least the size requested, providing there is a buffer available at the
priority requested. When requesting priority for messages, developers must
weigh their process' need for resources against the needs of other processes on
the same machine.

Message pool priority generally has no effect on allocation until the pool falls
below internal STREAMS thresholds. When this occurs, allocb () may refuse
a lower priority request for a message of size "x" while granting a higher priority
request for the same size message. As examples of priority usage, storage for an
urgent control message, such as an M _ HANGUP or M _ PCPROTO could be
requested at high priority. An M_DATA buffer for holding input might be
requested at medium priority, and an output buffer (presuming the output data
can wait in user space) at lowest priority.

Revision A, of 27 March 1990

22 STREAMS Programming

Put and Service Procedures

Put Procedures

Service Procedures

The procedures in the QUEUE are the software routines that process messages as
they transit the QUEUE. The processing is generally performed according to the
message type and can result in a modified message, new message(s) or no mes­
sage. A resultant message is generally sent in the same direction in which it was
received by the QUEUE, but may be sent in either direction. A QUEUE will always
contain a put procedure and may also contain an associated service procedure.

A put procedure is the QUEUE routine that receives messages from the preceding
QUEUE in the stream. Messages are passed between QUEUES by a procedure in
one QUEUE calling the put procedure contained in the following QUEUE. A call to
the put procedure in the appropriate direction is generally the only way to pass
messages between modules (unless otherwise indicated, "modules" infers
"module, driver and stream head"). QUEUES in pushable (see Building a stream)
modules contain a put procedure. In general, there is a separate put procedure for
the read and write QUEUES in a module because of the "full duplex" operation of
most streams.

A put procedure is associated with immediate (as opposed to deferred, see below)
processing on a message. Each module accesses the adjacent put procedure as a
subroutine. For example, consider that mod.A, modB, and modC are three con­
secutive modules in a stream, with modC connected to the stream head. If mod.A
receives a message to be sent upstream, mod.A processes that message and calls
modB' s put procedure, which processes it and calls modC' s put procedure, which
processes it and calls the stream head's put procedure. Thus, the message will be
passed along the stream in one continuous processing sequence. On one hand,
this sequence has the benefit of completing the entire processing in a short time
with low overhead (subroutine calls). On the other hand, if this sequence is
lengthy and the processing is implemented on a multi-user system, then this
manner of processing may be good for this stream but may be detrimental for
others since they may have to wait "too long" to get their tum at bat.

In addition, there are situations where the put procedure cannot immediately pro­
cess the message but must hold it until processing is allowed. The most typical
examples of this are a driver which must wait until the current output completes
before sending the next message and the stream head, which may have to wait
until a process initiates a read (2) on the stream.

STREAMS allows a service procedure to be contained in each QUEUE, in addition
to the put procedure, to address the above cases and for additional purposes. A
service procedure is not required in a QUEUE and is associated with deferred pro­
cessing. If a QUEUE has both a put and service procedure, message processing
will generally be divided between the procedures. The put procedure is always
called first, from a preceding QUEUE. After the put procedure completes its part
of the message processing, it arranges for the service procedure to be called by
passing the message to the putq () routine. putq () does two things: it places
the message on the message queue of the QUEUE (see Figure 1-11) and links the
QUEUE to the end of the STREAMS scheduling queue. When putq () returns to
the put procedure, the procedure typically exits. Some time later, the service pro­
cedure will be automatically called by the STREAMS scheduler.

Revision A, of 27 March 1990

Chapter 1 - Introduction 23

The STREAMS scheduler is separate and distinct from the SunOS system process
scheduler. It is concerned only with QUEUES linked on the STREAMS scheduling
queue. The scheduler calls the service procedure of the scheduled QUEUE in a
FIFO manner, one at a time.

Having both a put and service procedure in a QUEUE enables STREAMS to pro­
vide the rapid response and the queuing required in multi-user systems. The put
procedure allows rapid response to certain data and events, such as software
echoing of input characters. Put procedures effectively have higher priority than
any scheduled service procedures. When called from the preceding STREAMS
component, a put procedure executes before the scheduled service procedures of
any QUEUE are executed.

The service procedure implies message queuing. Queuing results in deferred
processing of the service procedure, following all other QUEUES currently on the
scheduling queue. For example, terminal output and input erase and kill process­
ing would typically be performed in a service procedure because this type of pro­
cessing does not have to be as timely as echoing. Use of a service procedure also
allows processing time to be more evenly spread among multiple streams. As
with the put procedure there will generally be a separate service procedure for
each QUEUE in a module. The flow control mechanism (see the Other Facilities
section) uses the service procedures.

Kernel Processing The following continues the example of the previous section, describing
STREAMS kernel operations and associating them, where relevant, with the
user-level system calls already discussed. As a result of initializing operations
and pushing a module, the stream for port one has the following configuration:

Figure 1-12 Operational stream for Example

write j

STREAM
HE-?\I)

CANOSPROC
mo4ule

CHARJ>ROC
mo4ule

QUEUp Pair

rawTIY
device driver

1
read

As shown in Figure 1-12 the upstream QUEUE is also referred to as the read
QUEUE, reflecting the message flow in response to a read () system call.
Correspondingly, downstream is referred to as the write QUEUE. Read side pro­
cessing is discussed first.

Revision A, of 27 March 1990

24 STREAMS Programming

Read Side Processing In our example, read side processing consists of driver processing, CHARPROC
processing, and CANONPROC processing.

Driver Processing In the example, the user process has blocked on the getmsg (2} system call
while waiting for a message to reach the stream head, and the device driver
independently waits for input of a character from the port hardware or for a mes­
sage from upstream. Upon receipt of an input character interrupt from the port,
the driver places the associated character in an M _ DATA message, allocated pre­
viously. Then, the driver sends the message to the CHARPROC module by cal­
ling CHARPROC's upstream put procedure. On return from CHARPROC, the
driver calls the allocb () utility routine to get another message for the next
character.

CHARPROC CHARPROC has both put and service procedures on its read side. In the example,
the other QUEUES in the modules also have put and service procedures:

Figure 1-13 Module Put and Service Procedures

write read

CANONPROC: (p1:1t)

\l,
(service)

(service)
ft. Module

(put)
.

CHARPROC: (service)
ft. Module

\l.) (service (put)
. . ···································

When the driver calls CHARPROC's read QUEUE put procedure, the procedure
checks private data flags in the QUEUE. In this case, the flags indicate that echo­
ing is to be performed (recall that echoing is optional and that we are working
with port hardware which can not automatically echo). CHARPROC causes the
echo to be transmitted back to the terminal by first making a copy of the message
with a STREAMS utility. Then, CHARPROC uses another utility to obtain the
address of its own write QUEUE. Finally, the CHARPROC read put procedure
calls its write put procedure and passes it the message copy. The write procedure
sends the message to the driver to effect the echo and then returns to the read pro­
cedure.

This part of read side processing is implemented with put procedures so that the
entire processing sequence occurs as an extension of the driver input character

Revision A, of 27 March 1990

CANONPROC

Write Side Processing

Chapter 1 - Introduction 25

interrupt. The CHARPROC read and write put procedures appear as subroutines
(nested in the case of the write procedure) to the driver. This manner of process­
ing is intended to produce the character echo in a minimal time frame.

After returning from echo processing, the CHARPROC read put procedure checks
another of its private data flags and determines that parity checking should be
performed on the input character. Parity should most reasonably be checked as
part of echo processing. However, for this example, parity is checked only when
the characters are sent upstream. This relaxes the timing in which the checking
must occur, that is, it can be deferred along with the canonical processing.
CHARPROC uses putq () to schedule the (original) message for parity check
processing by its read service procedure. When the CHARPROC read service pro­
cedure is complete, it forwards the message to the read put procedure of
CANONPROC. Note that if parity checking were not required, the CHARPROC

put procedure would call the CANONPROC put procedure directly.

CANONPROC performs canonical processing. As implemented, all read QUEUE

processing is performed in its service procedure so that CANONPROC 's put pro­
cedure simply calls putq () to schedule the message for its read service pro­
cedure and then exits. The service procedure extracts the character from the mes­
sage buffer and places it in the "line buffer" contained in another M _DATA mes­
sage it is constructing. Then, the message which contained the single character is
returned to the buffer pool. If the character received was not an end-of-line,
CANONPROC exits. Otherwise, a complete line has been assembled and
CANONPROC sends the message upstream to the stream head which unblocks the
user process from the getms g () call and passes it the contents of the message.

The write side of this stream carries two kinds of messages from the user process:
ioctl () messages for CHARPROC, and M_DATA messages to be output to the
terminal.

ioctl () messages are sent downstream as a result of an I_STR ioctl sys­
tem call. When CHARPROC receives an ioctl () message type, it processes
the message contents to modify internal QUEUE flags and then uses a utility to
send an acknowledgement message upstream (read side) to the stream head. The
stream head acts on the acknowledgement message by unblocking the user from
the ioctl().

For terminal output, it is presumed that M _ DATA messages, sent by write ()
system calls, contain multiple characters. In general, STREAMS returns to the
user process immediately after processing the write () call so that the process
may send additional messages. Flow control, described in the next section, will
eventually block the sending process. The messages can queue on the write side
of the driver because of character transmission timing. When a message is
received by the driver's write put procedure, the procedure will use putq () to
place the message on its write-side service message queue if the driver is
currently transmitting a previous message buffer. However, there is generally no
write QUEUE service procedure in a device driver. Driver output interrupt pro­
cessing takes the place of scheduling and performs the service procedure func­
tions, removing messages from the queue.

Revision A, of 27 March 1990

26 STREAMS Programming

Analysis

1.9. Other Facilities

Message Queue Priority

For reasons of efficiency, a module implementation would generally avoid plac­
ing one character per message and using separate routines to echo and parity
check each character, as was done in this example. Nevertheless, even this
design yields potential benefits. Consider a case where alternate, more intelligent
port hardware was substituted. If the hardware processed multiple input charac­
ters and performed the echo and parity checking functions of CHARPROC, then
the new driver could be implemented to present the same interface as CHAR­
PROC. Other modules such as CANONPROC could continue to be used without
modification.

The previous sections described the basic concepts of constructing a stream and
utilizing the STREAMS mechanism. Additional STREAMS features are provided
to handle characteristic problems of protocol implementation, such as flow con­
trol, and to assist in development.

There are also kernel and user-level facilities that support the implementation of
advanced functions, such as multiplexors, and allow asynchronous operation of a
user process and STREAMS input and output.

As mentioned in the previous section, the STREAMS scheduler operates strictly
FIFO so that each QUEUE's service procedure receives control in the order it was
scheduled. When a service procedure receives control, it may encounter multiple
messages on its message queue. This buildup can occur if there is a long interval
between the time a message is queued by a put procedure and the time that the
STREAMS scheduler calls the associated service procedure. In this interval, there
can be multiple calls to the put procedure causing multiple messages. The ser­
vice procedure always processes all messages on its message queue unless
prevented by flow control (see next section). Each message must pass through
all the modules connecting its origin and destination in the stream.

If service procedures were used in all QUEUES and there was no message priority,
then the most recently scheduled message would be processed after all the other
scheduled messages on all streams had been processed. In certain cases, message
types containing urgent information (such as a break or alarm conditions) must
pass through the stream quickly. To accommodate these cases, STREAMS pro­
vides two classes of message queuing priority, ordinary and high. STREAMS
prevents high-priority messages from being blocked by flow control and causes a
service procedure to process them ahead of all ordinary priority messages on the
procedure's queue. This results in the high-priority message transiting each
module with minimal delay.

Revision A, of 27 March 1990

Figure 1-14

Flow Control

Flow control is only applied to nor­
mal priority messages (see previous
section) and not to high priority
messages.

Chapter 1 - Introduction 27

STREAMS Message Priority

QUEUE Message queue

:::;:~i::: ···· ·i I I I I I I I I I I I l
1

1
High I Ordinary 1

iE ;111
1E ;111

1

I Priority I Priority I
I I I

Head Tail

The priority mechanism operates as shown in Figure 1-14. Message queues are
generally not present in a QUEUE unless that QUEUE contains a service procedure.
When a message is passed to putq () to schedule the message for service pro­
cedure processing, putq () places the message on the message queue in priority
order. High priority messages are placed ahead of all ordinary priority messages,
but behind any other high priority messages on the queue. STREAMS utilities
deliver the messages to the processing service procedure FIFO within each prior­
ity class. The service procedure is unaware of the message priority and simply
receives the next message.

Message priority is defined by the message type; once a message is created, its
priority cannot be changed. Certain message types come in equivalent
high/ordinary priority pairs (for example, M_PCPROTO and M_PROTO), so that a
module or device driver can choose between the two priorities when sending
information.

Even on a well-designed system, general system delays, malfunctions, and exces­
sive message accumulation on one or more streams can cause the message buffer
pools to become depleted. Additionally, processing bursts can arise when a ser­
vice procedure in one module has a long message queue and processes all its
messages in one pass. STREAMS provides two independent mechanisms to guard
its message buffer pools from being depleted and to minimize long processing
bursts at any one module.

The first flow control mechanism is global and automatic. When the stream head
requests a message buffer in response to a putmsg () or write () system call,
it uses the lowest level of priority. Since buffer availability is based on priority
and buffer pool levels, the stream head will be among the first modules refused a
buffer when the pool becomes depleted. In response, the stream head will block
user output until the STREAMS buffer pool recovers. As a result, output has a
lower priority than input.

The second flow control mechanism is local to each stream and advisory (volun­
tary), and limits the number of characters that can be queued for processing at
any QUEUE in a stream. This mechanism limits the buffers and related processing

Revision A, of 27 March 1990

28 STREAMS Programming

Figure 1-15

at any one QUEUE and in any one stream, but does not consider buffer pool levels
or buffer usage in other streams.

The advisory mechanism operates between the two nearest QUEUES in a stream
containing service procedures (see diagram on next page). Messages are gen­
erally held on a message queue only if a service procedure is present in the asso­
ciated QUEUE.

Messages accumulate at a QUEUE when its service procedure processing does not
keep pace with the message arrival rate, or when the procedure is blocked from
placing its messages on the following stream component by the flow control
mechanism. Pushable modules contain independent upstream and downstream
limits, which are set when a developer specifies high-water and low-water control
values for the QUEUE. The stream head contains a preset upstream limit (which
can be modified by a special message sent from downstream) and a driver may
contain a downstream limit.

Flow control operates as follows:

o Each time a STREAMS message handling routine (for example, putq())
adds or removes a message from a message queue in a QUEUE, the limits are
checked. STREAMS calculates the total size of all message blocks on the
message queue.

o The total is compared to the QUEUE high-water and low-water values. If the
total exceeds the high-water value, an internal full indicator is set for the
QUEUE. The operation of the service procedure in this QUEUE is not affected
if the indicator is set, and the service procedure continues to be scheduled.

o The next part of flow control processing occurs in the nearest preceding
QUEUE that contains a service procedure. In the diagram below, if D is full
and C has no service procedure, then B is the nearest preceding QUEUE.

Flow Control

QUEUE
B

I

* Message
Queue

QUEUE
C

QUEUE
D

I

* Message
Queue

o The service procedure in B uses a STREAMS utility routine to see if a QUEUE

ahead is marked full. If messages cannot be sent, the scheduler blocks the
service procedure in B from further execution. B remains blocked until the
low-water mark of the full QUEUE, D, is reached.

o While Bis blocked, any non-priority messages that arrive at B will accumu­
late on its message queue (recall that priority messages are not blocked). In
turn, B can reach a full state and the full condition will propagate back to the
last module in the stream.

Revision A, of 27 March 1990

Multiplexing

Chapter 1 - Introduction 29

o When the service procedure processing on D causes the message block total
to fall below the low water mark, the full indicator is turned off. Then,
STREAMS automatically schedules the nearest preceding blocked QUEUE (B
in this case), getting things moving again. This automatic scheduling is
know as back-enabling a QUEUE.

Note that to utilize flow control, a developer need only call the utility that tests if
a full condition exists ahead, plus perform some housekeeping if it does. Every­
thing else is automatically handled by STREAMS.

STREAMS multiplexing supports the development of internetworking protocols
such as IP and ISO CLNS, and the processing of interleaved data streams such as
in SNA, X.25, and terminal window facilities.

STREAMS multiplexors (also called pseudo-device drivers) are created in the ker­
nel by interconnecting multiple streams. Conceptually, there are two kinds of
multiplexors that developers can build with STREAMS: upper and lower multi­
plexors. Lower multiplexors have multiple lower streams between device drivers
and the multiplexor, and upper multiplexors have multiple upper streams
between user processes the multiplexor.

Figure 1-16 Internet Multiplexing stream

Net 1
Module

Ethernet
Driver

User
Processes

~ /sis

...... . v.. \l. \l.
Upper

Multiplexor or
Module

IP
Multiplexor

Driver

Module

LAPB
Driver

802.2
Driver

Figure 1-16 shows an example of a lower multiplexor. This configuration would
typically occur where internetworking functions were included in the system.
This stream contains two types of drivers: the Ethernet, LAPB, and IEEE 802.2

Revision A, of 27 March 1990

30 STREAMS Programming

are hardware device drivers that terminate links to other nodes; the IP (Internet
Protocol) is a multiplexor.

The IP multiplexor switches messages among the various nodes (lower streams)
or sends them upstream to user processes in the system. In this example, the
multiplexor expects to see an 802.2 interface downstream; for the Ethernet and
LAPB drivers, the Net 1 and Net 2 modules provide service interfaces to the two
non-802.2 drivers and the IP multiplexor.

Figure 1-16 depicts the IP multiplexor as part of a larger stream. The stream, as
shown in the dotted rectangle, would generally have an upper TCP multiplexor
and additional modules. Multiplexors could also be cascaded below the IP driver
if the device drivers were replaced by multiplexor drivers.

Figure 1-17 X.25 Multiplexing stream

PVC SVC
Processes Processes Processes

A --------------------~-----

X.25
Packet Layer Protocol

Multiplexor Driver

LAPB Driver
or

Lower Multiplexor

........ \l
: Modules
...... :-?'··

~··

Figure 1-17 shows an upper multiplexor. In this configuration, the driver routes
messages between the lower stream and one of the upper streams. This stream
performs X.25 multiplexing to multiple independent SVC (Switched Virtual Cir­
cuit) and PVC (Permanent Virtual Circuit) user processes. Upper multiplexors
are a specific application of standard STREAMS facilities that support multiple
minor devices in a device driver. This figure also shows that more complex
configurations can be built by having one or more multiplexed LAPB drivers
below and multiple modules above.

Developers can choose either upper or lower multiplexing, or both, when design­
ing their applications. For example, a window multiplexor would have a similar

Revision A, of 27 March 1990

Monitoring

Chapter 1 - Introduction 31

configuration to the X.25 configuration of Figure 1-17, with a window driver
replacing Packet Layer, a tty driver replacing LAPB, and the child processes of
the terminal process replacing the user processes. Although the X.25 and win­
dow multiplexing streams have similar configurations, their multiplexor drivers
would differ significantly. The IP multiplexor of Figure 1-16 has a different
configuration than the X.25 multiplexor and the driver would implement its own
set of processing and routing requirements.

In addition to upper and lower multiplexors, more complex configurations can be
created by connecting streams containing multiplexors to other multiplexor
drivers. With such a diversity of needs for multiplexors, it is not possible to pro­
vide general purpose multiplexor drivers. Rather, STREAMS provides a general
purpose multiplexing facility. The facility allows users to set up the inter­
module/driver plumbing to create multiplexor configurations of generally unlim­
ited interconnection.

The connections are created from user space through specific STREAMS
ioctl () system calls. In a lower multiplexor, multiple streams are connected
below an application-specific, developer-implemented multiplexing driver. The
multiplexing facility will only connect streams to a driver. The ioctl () call
configures a multiplexor by connecting one stream at a time below the opened
multiplexor driver. As each stream is connected to the driver, the connection
setup procedure identifies the stream to the driver. The driver will generally
store this setup information in a private data structure for later use.

Subsequently, when messages flow into the driver on the various connected
streams, the identity of the associated stream is passed to the driver as part of the
standard procedure call. The driver then has available the stream identification,
the previously stored setup information for this stream, and any internal routing
information contained in the message. These data are used, according to the
application implemented, to process the incoming message and route the output
to the appropriate outgoing stream.

Additionally, new streams can be dynamically connected to an operating multi­
plexor without interfering with ongoing traffic, and existing streams can be
disconnected with similar ease.

STREAMS allows user processes to monitor and control streams so that system
resources (such as CPU cycles and process slots) can be used effectively. Moni­
toring is especially useful to user-level multiplexors, in which a user process can
create multiple streams and switch messages among them (similar to STREAMS
kernel-level multiplexing, described previously).

User processes can efficiently monitor and control multiple streams with two
STREAMS system calls: poll (2) and the ioctl (2) I_ SET SIG command.
These calls allow a user process to detect events that occur at the stream head on
one or more streams, including receipt of a data or protocol message on the read
queue and cessation of flow control.

Synchronous monitoring is provided by use of poll () alone; in this case, the
user process cannot continue processing until after the system call completes.
When the calls are used together, they allow asynchronous, or concurrent,

Revision A, of 27 March 1990

32 STREAMS Programming

Error and Trace Logging

operation of the process and STREAMS input/output. This allows the user pro­
cess to monitor the stream while carrying on other activities.

To monitor streams with poll (), a user process issues that system call and
specifies the streams to be monitored, the events to look for, and the amount of
time to wait for an event. po 11 () will block the process until the time expires
or until an event occurs. If an event occurs, po 11 () will return the type of
event and the stream on which the event occurred.

Instead of waiting for an event to occur, a user process may want to monitor one
or more streams while processing other data. It can do so by issuing the ioctl
I_ SETS IG command, specifying one or more streams and events (as with
poll()}. Unlike a poll (), this ioctl () does not force the user process to
wait for the event but returns immediately and will issue a signal when an event
occurs. The process must also request signal (2) or sigset (2) to catch the
resultant SIGPOLL signal.

If any selected event occurs on any of the selected streams, STREAMS will cause
the SIGPOLL catching function to be executed in all associated requesting
processes. However, the process(es) will not know which event occurred, nor on
what stream the event occurred. A process that issues the I_ SETS I G can get
more detailed information by issuing a poll () after it detects the event.

STREAMS includes error and trace loggers useful for debugging and administer­
ing modules and drivers.

Any module or driver in any stream can call the STREAMS logging functions
described in log(4). Formatted text can be sent to the error logger
strerr(8V), the trace logger strace(8V), or both.

Revision A, of 27 March 1990

Figure 1-18

1.10. Driver Design
Comparisons

Error and Trace Logging

Error
Log File

Strerr

I module ~ - -

Trace
Log File

Strace

Trace
Messages

Log
Software

Driver

Chapter 1 - Introduction 3 3

User User

- - ~ driver I

strerr {) is intended to operate as a daemon process initiated at system
startup. strerr {) formats the contents and places them in a daily file. The
utility strclean { 8V) is provided to periodically purge aged, unreferenced
daily log files.

A user process can submit its own M _ PROTO messages to the log driver for
inclusion in the logger of its choice through putmsg (2) • The messages must
be in the same format required by the logging processes and will be switched to
the logger(s) requested in the message.

The output to the log files is formatted, ASCII text. The files can be processed
by standard system commands such as grep (1) or ed { 1), or by developer­
provided routines.

This section compares operational features of character 1/0 device drivers with
STREAMS drivers and modules. It is intended for experienced developers of
UNIX system character device drivers. Details are provided in the STREAMS
section of Writing Device Drivers.

Revision A, of 27 March 1990

34 STREAMS Programming

Environment

Drivers

Modules

No user environment is generally available to STREAMS module procedures and
drivers. The exception is the module and driver open and close routines, both of
which have access to the user structure of the calling process and can sleep.
Otherwise, a STREAMS driver, module put procedure, and module service pro­
cedure has no user context and can neither sleep nor access any user structure.

Multiple streams can use a copy of the same module (that is, the same fmodsw),
each containing the same processing procedures. This means that module code is
reentrant, so care must be exercised when using global data in a module. Put and
service procedures are always passed the address of the QUEUE (for example, in
Figure 1-6 Au calls Bu's put procedure with Bu as a parameter). The processing
procedure establishes its environment solely from the QUEUE contents, typically
the private data (for example, state information).

At the interface to hardware devices, character 1/0 drivers have interrupt entry
points; at the system interface, those same drivers generally have direct entry
points (routines) to process probe (), open (), close (), read (),
write() and ioctl() system calls.

STREAMS device drivers have similar interrupt entry points at the hardware dev­
ice interface and have direct entry points only for open () and close () sys­
tem calls. These entry points are accessed via STREAMS, and the call formats
differ from character device drivers. The put procedure is a driver's third entry
point, but it is a message (not system) interface. The stream head translates
write () and ioctl () calls into messages and sends them downstream to be
processed by the driver's write QUEUE put procedure. read () is seen directly
only by the stream head, which contains the functions required to process system
calls. A driver does not know about system interfaces other than open () and
close (), but it can detect absence of a read () indirectly if flow control pro­
pagates from the stream head to the driver and affects the driver's ability to send
messages upstream.

For input processing, when the driver is ready to send data or other information
to a user process, it does not wake up the process. It prepares a message and
sends it to the read QUEUE of the appropriate (minor device) stream. The driver's
open routine generally stores the QUEUE address corresponding to this stream.

For output processing, the driver receives messages in place of a write () call.
If the message can not be sent immediately to the hardware, it may be stored on
the driver's write message queue. Subsequent output interrupts can remove mes­
sages from this queue.

Drivers and modules can pass signals, error codes, and return values to processes
via message types provided for that purpose.

As described above, modules have user context available only during the execu­
tion of their open and close routines. Otherwise, the QUEUES forming the module
are not associated with the user process at the end of the stream, nor with any
other process. Because of this, QUEUE procedures must not sleep when they can­
not proceed; instead, they must explicitly return control to the system. The sys­
tem saves no state information for the QUEUE. The QUEUE must store this

Revision A, of 27 March 1990

1.11. Glossary

Chapter 1 - Introduction 35

information internally if it is to proceed from the same point on a later entry.

When a module or driver that requires private working storage (for example, for
state information) is pushed, the open routine must obtain the storage from exter­
nal sources. STREAMS copies the module template from fmodsw for the
I_PUSH, so only fixed data can be contained in the module template. STREAMS
has no automatic mechanism to allocate working storage to a module when it is
opened. The sources for the storage typically include a module-specific kernel
array, installed when the system is configured, or the STREAMS buffer pool.
When using an array as a module storage pool, the maximum number of copies
of the module that can exist at any one time must be determined. For drivers,
this is typically determined from the physical devices connected, such as the
number of ports on a multiplexor. However, certain types of modules may not be
associated with a particular external physical limit. For example, the CANONI­
CAL module shown in Figure 1-5 could be used on different types of streams.

Downstream The direction from stream head to driver.

Driver The end of the stream closest to an external interface. The principal functions of
the driver are handling any associated device, and transferring data and informa­
tion between the external interface and stream. It can also be a pseudo-driver,
not directly associated with a device, which performs functions internal to a
stream, such as a multiplexor or log driver.

Message One or more linked blocks of data or information, with associated STREAMS
control structures containing a message type. Messages an the only means of
transferring data and communicating within a stream.

Message Queue A linked list of messages connected to a QUEUE.

Message Type A defined set of values identifying the contents of a message.

Module Software that performs functions on messages as they flow between stream head
and driver. A module is the STREAMS counterpart to the commands in a Shell
pipeline except that a module contains a pair of functions which allow indepen­
dent bidirectional (downstream and upstream) data flow and processing.

Multiplexor A mechanism for connecting multiple streams to a multiplexing driver. The
mechanism supports the processing of interleaved data streams and the process­
ing of internetworking protocols. The multiplexing driver routes messages
among the connected streams. The other end of a stream connected to a multi­
plexing driver is typically connected to a device driver.

pushable module A module between the stream head and driver. A driver is a non-pushable
module and a stream head includes a non-pushable module.

QUEUE The set of structures that forms a module. A module is composed of two
QUEUES, a read (upstream) QUEUE and a write (downstream) QUEUE.

Read Queue The message queue in a module or driver containing messages moving upstream.
Associated with input from a driver.

Revision A, of27 March 1990

36 STREAMS Programming

stream The kernel aggregate created by connecting STREAMS components, resulting
from an application of the STREAMS mechanism. The primary components are a
stream head, a driver and zero or more pushable modules between the stream
head and driver. A stream forms a full duplex processing and data transfer path
in the kernel, between a user process and a driver. A stream is analogous to a
Shell pipeline except that data flow and processing are bidirectional.

Stream Head The end of the stream closest to the user process. The stream head provides the
interface between the stream and the user process. The principal functions of the
stream head are processing STREAMS-related system calls, and bidirectional
transfer of data and information between a user process and messages in
STREAMS' kernel space.

STREAMS A kernel mechanism that supports development of network services and data
communication drivers. It defines interface standards for character input/output
within the kernel, and between the kernel and user level. The STREAMS
mechanism comprises integral functions, utility routines, kernel facilities and a
set of structures.

Upstream The direction from driver to stream head.

Write Queue The message queue in a module or driver containing messages moving down­
stream. Associated with output from a user process.

Revision A, of 27 March 1990

2.1. Introduction

STREAMS Overview

2
STREAMS Applications Programming

This chapter provides detailed information about the STREAMS mechanism and
system call interface. It includes the following topics.

o The STREAMS Overview, below, reintroduces the STREAMS mechanism.

o Basic Operations describes the basic operations available for constructing,
using, and dismantling streams. These operations are performed using
open(2), close(2), read{2), write(2), and ioctl{2).

o Advanced Operations presents advanced facilities provided by STREAMS,
including: poll{2), a user level 1/0 polling facility; asynchronous 1/0 pro­
cessing support; and a method to sample drivers for available resources.

o Multiplexed STREAMS describes the construction of sophisticated, multi­
plexed stream configurations.

o Message Handling describes how users can process STREAMS messages
using putmsg (2) and getmsg (2) in the context of a service interface
example.

The following STREAMS Module and Driver Programming chapter is the com­
panion to this chapter-it provides an analogous discussion of system-level
STREAMS. Both chapters assume a working knowledge of UNIXt system pro­
gramming, data communication facilities, and the material covered in the previ­
ous Introduction to STREAMS chapter.

This section reviews the STREAMS mechanism, a general, flexible facility and a
set of tools for development of SunOS and UNIX system communication ser­
vices. It supports the implementation of services ranging from complete net­
working protocol suites to individual device drivers. The STREAMS mechanism
defines standard interfaces for character 1/0 within the kernel, and between the
kernel and the rest of the system. The associated mechanism is simple and
open-ended. It consists of a set of system calls, kernel resources, and kernel rou­
tines.

The standard mechanism enables modular, portable development and easy
integration of higher performance network services and their components.
STREAMS provide a framework; they do not impose any specific network

t UNIX is a registered trademark of AT&T.

37 Revision A, of 27 March 1990

3 8 STREAMS Programming

architecture. The STREAMS user interface is upward compatible with the charac­
ter 1/0 user interface, and both user interfaces are available.

A stream is a full-duplex processing and data transfer path between a STREAMS
driver in kernel space and a process in user space (see the figure below). In the
kernel, a stream is constructed by linking a stream head, a driver, and zero or
more modules between the stream head and driver. The stream head is the end of
the stream closest to the user process. Throughout this guide, the word
"STREAMS" refers to the mechanism, and the word stream refers to the data path
between a user and a driver. 1

A STREAMS driver may be a device driver that provides the services of an exter­
nal 1/0 device, or a software driver, commonly referred to as a pseudo-device
driver, that performs functions internal to a stream. The stream head provides the
interface between the stream and user processes. Its principal function is to pro­
cess STREAMS-related user system calls.

Data are passed between a driver and the stream head in messages. Messages
that are passed from the stream head toward the driver are said to travel down­
stream. Similarly, messages passed in the other direction travel upstream. The
stream head transfers data between the data space of a user process and
STREAMS kernel data space. Data to be sent to a driver from a user process are
packaged into STREAMS messages and passed downstream. When a message
containing data arrives at the stream head from downstream, the message is pro­
cessed by the stream head, which copies the data into user buffers.

1 The word ''stream'' is also used by 4.x BSD to refer to a nonseekable data source such as a pipe or socket.
A STREAMS stream need not be restricted in this way.

Revision A, of 27 March 1990

Figure 2-1

Development Facilities

Basic Stream

Stream
Head

Module

Driver

Chapter 2 - STREAMS Applications Programming 39

_ _ _ _ _ _ _ _ User Space

External
Interface

Kernel Space

! downstream

(optional)

t upstream

Within a stream, messages are distinguished by a type indicator. Certain
message types sent upstream may cause the stream head to perform specific
actions, such as sending a signal to a user process. Other message types are
intended to carry information within a stream and are not directly seen by a user
process.

One or more kernel-resident modules may be inserted into a stream between the
stream head and driver to perform intermediate processing of data as it passes
between the stream head and driver. STREAMS modules are dynamically inter­
connected in a stream by a user process. No kernel programming, assembly, or
link editing is required to create the interconnection.

General and STREAMS-specific system calls provide the user level facilities
required to implement application programs. This system call interface is
upwardly compatible with the character 1/0 facilities. The open (2) system call
will recognize a STREAMS file and create a stream to the specified driver. A user
process can receive and send data on STREAMS files using read (2) and
write (2) in the same manner as with character files. The i o ct 1 (2) system
call enables users to perform functions specific to a particular device. A set of
generic STREAMS ioctl () commands, described by streamio(4), support a
variety of functions for accessing and controlling streams. A close (2) dis­
mantles a stream.

Revision A, of 27 March 1990

40 STREAMS Programming

2.2. Basic Operations

A Simple Stream

In addition to the generic i o ct 1 () commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The poll (2) system call
enables a user to poll multiple streams for various events. The putmsg (2) and
getmsg(2) system calls enable users to send and receive STREAMS messages,
and are suitable for interacting with STREAMS modules and drivers through a
service interface.

STREAMS provide kernel facilities and utilities to support development of
modules and drivers. The stream head handles most system calls so that the
related processing does not have to be incorporated in a module and driver. The
configuration mechanism allows modules and drivers to be incorporated into the
system.

Examples are used throughout both parts of this document to highlight the most
important and common capabilities of STREAMS. The descriptions are not
meant to be exhaustive. For simplicity, the examples reference fictional drivers
and modules.

This section describes the basic set of operations for manipulating STREAMS.

A STREAMS driver is similar to a character 1/0 driver in that it has one or more
nodes associated with it in the file system and it is accessed using the open ()
system call. Typically, each file system node corresponds to a separate minor
device for that driver. Opening different minor devices of a driver will cause
separate streams to be connected between a user process and the driver. The file
descriptor returned by the open () call is used for further access to the stream.
If the same minor device is opened more than once, only one stream will be
created; the first open () call will create the stream, and subsequent open ()
calls will return a file descriptor that references that stream. Each process that
opens the same minor device will share the same stream to the device driver.

Once a device is opened, a user process can send data to the device using the
write () system call and receive data from the device using the read () sys­
tem call. Access to STREAMS drivers using read () and write () is compati­
ble with the character 1/0 mechanism.

The c 1 o s e () system call will close a device and dismantle the associated
stream.

The following example shows how a simple stream is used. In the example, the
user program interacts with a generic communications device that provides
point-to-point data transfer between two computers. Data written to the device is
transmitted over the communications line, and data arriving on the line can be
retrieved by reading it from the device.

Revision A, of 27 March 1990

Figure 2-2

Chapter 2 - STREAMS Applications Programming 41

*include <fcntl.h>

main()
{

char buf[1024];
int fd, count;

if ((fd = open("/dev/comm01", O_RDWR)) < 0) {
perror("open failed");
exit(l);

while ((count= read(fd, buf, 1024)) > 0)
if (write(fd, buf, count) != count) {

perror("write failed");
break;

exit(O);

In the example, / dev / conunO 1 identifies a minor device of the communications
device driver. When this file is opened, the system recognizes the device as a
STREAMS device and connects a stream to the driver. The figure below shows
the state of the stream following the call to open () .

Stream to Communications Driver

____ t ________ _ User Space

Stream Kernel Space
Head

communications
driver

This example illustrates a user reading data from the communications device and
then writing the input back out to the same device. In short, this program echoes
all input back over the communications line. The example assumes that a user is
sending data from the other side of the communications line. The program reads
up to 1024 bytes at a time, and then writes the number of bytes just read.

The read () call returns the available data, which may contain fewer than 1024
bytes. If no data are currently available at the stream head, the read () call
blocks until data arrive.

Revision A, of 27 March 1990

42 STREAMS Programming

Inserting Modules

Similarly, the write () call attempts to send count bytes to / dev / c ommO 1.
However, STREAMS implements a flow control mechanism that prevents a user
from flooding a device driver with data, thereby exhausting system resources. If
the stream exerts flow control on the user, the write () call blocks until the
flow control has been relaxed. The call will not return until it has sent count
bytes to the device. exi t(2) is called to terminate the user process. This system
call also closes all open files, thereby dismantling the stream in this example.

An advantage of STREAMS over the existing character 1/0 mechanism stems
from the ability to insert various modules into a stream to process and manipulate
data that passes between a user process and the driver. The following example
extends the previous communications device echoing example by inserting a
module in the stream to change the case of certain alphabetic characters. The
case converter module is passed an input string and an output string by the user.
Any incoming data (from the driver) is inspected for instances of characters in
the module's input string and the alphabetic case of all matching characters is
changed. Similar actions are taken for outgoing data using the output string. The
necessary declarations for this program are shown below:

\..

#include <string.h>
#include <fcntl.h>
#include <stropts.h>
I*
* These defines would typically be
* found in a header file for the module
*I
#define OUTPUT STRING 1
#define INPUT STRING 2

main()
{

char buf[1024];
int fd, count;
struct strioctl strioctl;

The first step is to establish a stream to the communications driver and insert the
case converter module. The following sequence of system calls accomplishes
this:

if ((fd = open("/dev/commOl", O_RDWR)) < 0) {
perror("open failed");
exit(l);

if (ioctl (fd, I_PUSH, "case_converter") < 0) {
perror("ioctl I PUSH failed");
exit(2);

The I_PUSH ioctl () call directs the stream head to insert the case converter
module between the driver and the stream head, creating the stream shown in the

Revision A, of 27 March 1990

Figure 2-3

Module and Driver Control

Chapter 2 - STREAMS Applications Programming 43

figure below. As with any driver, this module resides in the kernel and must
have been configured into the system before it was booted. I _PUSH is one of
several generic STREAMS ioctl () commands that enable a user to access and
control individual streams (see the streamio(4) man page).

Case Converter Module

___ J __ _
Stream

Head

case
converter

communications
driver

_ ___ u_ s!r_ Space

Kernel Space

An important difference between STREAMS drivers and modules is illustrated
here. Drivers are accessed through a node or nodes in the file system and may be
opened just like any other device. Modules, on the other hand, do not occupy a
file system node. Instead, they are identified through a separate naming conven­
tion, and are inserted into a stream using I _PUSH. The name of a module is
defined by the module developer, and is typically included on the manual page
describing the module (manual pages describing STREAMS drivers and modules
are found in section 7 of the SunOS Ref ere nee Manual).

Modules are pushed onto a stream and removed from a stream in Last-In-First­
Out (LIFO) order. Therefore, if a second module was pushed onto this stream, it
would be inserted between the stream head and the case converter module.

The next step in this example is to pass the input string and output string to the
case converter module. This can be accomplished by issuing ioctl () calls to
the case converter module as follows:

Revision A, of 27 March 1990

44 STREAMS Programming

I* Set input conversion string * I
strioctl.ic_crnd = INPUT_STRING;
strioctl.ic_tirnout = 0;

I* Command type * I
I* Default= 15 sec* I

strioctl.ic_dp = "ABCDEFGHIJ";
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror("ioctl I STR failed");
exit(3);

I * Set output conversion string * I
strioctl.ic_crnd = OUTPUT_STRING; I* Command type * I
strioctl.ic_dp = "abcdefghij";
strioctl.ic_len = strlen(strioctl.ic_dp);

if (ioctl(fd, I_STR, &strioctl) < 0) {
perror("ioctl I_STR failed");
exit(4);

ioctl () requests are issued to STREAMS drivers and modules indirectly, using
the I_STR ioctl () call (see the streamio(4) man page). The argument to
I_STR must be a pointer to a strioctl structure, which specifies the request to
be made to a module or driver. This structure is defined in <stropts. h> and ·
has the following format:

struct strioctl {
int ic_crnd;
int ic_tirnout;
int ic_len;
char *ic_dp;

I* ioctl request * I
I* ACKINAK timeout * I
I * Length of data argument * I
I* Ptr to data argument * I

where ic _ cmd identifies the command intended for a module or driver, ic _ timout
specifies the number of seconds an I_STR request should wait for an ack­
nowledgement before timing out, ic _Len is the number of bytes of data to accom­
pany the request, and ic _dp points to that data.

I_ STR is intercepted by the stream head, which packages it into a message, using
information contained in the strioctl structure, and sends the message down­
stream. The request will be processed by the module or driver closest to the
stream head that understands the command specified by ic _ cmd. The i o ct 1 ()
call will block up to ic _timout seconds, waiting for the target module or driver to
respond with either a positive or negative acknowledgement message. If an ack­
nowledgement is not received in ic _timout seconds, the ioctl () call will fail.

I_ STR is actually a nested request; the stream head intercepts I_ STR and then
sends the driver or module request (as specified in the str ioct 1 structure)
downstream. Any module that does not understand the command in ic _ cmd will
pass the message further downstream. Eventually, the request will reach the tar­
get module or driver, where it is processed and acknowledged. If no module or

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 45

driver understands the command, a negative acknowledgement will be generated
and the ioctl () call will fail.

In the example, two separate commands are sent to the case converter module.
The first contains the conversion string for input data, and the second contains
the conversion string for output data. The ic _ cmd field is set to indicate whether
the command is setting the input or output conversion string. For each com­
mand, the value of ic _timout is set to zero, which specifies the system default
timeout value of 15 seconds. Also, a data argument that contains the conversion
string accompanies each command. The ic_dp field points to the beginning of
each string, and ic _Zen is set to the length of the string.

NOTE Only one I_STR request can be active on a stream at one time. Further requests
will block until the active I_ STR request is acknowledged and the system call
completes.

The strioctl structure is also used to retrieve the results, if any, of an I_STR
request. If data are returned by the target module or driver, ic _ dp must point to a
buffer large enough to hold that data, and ic _Zen will be set on return to indicate
the amount of data returned.

The remainder of this example is identical to the previous example:

while ((count= read(fd, buf, 1024)) > 0)
if (write(fd, buf, count) != count) {

perror("write failed");
break;

exit(O);

The case converter module will convert the specified input characters to lower
case, and the corresponding output characters to upper case. Notice that the case
conversion processing was realized with no change to the communications
driver.

As with the previous example, the exit () system call will dismantle the stream
before terminating the process. The case converter module will be removed from
the stream automatically when it is closed. Alternatively, modules may be
removed from a stream using the I_POP ioctl () call described in
streamio(4). This call removes the topmost module on the stream, and
enables a user process to alter the configuration of a stream dynamically, by
pushing and popping modules as needed.

A few of the important ioctl () requests supported by STREAMS have been
discussed. Several other requests are available to support operations such as
determining if a given module exists on the stream, or flushing the data on a
stream. These requests are described fully in the streamio(4) man page).

Revision A, of 27 March 1990

46 STREAMS Programming

2.3. Advanced Operations

Advanced Input/Output
Facilities

Input/Output Polling

This section introduces advanced features provided by STREAMS, such as an 1/0
polling facility, asynchronous 1/0 processing support, and a method to sample
drivers for available resources.

The traditional input/output open () , facilities- close () , read () ,
write (), and ioctl () -have been discussed, but STREAMS supports new
user capabilities that will be described in the remaining sections of this guide.
This section describes a facility that enables a user process to poll multiple
streams simultaneously for various events. Also discussed is a signaling feature
that supports asynchronous 1/0 processing. Finally, this section presents a new
mechanism for finding available minor devices, called clone open.

The poll (2) system call provides users with a mechanism for monitoring
input and output on a set of file descriptors that reference open streams. It
identifies those streams over which a user can send or receive data. For each
stream of interest users can specify one or more events about which they should
be notified. These events include the following:

FOLLIN
Input data are available on the stream associated with the given file descrip­
tor.

POLLPRI
A priority message is available on the stream associated with the given file
descriptor. Priority messages are described in the section of Chapter 4 enti­
tled "Accessing the Datagram Provider."

POLLOUT
The stream associated with the given file is writable. That is, the stream has
relieved the flow control that would prevent a user from sending data over
that stream.

poll () will examine each file descriptor for the requested events and, on
return, will indicate which events have occurred for each file descriptor. If no
event has occurred on any polled file descriptor, poll () blocks until a
requested event or timeout occurs. The specific arguments to poll () are the
following:

o an array of file descriptors and events to be polled

o the number of file descriptors to be polled

o the number of milliseconds poll () should wait for an event if no events
are pending (-1 specifies wait forever)

The following example shows the use of poll(). Two separate minor devices of
the communications driver presented earlier are opened, thereby establishing two
separate streams to the driver. Each stream is polled for incoming data. If data
arrives on either stream, it is read and then written back to the other stream. This
program extends the previous echoing example by sending echoed data over a
separate communications line (minor device). The steps needed to establish each
stream are as follows:

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 47

#include <fcntl.h>
#include <poll.h>

#define NPOLL 2 /* Numberoffiledescriptorstopoll *I

main()
{

struct pollfd pollfds[NPOLL];
char buf[1024];
int count, i;

if ((pollfds[O] .fd
open("/dev/commOl", O_RDWRIO_NDELAY)) < 0) {

perror("open failed for /dev/commOl");
exit(l);

if ((pollfds[l] .fd
open("/dev/comm02", O_RDWRIO_NDELAY)) < 0) {

perror("open failed for /dev/comm02");
exit(2);

The variable pollfds is declared as an array of pollf d structures, where this
structure is defined in <poll. h> and has the following format:

struct pollfd {
int fd;
short events;
short revents;

\.

I * File descriptor * I
I* Requested events * I
I * Returned events * I

For each entry in the array ,fd specifies the file descriptor to be polled and events
is a bitmask that contains the bitwise inclusive OR of events to be polled on that
file descriptor. On return, the revents bitmask will indicate which of the
requested events has occurred.

The example opens two separate minor devices of the communications driver and
initializes the pollfds entry for each. The remainder of the example uses
poll () to process incoming data as follows:

\.

I* Set events to poll for incomi.ng data * I
pollfds[O] .events POLLIN;
pollfds[l] .events= POLLIN;

while (1) {
I* Poll and use -1 timeout (infinite) * I
if (poll(pollfds, NPOLL, -1) < 0) {

perror("poll failed");
exit(3);

for (i = 0; i < NPOLL; i++) {
switch (pollfds[i] .revents)
default: /* Default err case* I

Revision A, of 27 March 1990

48 STREAMS Programming

perror("error event");
exit(4);

case 0: I* No events* I
break;

case POLLIN:
I* Echo incoming data on "other" stream * I
while ((count =

read(pollfds[i] .fd, buf, 1024)) > 0)
I*
* write loses data if flow control
* prevents transmit at this time.
*I
if (write((i == 0?

pollfds[l] .fd: pollfds[OJ .fd),
buf, count) != count)

fprintf (stderr, "write lost data \n") ;
break;

The user specifies the polled events by setting the events field of the pollfd
structure to POLLIN. This requested event directs poll () to notify the user of
·any incoming data on each stream. The bulk of the example is an infinite loop,
where each iteration will poll both streams for incoming data.

The second argument to poll () specifies the number of entries in the pollfds
array (2 in this example). The third argument is a timeout value indicating the
number of milliseconds poll () should wait for an event if none has occurred.
On a system where millisecond accuracy is not available, timeout is rounded up
to the nearest legal value available on that system. Here, the value of timeout is
-1, specifying that poll () should block indefinitely until a requested event
occurs or until the call is interrupted.

If po 11 () succeeds, the program looks at each entry in pollf ds. If revents is set
to 0, no event has occurred on that file descriptor. If revents is set to POLL IN,
incoming data are available. In this case, all available data are read from the
polled minor device and written to the other minor device.

If revents is set to a value other than O or POLLIN, an error event must have
occurred on that stream, because the only requested event was POLLIN. The
following error events are defined for po 11 () . These events may not be polled
for by the user, but will be reported in revents whenever they occur. As such,
they are only valid in the revents bitmask:

POLLERR
A fatal error has occurred in some module or driver on the stream associated
with the specified file descriptor. Further system calls will fail.

POLLHUP
A hangup condition exists on the stream associated with the specified file
descriptor.

+~!!.!! Revision A, of 27 March 1990

Asynchronous Input/Output

Chapter 2 - STREAMS Applications Programming 49

POLLNVAL
The specified file descriptor is not associated with an open stream.

The example attempts to process incoming data as quickly as possible. However,
when writing data to a stream, the write () call may block if the stream is
exerting flow control. To prevent the process from blocking, the minor devices
of the communications driver were opened with the O _NDELA Y flag set. If
flow control is exerted and O_NDELAY is set, write () will not be able to
send all the data. This can occur if the communications driver is unable to keep
up with the user's rate of data transmission. If the stream becomes full, the
number of bytes write () sends will be less than the requested count. For sim­
plicity, the example ignores the data if the stream becomes full, and a warning is
printed to stderr.

This program will continue until an error occurs on a stream, or until the process
is interrupted.

The poll () system call described above enables a user to monitor multiple
streams in a synchronous fashion. The po 11 () call normally blocks until an
event occurs on any of the polled file descriptors. In some applications, however,
it is desirable to process incoming data asynchronously. For example, an appli­
cation may wish to do some local processing and be interrupted when a pending
event occurs. Some time-critical applications cannot afford to block, but must
have immediate indication of success or failure.

A new facility is available for use with STREAMS that enables a user process to
request a signal when a given event occurs on a stream. When used with
poll(), this facility enables applications to asynchronously monitor a set of file
descriptors for events.

The I_SETSIG ioctl () call (see the streamio(4) man page) is used to
request that a SIGPOLL signal be sent to a user process when a specific event
occurs. Listed below are the events for which an application may be signaled:

S INPUT
Data has arrived at the stream head, and no data existed at the stream head
when it arrived.

S HIPRI
A priority STREAMS message has arrived at the stream head.

S OUTPUT
The stream is no longer full and can accept output. That is, the stream has
relieved the flow control that would prevent a user from sending data over
that stream.

S MSG
A special STREAMS signal message that contains a SIGPOLL signal has
reached the front of the stream head input queue. This message may be sent
by modules or drivers to generate immediate notification of data or events to
follow.

Revision A, of 27 March 1990

50 STREAMS Programming

Clone Open

The polling example could be written to process input from each communica­
tions driver minor device by issuing I_ SETSIG to request a signal for the
S _ INPUT event on each stream. The signal catching routine could then call
poll () to determine on which stream the event occurred. The default action
for SIGPOLL is to terminate the process. Therefore, the user process must catch
the signal using s ignal(2). SIGPOLL will only be sent to processes that
request the signal using I_SETSIG.

In the earlier examples, each user process connected a stream to a driver by open­
ing a particular minor device of that driver. Often, however, a user process wants
to connect a new stream to a driver regardless of which minor device is used to
access the driver.

In the past, this typically forced the user process to poll the various minor device
nodes of the driver for an available minor device. To alleviate this task, a facility
called clone open is supported for STREAMS drivers. If a STREAMS driver is
implemented as a cloneable device, a single node in the file system may be
opened to access any unused minor device. This special node guarantees that the
user will be allocated a separate stream to the driver on every open () call.
Each stream will be associated with an unused minor device, so the total number
of streams that may be connected to a cloneable driver is limited by the number
of minor devices configured for that driver.

The clone device may be useful, for example, in a networking environment
where a protocol pseudo-device driver requires each user to open a separate
stream over which it will establish communication. Typically, the users would
not care which minor device they used to establish a stream to the driver.
Instead, the clone device can find an available minor device for each user and
establish a unique stream to the driver. Chapter 3 describes this type of transport
protocol driver.

NOTE A user program has no control over whether a given driver supports the clone
open. The decision to implement a STREAMS driver as a cloneable device is
made by the designers of the device driver.

2.4. Multiplexed Streams This section describes the construction of multiplexed stream configurations.

Multiplexor Configurations In the earlier sections, streams were described as linear connections of modules,
where each invocation of a module is connected to at most one upstream module
and one downstream module. While this configuration is suitable for many
applications, others require the ability to multiplex streams in a variety of
configurations. Typical examples are terminal window facilities, and internet­
working protocols (which might route data over several subnetworks).

An example of a multiplexor is one that multiplexes data from several upper
streams over a single lower stream, as shown in the figure below. An upper
stream is one that is upstream from a multiplexor, and a lower stream is one that
is downstream from a multiplexor. A terminal windowing facility might be
implemented in this fashion, where each upper stream is associated with a
separate window.

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 51

Figure 2-4 Many-to-one Multiplexor

Figure 2-5

MUX

A second type of multiplexor might route data from a single upper stream to one
of several lower STREAMS, as shown in the figure below. An intemetworking
protocol could take this form, where each lower stream links the protocol to a
different physical network.

One-to-many Multiplexor

MUX

A third type of multiplexor might route data from one of many upper streams to
one of many lower streams, as shown in the figure below.

Figure 2-6 Many-to-many Multiplexor

MUX

A STREAMS mechanism is available that supports the multiplexing of streams
through special pseudo-device drivers. Using a linking facility, users can

Revision A, of 27 March 1990

52 STREAMS Programming

Building a Multiplexor

Figure 2-7

dynamically build, maintain, and dismantle each of the above multiplexed stream
configurations. In fact, these configurations can be further combined to form
complex, multi-level multiplexed stream configurations.

The remainder of this section describes multiplexed stream configurations in the
context of an example (see figure below). In this example, an intemetworking
protocol pseudo-device driver (IP) is used to route data from a single upper
stream to one of two lower streams. This driver supports two STREAMS connec­
tions beneath it to two distinct sub-networks. One sub-network supports the
IEEE 802.3 standard for the CSMA/CD medium access method. The second
sub-network supports the IEEE 802.4 standard for the token-passing bus medium
access method.

The example also presents a transport protocol pseudo-device driver (TP) that
multiplexes multiple virtual circuits {upper streams) over a single stream to the
IP pseudo-device driver.

The figure below shows the multiplexing configuration to be created. This
configuration will enable users to access the services of the transport protocol.
To free users from the need to know about the underlying protocol structure, a
user-level daemon process will build and maintain the multiplexing
configuration Users can then access the transport protocol directly by opening
the TP driver device node.

Protocol Multiplexor

Stream
head

802.4
Driver

TP
Driver

IP
Driver

802.3
Driver

___ Cf.S!r_ 8-PEce

Kernel Space

The following example shows how this daemon process sets up the protocol

Revision A, of 27 March 1990

Figure 2-8

Chapter 2 - STREAMS Applications Programming 53

multiplexor. The necessary declarations and initialization for the daemon pro­
gram are as follows:
r

*include <fcntl.h>
*include <stropts.h>

main()
{

int fd 802_4,
fd 802_3,
fd_ip,
fd_tp;

I * Daemon-ize this process * I
switch (fork ()) {
case 0:

break;
case -1:

perror("fork failed");
exit(2);

default:
exit(O);

setpgrp ();

This multi-level multiplexed stream configuration will be built from the bottom
up. Therefore, the example begins by constructing the IP multiplexor. This mul­
tiplexing pseudo-device driver is treated like any other software driver. It owns a
node in the file system and is opened just like any other STREAMS device driver.

The first step is to open the multiplexing driver and the 802.4 driver, creating
separate streams above each driver as shown in the figure below. The stream to
the 802.4 driver may now be connected below the multiplexing IP driver using
the I_LINK ioctl () call.

Before Link

~
_ L _____ ~ ______ f!.'!!':.. ~::ce

802.4
Driver

IP
Driver

Kernel Space

The sequence of instructions to this point is:

Revision A, of 27 March 1990

54 STREAMS Programming

if ((fd_802_4 = open("/dev/802_4", O_RDWR)) < 0) {
perror("open of /dev/802_4 failed");
exit(l);

if ((fd_ip = open("/dev/ip", O_RDWR)) < 0) {
perror("open of /dev/ip failed");
exit(2);

}

I* Now link 802.4 to underside of IP * I
if (ioctl(fd_ip, I_LINK, fd 802_4) < 0) {

perror("I_LINK ioctl failed");
exit(3);

I_LINK takes two file descriptors as arguments. The first file descriptor,fd_ip,
must reference the stream connected to the multiplexing driver, and the second
file descriptor,fd_802_4, must reference the stream to be connected below the
multiplexor. The figure below shows the state of these streams following the
I_ LINK call. The complete stream to the 802.4 driver has been connected below
the IP driver, including the stream head. The stream head of the 802.4 driver will
be used by the IP driver to manage the multiplexor.

Figure 2-9 IP Multiplexor After First Link

IP
Driver

802.4
Driver

_________ _ User Space

Kernel Space

I_ LINK will return an integer value, called a mux id, which is used by the multi­
plexing driver to identify the stream just connected below it. This mux id is
ignored in the example, but may be useful for dismantling a multiplexor or rout­
ing data through the multiplexor. Its significance is discussed later.

The following sequence of system calls is used to continue building the internet­
working multiplexor (IP):

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 55

if ((fd_802_3 = open("/dev/802_3", O_RDWR)) < 0) {
perror("open of /dev/802_3 failed");
exit(4);

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) {
perror("I_LINK ioctl failed");
exit(S);

All links below the IP driver have now been established, giving the configuration
in the figure below.

Figure 2-10 IP Multiplexor

controlling _5'
stream

802.4
Driver

IP
Driver

_________ _ User Space

Kernel Space

802.3
Driver

The stream above the multiplexing driver used to establish the lower connections
is the controlling stream and has special significance when dismantling the multi­
plexing configuration, as will be illustrated later in this section. The stream
referenced by fd _ip is the controlling stream for the IP multiplexor.

NOTE The order in which the streams in the multiplexing configuration are opened is
unimportant. If, however, it is necessary to have intermediate modules in the
stream between the IP driver and media drivers, these modules must be added to
the streams associated with the media drivers (using I _PUSH) before the media
drivers are attached below the multiplexor.

The number of streams that can be linked to a multiplexor is restricted by the
design of the particular multiplexor. The manual page describing each driver
(typically found in section 4 of the SunOS Reference Manual) should describe
such restrictions. However, only one I_ LINK operation is allowed for each
lower stream; a single stream cannot be linked below two multiplexors simul­
tanec,usly.

Revision A, of 27 March 1990

56 STREAMS Programming

Figure 2-11

Continuing with the example, the IP driver will now be linked below the tran­
sport protocol (TP) multiplexing driver. As seen earlier in the figure below, only
one link will be supported below the transport driver. This link is formed by the
following sequence of system calls:

if ((fd_tp = open("/dev/tp", O_RDWR)) < 0) {
perror("open of /dev/tp failed");
exit(6);

if (ioctl(fd_tp, !_LINK, fd_ip) < 0)
perror("I_LINK ioctl failed");
exit (7);

The multi-level multiplexing configuration shown in the figure below has now
been created.

TP Multiplexor

controlling _5
stream

802.4
Driver

TP
Driver

IP
Driver

_________ _ User Space

Kernel Space

802.3
Driver

Because the controlling stream of the IP multiplexor has been linked below the
TP multiplexor, the controlling stream for the new multi-level multiplexor
configuration is the stream above the TP multiplexor.

At this point the file descriptors associated with the lower drivers can be closed
without affecting the operation of the multiplexor. Closing these file descriptors
may be necessary when building large multiplexors, so that many devices can be
linked together without exceeding the system limit on the number of

Revision A, of 27 March 1990

Dismantling a Multiplexor

Chapter 2 - STREAMS Applications Programming 57

simultaneously open files per process. If these file descriptors are not closed, all
subsequent read (), write (), ioctl (), poll (), getmsg (), and
putmsg () system calls issued to them will fail. That is because I_LINK asso­
ciates the stream head of each linked stream with the multiplexor, so the user
may not access that stream directly for the duration of the link.

The following sequence of system calls will complete the multiplexing daemon
example:

close(fd_802_4);
close(fd_802_3);
close(fd_ip);
I* Hold multiplexor open forever * I
pause();

The figure below shows the complete picture of the multi-level protocol multi­
plexor. The transport driver is designed to support several, simultaneous virtual
circuits, where these virtual circuits map one-to-one to streams opened to the
transport driver. These streams will be multiplexed over the single stream con­
nected to the IP multiplexor. The mechanism for establishing multiple streams
above the transport multiplexor is actually a by-product of the way in which
streams are created between a user process and a driver. By opening different
minor devices of a STREAMS driver, separate streams will be connected to that
driver. Of course, the driver must be designed with the intelligence to route data
from the single lower stream to the appropriate upper stream.

Notice in the figure below that the daemon process maintains the multiplexed
stream configuration through an open stream (the controlling stream) to the tran­
sport driver. Meanwhile, other users can access the services of the transport pro­
tocol by opening new streams to the transport driver; they are freed from the
need for any unnecessary knowledge of the underlying protocol configurations
and sub-networks that support the transport service.

Multi-level multiplexing configurations, such as the one presented in the above
example, should be assembled from the bottom up. That is because STREAMS
does not allow ioctl () requests (including I_LINK) to be passed through
higher multiplexing drivers to reach the desired multiplexor; they must be sent
directly to the intended driver. For example, once the IP driver is linked under
the TP driver, ioctl () requests cannot be sent to the IP driver through the TP
driver.

streams connected to a multiplexing driver from above with open () , can be dis­
mantled by closing each stream with close (). In the protocol multiplexor,
these streams correspond to the virtual circuit streams above the TP multiplexor.
The mechanism for dismantling streams that have been linked below a multiplex­
ing driver is less obvious, and is described below in detail.

The I_ UNLINK io ct 1 () call is used to disconnect each multiplexor link below
a multiplexing driver individually. This command takes the following form:

+~.!! Revision A, of 27 March 1990

58 STREAMS Programming

Routing Data Through a
Multiplexor

[__ i_· o_c_t_i_(f_d_,_r ___ u_N_L_r_N_K_,_m_u_x ___ i_d_>_; _______________)

where/dis a file descriptor associated with a stream connected to the multiplex­
ing driver from above, and mux _id is the identifier that was returned by I_ LINK
when a driver was linked below the multiplexor. Each lower driver may be
disconnected individually in this way, or a special mux _id value of -1 may be
used to disconnect all drivers from the multiplexor simultaneously.

In the multiplexing daemon program presented earlier, the multiplexor is never
explicitly dismantled. That is because all links associated with a multiplexing
driver are automatically dismantled when the controlling stream associated with
that multiplexor is closed. Because the controlling stream is open to a driver,
only the final call of close () for that stream will close it. In this case, the dae­
mon is the only process that has opened the controlling stream, so the multiplex­
ing configuration will be dismantled when the daemon exits.

For the automatic dismantling mechanism to work in the multi-level, multiplexed
stream configuration, the controlling stream for each multiplexor at each level
must be linked under the next higher level multiplexor. In the example, the con­
trolling stream for the IP driver was linked under the TP driver. This resulted in
a single controlling stream for the full, multi-level configuration. Because the
multiplexing program relied on closing the controlling stream to dismantle the
multiplexed stream configuration instead of using explicit I_ UNLINK calls, the
mux id values returned by I_ LINK could be ignored.

An important side effect of automatic dismantling on close () is that it is not
possible for a process to build a multiplexing configuration and then exit. That is
because exi t(2) will close all files associated with the process, including the
controlling stream. To keep the configuration intact, the process must exist for
the life of that multiplexor. That is the motivation for implementing the example
as a daemon process.

As demonstrated, STREAMS has provided a mechanism for building multiplexed
stream configurations. However, the criteria on which a multiplexor routes data
is driver dependent. For example, the protocol multiplexor shown in the last
example might use address information found in a protocol header to determine
over which sub-network a given packet should be routed. It 1s the multiplexing
driver's responsibility to define its routing criteria.

One routing option available to the multiplexor is to use the mux id value to
determine to which stream data should be routed (remember that each multi­
plexor link is associated with a mux id). I_ LINK passes the mux id value to the
driver and returns this value to the user. The driver can therefore specify that the
mux id value must accompany data routed through it. For example, if a multi­
plexor routed data from a single upper stream to one of several lower streams (as
did the IP driver), the multiplexor could require the user to insert the mux id of
the desired lower stream into the first four bytes of each message passed to it.
The driver could then match the mux id in each message with the mux id of each
lower stream, and route the data accordingly.

Revision A, of 27 March 1990

2.5. Message Handling

Service Interface Messages

Service Interfaces

Chapter 2 - STREAMS Applications Programming 59

This section describes how to process STREAMS messages in a service interface.

A STREAMS message format has been defined to simplify the design of service
interfaces. Also, two new system calls, getmsg(2) and putmsg (2) are avail­
able for sending these messages downstream and receiving messages that are
available at the stream head. This section describes these system calls in the con­
text of a service interface example. First, a brief overview of STREAMS service
interfaces is presented.

A principal advantage of the STREAMS mechanism is its modularity. From user
level, kernel-resident modules can be dynamically interconnected to implement
any reasonable processing sequence. This modularity reflects the layering
characteristics of contemporary network architectures.

One benefit of modularity is the ability to interchange modules of like function.
For example, two distinct transport protocols, implemented as STREAMS
modules, may provide a common set of services. An application or higher layer
protocol that requires those services can use either module. This ability to substi­
tute modules enables user programs and higher level protocols to be independent
of the underlying protocols and physical communication media.

Each STREAMS module provides a set of processing functions, or services, and
an interface to those services. The service interface of a module defines the
interaction between that module and any neighboring modules, and therefore is a
necessary component for providing module substitution. By creating a well­
defined service interface, applications and STREAMS modules can interact with
any module that supports that interface. The figure below demonstrates this.

Figure 2-12 Protocol Substitution

Application
A

- - - - - - - - - -

..........

TCP
Transport

Protocol

Lower Layer
Protocol
Suite A

Application
A

- - - - - - - - - -

.

ISO

Transport
Protocol

Lower Layer
Protocol
Suite B

_ 'f!!er Space

Kernel Space

By defining a service interface through which applications interact with a tran­
sport protocol, it is possible to substitute a different protocol below that service
interface in a manner completely transparent to the application. In this example,

Revision A, of 27 March 1990

60 STREAMS Programming

Figure 2-13

The Message Interface

the same application can run over the Transmission Control Protocol (TCP) and
the ISO transport protocol. Of course, the service interface must define a set of
services common to both protocols.

The three components of any service interface are the service user, the service
provider, and the service interface itself, as seen in the figure below.

Service Inteiface

Request
Primitives

!

Service
User

j\

.........

,,
Service
Provider

. -~~,:y_i~.e. !.nterface

t
R esponse and
E vent Primitives

Typically, a user makes a request of a service provider using some well-defined
service primitive. Responses and event indications are also passed from the pro­
vider to the user using service primitives. The service interface is defined as the
set of primitives that define a service and the allowable state transitions that
result as these primitives are passed between the user and provider.

A message format has been defined to simplify the design of service interfaces
using STREAMS. Each service interface primitive is a distinct STREAMS mes­
sage that has two parts: a control part and a data part. The control part contains
information that identifies the primitive and includes all necessary parameters.
The data part contains user data associated with that primitive.

An example of a service interface primitive is a transport protocol connect
request. This primitive requests the transport protocol service provider to estab­
lish a connection with another transport user. The parameters associated with
this primitive may include a destination protocol address and specific protocol
options to be associated with that connection. Some transport protocols also
allow a user to send data with the connect request. A STREAMS message would
be used to define this primitive. The control part would identify the primitive as
a connect request and would include the protocol address and options. The data
part would contain the associated user data.

STREAMS enables modules to create these messages and pass them to neighbor
modules. However, the read () and write () system calls are not sufficient to
enable a user process to generate and receive such messages. First, read () and
write () are byte-stream oriented, with no concept of message boundaries. To
support service interfaces, the message boundary of each service primitive must
be preserved so that the beginning and end of each primitive can be located.

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 61

Also, read () and write () offer only one buffer to the user for transmitting
and receiving STREAMS messages. If control information and data were placed
in a single buffer, the user would have to parse the contents of the buffer to
separate the data from the control information.

Two new STREAMS system calls are available that enable user processes to
create STREAMS messages and send them to neighboring kernel modules and
drivers or receive the contents of such messages from kernel modules and
drivers. These system calls preserve message boundaries and provide separate
buffers for the control and data parts of a message.

The pu tms g () system call enables a user to create STREAMS messages and
send them downstream. The user supplies the contents of the control and data
parts of the message in two separate buffers. Likewise, the getmsg () system
call retrieves such messages from a stream and places the contents into two user
buffers.

The syntax of putmsg () is as follows:

int putmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int flags;

f d identifies the stream to which the message will be passed, ctlptr and dataptr
identify the control and data parts of the message, and.flags may be used to
specify that a priority message should be sent.

The strbuf structure is used to describe the control and data parts of a mes­
sage, and has the following format:
r

struct strbuf {
int maxlen;
int len;
char *buf;

I* Maximum buffer length* I
I* Length of data * I
I* Pointer to buffer* I

bu/points to a buffer containing the data and Zen specifies the number of bytes of
data in the buffer. maxlen specifies the maximum number of bytes the given
buffer can hold, and is only meaningful when retrieving information into the
buffer using getmsg () .

The getmsg () system call retrieves messages available at the stream head, and
has the following syntax:
r

int getmsg (fd, ctlptr, dataptr, flags)
int fd;
struct strbuf *ctlptr;
struct strbuf *dataptr;
int *flags;

Revision A, of 27 March 1990

62 STREAMS Programming

Datagram Service Interface
Example

The arguments to getmsg () are the same as those for putmsg () .

The remainder of this section presents an example that demonstrates how
putmsg () and getmsg () may be used to interact with the service interface of
a simple datagram protocol provider. A potential provider of such a service
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example
implements a user level library that would free the user from knowledge of the
underlying STREAMS system calls. The Transport Interface of the Network Ser­
vices Library in UNIX System V Release 3.0 provides a similar function for tran­
sport layer services. The example here illustrates how a service interface might
be defined, and is not an example of a complete IEEE 802.2 service interface.

The example datagram service interface library presented below includes four
functions that enable a user to do the following:

o establish a stream to the service provider and bind a protocol address to the
stream

o send a datagram to a remote user

o receive a datagram from a remote user

o close the stream connected to the provider

First, the structure and constant definitions required by the library are shown.
These typically will reside in a header file associated with the service interface.

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 63

I*
* Primitives initiated by the service user.
*I
#define BIND_REQ 1
#define UNITDATA_REQ 2
I*

I* Bind request* I
I* Unitdata request* I

* Primitives initiated by the service provider.
*I
#define OK ACK
#define ERROR_ACK
#define UNITDATA IND
I*

3
4
5

I* Bind acknowledgment * I
I * Error acknowledgment * I
I* Unitdata indication* I

* The following structure definitions define the format
* of the control part of the service inteif ace message
* of the above primitives.
*!
struct bind_req {

long PRIM_type;
long BIND_addr;

} ;

struct unitdata_req {
long PRIM_type;
long DEST_addr;

} ;

struct ok_ack {
long PRIM_type;

} ;

struct error_ack {
long PRIM_type;
long UNIX_error;

} ;

struct unitdata_ind {
long PRIM_type;
long SRC_addr;

} ;

union primitives {
long

} ;

struct bind_req
struct unitdata_req
struct ok ack
struct error ack
struct unitdata ind

I* Bind request * I
I* Always BIND _REQ * I
I * Addr to bind * I

I* Unitdata request* I
I* Always UNITDATA_REQ *I
I * Destination addr * I

I* Positive acknowledgment * I
I* Always OK_ACK * I

I * Error acknowledgment * I
I* Always ERROR _ACK * I
I* UNIX error code * I

I* Unitdata indication * I
I* Always UNITDATA_JND *I

I* Source addr * I

I* Union of all primitives* I
type;
bind_req;
unitdata_req;
ok_ack;
error_ack;
unitdata_ind;

I* Header files needed by library* I
#include <stropts.h>
#include <stdio.h>
#include <errno.h>

Five primitives have been defined. The first two represent requests from the ser­
vice user to the service provider. These are:

Revision A, of 27 March 1990

64 STREAMS Programming

Accessing the Datagram
Provider

BIND_REQ
This request asks the provider to bind a specified protocol address. It
requires an acknowledgement from the provider to verify that the contents of
the request were syntactically correct.

UNITDATA_REQ
This request asks the provider to send a datagram to the specified destination
address. It does not require an acknowledgement from the provider.

The three other primitives represent acknowledgements of requests, or indica­
tions of incoming events, and are passed from the service provider to the service
user. These are:

OK ACK
This primitive informs the user that a previous bind request was received
successfully by the service provider.

ERROR ACK
This primitive informs the user that a non-fatal error was found in the previ­
ous bind request. It indicates that no action was taken with the primitive that
caused the error.

UNITDATA IND
This primitive indicates that a datagram destined for the user has arrived.

The structures defined above describe the contents of the. control part of each ser­
vice interface message passed between the service user and service provider. The
first field of each control part defines the type of primitive being passed.

The first routine presented below, inter_ open, opens the protocol driver device
file specified by path and binds the protocol address contained in addr so that it
may receive datagrams. On success, the routine returns the file descriptor associ­
ated with the open stream; on failure, it returns -1 and sets errno to indicate the
appropriate error value.

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 65

inter_open(path, oflags, addr)
char *path;
{

int fd;
struct bind_req bind_req;
struct strbuf ctlbuf;
union primitives rcvbuf;
struct error_ack *error_ack;
int flags;

if ((fd = open(path, oflags)) < 0)
return(-1);

I* Send bind request msg down stream * I
bind_req.PRIM_type = BIND_REQ;
bind_req.BIND_addr = addr;
ctlbuf.len = sizeof(struct bind_req);
ctlbuf.buf = (char *)&bind_req;
if (putmsg(fd, &ctlbuf, NULL, 0) < 0)

close(fd);
return(-1);

After opening the protocol driver, inter_ open packages a bind request message to
send downstream. pu tms g () is called to send the request to the service pro­
vider. The bind request message contains a control part that holds a bind _req
structure, but it has no data part. ctlbufis a structure of type strbuf, and it is
initialized with the primitive type and address. Notice that the maxlen field of
ctlbuf is not set before calling putmsg(). That is because putmsg () ignores
this field. The dataptr argument to putmsg () is set to NULL to indicate that
the message contains no data part. Also, the flags argument is 0, which specifies
that the message is not a priority message.

After inter_ open sends the bind request, it must wait for an acknowledgement
from the service provider, as follows:

Revision A, of 27 March 1990

66 STREAMS Programming

NOTE

I* Wait for ack of request * I
ctlbuf.maxlen = sizeof(union primitives);
ctlbuf.len = O;
ctlbuf.buf = (char *)&rcvbuf;
flags= RS_HIPRI;
if (getmsg(fd, &ctlbuf, NULL, &flags) < O) {

close(fd);
return(-1);

I* Did we get enough to determine type * /
if (ctlbuf.len < sizeof(long))

close(fd);
errno = EPROTO;
return(-1);

I* Switch on type (first long in rcvbuf) * I
switch(rcvbuf.type) {

default:
errno = EPROTO;
close(fd);
return(-1);

case OK ACK:
return(fd);

case ERROR ACK:
if (ctlbuf.len < sizeof(struct error_ack))

errno = EPROTO;
close(fd);
return(-1);

error_ack = (struct error_ack *)&rcvbuf;
errno = error_ack->UNIX_error;
close(fd);
return(-1);

getmsg () is called to retrieve the acknowledgement of the bind request. The
acknowledgement message consists of a control part that contains either an
ok _ ack or error_ ack structure, and no data part.

The acknowledgement primitives are defined as priority messages. Two classes
of messages can arrive at the stream head: priority and normal. Normal mes­
sages are queued in a first-in-first-out manner at the stream head, while priority
messages are placed at the front of the stream head queue. The STREAMS
mechanism allows only one priority message per stream at the stream head at one
time; any further priority messages are discarded until the first message is pro­
cessed. Priority messages are particularly suitable for acknowledging service
requests when the acknowledgement should be placed ahead of any other mes­
sages at the stream head.

These messages are not intended to support the expedited data capabilities of
many communication protocols, as evidenced by the one-at-a-time restriction

Revision A, of 27 March 1990

Closing the Service

Sending a Datagram

Chapter 2 - STREAMS Applications Programming 67

just described.

Before calling getmsg(), this routine must initialize the strbuf structure for
the control part. buf should point to a buffer large enough to hold the expected
control part, and max/en must be set to indicate the maximum number of bytes
this buffer can hold.

Because neither acknowledgement primitive contains a data part, the dataptr
argument to getms g () is set to NULL. The flags argument points to an integer
containing the value RS_HIPRI. This flag indicates that getmsg () should
wait for a STREAMS priority message before returning, and is set because the
acknowledgement primitives are priority messages. Even if a normal message is
available, getmsg () will block until a priority message arrives.

On return from getmsg(), the Zen field is checked to ensure that the control part
of the retrieved message is an appropriate size. The example then checks the
primitive type and takes appropriate actions. An OK _ACK indicates a successful
bind operation, and inter_ open () returns the file descriptor of the open
stream. An ERROR_ACK indicates a bind failure, and errno is set to identify
the problem with the request.

The next routine in the datagram service library is inter _close, which closes the
stream to the service provider.

inter_close (fd)
{

close(fd);

The routine simply closes the given file descriptor. This will cause the protocol
driver to free any resources associated with that stream. For example, the driver
may unbind the protocol address that had previously been bound to that stream,
thereby freeing that address for use by some other service user.

The third routine, inter _snd, passes a datagram to the service provider for
transmission to the user at the address specified in addr. The data to be transmit­
ted is contained in the buffer pointed to by buf and contains Zen bytes. On suc­
cessful completion, this routine returns the number of bytes of data passed to the
service provider; on failure, it returns -1 and sets errno to an appropriate system
error value.

Revision A, of 27 March 1990

68 STREAMS Programming

Receiving a Datagram

inter_snd(fd, buf, len, addr)
char *buf;
long addr;
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata_req unitdata_req;

unitdata_req.PRIM_type = UNITDATA_REQ;
unitdata_req.DEST_addr = addr;
ctlbuf.len = sizeof(struct unitdata_req);
ctlbuf.buf = (char *)&unitdata_req;
databuf.len = len;
databuf.buf = buf;
if (putmsg(fd, &ctlbuf, &databuf, 0) < 0)

return (-1);
return (len);

In this example, the datagram request primitive is packaged with both a control
part and a data part. The control part contains a unitdata _req structure that
identifies the primitive type and the destination address of the datagram. The
data to be transmitted is placed in the data part of the request message.

Unlike the bind request, the datagram request primitive requires no acknowledge­
ment from the service provider. In the example, this choice was made to minim­
ize the overhead during data transfer. Since datagram services are inherently
unreliable, this is a valid design choice. If the putmsg () call succeeds, this
routine assumes all is well and returns the number of bytes passed to the service
provider.

The final routine in this example, inter _rev, retrieves the next available
datagram. bu/points to a buffer where the data should be stored, Zen indicates
the size of that buffer, and addr points to a long integer where the source address
of the datagram will be placed. On successful completion, inter _rev returns the
number of bytes in the retrieved datagram; on failure, it returns -1 and sets the
appropriate system error value.

Revision A, of 27 March 1990

Chapter 2 - STREAMS Applications Programming 69

inter_rcv(fd, buf, len, addr)
char *buf;
long *addr;
{

struct strbuf ctlbuf;
struct strbuf databuf;
struct unitdata ind unitdata_ind;
int retval;
int flags;

ctlbuf.maxlen = sizeof(struct unitdata_ind);
ctlbuf.len = 0;
ctlbuf.buf = (char *)&unitdata_ind;
databuf.maxlen = len;
databuf.len 0;
databuf.buf buf;
flags = 0;
if ((retval getmsg(fd,&ctlbuf,&databuf,&flags)) < 0)

return(-1);
if (unitdata_ind.PRIM_type != UNITDATA_IND)

errno = EPROTO;
return(-1);

if (retval) {
errno = EIO;
return(-1);

*addr = unitdata_ind.SRC_addr;
return(databuf.len);

getmsg () is called to retrieve the datagram indication primitive, where that
primitive contains both a control and data part. The control part consists of a
unitdata_ind structure that identifies the primitive type and the source address of
the datagram sender. The data part contains the data itself.

In ctlbuf, buf must point to a buffer where the control information will be stored,
and maxlen must be set to indicate the maximum size of that buffer. Similar ini­
tialization is done for databuf

The flags argument to getms g () is set to zero, indicating that the next message
should be retrieved from the stream head, regardless of its priority. Datagrams
will arrive in normal priority messages. If no message currently exists at the
stream head, getmsg (} will block until a message arrives.

The user's control and data buffers should be large enough to hold any incoming
datagram. If both buffers are large enough, ge tms g (} will process the
datagram indication and return 0, indicating that a full message was retrieved
successfully. However, if either buffer is not large enough, getmsg (} will only
retrieve the part of the message that fits into each user buffer. The remainder of
the message is saved for subsequent retrieval, and a positive, non-zero value is
returned to the user. A return value of MORECTL indicates that more control

Revision A, of 27 March 1990

70 STREAMS Programming

information is waiting for retrieval. A return value of MOREDATA indicates that
more data are waiting for retrieval. A return value of MORECTL I MOREDATA
indicates that data from both parts of the message remain. In the example, if the
user buffers are not large enough (that is, getrnsg () returns a positive, non-zero
value), the function will set errno to EIO and fail.

The type of the primitive returned by getrnsg () is checked to make sure it is a
datagram indication. The source address is then set and the number of bytes of
data in the datagram is returned.

The above example presented a simplified service interface. The state transition
rules for such an interface were not presented for the sake of brevity. The intent
was to show typical uses of the putrnsg () and getrnsg () system calls. See
putrnsg (2) and getmsg (2) for further details.

Revision A, of 27 March 1990

3.1. Introduction

3
STREAMS Module and Driver

Programming

This chapter provides detailed information on the use of the STREAMS mechan­
ism at the kernel level, including examples, information on development
methods and design philosophy. It describes the use of STREAMS kernel facili­
ties for developing and installing modules and drivers, and is intended for system
programmers with knowledge of UNIX kernel programming, device driver
development, networking, and other data communication facilities.

Examples are used throughout this chapter to highlight the most important and
common capabilities of STREAMS. The descriptions are not meant to be exhaus­
tive. For simplicity, the examples reference fictional drivers and modules.

The preceding STREAMS Application Programming chapter is the companion to
this chapter-it provides an analogous discussion of the STREAMS applications
level.

Both of these chapters assumes a working knowledge of the material covered in
the preceding Introduction to STREAMS chapter (hereafter simply called the
Introduction to STREAMS). This introduction includes a useful Glossary of
STREAMS-related terms. STREAMS kernel utilities, functions, and macros are
summarized in the Utilities section of the Supplementary STREAMS Material
chapter of this manual. STREAMS system calls are specified in Section 2 of the
SunOS Reference Manual. The STREAMS modules and drivers available with
SunOS are described in section 4 of the SunOS Reference Manual. STREAMS­
specific ioctl () calls are specified in streamio (4).

The STREAMS facility was incorporated into SunOS to augment the existing
character input/output (1/0) mechanism and to support the development of com­
munication services. A STREAMS driver may be a device driver that provides
the services of an external 1/0 device, or a software driver, commonly referred to
as a pseudo-device driver, that performs functions internal to a stream. The
Stream Head provides the interface between the stream and user processes. Its
principal function is to process STREAMS-related user system calls so that this
processing does not have to be incoiporated in a module and driver.

Data is passed between a driver and the Stream Head in messages. Messages that
are passed from the Stream Head toward the driver are said to travel downstream.
Similarly, messages passed in the other direction travel upstream. The Stream
Head transfers data between the data space of a user process and kernel data
space. Data to be sent to a driver from a user process are packaged into
STREAMS messages and passed downstream. When a message containing data

+§!!!! 71 Revision A, of 27 March 1990

72 STREAMS Programming

Development Facilities

3.2. STREAMS Mechanism

arrives at the Stream Head from downstream, the message is processed by the
Stream Head, which copies the data into user buffers.

Within a stream, messages are distinguished by a type indicator. Certain mes­
sage types sent upstream may cause the Stream Head to perform specific actions,
such as sending a signal to a user process. Other message types are intended to
cany information within a stream and are not directly seen by a user process.

One or more kernel-resident modules may be inserted into a stream between the
Stream Head and driver to perform intermediate processing of data as it passes
between the Stream Head and driver. STREAMS modules are dynamically inter­
connected in a stream by a user process. No kernel programming, assembly, or
link editing is required to create the interconnection.

General and STREAMS-specific system calls provide the user level facilities
required to implement application programs. This system call interface is
upwardly compatible with the character 1/0 facilities. The open (2) system call
recognizes a STREAMS file and creates a stream to the specified driver. A user
process can receive and send data on STREAMS files using :cead (2} and
write (2} in the same manner as with character files. The io ct 1 (2} system
call enables users to perform functions specific to a particular device and a set of
generic STREAMS ioctl () commands (see streamio(4)) support a variety
of functions for accessing and controlling streams. A close (2) will dismantle
a stream.

In addition to the generic i o ct 1 () commands, there are STREAMS-specific
system calls to support unique STREAMS facilities. The putmsg (2) and
getmsg (2) system calls enable users to send and receive STREAMS messages,
and are suitable for interacting with STREAMS modules and drivers through a
service interface.

STREAMS provides module and driver developers with integral functions, a set
of utility routines, and facilities that expedite design and implementation. The
principal development facilities are:

o Message storage management - to maintain STREAMS' own memory
resources for message storage

o Flow control - to conserve STREAMS memory and processing resources

o Scheduling - to control the execution of service procedures

o Multiplexing- to switch data among multiple streams

A stream implements a connection within the kernel between a driver in kernel
space and a process in user space. It provides a general character input/output
(1/0) interface for user processes that is upwardly compatible with the interface
of the preexisting character 1/0 facilities. A stream is analogous to a shell pipe­
line except that data flow and processing are bidirectional to support concurrent
input and output.

The components that form a stream are the Stream Head, driver, and optional
modules. A stream is initially constructed as the result of a user process

Revision A, of 27 March 1990

Stream Construction

Figure 3-1

Chapter 3 - STREAMS Module and Driver Programming 73

open (2) system call referencing a STREAMS file. The call causes a kernel­
resident driver to be connected with a Stream Head to form a stream. Subsequent
ioctl (2) calls select kernel-resident modules and cause them to be inserted in
the stream. A module represents intermediate processing on messages flowing
between the Stream Head and driver. A module can function as, for example, a
communication protocol, line discipline, or data filter. STREAMS allows a user
to connect a module with any other module. The user determines the module
connection sequences that result in useful configurations.

A process can send and receive characters on a stream using write (2) and
read (2) , as on character files. When user data enters the Stream Head or
external data enters the driver, the data is placed into messages for transmission
on the stream. All data passed on a stream is carried in messages, each having a
defined message type identifying the message contents. Internal control and
status information is transmitted among modules or between the stream and user
process as messages of certain types interleaved on the stream. Modules and
drivers can send certain message types to the Stream Head to cause the genera­
tion of signals or errors to be received by the user process.

A module is composed of two identical sets of data structures called QUEUEs.
One QUEUE is for upstream processing and the other is for downstream process­
ing. The processing performed by the two QUEUEs is generally independent so
that a stream operates in a full-duplex manner. The interface between modules is
uniform and simple. Messages flow from module to module. A message from
one module is passed to the single entry point of its neighboring module.

The last close (2) system call dismantles the stream and closes the file,
semantically identical to character 1/0 drivers.

STREAMS supports implementation of user-level applications with extensions to
the above general system calls and STREAMS specific system calls:
putmsg (2), getmsg (2) and a set of STREAMS generic ioctl (2) func­
tions.

STREAMS constructs a stream as a linked list of kernel-resident data structures.
In a STREAMS file, the vnode points to the stream header structure. The
header is used by STREAMS kernel routines to perform operations on this
stream that are generally related to system calls. Figure 3-1 depicts the down­
stream (write) portion of a stream (see Building a Stream, in the Introduction to
STREAMS) connected to a header. There is one header per stream. From the
header onward, a stream is constructed ofQUEUEs. The upstream (read) por­
tion of the stream (not shown here) parallels the downstream portion in the oppo­
site direction and terminates at the stream header structure.

Downstream Stream Construction

vnode
Stream
Head

QUEUE
H

QUEUE
Pl

QUEUE
P2

QUEUE
D

At the same relative location in each QUEUE is the address of the entry point, a
procedure to be executed on any message received by that QUEUE. The

Revision A, of 27 March 1990

7 4 STREAMS Programming

Figure 3-2

procedure for QUEUE H, at one end of the stream, is the STREAMS-provided
Stream Head routine. QUEUE H is the downstream half of the Stream Head. The
procedure for QUEUED, at the other end, is the driver routine. QUEUED is the
downstream half of the stream end. Pl and P2 are pushable modules, each con­
taining their own unique procedures. That is, all STREAMS components are of
similar organization.

This similarity results in a uniform manner of navigating in either direction on a
stream: messages move from one end to the other, from QUEUE to the next
linked QUEUE, executing the procedure specified in the QUEUE.

Figure 3-2 shows the data structures forming each QUEUE: queue_t, qinit,
module_info, and module_stat. queue_t contains various modifiable
values for this QUEUE, generally used by STREAMS. qini t contains a pointer
to the processing procedures, module_info contains limit values, and
module_stat is used for statistics. The two QUEUES in a module will gen­
erally each contain a different set of these structures. The contents of these struc­
tures are described in following sections.

QUEUE data structures

q qinfo
<--- - -

q qinfo
<--- - -

upstream

read

queue_t

q next

read

downstream

write

queue_t

q_qinfo
i----=---- qini t

q next

write
q qinfo
--= - - ->

queue_t queue_t

upstream downstream

module
stat

module
info

Figure 3-1 shows QUEUE linkage in one direction while figure 3-2 shows two
neighboring modules with links (solid vertical arrows) in both directions. When
a module is pushed onto a stream, STREAMS creates two QUEUEs and links each
QUEUE in the module to its neighboring QUEUE in the upstream and down­
stream direction. The linkage allows each QUEUE to locate its next neighbor.
The next relation is implemented between queue_ ts in adjacent modules by the
q_next pointer. Within a module, each queue_t locates its mate (see dotted
arrows in figure 3-2) by use of STREAMS macros, since there is no pointer
between the two queue_ ts. The existence of the Stream Head and driver is
known to the QUEUE procedures only as destinations towards which messages

Revision A, of 27 March 1990

Opening a Stream

Chapter 3 - STREAMS Module and Driver Programming 75

are sent.

When a file is opened (see open (2)) , a STREAMS file is recognized by a
non-null value in the d_str field of the associated cdevsw entry. d str
points to a streamtab structure:

struct streamtab
struct qinit
struct qinit
struct qinit
struct qinit
char

*st_ rdini t; / * defines read QUEUE * I
st_wrinit; / defines write QUEUE *I
*st_ muxr in it ; /*for multiplexing drivers only * I
*st_ muxw ini t; /*for multiplexing drivers only * I
**st _modl is t ; / * NULL-terminated list of

modules to be pushed * I

streamtab defines a module or driver and points to the read and write qini t
structures for the driver.

If this open () call is the initial file open, a stream is created. First, the single
header structure and the Stream Head (see figure 3-1) queue_ t structure pair
are allocated. Their contents are initialized with predetermined values including,
as noted above (see QUEUE H), the Stream Head processing routines.

Then, a queue_ t structure pair is allocated for the driver. The STREAMS
framework takes the responsibility for maintaining the fields of the queue_ t
structure. It is unusual for a driver or module to need to examine any of these
fields, especially with the intention of modifying them. The exception, though, is
the q_ptr field, which is the means by which a module accesses its own private
data.

A single, common qini t structure pair is shared among all the streams opened
from the same cdevsw entry, as are the associated module_info and
module_stat structures (see figure 3-2.)

Next, the q_next values are set so that the Stream Head write queue_t points
to the driver write queue_ t and the driver read queue_ t points to the Stream
Head read queue_t. The q_next values at the ends of the stream are set to
NULL. Then, the driver open procedure (located via qini t) is called.

If the st_ mo dl is t pointer is not NULL, it is assumed to point to the first
member of a NULL-terminated array of pointers to module names. After the
driver's open () procedure has been called, the modules whose names are
pointed to by the members of that array are pushed onto t.h.e stream, in the order
that they appear in the array. (See Adding and Removing Modules, below). If
one of these modules cannot be pushed, the open () fails.

If this open () is not the initial open of this stream, the only actions performed
are to call the driver open procedure and the open procedures of all pushable
modules on the stream.

Revision A, of 27 March 1990

7 6 STREAMS Programming

Adding and Removing
Modules

Closing

As part of constructing a stream, a module can be added with an ioctl ()
I_PUSH (see the streamio (4) man page) system call. The push inserts a
module beneath the Stream Head. Because of the similarity of STREAMS com­
ponents, the push operation is similar to the driver open. First, the address of the
qini t structure for the module is obtained via an fmodsw entry.

fmodsw is an array, analogous to cdevsw. Each fmodsw entry corresponds to
a unique module and contains the name of the module (used by I_PUSH and cer­
tain other STREAMS ioct 1 () s) and a pointer to the module's streamtab.
Next, STREAMS allocates queue_ t structures and initializes their contents as in
the driver open, above. As with the driver, the read and write qini t structures
are shared among all the modules opened from this fmodsw entry (see figure 3-
2).

Then, q_ next values are set and modified so that the module is interposed
between the Stream Head and the driver or module previously connected to the
head. Finally, the module open procedure (located via qini t) is called. Unlike
open () , no other module or driver open procedure is called.

Each push of a module is independent, even in the same stream. If the same
module is pushed more than once onto a stream, there will be multiple
occurrences of that module in the stream. The total number of pushable modules
that may be contained on any one stream is limited by the kernel parameter
NSTRPUSH (see the SunOS STREAMS Topics chapter) ..

An ioctl () I_POP (see the streamio (4) man page) system call (pop)
removes the module immediately below the Stream Head. The pop calls the
module's close procedure. On return from the module close, any messages left
on the module's message queues are freed (deallocated). Then, STREAMS con­
nects the Stream Head to the component previously below the popped module
and deallocates the module's two queue_t structures. I_POP enables a user
process to dynamically alter the configuration of a stream by pushing and pop­
ping modules as required. For example, a module may be removed or a new one
inserted below a module. In the latter case, the original module is popped and
pushed back after the new module has been pushed.

An I POP cannot be used on a driver.

The last close () system call to a STREAMS file dismantles the stream. Dis­
mantling consists of popping any modules on the stream, closing the driver and
closing the file. Before a module is popped by close (), it may delay to allow
any messages on the write message queue of the module to be drained by module
processing. If O _NDELA Y [see open (2)] is clear, close () will wait up to
15 seconds for each module to drain. If O _NDELA Y is set, the pop is performed
immediately. Note that a module's close routine may also choose to sleep wait­
ing for output to drain. The system call close () will then wait for the driver's
write queue to drain. Messages can remain queued, for example, if flow control
(see Other Facilities, in the Introduction to STREAMS). is inhibiting execution of
the write QUEUE. When all modules are popped and any wait for the driver to
drain is completed, the driver close routine is called. On return from the driver
close, any messages left on the driver's message queues are freed, and the

Revision A, of 27 March 1990

NOTE

3.3. Modules

Module Declarations

NOTE

Chapter 3 - STREAMS Module and Driver Programming 77

queue_ t and header structures are deallocated.

STREAMS frees only the messages contained on a message queue. Any messages
used internally by the driver or module must be freed by the driver or module
close procedure.

Finally, the file is closed.

A module and driver will contain, as a minimum, declarations of the following
form:

#include <sys/types.h>
#include <sys/stream.h>
#include <sys/param.h>

I* required in all modules and drivers * I
I* required in all modules and drivers * I

static struct module info rminfo = {0,"mod",O,INFPSZ,0,0};
static struct module info wminfo = {0,"mod",O,INFPSZ,O,O};
static int modopen(), modrput(), modwput(), modclose();

static struct qinit rinit =
modrput, NULL, modopen, modclose, NULL, &rminfo, NULL

} ;

static struct qinit winit =
modwput, NULL, NULL, NULL, NULL, &wminfo, NULL

} ;

struct streamtab modinfo = { &rinit, &winit, NULL, NULL};

The contents of these declarations are constructed for the null module example in
this section. This module performs no processing: Its only purpose is to show
linkage of a module into the system. The descriptions in this section are general
to all STREAMS modules and drivers unless they specifically reference the exam­
ple.

The declarations shown are: the header set; the read and write QUEUE (rminfo
and wminfo) module_info structures (see figure 3-2); the module open,
readput, writeput, and close procedures; the read and write (rinit and winit)
qini t structures; and the streamtab structure.

The minimum header set for modules and drivers is types.hand stream. h.
par am. h contains definitions for NULL and other values for STREAMS
modules and drivers as shown in the Accessible Symbols and Functions section
of the Supplementary STREAMS Material chapter.

Configuring a STREAMS module or driver (see the SunOS STREAMS Topics
chapter) does not require any procedures to be externally accessible, only
streamtab. The streamtab structure name must be the prefix used in
configuring, appended with "info."

Revision A, of 27 March 1990

78 STREAMS Programming

As described in the previous section, streamtab contains qini t values for
the read and write QUEUES, pointing to a module_info and an optional
module stat structure. The two required structures, shown in figure 3-2), are
these:

struct qinit {

} ;

int (*qi_putp) ();
int (*qi_srvp) ();
int (*qi_qopen) ();
int (*qi_qclose) ();
int (*qi_qadmin) ();
struct module info
struct module stat

struct module_info {

} ;

ushort
char
short
short
short
ushort

mi_idnum;
*mi_idname;
mi_minpsz;
mi_maxpsz;
mi_hiwat;
mi_lowat;

I * put procedure * I
I * service procedure * I
I* called on each open or a push * I
I * called on last close or a pop * I
I * reserved for future use * I
qi_minfo; / information structure * I
*qi_ msta t; /*optional statistics structure * I

I* module ID number * I
I* module name * I
I* min packet size accepted.for developer use * I
I* max packet size accepted, for developer use * I
I* hi-water mark.for flow control * I
I* lo-water mark.for flow control * I

qini t contains the QUEUE procedures. All modules and drivers with the same
streamtab (i.e., the same fmodsw or cdevsw entry) point to the same
upstream and downstream qini t structure(s). The structure is meant to be
software read-only, as any changes to it affect all instantiations of that module in
all streams. Pointers to the open and close procedures must be contained in the
read qini t. These fields are ignored in the write side. The example has no ser­
vice procedure on the read or write side.

module info contains identification and limit values. All modules and
drivers with the same streamtab point to the same upstream and downstream
module_ info structure(s). As with qini t, this structure is intended to be
software read-only. However, the four limit values are copied to queue_ t (see
the Message Queues and Service Procedures section) where they are modifiable.
In the example, the flow control high and low water marks (see the Drivers sec­
tion) are zero since there are no service procedures and messages are not queued
in the module.

Three names are associated with a module: the character string in fmodsw; the
prefix for streamtab, used in configuring the module; and the module name
field in the module info structure. The module name value used in the
I_PUSH or other STREAMS ioctl () commands is contained in fmodsw.
Each module ID and module name should be unique in the system. The module
ID is currently used only in logging and tracing (see Other Facilities, in the
Introduction to STREAMS). For the example in this section, the module ID is
zero.

Minimum and maximum packet size are intended to limit the total number of
bytes contained in all (if any) of the M_DAT A blocks in each message passed to

Revision A, of 27 March 1990

Module Procedures

Chapter 3 - STREAMS Module and Driver Programming 79

this QUEUE. These limits are advisory except for the Stream Head. For certain
system calls that write to a stream, the Stream Head will observe the packet sizes
set in the write QUEUE of the module immediately below it. Otherwise, the use
of packet size is developer dependent. In the example, INFPSZ indicates unlim­
ited size on the read (input) side.

module_stat is optional, intended for future use. Currently, there is no
STREAMS support for statistical information gathering. The structure is
described in Kernel Structures in the Supplementary STREAMS Material chapter.

The null module procedures are as follows:

static int modopen(q, dev, flag, sflag)
queue_ t * q; / * pointer to read queue * I
dev _ t dev; / * major/minor device number -- zero for modules * I
int flag; /*file open flags -- zero for modules * I
int sf lag; /* stream open flags * I

I * return success * I
return (0);

static int modwput (q, mp) /* write put procedure *I
queue_t *q; /*pointer to the write queue * /
mblk t *mp; / * message pointer * I

putnext(q, mp); /*passmessagethrough *I

static int modrput(q, mp) /*readputprocedure *I
queue_ t *q; /*pointer to the read queue * I
mblk t *mp; / * message pointer * I

putnext (q, mp); /* pass message through * I

static int modclose(q, flag)
queue_ t * q; / * pointer to the read queue * I
int flag; /*file open flags - zero for modules * I

The form and arguments of these four procedures are the same in all modules and
all drivers. Modules and drivers can be used in multiple streams and their pro­
ce1ures must be reentrant.

modopen () illustrates the open call arguments and return value. The argu­
ments are the read queue pointer (q), the major/minor device number (dev, in
drivers only), the file open flags (flag, defined in sys/ file. h), and the
stream open flag (sf lag). For a module, the values of flag and dev are
al ways zero. The stream open flag can take on the following values:

Revision A, of 27 March 1990

80 STREAMS Programming

Module and Driver
Environment

STREAMS driver and module put
procedures and service procedures
have no user context. They cannot
access the user structure of a pro­
cess and must not sleep.

MODOPEN
normal module open

0 normal driver open (see the Drivers section).

CLONEOPEN
clone driver open (see the Example Driver section).

The return value from open is >= 0 for success and OPENF AIL for error. When
a driver is opened with CLONEOPEN set, the return value should be the minor
device number of the device instance that the driver actually opened. The open
procedure is called on the first I _PUSH and on all subsequent open () calls to
the same stream. During a push, a return value of OPENF AIL causes the
I PUSH to fail and the module to be removed from the stream. If OPENFAIL is
returned by a module during an open () call, the open () fails, but the stream
remains intact. For example, it can be returned by a module/driver that only
wishes to be opened by a superuser:

if (!suser()) return (OPENFAIL);

In the example, modopen () simply returns successfully.

modrput () and modwput () illustrate the common interface to put pro­
cedures. The arguments are the read or write queue_ t pointer, as appropriate,
and the message pointer. The put procedure in the appropriate side of the
QUEUE is called when a message is passed from upstream or downstream. The
put procedure has no return value. In the example, no message processing is per­
formed. All messages are forwarded using the putnext () macro (see Utilities
in the Supplementary STREAMS Material chapter. putnext () calls the put pro­
cedure of the next QUEUE in the proper direction.

The close procedure is only called on an I_ POP or on the last c 1 o s e () call of
the stream (see the last two sections of STREAMS Mechanism). The arguments
are the read queue_ t pointer and the file open flags as in modopen () . For a
module, the value of flag is always zero. There is no return value. In the
example, mode lose () does nothing.

User context is not generally available to STREAMS module procedures and
drivers. The exception is during execution of the open and close routines.
Driver and module open and close routines have user context and may access the
user structure (defined in user. h, see Accessible Symbols and Functions in
the Supplementary STREAMS Material) Appendix. These routines are allowed to
sleep, but must always return to the caller. That is, if they sleep, it must be at
priority<= PZERO, or with PCATCH set in the sleep priority. (A process that is
sleeping at priority > PZERO, with no PCATCH, and is sent a signal via
kill (2), never returns from the sleep call. Instead, the system call is aborted.)

Revision A, of 27 March 1990

3.4. Messages

Message Format

Chapter 3 - STREAMS Module and Driver Programming 81

Messages are the means of communication within a stream. A message contains
data or information identified by one of 18 message types (see Message Types in
the Supplementary STREAMS Material chapter. Messages may be generated by a
driver, a module, or the Stream Head. The contents of certain message types can
be transferred between a process and a stream by use of system calls. STREAMS
maintains its own pools for allocation of message storage.

All messages are composed of one or more message blocks. A message block is
a linked triplet; two structures and a variable length buffer block. These struc­
tures include the fields described below, along with others that are not docu­
mented. The reason some elements have been left undocumented is because they
are used by the STREAMS mechanism internally and may change from one
release to the next. Note also that programs that count on these structures to have
a specific offset or size are not portable and may not work in future releases.

The two structures in particular are msgb (mblk_t), the message block, and
datab (dblk_t), the data block:

* Fields marked with "RO" are read-only; STREAMS
* modules and drivers are allowed to examine them, but not to change
* them (except indirectly through the appropriate utility routines).
*I

struct msgb {
struct msgb
struct msgb
struct msgb
unsigned char
unsigned char
struct datab

} ;

*b_next; /*RO: next message on queue * I
b_prev; / RO: previous message on queue * I
*b _cont ; / * next message block of message * I
*b _ rpt r; /*first unread byte in buffer * I
*b _ wpt r; /*first unwritten byte in buffer * I
b_datap; / RO: data block * I

typedef struct msgb mblk_t;

struct datab

} ;

unsigned char *db_base; l*RO:firstbyteofbuffer* */
unsigned char *db_lim; /* RO: last byte+l of buffer * I
unsigned char db_ref; /* RO: cntofmsgspointingto this block*/
unsigned char db_type; /* message type *I

typedef struct datab dblk_t;

mblk _ t is used to link messages on a message queue, link the blocks in a mes­
sage, and manage the reading and writing of the associated buffer. b rptr and
b _ wptr are used to locate the data currently contained in the buffer.-As shown
in figure 3-3, mblk _ t points to the data block of the triplet. The data block con­
tains the message type, buffer limits, and control variables. db base and
db_ l im are the fixed beginning and end (+ 1) of the buffer. -

Revision A, of 27 March 1990

82 STREAMS Programming

Figure 3-3

A message consists of one or more linked message blocks. Multiple message
blocks in a message can occur, for example, because of buffer size limitations, or
as the result of processing that expands the message. When a message is com­
posed of multiple message blocks, the type associated with the first message
block determines the overall message type, regardless of the types of the attached
message blocks.

Message Form and Linkage

I
I

queue ,
<- - - - -t

header

Message
1

mblk t

mblk t

mblk t

\ ,___ _ ___, \

I

*
\

~

data

block

(type)

data

block

b next

b_prev

buffer

b_datap

buffer

mblk t

mblk t

mblk t

\

I

v

Message
2

b next
- - - - - - - - - - - ->

\
\

\

~

b_prev

data

block

(type)

A message may occur singly, as when it is processed by a put procedure, or it
may be linked on the message queue in a QUEUE, generally waiting to be pro­
cessed by the service procedure. Message 1, as shown in figure 3-3, links to mes­
sage 2. In the first message on a queue, b _prev points back to the header in the
QUEUE. The last b_next points to the tail.

Note that a data block in message 1 is shared between message 1 and another
message. Multiple message blocks can point to the same data block to conserve
storage and to avoid copying overhead. For example, the same data block, with
associated buffer, may be referenced in two messages, from separate modules
that implement separate protocol levels. (Figure 3-3 illustrates the concept, but
data blocks would not typically be shared by messages on the same queue). The
buffer can be retransmitted, if required by errors or timeouts, from either protocol
level without replicating the data. Data block sharing is accomplished by means
of a utility routine (see dupmsg () in the Utilities section of the Supplementary
STREAMS Material chapter.) STREAMS maintains a count of the message blocks
sharing a data block in the db_ ref field, which modules may examine but not

Revision A, of 27 March 1990

Message Generation and
Reception

Filter Module Declarations

Chapter 3 - STREAMS Module and Driver Programming 83

change.

STREAMS provides utility functions and macros, specified in the Utilities section
of the Supplementary STREAMS Material chapter, to assist in managing messages
and message queues, and to assist in other areas of module and driver develop­
ment. A utility routine should always be used when operating on a message
queue or accessing the message storage pool.

As discussed in the Introduction to STREAMS, most message types can be gen­
erated by modules and drivers. A few are reserved for the Stream Head. The
most commonly used types are M_DATA, M_PROTO, and M_PCPROTO.
These, and certain other message types, can also be passed between a process and
the topmost module in a stream, with the same message boundary alignment
maintained on both sides of the kernel. This allows a user process to function, to
some degree, as a module above the stream and maintain a service interface (see
the Service Interface section). M _PROTO and M _PCPROTO messages are
intended to carry service interface information among modules, drivers, and user
processes. Some message types can only be used within a stream and cannot be
sent or received from user level.

As discussed previously, modules and drivers do not interact directly with any
system calls except open () and close (). The Stream Head handles all mes­
sage translation and passing. Message transfer between process and Stream Head
can occur in different forms. For example, M _DATA, M _ PROTO, or
M _ PCPROTO messages can be transferred in their direct form by getmsg (2)
and putmsg (2) system calls (see the Service Interface section). Alternatively,
a write () causes one or more M _DATA messages to be created from the data
buffer supplied in the call. M_DATA messages received from downstream at the
Stream Head will be consumed by read (2) and copied into the user buffer. As
another example, M _ SIG causes the Stream Head to send a signal to a process
(see the Advanced Topics section).

Any module or driver can send any message type in either direction on a stream.
However, based on their intended use in STREAMS and their treatment by the
Stream Head, certain message types can be categorized as upstream, down­
stream, or bidirectional. M _DATA, M _PROTO, or M _ PCPROTO messages, for
example, can be sent in both directions. Other message types are intended to be
sent upstream to be processed only by the Stream Head. Downstream messages
are silently discarded if received by the Stream Head.

The module shown below, crmod, is an asymmetric filter. On the write side,
newline is converted to carriage return followed by newline. On the read side, no
conversion is done. The declarations are essentially the same as the null module
of the preceding section:

Revision A, of 27 March 1990

84 STREAMS Programming

bappend () Subroutine

I* Simple filter - converts newline -> carriage return, newline * I

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>

static struct module info minfo = {0,"crmod",O,INFPSZ,0,0};

static int modopen(), modrput(), modwput(), modclose();
static struct qinit rinit = {

modrput, NULL, modopen, modclose, NULL, &minfo, NULL
} ;

static struct qinit winit =
modwput, NULL, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab crmdinfo = { &rinit, &winit, NULL, NULL};

Note that, in contrast to the null module example, a single module_ info struc­
ture is shared by the read and write sides. The flag INFP s z is defined in
sys/ stream. h.

modopen (), modrput (), and modclose () are the same as in the null
module of the preceding section.

The module makes use of a subroutine, bappend (), which appends a character
to a message block:

'*
* Append a character to a message block. If (*bpp) is null, it will allocate
* a new block. Returns O when the message block is full, 1 otherwise
*I

#define MODBLKSZ 12 8 /*convenient buffer size * I
static int bappend(bpp, ch)
mblk_t **bpp;
int ch;

mblk t *bp;

if (bp = *bpp)
if (bp->b_wptr >= bp->b_datap->db_lim)

return (0);
else {

if ((*bpp =bp = allocb (MODBLKSZ, BPRI_MED))
return (1);

bp->b_datap->db_type M_DATA;

*bp->b_wptr++ = ch;
return (1);

NULL)

Revision A, of 27 March 1990

Message Allocation

Chapter 3 - STREAMS Module and Driver Programming 85

bappend () receives a pointer to a message block pointer and a character as
arguments. If a message block is supplied (*bpp ! = NULL) , bappend ()
checks if there is room for more data in the block. If not, it fails. If there is no
message block, a block with capacity MODBLKSZ is allocated through
allocb () , described below.

If the allocb () fails, bappend () returns success, silently discarding the
character. This may or may not be acceptable. For tty-type devices, it is gen­
erally acceptable. If the original message block is not full or the allocb () is
successful, bappend () stores the character in the block.

The allocb () utility (see the Utilities section of the Supplementary STREAMS
Material chapter) is used to allocate message storage from the STREAMS pool.
Its declaration is:

mblk_t *allocb(buffersize, priority)

allocb () will return a message block containing a buffer of at least the size
requested, providing there is a buffer available at the message pool priority
specified, or it will return NULL on failure.

Three levels of message pool priority can be specified (see the Utilities section of
the Supplementary STREAMS Material chapter). Priority generally does not
affect allocb () until the pool approaches depletion. In this case, for the same
internal level of pool resources, allocb () will reject low priority requests
while granting higher priority requests. This allows module and driver develop­
ers to use STREAMS memory resources to their best advantage and for the com­
mon good of the system. (Note that the current implementation disregards prior­
ity information, but this may change in future implementations.) Message pool
priority does not affect subsequent handling of the message by STREAMS.
BPRI_HI is intended for special situations, such as the transmission of urgent
messages relating to time sensitive events, conditions that could result in loss of
state, loss of data, or inability to recover. BPRI_ MED might be used, for exam­
ple, when requesting an M _DATA buffer for holding input, and BPRI _ LO might
be used for an output buffer (presuming the output data can wait in user space).
The Stream Head uses BPRI _ LO to allocate messages to contain output from a
process (e.g., by write () or putmsg()).

Note that allocb () will always return a message of type M_DATA. The type
may then be changed if required. b_rptr and b_wptr are set to db_base
(see mblk_t and dblk_t).

allocb () may return a buffer larger than the size requested. In bappend (),
if the message block contents were intended to be limited to MODBLKSZ, a
check would have to be inserted.

If allocb () indicates buffers are not available, the buf call () utility can be
used to defer processing in the module or the driver until a buffer becomes avail­
able {buf call () is described in the Advanced Topics section).

Revision A, of 27 March 1990

86 STREAMS Programming

Put Procedure
modwput () processes all the message blocks in any downstream data (type
M _DATA) messages.

I* Write side put procedure * I
static modwput(q, mp)
queue_t *q;
mblk_t *mp;
{

switch (mp->b_datap->db_type)
default:

pu tnext (q, mp) ; / * Don't do these, pass them along * I
break;

case M_DATA: {
register mblk_t *bp;
struct mblk_t *nmp = NULL, *nbp = NULL;

for (bp = mp; bp != NULL; bp = bp->b_cont)
while (bp->b_rptr < bp->b_wptr) {

if (*bp->b_rptr == '\n')
if (!bappend(&nbp, '\r'))

goto newblk;
if (!bappend(&nbp, *bp->b_rptr))

goto newblk;

bp->b_rptr++;
continue;

newblk:
if (nmp == NULL)

nmp = nbp;

I * link message block to tail of nmp * I
else

linkb(nmp, nbp);

nbp = NULL;

if (nmp == NULL)
nmp = nbp;

else linkb(nmp, nbp);
f reemsg (mp) ; / * de-allocate message * I
if (nmp)

putnext(q, nmp);
break;

Data messages are scanned and filtered. modwput () copies the original mes­
sage into a new block(s), modifying as it copies. nbp points to the current new

Revision A, of 27 March 1990

3.5. Message Queues and
Service Procedures

The queue_ t Structure

Chapter 3 - STREAMS Module and Driver Programming 87

message block. nmp points to the new message being formed as multiple
M _DATA message blocks. The outer for() loop goes through each message
block of the original message. The inner while() loop goes through each byte.
bappend () is used to add characters to the current or new block. If bap­
pend () fails, the current new block is full. If nmp is NULL, nmp is pointed at
the new block. If nmp is non-NULL, the new block is linked to the end of nmp
by use of the 1 i nkb utility.

At the end of the loops, the final new block is linked to nmp. The original mes­
sage (all message blocks) is returned to the pool by freemsg (). If a new mes­
sage exists, it is sent downstream.

Service procedures, message queues and priority, and basic flow control are all
intertwined in STREAMS. A QUEUE will generally not use its message queue if
there is no service procedure in the QUEUE. The function of a service procedure
is to process messages on its queue. Message priority and flow control are asso­
ciated with message queues.

As discussed previously, there are structure elements that may be undocumented
for reasons of privacy. Any elements that are used internally will not be shown
here. The operation of a QUEUE revolves around the queue_ t structure, which
contains the following fields, and possibly others that are undocumented:

'*
* Fields marked with "RO" are read-only; STREAMS
* modules and drivers are allowed to examine them, but not to change
* them (except indirectly through the appropriate utility routines).
*I

struct queue {

} ;

struct qinit *q_qinfo; /*RO:proceduresandlimitsforqueue */
struct msgb *q_first; /*RO:headofmsgqueueforQUEUE *I
struct msgb *q_last; l*RO:tailofmsgqueueforQUEUE *I
struct queue *q_next; /*RO:nextQUEUEinstream *I
caddr t q_ptr; /*to private data structure * /
ushort q_count; l*RO:countofbytesonmessagequeue *I
ushort q_ flag; /*RO: QUEUE state * I
short q_ minps z; / * min packet size accepted by this QUEUE * /
short q_ maxps z; / * max packet size accepted by this QUEUE * /
ushort q_hiwat; /* msg queue high water mark,for flow control * I
ushort q_lowat; / * msg queue low water mark,for flow control * I

typedef struct queue queue_t;

As described previously, two of these structures form a module. When a
queue_ t pair is allocated, their contents are zero unless specifically initialized.
The following fields are initialized by STREAMS:

Revision A, of 27 March 1990

8 8 STREAMS Programming

Service Procedures

A service routine must never sleep
and it has no user context. It must
always return to its caller.

o q_qinfo - from streamtab

o q_minpsz, q_maxpsz, q_hiwat, q_lowat -frommodule_info
Copying values from module_info allows them to be changed in the
queue_ t without modifying the template (i.e., streamtab and
module_info) values.

q_ count is used in flow control calculations and is the aggregate number of
bytes in the messages currently on the queue.

Put procedures are generally required in pushable modules. Service procedures
are optional. The general processing flow when both procedures are present is as
follows. A message is received by the put procedure in a QUEUE, where some
processing may be performed on the message. The put procedure transfers the
message to the service procedure by use of the putq () utility. putq () places
the message on the tail (see q_last in queue_t) of the message queue. Then,
putq () will generally schedule the QUEUE for execution by the STREAMS
scheduler following all other QUEUES currently scheduled. After some indeter­
minate delay (intended to be short), the scheduler calls the service procedure.
The service procedure gets the first message (q_ first) from the message queue
with the getq () utility. The service procedure processes the message and
passes it to the put procedure of the next QUEUE with put next(). The service
procedure gets the next message and processes it. This FIFO processing contin­
ues until the queue is empty or flow control blocks further processing. The ser­
vice procedure returns to caller.

If no processing is required in the put procedure, the procedure does not have to
be explicitly declared. Rather, putq () can be placed in the qini t structure
declaration for the appropriate QUEUE side, to queue the message for the service
procedure, e.g.:

static struct qinit winit = { putq, rnodwsrv, ... };

More typically, put procedures will, as a minimum, process priority messages
(see below) to avoid queueing them.

The key attribute of a service procedure in the STREAMS architecture is delayed
processing. When a service procedure is used in a module, the module developer
is implying that there are other, more time-sensitive activities to be performed
elsewhere in this stream, in other streams, or in the system in general. The pres­
ence of a service procedure is mandatory if the flow control mechanism is to be
utilized by the QUEUE.

The delay for STREAMS to call a service procedure will vary with implementa­
tion and system activity. However, once the service procedure is scheduled, it is
guaranteed to be called before user level activity is resumed.

Also see the Put and Service Procedures section of the Introduction to STREAMS.

Revision A, of 27 March 1990

Message Queues and Message
Priority

Figure 3-4

Flow Control

Chapter 3 - STREAMS Module and Driver Programming 89

Figure 3-3 depicts a message queue linked by b _ next and b _prev pointers.
As discussed in the Introduction to STREAMS, message queues grow when the
STREAMS scheduler is delayed from calling a service procedure because of sys­
tem activity, or when the procedure is blocked by flow control. When it is called
by the scheduler, the service procedure processes enqueued messages in FIFO
order. However, certain conditions require that the associated message (e.g., an
M ERROR) reach its stream destination as rapidly as possible. STREAMS does
this by assigning all message types to one of the two levels of message queueing
priority- high priority and ordinary. As shown in figure 34, when a message is
queued, the putq () utility will place high priority messages at the head of the
message queue, FIFO within their order of queueing.

Message Queue Priority

QUEUE Message queue

·::;:.::~::: ·····i I I I I I I I I I I I 1
1 High Priority I Ordinary :

Messages Messages

Head Tail

High priority messages are not subject to flow control. When they are queued by
putq (), the associated QUEUE is always scheduled (in the same manner as any
QUEUE; following all other QUEUEs currently scheduled). When the service
procedure is called by the scheduler, the procedure uses get q () to retrieve the
first message on queue, which will be a high priority message, if present. Service
procedures must be implemented to act on high priority messages immediately
(see next section). The above mechanisms-priority message queueing, absence
of flow control, and immediate processing by a procedure-result in rapid tran­
sport of priority messages between the originating and destination components in
the stream.

The priority level for each message type is shown in the Message Types section
of the Supplementary STREAMS Material chapter. Message queue management
utilities are provided for use in service procedures (see the Utilities section of the
Supplementary STREAMS Material chapter).

The elements of flow control are discussed in the Other Facilities section of the
Introduction to STREAMS. Flow control is only used in a service procedure.
Module and driver coding should observe the following guidelines for message
priority. High priority messages, determined by the type of the first block in the
message,

(bp->b_datap->db_type > QPCTL),

are not subject to flow control. They should be processed immediately and for­
warded, as appropriate.

Revision A, of 27 March 1990

90 STREAMS Programming

Example

For ordinary messages, flow control must be tested before any processing is per­
formed. The canput () utility determines if the forward path from the QUEUE
is blocked by flow control. The manner in which STREAMS determines flow
control status for modules and drivers is described under Driver Flow Control in
the Drivers section.

This is the general processing for flow control. Retrieve the message at the head
of the queue with get q () . Determine if the type is high priority and not to be
processed here. If both are true, pass the message to the put procedure of the fol­
lowing QUEUE with putnext (). If the type is ordinary, use canput () to
determine if messages can be sent onward. If can put () indicates messages
should not be forwarded, put the message back on the queue with pu tbq () and
return from the procedure. In all other cases, process the message.

The canonical representation of this processing within a service procedure is as
follows:

\.

while (getq != NULL)
if (high priority message I I canput)

process message
putnext

else
putbq
return

NOTE A service procedure must process all messages on its queue unless flow control
prevents this.

When an ordinary message is enqueued by putq (), putq () will cause the ser­
vice procedure to be scheduled only if the queue was previously empty. If there
are messages on the queue, put q () presumes the service procedure is blocked
by flow control and the procedure will be automatically rescheduled by
STREAMS when the block is removed. If the service procedure cannot complete
processing as a result of conditions other than flow control (e.g., no buffers), it
must assure it will return later (e.g., by use of bufcall (),seethe Advanced
Topics section) or it must discard all messages on the queue. If this is not done,
STREAMS will never schedule the service procedure to be run unless the
QUEUE's put procedure queues a priority message with putq ().

pu tbq () replaces messages at the beginning of the appropriate section of the
message queue in accordance with their message type priority (see figure 3-4).
This might not be the same position at which the message was retrieved by the
preceding getq (). A subsequent getq (} might return a different message.

The filter module example of the Messages section is here modified to have a ser­
vice procedure. The declarations from the example are unchanged except for the
following lines (changes are shown in bold):

Revision A, of 27 March 1990

Procedures

Chapter 3 - S1REAMS Module and Driver Programming 91

#include <sys/stropts.h>

static struct module_info minfo = {
O, "ps_crmod", 0, INFPSZ, 512, 128

} ;

static int modopen(), modrput(), modwput();
static int modwsrv(), modclose ();

static struct qinit winit = {
modwput, modwsrv, NULL, NULL, NULL, &minfo, NULL

} ;

stropt s. h is generally intended for user level. However, it includes
definitions of flush message options common to user level, modules, and drivers.
module_info now includes the flow control high- and low-watermarks (512
and 128) for the write QUEUE (even though the same module_info is used on
the read QUEUE side, the read side has no service procedure so flow control is
not used). qini t now contains the service procedure pointer. modopen (),
modclose (), and modrput () (read side put procedure) are unchanged from
the Modules and Messages sections. The bappend () subroutine is also
unchanged from the Messages section.

The write side put procedures and the beginning of the service procedure are
shown below:

static int modwput(q, mp)
queue_t *q;
register mblk_t *mp;
{

if (mp->b_datap->db_type > QPCTL &&
mp->b_datap->db_type != M_FLUSH)

put next (q, mp) ;
else

putq (q, mp) ; /*Put it on the que-ue * I

static int modwsrv(q)
queue_t *q;
{

mblk t *mp;

while ((mp= getq(q)) != NULL) {
switch (mp->b_datap->db_type)

default:
I* always putnext high priority messages * I
if (mp->b_datap->db_type > QPCTL I I

canput(q->q_next)) {
putnext (q, mp) ;

Revision A, of 27 March 1990

92 STREAMS Programming

continue;

else {
putbq(q, mp);
return;

case M FLUSH:
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
putnext(q, mp);
continue;

ps _ crmod performs a similar function to crmod of the previous section, but it
uses a service routine.

modwput () , the write put procedure, switches on the message type. High
priority messages that are not type M_FLUSH are putnext () to avoid
scheduling. The others are queued for the service procedure. An M _ FLUSH
message is a request to remove all messages on one or both QUEUEs. It can be
processed in the put or service procedure.

modwsrv () is the write service procedure. It takes a single argument, a pointer
to the write queue_ t. modwsrv () processes only one high priority message,
M _ FLUSH. All other high priority messages are passed through. Actually, no
other high priority messages should reach modwsrv (). The check is included
to show the canonical form when high priority messages are queued by the put
procedure.

For an M_FLUSH message, modwsrv () checks the first data byte. If
FLUSHW (defined in stropts. h) is set in the byte, the write queue is flushed
by use of flushq (). flushq () takes two arguments, the queue pointer and a
flag. The flag indicates what should be flushed, data messages (FLUSHDATA)
or everything (FLUSHALL). In this case, data includes M_DATA, M_PROTO,
and M _PCPROTO messages. The choice of what types of messages to flush is
module-specific. As a general rule, FLUSHDAT A should be used.

Ordinary messages will be returned to the queue if

canput(q->q_next)

returns false, indicating the downstream path is blocked.

In the remaining part ofmodwsrv (), M_DATA messages are processed simi-

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming 93

larly to the previous example:
r

case M_DATA:
mblk_t *nbp NULL;
mblk_t *next;

if (!canput(q->q_next))
putbq (q, mp);
return;

I* Filter data, appending to queue * I
for (; mp != NULL; mp next)

while (mp->b_rptr < mp->b_wptr)

if (*mp->b_rptr == '\n')
if (!bappend(&nbp, '\r'))

goto push;
if (!bappend(&nbp, *mp->b_rptr))

goto push;
mp->b_rptr++;
continue;

push:
putnext (q, nbp) ;
nbp = NULL;
if (!canput(q->q_next))

if (mp->b_rptr >= mp->b_wptr)
next= mp->b_cont;
freeb (mp) ;
mp=next;

if (mp)
putbq(q, mp);

return;

next= mp->b_cont;
freeb (mp) ;

if (nbp)
putnext(q, nbp);

The differences in M _DATA processing between this and the previous example
relate to the manner in which the new messages are forwarded and to flow con­
trol. For the purpose of demonstrating alternative means of processing messages,
this version creates individual new messages rather than a single message con­
taining multiple message blocks. When a new message block is full, it is
immediately forwarded with put next () rather than being linked into a single,

Revision A, of 27 March 1990

94 STREAMS Programming

3.6. Drivers

Overview of Drivers

large message (as was done in the previous example). This alternative may not
be desirable because message boundaries will be altered and because of the addi­
tional overhead of handling and scheduling multiple messages.

When the filter processing is performed (following push()), flow control is
checked (canput()) after, rather than before, each new message is forwarded.
This is done because there is no provision to hold the new message until the
QUEUE becomes unblocked. If the downstream path is blocked, the remaining
part of the original message is returned to the queue. Otherwise, processing con­
tinues.

Another difference between the two examples is that each message block of the
original message is returned to the pool with freeb () when its processing is
completed.

This section describes the organization of a STREAMS driver, and discusses some
of the processing typically required in drivers. Certain elements of driver flow
control are discussed. Procedures for handling user ioctls, common to modules
and drivers, are described.

As discussed under Stream Construction in the STREAMS Mechanism section,
driver and module organization are very similar. The interfaces to all the driver
procedures are identical to module interfaces, and driver procedures must be
reentrant~ As described under Environment in the Modules section, the driver put
and service procedures have no user environment and cannot sleep. Other than
with open () and close (), a driver interfaces with a user process by mes­
sages, and indirectly, through flow control.

There are two significant differences between modules and drivers. First, a dev­
ice driver must also be accessible from an interrupt as well as from the stream,
and second, a driver can have multiple streams connected to it. Multiple connec­
tions occur when more than one minor device uses the same driver and in the
case of multiplexors (see the Multiplexing section). However, these particular
differences are not recognized by the STREAMS mechanism; they are handled by
developer-provided code included in the driver procedures.

Figure 3-5 shows multiple streams (corresponding to minor devices), to a com­
mon driver. This depiction of two streams connected to a single driver is some­
what misleading. These are really two distinct streams opened from the same
cdevsw (i.e., same major device). Consequently, they have the same stream­
tab and the same driver procedures. Modules opened from the same fmodsw
might be depicted similarly if they had any reason to be cognizant, as do drivers,
of common resources or alternate instantiations.

Multiple instantiations (minor devices) of the same driver are handled during the
initial open for each device. Typically, the queue_ t address is stored in a
driver-private structure indexed by the minor device number. The structure is
typically pointed at by q_ptr (see the Message Queues and Service Procedures
section). When the messages are received by the QUEUE, the calls to the driver

+~.!! Revision A, of 27 March 1990

Figure 3-5

Driver Flow Control

Chapter 3 - STREAMS Module and Driver Programming 95

put and service procedures pass the address of the queue_ t, allowing the pro­
cedures to determine the associated device.

In addition to these differences, a driver is always at the end of a stream. As a
result, drivers must include standard processing for certain message types that a
module might simply be able to pass to the next component.

Device Driver Streams

major/devO
vnode

major/devl
vnode

Stream
Head

Module(s)

Stream
Head

Module(s)

QUEUE Pair QUEUE Pair

Port
0

Ori ver Procedures
and

Interrupt Code

Port
1

The same utilities (described in the Message Queues and Service Procedures sec­
tion) and mechanisms used for module flow control are used by drivers. How­
ever, they are typically used in a different manner in drivers, because a driver
generally does not have a service procedure. The developer sets flow control
values (mi_hiwat and mi_lowat) in the write side module_info structure,
which STREAMS will copy into q_hiwat and q_lowat in the queue_t
structure of the QUEUE. A device driver typically has no write service pro­
cedure, but does maintain a write message queue. When a message is passed to
the driver write side put procedure, the procedure will determine if device output
is in progress. In the event output is busy, the put procedure cannot immediately
send the message and calls the putq () utility (see the Utilities section of the
Supplementary STREAMS Material chapter) to queue the message. (Note that the
driver might have elected to queue the message in all cases.) putq () recog­
nizes the absence of a service procedure and does not schedule the QUEUE.

When the message is queued, putq () increments the value of q_ count (the
enqueued byte count, see the beginning of the Message Queues and Service Pro­
cedures section) by the size of the message and compares the result against the
driver's write high water limit (q_ hiwat) value. If the count exceeds
q_hiwat, putq () will set the internal FULL (see Flow Control in the

Revision A, of 27 March 1990

96 STREAMS Programming

Driver Programming

Driver Declarations

Introduction to STREAMS) indicator for the driver write QUEUE. This will cause
messages from upstream to be halted (canput () returns FALSE) until the
write queue count reaches q_lowat. The driver messages waiting to be output
are dequeued by the driver output interrupt routine with getq (), which decre­
ments the count. If the resulting count is below q_lowat, getq () will back­
enable any upstream QUEUE that had been blocked. The above STREAMS pro­
cessing also applies to modules on both write and read sides of the stream.

Device drivers typically discard input when unable to send it to a user process.
However, STREAMS allows flow control to be used on the driver read side, possi­
bly to handle temporary upstream blocks. This is described in the Advanced
Topics section in the Advanced Flow Control section.

To some extent, a driver or module can control when its upstream transmission
will become blocked. Control is available through the M _ SETOPfS message
(see the Advanced Topics section, here, and the Message Types section of Supple­
mentary STREAMS Material) to modify the Stream Head read side flow control
limits.

The example below shows how a simple interrupt-per-character line printer
driver could be written. The driver is unidirectional and has no read side pro­
cessing. It demonstrates some differences between module and driver program­
ming, including the following:

Open handling
A driver is passed a minor device number or is asked to select one (see next
section).

Flush handling
A driver must loop M _ FLUSH messages back upstream.

Ioctl handling
A driver must acknowledge, in the form of a nak, ioctl messages it does not
understand. This is discussed under Driver and Module /octls, below. Write
side flow control is also illustrated as described above.

The driver declarations are as follows:

/ * Simple line printer driver. * I

#include "lp.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/dir.h>
#include <sys/signal.h>
#include <sys/user.h>
#include <sys/errno.h>

I* required/or user.h * I
I* required/or user.h * I

static struct module info minfo

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming 97

0, "lp", O, INFPSZ, 150, 50
} ;

static int lpopen(), lpclose(), lpwput();

static struct qinit rinit = {
NULL, NULL, lpopen, lpclose, NULL, &minfo, NULL

} ;

static struct qinit winit = {
lpwput, NULL, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab lpinfo = { &rinit, &winit, NULL, NULL};

#define SET OPTIONS (('1'<<8) 11) /*reallymustbeina.hfile,
see _IO(x,y) in syslioccom.h * I

!*
* This is a private data structure, one per minor device number.
*!
struct lp {

} ;

short flags;
mblk_t *msg;
queue_t *qptr;

I* Flags bits * I

I* flags -- see below * I
I* current message being output * I
I * back pointer to write queue * I

#define BUSY 1 / * device is running and interrupt is pending * I

struct lp lp_lp[NLP]; /*perdevicelpstructurearray *I
int lp_cnt = NLP; /*numberofvalidminordevices */

As noted for modules in the Modules section, configuring a STREAMS driver
does not require the driver procedures to be externally accessible; only stream­
tab must be. All STREAMS driver procedures would typically be declared
static.

There is no read side put or service procedure. The flow control limits for use on
the write side are 50 and 150 characters. The private lp structure is indexed by
the minor device number and contains these elements:

f1ags

msg

A set of flags. Only one bit is used: BUSY indicates that output is active
and a device interrupt is pending.

A pointer to the current message being output.

qptr
A back pointer to the write queue. This is needed to find the write queue

Revision A, of 27 March 1990

98 STREAMS Programming

Driver Open

during interrupt processing.

The driver open, lpopen (), has the same interface as the module open:

static int lpopen(q, dev, flag, sflag)
queue_t *q; /* read queue * I
dev_t dev;
int flag;
int sflag;
{

struct lp *lp;

I* Check if non-driver open * I
if (sflag)

return (OPENFAIL);

I * Dev is major/minor * I
dev = minor(dev);
if (dev >= lp_cnt)

return (OPENFAIL);

I* Check if open already. q_ptr is assigned below * I
if (q->q_ptr) {

u.u_error = EBUSY; /*only] useroftheprinteratatime *I
return (OPENFAIL);

lp = &lp_lp[dev];
lp->qptr = WR(q);
q->q_ptr = (char*) lp;
WR(q)->q_ptr = (char*) lp;
return (dev) ;

The stream flag, sf lag, must have the value 0, indicating a normal driver open.
dev holds both the major and minor device numbers for this port. After check­
ing sf lag, the open flag, lpopen () extracts the minor device from dev,
using the minor () macro defined in sysmacros. h.

Remember that the use of major devices, minor devices, and the minor ()
macro may be machine dependent.

The minor device number selects a printer and must be less than 1 p _ c nt.

The next check, if (q->q__pt r) ... , determines if this printeris already
open. In this case, EBUSY is returned to avoid merging printouts from multiple
users. q_ptr is a driver/module private data pointer. It can be used by the
driver for any purpose and is initialized to zero by STREAMS. In this example,
the driver sets the value of q__ptr, in both the read and write queue_ t struc­
tures, to point to a private data structure for the minor device, lp _ lp [dev].

Revision A, of 27 March 1990

Driver Processing Procedures

Chapter 3 - STREAMS Module and Driver Programming 99

WR is one of three QUEUE pointer macros. As discussed in the Stream Construc­
tion section, there are no physical pointers between QUEUEs, and these macros
(see Utilities in the Supplementary STREAMS Material section) generate the
pointer. WR(q) generates the write pointer from the read pointer, RD (q) gen­
erates the read pointer from the write pointer and OT HER(q) generates the mate
pointer from either.

This example only has a write put procedure:

static int lpwput(q, mp)
queue_t *q; /*writequeue *I
register mblk_t *mp; /* message pointer *I
{

register struct lp *lp;
int s;

lp = (struct lp *)q->q_ptr;

switch (mp->b_datap->db_type)
default:

freemsg(mp);
break;

case M FLUSH:
I* Canonical flush handling * I
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
s = splS ();
I* also flush lp->msg since it is logically
* at the head of the write queue * I
if (lp->msg) {

freemsg(lp->msg);
lp->msg = NULL;

(void) splx(s);

if (*mp->b_rptr & FLUSHR) {
flushq(RD(q), FLUSHDATA);
*mp->b_rptr &= -FLUSHW;
qreply(q, mp);

else
freemsg(mp);

break;

case M IOCTL:
case M DATA:

putq(q, mp);
s = splS ();
if (! (lp->flags & BUSY))

lpout (lp);
(void) splx(s);

+ ~,!!,!! Revision A, of 27 March 1990

100 STREAMS Programming

Driver Flush Handling

Driver Interrupt

The write put procedure, lpwput (), illustrates driver M_FLUSH handling:
Note that all drivers are expected to incorporate this flush handling. If FLUSHW
is set, the write message queue is flushed, and also (for this example) the leading
message (lp->msg). spl5 is used to protect the critical code, assuming the
device interrupts at level 5. If FLUSHR is set, the read queue is flushed, the
FLUSHW bit is cleared, and the message is sent upstream using qreply (). If
FLUSHR is not set, the message is discarded.

The Stream Head always performs the following actions on flush requests
received on the read side from downstream. If FLUSHR is set, messages waiting
to be sent to user space are flushed. If FLUSHW is set, the Stream Head clears
the FLUSHR bit and sends the M _ FLUSH message downstream. In this manner,
a single M _ FLUSH message sent from the driver can reach all QUEUEs in a
stream. A module must send two M _ FLUSH messages to have the same effect.

lpwput () enqueues M_DATA and M_IOCTL (see the Driver and Module
/octls section, below) messages and, if the device is not busy, starts output by
calling lpout (). Message types that are not recognized are discarded.

lpintr () is the driver interrupt routine:

I* Device interrupt routine. * I

lpintr(dev)
int dev; I * minor device number of lp * I

register struct lp *lp;

lp = &lp_lp[dev];
if (! (lp->flags & BUSY)) {

printf("lp: unexpected interrupt\n");
return;

lp->flags &= -BUSY;
lpout(lp);

I* Start output to device -
called at interrupt level, used by put procedure and driver * I

lpout(lp)
register struct lp *lp;
{

register mblk_t *bp;
queue_t *q;

q = lp->qptr;
loop:

if ((bp = lp->msg) NULL) {

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming 101

if ((bp = getq(q)) == NULL)
return;

if (bp->b_datap->db_type
lpdoioctl(lp, bp);
goto loop;

lp->msg = bp;

if (bp->b_rptr >= bp->b_wptr)
bp = lp->msg->b_cont;
lp->msg->b_cont = NULL;
freeb(lp->msg);
lp->msg = bp;
goto loop;

lpoutchar(lp, *bp->b_rptr++);
lp->flags I= BUSY;

M_IOCTL)

lpout () simply takes a character from the queue and sends it to the printer.
The processing is logically similar to the service procedure in the Message
Queues and Service Procedures section. For convenience, the message currently
being output is stored in lp->msg.

Two mythical routines need to be supplied:

lpoutchar
send a character to the printer and interrupt when complete

lpsetopt
set the printer interface options

Driver and Module loctls Drivers and modules interface with ioctl (2) system calls through messages.
Almost all STREAMS generic ioctl () s (see the streamio (4) man page) go
no further than the Stream Head. The capability to send an ioctl () down­
stream, is provided by the I_ STR ioctl. The Stream Head processes an
I_ STR by constructing an M _ IOCTL message (see Message Types in the Sup­
plementary STREAMS Material chapter) from data provided in the call, and sends
that message downstream.

NOTE In addition, since ioctl () codes in SunOS include the size of the parameter
used for the ioctl () as well as an indication of whether this parameter is to
be copied to or from the user process, the I_STR ioctl need not be used if
the parameter contains 255 or fewer bytes and is of a fixed size.

The user process that issued the i o ct 1 () is blocked until a module or driver
responds with either an M_IOCACK (ack) or M_IOCNAK (nak) message, or
until the request "times out" after a user-specified interval. The STREAMS
module or driver that generates an ack can also return information to the process.
If the Stream Head does not receive one of these messages in the specified time,
the ioctl() call fails.

Revision A, of 27 March 1990

102 STREAMS Programming

A module that receives an unrecognized M _ IOCTL message should pass it on
unchanged. A driver that receives an unrecognized M_IOCTL should nak it.

lpout () traps M_IOCTL messages and calls lpdoioctl () to process them:

lpdoioctl(lp, mp)
struct lp *lp;
mblk_t *mp;
{

struct iocblk *iocp;
queue_t *q;

q = lp->qptr;

I* 1st block contains iocblk structure * I
iocp = (struct iocblk *)mp->b_rptr;

switch (iocp->ioc_cmd) {
case SET OPTIONS:

I* Count should be exactly one short' s worth * I
if (iocp->ioc_count != sizeof(short))

goto iocnak;
I* Actual data is in 2nd message block * I
lpsetopt(lp, *(short *)mp->b_cont->b_rptr);

I* ACK the ioctl * I
mp->b_datap->db_type
iocp->ioc_count = 0;
qreply(q, mp);
break;

default:
iocnak:

I* NAK the ioctl * I
mp->b_datap->db_type
qreply(q, mp);

M_IOCACK;

M_IOCNAK;

lpdoioctl () illustrates M_IOCTL processing: The first part also applies to
modules. An M_IOCTL message contains a struct iocblk in its first
block. The first block is followed by zero or more M _DATA blocks. The
optional M _DATA blocks typically contain any user-supplied data.

The form of an iocblk is as follows:

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming 103

struct iocblk {

} ;

int ioc_cmd;
ushort ioc_uid;
ushort ioc_gid;
uint ioc_id;
uint ioc_count;
int ioc_error;
int ioc_rval;

I * ioctl command type * I
I* effective uid of user * I
I* effective gid of user * I
I* ioctlid * I
I* count of bytes in data field * I
I * error code * I
I* return value * I

ioc_cmd contains the command supplied by the user. In this example, only one
command is recognized, SET_OPfIONS. ioc_count contains the number of
user supplied data bytes. For this example, it must equal the size of a short (2
bytes). The user data is sent directly to the printer interface using
lpsetopt (). Next, the M_IOCTL message is changed to type M_IOCACK
and the ioc count field is set to zero to indicate that no data is to be returned
to the user. Finally, the message is sent upstream using qr ep 1 y () . If
ioc _ count was left non-zero, the Stream Head would copy that many bytes
from the 2nd - Nth message blocks into the user buffer.

If the M _IOCTL message is not understood or in error for any reason, the driver
must set the type to M_IOCNAK and send the message upstream. No data can
be sent to a user in this case. The Stream Head will cause the ioctl () call to
fail with the error number EINV AL. The driver has the option of setting
ioc error to an alternate error number if desired.

NOTE ioc_error can be set to a non-zero value by bothM_IOCACK and
M IOCNAK. This will cause that value to be returned as an error number to the
process that sent the ioctl ().

Driver Close The driver close clears any message being output. Any messages left on the mes­
sage queue will be automatically removed by STREAMS.

static int lpclose(q)
queue_t *q; /* read queue *I
{

struct lp *lp;
int s;

lp = (struct lp *) q->q_ptr;
I* Free message, queue is automatically flushed by STREAMS * /
s = splS();
if (lp->msg) {

freemsg(lp->msg);
lp->msg = NULL;

(void) splx(s);

Revision A, of 27 March 1990

104 STREAMS Programming

3. 7. Example Driver

Cloning

Loop-Around Driver

The clone mechanism has been developed as a convenience. It allows a user to
open a driver without specifying the minor device. When a stream is opened, a
flag indicating a clone open is tested by the driver open routine. If the flag is set,
the driver returns an unused minor device number. The clone driver (see the
clone (4) man page) is a system dependent pseudo driver.

The loop-around driver is not part of the SunOS 4.1 release. It is documented
here simply as another example of a STREAMS driver.

The loop-around driver is a pseudo-driver that loops data from one open stream
to another open stream. The user processes see the associated files as a full
duplex pipe. The streams are not physically linked. The driver is a simple upper
multiplexor (see the next section), which the driver simply passes messages from
one stream's write QUEUE to the other stream's read QUEUE.

To create a pipe, a process opens two streams, obtains the minor device number
associated with one of the returned file descriptors, and sends the device number
in a LOOP_ SET io ct 1 (2) to the other stream. For each open () , the driver
open places the passed queue_ t pointer in a driver interconnection table,
indexed by the device number. When the driver later receives the LOOP _SET
request as an M_IOCTL message, it uses the device number to locate the other
stream's interconnection table entry, and stores the appropriate queue_t
pointers in both of the streams' interconnection table entries.

Subsequently, when messages other than M_IOCTL or M_FLUSH are received
by the driver on either stream's write side, the messages are switched to the read
QUEUE following the driver on the other stream's read side. The resultant logi­
cal connection is shown in figure 3-6. Flow control between the two streams
must be handled by special code since STREAMS will not automatically pro­
pagate flow control information between two streams that are not physically
interconnected.

Revision A, of 27 March 1990

Figure 3-6

Chapter 3 - STREAMS Module and Driver Programming 105

Loop Around Streams

CLONE/
loop/dev3

Stream
Head

Module(s)

The declarations for the driver are:

I*
* Loop around driver
*I

#include "loop.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/user.h>
*include <sys/errno.h>

CLONE/
loop/dev7

Stream
Head

Module(s)

static struct module info minfo = {
o, "loop", 0, INFPSZ, 512, 128

} ;

static int loopopen(), loopclose(), loopwput();
static int loopwsrv(), looprsrv();

static struct qinit rinit = {
NULL, looprsrv,loopopen, loopclose,NULL, &minfo,NULL

} ;

static struct qinit winit = {
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL

} ;

struct streamtab loopinfo {&rinit,&winit,NULL,NULL};

Revision A, of 27 March 1990

106 STREAMS Programming

I,.

struct loop
queue_ t * qpt r; / * back pointer to write queue * I
queue_ t * oqpt r; /*pointer to connected read queue * I

} ;

#define LOOP SET _row (1, 1, int) /*should be in a .hfile,
see _]OW(x,y,t) in syslioccom.h * I

struct loop loop_loop[NLOOP];
int loop_cnt = NLOOP;

The loop structure contains the interconnection information for a pair of
streams. loop_ loop is indexed by the minor device number. When a stream
is opened to the driver, the address of the corresponding loop_ loop element is
placed in q_pt r (private data structure pointer) of the read and write side
queue_ts. Since STREAMS clears q_ptr when the queue_t is allocated, a
NULL value of q_ptr indicates an initial open (). loop_loop is used to
verify that this stream is connected to another open stream.

The open procedure includes canonical clone processing which enables a single
file system node to yield a new minor device/vnode each time the driver is
opened:

static int loopopen(q, dev, flag, sflag)
queue_t *q;
{

struct loop *loop;

!*
* If CLONEOPEN, pick a minor device number to use.
* Otherwise, check the minor device range.
*I
if (sflag == CLONEOPEN) {

for (dev = 0; dev < loop_cnt; dev++)
if (loop_loop[dev] .qptr == NULL)

break;

else
dev = minor (dev) ; /*device not a clone, but specific * I

if (dev >= loop_cnt)
return (OPENFAIL); /*default= ENX/0 */

I* Set up data structures * I
if (q->q_pt r) / * already open * I

return (dev) ;

loop= &loop_loop[dev];
WR(q)->q_ptr = (char*) loop;
q->q_ptr = (char*) loop;
loop->qptr = WR(q);

Revision A, of 27 March 1990

Write Put Procedure

Chapter 3 - STREAMS Module and Driver Programming 107

I*
* The return value is the minor device.
* For CLONEOPEN case, this will be used for
* newly allocated vnode
*I
return (dev) ;

In loopopen (), sf lag can be CLONEOPEN, indicating that the driver
should pick a minor device (i.e., the user does not care which minor device is
used). In this case, the driver scans its private loop _loop data structure to find
an unused minor device number. If sf lag has not been set to CLONEOPEN,
the passed-in minor device is used.

The return value is the minor device number. In the CLONEOPEN case, this
value will be used by the STREAMS driver open code for the newly allocated
vnode and will then be passed to the user.

Since the messages are switched to the read QUEUE following the other stream's
read side, the driver needs a put procedure only on its write side:

static int loopwput(q, mp)
queue_t *q;
mblk_t *mp;
{

register struct loop *loop;

loop= (struct loop *)q->q_ptr;

switch (mp->b_datap->db_type)
case M_IOCTL: {

struct iocblk *iocp;
int error;

iocp = (struct iocblk *)mp->b rptr;
switch (iocp->ioc_cmd) {
case LOOP_SET: {

int to; /*other minor device * I
I*
* Sanity check. ioc _ count contains the amount of
* user supplied data, which must equal the size of an int.
*I

if (iocp->ioc_count != sizeof (int)) {
error= EINVAL;
goto iocnak;

I* fetch other dev from 2nd message block * /

to= *(int *)mp->b_cont->b_rptr;

Revision A, of 27 March 1990

108 STREAMS Programming

I*
* More sanity checks. The minor must be in range, open already.
* Also, this device and the other one must be disconnected.
*I

if (to>= loop_cnt I I to< 0 I I
!loop_loop[to] .qptr) {
error= ENXIO;
goto iocnak;

if (loop->oqptr I I loop_loop[to] .oqptr) {
error= EBUSY;
goto iocnak;

I*
* Cross connect streams via the loop structures
*I

loop->oqptr = RD(loop_loop[to] .qptr);
loop_loop[to] .oqptr = RD(q);

I*
* Return successful ioctl. Set ioc count
* to zero, since there is no data to return.
*I

mp->b_datap->db_type
iocp->ioc_count = O;
qreply(q, mp);
break;

M_IOCACK;

default:
error

iocnak:
I*

EINVAL;

* Bad ioctl. Setting ioc _ error causes the
* ioctl call to return that particular errno.
* By default, ioctl will return EINV AL on failure
*I
mp->b_datap->db_type = M_IOCNAK;
iocp->ioc_error = error; /* setreturnederrno *I
qreply(q, mp);

break;

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming 109

loopwput () shows another use of an ioctl () call (see Driver and Module
/octls in the Drivers section, above). The driver supports a LOOP_ SET value of
ioc_cmd in the iocblk of the M_IOCTLmessage. LOOP_SETinstructs the
driver to connect the current open stream to the stream indicated in the message.
The second block of the M _ IOCTL message holds an integer that specifies the
minor device number of the stream to connect to.

The driver performs several sanity checks: Does the second block have the
proper amount of data? Is the "to" device in range? Is the "to" device open? Is
the current stream disconnected? Is the "to" stream disconnected?

If everything checks out, the read queue_ t pointers for the two streams are
stored in the respective oqptr fields. This cross-connects the two streams
indirectly, via loop_loop.

Canonical flush handling is incorporated in the put procedure:

case M FLUSH:
if (*mp->b_rptr & FLUSHW)

flushq(q, 0);
if (*mp->b_rptr & FLUSHR)

flushq(RD(q), O);
*mp->b_rptr &= -FLUSHW;
qreply(q, mp);

else
freemsg (mp) ;

break;
default:

!*
* If this stream isn't connected, send an M _ ERROR upstream.
*I
if (loop->oqptr == NULL) {

(void) putctll(RD(q)->q_next, M_ERROR, ENXIO);
freemsg(mp);
break;

putq(q, mp);

Finally, loopwput () enqueues all other messages (e.g., M_DATA or
M _PROTO) for processing by its service procedure. A check is made to see if
the stream is connected. If not, an M _ ERROR is sent upstream to the Stream
Head (see below).

putctll () and putctl () (see below) are utilities that allocate a non-data
(i.e., not M_DATA, M_PROTO, or M_PCPROTO) type message, place one byte
in the message (for ,putctll{}} and call the put procedure of the specified
QUEUE (see Utilities in the Supplementary STREAMS Material chapter).

Revision A, of 27 March 1990

110 STREAMS Programming

Service Procedures Service procedures are required on both the write and read sides for purposes of
flow control:
r

static int loopwsrv(q)
register queue_t *q;
{

mblk_t *mp;
register struct loop *loop;

loop= (struct loop *)q->q_ptr;

while ((mp= getq(q)) != NULL) {

I*
* Check ifwe can put the message up the other stream read queue
*I

if (mp->b_datap->db_type <= QPCTL &&
!canput(loop->oqptr->q_next)) {

putbq (q, mp) ; /* read side is blocked * I
break;

I * send message * I
I* to queue following other stream read queue * I

putnext(loop->oqptr, mp);

static int looprsrv(q)
queue_t *q;

I* Entered only when "back enabled" by flow control * I

struct loop *loop;

loop= (struct loop*) q->q_ptr; /* guards against race condition *I
if (loop->oqptr == NULL)

return;

I * manually enable write service procedure * I

qenable(WR(loop->oqptr));

The write service procedure, loopwsrv (), takes on the canonical form (see the
Message Queues and Service Procedures section) with a difference. The QUEUE
being written to is not downstream, but upstream (found via oqptr) on the other

Revision A, of 27 March 1990

Close

NOTE

3.8. Multiplexing

Chapter 3 - STREAMS Module and Driver Programming 111

stream.

In this case, there is no read side put procedure so the read service procedure,
looprsrv (), is not scheduled by an associated put procedure, as has been
done previously. looprsrv () is scheduled only by being back-enabled when
its upstream becomes unstuck from flow control blockage. The purpose of the
procedure is to re-enable the writer (loopwsrv()) by using oqptr to find the
related queue_t. loopwsrv () cannot be directly back-enabled by STREAMS
because there is no direct queue_ t linkage between the two streams. Note that
no message ever gets queued to the read service procedure. Messages are kept on
the write side so that flow control can propagate up to the Stream Head. There is
a defensive check to see if the cross-connect has broken. qenable () schedules
the write side of the other stream.

loopclose () breaks the connection between the streams.

static int loopclose(q)
queue_t *q;
{

register struct loop *loop;

loop= (struct loop *)q->q_ptr;
loop->qptr = NULL;

!*
* If we are connected to another stream, break the
* linkage, and send a hangup message.
* The hangup message causes the stream head to reject writes,
* allow the queued data to be read completely, and then
* return EOF on subsequent reads.
*I

if (loop->oqptr) {
((struct loop *)loop->oqptr->q_ptr)->qptr = NULL;
((struct loop *)loop->oqptr->q_ptr)->oqptr = NULL;
putctl(loop->oqptr->q_next, M_HANGUP);
loop->oqptr = NULL;

loopclose () sends an M_HANGUPmessage (see above) up the connected
stream to the Stream Head.

This driver can be implemented much more cleanly by actually linking the
q_next pointers of the queue_t pairs of the two streams.

Revision A, of 27 March 1990

112 STREAMS Programming

Multiplexing Configurations This section describes how STREAMS multiplexing configurations are created
and discusses multiplexing drivers. A STREAMS multiplexor is a pseudo-driver
with multiple streams connected to it. The primary function of the driver is to
switch messages among the connected streams. Multiplexor configurations are
created from user level by system calls. The Other Facilities section of the
Introduction to STREAMS contains the required introduction to STREAMS multi­
plexing.

STREAMS-related system calls are used to set up the "plumbing", or stream inter­
connections, for multiplexing pseudo-drivers. The subset of these calls that
allows a user to connect (and disconnect) streams below a pseudo-driver is
referred to as the multiplexing facility. This type of connection will be referred
to as a 1-to-M, or lower, multiplexor configuration. This configuration must
always contain a multiplexing pseudo-driver, which is recognized by STREAMS
as having special characteristics.

Multiple streams can be connected above a driver by use of open (2) calls.
This was done for the loop-around driver of the previous section and for the
driver handling multiple minor devices in the Drivers section. There is no differ­
ence between the connections to these drivers, only the functions performed by
the driver are different. In the multiplexing case, the driver routes data between
multiple streams. In the device driver case, the driver routes data between user
processes and associated physical ports. Multiplexing with streams connected
above will be referred to as an N-to-1, or upper, multiplexor. STREAMS does not
provide any facilities beyond open () and close (2) to connect or disconnect
upper streams for multiplexing purposes.

From the driver's perspective, upper and lower configurations differ only in the
way they are initially connected to the driver. The implementation requirements
are the same: route the data and handle flow control. All multiplexor drivers
require special developer-provided software to perform the multiplexing data
routing and to handle flow control. STREAMS does not directly support flow
control among multi pie streams.

M-to-N multiplexing configurations are implemented by using both of the above
mechanisms in a driver. Complex multiplexing trees can be created by cascading
multiplexing streams below one another.

As discussed in the Drivers section, the multiple streams thai. represent minor
devices are actually distinct streams in which the driver keeps track of each
stream attached to it. The streams are not really connected to their common
driver. The same is true for STREAMS multiplexors of any configuration. The
multiplexed streams are distinct and the driver must be implemented to do most
of the work. As stated above, the only difference between configurations is the
manner of connecting and disconnecting. Only lower connections have use of
the multiplexing facility.

Revision A, of 27 March 1990

Connecting Lower Streams

Chapter 3 - STREAMS Module and Driver Programming 113

A lower multiplexor is connected as follows: The initial open () to a multiplex­
ing driver creates a stream, as in any other driver. As usual, open () uses the
first two streamtab structure entries (see Opening a Stream in the Streams
Mechanism section) to create the driver QUEUEs. At this point, the only distin­
guishing characteristic of this stream are non-NULL entries in the streamtab
st_mux [rw] init (mux) fields:
r

struct streamtab
struct qinit
struct qinit
struct qinit
struct qinit
char

} ;

*st_ rdini t; / * defines read QUEUE * I
*st_wrinit; /*defines write QUEUE * I
*st_ muxr ini t; /*for multiplexing drivers only * I
*st_ muxw ini t; /*for multiplexing drivers only * I
**st _modl is t ; / * list of modules to be pushed * I

These fields are ignored by the open () (see the rightmost stream in figure 3-7).
Any other stream subsequently opened to this driver will have the same
streamtab and thereby the same mux fields.

Next, another file is opened to create a (soon to be) lower stream. The driver for
the lower stream is typically a device driver (see the leftmost stream in figure 3-
7). This stream has no distinguishing characteristics. It can include any driver
compatible with the multiplexor. Any modules required on the lower stream
must be pushed onto it now.

Next, this lower stream is connected below the multiplexing driver with an
I_LINK or I_PLINK ioctl () call (see the streamio (4) man page). These
ioct ls differ in that the multiplexing configuration created by I_PLINK per­
sists after the upper stream is closed whereas that created by I_ PLINK does not.
As shown in figure 3-1, all stream components are constructed in a similar
manner. The Stream Head points to the stream-head-routines as its procedures
(known via its queue_ t). An I_ LINK to the upper stream, referencing the
lower stream, causes STREAMS to modify the contents of the Stream Head in the
lower stream. The pointers to the stream-head-routines, and other values, in the
Stream Head are replaced with those contained in the mux fields of the multi­
plexing driver's streamtab. Changing the stream-head-routines on the lower
stream means that all subsequent messages sent upstream by the lower stream's
driver will, ultimately, be passed to the put procedure designated in
st_muxrinit, the multiplexing driver. The I_LINK also establishes this
upper stream as the control stream for this lower stream. STREAMS remembers
the relationship between these two streams until the upper stream is closed, or the
lower stream is unlinked.

Finally, the Stream Head sends to the multiplexing driver an M _IOCTL message
with ioc_cmd set to I_LINK or !_PLINK (see discussions of the iocblk
structure in the Drivers section, above, and in the Kernel Structures section of
Supplementary STREAMS Material chapter). The M_DATA part of the
M_IOCTL contains a linkblk structure:

Revision A, of 27 March 1990

114 STREAMS Programming

Disconnecting Lower Streams

,
struct linkblk {

queue_t *l_qtop;
queue_t *l_qbot;
int l_index;

} ;

I * lowest level write que-ue of upper stream * I
I* highest level write que-ue of lower stream * I
I * system-unique index for lower stream. * I

The multiplexing driver stores information from the linkblk in private storage
and returns an M _IOCACK message (ack). l _ index is returned to the process
requesting the I_ LINK or I_ PLINK. This value can be used later by the process
to disconnect this stream, as described below. linkblk contents are further
discussed below.

An I_LINK or I_PLINK is required for each lower stream connected to the
driver. Additional upper streams can be connected to the multiplexing driver by
open () calls. Any message type can be sent from a lower stream to user
process(es) along any of the upper streams. The upper stream(s) provides the
only interface between the user process(es) and the multiplexor.

Note that no direct data structure linkage is established for the linked streams.
The q_ next pointers of the lower stream still appear to connect with a Stream
Head. Messages flowing upstream from a lower driver (a device driver or
another multiplexor) will enter the multiplexing driver (i.e., Stream Head) put
procedure with l _ qbot as the queue_ t value. The multiplexing driver has to
route the messages to the appropriate upper (or lower) stream. Similarly, a mes­
sage coming downstream from user space on the control, or any other, upper
stream has to be processed and routed, if required, by the driver.

Also note that the lower stream (see the headers and file descriptors in figure 3-8)
is no longer accessible from user space. This causes all system calls to the lower
stream to return EINVAL, with the exception of close (). This is why all
modules have to be in place before the lower stream is linked to the multiplexing
driver. As a general rule, the lower stream file should be closed after it is linked
(see following section). This does not disturb the multiplexing configuration.

Note that the absence of direct linkage between the upper and lower streams
means that STREAMS flow control has to be handled by special code in the multi­
plexing driver. The flow control mechanism cannot see across the driver.

In general, multiplexing drivers should be implemented so that new streams can
be dynamically connected to, and existing streams disconnected from, the driver
without interfering with its ongoing operation. The number of streams that can
be connected to a multiplexor is developer dependent. However, there is a sys­
tem limit, NMUXLINK, to the number of streams that can be linked in the sys­
tem (please refer to SunOS STREAMS Topics Tunable Parameters section).

Dismantling a lower multiplexor is accomplished by disconnecting (unlinking)
the lower streams. Unlinking can be initiated in three ways: an I_ UNLINK
ioctl () referencing a specific stream, an !_UNLINK indicating all lower
streams, or the last close () (i.e., causes the associated file to be closed) of the
control stream. Note that if the connection was established with !_PLINK, then
it needs to be undone with I_PUNLINK. As in the link, an unlink sends a

+!!!!! Revision A, of 27 March 1990

Multiplexor Construction
Example

Figure 3-7

Chapter 3 - STREAMS Module and Driver Programming 115

linkblk structure to the driver in an M_IOCTL message. The !_UNLINK call,
which unlinks a single stream, uses the l_index value returned in the I_LINK
to specify the lower stream to be unlinked. The latter two calls must designate a
file corresponding to a control stream. This causes all the lower streams that
were previously linked (by this control stream) to be unlinked. However, the
driver sees a series of individual unlinks.

If the file descriptor for a lower stream was previously closed, a subsequent
unlink will automatically close the stream. Otherwise, the lower stream must be
closed by close () following the unlink. STREAMS will automatically disman­
tle all cascaded multiplexors (below other multiplexing streams) if their control­
ling stream is closed. This holds true for connections established with I_ LINK
but not true for I _PLINK, which is the whole point for I _PLINK. An I_ UNLINK
will leave lower, cascaded multiplexing streams intact unless the stream file
descriptor was previously closed.

This section describes an example of multiplexor construction and usage. A
multiplexing configuration similar to the Internet figure in the Other Facilities
section of the Introduction to STREAMS is discussed. Figure 3-7 shows the
streams before their connection to create the multiplexing configuration of figure
3-8. Multiple upper and lower streams interface to the multiplexor driver. The
user processes of figure 3-8 are not shown in figure 3-7.

Internet Multiplexor Before Connecting

r---,
• Setup and Supervisory Process ,
I I

~ I ~~e-~s~~~ _1_ I_~~~:. ~-,-1- ~~f ~--;-,-,- ~~e!:~~ -,-,--~,:~~:.-, ~
.

Stream Head

QUEU~Pr. A

Net 1
Module

Ethernet
Driver

Stream Head

QUEU~Pr. B

LAPB
Driver

Stream Head

QUEU~Pr. C

802.2
Driver

Stream Head

QUEU~Pair

Stream Head

QUEU~Pair

Multiplexor
Driver

The Ethernet, LAPB and IEEE 802.2 device drivers terminate links to other
nodes. IP (Internet Protocol) is a multiplexor driver. IP switches datagrams
among the various nodes or sends them upstream to a user(s) in the system. The
Net modules would typically provide a convergence module that matches the IP
and device driver interface.

Revision A, of 27 March 1990

116 STREAMS Programming

Figure 3-8

Figure 3-7 depicts only a portion of the full, larger stream. As shown in the dot­
ted rectangle above the IP multiplexor, there generally would be an upper TCP
multiplexor, additional modules and, possibly, additional multiplexors in the
stream. Multiplexors could also be cascaded below the IP driver if the device
drivers were replaced by multiplexor drivers.

Internet Multiplexor After Connecting

r---------------------------, U , Setup and Supervisory , ser
1 Process , Processes

------ ------ ---~-----~-----------

QUEU~Pair

QUEU~Pair A

Net 1 Module

Ethernet
Driver

........ • \J •• ••••••
: fds
•••••• 'fa 'f,."fs"

• • • • • • • • ~)J .\J ••••••••
~ Upper
: Multiplexor or
: Module

QUEU~ Pair

Internet Protocol
Multiplexor Driver

QUEU~PairB

Net2Module

LAPB
Driver

QUEU~PairC

802.2
Driver

Streams A, B, and Care opened by the process, and modules are pushed as
needed. Two upper streams are opened to the IP multiplexor. The rightmost
stream represents multiple streams, each connected to a process using the net­
work. The stream second from the right provides a direct path to the multiplexor
for supervisory functions. It is the control stream, leading to a process that sets
up and supervises this configuration. It is always directly connected to the IP
driver. Although not shown, modules can be pushed on the control stream.

After the streams are opened, the supervisory process typically transfers routing
information to the IP drivers (and any other multiplexors above the IP), and ini­
tializes the links. As each link becomes operational, its Stream is connected
below the IP driver. If a more complex multiplexing configuration is required,
the IP multiplexor stream with all its connected links can be connected below
another multiplexor driver.

Revision A, of 27 March 1990

Multiplexing Driver

Chapter 3 - STREAMS Module and Driver Programming 117

As shown in figure 3-8, the file descriptors for the lower device driver streams are
left dangling. The primary purpose in creating these streams was to provide parts
for the multiplexor. Those not used for control and not required for error
recovery (by reconnecting them through an !_UNLINK ioctl()) have no
further function. As stated above, these lower streams can be closed to free the
file descriptor without any effect on the multiplexor. A setup process installing a
configuration containing a large number of drivers should do this to avoid run­
ning out of file descriptors.

This section contains an example of a multiplexing driver that implements an N­
to-1 configuration. This configuration might be used for terminal windows,
where each transmission to or from the terminal identifies the window. This
resembles a typical device driver, with two differences: the device handling func­
tions are performed by a separate driver, connected as a lower stream, and the
device information (i.e., relevant user process) is contained in the input data
rather than in an interrupt call.

Each upper stream is connected by an open (2) • A single lower stream is
opened and then it is linked by use of the multiplexing facility. This lower
stream might connect to the tty driver. The implementation of this example is a
foundation for an M to N multiplexor.

As in the loop-around driver, flow control requires the use of standard and special
code, since physical connectivity among the streams is broken at the driver. Dif­
ferent approaches are used for flow control on the lower stream, for messages
coming upstream from the device driver, and on the upper streams, for messages
coming downstream from the user processes.

The multiplexor declarations are:

#include "mux.h"
#include <sys/types.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/stream.h>
#include <sys/stropts.h>
#include <sys/errno.h>

static int muxopen(), muxclose(), muxuwput();
static int muxlwsrv(), muxlrput();

static struct module_info info= {
O, "mux", 0, INFPSZ, 512, 128

} ;

static struct qinit urinit = { /*upper read * /
NULL, NULL, muxopen, muxclose, NULL, &info, NULL

} ;

static struct
muxuwput,

} ;

static struct
muxlrput,

qinit
NULL,

qinit
NULL,

uwinit = {

NULL, NULL,

lrinit = {

NULL, NULL,

I * upper write *I
NULL, &info, NULL

I * lower read * I
NULL, &info, NULL

Revision A, of 27 March 1990

118 STREAMS Programming

} ;

static struct qinit lwinit = { /* lower write * I
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL

} ;

struct streamtab muxinfo =
{&urinit, &uwinit, &lrinit, &lwinit};

struct mux {
queue_ t * qpt r; / * back pointer to read queue * I

} ;

struct mux mux_mux[NMUX];
int mux_cnt = NMUX;

queue_ t *muxbot; / * linked lower queue * I
int muxerr; / * set if error of hangup on lower stream * I

static queue_t *get_next_q();

The four streamtab entries correspond to the upper read, upper write, lower
read, and lower write qini t structures. The multiplexing qini t structures
replace those in each (in this case there is only one) lower Stream Head after the
I_LINK has completed successfully. In a multiplexing configuration, the pro­
cessing performed by the multiplexing driver can be partitioned between the
upper and lower QUEUES. There must be upper stream write and lower stream
read put procedures. Typically, only upper write side and lower read side pro­
cedures are used. Application-specific flow control requirements might modify
this. If the QUEUE procedures of the opposite upper/lower QUEUE are not
needed, the QUEUE can be skipped over, and the message put to the following
QUEUE.

In the example, the upper read side procedures are not used. The lower stream
read QUEUE put procedure transfers the message directly to the read QUEUE
upstream from the multiplexor. There is no lower write put procedure because
the upper write put procedure directly feeds the lower write service procedure, as
described below.

The driver uses a private data structure, mux _ mux. mux _ mux [dev] points
back to the opened upper read QUEUE. This is used to route messages coming
upstream from the driver to the appropriate upper QUEUE. It is also used to find
a free minor device for a CLONEOPEN driver open case.

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming

The upper QUEUE open contains the canonical driver open code:

static int muxopen(q, dev, flag, sflag)
queue_t *q;
{

struct mux *mux;

if (sflag == CLONEOPEN)
for (dev = O; dev < mux_cnt; dev++)

if (mux_mux[dev] .qptr NULL)
break;

else
dev = minor(dev);

if (dev >= mux_cnt)
return (OPENFAIL);

mux = &mux_mux[dev];
mux->qptr = q;
q->q_ptr = (char*) mux;
WR(q)->q_ptr = (char*) mux;
return (dev);

119

muxopen checks for a clone or ordinary open call. It loads q_ptr to point at
the mux _ mux[] structure.

The core multiplexor processing is the following: downstream data written to an
upper stream is queued on the corresponding upper write message queue. This
allows flow control to propagate towards the Stream Head for each upper stream.
However, there is no service procedure on the upper write side. All M _DATA
messages from all the upper message queues are ultimately dequeued by the ser­
vice procedure on the lower (linked) write side. The upper write streams are ser­
viced in a round-robin fashion by the lower write service procedure. A lower
write service procedure, rather than a write put procedure, is used so that flow
control, coming up from the driver below, may be handled.

On the lower read side, data coming up the lower stream is passed to the lower
read put procedure. The procedure routes the data to an upper stream based on
the first byte of the message. This byte holds the minor device number of an
upper stream. The put procedure handles flow control by testing the upper
stream at the first upper read QUEUE beyond the driver. That is, the put pro­
cedure treats the stream component above the driver as the next QUEUE.

Revision A, of 27 March 1990

120 STREAMS Programming

Figure 3-9

Upper Write Put Procedure

Example Multiplexor Configuration

Multiplexor Routines

L

This is shown (sort of) in figure 3-9. Multiplexor Routines are all the above pro­
cedures. Ul and U2 are queue_ t pairs, each including a write queue_ t
pointed at by an 1 qtop in a linkblk (see the beginning of this section). Lis
the queue_ t pair that contains the write queue_ t pointed at by l _ qbot. Nl
and N2 are the modules (or Stream Head or another multiplexing driver) seen by
L when read side messages are sent upstream.

muxuwput, the upper QUEUE write put procedure, traps ioctls, in particular
I LINK and I UNLINK: - -

static int muxuwput(q, mp)
queue_t *q;
mblk_t *mp;

int s;
struct mux *mux;

mux = (struct mux *)q->q_ptr;
switch (mp->b_datap->db_type)
case M_IOCTL: {

struct iocblk *iocp;
struct linkblk *linkp;

I*
* Ioctl. Only channel O can, do ioctls. Two
* calls are recognized: I_LiNK, andl_UNUNK
*I

if (mux != mux_mux)
goto iocnak;

iocp = (struct iocblk *) mp->b_rptr;
switch (iocp->ioc_cmd) {

Revision A, of 27 March 1990

,

Chapter 3 - STREAMS Module and Driver Programming 121

case I LINK:

I*
* Link. The data contains a linkblk structure
* Remember the bottom queue in muxbot.
*I

if (muxbot != NULL)
goto iocnak;

linkp = (struct linkblk *) mp->b_cont->b_rptr;
muxbot = linkp->l_qbot;
muxerr = O;
mp->b_datap->db_type
iocp->ioc_count = O;
qreply(q, mp);
break;

case I UNLINK:
!*

M IOCACK;

* Unlink. The data contains a linkblk structure.
* Should not fail an unlink. Null out muxbot.
*!

linkp = (struct linkblk *) mp->b_cont->b_rptr;
muxbot = NULL;
mp->b_datap->db_type M_IOCACK;
iocp->ioc_count = O;
qreply(q, mp);
break;

default:
iocnak:

I* fail ioctl * I

mp->b_datap->db_type
qreply (q, mp) ;

break;

M_IOCNAK;

First, there is a check to enforce that the stream associated with minor device 0
will be the single controlling stream. Ioctls are only accepted on this stream. As
described previously, a controlling stream is the one that issues the I_ LINK.
Having a single control stream is a recommended practice. I_ LINK and
I_UNLINK include a linkblk structure, described previously, containing:

1_qtop
The upper write QUEUE from which the ioctl is coming. It should always
equal q.

Revision A, of 27 March 1990

122 STREAMS Programming

l_qbot
The new lower write QUEUE. It is the former Stream Head write QUEUE. It
is of most interest since that is where the multiplexor gets and puts its data.

1 index
A unique (system wide) identifier for the link. It can be used for routing, or
during selective unlinks, as described above. Since the example only sup­
ports a single link, l _ index is not used.

For I_ LINK, l _ qbot is saved in muxbot and an ack is generated. From this
point on, until an I_ UNLINK occurs, data from upper queues will be routed
throughmuxbot. Note that when an I_LINK is received, the lower stream has
already been connected. This allows the driver to send messages downstream to
perform any initialization functions. Returning an M _ IOCNAK message (nak) in
response to an I_ LINK will cause the lower stream to be disconnected.

The I_ UNLINK handling code nulls out muxbot and generates an ack. A nak
should not be returned to an I UNLINK. The Stream Head assures that the lower
stream is connected to a multiplexor before sending an I_ UNLINK M _IOCTL.

muxuwput handles M _ FLUSH messages as a normal driver would:

case M FLUSH:
if (*mp->b_rptr & FLUSHW)

flushq(q, FLUSHDATA);
if (*mp->b_rptr & FLUSHR)

flushq(RD(q), FLUSHDATA);
*mp->b_rptr &= -FLUSHW;
qreply(q, mp);

else
freemsg(mp);

break;
case M DATA:

I*
* Data. I/we have no bottom queue--> fail
* Otherwise, queue the data, and invoke the lower
* service procedure.
*I
if (muxerr I I muxbot == NULL)

goto bad;
pu tq (q, mp) ; / * place message on upper write message queue * I
qenable (muxbot) ; / * lower service write procedure * I
break;

default:
bad:

I*
* Send an error message upstream.
*I
mp->b_datap->db_type = M_ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EINVAL;
qreply(q, mp);

Revision A, of 27 March 1990

Lower QUEUE Write Service
Procedure

Chapter 3 - STREAMS Module and Driver Programming 123

M _DATA messages are not placed on the lower write message queue. They are
queued on the upper write message queue. putq () recognizes the absence of
the upper service procedure and does not schedule the QUEUE. Then, the lower
service procedure, muxlwsrv is scheduled with qenable () (see Utilities in
the Supplementary STREAMS Material chapter) to start output. This is similar to
starting output on a device driver. Note that muxuwput can not access
muxlwsrv (the lower QUEUE write service procedure, contained in muxbot)
by the conventional STREAMS calls, putq () or putnext () (to a
muxlwput). Both calls require that a message be passed, but the messages
remain on the upper stream.

muxlwsrv, the lower (linked) queue write service procedure is scheduled
directly from the upper service procedures. It is also scheduled from the lower
stream, by being back-enabled when the lower stream becomes unblocked from
downstream flow control.
r

static int muxlwsrv(q)
register queue_t *q;
{

register mblk_t *mp, *bp;
register queue_t *nq;

I*
* While lower stream is not blocked, find an upper queue to
* service (get_ next_ q) and send one message from it downstream.
*I
while (canput(q->q_next))

nq = get_next_q();
if (nq == NULL)

break;
mp = getq (nq) ;
I*
* Prepend the outgoing message with a single byte header
* that indicates the minor device number it came from.
*I
if ((bp = allocb(l, BPRI_MED)) == NULL)

printf("mux: allocb failed (size 1)\n");
freemsg (mp) ;
continue;

*bp->b_wptr++ = (struct mux *)nq->q_ptr - mux_mux;
bp->b_cont = linkb(bp,mp);
putnext(q, bp);

muxlwsrv takes data from the upper queues and puts it out through muxbot.
The algorithm used is simple round robin. While we can put to

sun
microsysterns

Revision A, of 27 March 1990

124 STREAMS Programming

muxbot->q_next, we select an upper QUEUE (via get_next_q) and move
a message from it to muxbot. Each message is prepended with a one byte
header that indicates which upper stream it came from.

Finding messages on upper write queues is handled by get_ next_ q () :

I*
* Round-robin scheduling.
* Return next upper queue that needs servicing.
* Returns NUU when no more work needs to be done.
*I

static queue_t *
get_next_q ()
{

static int next;
inti, start;
register queue_t *q;

start= next;
for (i = next; i < mux_cnt; i++)

if (q = mux_mux[i] .qptr) {
q = WR(q);
if (q->q_first)

next= i+l;
return (q);

for (i = O; i < start; i++)
if (q = mux_mux[i] .qptr)

q = WR (q);
if (q->q_first)

next= i+l;
return (q);

return (NULL);

get_next_queue () searches the upper queues in a round robin fashion look­
ing for the first one containing a message. It returns the queue_ t pointer or

Revision A, of 27 March 1990

Lower Read Put Procedure

Chapter 3 - STREAMS Module and Driver Programming 125

NULL if there is no work to do.

The lower (linked) queue read put procedure is:

static int muxlrput(q, mp)
queue_t *q;
mblk_t *mp;
{

queue_t *uq;
mblk_t *b_cont;
int dev;

switch(mp->b_datap->db_type)
case M FLUSH:

I*
* Flush queues. NOTE: sense of tests is reversed
* since we are acting like a "stream head"
*I

if (*mp->b_rptr & FLUSHR)
flushq(q, O);

if (*mp->b_rptr & FLUSHW)
*mp->b_rptr &= -FLUSHR;
qreply(q, mp);

else
f reemsg (mp) ;

break;

case M ERROR:
case M HANGUP:

muxerr = 1;
freemsg(mp);
break;

case M DATA:
I*
* Route message. First byte indicates
* device to send to. No flow control.
*
* Extract and delete device number. If the leading block is
* now empty and more blocks follow, strip the leading block.
* The stream head interprets a leading zero length block
* as an EOF regardless of what follows (sigh).
*I

dev = *mp->b_rptr++;
if (mp->b_rptr == mp->b_wptr &&

(b_cont = mp->b_cont)) {
freeb (mp) ;
mp= b_cont;

Revision A, of 27 March 1990

126 STREAMS Programming

I * Sanity check. Device must be in range * I

if (dev < 0 I I dev >= mux_cnt)
freemsg (mp);
break;

I*
* If upper stream is open and not backed up,
* send the message there, otherwise discard it.
*!

uq = mux_mux[dev] .qptr;
if (uq != NULL && canput(uq->q_next))

putnext(uq, mp);
else

freemsg(mp);
break;

default:
f reemsg (mp) ;

muxlrput receives messages from the linked stream. In this case, it is acting
as a Stream Head. It handles M _ FLUSH messages. Note the code is reversed
from that of a driver, handling M _ FLUSH messages from upstream.

muxlrput also handles M_ERROR and M_HANGUP messages. If one is
received, it locks up the upper streams.

M _DATA messages are routed by looking at the first data byte of the message.
This byte contains the minor device of the upper stream. If removing this byte
causes the leading block to be empty, and more blocks follow, the block is dis­
carded. This is done because the Stream Head interprets a leading zero length
block as an EOF [see read (2)]. Several sanity checks are made: Does the
message have at least one byte? Is the device in range? Is the upper stream
open? Is the upper stream not full?

This mux does not do end-to-end flow control. It is merely a router (like the
Department of Defense's IP protocol). If everything checks out, the message is
put to the proper upper QUEUE. Otherwise, the message is silently discarded.

The upper stream close routine simply clears the mux entry so this queue will no

Revision A, of 27 March 1990

3.9. Service Interface

Definition

Message Usage

Chapter 3 - STREAMS Module and Driver Programming 127

longer be found by get_ next_ queue () :
,

!*
* Upper queue close
*!
static int muxclose(q)
queue_t *q;
{

((struct mux *)q->q_ptr)->qptr NULL;

STREAMS provides the means to implement a service interface between any two
components in a stream, and between a user process and the topmost module in
the stream. A service interface is defined at the boundary between a service user
and a service provider. A service interface is a set of primitives and the rules for
the allowable sequences of primitives across the boundary. These rules are typi­
cally represented by a state machine. In STREAMS, the service user and provider
are implemented in a module, driver, or user process. The primitives are carried
bidirectionally between a service user and provider in M_PROTO and
M _ PCPROTO (generically, PROTO) messages. M _ PCPROTO is the high prior­
ity version ofM_PROTO.

As described in the Message Types section of the Supplementary STREAMS
Material chapter), PROTO messages can be multi-block, with the second
through last blocks of type M _DATA. The first block in a PROTO message con­
tains the control part of the primitive in a form agreed upon by the user and pro­
vider and the block is not intended to carry protocol headers. (Although its use is
not recommended, upstream PROTO messages can have multiple PROTO blocks
at the start of the message. getmsg () will compact the blocks into a single
control part when sending to a user process.) The M_DATA block(s) contains
any data part associated with the primitive. The data part may be processed in a
module that receives it, or it may be sent to the next stream component, along
with any data generated by the module. The contents of PROTO messages and
their allowable sequences are determined by the service interface specification.

PROTO messages can be sent bidirectionally (up and downstream) on a stream
and bidirectionally between a stream and a user process. pu tms g (2) and
getmsg (2) system calls are analogous, respectively, to write (2) and
read (2) except that the former allow both data and control parts to be
(separately) passed, and they observe message boundary alignment across the
user-stream boundary. putmsg () and getmsg () separately copy the control
part (M_PROTO or M_PCPROTO block) and data part (M_DATA blocks)
between the stream and user process.

An M _ PCPROTO message is normally used to acknowledge M _PROTO mes­
sages and not to carry protocol expedited data. M_PCPROTO insures that the

Revision A, of 27 March 1990

128 STREAMS Programming

Example

Declarations

acknowledgement reaches the service user before any other message. If the ser­
vice user is a user process, the Stream Head will only store a single
M _ PCPROTO message, and discard subsequent M _PCPROTO messages until
the first one is read with getmsg (2) .

The following rules pertain to service interfaces:

o Modules and drivers that support a service interface must act upon all
PROTO messages and not pass them through.

o Modules may be inserted between a service user and a service provider to
manipulate the data part as it passes between them. However, these modules
may not alter the contents of the control part (PROTO block, first message
block) nor alter the boundaries of the control or data parts. That is, the mes­
sage blocks comprising the data part may be changed, but the message may
not be split into separate messages nor combined with other messages. In
addition, modules and drivers must observe the rule that high priority mes­
sages are not subject to flow control and forward them accordingly (e.g., see
the beginning ofmodwsrv () in the Message Queues and Service Pro­
cedures section). High priority messages also bypass flow control at the
user-stream boundary (e.g., see putmsg (2)) •

The example below is part of a module that illustrates the concept of a service
interface. The module implements a simple datagram interface.

The service interface primitives are defined in the declarations:

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/errno.h>

I*
* Primitives initiated by the service user:
*I
#define BIND_REQ
#define UNITDATA_REQ
I*

1
2

I * bind request * I
I * unit data request * I

* Primitives initiated by the service provider:
*I
#define OK ACK
#define ERROR ACK
#define UNITDATA IND
I*

3
4
5

I * bind acknowledgment * I
I * error acknowledgment * I
I * unit data indication * I

* The following structures define the format of the
* stream message block of the above primitives.
*I
struct bind_req { I * bind request * I

long PRIM_type; I* always BIND _REQ * I
long BIND_addr; I * addr to bind * I

} ;

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming 129

struct unitdata_req { I* unitdata request * I
long PRIM_type; I* always UNITDATA_REQ *I
long DEST_addr; I* dest addr * I

} ;

struct ok_ack {
long PRIM_type;

I * ok acknowledgment * I
I* always OK_ACK * I

} ;

struct error_ack { /* error acknowledgment *I
long PRIM_ type; / * always ERROR _ACK * I
long UNIX_ error; / * SunOS error code * I

} ;

struct unitdata_ind { I * unitdata indication * I
long PRIM_type; I* always UNITDATA_JND * I
long SRC_addr; I * source addr * I

} ;

union primitives { /*unionofallprimitives */

} ;

long type;
struct bind_req bind_req;
struct unitdata_req unitdata_req;
struct ok_ack ok_ack;
struct error_ack error_ack;
struct unitdata_ind unitdata_ind;

struct dgproto {
short state;
long addr;

I* structure per minor device * I
I * current provider state * I

} ;

I* Provider states * I

#define IDLE 0
#define BOUND 1

I* net address * I

In general, the M _PROTO or M _ PCPROTO block is described by a data struc­
ture containing the service interface information. In this example, union
primitives is that structure.

Two commands are recognized by the module:

BIND_REQ
Give this stream a protocol address, i.e. give it a name on the network. After
a BIND_ REQ is completed, datagrams from other senders will find their
way through the network to this particular stream.

UNITDATA_REQ
Send a datagram to the specified address.

Three messages are generated:

OK ACK
A positive acknowledgement (ack) of BIND_ REQ.

ERROR ACK
A negative acknowledgement of BIND_ REQ.

Revision A, of 27 March 1990

130 STREAMS Programming

Service Interface Procedure

UNITDATA IND
A datagram from the network has been received (this code is not shown).

The ack of a BIND_ REQ informs the user that the request was syntactically
correct (or incorrect if ERROR _ACK). The receipt of a BIND_ REQ is ack­
nowledged with an M _PCPROTO to insure that the acknowledgement reaches
the user before any other message. For example, a UNITDAT A_ IND could
come through before the bind has completed, and the user would get confused.

The driver uses a per-minor device data structure, dgproto, which contains the
following:

state
current state of the stream (endpoint) IDLE or BOUND

addr
network address that has been bound to this stream

It is assumed (though not shown) that the module open procedure sets the write
queue q_pt r to point at one of these structures.

The write put procedure is:

static int protowput(q, mp)
queue_t *q;
mblk_t *mp;
{

union primitives *proto;
struct dgproto *dgproto;
int err;

dgproto = (struct dgproto *) q->q_ptr;

switch (mp->b_datap->db_type)
default:

I* don't understand it * I
mp->b_datap->db_type = M ERROR;
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);
break;

case M FLUSH:
I* standard flush handling goes here .. . * I
break;

case M PROTO:
I* Protocol message -> user request * I
proto = (union primitives*) mp->b_rptr;

switch (proto->type) {
default:

mp->b_datap->db_type = M_ERROR;
mp->b_rptr=mp->b_wptr=mp->b_datap->db_base;
*mp->b_wptr++ = EPROTO;
qreply(q, mp);

Revision A, of 27 March 1990

Chapter 3 - STREAMS Module and Driver Programming 131

return;

case BIND_REQ:
if (dgproto->state != IDLE) {

err= EINVAL;
goto error_ack;

if (mp->b_wptr - mp->b_rptr
!= sizeof(struct bind_req))

err= EINVAL;
goto error_ack;

if (err= chkaddr(proto->bind_req.BIND_addr))
goto error_ack;

dgproto->state = BOUND;
dgproto->addr = proto->bind_req.BIND_addr;
mp->b_datap->db_type = M_PCPROTO;
proto->type = OK_ACK;
mp->b_wptr =

mp->b_rptr + sizeof(struct ok_ack);
qreply (q, mp) ;
break;

error ack:
mp->b_datap->db_type = M_PCPROTO;
proto->type = ERROR_ACK;
proto->error_ack.UNIX_error = err;
mp->b_wptr =

mp->b_rptr + sizeof(struct error_ack);
qreply(q, mp);
break;

case UNITDATA_REQ:
if (dgproto->state != BOUND)

goto bad;
if (mp->b_wptr - mp->b_rptr

!= sizeof(struct unitdata_req))
goto bad;

if (err=chkaddr(proto->unitdata_req.DEST_addr))
goto bad;

if (mp->b_cont) {
putq(q, mp->b_cont);

I * start device or mux output .. . * I

break;
bad:

freemsg(mp);
break;

Revision A, of 27 March 1990

13 2 STREAMS Programming

3.10. Advanced Topics

Recovering From No Buffers

The write put procedure switches on the message type. The only types accepted
are M_FLUSH and M_PROTO. For M_FLUSH messages, the driver will per­
form the canonical flush handling (not shown). For M _PROTO messages, the
driver assumes the message block contains a union primitive and
switches on the type field. Two types are understood: BIND_ REQ, and
UNITDATA_REQ.

For a BIND_ REQ, the current state is checked; it must be IDLE. Next, the mes­
sage size is checked. If it is the correct size, the passed-in address is verified for
legality by calling chkaddr. If everything checks, the incoming message is
converted into an OK_ ACK and sent upstream. If there was any error, the
incoming message is converted into an ERROR_ ACK and sent upstream.

For UNITDATA_REQ, the state is also checked; it must be BOUND. As above,
the message size and destination address are checked. If there is any error, the
message is simply discarded. (This action may seem rash, but it is in accordance
with the interface specification, which is not shown. Another specification might
call for the generation of a UNITDA TA_ ERROR indication.) If all is well, the
data part of the message, if it exists, is put on the queue, and the lower half of the
driver is started.

If the write put procedure receives a message type that it does not understand,
either a bad b_datap->db_type or a bad proto->type, the message is
converted into an M _ ERROR message and sent upstream.

Another piece of code not shown is the generation of UNITDAT A_ IND mes­
sages. This would normally occur in the device interrupt if this is a hardware
driver (like Ethernet) or in the lower read put procedure if this is a multiplexor.
The algorithm is simple: The data part of the message is appended to an
M_PROTO message block that contains a unitdata_ind structure and sent
upstream.

The buf call () utility (see Utilities in the Supplementary STREAMS Material
chapter) is used to recover from an allocb () failure. The call syntax is as fol­
lows:

int bufcall(size, pri, func, arg);
int size, pri, (*func) ();
long arg;

bufcall() will call (*func) (arg) whenabufferofsizebytesatpri
priority is available. When func is called, it has no user context and must return
without sleeping. Also, because of interrupt processing, there is no guarantee
that when func is called, a buffer will actually be available (someone else may
steal it). buf call () returns a nonzero integer on success, indicating that the
request has been successfully recorded, or O on failure. On a failure return, the
requested function will never be called. The caller should save the return value
for JX>Ssible subsequent use as the argument to unbufcall (), which is used to

Revision A, of 27 March 1990

Care must be taken to avoid
deadlock when holding resources
while waiting for bufcall () to call
(*func) (arg). bufcall ()

should be used sparingly.

Chapter 3 - STREAMS Module and Driver Programming 133

cancel an outstanding buf call () request, for example within a module's close
routine.

Two examples are provided. Example one is a device receive interrupt handler:
r

#include <sys/types.h>
#include <sys/param.h>
#include <sys/stream.h>

dev_rintr(dev)
{

!*

I * process incoming message .. . * I

I * allocate new buff er for device * I
dev_re_load(dev);

* Reload device with a new receive buffer
*I
dev_re_load(dev)
{

mblk_t *bp;

if ((bp = allocb(DEVBLKSZ, BPRI_MED)) == NULL) {
log(LOG_ERR("dev: allocb failure (size %d)\n",

DEVBLKSZ);
!*
* Allocation failed. Use buf call to
* schedule a call to ourself.
*I
(void) bufcall(DEVBLKSZ, BPRI_MED, dev_re_load,

dev);
return;

I* pass buff er to device .. . * I

dev_rintr is called when the device has posted a receive interrupt. The code
retrieves the data from the device (not shown). dev _rintr must then give the
device another buffer to fill by a call to dev_re_load, which calls allocb ()
with the appropriate buffer size (DEVBLKSZ, definition not shown) and priority.
If allocb () fails, dev _re_load uses bufcall () to call itself when
STREAMS determines a buffer of the appropriate size and priority is available.

NOTE Since bufcall () may/ail, there is still a chance that the device may hang. A
better strategy, in the event buf call () fails, would be to discard the current
input message and resubmit that buffer to the device. Losing input data is gen­
erally better than hanging.

Revision A, of 27 March 1990

134 STREAMS Programming

The second example is a write service procedure, mod_wsrv (), which needs to
prepend each output message with a header (similar to the multiplexor example
of the Multiplexing section). mod_ wsrv () illustrates a case for potential
deadlock:
r

static int mod_wsrv(q)
queue_t *q;
{

int qenable ();
mblk_t *mp, *bp;

while (mp= getq(q))

I* check for priority messages and canput ... * I

!*
* Allocate a header to prepend to the message. If
* the allocb fails, use bu/call to reschedule ourself.
*!
if ((bp = allocb(HDRSZ, BPRI_MED)) == NULL) {

if (!bufcall(HDRSZ, BPRI_MED, qenable, q))

!*

I*
* The bu/ call request has failed. Discard
* the message and keep running to avoid hanging.
*!
freemsg (mp);
continue;

* Put the message back and exit, we will be re-enabled later
*I
putbq(q, mp);
return;

I* process message * I

However, if allocb () fails, mod_wsrv () wants to recover without loss of
data ands calls buf call (). In this case, the routine passed to buf call () is
qenable () (see below and in the Utilities section of the Supplementary
STREAMS Material chapter). When a buffer is available (of size HDRSZ,
definition not shown), the service procedure will be automatically re-enabled.
Before exiting, the current message is put back on the queue. This example deals
with buf call () failure by discarding the current message and continuing in
the service procedure loop.

A module that issues a buf call () request should be prepared to cancel that
request (with unbuf call ()) when its close routine is called. If it doesn't, the
kernel is likely to crash later on when STREAMS calls the function given as
bufcall () 's argument at a time when the data structures it manipulates are

Revision A, of 27 March 1990

Advanced Flow Control

Signals

Chapter 3 - STREAMS Module and Driver Programming 135

no longer valid.

STREAMS provides mechanisms to alter the normal queue scheduling process.
putq () will not schedule a QUEUE if noenable (q) had been previously
called for this QUEUE. noenable () instructs putq () to queue the message
when called by this QUEUE, but not to schedule the service procedure. noen­
able () does not prevent the QUEUE from being scheduled by a flow control
back-enable. The inverse of noenable () is enableok (q) .

An example of this is driver upstream flow control. Although device drivers typ­
ically discard input when unable to send it to a user process, STREAMS allows
driver read side flow control, possibly for handling temporary upstream blocks.
This is done through a driver read service procedure which is disabled during the
driver open with noenable () . If the driver input interrupt routine determines
messages can be sent upstream (from canput()), it sends the message with
putnext (). Otherwise, it calls putq () to queue the message. The message
waits on the message queue (possibly with queue length checked when new mes­
sages are enqueued by the interrupt routine) until the upstream QUEUE becomes
unblocked. When the blockage abates, STREAMS back-enables the driver read
service procedure. The service procedure sends the messages upstream using
getq () and can put () , as in Message Queues and Service Procedures. This
is similar to loo pr srv () in the Complete Driver where the service procedure
is present only for flow control.

qenable (), another flow control utility, allows a module or driver to cause one
of its QUEUEs, or another module's QUEUEs, to be scheduled. In addition to the
usage shown in the Complete Driver and Multiplexing sections, qenable ()
might be used when a module or driver wants to delay message processing for
some reason. An example of this is a buffer module that gathers messages in its
message queue and forwards them as a single, larger message. This module uses
noenable () to inhibit its service procedure and queues messages with its put
procedure until a certain byte count or "in queue" time has been reached. When
either of these conditions is met, the put procedure calls qenable () to cause
its service procedure to run.

Another example is a communication line discipline module that implements
end-to-end (i.e., to a remote system) flow control. Outbound data is held on the
write side message queue until the read side receives a transmit window from the
remote end of the network. Then, the read side schedules the write side service
procedure to run.

STREAMS allows modules and drivers to cause a signal to be sent to user
process(es) through an M_SIG or M_PCSIG message (see Message Types in the
Supplementary STREAMS Material chapter) sent upstream. M _ PCSIG is a high
priority version of M _SIG. For both messages, the first byte of the message
specifies the signal for the Stream Head to generate. If the signal is not SIG­
POLL (see signal (2) and s igset (2)), then the signal is sent to the process
group associated with the stream (see below). If the signal is SIGPOLL, the sig­
nal is only sent to processes that have registered for the signal by using the
I_SETSIG ioctl (2) (see also the streamio (4) call).

Revision A, of 27 March 1990

136 STREAMS Programming

Control of Stream Head
Processing

Read Options

A process group is associated with a stream during the open of the driver or
module. If the NEWCTTY flag is ORed into the value returned by the open ()
procedure, the process on whose behalf the module or driver is being opened
becomes a "session process group leader'' by executing the set spgldr () call
(which is executed by the setpgrp () call in the System V environment, but
not in the 4BSD environment). If that process does not already have a control­
ling tty, and the stream does not already have a process group, then the stream is
assigned to the process group that the process is the leader of and becomes that
process's controlling tty.

If the driver or module wants to have a process group associated with the stream,
it should OR the NEWCTTY flag into its return value.

M _ SIG can be used by modules or drivers that wish to insert an explicit in band
signal into a message stream. For example, an M _ SIG message can be sent to
the user process immediately before a particular service interface message to gain
the immediate attention of the user process. When the M _ SIG reaches the head
of the Stream Head read message queue, a signal will be generated and the
M _ SIG message will be removed. This leaves the service interface message as
the next message to be processed by the user. Use of M_SIG would typically be
defined as part of the service interface of the driver or module.

The M _ SETOPTS message (see Message Types in the Supplementary STREAMS
Material chapter) allows a driver or module to exercise control over certain
Stream Head processing. An M _ SETOPTS can be sent upstream at any time.
The Stream Head responds to the message by altering the processing associated
with certain system calls. The options to be modified are specified by the con­
tents of the stroptions structure (see Message Types) contained in the mes­
sage.

Six Stream Head characteristics can be modified. As described in Message
Types, four correspond to fields contained in queue_ t (min/max packet sizes
and high/low water marks). The other two are discussed here.

The value for read options (so_readopt) corresponds to the three modes a
user can set via the I_SROOPT ioctl () (see streamio) call:

byte-stream (RNORM)
The read (2) call completes when the byte count is satisfied, the Stream
Head read queue becomes empty, or a zero length message is encountered.
In the last case, the zero length message is put back on the queue. A subse­
quent read () will return O bytes.

message non-discard (RMSGN)
The read () call completes when the byte count is satisfied or at a message
boundary, whichever comes first. Any data remaining in the message is put
back on the Stream Head read queue.

message discard (RMSGD)
The read () call completes when the byte count is satisfied or at a message
boundary. Any data remaining in the message is discarded.

Revision A, of 27 March 1990

Write Offset

Chapter 3 - STREAMS Module and Driver Programming 13 7

Byte-stream mode approximately models pipe data transfer. Message non­
discard mode approximately models a tty in canonical mode.

The value for write offset (so _wrof f) is a hook to allow more efficient data
handling. It works as follows: In every data message generated by a write (2)

system call and in the first M _DAT A block of the data portion of every message
generated by a putmsg (2) call, the Stream Head will leave so _wrof f bytes
of space at the beginning of the message block. Expressed as a C language con­
struct:

bp->b_rptr = bp->b_datap->db_base + write offset

The write offset value must be smaller than the maximum STREAMS message
size, STRMSGSZ (see Tunable Parameters in the Supplementary STREAMS
Material) Chapter. In certain cases (e.g., if a buffer large enough to hold the
offset+data is not currently available), the write offset might not be included in
the block. To be general, modules and drivers should not assume that the offset
exists in a message, but should always check the message.

The intended use of write offset is to leave room for a module or a driver to place
a protocol header before user data in the message rather than by allocating and
prepending a separate message. This feature is not general, and its use is
discouraged. A more general technique is to put protocol header information in a
separate message block and link the user data to it.

Revision A, of 27 March 1990

13 8 STREAMS Programming

Revision A, of 27 March 1990

4.1. Configuring STREAMS
Drivers

4
SunOS STREAMS Topics

The configuration of STREAMS device drivers is not fundamentally different
from the configuration of regular device drivers. This section, therefore,
presumes familiarity with the Configuring the Kernel section of Writing Device
Drivers manual, which explains in some detail how new drivers are configured
into the kernel.

Note that, while STREAMS give programmers a good deal of flexibility in regard
to configuration issues, STREAMS drivers and protocol modules must still be
precompiled into the kernel. STREAMS drivers are not dynamically loadable.

SunOS STREAMS drivers use exactly the same autoconfiguration interface as do
regular SunOS drivers. This interface is designed to allow drivers (and modules)
to easily define their per-instance data structures, using the information supplied
by config. However, if a given driver or module chooses to use some other
scheme for allocating its resources (such as using kmem_alloc () when a pre­
viously unopened device is opened), it is free to do so. This differs significantly
from the System V driver/kernel interface, which arranges for such storage to be
allocated elsewhere.

Each character device that is configured into the Sun kernel results in an entry
being placed in the kernel cdevsw table. Entries for STREAMS drivers are no
exception-they too are placed in cdevsw. However, since system calls to
STREAMS drivers must be processed by the STREAMS routines, their cdevsw
interface differs from that of non-STREAMS drivers. conf ig, it should be
noted, knows nothing about STREAMS drivers. It handles them correctly
because, as far as it's concerned, they are just regular character drivers. There is
nothing in the format of entries in a config file that distinguishes STREAMS
devices/modules from other character devices.

There is, however, a difference between STREAMS and non-STREAMS cdevsw
entries, in that STREAMS entries have only the d_str field set while other
entries never have this field set. d _ str provides the appropriate single entry
point for all system calls on STREAMS files, as shown below:

139 Revision A, of 27 March 1990

140 STREAMS Programming

Module Configuration

r

extern struct cdevsw {

struct streamtab *d_str;
cdevsw[];

The d _ str entry name is formed by appending the string "info" to the
STREAMS driver prefix. The "info" entry is a pointer to the driver/module
declared streamtab structure (see Kernel Structures) in Appendix A. The
streamtab structure contains pointers to the qini t structures for the
driver/module's read and write queues. Its declaration must be externally visible:

struct streamtab .uinfo = { ...

If the driver declares a streamtab namedx.xinfo, the d_str entry will contain
a non-NULL pointer and the kernel will recognize the driver as a STREAMS
driver and will call it by way of the appropriate STREAMS routines. If the
d_str entry is NULL, the normal characterl/0 cdevsw interface will be used.
Note that only streamtab must be externally visible in STREAMS drivers and
modules, since it is used to uniquely identify the appropriate open, close, put,
service, and administration routines. These driver/module routines should gen­
erally be declared static.

When adding a new STREAMS module to a kernel, one must add an entry to the
fmodsw array in /sys/sun/str_conf. c. This file is analogous to
I sys/ sun/ conf. c (see the Configuring the Kernel chapter of Writing Device
Drivers) and its entries should be similarly conditional on the number of module
instances being positive. For example, for the xx device:

#if NXX > 0
extern struct streamtab xx_info;
#endif

struct fmodsw fmodsw[]
{

#if NXX > 0
{ "xx", &xx_info),

#endif

~~ S ll fl Revision A, of 27 March 1990
, microsystems

Tunable Parameters

System Error Messages

Chapter 4 - SunOS STREAMS Topics 141

The first of the two fields in each fmodsw entry is the name of the module,
which will be used in all STREAMS-related ioctl (} calls upon this module.
The second is a pointer to the module's streamtab structure.

Certain system parameters referenced by STREAMS are configurable when build­
ing a new kernel. These parameters can be changed only by editing the file
param. c. In this discussion, the term "queues" refers to queue_t structures.
The tunable parameters are:

NMOXLINK
Total number of streams in system that can be linked as lower streams to
multiplexor drivers (by an I_LINK ioctl(2), see streamio(4)).

NSTREVENT
Initial number of internal event cells available in system to support buf­
cal l (} and poll (2} calls.

MAXSEPGCNT
The number of additional pages of memory that can be dynamically allo­
cated for event cells. If this value is 0, only the allocation defined by
NSTREVENT is available for use. If the value is not O and if the kernel runs
out of event cells, it will under some circumstances attempt to allocate an
extra page of memory from which new event cells can be created. MAX­

SEPGCNT places a limit on the number of pages that can be allocated for this
purpose. Once a page has been allocated for event cells, however, it cannot
be recovered later for use elsewhere.

NSTRPUSH

Maximum number of modules that may be pushed onto a single stream.

STRMSGSZ
Maximum bytes of information that a single system call can pass to a stream
to be placed into the data part of a message (in M_DATA blocks). Any
write (2} exceeding this size will be broken into multiple messages. A
putmsg (2} with a data part exceeding this size will fail.

STRCTLSZ
Maximum bytes of information that a single system call can pass to a stream
to be placed into the control part of a message (in an M _ PROTO or
M_PCPROTO block). A putmsg (2} with a control part exceeding this size
will fail.

Messages are reported to the console as a result of various error conditions
detected by STREAMS. These messages and the action to be taken on their
occurrence are described below. In certain cases, a tunable parameter (see previ­
ous section) may have to be changed.

allocq:outofqueues
A pair of queues could not be allocated for the Stream Head during the
open (} of a driver, or a pair of queues could not be allocated for a push­
able module (I_ PUSH ioctl). This error message should never be seen,
as additional space for queues is allocated dynamically when needed.

Revision A, of 27 March 1990

142 STREAMS Programming

4.2. STREAMS in Sun0S

STREAM Modules

allocstr: out of streams
Cannot allocate any more streams.

bu/ call: could not allocate stream event
A call to buf call () has failed because all stream event cells have been
allocated. If this occurs repeatedly, increase N s TREVENT.

esbbcall: could not allocate stream event
Could not allocate and stream events.

munlink: could not perform ioctl, closing anyway
A linked multiplexor could not be unlinked when the controlling stream for
that link was closed. The linked stream will be unlinked and the controlling
stream will be closed anyway.

xdballoc:outofdblks

xmballoc: out of mblks
The indicated resource could not be allocated during an allocb () call.
These messages should never be seen as additional dblk and mblk space is
allocated dynamically when needed.

SunOS 4.1 includes implementations of two fundamental system mechanisms in
terms of STREAMS. These are:

1. The system terminal driver, which controls serial-line 1/0, and

2. The Network Interface Tap (NIT) mechanism, which permits a process to
talk to the "raw" Ethernet. NIT is the only networking facility which is thus
far implemented in terms of STREAMS, though a TCP/IP implementation
that can be accessed via STREAMS is planned.

The following STREAMS modules, necessary to support the tty driver and the
Network Interface Tap, are included in SunOS 4.1.

o The "standard tty driver" module, which implements most of the standard
tty driver behavior; it's a replacement for the current standard tty line discip­
line. (See ldterm(4M)).

o The "ioctl mapping" module, which maps old V7 and 4BSD ioctl ()
calls into new-style ioctl () calls. This gets pushed on top of the standard
tty driver module, giving a stream that responds either to the old-style or
new-style ioctl () calls. (See ttcompat(4M)).

o The keyboard and mouse modules, which replace the old keyboard and
mouse line disciplines. (See kb (4M) and ms (4M).

o The NIT ''packet filter'' module, which is given a set of criteria for selecting
Ethernet packets, and passes only the selected packets upstream, discarding
the others. For example, the Reverse ARP daemon requests that it receive
only Reverse ARP packets; filtering can be done more efficiently in this
fashion than if all packets were handed to the program and it had to do the
filtering itself. This also makes it easier to handle a high rate of arrival of
packets, since the program doesn't have to handle the ones it's not interested

Revision A, of 27 March 1990

SunOS STREAMS Extension

STREAMS Portability

Chapter4-Sun0S STREAMS Topics 143

in. (See nit_pf(4M)).

o The NIT ''buffering'' module, which buffers up received Ethernet packets
and delivers them to the user program in a single chunk. Such buffering
reduces the number of read () calls done while monitoring the Ethernet, as
is necessary when the rate at which packets arrive is very high. (See
nit_buf(4M)).

In order to support STREAMS terminal and pseudo-terminal drivers, SunOS has
extended the AT&T STREAMS mechanism. This extension is called "Autopush"
and is totally transparent to customer written STREAMS drivers, with the excep­
tion of the streamtab/modlist initialization. Future versions of STREAMS will
replace this feature with the System V implementation.

The Autopush feature includes a mechanism by which STREAMS drivers can
specify a list of STREAMS modules to be automatically pushed onto the stream at
device open time. This (or a similar) feature is necessary to allow tty drivers to
present an interface compatible with that which existed in previous system
releases.

Drivers wishing to use this facility must specify the address of a NULL­
terminated array of module names in the st_modlist field of the stream­
t ab structure. The modules named in this array will be pushed at open time in
the order of their appearance in the array. For example:
r

char *mypushlist[] = {
"ldterm",
"ttcompat",
NULL

} ;

struct streamtab mydrivertab

char **mypushlist; /* st modlist field*/
} ;

These definitions arrange to push the standard modules implementing tty seman­
tics when mydr i ver is opened.

The set of internal interfaces and utility routines defined by the SunOS kernel
differs considerably from that defined by the System V kernel. The
STREAMS/kernel interface is well specified, however, and System V STREAMS
modules and drivers that use only the interfaces it defines (see Accessible Sym­
bols and Functions in the Supplementary STREAMS Material chapter of this
manual) should be adaptable to the SunOS kernel without many problems. How­
ever, it's easy to use kernel facilities (data structures and routines) other than
those defined in the STREAMS interface. Any such use is likely to be non­
portable between System V and SunOS.

+!2..!! Revision A, of 27 March 1990

144 STREAMS Programming

User Line Disciplines

Similarly, STREAMS modules and drivers written for SunOS will only be port­
able to System V systems if their kernel interfaces are confined to the explicitly
listed Accessible Symbols and Functions. If System V compatibility is not an
issue, then STREAMS modules and drivers can use any of the driver-support rou­
tines listed in the Kernel Support Routines appendix of Writing Device Drivers.

Note that STREAMS drivers, as opposed to modules, will always require a certain
degree of rewriting for use on System V machines, since the SunOS
autoconfiguration interface differs significantly from that used in System V. See
The Bus-Resource Interface section of Writing Device Drivers manual for the
details of the Sun interface.

NOTE User-built line discipline code must be re-implemented within the STREAMS
framework before it will work with release 4.1. This is not a simple matter of
porting, for there there is nothing within the STREAMS framework that really
corresponds to line disciplines. Infact, STREAMS modules themselves can be
seen as generalizations of line disciplines, in the sense that the character transla­
tion that line disciplines used to manage is now the job of STREAMS modules
themselves. In a word,pre-STREAMS driver code is "ported", because the
lower-level code that actually interacts with the device is typically preserved
within the new STREAMS framework. Line discipline code, however, is best
"rewritten" within the STREAMS framework. See Sun Consulting.

There is another reason why pre-4.0 line discipline code will no longer work­
such code probably accesses tty-specific internal structures, such as clist
buffers. These structures no longer exist, having been replaced by STREAMS
structures. For information on how to proceed with the conversion of a line dis­
cipline, contact the Sun consulting department.

Character device drivers that do not implement line disciples can also be con­
verted to STREAMS form, though in this case the conversion is entirely optional.
This is because the SunOS STREAMS implementation preserves the external
interfaces to the character devices and drivers (e.g. through the standard tty com­
patibility module, ttcompat (4M), that implements most of the 4BSD tty
interfaces under STREAMS). Thus, drivers that do not directly access underlying
system data structures will continue to work without changes.

Drivers that have fancy read and write routines (routines that do anything more
than just import parameters and perhaps start another routine) are probably not
good candidates for conversion into STREAMS form, since STREAMS read/write
modules should just set up data for the STREAMS queues.

A line-printer driver is an example of a character driver that could be written in
terms of STREAMS, but doesn't need to be, and doesn't need to be converted to
STREAMS if it already exists. After all, while a line-printer driver does
transform a stream of characters (this transformation could certainly be built into
a STREAMS module), its transformation is unlikely to be of interest to other pro- "'
grams. Thus, there's little to be gained by encapsulating it in a module. And,
since line-printer drivers implement no line discipline, they will continue to work

Revision A, of 27 March 1990

Chapter 4 - Sun0S STREAMS Topics 145

with SunOS 4.1.

Revision A, of 27 March 1990

146 STREAMS Programming

Revision A, of 27 March 1990

A.1. Kernel Structures

streamtab

QUEUE Structures

A
Supplementary STREAMS Material

This appendix summarizes previously described kernel structures commonly
encountered in S1REAMS module and driver development.

S1REAMS kernel structures are contained in <sys/stream. h>.

Many of the fields in the structures described below are inteded for the private
use of the S1REAMS framework code. Modules and drivers should not access
such fields in any way, as their meaning and even existence is subject to change
from release to release. These fields are omitted from the descriptions below.

Since these private fields can change from release to release, modules and drivers
should not assume that the structures below have the same size from one release
to the next.

Certain of the public fields listed below are read-only for modules and drivers;
that is, only the STREAMS framework code is allowed to change them. These
fields are marked with the legend "RO:" at the beginning of the comments
describing them.

As discussed in the STREAMS Mechanism section of the STREAMS Module and
Driver Programming chapter, this structure defines a module or driver:

struct streamtab
struct qinit
struct qinit
struct qinit
struct qinit
char

} ;

*st_rdinit;
*st_wrinit;
*st_muxrinit;
*st_muxwinit;
**st_modlist;

I* defines read QUEUE * I
I * defines write QUEUE * I
I* for multiplexing drivers only * I
I *for multiplexing drivers only * I
I * NULL-terminated list of

modules to be pushed * I

Two sets of QUEUE structures form a module. The structures, discussed in the
STREAMS Mechanism and Message Queues and Service Procedures sections of
the STREAMS Module and Driver Programming chapter, are queue_ t, qini t,
module_info and, optionally, module_stat:

147 Revision A, of 27 March 1990

148 STREAMS Programming

struct queue {

} ;

struct qinit *q_ qinfo; /*RO: procedures and limits/or queue * I
struct msgb *q_first; /* RO: head ofmsg queue/or this QUEUE* I
struct msgb *q_last; l*RO:tailofmsgqueueforthisQUEUE*I
struct queue *q_next; l*RO:nextQUEUEinstream*/
caddr t q_ptr; /* to private data structure* I
ushort q_count; /*RO: count of characters on message queue* I
ushort q_flag; /* RO: QUEUE state* I
short q_ minps z / * min packet size accepted by this QUEUE * I
short q_ maxps z; / * max packet size accepted by this QUEUE * I
ushort q_ hiwat; / * msg queue high water mark.for flow control * I
ushort q_lowat; / * msg queue low water mark.for flow control* I

typedef struct queue queue_t;

When a queue_ t pair is allocated, their contents are zero unless specifically ini­
tialized. The following fields are initialized:

o q_qinfo - from streamtab.st_[rd/wr]init (or st_mux[rw]init)

o q_minpsz, q_maxpsz, q_hiwat, q_lowat- from module_info

o q_ptr - optionally, by the driver/module open routine

struct qinit {

} ;

int (*qi__putp) ();
int (*qi_srvp) ();
int (*qi_qopen) ();
int (*qi_qclose) ();
int (*qi_qadmin) ();
struct module_info
struct module stat

I* put procedure * I
I * service procedure * I
I* called on each open or a push * I
I * called on last close or a pop * I
I * reserved for future use * I
*qi_minfo; /*information structure* I
*qi_mstat; /*optional stats structure* I

struct module_info {
ushort mi_idnum;
char *mi_idname;
short mi_minpsz;
short mi_maxpsz;
short mi_hiwat;
ushort mi_lowat;

I* module ID number * I
I* module name * I

} ;

I* min packet size accepted.for developer use * I
I* max packet size accepted.for developer use * I
I* hi-water mark.for flow control* I
I* lo-water mark.for flow control* I

Revision A, of 27 March 1990

A.2. Message Structures

iocb1k

struct module_stat {
long ms_pcnt;
long ms_scnt;
long ms_ocnt;
long ms_ccnt;
long ms_acnt;
char *ms_xptr;
short ms_xsize;

} ;

Appendix A - Supplementary STREAMS Material 149

I* count of calls to put proc * I
I * count of calls to service proc * I
I * count of calls to open proc * I
I* count of calls to close proc * I
I* count of calls to admin proc * I
I * pointer to private statistics * I
I* length of private statistics buffer * I

Note that in the event these counts are calculated by modules or drivers, the
counts will be cumulative over all instantiations of modules with the same
fmodsw entry and drivers with the same cdevsw entry.

As described in the Messages section of STREAMS Module and Driver Program­
ming, a message is composed of a linked list of triples, consisting of two struc­
tures and a data buffer:

,

struct msgb {

} ;

struct msgb *b_next;
struct msgb *b_prev;
struct msgb *b_cont;
unsigned char *b_rptr;
unsigned char *b_wptr;
struct datab *b_datap;

typedef struct msgb mblk_t;

struct datab

I* next message on queue * I
I* previous message on queue * I
I * next message block of message * I
I * first unread data byte in buffer * I
I * first unwritten data byte in buffer * I
I* RO: data block* I

unsigned char *db_base; l*RO:firstbyteofbuffer* *I
unsigned char *db_lim; /* RO: last byte+l of buffer* I
unsigned char db_ref; /*RO: cnt of msgs pointing to this block* I
unsigned char db_type; /* message type* I

} ;

typedef struct datab dblk_t;

As described in the Drivers section of the STREAMS Module and Driver Pro­
gramming chapter and in Message Types, below, this is contained in an
M_IOCTL message block:

Revision A, of 27 March 1990

150 STREAMS Programming

l.inkbl.k

A.3. Message Types

Ordinary Messages

struct iocblk {

} ;

int
ushort
ushort
uint
uint
int
int

ioc_cmd;
ioc_uid;
ioc_gid;
ioc_id;
ioc_count;
ioc_error;
ioc_rval;

I * ioctl command type * I
I * effective uid of user * I
I* effective gid of user * I
I* ioctl id* I
I* count of bytes in data field * I
I* error code * I
I * return value * I

As described in the Multiplexing section of STREAMS Module and Driver Pro­
gramming, this is used in lower multiplexor drivers:

struct linkblk {
queue_t *l_qtop;
queue_t *l_qbot;
int l_index;

I* lowest level write queue of upper stream * I
I* highest level write queue of lower stream * I
I * system-unique index for lower stream. * I

} ;

Here the STREAMS message types are defined. The message types differ in their
intended purposes, their treatment at the stream head, and in their message
queueing priority (see the Message Queues and Service Procedures section of the
STREAMS Module and Driver Programming chapter).

STREAMS does not prevent a module or driver from generating any message type
and sending it in any direction on the stream. However, established processing
and direction rules should be observed. Stream head processing according to
message type is fixed, although certain parameters can be altered.

The message types are described below, classified according to their message
queueing priority. Ordinary messages are described first, with high priority mes­
sages following. In certain cases, two message types may perform similar func­
tions, differing in priority. Message construction is described in the Messages
section of the STREAMS Module and Driver Programming chapter. The use of
the word module will generally imply "module or driver."

These message types are subject to flow control. These are referred to as non­
priority messages when received at user level.

M DATA
Intended to contain ordinary data. Messages allocated by the allocb ()
routine (see Message Types, below) are type M_DATA by default. M_DATA

messages are generally sent bidirectionally on a stream and their contents
can be passed between a process and the stream head. In the getmsg (2)
and putmsg (2) system calls, the contents of M_DATA message blocks are
referred to as the data part. Messages composed of multiple message blocks
will typically have M_DATA as the message type for all message blocks fol­
lowing the first.

Revision A, of 27 March 1990

Figure A-1

Appendix A - Supplementary STREAMS Material 151

M PROTO
Intended to contain internal control information and associated data. The
message fonnat is one M _ PROTO message block followed by zero or more
M_DATA message blocks as shown below: The semantics of the M_DATA
and M _ PROTO message block are determined by the STREAMS module that
receives the message.

The M_PROTO message block will typically contain implementation depen­
dent control infonnation. M _PROTO messages are generally sent bidirec­
tionally on a stream, and their contents can be passed between a process and
the stream head. The contents of the first message block of an M _ PROTO
message is generally referred to as the control part, and the contents of any
following M_DATA message blocks are referred to as the data part. In the
getmsg (2) and putmsg (2) system calls, the control and data parts are
passed separately. These calls refer to M _PROTO messages as non-priority
messages.

Note that, although its use is not recommended, the format ofM_PROTO and
M_PCPROTO (generically PROTO) messages sent upstream to the stream
head allows multiple PROTO blocks at the beginning of the message.
getmsg () will compact the blocks into a single control part when passing
them to the user process.

M_PROTO and M_PCPROTO Message Structure

M PROTO
or

M PCPROTO

M DATA

M DATA

M IOCTL

......

... _....._

control
info.

[':ra I

Generated by the stream head in response to an I_ S TR and certain other
ioctl (2) system calls (see the streamio (4) man page.) When one of
these ioctl ()sis received from a user process, the stream head uses
values from the process and supplied in the call to create an M IOCTL mes­
sage containing them, and sends the message downstream. M -IOCTL mes­
sages are intended to perfonn the general ioctl functions of character device
drivers.

The user values are supplied in a structure of the following fonn, provided as
an argument to the ioctl (} call (see I_STR in the streamio (4) man

Revision A, of 27 March 1990

152 STREAMS Programming

r

page).

struct strioctl
int ic_cmd;
int ic_timout;
int ic_len;
char *ic_dp;

I * downstream request * I
/ * ACK/NAK timeout * /
I * length of data arg * I
I * ptr to data arg * I

} ;

where i c _ cmd is the request (or command) defined by a downstream
module or driver, ic _ t imout is the time the stream head will wait for ack­
nowledgement to the M_IOCTL message before timing out, ic_dp is a
pointer to an optional data argument. On input, ic _len contains the length
of the data argument passed in and, on return from the call, it contains the
length of the data, if any, being returned to the user.

The form of an M_IOCTL message is one M_IOCTL message block linked
to zero or more M_DATA message blocks. STREAMS constructs an
M_IOCTL message block by placing an iocblk structure in its data buffer:

struct iocblk {

} ;

int ioc_cmd;
ushort ioc_uid;
ushort ioc_gid;
uint ioc_id;
uint ioc_count;
int ioc_error;
int ioc_rval;

I* ioctl command type * I
I* effective user id number * I
I * effective group id number * I
I* ioctl identifier * I
I* byte count for ioctl data * I
I * error code * I
I * return value * I

The iocblk structure is defined in <sys/stream. h>. ioc cmd
corresponds to ic_cmd. ioc_uid and ioc_gid are the effective user
and group IDs for the user sending the ioctl (), and can be tested to deter­
mine if the user issuing the i o ct 1 () call is authorized to do so.
ioc_count is the number of data bytes, if any, contained in the message
and corresponds to ic_len.

ioc_id is an identifier generated internally, and is used to match each
M _ IOCTL message sent downstream with a response that must be sent
upstream to the stream head. The response is contained in an M _ I OCACK
(positive acknowledgement) or an M IOCNAK (negative acknowledgement)
message. Both these message types have the same format as an M _ IOCTL
message and contain an iocblk structure in the first block with optional
data blocks following. If one of these messages reaches the stream head
with an identifier that does not match that of the currently-outstanding
M IOCTL message, the response message is discarded. A common means
of assuring that the correct identifier is returned, is for the replying module
to convert the M _ IOCTL message type into the appropriate response type
and set i o c _count to 0, if no data is returned. Then, the qr ep 1 y ()

Revision A, of 27 March 1990

Appendix A - Supplementary STREAMS Material 153

utility (see Utilities, below) is used to send the response to the stream head.

ioc _ error holds any return error condition set by a downstream module.
If this value is non-zero, it is returned to the user in errno. Note that both
anM_IOCNAK and an M_IOCACK may return an error. ioc_rval holds
any M _ IOCACK return value set by a responding module.

If a user supplies data to be sent downstream, the stream head copies the
data, pointed to by ic_dp in the strioctl structure, into M_DATA mes­
sage blocks and links the blocks to the initial M _ IOCTL message block.
ioc_count is copied from ic_len. If there is no data, ioc_count is
zero.

If a module wants to send data to a user process as part of its response, it
must construct an M _ IOCACK message that contains the data. The first mes­
sage block of this message contains the iocblk data structure, with any
data stored in one or more M _DAT A message blocks linked to the first mes­
sage block. The module must set ioc _ count to the number of data bytes
sent. On completion of the call, this number is passed to the user in
ic _ len. Data associated with an M _ IOCNAK message is not returned to
the user process, and is discarded by the stream head.

The first module or driver that understands the request contained in the
M _IOCTL acts on it, and generally returns an M _ I OCACK message. Inter­
mediate modules that do not recognize a particular request must pass it on.
If a driver does not recognize the request, or the receiving module can not
acknowledge it, an M _ I OCNAK message must be returned.

The stream head waits for the response message and returns any information
contained in an M IOCACK to the user. The stream head will "time out" if
no response is received in ic_timeout interval.

M CTL
Generated by modules that wish to send information to a particular module
or type of module. M _ CTL messages are typically used for inter-module
communication, as when adjacent STREAMS protocol modules negotiate the
terms of their interface. An M _ CTL message cannot be generated by a user­
level process and is always discarded if passed to the stream head.

M BREAK
Sent to a driver to request that BREAK be transmitted on whatever media the
driver is controlling.

The message format is not defined by STREAMS and its use is developer
dependent. This message may be considered a special case of an M _ CTL
message. An M _ BREAK message cannot be generated by a user-level pro­
cess and is always discarded if passed to the stream head.

M DELAY
Sent to a media driver to request a real-time delay on output. The data
buffer associated with this message type is expected to contain an integer to
indicate the number of machine ticks of delay desired. M _DELAY messages
are typically used to prevent transmitted data from exceeding the buffering

Revision A, of 27 March 1990

154 STREAMS Programming

capacity of slower terminals.

The message format is not defined by STREAMS and its use is developer
dependent. Not all media drivers may understand this message. This mes­
sage may be considered a special case of anM_CTL message. AnM_DELAY
message cannot be generated by a user-level process and is always discarded
if passed to the stream head.

M PASSFP
This is used by STREAMS to pass a file pointer from the stream head at one
end of a stream pipe to the stream head at the other end of the same stream
pipe. (A stream pipe is a stream that is terminated at both ends by a stream
head; one end of the stream can always find the other by following the
q_ next pointers in the stream. The means by which such a structure is
created is not described in this document.)

The message is generated as a result of an I_SENDFD ioctl () (see the
streamio (4) man page) issued by a process to the sending stream head.
STREAMS places the M_ PAS SFP message directly on the destination stream
head's read queue to be retrieved by an I_RECVFD ioctl () (see the
streamio (4) man page). The message is placed without passing it through
the stream (i.e., it is not seen by any modules or drivers in the stream). This
message type should never be present on any queue except the read queue of
a stream head. Consequently, modules and drivers do not need to recognize
this message type, and it can be ignored by module and driver developers.

M SETOPTS
Alters some characteristics of the stream head. It is generated by any down­
stream module, and is interpreted by the stream head. The data buffer of the
message has the following structure:

struct stroptions {
short so_flags;
short so_readopt;
ushort so_wroff;
short so_minpsz;
short so_maxpsz;
ushort so_hiwat;
ushort so_lowat;

I* options to set * I
I* read option * I
I* write offset * I
I* minimum read packet size * I
I * maximum read packet size * I
I* read queue high-water mark * I
I* read queue low-water mark * I

} ;

where so_ flags specifies which options are to be altered, and can be any
combination of the following:

SO ALL
- Update all options according to the values specified in the remaining

fields of the stroptions structure.

SO READOPT
- Set the read mode (see the read (2) man page) to RN ORM (byte

stream), RMS GD (message discard), or RMSGN (message non-discard) as

Revision A, of 27 March 1990

Appendix A - Supplementary STREAMS Material 155

specified by the value of so_readopt.

SO WROFF
Direct the stream head to insert an offset specified by so_wroff into
the first message block of all M _ DATA messages created as a result of a
write () system call. The same offset is inserted into the first
M _ DATA message block, if any, of all messages created by a
putmsg () system call. The default offset is zero.

The offset must be less than the maximum message buffer size (system
dependent). Under certain circumstances, a write offset may not be
inserted. A module or driver must test that b _ rptr in the mblk _ t
structure is greater than db_ base in the dblk _ t structure to deter­
mine that an offset has been inserted in the first message block.

SO MINPSZ
Change the minimum packet size value associated with the stream head
read queue to so_minpsz (see q_minpsz in the queue_t structure,
in the Kernel Structures section, above) This value is advisory for the
module immediately below the stream head. It is intended to limit the
size of M_DATA messages that the module should put to the stream
head. There is no intended minimum size for other message types. The
default value in the stream head is 0.

SO MAXPSZ
Change the maximum packet size value associated with the stream head
read queue to so_maxpsz (see q_maxpsz in the queue_t structure,
in the Kernel Structures section, above). This value is advisory for the
module immediately below the stream head. It is intended to limit the
size of M _ DATA messages that the module should put to the stream
head. There is no intended maximum size for other message types. The
default value in the stream head is INFP S z, the maximum S1REAMS
allows.

SO BIWAT
Change the flow control high water mark on the stream head read queue
to the value specified in so_hiwat.

SO LOWAT

M SIG

Change the flow control low water mark (see q_minpsz in the
queue_ t structure, in the Kernel Structures section, above) on the
stream head read queue to the value specified in so_lowat.

Sent upstream by modules or drivers to post a signal to a process. When the
message reaches the stream head, the first data byte of the message is
transformed into a signal, as defined in <sys/ signal. h>, to the
process(es) according to the following.

If the signal is not SIGPOLL and the stream containing the sending module
or driver is a controlling TTY, the signal is sent to the associated process
group. If the stream does not have a process group, then M_SIG is discarded
and the signal is ignored.

Revision A, of 27 March 1990

15 6 STREAMS Programming

High Priority Messages

If the signal is SI GPO LL, it will be sent only to those processes that have
explicitly registered to receive the signal (see I_ SETS IG in the
streamio (4) man page).

High priority messages are not subject to flow control.

M PCPROTO
This message type has the same format and characteristics as the M_PROTO
message type, except for priority and the following additional attributes.

When an M _ PCPROTO message is placed on a queue, its service procedure
is always enabled. The stream head will allow only one M_PCPROTO mes­
sage to be placed in its read queue at a time. If an M_PCPROTO message is
already in the queue when another arrives, the second message is silently
discarded and its message blocks freed.

This message type is intended to allow data and control information to be
sent outside the normal flow control constraints.

The getmsg (2) and putmsg (2) system calls refer to M_PCPROTO mes­
sages as priority messages.

M ERROR
This message type is sent upstream by modules or drivers to report some
downstream error condition. When the message reaches the stream head, the
stream is marked so that all subsequent system calls issued to the stream,
excluding close (2) and poll (2), will fail with errno set to the first
data byte of the message. POLLERR is set if the stream is being poll () ed
(see the poll (2) man page. All processes sleeping on a system call to the
stream are awakened. An M _ FLUSH message with a FLUSHRW argument is
sent downstream.

M HANGUP
This message type is sent upstream by a driver to report that it can no longer
send data upstream. For example, this might be due to an error, or to a
remote line connection being dropped. When the message reaches the
stream head, the stream is marked so that all subsequent write (2) and
putmsg (2) system calls issued to the stream will fail and return an
ENXIO error. Those ioctl () s that cause messages to be sent downstream
are also rejected. POLLHUP is set if the stream is being poll () ed (see the
poll (2) man page.

However, subsequent read (2) or getmsg (2) calls to the stream will not
generate an error. These calls will return any messages (according to their
function) that were on, or in transit to, the stream head read queue before the
M _ HANGUP message was received. When all such messages have been read,
read () will return 0, and getmsg () will set each of its two length fields
to 0.

This message also causes a S IGHUP signal to be sent to the process group, if
the device is a controlling ITY (see M SIG).

Revision A, of 27 March 1990

Appendix A - Supplementary STREAMS Material 157

M IOCACK
This message type signals the positive acknowledgement of a previous
M_IOCTL message. The message may contain information sent by the
receiving module or driver. The stream head returns the information to the
user if there is a corresponding outstanding M _ IOCTL request. The format
and use of this message type is described further under M _ IOCTL.

M IOCNAIC
This message type signals the negative acknowledgement (failure) of a pre­
vious M_IOCTL message. When the stream head receives anM_IOCNAK,
the outstanding i o ct 1 () request, if any, will fail. The format and usage of
this message type is described further under M _ IOCTL.

M FLUSH
This message type requests all modules and drivers that receive it to flush
their message queues (discard all messages in those queues) as indicated in
the message. An M _ FLUSH can originate at the stream head, or in any
module or driver. The first byte of the message contains flags that specify
one of the following actions:

FLUSBR:
Flush the read queue of the module.

FLUSBW:
Flush the write queue of the module.

FLUSBRW:
Flush both the read and the write queue of the module.

Each module passes this message to its neighbor after flushing its appropri­
ate queue(s), until the message reaches one of the ends of the stream.

Drivers are expected to include the following processing for M_ FLUSH mes­
sages. When an M_FLUSH message is sent downstream through the write
queues in a stream, the driver at the stream end discards it if the message
action indicates that the read queues in the stream are not to be flushed (only
FLUSHW set). If the message indicates that the read queues are to be
flushed, the driver sets the M_FLUSH message flag to FLUS HR, and sends
the message up the stream's read queues. When a flush message is sent up a
stream's read side, the stream head checks to see if the write side of the
stream is to be flushed. If only FLUS HR is set, the stream head discards the
message. However, if the write side of the stream is to be flushed, the
stream head sets the M_FLUSH flag to FLUSHW and sends the message down
the stream's write side. All modules that enqueue messages must recognize
and process this message type.

M PCSIG
This message type has the same format and characteristics as the M _ s IG
message type except for priority.

M START and M STOP - -
'I1iese messages request devices to start or stop their output. They are
intended to produce momentary pauses in a device's output, not to tum

Revision A, of 27 March 1990

15 8 STREAMS Programming

A.4. Utilities

The utilities contained in this appen­
dix represent an interface that will
be maintained in subsequent ver­
sions of SunOS. Other than these
utilities (see also the Accessible Sym­
bols and Functions section, below)
functions contained in the STREAMS
kernel code may change in future
releases.

devices on or off.

The message format is not defined by STREAMS and its use is developer
dependent. These messages may be considered special cases of an M _ CTL
message. These messages cannot be generated by a user-level process and
each is always discarded if passed to the stream head.

This appendix specifies the set of utilities that STREAMS provides to assist
development of modules and drivers. There are many utility routines and mac­
ros.

The general purpose of the utilities is to perform functions that are commonly
used in modules and drivers. A utility must always be used when operating on a
message queue and when accessing the buffer pool.

The utilities are contained in either the system source file os / str _ buf. c or, if
they are macros, in <sys/ stream. h>.

All structure definitions are contained in the Kernel Structures section, above,
unless otherwise indicated. All routine references are found in this section unless
otherwise indicated. The following definitions are used.

Blocked
A queue that can not be enabled due to flow control (see the Flow Control
section in the Introduction to STREAMS chapter of the System Services Over­
view).

Enable
To schedule a queue.

Free
De-allocate STREAMS storage.

Message block (bp)
A triplet consisting of an mblk _ t structure, a dblk _ t structure, and a data
buffer. It is referenced by its mblk_t structure (see the Messages section of
the STREAMS Module and Driver Programming chapter).

Message (mp)
One or more linked message blocks. A message is referenced by its first
message block.

Message queue
Zero or more linked messages associated with a queue (queue_t structure).

Queue (q)
A queue_ t structure. This is generally the same as QUEUE in the rest of
this document (e.g., see the definitions for enable and schedule). When it
appears with "message" in certain utility description lines, it means "mes­
sage queue."

Schedule
Place a queue on the internal linked list of queues which will subsequently
have their service procedure called by the STREAMS scheduler.

+~.!! Revision A, of 27 March 1990

Buffer Allocation Priority

ad jmsg () - Trim Bytes in a
Message

Appendix A - Supplementary STREAMS Material 159

The word module will generally mean "module and/or driver." The phrase
"next/following module" will generally refer to a module, driver, or stream head.
Message queueing priority (see the Message Queues and Service Procedures sec­
tion of the STREAMS Module and Driver Programming chapters and the Message
Types section, above) can be ordinary or high priority (to avoid "priority prior­
ity").

STREAMS buffers are normally allocated with allocb () , described above. An
associated set of allocation priorities has been established, which are also used in
other utility routines:

BPRI LO
Low priority. At this priority, allocb () may fail even though the
requested buffer size is available. This priority is used by the stream head
write routine to hold data associated with user calls.

BPRI MED
Medium priority. This priority is typically used for normal data and control
block allocation. As above, allocb () may fail at this priority even
though a buffer of the requested size is available. However, for a given
block size, a BPRI_LO allocb () call will fail before a BPRI_MED
allocb () call.

BPRI BI
High priority. This priority is typically used only for critical control mes­
sage allocations. Calls to allocb () will succeed if a buffer of the
appropriate size is available. Developers should exercise restraint in use of
BPRI_HI allocation requests.

The values BPRI_LO, BPRI_MED, and BPRI_HI are defined in
<sys/ stream. h>.

STREAMS does not guarantee successful buffer allocation-any set of resources
can be exhausted under the right or wrong conditions. The bufcall () func­
tion will help modules recover from buffer allocation failures, but it does not
guarantee that the resources will ever be available. Developers should be aware
of this when implementing modules.

int adjmsg(mp, len)
mblk_t *mp;
int len;

'I

ad jmsg () trims bytes from either the head or tail of the message specified by
mp. If Len is greater than zero, it removes Len bytes from the beginning of mp. If
Len is less than zero, it removes len bytes from the end of mp. If Len is zero,
adjmsg () does nothing. adjmsg (} only trims bytes across message blocks
of the same type. It will fail if mp points to a message containing fewer than Len
bytes of similar type at the message position indicated. adjmsg (} returns 1 on
success, and O on failure.

Revision A, of 27 March 1990

160 STREAMS Programming

a11ocb () - Allocate a
Message Block

backq () -Get Pointer to
Queue Behind a Given Queue

bu£ ca11 () - Recover from
Failure of a11ocb ()

canput () - Test for Room
in a Queue

mblk_t *allocb(size, pri)
int size, pri;

allocb () returns a pointer to a message block of type M_DATA, in which the
data buffer contains at least size bytes. pri indicates the priority of the allocation
request, and can have the values BPRI_LO, BPRI_MED, or BPRI_HI (see
Buffer Allocation Priority, above). If a block can not be allocated as requested,
allocb () returns a NULL pointer.

[queue_t *backq(q)
queue_t *q;]

backq () returns a pointer to the queue behind a given queue. That is, it returns
a pointer to the queue whose q_next (see queue_t structure) pointer is q. If
no such queue exists (as when q is at a stream end), backq () returns NULL.

int bufcall(size, pri, func, arg)
uint size;
int pri;
int (*func) () ;
long arg;

buf call () is provided to assist in the event of a block allocation failure. If
allocb () returns NULL, indicating a message block is not currently available,
bufcall () may be invoked.

buf call () arranges for (*func)(arg) to be called when a buffer of size bytes
atpri priority (see Buffer Allocation Priority, below) is available. Whenfunc is
called, it has no user context. It cannot reference the user structure and must
return without sleeping. buf call () does not guarantee that the desired buffer
will be available whenfunc is called since interrupt processing may acquire it.

bufcall () returns a non-zero value on success, indicating that the request has
been successfully recorded, or O on failure. On a failure return,func will never
be called. A failure indicates a (temporary) inability to allocate required internal
data structures or a size value that is so large as to be never satisfiable.

The success return value should be saved for possible future use as described
below. When a module or driver is closed, its close routine should cancel all
pending buf call () requests by calling unbufcall () with the saved return
value from buf call () as argument.

[int canput (q)
queue_t *q;]

canput () determines if there is room left in a message queue. If q does not
have a service procedure, canput () will search further in the same direction in

Revision A, of 27 March 1990

copyb () - Copy a Message
Block

copymsg () - Copy a
Message

datamsg () - Test Whether
Message is a Data Message

dupb () - Duplicate a
Message Block Descriptor

Appendix A - Supplementary STREAMS Material 161

the stream until it finds a queue containing a service procedure (this is the first
queue on which the passed message can actually be enqueued). If such a queue
cannot be found, the search terminates on the queue at the end of the stream.
canput () tests the queue found by the search. If the message queue in this
queue is not full (see the Flow Control section in the Introduction to STREAMS
chapter of the System Services Overview) canput () returns 1. This return indi­
cates that a message can be put to queue q. If the message queue is full, can­
put () returns 0. In this case, the caller is generally referred to as blocked.

[mblk_t *copyb(bp)
mblk_t *bp;]

copyb () copies the contents of the message block pointed at by bp into a
newly-allocated message block of at least the same size. copyb () allocates a
new block by calling allocb () withpri set to BPRI _ MED (see Buffer Alloca­
tion Priority, above). All data between the b _rptr and b _ wptr pointers of a mes­
sage block are copied to the new block, and these pointers in the new block are
given the same offset values they had in the original message block. On success­
ful completion, copyb () returns a pointer to the new message block containing
the copied data. Otherwise, it returns a NULL pointer.

(mblk_t *copymsg(mp)
mblk_t *mp;]

copymsg () uses copyb () to copy the message blocks contained in the mes­
sage pointed at by mp to newly-allocated message blocks, and links the new mes­
sage blocks to form the new message. On successful completion, copymsg ()
returns a pointer to the new message. Otherwise, it returns a NULL pointer.

(#define datamsg(mp) ...)
The datarnsg macro returns TRUE if mp (declared as mblk t *mp) points to
a data type message. Types M_DATA, M_PROTO, M_PCPROTO, and M_DELAY
count as data (see the Message Types section, above). If mp points to any other
message type, datamsg returns FALSE.

[
mblk_t *dupb (bp) J

mblk_t *bp;

dupb () duplicates the message block descriptor {mblk _ t structure) pointed at
by bp by copying it into a newly allocated message block descriptor. A message
block is formed with the new message block descriptor pointing to the same data
block as the original descriptor. The reference count in the data block descriptor
(dblk_t structure) is incremented. dupb () does not copy the data buffer, only
the message block descriptor.

Revision A, of 27 March 1990

162 STREAMS Programming

dupmsg () - Duplicate a
Message

enab1eok () - Re-allow
Queue to be Scheduled

esba11oc () -Extended
STREAMS Buffer Allocation

esbbca11 () -bufcall for
extended buffers

On successful completion, dupb (} returns a pointer to the new message block.
If dupb (} cannot allocate a new message block descriptor, it returns NULL.

This routine allows message blocks that exist on different queues to reference the
same data block. In general, if the contents of a message block with a reference
count greater than 1 are to be modified, copyb (} should be used to create a new
message block and only the new message block should be modified. This insures
that other references to the original message block are not invalidated by
unwanted changes.

[mblk_t *dupmsg(mp)
mblk_t *mp;

dupmsg (} calls dupb (} to duplicate the message pointed at by mp, by copy­
ing all individual message block descriptors, and then linking the new message
blocks to form the new message. dupmsg (} does not copy data buffers, only
message block descriptors. On successful completion, dupmsg (} returns a
pointer to the new message. Otherwise, it returns NULL.

[#define enableok(q) ...

The enableok (} macro cancels the effect of an earlier noenable (} on the
same queue q (declared as queue_t *q). It allows a queue to be scheduled
for service that had previously been excluded from queue service by a call to
noenable (}.

mblk t *
esballoc(base, size, pri, fr_rtn)

unsigned char *base;
int size, pri;
frtn_t *fr_rtn;

]

J

esballoc (} allocates message and data blocks that point directly to a client­
supplied buffer. Message and data blocks allocated this way are indistinguishable
from the normal data blocks. The client-supplied buffers are processed as if they
were normal STREAMS buffers. Fr_ rt n points to a f rt n _ t structure (defined
in <sys/ stream. h>) containing the address of a function and an argument to
that function. This function is called with that argument when the message block
that esballoc returns is freed.

r

\.

int
esbbcall(pri, func, arg)

int pri;
int (*func) () ;
long arg;

Revision A, of 27 March 1990

£1ushq () - Flush a Queue

freeb () - Free a Message
Block

freemsg () - Free All
Message Blocks in a Message

getq () - Get a Message
from a Queue

Appendix A - Supplementary STREAMS Material 163

esbbcall () is an analog ofbufcall () that can be called when esbal­
loc () fails. See the description ofbufcall () for more information.

\.

flushq (q, flag)
queue_t *q;
int flag;

flushq () removes messages from the message queue in queue q and frees
them, using freemsg (). If.flag is set to FLUSHDATA, then flushq () dis­
cards all M_DATA, M_PROTO, M_PCPROTO, and M_DELAY messages (see
datamsg), but leaves all other messages on the queue. If.flag is set to
FLUS HALL, all messages are removed from the message queue and freed.
FLUS HALL and FLUSHDATA are defined in <sys/ stream. h>.

If a queue behind q is blocked, flushq () may enable the blocked queue, as
described in putq ().

[

freeb(bp)]

-· __ mb_l_k __ t_*_b_p_; ___________________ _,

freeb () will free (de-allocate) the message block descriptor pointed at by bp,
and free the corresponding data block if the reference count (see dupb{)) in the
data block descriptor (db 1 k _ t structure) is equal to 1. If the reference count is
greater than 1, freeb () will not free the data block, but will decrement the
reference count.

[freemsg (mp)
mblk_t *mp;

freemsg () uses freeb () to free all message blocks and their corresponding
data blocks for the message pointed at by mp.

(mblk_t *getq(q)
queue_t *q;

getq () gets the next available message from the queue pointed at by q.
getq () returns a pointer to the message and removes that message from the
queue. If no message is queued, getq () returns NULL.

]

]

getq (), and certain other utility routines, affect flow control in the stream as
follows: If getq () returns NULL, the queue is internally marked so that the next
time a message is placed on it, it will be scheduled for service (enabled, see qen -
able{)). Also, if the data in the enqueued messages drops below the low-water
mark, q_lowat, and a queue behind the current queue had previously attempted
to place a message in the queue and failed (i.e., was blocked, see canput()),
then the queue behind the current queue is scheduled for service (see the Flow

Revision A, of 27 March 1990

164 STREAMS Programming

insq () - Put a Message at a
Specific Place in a Queue

linkb () - Concatenate
Two Messages into One

msgdsize () - Get Number
of Data Bytes in a Message

noenable () - Prevent a
Queue from Being Scheduled

OTHERQ () - Get Pointer to
the Mate Queue

Control section in the Introduction to STREAMS chapter).

insq(q, emp, nmp)
queue_t *q;
mblk_t *emp, *nmp;

insq () places the message pointed at by nmp in the message queue contained
in the queue pointed at by q immediately before the already-enqueued message
pointed at by emp. If emp is NULL, the message is placed at the end of the
queue. If emp is non-NULL, it must point to a message that exists on the queue q,
or a system panic could result.

Note that the message is placed where indicated, without consideration of mes­
sage queueing priority. The queue will be scheduled in accordance with the rules
described in putq () for ordinary priority messages.

r

linkb (mp 1, mp2)
mblk t *mpl;
blk_t *mp2;

linkb () puts the message pointed at by mp2 at the tail of the message pointed
at by mpl.

[int msgdsize(mp)
mblk_t *mp;

ms gds i z e () returns the number of bytes of data in the message pointed at by
mp. Only bytes included in data blocks of type M_DATA are included in the
total.

(#define noenable(q) ...

]

J
The noenable () macro prevents the queue q (declared as queue_t *q)
from being scheduled for service by putq () or putbq () when these routines
enqueue an ordinary priority message, or by insq () when it enqueues any mes­
sage. no enable () does not prevent the scheduling of queues when a high
priority message is enqueued, unless it is enqueued by insq ().

(#define OTHERQ(q) ...

The OT HERQ () macro returns a pointer to the mate queue of q (declared as
queue_ t *q). If q is the read queue for the module, it returns a pointer to the
module's write queue. If q is the write queue for the module, it returns a pointer
to the read queue.

J

Revision A, of 27 March 1990

pu11upmsg () -
Concatenate Bytes in a
Message

putbq () - Return a
Message to the Beginning of a
Queue

putct1 () - Put a Control
Message

putct11 () - Put One-byte
Parameter Control Message

int pullupmsg(mp, len)
mblk_t *mp;
int len;

Appendix A - Supplementary STREAMS Material 165

pullupmsg () concatenates and aligns the first Zen data bytes of the passed
message into a single, contiguous message block. Proper alignment is
hardware-dependent. To perform its function, pullupmsg () allocates a new
message block by calling allocb () with pri set to BPRI _ MED (see Buffer
Allocation Priority, above). pullupmsg () only concatenates across message
blocks of similar type. It will fail if mp points to a message of less than Zen bytes
of similar type. A Zen value of -1 requests a pull-up of all the like-type blocks in
the beginning of the message pointed at by mp.

At completion of concatenation, pull upmsg () replaces mp with a pointer to
the new message block, so that mp still points to the same message block at the
end of the operation. However, the contents of the message block may have been
altered. On success, pullupmsg () returns 1. On failure, it returns 0.

\.

putbq(q, bp)
queue_t *q;
mblk_t *bp;

putbq (} puts the message pointed at by bp at the beginning of the queue
pointed at by q, in a position in accordance with the message's type. High prior­
ity messages are placed at the head of the queue, and ordinary messages are
placed after all high priority messages, but before all other ordinary messages.
The queue will be scheduled in accordance with the same rules described in
putq (). This utility is typically used to replace a message on a queue from
which it was just removed.

int putctl(q, type)
queue_t *q;
int type;

putctl () creates a control (not data, see datamsg, above) message of type
type, and calls the put procedure in the queue pointed at by q, with a pointer to
the created message as an argument. putctl (} allocates new blocks by calling
allocb () with pri set to BP RI_ HI (see the Buffer Allocation Priority section,
above). On successful completion, putctl () returns 1. It returns O if it cannot
allocate a message block, or if type M _ DATA, M _ PROTO, or M_ PCPROTO was
specified.

,

\.

int putctll(q, type, p)
queue_t *q;
int type;
int p;

Revision A, of 27 March 1990

166 STREAMS Programming

putnext () - Put a Message
to the Next Queue

putq () - Put a Message on
a Queue

qenab1e () - Enable a
Queue

putctll () creates a control (not data, see datamsg, above) message of type
type with a one-byte parameter p, and calls the put procedure in the queue
pointed at by q, with a pointer to the created message as an argument.
putctll () allocates new blocks by calling allocb () withpri set to
BPRI _HI (see the Buffer Allocation Priority section, above). On successful
completion, putctll () returns 1. It returns O if it cannot allocate a message
block, orif type M_DATA, M_PROTO, orM_PCPROTO was specified.

(#define putnext(q, mp) ...

The putnext () macro calls the put procedure of the next queue in a STREAM,
and passes it a message pointer as an argument. The parameters must be
declared as queue_t *q and mblk_t *mp. q is the calling queue (not the
next queue) and mp is the message to be passed. put next () is the typical
means of passing messages to the next queue in a STREAM.

putq(q, bp)
queue_t *q;
mblk_t *bp;

put q () puts the message pointed at by bp on the message queue contained in
the queue pointed at by q and enables that queue. put q () queues messages
appropriately by type (i.e., message queueing priority, see the Message Queues
amd Service Procedures section of the STREAMS Module and Driver Program­
ming chapter).

putq () will always enable the queue when a high priority message is queued.
put q () will enable the queue when an ordinary message is queued if the fol­
lowing condition is set, and enabling is not inhibited by noenable (). The
condition is set if the module has just been pushed (see I_PUSH in
streamio(4)), orif no message was queued on the last getq () call and no
message has been queued since.

putq () is intended to be used from the put procedure in the same queue in
which the message will be queued. A module should not call putq () directly
to pass messages to a neighboring module. putq () may be used as the

J

qi _putp put procedure value in either or both of a module's qini t structures.
This effectively bypasses any put procedure processing and uses only the
module's service procedure(s).

[qenable (q)
queue_t *q;

qenable () places the queue pointed at by q on the linked list of queues that
are ready to be called by the STREAMS scheduler (see the definition for
"Schedule" above, and the Put and Service Procedures section in the Introduc­
tion to STREAMS chapter).

J

sun Revision A, of 27 March 1990
microsystems

qrep1y () -Send Reverse­
Direction Message

qsize () -Find the
Number of Messages on a
Queue

RD () - Get Pointer to the
Read Queue

rmvb () - Remove a
Message Block from a
Message

rmvq () - Remove a
Message from a Queue

qreply(q, bp)
queue_t *q;
mblk_t *bp;

Appendix A - Supplementary STREAMS Material 167

qreply () sends the message pointed at by bp up (or down) the stream in the
reverse direction from the queue pointed at by q. This is done by locating the
partner of q (see OTHERQ () , below), and then calling the put procedure of that
queue's neighbor (as in put next()). qreply () is typically used to send back
a response {M _ I OCACK or M_ I OCNAK message) to an M _IOCTL message (see
Message Types, above).

[int qsize (q)
queue_t *q;

qs i z e () returns the number of messages present in queue q. If there are no
messages on the queue, qsize () returns 0.

]

(.._i_d_e_f_i_· n_e_RD_(_q_)_._·_· _____________________]

The RD () macro accepts a write queue pointer, q (declared as queue_ t *q),
as an argument and returns a pointer to the read queue for the same module.

mblk_t *rmvb(mp, bp)
mblk_t *mp;
mblk_t *bp;

rmvb () removes the message block pointed at by bp from the message pointed
at by mp, and then restores the linkage of the message blocks remaining in the
message. rmvb () does not free the removed message block. rmvb () returns a
pointer to the head of the resulting message. If bp is not contained in mp,
rmvb () returns a -1. If there are no message blocks in the resulting message,
rmvb () returns a NULL pointer.

rmvq(q, mp)
queue_t *q;
mblk_t *mp;

rmvq () removes the message pointed at by mp from the message queue in the
queue pointed at by q, and then restores the linkage of the messages remaining on
the queue. If mp does not point to a message that is present on the queue q, a
system panic could result.

Revision A, of 27 March 1990

168 STREAMS Programming

sp1str () - Set Processor
Level

testb () - Check for an
Available Buffer

unbuf ca11 () - Cancel an
outstanding buf call
request

un1inkb () - Remove
Message Block from Message
Head

WR () - Get Pointer to the
Write Queue

[int splstr ()

splstr () increases the system processor level to block interrupts at a level
appropriate for STREAMS modules when those modules are executing critical
portions of their code. splstr () returns the processor level at the time of its
invocation. Module developers are expected to use the standard kernel function
splx (s), wheres is the integer value returned by splstr (), to restore the
processor level to its previous value after the critical portions of code are passed.

int testb(size, pri)
register size;
uint pri;

te stb () checks for the availability of a message buffer of size size at priority
pri (see Buffer Allocation Priority, below) without actually retrieving the buffer.
te stb () returns 1 if the buffer is available, and O if no buffer is available. A
successful return value from testb () does not guarantee that a subsequent
allocb () call will succeed (e.g., in the case of an interrupt routine taking
buffers).

[void unbufcall(id)
int id;

]

]
unbuf call () cancels the pending buf call () request denoted by id, where
idis the value returned previously by bufcall (). This routine is typically
called in a module's close routine to clean up before returning. (Clean up is often
necessary to prevent executing the function supplied to buf call () with a
no-longer-valid argument.)

[
mblk_t *unlinkb(mp) J

.._ ___ mb_l_k ___ t_*_m_p_: ____________________ __

unlinkb () removes the first message block pointed at by mp and returns a
pointer to the head of the resulting message. unlinkb () returns a NULL
pointer if there are no more message blocks in the message.

[i!def ine WR (q) ...

The WR macro accepts a read queue pointer, q (declared as queue_t *q), as
an argument and returns a pointer to the write queue for the same module.

]

Revision A, of 27 March 1990

A.5. Design Guidelines

General Rules

Appendix A - Supplementary STREAMS Material 169

This appendix summarizes STREAMS module and driver design guidelines and
rules presented in previous chapters. Additional rules that developers must
observe are included. Where appropriate, the section of this document contain­
ing detailed information is named.

Unless otherwise noted, "module" implies "modules and drivers".

The following are general rules that developers should follow when writing
modules.

1. Modules cannot access information in the user structure associated with a
process. Modules are not associated with any process, and therefore have no
concept of process or user context.

The capability to pass user structure information upstream using messages
has been provided where required. This can be done in M_IOCTL handling
(see the Drivers section of the STREAMS Module and Driver Programming
chapter and also Message Types, above). A module can send error codes
upstream in an M _ IOCACK or M _ IOCNAK message, where they will be
placed in u_ error by the stream head. Return values may also be sent
upstream in a M _ I OCACK message, and will be placed in u _ rv al 1. Infor­
mation can also be passed to the user structure via a M _ ERROR message
(see the Complete Driver section of the STREAMS Module and Driver Pro­
gramming chapter and also Message Types, above). The stream head will
recognize this message type and inform the next system call that an error has
occurred downstream by setting u _error. Note that in both instances, the
downstream module cannot access the user structure, but it informs the
stream head to do so.

2. In general, modules should not require the data in an M _ DATA message to
follow a particular format, such as a specific alignment. This makes it easier
to arbitrarily push modules on top of each other in a sensible fashion. Not
following this rule may limit module re-usability (the ability to use the
module in multiple applications).

3. Every module must process an M_FLUSH message according to the value of
the argument passed in the message. (See the Message Queues and Service
Procedures and Drivers sections of STREAMS Module and Driver Program­
ming, and also Message Types, above).

4. A module should not change the contents of a data block whose reference
count is greater than 1 (see dupmsg () in the Utilities section, above)
because other modules that have references to the block may not want the
data changed. To avoid problems, it is recommended that the module copy
the data to a new block and then change the new one.

5. Modules should only manipulate message queues and manage buffers with
the routines provided for those purposes, (see the Utilities section, above).

6. Filter modules pushed between a service user and a service provider (see the
Service Interface section of the STREAMS Module and Driver Programming
chapter) may not alter the contents of the M_PROTO or M_PCPROTO block
in messages. The contents of the data blocks may be manipulated, but the

Revision A, of 27 March 1990

170 STREAMS Programming

System Calls

Data Structures

Header Files

message boundaries must be preserved.

These rules pertain to modules and drivers as noted.

l. open and close routines may sleep, but the sleep must return to the routine in
the event of a signal. That is, if they sleep, they must be at priority <=
P ZERO, or with PCATCH set in the sleep priority.

2. The open routine must return>= 0 on success or OPENFAIL if it fails. This
ensures that a failure will be reported to the user process. errno may be set
on failure. However, if the open routine returns OPENFAIL and errno is
not set, STREAMS will automatically set errno to ENXIO.

3. If a module or driver recognizes and acts on an M _ IOCTL message, it must
reply by sending a M _ I OCACK message upstream. A unique id is associated
with each M_IOCTL, and the M_IOCACK orM_IOCNAK message must con­
tain the id of the M _ IOCTL it is acknowledging.

4. A module (not a driver) must pass on any M _IOCTL message it does not
recognize (see Message Types, above). If an unrecognized M _ IOCTL
reaches a driver, the driver must reply by sending an M _ I OCNAK message
upstream.

Only the contents of q_ptr, q_minpsz, q_maxpsz, q_hiwat, and
q_ low at in a queue_ t structure may be altered. The latter four quantities are
set when the module or driver is opened, but may be modified subsequently.

As described in the SunOS STREAMS Topics chapter, every module and driver is
configured in with the address of a streamtab structure (see also the STREAMS
Mechanism section of the STREAMS Module and Driver Programming chapter).
For a driver, a pointer to its streamtab is included in cdevsw. For a module,
a pointer to its streamtab is included in fmodsw.

The following header files are generally required in modules and drivers:

types.h
contains type definitions used in the STREAMS header files

stream.h
contains required structure and constant definitions

stropts.h
primarily for users, but contains definitions of the arguments to the
M_FLUSH message type also required by modules

One or more of the header files described below may also be included (also see
the following section). No standard SunOS system header files should be
included except as described in the following section. The intent is to prevent
attempts to access data that cannot or should not be accessed.

errno.h
defines various system error conditions, and is needed if errors are to be
returned upstream to the user

+~.!! Revision A, of 27 March 1990

Accessible Symbols and
Functions

Appendix A - Supplementary STREAMS Material 171

sysmacros.h
contains miscellaneous system macro definitions

param.h
defines various system parameters, particularly the value of the P CATCH

sleep flag

signal.h
defines the system signal values, and should be used if signals are to be pro­
cessed or sent upstream

file.h
defines the file open flags, and is needed if O _ NDELAY is interpreted

The following lists the only symbols and functions that modules or drivers may
refer to (in addition to those defined by STREAMS), if hardware and UNIX­
system release independence is to be maintained. Drivers and modules that use
symbols not listed here will not be compatible with System V systems.

user. h (from open/close procedures only)

struct proc *u_procp
char u error
ushort u uid

I* process structure pointer *I
I* system call error number *I
I* effective user ID *I

ushort u_gid I* effective group ID * I
ushort u ruid I* real user ID * I
ushort u_rgid I* real group ID *I

proc . h (from open/ close procedures only)

short p_pid
short p_pgrp

I* process ID *I
I* process group ID * I

Functions accessible from open/close procedures only

flg = sleep(chan, pri) I* sleep until wakeup *I

Universally accessible functions

bcopy(from, to, nbytes) l*copydataquickly*I
bzero (buffer, nbytes) /* zero data quickly *I
t = max (a, b) /* return max of args *I
t = min (a, b) /* return min of args *I
mem=rm_alloc (map, size) /* allocate resource *I
rmfree (map, size, addr) /* de-allocate resource *I
rminit(mp, size, addr, name, mapsize) l*initializeresourcemap *I
printf (format, ...) /* print message *I
s = spln () /* set priority level *I
timeout (func, arg, ticks)/* schedule event *I
untimeout (func, arg) /* cancel event *I
wakeup (chan) /*wakeup sleeper *I

sysmacros.h

t = major (dev)
t = minor (dev)

kernel.h

I* return major device * I
I* return minor device * I

Revision A, of 27 March 1990

17 2 STREAMS Programming

Rules for Put and Service
Procedures

struct timeval boot time /* time since system came up*!
struct timeval time /* current time*!

param.h

PZERO
PCATCH
hz
NULL

types.h

dev t
time t

I* zero sleep priority *I
I* catch signal sleep flag *I
I* clock ticks per second * I
!* 0 *I

I* combined major/minor device *!
I* time counter *I

All data elements are software read-only except:

u error I* may be set on a failure return of open *I

To ensure proper data flow between modules, the following rules should be
observed in put and service procedures. The following rules pertain to put pro­
cedures.

1. A put procedure must not sleep.

2. Each QUEUE must define a put procedure in its qini t (see Kernel Struc­
tures, above) structure for passing messages between modules.

3. A put procedure must use the putq () (see Utilities, above) utility to
enqueue a message on its own message queue. This is necessary to ensure
that the various fields of the queue_ t structure are maintained consistently.

4. When passing messages to a neighbor module, a module may not call
putq () directly, but must call its neighbor's put procedure (see put­
next () in Utilities). Note that this rule is distinct from the one above it.
The previous rule states that a module must call put q () to place messages
on its own message queue, whereas this rule states that a module must not
call putq () directly to place messages on a neighbor's queue.

However, the q_qinfo structure that points to a module's put procedure
may point to putq () (i.e. putq () is used as the put procedure for that
module). When a module calls a neighbor's put procedure that is defined in
this manner, it will be calling putq () indirectly. If any module uses
putq () as its put procedure in this manner, the module must define a ser­
vice procedure. Otherwise, no messages will ever be sent to the next
module. Also, because putq () does not process M _FLUSH messages, any
module that uses put q () as its put procedure must define a service pro­
cedure to process M_FLUSH messages.

5. The put procedure of a QUEUE with no service procedure must call the put
procedure of the next QUEUE directly, if a message is to be passed to that
QUEUE. If flow control is desired, a service procedure must be provided.

Service procedures must observe the following rules:

Revision A, of 27 March 1990

A.6. STREAMS Glossary

Appendix A - Supplementary STREAMS Material 173

1. A service procedure must not sleep.

2. The service procedure must use getq (} to remove a message from its mes­
sage queue, so that the flow control mechanism is maintained.

3. The service procedure should process all messages on its message queue.
The only exception is if the stream ahead is blocked (i.e., canput (} fails,
see Utilities, above). Adherence to this rule is the only guarantee that
STREAMS will enable (schedule for execution) the service procedure when
necessary, and that the flow control mechanism will not fail.

If a service procedure exits for any other reason (e.g., buffer allocation
failure), it must take explicit steps to assure it will be re-enabled.

4. The service procedure must follow the steps below for each message that it
processes. STREAMS flow control relies on strict adherence to these steps.

Step 1:
Remove the next message from the message queue using getq (}. It is pos­
sible that the service procedure could be called when no messages exist on
the queue, so the service procedure should never assume that there is a mes­
sage on its message queue. If there is no message, return.

Step 2:
If all the following conditions are met:

o canput (} fails and

o the message type is not a priority type (see Message Types) and

o the message is to be put on the next QUEUE,

then, continue at Step 3. Otherwise, continue at Step 4.

Step 3:
The message must be replaced on the head of the message queue from which
it was removed using putbq (} (see Utilities). Following this, the service
procedure is exited. The service procedure should not be re-enabled at this
point. It will be automatically back-enabled by flow control.

Step 4:
If all the conditions of Step 2 are not met, the message should not be
returned to the queue. It should be processed as necessary. Then, return to
Step 1.

Back Enable To enable (by STREAMS) a preceding blocked QUEUE when STREAMS deter­
mines that a succeeding QUEUE has reached its low water mark.

Blocked A QUEUE that cannot be enabled due to flow control.

Clone Device A STREAMS device that returns an unused minor device when initially opened,
rather than requiring the minor device to be specified in the open (2} call.

Revision A, of 27 March 1990

17 4 STREAMS Programming

Close Procedure The module routine that is called when a module is popped from a stream and the
driver routine that is called when a driver is closed.

Control Stream In a multiplexor, the upper stream on which a previous I_ LINK ioctl (to the
associated file, see streamio(4)) caused a lower stream to be connected to the
multiplexor driver at the end of the upper stream.

Downstream The direction from stream head towards driver.

Device Driver In the STREAMS context, the term "device driver" refers to the end of the stream
closest to an external interface. The principal functions of a device driver are
handling an associated physical device, and transforming data and information
between the external interface and stream.

Driver A module that forms the stream end. It can be a device driver or a pseudo-device
driver. In STREAMS, a driver is physically identical to a module (i.e., composed
of two QUEUEs), but it has additional attributes.

Enable Schedule a QUEUE.

Flow Control The STREAMS mechanism that regulates the flow of messages within a stream
and the flow from user space into a stream.

Lower Stream A stream connected below a multiplexor pseudo-device driver, by means of an
I LINK ioctl. The far end of a lower stream terminates at a device driver or
another multiplexor driver.

Message One or more linked message blocks. A message is referenced by its first message
block and its type is defined by the message type of that block.

Message block Carries data or information, as identified by its message type, in a stream. A
message block is a triplet consisting of a data buffer and associated control struc­
tures, an mblk _ t structure, and a dblk _ t structure.

Message Queue A linked list of zero or more messages connected to a QUEUE.

Message type A defined set of values identifying the contents of a message block and message.

Module A pair of QUEUEs. In general, module implies a pushable module.

Multiplexor A STREAMS mechanism that allows messages to be routed among multiple
STREAMS in the kernel. A multiplexor includes at least one multiplexing
pseudo-device driver connected to one or more upper STREAMS and one or more
lower STREAMS.

Open Procedure The routine in each STREAMS driver and module called by STREAMS on each
open (2) system call made on the stream. A module's open procedure is also
called when the module is pushed.

Pop A STREAMS ioctl () (see streamio(4)) that causes the pushable module
immediately below the stream head to be removed (popped) from a stream
(modules can also be popped as the result of a close (2)) •

Pseudo-device Driver A software driver, not directly associated with a physical device, that performs
functions internal to a stream such as a multiplexor or log driver.

Revision A, of 27 March 1990

Appendix A - Supplementary STREAMS Material 175

Push A STREAMS ioctl () (see streamio(4)) that causes a pushable module to be
inserted (pushed) in a stream immediately below the stream head.

Pushable Module A module interposed (pushed) between the stream head and driver. Pushable
modules perform intermediate transformations on messages flowing between the
stream head and driver. A driver is a non-pushable module and a stream head
includes a non-pushable module.

Put Procedure The routine in a QUEUE that receives messages from the preceding QUEUE. It is
the single entry point into a QUEUE from a preceding QUEUE. The procedure
may perform processing on the message and will then generally either queue the
message for subsequent processing by this QUEUE's service procedure, or will
pass the message to the put procedure of the following QUEUE.

QUEUE A STREAMS defined set of C structures. A module is composed of a read
(upstream) QUEUE and a write (downstream) QUEUE. A QUEUE will typically
contain a put and service procedure, a message queue, and private data. The read
QUEUE (cf. read queue) in a module will also contain the open procedure and
close procedure for the module.

The primary structure is the queue_ t structure, occasionally used as a synonym
fora QUEUE.

Read Queue The message queue in a module or driver containing messages moving upstream.
Associated with a read (2) system call and input from a driver.

Schedule Place a QUEUE on the internal list of QUEUEs which will subsequently have their
service procedure called by the STREAMS scheduler.

Service Interface A set of primitives that define a service at the boundary between a service user
and a service provider and the rules (typically represented by a state machine) for
allowable sequences of the primitives across the boundary. At a stream/user
boundary, the primitives are typically contained in the control part of a message;
within a stream, in M_PROTO or M_PCPROTO message blocks.

Service Procedure The routine in a QUEUE that receives messages queued for it by the put pro­
cedure of the QUEUE. The procedure is called by the STREAMS scheduler. It
may perform processing on the message and will generally pass the message to
the put procedure of the following QUEUE.

Service Provider In a service interface, the entity (typically a module or driver) that responds to
request primitives from the service user with response and event primitives.

Service User In a service interface, the entity that generates request primitives for the service
provider and consumes response and event primitives.

Stream The kernel aggregate created by connecting STREAMS components, resulting
from an application of the STREAMS mechanism. The primary components are
the stream head, the driver, and zero or more pushable modules between the
stream head and driver.

Stream End The end of the stream furthest from the user process, containing a driver.

Stream Head The end of the stream closest to the user process. It provides the interface
between the stream and the user process.

Revision A, of 27 March 1990

17 6 STREAMS Programming

STREAMS

Upper Stream

Upstream

Water Marks

Write queue

A kernel mechanism that supports development of network services and data
communication drivers. It defines interface standards for character input/output
within the kernel, and between the kernel and user level. The STREAMS
mechanism comprises integral functions, utility routines, kernel facilities, and a
set of structures.

A stream terminating above a multiplexor pseudo-device driver. The far end of
an upper stream originates at the stream head or another multiplexor driver.

The direction from driver towards stream head.

Limit values used inflow control. Each QUEUE has a high water mark and a low
water mark. The high water mark value indicates the upper limit related to the
number of characters contained on the message queue of a QUEUE. When the
enqueued characters in a QUEUE reach its high water mark, STREAMS causes
another QUEUE that attempts to send a message to this QUEUE to become
blocked. When the characters in this QUEUE are reduced to the low water mark
value, the other QUEUE will be unblocked by STREAMS.

The message queue in a module or driver containing messages moving down­
stream. Associated with a write (2) system call and output from a user pro­
cess.

Revision A, of 27 March 1990

Index

A
accessing the datagram provider, S1REAMS, 64
adding modules, S1REAMS, 7 6
advanced operations, S1REAMS, 46
advanced topics, S1REAMS, 132
application programming, S1REAMS, 37
autopush. SunOS extension to S1REAMS, 143

B
bappend (), 84
basic operations, S1REAMS, 40
blocking, process, 49
buffer allocation priority, S1REAMS, 159

building a multiplexor, S1REAMS, 52

C
canonical processing, 90
CANONPROC, S1REAMS, 25
cdevsw, upon open, 75, 140
clone open, S1REAMS, 50
cloning, S1REAMS, 104

closing S1REAMS, 111
closing a service, S1REAMS, 67
closing a stream, S1REAMS, 76

D
data structures

S1REAMS, 170
data, routing multiplexed, STREAMS, 58
datagram

receiving a S1REAMS datagram, 68
sending a S1REAMS datagram, 67

datagram service interlace, S1REAMS, 62
definition of "stream" in S1REAMS context, 38
development facilities, STREAMS, 39

dismantling a multiplexor, STREAMS, 57
driver

S1REAMS close, 103
S1REAMS declarations, 96
S1REAMS development facilities, 72
S1REAMS environment, 80
S1REAMS flow control, 95
S1REAMS flush handling, 100
S1REAMS interrupt, 100
STREAMS ioctls, 101

-177-

driver, continued
S1REAMS module programming, 71
S1REAMS open, 98
S1REAMS processing procedures, 99
S1REAMS programming, 96

E
error logging, S1REAMS, 32
error messages, S1REAMS, 141
example driver, S1REAMS, 104
example of S1REAMS multiplexing, 115
example of S1REAMS multiplexor configuration, 120
external variables, S1REAMS, 77

F
filter module declarations, S1REAMS, 83
flow control, S1REAMS, 27, 89, 173
fmodsw, S1REAMS, 76
freeing messages, S1REAMS, 77

H
high priority messages, STREAMS, 156

I
inserting modules, STREAMS, 42
ioctl

S1REAMS I_LINK, 113
S1REAMS !_PLINK, 113

K
kernel

S1REAMS functions, 19
kernel structures, S1REAMS, 147

L
line disciplines, S1REAMS, 144
log command, 32
loop-around driver, STREAMS, 104

M
manual overview, 1
message allocation, STREAMS, 21, 85
message blocks, S1REAMS, 20
message form and linkage, STREAMS, 82
message format, S1REAMS, 81
message generation, S1REAMS, 83

Index - Continued

message handling, STREAMS, 59 thru 10
message interface, S1REAMS, 60
message priority, STREAMS, 89
message queues, S1REAMS, 19, 87, 89
message reception, STREAMS, 83
message structures, STREAMS, 149
message types, STREAMS, 15, 150
modularity STREAMS, 2
module and driver control, STREAMS, 43
module configuration, STREAMS, 140
module declarations, S1REAMS, 77
module environment, S1REAMS, 80
module ioctls, STREAMS, 101
module procedures, STREAMS, 79
module reusability, STREAMS, 7
multiplexed data, routing, STREAMS, 58
multiplexed Streams, STREAMS, 50 thru 58
multiplexing driver, STREAMS, 117
multiplexing,

STREAMS", 111

0
O_NDELA Y, 76
opening a stream, STREAMS, 75
overview of STREAMS drivers, 94

p
protocol portability, STREAMS, 6
protocol substitution, STREAMS, 7
put procedure rules, STREAMS, 172
put procedure, S1REAMS, 86
put procedures, STREAMS, 22

Q
QUEUE data structures

QUEUE data structures, STREAMS , 74
queue priority, STREAMS, 89
queue_t, 87

R
receiving a STREAMS datagram, 68
receiving messages, S1REAMS, 16
removing modules, STREAMS, 76
routing multiplexed data, STREAMS, 58

s
sending a datagram, S1REAMS, 67
sending messages, S1REAMS, 16
service interface messages, STREAMS, 59
service interface, STREAMS, 127
service procedure rules, STREAMS, 172
service procedures, STREAMS, 22, 87, 88, 110
strace command, 32
stream construction, STREAMS, 73
stream end, 10
stream head, STREAMS, 9
STREAMS

accessible functions, 171

STREAMS, conJinued
accessible symbols, 171

-178-

accessing the datagram provider, 64
adding modules, 76
advanced l/0, 46
advanced operations, 46
advanced topics, 132
advanced topics, flow control, 135
advanced topics, read options, 136
advanced topics, recovering from no buffers, 132
advanced topics, signals, 135
advanced topics, Stream Head processing, 136
advanced topics, write offset, 137
advanced view, 8
application programming, 37 thru 10
asynchronous 1/0, 49
asynchronous protocol example, 14
bappend () , 84
basic operations, 40
basic view, 3
benefits, 5
big example, 104
buff er allocation priority, 159
building a multiplexor, 52
building a stream, 11
CANONPROC, 25
clone open, 50
cloning, 104
close, 111
closing a service, 67
closing a stream, 76
configuring drivers, 139
context, 1
creating service interfaces, 5
data structures, 170
datagram provider access, 64
datagram receiving, 68
datagram service interface, 62
definition of "stream", 38
design and system calls, 170
design guidelines, 169
development facilities, 39
device driver streams, 95
dismantling a multiplexor, 57
driver cdevsw interface, 139
driver close, 103
driver declarations, 96
driver development facilities, 72
driver environment, 80
driver flow control, 95
driver flush handling, 100
driver interrupt, 100
driver ioctls, 101
driver open, 98
driver processing, 24
driver processing procedures, 99
driver programming, 96
drivers, 34
environment, 34
error and trace logging, 32
error messages, 141
example of asynchronous protocol, 14
example of message use, 16
expanded streams, 11

STREAMS, continued
external variables, 77
filter module declarations, 83
flow control, 27, 89, 173
fmodsw, 76
freeing messages, 77
functional parts, 3
functions, accessible, 171
general design rules, 169
glossary, 35, 173
header files, 170
high priority messages, 156
1/0, advanced, 46
1/0, asynchronous, 49
1/0, polling, 46
!_LINK, 113
!_PLINK, 113
inserting modules, 42
Internet multiplexing, 29
Internet multiplexor after connecting, 116
Internet multiplexor before connecting, 115
introduction, 1
ioctls, 101
kernel level functions, 19
kernel processing, 23
kernel structures, 147
kernel structures, iocblk, 149
kernel structures, linkblk, 150
kernel structures, streamtab, 147
kernel structures, QUEUE, 147
line disciplines, 144
loop-around driver, 104
M PCPROTO messages, 151
M - PROTO messages, 151
manipulating modules, 6
manipulating STREAMS modules, 6
manual pages, 5
mechanism, 72
message allocation, 21, 85
message blocks, 20
message form and linkage, 82
message format, 81
message generation, 83
message handling, 59 thru 70
message interlace, 60
message priority, 89
message queue priority, 26
message queues, 19, 87, 89
message reception, 83
message structures, 149
message types, 15, 150
message types, ordinary, 150
message use example, 16
modularity, 2
module and driver control, 43
module configuration, 140
module declarations, 77
module environment, 80
module ioctls, 101
module procedures, 79
module programming, 71
module reusability, 7
modules, 9, 34
monitoring, 31

-179-

STREAMS, continued
multiplexed Streams, 50 thru 58
multiplexing, 29, 111
multiplexing configurations, 112
multiplexing driver, 117

Index - Continued

multiplexing, connecting lower streams, 113
multiplexing, disconnecting lower streams, 114
multiplexing, example, 115
multiplexor configuration, example, 120
multiplexor, lower QUEUE write, 123
multiplexor, lower read put, 125
multiplexor, upper write put, 120
opening a stream, 75
overview of drivers, 94
polling 1/0, 46
portability, 143
primer, 1
protocol migration, 7
protocol portability, 6
protocol substitution, 7
pushable modules, 12
put and service procedures, 22
put procedure, 86
put procedure rules, 172
QUEUE data structures, 74
queue priority, 89
queue t, 87
receiving a datagram, 68
removing modules, 7 6
routing multiplexed data, 58
sending a datagram, 67
sending and receiving messages, 16
service interface, 127
service interface messages, 59
service interface procedure, 130
service interface, declarations, 128
service interface, messages, 127
service interfaces, 5
service procedure rules, 172
service procedures, 87, 88, 110
single 1/0 pathway, 38
standard SunOS modules, 142
stream construction, 73
stream end, 10
stream head, 9
streamtab, 140
SunOS STREAMS Topics, 139
Sun0S extension, 143
SunOS modules, 142
supplementary material, 147
symbols, accessible, 171
system calls, 4, 13
system error messages, 141
tunable parameters, 141
user line disciplines, 144
utilities, 158
write put procedure, 107
write side processing, 25
X.25 multiplexing, 30

STREAMS utilities
adjmsg (), 159
allocb (), 160
backq (), 160
buf call(), 160

Index - Continued

STREAMS utilities, continued
can put (), 160
copyb (), 161
copymsg (), 161
dupb (), 161
dupmsg (), 162
enableok () , 162
esballoc (), 162
esbbcall (), 162
flushq (), 163
freeb (), 163
f reemsg (), 163
insq (), 164
linkb () , 164
msgdsize (), 164
noenable () , 164
OTHERQ (), 164
pullupmsg (), 165
putbq (), 165
putctl (), 165
putctll (), 165
putnext (), 166
putq (), 166
qenable (), 166
qreply (), 167
qsize (), 167
RD(), 167
rmvb (), 167
rmvq (), 167
setq (), 163
splstr (), 168
sx (), 161
testb (), 168
unbufcall (), 168
unlinkb (), 168
WB (), 168
x(), 160

strerr command, 32
system calls, S1REAMS, 4

T
trace logging, S1REAMS, 32
tunable parameters, STREAMS, 141

u
utilities, STREAMS, 158

w
write put procedure, S1REAMS, 107

-180-

Notes

...

Notes

