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1.1. Manual Overview 

1.2. STREAMS Context 

1 
Introduction 

This manual is a guide to adding drivers for serial communication devices to the 
Sun0S kernel. It is divided into two sections. 

o STREAMS Programming, discusses topics relevant to the construction and 
installation of STREAMS drivers and modules. 

o STREAMS Supplementary Material, summarizes the kernel structures com­
monly found in STREAMS development. 

Chapter 1 is an introduction to the STREAMS mechanism. 

Chapter 2 describes the development of user-level STREAMS applications. 

Chapter 3 discusses, in detail, the development of STREAMS drivers and 
modules. 

Chapter 4 discusses those aspects of the STREAMS mechanism that are unique to 
SunOS. It covers the few STREAMS-specific configuration topics. 

Appendix A contains supplementary STREAMS material, including kernel and 
message structures, message types, and utilities. 

STREAMS was designed to systematize the existing UNIX character 1/0 mechan­
ism and to support the development of communications services. 

STREAMS consist of a set of system calls, kernel resources and kernel routines. 
For detailed information about the STREAMS-kernel interface, about the internal 
structure of STREAMS modules and about STREAMS driver programming, see 
the following sections. 

The UNIX system was originally designed as a general-purpose, multi-user, 
interactive operating system for minicomputers. Initially developed in the 
1970's, the system's communications environment included slow to medium 
speed, asynchronous terminal devices. The original design, the communications 
environment, and hardware state of the art influenced the character 1/0 mechan­
ism but the character 1/0 area did not require the same emphasis on modularity 
and performance as other areas of the system. 
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2 STREAMS Programming 

Support for a broader range of devices, speeds, modes, and protocols has since 
been incorporated into the system, but the original character 1/0 mechanism, 
which processes one character at a time, made such development difficult. Addi­
tionally, a paucity of tools and the absence of a framework for incorporating con­
temporary networking protocols added to the difficulty. 

Attempts to compensate for the above problems have led to diverse, ad-hoc 
implementations; for example, protocol drivers are often intertwined with the 
hardware configuration in which they were developed. As a result, functionally 
equivalent protocol software often cannot interface with alternate implementa­
tions of adjacent protocol layers. Portability, adaptability, and reuse of software 
have been hindered. 

STREAMS, a general, flexible facility and a set of tools for development of UNIX 
system communication services, is intended to remedy these problems. 
STREAMS supports services ranging from complete networking protocol suites to 
individual device drivers. 

STREAMS defines standard interfaces for character 1/0 within the kernel, and 
between the kernel and the rest of the system. The associated mechanism is sim­
ple and open-ended. It consists of a set of system calls, kernel resources, and 
kernel utility routines. The standard interface and open-ended mechanism enable 
modular, portable development and easy integration of higher performance net­
work services and their components. STREAMS does not impose any specific 
network architecture. Instead, it provides a powerful framework with a con­
sistent user interface that is compatible with the existing character 1/0 
interface-which is still available. 

STREAMS modularity and design reflect the "layers and options" characteristics 
of contemporary networking architectures. The basic components in a STREAMS 
implementation are referred to as modules. These modules, which reside in the 
kernel, offer a set of processing functions and associated service interfaces. 
From user level, modules can be dynamically selected and interconnected to pro­
vide any rational processing sequence. Kernel programming, assembly, and link 
editing are not required to create the interconnection. Modules can also be 
dynamically "plugged into" existing connections from user level. STREAMS 
modularity allows: 

o User level programs that are independent of underlying protocols and physi­
cal communication media. 

o Network architectures and higher level protocols that are independent of 
underlying protocols, drivers, and physical communication media. 

o Higher level services that can be created by selecting and connecting lower 
level services and protocols. 

o Enhanced portability of protocol modules resulting from STREAMS' well-
defined structure and interface standards. 

In addition to modularity, STREAMS provides developers with integral functions, 
a library of utility routines, and facilities that expedite software design and 
implementation. The principal facilities are: 
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1.3. A Basic View of a 
stream 

Figure 1-1 

Chapter 1 - Introduction 3 

o Buffer management - To maintain STREAMS' own, independent buffer 
pool. 

o Flow control - To conserve STREAMS' memory and processing resources. 

o Scheduling - To incorporate STREAMS' own scheduling mechanism. 

o Multiplexing- For processing interleaved data streams, such as occur in 
SNA, X.25, and windows. 

o Asynchronous operation of STREAMS and user processes - Allows 
STREAMS-related operations to be performed efficiently from user level. 

o Error and trace loggers - For debugging and administrative functions. 

"STREAMS" is a collection of system calls, kernel resources, and kernel utility 
routines that can create, use, and dismantle a "stream". A stream is a full-duplex 
processing and data transfer path between a driver in kernel space and a process 
in user space (see Figure 1-1). 

Basic stream 

Stream 
Head 

Module 

Driver 

User 
Process 

External 
Interface 

__ User Space __ _ 

Kernel Space 

! downstream 

(optional) 

t upstream 

A stream has three parts: A stream head, module(s) (optional), and a driver (also 
referred to as the stream end). The stream head provides the interface between 
the stream and user processes. Its principal function is to process STREAMS­
related user system calls. A module processes data that travel between the 
stream head and driver. A STREAMS driver may be a device driver, providing 
the services of an external 1/0 device, or an internal software driver, commonly 
called a pseudo-device driver. 
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4 STREAMS Programming 

System Calls 

Using a combination of system calls, kernel routines, and kernel utilities, 
STREAMS passes data between a driver and the stream head in the form of mes­
sages. Messages that are passed from the stream head toward the driver are said 
to travel downstream, and messages passed in the other direction travel upstream. 

The stream head transfers data between the data space of a user process and 
STREAMS kernel data space. Data sent to a driver from a user process are pack­
aged into STREAMS messages and passed downstream. Messages arriving at the 
stream head from downstream are processed by the stream head, and data are 
copied into user buffers. STREAMS can insert one or more modules into a stream 
between the stream head and driver to perform intermediate processing of data 
passing between the stream head and driver. 

Applications programmers can use the STREAMS facilities via a set of system 
calls. This system call interface is upward compatible with the existing character 
1/0 facilities. The open ( 2 ) system call will recognize a STREAMS file and 
create a stream to the specified driver. A user process can send and receive data 
using read ( 2) and write ( 2) in the same manner as with character files and 
devices. The ioctl ( 2) system call enables application programs to perform 
functions specific to a particular device. In addition, a set of generic STREAMS 
ioctl () commands (see streamio(4)) supports a variety of functions for 
accessing and controlling streams. A close ( 2) will dismantle a stream. 

open (), close (), read (),write (), and ioctl () support the basic set 
of operations on streams. In addition, new system calls support advanced 
STREAMS facilities. The poll ( 2) system call enables an application program 
to poll multiple streams for various events. When used with the STREAMS 
I_ SETS IG ioctl () command, poll () allows an application to process 1/0 
in an asynchronous manner. The putmsg (2) and getmsg ( 2) system calls 
enable application programs to interact with STREAMS modules and drivers 
through a service interface (described next). 

These calls are discussed in this section and, in more detail, the sections that fol­
low. They are precisely specified in the following manual pages: 
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Figure 1-2 

1.4. Benefits of STREAMS 

Creating Service Interfaces 
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STREAMS-Related Manual Pages 

Man Page 
open.2 

close.2 
read.2 

write.2 
putmsg.2 
getmsg.2 

poll.2 
clone.4 

streamio.4 
termio.4 

ttcompat. 4m 
ldterm. 4m 

kbd. 4s 
kb.4m 

mouse.4s 
ms.4m 
pty.4 

console.4s 
mti. 4s 

zs.4s 
nit.4p 

nit if.4m 
nit__pf. 4m 

nit buf. 4m 

Description 
Open a stream 
Close a stream 
Read from a stream 
Write to a stream 
Send a message on a stream 
Get next message off a stream 
STREAMS input/output multiplexing 
Open any minor device on a STREAMS driver 
STREAMS ioctl commands 
General terminal interface 
V7 /4BSD compatibility STREAMS module 
Standard terminal STREAMS module 
Sun keyboard device 
Sun keyboard STREAMS module 
Sun mouse device 
Sun mouse STREAMS module 
Pseudo terminal driver 
Sun console driver and terminal emulator 
Systech MTI-800/1600 multi-terminal interface 
Zilog 8530 SCC serial communications drive 
Network Interface Tap (NIT) Protocol 
STREAMS NIT device interface 
STREAMS NIT packet filtering module 
STREAMS NIT buffering module 

STREAMS offers two major benefits for applications programmers: easy creation 
of modules that offer standard data communications services, and the ability to 
manipulate those modules on a stream. 

One benefit of STREAMS is that it simplifies the creation of modules that present 
a service interface to any neighboring application program, module, or device 
driver. A service interface is defined at the boundary between two neighbors. In 
STREAMS, a service interface is a specified set of messages and the rules for 
allowable sequences of these messages across the boundary. A module that 
implements a service interface will receive a message from a neighbor and 
respond with an appropriate action (for example, send back a request to 
retransmit) based on the specific message received and the preceding sequence of 
messages. 

STREAMS provides features that make it easier to design various application 
processes and modules to common service interfaces. If these modules are writ­
ten to comply with industry-standard service interfaces, they are called protocol 
modules. 
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6 STREAMS Programming 

Manipulating Modules 

Protocol Portability 

Figure 1-3 

In general, any two modules can be connected anywhere in a stream. However, 
rational sequences are generally constructed by connecting modules with compa­
tible protocol service interfaces. For example, a module that implements an X.25 
protocol layer, as shown in Figure 1-3, presents a protocol service interface at its 
input and output sides. In this case, other modules should only be connected to 
the input and output side if they have the compatible X.25 service interface. 

STREAMS provides the capabilities to manipulate modules from user level, to 
interchange modules with common service interfaces, and to present a service 
interface to a stream user process. As mentioned above, these capabilities yield 
benefits when implementing networking services and protocols, including: 

o User level programs can be independent of underlying protocols and physi­
cal communication media. 

o Network architectures and higher level protocols can be independent of 
underlying protocols, drivers and physical communication media. 

o Higher level services can be created by selecting and connecting lower level 
services and protocols. Below are examples of the benefits of STREAMS 
capabilities to developers for creating service interfaces and manipulating 
modules. 

Figure 1-3 shows how the same X.25 protocol module can be used with different 
drivers on different machines by implementing compatible service interfaces. 
The X.25 protocol module interfaces are Connection Oriented Network Service 
(CONS) and Link Access Protocol - Balanced (LAPB) driver. 

Protocol Module Portability 

MACHINEA 

------ ------

X.25 
Protocol Layer 

Module 
j \ 

------ ------
,~ 

I 
LAPB 

1 

Driver 
Machine A 

\ j 

CONS 
INTERFACE 

SAME 

MODULE 

LAPB 
INTERFACE 
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Alternative protocol modules (and device drivers) can be interchanged on the 
same machine if they are implemented to an equivalent service interface(s). 

Figure 14 illustrates how STREAMS can migrate functions between kernel 
software and front end firmware. A common downstream service interface 
allows the transport protocol module to be independent of the number or type of 
modules below. The same transport module will connect without modification to 
either an X.25 module or X.25 driver that has the same service interface. 

By shifting functions between software and firmware, developers can produce 
cost effective, functionally equivalent systems over a wide range of 
configurations. They can rapidly incorporate technological advances. The same 
transport protocol module can be used on a lower capacity machine, where 
economics may preclude the use of front-end hardware, and also on a larger scale 
system where a front-end is economically justified. 

Figure 1-4 Protocol Migration 
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Figure 1-5 shows the same canonical module (for example, one that provides 
delete and kill processing on character strings) reused in two different streams. 
This module would typically be implemented as a filter, with no downstream ser­
vice interface. In both cases, a TTY interface is presented to the stream's user 
process since the module is nearest the stream head. 
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Figure 1-5 
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The STREAMS mechanism constructs a stream by serially connecting kernel 
resident STREAMS components, each constructed from a specific set of struc­
tures. As described earlier and shown in Figure 1-6, the primary STREAMS com­
ponents are the stream head, optional module(s), and stream end. 
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The stream head provides the interface between the stream and an application 
program. The stream head processes STREAMS-related system calls from the 
application and performs the bidirectional transfer of data and information 
between the application (in user space) and messages (in STREAMS' kernel 
space). 

Messages are the only means of transferring data and communicating within a 
stream. A STREAMS message contains data, status/control information, or a 
combination of the two. Each message includes a specified message type indica­
tor that identifies the contents. 

A module performs intermediate transformations on messages passing between 
stream head and driver. There may be zero or more modules in a stream (zero 
when the driver performs all the required character and device processing). 

Each module is constructed from a pair of QUEUE structures (see Au/ Ad and 
Bu/Bd in Figure 1-6). A pair is required to implement the bidirectional and sym­
metrical attributes of a stream. One QUEUE performs functions on messages 
passing upstream through the module (Au and Bu in Figure 1-6). The other set 
(Ad and Bd) performs another set of functions on downstream messages. (A 
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stream End 

QUEUE, which is part of a module, is different from a message queue, which is 
described later.) 

Each of the two QUEUEs in a module will generally have distinct functions, that 
is, unrelated processing procedures and data. The QUEUEs operate indepen­
dently so that Au will not know if a message passes through Ad unless Ad is pro­
grammed to inform it. Messages and data can be shared only if the developer 
specifically programs the module functions to perform the sharing. 

Each QUEUE can directly access the adjacent QUEUE in the direction of message 
flow (for example, Au to Bu or stream head to Bd). In addition, within a module, 
a QUEUE can readily locate its mate and access its messages (for example, for 
echoing) and data. 

Each QUEUE in a module may contain or point to messages, processing pro­
cedures, or data: 

o Messages - These are dynamically attached to the QUEUE on a linked list 
("message queue", see Au and Bd in Figure 1-6) as they pass through the 
module. 

o Processing procedures - A put procedure, to process messages, must be 
incorporated in each QUEUE. An optional service procedure, to share the 
message processing with the put procedure, can also be incorporated. 
According to their function, the procedures can send messages upstream 
and/or downstream, and they can also modify the private data in their 
module. 

o Data - Developers may provide private data if required by the QUEUE to 
perform message processing (for example, state information and translation 
tables). 

In general, each of the two QUEUEs in a module has a distinct set of all of these 
elements. Additional module elements will be described later. Although dep­
icted as distinct from modules (see Figure 1-6), a stream head and the stream end 
also contain a pair of QUEUEs. 

A stream end is a module in which the module's processing procedures are the 
driver routines. The procedures in the stream end are different from those in 
other modules because they are accessible from an external cievice and because 
the STREAMS mechanism allows multiple streams to be connected to the same 
driver. 

The driver can be a device driver, providing an interface between kernel space 
and an external communications device, or an internal pseudo-device driver. A 
pseudo-device driver is not directly related to any external device, and it per­
forms functions internal to the kernel. The multiplexing driver discussed in the 
Other Facilities section is a pseudo-device driver. 

Device drivers must transform all data and status/control information between 
STREAMS message formats and their external representation. Differences 
between STREAMS and character device drivers are discussed in the Driver 
Design Comparisons section. 
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A stream is created on the first open ( 2 ) system call to a character special file 
corresponding to a STREAMS driver. A STREAMS device is distinguished from 
other character devices by a field contained in the associated cdevsw device 
table entry. 

A stream is usually built in two steps. Step one creates a minimal stream consist­
ing of just the stream head and device driver, and step two adds modules to pro­
duce an expanded stream (see Figure 1-7). The first step has three parts: head 
and driver structures are allocated and initialized; the modules in the head and 
end are linked to each other to form a stream; the driver open routine is called. 
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If the driver performs all character and device processing required, no modules 
need be added to a stream. Examples of STREAMS drivers include a raw tty 
driver (one that passes along input characters without change) and a driver with 
multiple streams open to it (corresponding to multiple minor devices opened to a 
character device driver). 

When the driver receives characters from the device, it places them into mes­
sages. The messages are then transferred to the next stream component, the 
stream head, which extracts the contents of the message and copies them to user 
space. Similar processing occurs for downstream character output; the stream 
head copies data from user space into messages and sends them to the driver. 

As the second step in building a stream, modules can be added to the stream. In 
the right-hand stream in Figure 1-7, the CANONPROC module was added to 
provide additional processing on the characters sent between head and driver. 

Modules are added and removed from a stream in last-in-first-out (LIFO) order. 
They are inserted and deleted at the stream head via the ioctl ( 2) system call. 
In the stream on the left of Figure 1-5, the X.25 module was the first added to the 
stream, followed by Class 1 Transport and Canonical modules. To replace the 
Class 1 module with a Class O module, the Canonical module would have to be 
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Subsequent use of the word 
"module" will ref er to those push­
able modules between stream head 
and end. 

Pushable Modules 

removed first, then the Class 1 module, then a Class O module would be added 
and the Canonical module put back. 

Because adding and removing modules resembles stack operations, the add is 
called a push and the remove a pop. Push and pop are two of the ioctl () 
functions included in the STREAMS subset of ioctl () system calls. These 
commands perform various manipulations and operations on streams. The 
modules manipulated in this manner are called pushable modules, in contrast to 
the modules contained in the stream head and end. This stack terminology 
applies only to the setup, modification, and breakdown of a stream. 

The stream head processes the ioctl () and executes the push, which is analo­
gous to opening the stream driver. Modules are referenced by a unique symbolic 
name, contained in the STREAMS fmodsw module table (similar to the cdevsw 
table associated with a device file). The module table and module name are 
internal to STREAMS and are accessible from user space only through STREAMS 
ioctl () system calls. The fmodsw table.points to the module template in the 
kernel. When a module is pushed, the template is located, the module structures 
for both QUEUES are allocated, and the template values are copied into the struc­
tures. 

In addition to the module elements described in A Basic View of a stream, each 
module contains pointers to an open routine and a close routine. The open is 
called when the module is pushed, and the close is called when the module is 
popped. Module open and close procedures are similar to a driver open and 
close. 

As in other files, a STREAMS file is closed when the last process open to it closes 
the file by a close (2) system call. This system call causes the stream to be 
dismantled (modules popped and the driver close executed). 

Modules are pushed onto a stream to provide special functions and/or additional 
protocol layers. In Figure 1-7, the stream on the left is opened in a minimal 
configuration with a raw tty driver and no other module added. The driver 
receives one character at a time from the device, places the character in a mes­
sage, and sends the message upstream. The stream head receives the message, 
extracts the single character, and copies it into the reading process buffer to send 
to the user process in response to a read ( 2 ) system call. When the user pro­
cess wants to send characters back to the driver, it issues a write ( 2 ) system 
call, and the characters are sent to the stream head. The head copies the charac­
ters into one or more multi-character messages and sends them downstream. An 
application program requiring no further kernel character processing would use 
this minimal stream. 

A user requiring a more terminal-like interface would need to insert a module to 
perform functions such as echoing, character-erase, and line-kill. Assuming that 
the CANONPROC module in Figure 1-7 fulfills this need, the application pro­
gram first opens a raw tty stream. Then, the CANONPROC module is pushed 
above the driver to create a stream of the form shown on the right of the figure. 
The driver is not aware that a module has been placed above it and therefore con­
tinues to send single character messages upstream. The module receives single 
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character messages from the driver, processes the characters, and accumulates 
them into line strings. Each line is placed into a message and sent to the stream 
head. The head now finds more than one character in the messages it receives 
from downstream. 

stream head implementation accommodates this change in format automatically 
and transfers the multiple-character data into user space. The stream head also 
keeps track of messages partially transferred into user space (for example, when 
the current user read () buffer can only hold part of the current message). 
Downstream operation is not affected: the head sends, and the driver receives, 
multiple character messages. 

Note that the stream head provides the interface between the stream and user pro­
cess. Modules and drivers do not have to implement user interface functions 
other than open and close. 

After a stream has been opened, STREAMS-related system calls allow a user pro­
cess to insert and delete (push and pop) modules. That process can then com­
municate with and control the operation of the stream head, modules, and 
drivers, and can send and receive messages containing data and control informa­
tion. This section presents an example of some of the basic functions available 
to STREAMS-based applications via the system calls. Additional functions are 
described at the end of this section and in the Other Facilities section. 

The full set of STREAMS-related system calls is: 

open() 
Open a stream 

close() 
Close a stream 

read() 
Read data from a stream 

write() 
Write data to a stream 

ioctl() 
Control a stream 

getmsg() 
Receive the message at stream head 

putmsg() 
Send a message downstream 

poll() 
Notify the application program when selected events occur on a stream 

The following two-part example describes a stream that controls the data com­
munication characteristics of a connection between an asynchronous terminal and 
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An Asynchronous Protocol 
stream Example 

Initializing the stream 

a tty port. It illustrates basic user level STREAMS features, then shows how mes­
sages can be used. The Kernel Level Functions section discusses the kernel 
stream operations corresponding to the user operations described in this introduc­
tion. 

In the example, our computer supports different kinds of asynchronous terminals, 
each logging in on its own port. The port hardware is limited in function; for 
example, it detects and reports line and modem status, but does not check parity. 

Communications software support for these terminals is provided via a 
STREAMS implemented asynchronous protocol. The protocol includes a variety 
of options that are set when a terminal operator dials in to log on. The options 
are determined by a getty-type STREAMS user process, getstrm (), which 
analyzes data sent to it through a series of dialogs (prompts and responses) 
between the process and terminal operator. 

The process sets the terminal options for the duration of the connection by push­
ing modules onto the stream or by sending control messages to cause changes in 
modules (or in the device driver) already on the stream. The options supported 
include: 

o ASCII or EBCDIC character codes 

o For ASCII code, the parity ( odd, even or none) 

o Echo or not echo input characters 

o Canonical input and output processing or transparent (raw) character han­
dling 

These options are set with the following modules: 

CBARPROC 
Provides input character processing functions, including dynamically sett­
able (via control messages passed to the module) character echo and parity 
checking. The module's default settings are to echo characters and not 
check character parity. 

CANONPROC 
Performs canonical processing on ASCII characters upstream and down­
stream (note that this performs some processing in a different manner from 
the standard UNIX character 1/0 tty subsystem). 

ASCEBC 
Translates EBCDIC code to ASCII upstream and ASCII to EBCDIC down­
stream. 

At system initialization a user process, getstrm (), is created for each tty port. 
getstrm () opens a stream to its port and pushes the CHARPROC module onto 
the stream by use of an ioctl () !_PUSH command. Then, the process issues 
a getmsg () system call to the stream and sleeps until a message reaches the 
stream head. The stream is now in its idle state. 
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The initial idle stream, shown in Figure 1-8, contains only one pushable module, 
CHARPROC. The device driver is a limited function raw tty driver connected to a 
limited-function communication port. The driver and port transparently transmit 
and receive one unbuffered character at a time. 
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Upon receipt of initial input from a tty port, getstrm () establishes a connec­
tion with the terminal, analyzes the option requests, verifies them, and issues 
STREAMS system calls to set the options. After setting up the options, 
getstrm () creates a user application process. Later, when the user terminates 
that application, get strm () restores the stream to its idle state by use of sys­
tem calls. 

The next step is to analyze in more detail how the stream sets up the communica­
tions options. Before doing so, let's examine how messages are handled in 
STREAMS. 

All STREAMS messages are assigned message types to indicate their intended use 
by modules and drivers and to determine their handling by the stream head. A 
driver or module can assign most types to a message it generates, and a module 
can modify a message's type during processing. The stream head will convert 
certain system calls to specified message types and send them downstream, and it 
will respond to other calls by copying the contents of certain message types that 
were sent upstream. Messages exist only in the kernel, so a user process can only 
send and receive buffers. The process is not explicitly aware of the message 
type, but it may be aware of message boundaries, depending on the system call 
used (see the distinction between getmsg () and read () in the next section). 

Most message types are internal to STREAMS and can only be passed from one 
STREAMS module to another. A few message types, including M_DATA, 

M _ PROTO, and M _ PCPROTO, can also be passed between a stream and user 
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Sending and Receiving 
Messages 

Using Messages in the Example 

processes. M_DATA messages carry data within a stream and between a stream 
and a user process. M_PROTO or M_PCPROTO messages carry both data and 
control information. However, the distinction between control information and 
data is generally determined by the developer when implementing a particular 
stream. Control information includes service intetface information, carried 
between two stream entities that present service intetfaces, and condition or 
status information, which may be sent between any two stream entities regardless 
of their intetface. An M_PCPROTO message has the same general use as an 
M _ PROTO, but the former moves faster through a stream (see Message Queue 
Priority in the Other Facilities section). 

putmsg () is a STREAMS-related system call that sends messages; it is similar 
to write (). putmsg () provides a data buffer which is converted into an 
M _ DATA message, and can also provide a separate control buffer to be placed 
into anM_PROTO orM_PCPROTO block. write () provides byte-stream data 
to be converted into M_DATA messages. 

getmsg () is a STREAMS-related system call that accepts messages; it is similar 
to read () . One difference between the two calls is that read () accepts only 
data (messages sent upstream to the stream head as message type M_DATA), such 
as the characters entered from the terminal. getmsg () can simultaneously 
accept both data and control information (messages sent upstream as types 
M_PROTO or M_PCPROTO). getmsg () also differs from read () in that it 
preserves message boundaries so that the same boundaries exist above and below 
the stream head (that is, between a user process and a stream). read () gen­
erally ignores message boundaries, processing data as a byte stream. 

Certain STREAMS ioctl () commands, such as I_STR, also cause messages to 
be sent or received on the stream. I_ S TR provides the general "ioctl" capability 
of the character 1/0 subsystem. A user process above the stream head can issue 
putmsg (), getmsg (), the I_STR ioctl () command, and certain other 
STREAMS related system calls. Other STREAMS ioctl' s petform functions 
that include changing the state of the stream head, pushing and popping modules, 
or returning special information. 

In addition to message types that explicitly transfer data to a process, some mes­
sages sent upstream result in information transfer. When these messages reach 
the stream head, they are transformed into various forms and sent to the user pro­
cess. The forms include signals, error codes, and call return values. 

Returning to the asynchronous protocol example, the stream was in its idle 
configuration (see Figure 1-8). getstrm () had issued a getmsg () and was 
sleeping until the arrival of a message from the stream head. Such a message 
would result from the driver detecting activity on the associated tty port. 

An incoming call arrives at port one and causes a ring detect signal in the 
modem. The driver receives the ring signal, answers the call, and sends upstream 
an M PROTO message containing information indicating an incoming call. 
get;trm () is notified of all incoming calls, although it can choose to refuse 
the call because of system limits. In this idle state, getstrm () will also accept 
M _ PROTO messages indicating, for example, error conditions such as detection 
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of line or modem problems on the idle line. 

The M _ PROTO message containing notification of the incoming call flows 
upstream from the driver into CHARPROC. CHARPROC inspects the message 
type, determines that message processing is not required, and passes the 
unmodified message upstream to the stream head. The stream head copies the 
message into the getmsg () buffers (one buffer for control information, the 
other for data) associated with getstrm () and wakes up the process. 
getstrm () sends its acceptance of the incoming call with a putmsg () sys­
tem call which results in a downstream M _PROTO message to the driver. 

Then, get strm () sends a prompt to the operator with a write () and issues a 
getmsg () to receive the response. A read () could have been used to receive 
the response, but the getmsg () call allows concurrent monitoring for control 
(M_PROTO and M_PCPROTO) information. getstrm () will now sleep until 
the response characters, or information regarding possible error conditions 
detected by modules or driver, are sent upstream. 

The first response, sent upstream in an M_DATA block, indicates that the code set 
is ASCII and that canonical processing is requested. get strm () implements 
these options by pushing CANONPROC onto the stream, above CHARPROC, to 
perform canonical processing on the input ASCII characters. 

The response to the next prompt requests even parity checking. getstrm () 
sends an ioctl () I_STR command to CHARPROC, requesting the module to 
perform even parity checking on upstream characters. When the dialog indicates 
protocol option setting is complete, getstrm () creates an application process. 
At the end of the connection, getstrm () will pop CANONPROC and then send 
a I_STR to CHARPROC requesting the module to restore the no-parity idle state 
(CHARPROC remains on the stream). 

As a result of the above dialogs, the terminal at port one operates in the following 
configuration: 

o ASCII, even parity 

o Echo 

o Canonical processing 

In similar fashion, an operator at a different type of terminal on port two requests 
a different set of options, resulting in the following configuration: 

D EBCDIC 

o No Echo 

o Canonical processing 

The resultant streams for the two ports are shown in Figure 1-9. For port one, on 
the left, the modules in the stream are CANONPROC and CHARPROC. 

For port two, on the right, the resultant modules are CANONPROC, ASCEBC and 
CHARPROC. ASCEBC has been pushed on this stream to translate between the 
ASCII interface at the downstream side of CANONPROC and the EBCDIC inter­
face of the upstream output side of CHARPROC. In addition, get strm () has 
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sent an I_ S TR to the CHARPROC module in this stream requesting it to disable 
echo. The resultant modification to CHARPROC' s functions is indicated by the 
word "modified" in the right stream of Figure 1-9. 

Figure 1-9 Asynchronous Terminal streams 
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Since CHARPROC is now performing no function for port two, it might have 
been popped from the stream to be reinserted by getstrm (} at the end of con­
nection. However, the low overhead of STREAMS does not require its removal. 
The module remains on the stream, passing messages unmodified between 
ASCEBC and the driver. At the end of the connection, getstrm (} restores this 
stream to its idle configuration of Figure 1-8 by popping the added modules and 
then sending an I_STR to CHARPROC to restore the echo default. 

Note that the tty driver shown in Figure 1-9 handles minor devices. Each minor 
device has a distinct stream connected from user space to the driver. This ability 
to handle multiple devices is a standard STREAMS feature, similar to the minor 
device mechanism in character 1/0 device drivers. 
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The previous example illustrates basic STREAMS concepts. Alternate, more 
efficient, STREAMS calls or mechanisms could have been used in place of those 
described earlier. Some of the alternatives are described in the Other Facilities 
section. For details, see following chapters and the SunOS Reference Manual. 

For example, the initialization process that created a get strm () for each tty 
port could have been implemented as a "supergetty" by use of the STREAMS­
related poll () system call. As described in the Other Facilities section, 
poll () allows a single process to efficiently monitor and control multiple 
streams. The "supergetty" process would handle all of the stream and terminal 
protocol initialization and would create application processes only for established 
connections. 

The M _PROTO notification sent to getstrm () could have been sent by the 
driver as an M _SIG message that causes a specified signal to be sent to the pro­
cess. As discussed previously under Message Types, error and status information 
can also be sent upstream from a driver or module to user processes via different 
message types. These messages will be transformed by the stream head into a 
signal or error code. 

Finally, an ioctl I_STR command could have been used in place of a 
putmsg M_PROTO message to send information to a driver. The sending pro­
cess must receive an explicit response from an I_ STR by a specified time period 
or an error will be returned. A response message must be sent upstream by the 
destination module or driver to be translated into the user response by the stream 
head. 

This section introduces the use of the STREAMS mechanism in the kernel and 
describes some of the tools provided by STREAMS to assist in the development 
of modules and drivers. In addition to the basic message passing mechanism and 
QUEUE stream linkage described previously, the STREAMS mechanism consists 
of various facilities including buffer management, the STREAMS scheduler, pro­
cessing and message priority, flow control, and multiplexing. Over 30 STREAMS 
utility routines and macros are available to manipulate and utilize these facilities. 

The key elements of a STREAMS kernel implementation are the processing rou­
tines in the module and drivers, and the preparation of required data structures. 
The structures are described in the STREAMS section of Writing Device Drivers. 
The following sections provide further information on messages and on the pro­
cessing routines that operate on them. The example of the previous section is 
continued, associating the user-level operations described there with kernel 
operations. 

As shown in Figure 1-10, a STREAMS message consists of one or more linked 
message blocks. That is, the first message block of a message may be attached to 
other message blocks that are part of the same message. Multiple blocks in a 
message can occur, for example, as the result of processing that adds header or 
trailer data to the data contained in the message, or because of message buffer 
size limitations which cause the data to span multiple blocks. When a message is 
composed of multiple message blocks, the message type of the first block deter­
mines the type of the entire message, regardless of the types of the attached 

Revision A, of 27 March 1990 



20 STREAMS Programming 

Figure 1-10 
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STREAMS allocates a message as a single block containing a buffer of a certain 
size (see the next section). If the data for a message exceed the size of the buffer 
containing the data, the procedure can allocate a new block containing a larger 
buffer, copy the current data to it, insert the new data and de-allocate the old 
block. Alternately, the procedure can allocate an additional (smaller) block, 
place the new data in the new message block and link it after or before the initial 
message block. Both alternatives yield one new message. 

Messages can exist standalone, as shown in Figure 1-10 when the message is 
being processed by a procedure. Alternately, a message can await processing on 
a linked list of messages, called a message queue, in a QUEUE. In Figure 1-11, 
Message 1 is linked to Message 2. 
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When a message is on a queue, the first block of the message contains links to 
preceding and succeeding messages on the same message queue, in addition to 
containing a link to the second block of the message (if present). The message 
queue head and tail are contained in the QUEUE. 

STREAMS utility routines enable developers to manipulate messages and mes­
sage queues. 

STREAMS maintains its own storage pool for messages. A procedure can request 
the allocation of a message of a specified size at one of three message pool priori­
ties. The allocb () utility will return a message containing a single block with 
a buffer of at least the size requested, providing there is a buffer available at the 
priority requested. When requesting priority for messages, developers must 
weigh their process' need for resources against the needs of other processes on 
the same machine. 

Message pool priority generally has no effect on allocation until the pool falls 
below internal STREAMS thresholds. When this occurs, allocb () may refuse 
a lower priority request for a message of size "x" while granting a higher priority 
request for the same size message. As examples of priority usage, storage for an 
urgent control message, such as an M _ HANGUP or M _ PCPROTO could be 
requested at high priority. An M_DATA buffer for holding input might be 
requested at medium priority, and an output buffer (presuming the output data 
can wait in user space) at lowest priority. 
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Put and Service Procedures 

Put Procedures 

Service Procedures 

The procedures in the QUEUE are the software routines that process messages as 
they transit the QUEUE. The processing is generally performed according to the 
message type and can result in a modified message, new message(s) or no mes­
sage. A resultant message is generally sent in the same direction in which it was 
received by the QUEUE, but may be sent in either direction. A QUEUE will always 
contain a put procedure and may also contain an associated service procedure. 

A put procedure is the QUEUE routine that receives messages from the preceding 
QUEUE in the stream. Messages are passed between QUEUES by a procedure in 
one QUEUE calling the put procedure contained in the following QUEUE. A call to 
the put procedure in the appropriate direction is generally the only way to pass 
messages between modules (unless otherwise indicated, "modules" infers 
"module, driver and stream head"). QUEUES in pushable (see Building a stream) 
modules contain a put procedure. In general, there is a separate put procedure for 
the read and write QUEUES in a module because of the "full duplex" operation of 
most streams. 

A put procedure is associated with immediate (as opposed to deferred, see below) 
processing on a message. Each module accesses the adjacent put procedure as a 
subroutine. For example, consider that mod.A, modB, and modC are three con­
secutive modules in a stream, with modC connected to the stream head. If mod.A 
receives a message to be sent upstream, mod.A processes that message and calls 
modB' s put procedure, which processes it and calls modC' s put procedure, which 
processes it and calls the stream head's put procedure. Thus, the message will be 
passed along the stream in one continuous processing sequence. On one hand, 
this sequence has the benefit of completing the entire processing in a short time 
with low overhead (subroutine calls). On the other hand, if this sequence is 
lengthy and the processing is implemented on a multi-user system, then this 
manner of processing may be good for this stream but may be detrimental for 
others since they may have to wait "too long" to get their tum at bat. 

In addition, there are situations where the put procedure cannot immediately pro­
cess the message but must hold it until processing is allowed. The most typical 
examples of this are a driver which must wait until the current output completes 
before sending the next message and the stream head, which may have to wait 
until a process initiates a read ( 2) on the stream. 

STREAMS allows a service procedure to be contained in each QUEUE, in addition 
to the put procedure, to address the above cases and for additional purposes. A 
service procedure is not required in a QUEUE and is associated with deferred pro­
cessing. If a QUEUE has both a put and service procedure, message processing 
will generally be divided between the procedures. The put procedure is always 
called first, from a preceding QUEUE. After the put procedure completes its part 
of the message processing, it arranges for the service procedure to be called by 
passing the message to the putq () routine. putq () does two things: it places 
the message on the message queue of the QUEUE (see Figure 1-11) and links the 
QUEUE to the end of the STREAMS scheduling queue. When putq () returns to 
the put procedure, the procedure typically exits. Some time later, the service pro­
cedure will be automatically called by the STREAMS scheduler. 
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The STREAMS scheduler is separate and distinct from the SunOS system process 
scheduler. It is concerned only with QUEUES linked on the STREAMS scheduling 
queue. The scheduler calls the service procedure of the scheduled QUEUE in a 
FIFO manner, one at a time. 

Having both a put and service procedure in a QUEUE enables STREAMS to pro­
vide the rapid response and the queuing required in multi-user systems. The put 
procedure allows rapid response to certain data and events, such as software 
echoing of input characters. Put procedures effectively have higher priority than 
any scheduled service procedures. When called from the preceding STREAMS 
component, a put procedure executes before the scheduled service procedures of 
any QUEUE are executed. 

The service procedure implies message queuing. Queuing results in deferred 
processing of the service procedure, following all other QUEUES currently on the 
scheduling queue. For example, terminal output and input erase and kill process­
ing would typically be performed in a service procedure because this type of pro­
cessing does not have to be as timely as echoing. Use of a service procedure also 
allows processing time to be more evenly spread among multiple streams. As 
with the put procedure there will generally be a separate service procedure for 
each QUEUE in a module. The flow control mechanism (see the Other Facilities 
section) uses the service procedures. 

Kernel Processing The following continues the example of the previous section, describing 
STREAMS kernel operations and associating them, where relevant, with the 
user-level system calls already discussed. As a result of initializing operations 
and pushing a module, the stream for port one has the following configuration: 

Figure 1-12 Operational stream for Example 
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As shown in Figure 1-12 the upstream QUEUE is also referred to as the read 
QUEUE, reflecting the message flow in response to a read () system call. 
Correspondingly, downstream is referred to as the write QUEUE. Read side pro­
cessing is discussed first. 
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Read Side Processing In our example, read side processing consists of driver processing, CHARPROC 
processing, and CANONPROC processing. 

Driver Processing In the example, the user process has blocked on the getmsg ( 2} system call 
while waiting for a message to reach the stream head, and the device driver 
independently waits for input of a character from the port hardware or for a mes­
sage from upstream. Upon receipt of an input character interrupt from the port, 
the driver places the associated character in an M _ DATA message, allocated pre­
viously. Then, the driver sends the message to the CHARPROC module by cal­
ling CHARPROC's upstream put procedure. On return from CHARPROC, the 
driver calls the allocb () utility routine to get another message for the next 
character. 

CHARPROC CHARPROC has both put and service procedures on its read side. In the example, 
the other QUEUES in the modules also have put and service procedures: 

Figure 1-13 Module Put and Service Procedures 
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When the driver calls CHARPROC's read QUEUE put procedure, the procedure 
checks private data flags in the QUEUE. In this case, the flags indicate that echo­
ing is to be performed (recall that echoing is optional and that we are working 
with port hardware which can not automatically echo). CHARPROC causes the 
echo to be transmitted back to the terminal by first making a copy of the message 
with a STREAMS utility. Then, CHARPROC uses another utility to obtain the 
address of its own write QUEUE. Finally, the CHARPROC read put procedure 
calls its write put procedure and passes it the message copy. The write procedure 
sends the message to the driver to effect the echo and then returns to the read pro­
cedure. 

This part of read side processing is implemented with put procedures so that the 
entire processing sequence occurs as an extension of the driver input character 
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interrupt. The CHARPROC read and write put procedures appear as subroutines 
(nested in the case of the write procedure) to the driver. This manner of process­
ing is intended to produce the character echo in a minimal time frame. 

After returning from echo processing, the CHARPROC read put procedure checks 
another of its private data flags and determines that parity checking should be 
performed on the input character. Parity should most reasonably be checked as 
part of echo processing. However, for this example, parity is checked only when 
the characters are sent upstream. This relaxes the timing in which the checking 
must occur, that is, it can be deferred along with the canonical processing. 
CHARPROC uses putq () to schedule the (original) message for parity check 
processing by its read service procedure. When the CHARPROC read service pro­
cedure is complete, it forwards the message to the read put procedure of 
CANONPROC. Note that if parity checking were not required, the CHARPROC 

put procedure would call the CANONPROC put procedure directly. 

CANONPROC performs canonical processing. As implemented, all read QUEUE 

processing is performed in its service procedure so that CANONPROC 's put pro­
cedure simply calls putq () to schedule the message for its read service pro­
cedure and then exits. The service procedure extracts the character from the mes­
sage buffer and places it in the "line buffer" contained in another M _DATA mes­
sage it is constructing. Then, the message which contained the single character is 
returned to the buffer pool. If the character received was not an end-of-line, 
CANONPROC exits. Otherwise, a complete line has been assembled and 
CANONPROC sends the message upstream to the stream head which unblocks the 
user process from the getms g ( ) call and passes it the contents of the message. 

The write side of this stream carries two kinds of messages from the user process: 
ioctl () messages for CHARPROC, and M_DATA messages to be output to the 
terminal. 

ioctl () messages are sent downstream as a result of an I_STR ioctl sys­
tem call. When CHARPROC receives an ioctl () message type, it processes 
the message contents to modify internal QUEUE flags and then uses a utility to 
send an acknowledgement message upstream (read side) to the stream head. The 
stream head acts on the acknowledgement message by unblocking the user from 
the ioctl(). 

For terminal output, it is presumed that M _ DATA messages, sent by write () 
system calls, contain multiple characters. In general, STREAMS returns to the 
user process immediately after processing the write () call so that the process 
may send additional messages. Flow control, described in the next section, will 
eventually block the sending process. The messages can queue on the write side 
of the driver because of character transmission timing. When a message is 
received by the driver's write put procedure, the procedure will use putq () to 
place the message on its write-side service message queue if the driver is 
currently transmitting a previous message buffer. However, there is generally no 
write QUEUE service procedure in a device driver. Driver output interrupt pro­
cessing takes the place of scheduling and performs the service procedure func­
tions, removing messages from the queue. 
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Analysis 

1.9. Other Facilities 

Message Queue Priority 

For reasons of efficiency, a module implementation would generally avoid plac­
ing one character per message and using separate routines to echo and parity 
check each character, as was done in this example. Nevertheless, even this 
design yields potential benefits. Consider a case where alternate, more intelligent 
port hardware was substituted. If the hardware processed multiple input charac­
ters and performed the echo and parity checking functions of CHARPROC, then 
the new driver could be implemented to present the same interface as CHAR­
PROC. Other modules such as CANONPROC could continue to be used without 
modification. 

The previous sections described the basic concepts of constructing a stream and 
utilizing the STREAMS mechanism. Additional STREAMS features are provided 
to handle characteristic problems of protocol implementation, such as flow con­
trol, and to assist in development. 

There are also kernel and user-level facilities that support the implementation of 
advanced functions, such as multiplexors, and allow asynchronous operation of a 
user process and STREAMS input and output. 

As mentioned in the previous section, the STREAMS scheduler operates strictly 
FIFO so that each QUEUE's service procedure receives control in the order it was 
scheduled. When a service procedure receives control, it may encounter multiple 
messages on its message queue. This buildup can occur if there is a long interval 
between the time a message is queued by a put procedure and the time that the 
STREAMS scheduler calls the associated service procedure. In this interval, there 
can be multiple calls to the put procedure causing multiple messages. The ser­
vice procedure always processes all messages on its message queue unless 
prevented by flow control (see next section). Each message must pass through 
all the modules connecting its origin and destination in the stream. 

If service procedures were used in all QUEUES and there was no message priority, 
then the most recently scheduled message would be processed after all the other 
scheduled messages on all streams had been processed. In certain cases, message 
types containing urgent information (such as a break or alarm conditions) must 
pass through the stream quickly. To accommodate these cases, STREAMS pro­
vides two classes of message queuing priority, ordinary and high. STREAMS 
prevents high-priority messages from being blocked by flow control and causes a 
service procedure to process them ahead of all ordinary priority messages on the 
procedure's queue. This results in the high-priority message transiting each 
module with minimal delay. 
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The priority mechanism operates as shown in Figure 1-14. Message queues are 
generally not present in a QUEUE unless that QUEUE contains a service procedure. 
When a message is passed to putq () to schedule the message for service pro­
cedure processing, putq () places the message on the message queue in priority 
order. High priority messages are placed ahead of all ordinary priority messages, 
but behind any other high priority messages on the queue. STREAMS utilities 
deliver the messages to the processing service procedure FIFO within each prior­
ity class. The service procedure is unaware of the message priority and simply 
receives the next message. 

Message priority is defined by the message type; once a message is created, its 
priority cannot be changed. Certain message types come in equivalent 
high/ordinary priority pairs (for example, M_PCPROTO and M_PROTO), so that a 
module or device driver can choose between the two priorities when sending 
information. 

Even on a well-designed system, general system delays, malfunctions, and exces­
sive message accumulation on one or more streams can cause the message buffer 
pools to become depleted. Additionally, processing bursts can arise when a ser­
vice procedure in one module has a long message queue and processes all its 
messages in one pass. STREAMS provides two independent mechanisms to guard 
its message buffer pools from being depleted and to minimize long processing 
bursts at any one module. 

The first flow control mechanism is global and automatic. When the stream head 
requests a message buffer in response to a putmsg () or write () system call, 
it uses the lowest level of priority. Since buffer availability is based on priority 
and buffer pool levels, the stream head will be among the first modules refused a 
buffer when the pool becomes depleted. In response, the stream head will block 
user output until the STREAMS buffer pool recovers. As a result, output has a 
lower priority than input. 

The second flow control mechanism is local to each stream and advisory (volun­
tary), and limits the number of characters that can be queued for processing at 
any QUEUE in a stream. This mechanism limits the buffers and related processing 

Revision A, of 27 March 1990 



28 STREAMS Programming 

Figure 1-15 

at any one QUEUE and in any one stream, but does not consider buffer pool levels 
or buffer usage in other streams. 

The advisory mechanism operates between the two nearest QUEUES in a stream 
containing service procedures (see diagram on next page). Messages are gen­
erally held on a message queue only if a service procedure is present in the asso­
ciated QUEUE. 

Messages accumulate at a QUEUE when its service procedure processing does not 
keep pace with the message arrival rate, or when the procedure is blocked from 
placing its messages on the following stream component by the flow control 
mechanism. Pushable modules contain independent upstream and downstream 
limits, which are set when a developer specifies high-water and low-water control 
values for the QUEUE. The stream head contains a preset upstream limit (which 
can be modified by a special message sent from downstream) and a driver may 
contain a downstream limit. 

Flow control operates as follows: 

o Each time a STREAMS message handling routine (for example, putq()) 
adds or removes a message from a message queue in a QUEUE, the limits are 
checked. STREAMS calculates the total size of all message blocks on the 
message queue. 

o The total is compared to the QUEUE high-water and low-water values. If the 
total exceeds the high-water value, an internal full indicator is set for the 
QUEUE. The operation of the service procedure in this QUEUE is not affected 
if the indicator is set, and the service procedure continues to be scheduled. 

o The next part of flow control processing occurs in the nearest preceding 
QUEUE that contains a service procedure. In the diagram below, if D is full 
and C has no service procedure, then B is the nearest preceding QUEUE. 

Flow Control 
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* Message 
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* Message 
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o The service procedure in B uses a STREAMS utility routine to see if a QUEUE 

ahead is marked full. If messages cannot be sent, the scheduler blocks the 
service procedure in B from further execution. B remains blocked until the 
low-water mark of the full QUEUE, D, is reached. 

o While Bis blocked, any non-priority messages that arrive at B will accumu­
late on its message queue (recall that priority messages are not blocked). In 
turn, B can reach a full state and the full condition will propagate back to the 
last module in the stream. 
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o When the service procedure processing on D causes the message block total 
to fall below the low water mark, the full indicator is turned off. Then, 
STREAMS automatically schedules the nearest preceding blocked QUEUE (B 
in this case), getting things moving again. This automatic scheduling is 
know as back-enabling a QUEUE. 

Note that to utilize flow control, a developer need only call the utility that tests if 
a full condition exists ahead, plus perform some housekeeping if it does. Every­
thing else is automatically handled by STREAMS. 

STREAMS multiplexing supports the development of internetworking protocols 
such as IP and ISO CLNS, and the processing of interleaved data streams such as 
in SNA, X.25, and terminal window facilities. 

STREAMS multiplexors (also called pseudo-device drivers) are created in the ker­
nel by interconnecting multiple streams. Conceptually, there are two kinds of 
multiplexors that developers can build with STREAMS: upper and lower multi­
plexors. Lower multiplexors have multiple lower streams between device drivers 
and the multiplexor, and upper multiplexors have multiple upper streams 
between user processes the multiplexor. 

Figure 1-16 Internet Multiplexing stream 
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Figure 1-16 shows an example of a lower multiplexor. This configuration would 
typically occur where internetworking functions were included in the system. 
This stream contains two types of drivers: the Ethernet, LAPB, and IEEE 802.2 
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are hardware device drivers that terminate links to other nodes; the IP (Internet 
Protocol) is a multiplexor. 

The IP multiplexor switches messages among the various nodes (lower streams) 
or sends them upstream to user processes in the system. In this example, the 
multiplexor expects to see an 802.2 interface downstream; for the Ethernet and 
LAPB drivers, the Net 1 and Net 2 modules provide service interfaces to the two 
non-802.2 drivers and the IP multiplexor. 

Figure 1-16 depicts the IP multiplexor as part of a larger stream. The stream, as 
shown in the dotted rectangle, would generally have an upper TCP multiplexor 
and additional modules. Multiplexors could also be cascaded below the IP driver 
if the device drivers were replaced by multiplexor drivers. 

Figure 1-17 X.25 Multiplexing stream 
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Figure 1-17 shows an upper multiplexor. In this configuration, the driver routes 
messages between the lower stream and one of the upper streams. This stream 
performs X.25 multiplexing to multiple independent SVC (Switched Virtual Cir­
cuit) and PVC (Permanent Virtual Circuit) user processes. Upper multiplexors 
are a specific application of standard STREAMS facilities that support multiple 
minor devices in a device driver. This figure also shows that more complex 
configurations can be built by having one or more multiplexed LAPB drivers 
below and multiple modules above. 

Developers can choose either upper or lower multiplexing, or both, when design­
ing their applications. For example, a window multiplexor would have a similar 
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configuration to the X.25 configuration of Figure 1-17, with a window driver 
replacing Packet Layer, a tty driver replacing LAPB, and the child processes of 
the terminal process replacing the user processes. Although the X.25 and win­
dow multiplexing streams have similar configurations, their multiplexor drivers 
would differ significantly. The IP multiplexor of Figure 1-16 has a different 
configuration than the X.25 multiplexor and the driver would implement its own 
set of processing and routing requirements. 

In addition to upper and lower multiplexors, more complex configurations can be 
created by connecting streams containing multiplexors to other multiplexor 
drivers. With such a diversity of needs for multiplexors, it is not possible to pro­
vide general purpose multiplexor drivers. Rather, STREAMS provides a general 
purpose multiplexing facility. The facility allows users to set up the inter­
module/driver plumbing to create multiplexor configurations of generally unlim­
ited interconnection. 

The connections are created from user space through specific STREAMS 
ioctl () system calls. In a lower multiplexor, multiple streams are connected 
below an application-specific, developer-implemented multiplexing driver. The 
multiplexing facility will only connect streams to a driver. The ioctl () call 
configures a multiplexor by connecting one stream at a time below the opened 
multiplexor driver. As each stream is connected to the driver, the connection 
setup procedure identifies the stream to the driver. The driver will generally 
store this setup information in a private data structure for later use. 

Subsequently, when messages flow into the driver on the various connected 
streams, the identity of the associated stream is passed to the driver as part of the 
standard procedure call. The driver then has available the stream identification, 
the previously stored setup information for this stream, and any internal routing 
information contained in the message. These data are used, according to the 
application implemented, to process the incoming message and route the output 
to the appropriate outgoing stream. 

Additionally, new streams can be dynamically connected to an operating multi­
plexor without interfering with ongoing traffic, and existing streams can be 
disconnected with similar ease. 

STREAMS allows user processes to monitor and control streams so that system 
resources (such as CPU cycles and process slots) can be used effectively. Moni­
toring is especially useful to user-level multiplexors, in which a user process can 
create multiple streams and switch messages among them (similar to STREAMS 
kernel-level multiplexing, described previously). 

User processes can efficiently monitor and control multiple streams with two 
STREAMS system calls: poll ( 2) and the ioctl ( 2) I_ SET SIG command. 
These calls allow a user process to detect events that occur at the stream head on 
one or more streams, including receipt of a data or protocol message on the read 
queue and cessation of flow control. 

Synchronous monitoring is provided by use of poll () alone; in this case, the 
user process cannot continue processing until after the system call completes. 
When the calls are used together, they allow asynchronous, or concurrent, 
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Error and Trace Logging 

operation of the process and STREAMS input/output. This allows the user pro­
cess to monitor the stream while carrying on other activities. 

To monitor streams with poll (), a user process issues that system call and 
specifies the streams to be monitored, the events to look for, and the amount of 
time to wait for an event. po 11 ( ) will block the process until the time expires 
or until an event occurs. If an event occurs, po 11 ( ) will return the type of 
event and the stream on which the event occurred. 

Instead of waiting for an event to occur, a user process may want to monitor one 
or more streams while processing other data. It can do so by issuing the ioctl 
I_ SETS IG command, specifying one or more streams and events (as with 
poll()}. Unlike a poll (), this ioctl () does not force the user process to 
wait for the event but returns immediately and will issue a signal when an event 
occurs. The process must also request signal ( 2) or sigset ( 2) to catch the 
resultant SIGPOLL signal. 

If any selected event occurs on any of the selected streams, STREAMS will cause 
the SIGPOLL catching function to be executed in all associated requesting 
processes. However, the process(es) will not know which event occurred, nor on 
what stream the event occurred. A process that issues the I_ SETS I G can get 
more detailed information by issuing a poll () after it detects the event. 

STREAMS includes error and trace loggers useful for debugging and administer­
ing modules and drivers. 

Any module or driver in any stream can call the STREAMS logging functions 
described in log(4). Formatted text can be sent to the error logger 
strerr(8V), the trace logger strace(8V), or both. 
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strerr {) is intended to operate as a daemon process initiated at system 
startup. strerr {) formats the contents and places them in a daily file. The 
utility strclean { 8V) is provided to periodically purge aged, unreferenced 
daily log files. 

A user process can submit its own M _ PROTO messages to the log driver for 
inclusion in the logger of its choice through putmsg ( 2) • The messages must 
be in the same format required by the logging processes and will be switched to 
the logger(s) requested in the message. 

The output to the log files is formatted, ASCII text. The files can be processed 
by standard system commands such as grep ( 1) or ed { 1), or by developer­
provided routines. 

This section compares operational features of character 1/0 device drivers with 
STREAMS drivers and modules. It is intended for experienced developers of 
UNIX system character device drivers. Details are provided in the STREAMS 
section of Writing Device Drivers. 
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Environment 

Drivers 

Modules 

No user environment is generally available to STREAMS module procedures and 
drivers. The exception is the module and driver open and close routines, both of 
which have access to the user structure of the calling process and can sleep. 
Otherwise, a STREAMS driver, module put procedure, and module service pro­
cedure has no user context and can neither sleep nor access any user structure. 

Multiple streams can use a copy of the same module (that is, the same fmodsw), 
each containing the same processing procedures. This means that module code is 
reentrant, so care must be exercised when using global data in a module. Put and 
service procedures are always passed the address of the QUEUE (for example, in 
Figure 1-6 Au calls Bu's put procedure with Bu as a parameter). The processing 
procedure establishes its environment solely from the QUEUE contents, typically 
the private data (for example, state information). 

At the interface to hardware devices, character 1/0 drivers have interrupt entry 
points; at the system interface, those same drivers generally have direct entry 
points (routines) to process probe (), open (), close (), read (), 
write() and ioctl() system calls. 

STREAMS device drivers have similar interrupt entry points at the hardware dev­
ice interface and have direct entry points only for open () and close () sys­
tem calls. These entry points are accessed via STREAMS, and the call formats 
differ from character device drivers. The put procedure is a driver's third entry 
point, but it is a message (not system) interface. The stream head translates 
write () and ioctl () calls into messages and sends them downstream to be 
processed by the driver's write QUEUE put procedure. read () is seen directly 
only by the stream head, which contains the functions required to process system 
calls. A driver does not know about system interfaces other than open () and 
close (), but it can detect absence of a read () indirectly if flow control pro­
pagates from the stream head to the driver and affects the driver's ability to send 
messages upstream. 

For input processing, when the driver is ready to send data or other information 
to a user process, it does not wake up the process. It prepares a message and 
sends it to the read QUEUE of the appropriate (minor device) stream. The driver's 
open routine generally stores the QUEUE address corresponding to this stream. 

For output processing, the driver receives messages in place of a write () call. 
If the message can not be sent immediately to the hardware, it may be stored on 
the driver's write message queue. Subsequent output interrupts can remove mes­
sages from this queue. 

Drivers and modules can pass signals, error codes, and return values to processes 
via message types provided for that purpose. 

As described above, modules have user context available only during the execu­
tion of their open and close routines. Otherwise, the QUEUES forming the module 
are not associated with the user process at the end of the stream, nor with any 
other process. Because of this, QUEUE procedures must not sleep when they can­
not proceed; instead, they must explicitly return control to the system. The sys­
tem saves no state information for the QUEUE. The QUEUE must store this 
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information internally if it is to proceed from the same point on a later entry. 

When a module or driver that requires private working storage (for example, for 
state information) is pushed, the open routine must obtain the storage from exter­
nal sources. STREAMS copies the module template from fmodsw for the 
I_PUSH, so only fixed data can be contained in the module template. STREAMS 
has no automatic mechanism to allocate working storage to a module when it is 
opened. The sources for the storage typically include a module-specific kernel 
array, installed when the system is configured, or the STREAMS buffer pool. 
When using an array as a module storage pool, the maximum number of copies 
of the module that can exist at any one time must be determined. For drivers, 
this is typically determined from the physical devices connected, such as the 
number of ports on a multiplexor. However, certain types of modules may not be 
associated with a particular external physical limit. For example, the CANONI­
CAL module shown in Figure 1-5 could be used on different types of streams. 

Downstream The direction from stream head to driver. 

Driver The end of the stream closest to an external interface. The principal functions of 
the driver are handling any associated device, and transferring data and informa­
tion between the external interface and stream. It can also be a pseudo-driver, 
not directly associated with a device, which performs functions internal to a 
stream, such as a multiplexor or log driver. 

Message One or more linked blocks of data or information, with associated STREAMS 
control structures containing a message type. Messages an the only means of 
transferring data and communicating within a stream. 

Message Queue A linked list of messages connected to a QUEUE. 

Message Type A defined set of values identifying the contents of a message. 

Module Software that performs functions on messages as they flow between stream head 
and driver. A module is the STREAMS counterpart to the commands in a Shell 
pipeline except that a module contains a pair of functions which allow indepen­
dent bidirectional (downstream and upstream) data flow and processing. 

Multiplexor A mechanism for connecting multiple streams to a multiplexing driver. The 
mechanism supports the processing of interleaved data streams and the process­
ing of internetworking protocols. The multiplexing driver routes messages 
among the connected streams. The other end of a stream connected to a multi­
plexing driver is typically connected to a device driver. 

pushable module A module between the stream head and driver. A driver is a non-pushable 
module and a stream head includes a non-pushable module. 

QUEUE The set of structures that forms a module. A module is composed of two 
QUEUES, a read (upstream) QUEUE and a write ( downstream) QUEUE. 

Read Queue The message queue in a module or driver containing messages moving upstream. 
Associated with input from a driver. 
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stream The kernel aggregate created by connecting STREAMS components, resulting 
from an application of the STREAMS mechanism. The primary components are a 
stream head, a driver and zero or more pushable modules between the stream 
head and driver. A stream forms a full duplex processing and data transfer path 
in the kernel, between a user process and a driver. A stream is analogous to a 
Shell pipeline except that data flow and processing are bidirectional. 

Stream Head The end of the stream closest to the user process. The stream head provides the 
interface between the stream and the user process. The principal functions of the 
stream head are processing STREAMS-related system calls, and bidirectional 
transfer of data and information between a user process and messages in 
STREAMS' kernel space. 

STREAMS A kernel mechanism that supports development of network services and data 
communication drivers. It defines interface standards for character input/output 
within the kernel, and between the kernel and user level. The STREAMS 
mechanism comprises integral functions, utility routines, kernel facilities and a 
set of structures. 

Upstream The direction from driver to stream head. 

Write Queue The message queue in a module or driver containing messages moving down­
stream. Associated with output from a user process. 
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This chapter provides detailed information about the STREAMS mechanism and 
system call interface. It includes the following topics. 

o The STREAMS Overview, below, reintroduces the STREAMS mechanism. 

o Basic Operations describes the basic operations available for constructing, 
using, and dismantling streams. These operations are performed using 
open(2), close(2), read{2), write(2), and ioctl{2). 

o Advanced Operations presents advanced facilities provided by STREAMS, 
including: poll{2), a user level 1/0 polling facility; asynchronous 1/0 pro­
cessing support; and a method to sample drivers for available resources. 

o Multiplexed STREAMS describes the construction of sophisticated, multi­
plexed stream configurations. 

o Message Handling describes how users can process STREAMS messages 
using putmsg ( 2) and getmsg ( 2) in the context of a service interface 
example. 

The following STREAMS Module and Driver Programming chapter is the com­
panion to this chapter-it provides an analogous discussion of system-level 
STREAMS. Both chapters assume a working knowledge of UNIXt system pro­
gramming, data communication facilities, and the material covered in the previ­
ous Introduction to STREAMS chapter. 

This section reviews the STREAMS mechanism, a general, flexible facility and a 
set of tools for development of SunOS and UNIX system communication ser­
vices. It supports the implementation of services ranging from complete net­
working protocol suites to individual device drivers. The STREAMS mechanism 
defines standard interfaces for character 1/0 within the kernel, and between the 
kernel and the rest of the system. The associated mechanism is simple and 
open-ended. It consists of a set of system calls, kernel resources, and kernel rou­
tines. 

The standard mechanism enables modular, portable development and easy 
integration of higher performance network services and their components. 
STREAMS provide a framework; they do not impose any specific network 

t UNIX is a registered trademark of AT&T. 
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architecture. The STREAMS user interface is upward compatible with the charac­
ter 1/0 user interface, and both user interfaces are available. 

A stream is a full-duplex processing and data transfer path between a STREAMS 
driver in kernel space and a process in user space (see the figure below). In the 
kernel, a stream is constructed by linking a stream head, a driver, and zero or 
more modules between the stream head and driver. The stream head is the end of 
the stream closest to the user process. Throughout this guide, the word 
"STREAMS" refers to the mechanism, and the word stream refers to the data path 
between a user and a driver. 1 

A STREAMS driver may be a device driver that provides the services of an exter­
nal 1/0 device, or a software driver, commonly referred to as a pseudo-device 
driver, that performs functions internal to a stream. The stream head provides the 
interface between the stream and user processes. Its principal function is to pro­
cess STREAMS-related user system calls. 

Data are passed between a driver and the stream head in messages. Messages 
that are passed from the stream head toward the driver are said to travel down­
stream. Similarly, messages passed in the other direction travel upstream. The 
stream head transfers data between the data space of a user process and 
STREAMS kernel data space. Data to be sent to a driver from a user process are 
packaged into STREAMS messages and passed downstream. When a message 
containing data arrives at the stream head from downstream, the message is pro­
cessed by the stream head, which copies the data into user buffers. 

1 The word ''stream'' is also used by 4.x BSD to refer to a nonseekable data source such as a pipe or socket. 
A STREAMS stream need not be restricted in this way. 
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Within a stream, messages are distinguished by a type indicator. Certain 
message types sent upstream may cause the stream head to perform specific 
actions, such as sending a signal to a user process. Other message types are 
intended to carry information within a stream and are not directly seen by a user 
process. 

One or more kernel-resident modules may be inserted into a stream between the 
stream head and driver to perform intermediate processing of data as it passes 
between the stream head and driver. STREAMS modules are dynamically inter­
connected in a stream by a user process. No kernel programming, assembly, or 
link editing is required to create the interconnection. 

General and STREAMS-specific system calls provide the user level facilities 
required to implement application programs. This system call interface is 
upwardly compatible with the character 1/0 facilities. The open ( 2) system call 
will recognize a STREAMS file and create a stream to the specified driver. A user 
process can receive and send data on STREAMS files using read ( 2) and 
write ( 2 ) in the same manner as with character files. The i o ct 1 ( 2 ) system 
call enables users to perform functions specific to a particular device. A set of 
generic STREAMS ioctl () commands, described by streamio(4), support a 
variety of functions for accessing and controlling streams. A close (2) dis­
mantles a stream. 
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2.2. Basic Operations 

A Simple Stream 

In addition to the generic i o ct 1 ( ) commands, there are STREAMS-specific 
system calls to support unique STREAMS facilities. The poll ( 2) system call 
enables a user to poll multiple streams for various events. The putmsg ( 2) and 
getmsg(2) system calls enable users to send and receive STREAMS messages, 
and are suitable for interacting with STREAMS modules and drivers through a 
service interface. 

STREAMS provide kernel facilities and utilities to support development of 
modules and drivers. The stream head handles most system calls so that the 
related processing does not have to be incorporated in a module and driver. The 
configuration mechanism allows modules and drivers to be incorporated into the 
system. 

Examples are used throughout both parts of this document to highlight the most 
important and common capabilities of STREAMS. The descriptions are not 
meant to be exhaustive. For simplicity, the examples reference fictional drivers 
and modules. 

This section describes the basic set of operations for manipulating STREAMS. 

A STREAMS driver is similar to a character 1/0 driver in that it has one or more 
nodes associated with it in the file system and it is accessed using the open () 
system call. Typically, each file system node corresponds to a separate minor 
device for that driver. Opening different minor devices of a driver will cause 
separate streams to be connected between a user process and the driver. The file 
descriptor returned by the open ( ) call is used for further access to the stream. 
If the same minor device is opened more than once, only one stream will be 
created; the first open () call will create the stream, and subsequent open () 
calls will return a file descriptor that references that stream. Each process that 
opens the same minor device will share the same stream to the device driver. 

Once a device is opened, a user process can send data to the device using the 
write () system call and receive data from the device using the read () sys­
tem call. Access to STREAMS drivers using read () and write () is compati­
ble with the character 1/0 mechanism. 

The c 1 o s e ( ) system call will close a device and dismantle the associated 
stream. 

The following example shows how a simple stream is used. In the example, the 
user program interacts with a generic communications device that provides 
point-to-point data transfer between two computers. Data written to the device is 
transmitted over the communications line, and data arriving on the line can be 
retrieved by reading it from the device. 
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*include <fcntl.h> 

main() 
{ 

char buf[1024]; 
int fd, count; 

if ((fd = open("/dev/comm01", O_RDWR)) < 0) { 
perror("open failed"); 
exit(l); 

while ((count= read(fd, buf, 1024)) > 0) 
if (write(fd, buf, count) != count) { 

perror("write failed"); 
break; 

exit(O); 

In the example, / dev / conunO 1 identifies a minor device of the communications 
device driver. When this file is opened, the system recognizes the device as a 
STREAMS device and connects a stream to the driver. The figure below shows 
the state of the stream following the call to open ( ) . 

Stream to Communications Driver 

____ t ________ _ User Space 

Stream Kernel Space 
Head 

communications 
driver 

This example illustrates a user reading data from the communications device and 
then writing the input back out to the same device. In short, this program echoes 
all input back over the communications line. The example assumes that a user is 
sending data from the other side of the communications line. The program reads 
up to 1024 bytes at a time, and then writes the number of bytes just read. 

The read () call returns the available data, which may contain fewer than 1024 
bytes. If no data are currently available at the stream head, the read () call 
blocks until data arrive. 
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Inserting Modules 

Similarly, the write ( ) call attempts to send count bytes to / dev / c ommO 1. 
However, STREAMS implements a flow control mechanism that prevents a user 
from flooding a device driver with data, thereby exhausting system resources. If 
the stream exerts flow control on the user, the write () call blocks until the 
flow control has been relaxed. The call will not return until it has sent count 
bytes to the device. exi t(2) is called to terminate the user process. This system 
call also closes all open files, thereby dismantling the stream in this example. 

An advantage of STREAMS over the existing character 1/0 mechanism stems 
from the ability to insert various modules into a stream to process and manipulate 
data that passes between a user process and the driver. The following example 
extends the previous communications device echoing example by inserting a 
module in the stream to change the case of certain alphabetic characters. The 
case converter module is passed an input string and an output string by the user. 
Any incoming data (from the driver) is inspected for instances of characters in 
the module's input string and the alphabetic case of all matching characters is 
changed. Similar actions are taken for outgoing data using the output string. The 
necessary declarations for this program are shown below: 

\.. 

#include <string.h> 
#include <fcntl.h> 
#include <stropts.h> 
I* 
* These defines would typically be 
* found in a header file for the module 
*I 
#define OUTPUT STRING 1 
#define INPUT STRING 2 

main() 
{ 

char buf[1024]; 
int fd, count; 
struct strioctl strioctl; 

The first step is to establish a stream to the communications driver and insert the 
case converter module. The following sequence of system calls accomplishes 
this: 

if ( (fd = open("/dev/commOl", O_RDWR)) < 0) { 
perror("open failed"); 
exit(l); 

if (ioctl (fd, I_PUSH, "case_converter") < 0) { 
perror("ioctl I PUSH failed"); 
exit(2); 

The I_PUSH ioctl () call directs the stream head to insert the case converter 
module between the driver and the stream head, creating the stream shown in the 
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figure below. As with any driver, this module resides in the kernel and must 
have been configured into the system before it was booted. I _PUSH is one of 
several generic STREAMS ioctl () commands that enable a user to access and 
control individual streams (see the streamio(4) man page). 
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An important difference between STREAMS drivers and modules is illustrated 
here. Drivers are accessed through a node or nodes in the file system and may be 
opened just like any other device. Modules, on the other hand, do not occupy a 
file system node. Instead, they are identified through a separate naming conven­
tion, and are inserted into a stream using I _PUSH. The name of a module is 
defined by the module developer, and is typically included on the manual page 
describing the module (manual pages describing STREAMS drivers and modules 
are found in section 7 of the SunOS Ref ere nee Manual). 

Modules are pushed onto a stream and removed from a stream in Last-In-First­
Out (LIFO) order. Therefore, if a second module was pushed onto this stream, it 
would be inserted between the stream head and the case converter module. 

The next step in this example is to pass the input string and output string to the 
case converter module. This can be accomplished by issuing ioctl () calls to 
the case converter module as follows: 
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I* Set input conversion string * I 
strioctl.ic_crnd = INPUT_STRING; 
strioctl.ic_tirnout = 0; 

I* Command type * I 
I* Default= 15 sec* I 

strioctl.ic_dp = "ABCDEFGHIJ"; 
strioctl.ic_len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I_STR, &strioctl) < 0) { 
perror("ioctl I STR failed"); 
exit(3); 

I * Set output conversion string * I 
strioctl.ic_crnd = OUTPUT_STRING; I* Command type * I 
strioctl.ic_dp = "abcdefghij"; 
strioctl.ic_len = strlen(strioctl.ic_dp); 

if (ioctl(fd, I_STR, &strioctl) < 0) { 
perror("ioctl I_STR failed"); 
exit(4); 

ioctl () requests are issued to STREAMS drivers and modules indirectly, using 
the I_STR ioctl () call (see the streamio(4) man page). The argument to 
I_STR must be a pointer to a strioctl structure, which specifies the request to 
be made to a module or driver. This structure is defined in <stropts. h> and · 
has the following format: 

struct strioctl { 
int ic_crnd; 
int ic_tirnout; 
int ic_len; 
char *ic_dp; 

I* ioctl request * I 
I* ACKINAK timeout * I 
I * Length of data argument * I 
I* Ptr to data argument * I 

where ic _ cmd identifies the command intended for a module or driver, ic _ timout 
specifies the number of seconds an I_STR request should wait for an ack­
nowledgement before timing out, ic _Len is the number of bytes of data to accom­
pany the request, and ic _dp points to that data. 

I_ STR is intercepted by the stream head, which packages it into a message, using 
information contained in the strioctl structure, and sends the message down­
stream. The request will be processed by the module or driver closest to the 
stream head that understands the command specified by ic _ cmd. The i o ct 1 ( ) 
call will block up to ic _timout seconds, waiting for the target module or driver to 
respond with either a positive or negative acknowledgement message. If an ack­
nowledgement is not received in ic _timout seconds, the ioctl () call will fail. 

I_ STR is actually a nested request; the stream head intercepts I_ STR and then 
sends the driver or module request (as specified in the str ioct 1 structure) 
downstream. Any module that does not understand the command in ic _ cmd will 
pass the message further downstream. Eventually, the request will reach the tar­
get module or driver, where it is processed and acknowledged. If no module or 
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driver understands the command, a negative acknowledgement will be generated 
and the ioctl () call will fail. 

In the example, two separate commands are sent to the case converter module. 
The first contains the conversion string for input data, and the second contains 
the conversion string for output data. The ic _ cmd field is set to indicate whether 
the command is setting the input or output conversion string. For each com­
mand, the value of ic _timout is set to zero, which specifies the system default 
timeout value of 15 seconds. Also, a data argument that contains the conversion 
string accompanies each command. The ic_dp field points to the beginning of 
each string, and ic _Zen is set to the length of the string. 

NOTE Only one I_STR request can be active on a stream at one time. Further requests 
will block until the active I_ STR request is acknowledged and the system call 
completes. 

The strioctl structure is also used to retrieve the results, if any, of an I_STR 
request. If data are returned by the target module or driver, ic _ dp must point to a 
buffer large enough to hold that data, and ic _Zen will be set on return to indicate 
the amount of data returned. 

The remainder of this example is identical to the previous example: 

while ((count= read(fd, buf, 1024)) > 0) 
if (write(fd, buf, count) != count) { 

perror("write failed"); 
break; 

exit(O); 

The case converter module will convert the specified input characters to lower 
case, and the corresponding output characters to upper case. Notice that the case 
conversion processing was realized with no change to the communications 
driver. 

As with the previous example, the exit () system call will dismantle the stream 
before terminating the process. The case converter module will be removed from 
the stream automatically when it is closed. Alternatively, modules may be 
removed from a stream using the I_POP ioctl () call described in 
streamio(4). This call removes the topmost module on the stream, and 
enables a user process to alter the configuration of a stream dynamically, by 
pushing and popping modules as needed. 

A few of the important ioctl () requests supported by STREAMS have been 
discussed. Several other requests are available to support operations such as 
determining if a given module exists on the stream, or flushing the data on a 
stream. These requests are described fully in the streamio(4) man page). 
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2.3. Advanced Operations 

Advanced Input/Output 
Facilities 

Input/Output Polling 

This section introduces advanced features provided by STREAMS, such as an 1/0 
polling facility, asynchronous 1/0 processing support, and a method to sample 
drivers for available resources. 

The traditional input/output open () , facilities- close () , read () , 
write (), and ioctl () -have been discussed, but STREAMS supports new 
user capabilities that will be described in the remaining sections of this guide. 
This section describes a facility that enables a user process to poll multiple 
streams simultaneously for various events. Also discussed is a signaling feature 
that supports asynchronous 1/0 processing. Finally, this section presents a new 
mechanism for finding available minor devices, called clone open. 

The poll (2) system call provides users with a mechanism for monitoring 
input and output on a set of file descriptors that reference open streams. It 
identifies those streams over which a user can send or receive data. For each 
stream of interest users can specify one or more events about which they should 
be notified. These events include the following: 

FOLLIN 
Input data are available on the stream associated with the given file descrip­
tor. 

POLLPRI 
A priority message is available on the stream associated with the given file 
descriptor. Priority messages are described in the section of Chapter 4 enti­
tled "Accessing the Datagram Provider." 

POLLOUT 
The stream associated with the given file is writable. That is, the stream has 
relieved the flow control that would prevent a user from sending data over 
that stream. 

poll () will examine each file descriptor for the requested events and, on 
return, will indicate which events have occurred for each file descriptor. If no 
event has occurred on any polled file descriptor, poll () blocks until a 
requested event or timeout occurs. The specific arguments to poll () are the 
following: 

o an array of file descriptors and events to be polled 

o the number of file descriptors to be polled 

o the number of milliseconds poll () should wait for an event if no events 
are pending (-1 specifies wait forever) 

The following example shows the use of poll(). Two separate minor devices of 
the communications driver presented earlier are opened, thereby establishing two 
separate streams to the driver. Each stream is polled for incoming data. If data 
arrives on either stream, it is read and then written back to the other stream. This 
program extends the previous echoing example by sending echoed data over a 
separate communications line (minor device). The steps needed to establish each 
stream are as follows: 
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#include <fcntl.h> 
#include <poll.h> 

#define NPOLL 2 /* Numberoffiledescriptorstopoll *I 

main() 
{ 

struct pollfd pollfds[NPOLL]; 
char buf[1024]; 
int count, i; 

if ((pollfds[O] .fd 
open("/dev/commOl", O_RDWRIO_NDELAY)) < 0) { 

perror("open failed for /dev/commOl"); 
exit(l); 

if ((pollfds[l] .fd 
open("/dev/comm02", O_RDWRIO_NDELAY)) < 0) { 

perror("open failed for /dev/comm02"); 
exit(2); 

The variable pollfds is declared as an array of pollf d structures, where this 
structure is defined in <poll. h> and has the following format: 

struct pollfd { 
int fd; 
short events; 
short revents; 

\. 

I * File descriptor * I 
I* Requested events * I 
I * Returned events * I 

For each entry in the array ,fd specifies the file descriptor to be polled and events 
is a bitmask that contains the bitwise inclusive OR of events to be polled on that 
file descriptor. On return, the revents bitmask will indicate which of the 
requested events has occurred. 

The example opens two separate minor devices of the communications driver and 
initializes the pollfds entry for each. The remainder of the example uses 
poll () to process incoming data as follows: 

\. 

I* Set events to poll for incomi.ng data * I 
pollfds[O] .events POLLIN; 
pollfds[l] .events= POLLIN; 

while (1) { 
I* Poll and use -1 timeout (infinite) * I 
if (poll(pollfds, NPOLL, -1) < 0) { 

perror("poll failed"); 
exit(3); 

for (i = 0; i < NPOLL; i++) { 
switch (pollfds[i] .revents) 
default: /* Default err case* I 
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perror("error event"); 
exit(4); 

case 0: I* No events* I 
break; 

case POLLIN: 
I* Echo incoming data on "other" stream * I 
while ( (count = 

read(pollfds[i] .fd, buf, 1024)) > 0) 
I* 
* write loses data if flow control 
* prevents transmit at this time. 
*I 
if (write((i == 0? 

pollfds[l] .fd: pollfds[OJ .fd), 
buf, count) != count) 

fprintf ( stderr, "write lost data \n") ; 
break; 

The user specifies the polled events by setting the events field of the pollfd 
structure to POLLIN. This requested event directs poll () to notify the user of 
·any incoming data on each stream. The bulk of the example is an infinite loop, 
where each iteration will poll both streams for incoming data. 

The second argument to poll () specifies the number of entries in the pollfds 
array (2 in this example). The third argument is a timeout value indicating the 
number of milliseconds poll () should wait for an event if none has occurred. 
On a system where millisecond accuracy is not available, timeout is rounded up 
to the nearest legal value available on that system. Here, the value of timeout is 
-1, specifying that poll () should block indefinitely until a requested event 
occurs or until the call is interrupted. 

If po 11 ( ) succeeds, the program looks at each entry in pollf ds. If revents is set 
to 0, no event has occurred on that file descriptor. If revents is set to POLL IN, 
incoming data are available. In this case, all available data are read from the 
polled minor device and written to the other minor device. 

If revents is set to a value other than O or POLLIN, an error event must have 
occurred on that stream, because the only requested event was POLLIN. The 
following error events are defined for po 11 ( ) . These events may not be polled 
for by the user, but will be reported in revents whenever they occur. As such, 
they are only valid in the revents bitmask: 

POLLERR 
A fatal error has occurred in some module or driver on the stream associated 
with the specified file descriptor. Further system calls will fail. 

POLLHUP 
A hangup condition exists on the stream associated with the specified file 
descriptor. 
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POLLNVAL 
The specified file descriptor is not associated with an open stream. 

The example attempts to process incoming data as quickly as possible. However, 
when writing data to a stream, the write ( ) call may block if the stream is 
exerting flow control. To prevent the process from blocking, the minor devices 
of the communications driver were opened with the O _NDELA Y flag set. If 
flow control is exerted and O_NDELAY is set, write () will not be able to 
send all the data. This can occur if the communications driver is unable to keep 
up with the user's rate of data transmission. If the stream becomes full, the 
number of bytes write () sends will be less than the requested count. For sim­
plicity, the example ignores the data if the stream becomes full, and a warning is 
printed to stderr. 

This program will continue until an error occurs on a stream, or until the process 
is interrupted. 

The poll () system call described above enables a user to monitor multiple 
streams in a synchronous fashion. The po 11 ( ) call normally blocks until an 
event occurs on any of the polled file descriptors. In some applications, however, 
it is desirable to process incoming data asynchronously. For example, an appli­
cation may wish to do some local processing and be interrupted when a pending 
event occurs. Some time-critical applications cannot afford to block, but must 
have immediate indication of success or failure. 

A new facility is available for use with STREAMS that enables a user process to 
request a signal when a given event occurs on a stream. When used with 
poll(), this facility enables applications to asynchronously monitor a set of file 
descriptors for events. 

The I_SETSIG ioctl () call (see the streamio(4) man page) is used to 
request that a SIGPOLL signal be sent to a user process when a specific event 
occurs. Listed below are the events for which an application may be signaled: 

S INPUT 
Data has arrived at the stream head, and no data existed at the stream head 
when it arrived. 

S HIPRI 
A priority STREAMS message has arrived at the stream head. 

S OUTPUT 
The stream is no longer full and can accept output. That is, the stream has 
relieved the flow control that would prevent a user from sending data over 
that stream. 

S MSG 
A special STREAMS signal message that contains a SIGPOLL signal has 
reached the front of the stream head input queue. This message may be sent 
by modules or drivers to generate immediate notification of data or events to 
follow. 
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Clone Open 

The polling example could be written to process input from each communica­
tions driver minor device by issuing I_ SETSIG to request a signal for the 
S _ INPUT event on each stream. The signal catching routine could then call 
poll () to determine on which stream the event occurred. The default action 
for SIGPOLL is to terminate the process. Therefore, the user process must catch 
the signal using s ignal(2). SIGPOLL will only be sent to processes that 
request the signal using I_SETSIG. 

In the earlier examples, each user process connected a stream to a driver by open­
ing a particular minor device of that driver. Often, however, a user process wants 
to connect a new stream to a driver regardless of which minor device is used to 
access the driver. 

In the past, this typically forced the user process to poll the various minor device 
nodes of the driver for an available minor device. To alleviate this task, a facility 
called clone open is supported for STREAMS drivers. If a STREAMS driver is 
implemented as a cloneable device, a single node in the file system may be 
opened to access any unused minor device. This special node guarantees that the 
user will be allocated a separate stream to the driver on every open () call. 
Each stream will be associated with an unused minor device, so the total number 
of streams that may be connected to a cloneable driver is limited by the number 
of minor devices configured for that driver. 

The clone device may be useful, for example, in a networking environment 
where a protocol pseudo-device driver requires each user to open a separate 
stream over which it will establish communication. Typically, the users would 
not care which minor device they used to establish a stream to the driver. 
Instead, the clone device can find an available minor device for each user and 
establish a unique stream to the driver. Chapter 3 describes this type of transport 
protocol driver. 

NOTE A user program has no control over whether a given driver supports the clone 
open. The decision to implement a STREAMS driver as a cloneable device is 
made by the designers of the device driver. 

2.4. Multiplexed Streams This section describes the construction of multiplexed stream configurations. 

Multiplexor Configurations In the earlier sections, streams were described as linear connections of modules, 
where each invocation of a module is connected to at most one upstream module 
and one downstream module. While this configuration is suitable for many 
applications, others require the ability to multiplex streams in a variety of 
configurations. Typical examples are terminal window facilities, and internet­
working protocols (which might route data over several subnetworks). 

An example of a multiplexor is one that multiplexes data from several upper 
streams over a single lower stream, as shown in the figure below. An upper 
stream is one that is upstream from a multiplexor, and a lower stream is one that 
is downstream from a multiplexor. A terminal windowing facility might be 
implemented in this fashion, where each upper stream is associated with a 
separate window. 
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Figure 2-4 Many-to-one Multiplexor 

Figure 2-5 

MUX 

A second type of multiplexor might route data from a single upper stream to one 
of several lower STREAMS, as shown in the figure below. An intemetworking 
protocol could take this form, where each lower stream links the protocol to a 
different physical network. 

One-to-many Multiplexor 

MUX 

A third type of multiplexor might route data from one of many upper streams to 
one of many lower streams, as shown in the figure below. 

Figure 2-6 Many-to-many Multiplexor 

MUX 

A STREAMS mechanism is available that supports the multiplexing of streams 
through special pseudo-device drivers. Using a linking facility, users can 
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Building a Multiplexor 

Figure 2-7 

dynamically build, maintain, and dismantle each of the above multiplexed stream 
configurations. In fact, these configurations can be further combined to form 
complex, multi-level multiplexed stream configurations. 

The remainder of this section describes multiplexed stream configurations in the 
context of an example (see figure below). In this example, an intemetworking 
protocol pseudo-device driver (IP) is used to route data from a single upper 
stream to one of two lower streams. This driver supports two STREAMS connec­
tions beneath it to two distinct sub-networks. One sub-network supports the 
IEEE 802.3 standard for the CSMA/CD medium access method. The second 
sub-network supports the IEEE 802.4 standard for the token-passing bus medium 
access method. 

The example also presents a transport protocol pseudo-device driver (TP) that 
multiplexes multiple virtual circuits {upper streams) over a single stream to the 
IP pseudo-device driver. 

The figure below shows the multiplexing configuration to be created. This 
configuration will enable users to access the services of the transport protocol. 
To free users from the need to know about the underlying protocol structure, a 
user-level daemon process will build and maintain the multiplexing 
configuration Users can then access the transport protocol directly by opening 
the TP driver device node. 
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The following example shows how this daemon process sets up the protocol 
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multiplexor. The necessary declarations and initialization for the daemon pro­
gram are as follows: 
r 

*include <fcntl.h> 
*include <stropts.h> 

main() 
{ 

int fd 802_4, 
fd 802_3, 
fd_ip, 
fd_tp; 

I * Daemon-ize this process * I 
switch (fork ()) { 
case 0: 

break; 
case -1: 

perror("fork failed"); 
exit(2); 

default: 
exit(O); 

setpgrp (); 

This multi-level multiplexed stream configuration will be built from the bottom 
up. Therefore, the example begins by constructing the IP multiplexor. This mul­
tiplexing pseudo-device driver is treated like any other software driver. It owns a 
node in the file system and is opened just like any other STREAMS device driver. 

The first step is to open the multiplexing driver and the 802.4 driver, creating 
separate streams above each driver as shown in the figure below. The stream to 
the 802.4 driver may now be connected below the multiplexing IP driver using 
the I_LINK ioctl () call. 

Before Link 

~ 
_ L _____ ~ ______ f!.'!!':.. ~::ce 

802.4 
Driver 

IP 
Driver 

Kernel Space 

The sequence of instructions to this point is: 
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if ((fd_802_4 = open("/dev/802_4", O_RDWR)) < 0) { 
perror("open of /dev/802_4 failed"); 
exit(l); 

if ((fd_ip = open("/dev/ip", O_RDWR)) < 0) { 
perror("open of /dev/ip failed"); 
exit(2); 

} 

I* Now link 802.4 to underside of IP * I 
if (ioctl(fd_ip, I_LINK, fd 802_4) < 0) { 

perror("I_LINK ioctl failed"); 
exit(3); 

I_LINK takes two file descriptors as arguments. The first file descriptor,fd_ip, 
must reference the stream connected to the multiplexing driver, and the second 
file descriptor,fd_802_4, must reference the stream to be connected below the 
multiplexor. The figure below shows the state of these streams following the 
I_ LINK call. The complete stream to the 802.4 driver has been connected below 
the IP driver, including the stream head. The stream head of the 802.4 driver will 
be used by the IP driver to manage the multiplexor. 

Figure 2-9 IP Multiplexor After First Link 
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I_ LINK will return an integer value, called a mux id, which is used by the multi­
plexing driver to identify the stream just connected below it. This mux id is 
ignored in the example, but may be useful for dismantling a multiplexor or rout­
ing data through the multiplexor. Its significance is discussed later. 

The following sequence of system calls is used to continue building the internet­
working multiplexor (IP): 
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if ((fd_802_3 = open("/dev/802_3", O_RDWR)) < 0) { 
perror("open of /dev/802_3 failed"); 
exit(4); 

if (ioctl(fd_ip, I_LINK, fd_802_3) < 0) { 
perror("I_LINK ioctl failed"); 
exit(S); 

All links below the IP driver have now been established, giving the configuration 
in the figure below. 

Figure 2-10 IP Multiplexor 
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The stream above the multiplexing driver used to establish the lower connections 
is the controlling stream and has special significance when dismantling the multi­
plexing configuration, as will be illustrated later in this section. The stream 
referenced by fd _ip is the controlling stream for the IP multiplexor. 

NOTE The order in which the streams in the multiplexing configuration are opened is 
unimportant. If, however, it is necessary to have intermediate modules in the 
stream between the IP driver and media drivers, these modules must be added to 
the streams associated with the media drivers (using I _PUSH) before the media 
drivers are attached below the multiplexor. 

The number of streams that can be linked to a multiplexor is restricted by the 
design of the particular multiplexor. The manual page describing each driver 
(typically found in section 4 of the SunOS Reference Manual) should describe 
such restrictions. However, only one I_ LINK operation is allowed for each 
lower stream; a single stream cannot be linked below two multiplexors simul­
tanec,usly. 
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Figure 2-11 

Continuing with the example, the IP driver will now be linked below the tran­
sport protocol (TP) multiplexing driver. As seen earlier in the figure below, only 
one link will be supported below the transport driver. This link is formed by the 
following sequence of system calls: 

if ((fd_tp = open("/dev/tp", O_RDWR)) < 0) { 
perror("open of /dev/tp failed"); 
exit(6); 

if (ioctl(fd_tp, !_LINK, fd_ip) < 0) 
perror("I_LINK ioctl failed"); 
exit (7); 

The multi-level multiplexing configuration shown in the figure below has now 
been created. 
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Because the controlling stream of the IP multiplexor has been linked below the 
TP multiplexor, the controlling stream for the new multi-level multiplexor 
configuration is the stream above the TP multiplexor. 

At this point the file descriptors associated with the lower drivers can be closed 
without affecting the operation of the multiplexor. Closing these file descriptors 
may be necessary when building large multiplexors, so that many devices can be 
linked together without exceeding the system limit on the number of 
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simultaneously open files per process. If these file descriptors are not closed, all 
subsequent read (), write (), ioctl (), poll (), getmsg (), and 
putmsg () system calls issued to them will fail. That is because I_LINK asso­
ciates the stream head of each linked stream with the multiplexor, so the user 
may not access that stream directly for the duration of the link. 

The following sequence of system calls will complete the multiplexing daemon 
example: 

close(fd_802_4); 
close(fd_802_3); 
close(fd_ip); 
I* Hold multiplexor open forever * I 
pause(); 

The figure below shows the complete picture of the multi-level protocol multi­
plexor. The transport driver is designed to support several, simultaneous virtual 
circuits, where these virtual circuits map one-to-one to streams opened to the 
transport driver. These streams will be multiplexed over the single stream con­
nected to the IP multiplexor. The mechanism for establishing multiple streams 
above the transport multiplexor is actually a by-product of the way in which 
streams are created between a user process and a driver. By opening different 
minor devices of a STREAMS driver, separate streams will be connected to that 
driver. Of course, the driver must be designed with the intelligence to route data 
from the single lower stream to the appropriate upper stream. 

Notice in the figure below that the daemon process maintains the multiplexed 
stream configuration through an open stream (the controlling stream) to the tran­
sport driver. Meanwhile, other users can access the services of the transport pro­
tocol by opening new streams to the transport driver; they are freed from the 
need for any unnecessary knowledge of the underlying protocol configurations 
and sub-networks that support the transport service. 

Multi-level multiplexing configurations, such as the one presented in the above 
example, should be assembled from the bottom up. That is because STREAMS 
does not allow ioctl () requests (including I_LINK) to be passed through 
higher multiplexing drivers to reach the desired multiplexor; they must be sent 
directly to the intended driver. For example, once the IP driver is linked under 
the TP driver, ioctl () requests cannot be sent to the IP driver through the TP 
driver. 

streams connected to a multiplexing driver from above with open ( ) , can be dis­
mantled by closing each stream with close (). In the protocol multiplexor, 
these streams correspond to the virtual circuit streams above the TP multiplexor. 
The mechanism for dismantling streams that have been linked below a multiplex­
ing driver is less obvious, and is described below in detail. 

The I_ UNLINK io ct 1 ( ) call is used to disconnect each multiplexor link below 
a multiplexing driver individually. This command takes the following form: 

+~.!! Revision A, of 27 March 1990 



58 STREAMS Programming 
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[ __ i_· o_c_t_i_( f_d_,_r ___ u_N_L_r_N_K_,_m_u_x ___ i_d_>_; _______________ ) 

where/dis a file descriptor associated with a stream connected to the multiplex­
ing driver from above, and mux _id is the identifier that was returned by I_ LINK 
when a driver was linked below the multiplexor. Each lower driver may be 
disconnected individually in this way, or a special mux _id value of -1 may be 
used to disconnect all drivers from the multiplexor simultaneously. 

In the multiplexing daemon program presented earlier, the multiplexor is never 
explicitly dismantled. That is because all links associated with a multiplexing 
driver are automatically dismantled when the controlling stream associated with 
that multiplexor is closed. Because the controlling stream is open to a driver, 
only the final call of close () for that stream will close it. In this case, the dae­
mon is the only process that has opened the controlling stream, so the multiplex­
ing configuration will be dismantled when the daemon exits. 

For the automatic dismantling mechanism to work in the multi-level, multiplexed 
stream configuration, the controlling stream for each multiplexor at each level 
must be linked under the next higher level multiplexor. In the example, the con­
trolling stream for the IP driver was linked under the TP driver. This resulted in 
a single controlling stream for the full, multi-level configuration. Because the 
multiplexing program relied on closing the controlling stream to dismantle the 
multiplexed stream configuration instead of using explicit I_ UNLINK calls, the 
mux id values returned by I_ LINK could be ignored. 

An important side effect of automatic dismantling on close () is that it is not 
possible for a process to build a multiplexing configuration and then exit. That is 
because exi t(2) will close all files associated with the process, including the 
controlling stream. To keep the configuration intact, the process must exist for 
the life of that multiplexor. That is the motivation for implementing the example 
as a daemon process. 

As demonstrated, STREAMS has provided a mechanism for building multiplexed 
stream configurations. However, the criteria on which a multiplexor routes data 
is driver dependent. For example, the protocol multiplexor shown in the last 
example might use address information found in a protocol header to determine 
over which sub-network a given packet should be routed. It 1s the multiplexing 
driver's responsibility to define its routing criteria. 

One routing option available to the multiplexor is to use the mux id value to 
determine to which stream data should be routed (remember that each multi­
plexor link is associated with a mux id). I_ LINK passes the mux id value to the 
driver and returns this value to the user. The driver can therefore specify that the 
mux id value must accompany data routed through it. For example, if a multi­
plexor routed data from a single upper stream to one of several lower streams ( as 
did the IP driver), the multiplexor could require the user to insert the mux id of 
the desired lower stream into the first four bytes of each message passed to it. 
The driver could then match the mux id in each message with the mux id of each 
lower stream, and route the data accordingly. 
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This section describes how to process STREAMS messages in a service interface. 

A STREAMS message format has been defined to simplify the design of service 
interfaces. Also, two new system calls, getmsg(2) and putmsg (2) are avail­
able for sending these messages downstream and receiving messages that are 
available at the stream head. This section describes these system calls in the con­
text of a service interface example. First, a brief overview of STREAMS service 
interfaces is presented. 

A principal advantage of the STREAMS mechanism is its modularity. From user 
level, kernel-resident modules can be dynamically interconnected to implement 
any reasonable processing sequence. This modularity reflects the layering 
characteristics of contemporary network architectures. 

One benefit of modularity is the ability to interchange modules of like function. 
For example, two distinct transport protocols, implemented as STREAMS 
modules, may provide a common set of services. An application or higher layer 
protocol that requires those services can use either module. This ability to substi­
tute modules enables user programs and higher level protocols to be independent 
of the underlying protocols and physical communication media. 

Each STREAMS module provides a set of processing functions, or services, and 
an interface to those services. The service interface of a module defines the 
interaction between that module and any neighboring modules, and therefore is a 
necessary component for providing module substitution. By creating a well­
defined service interface, applications and STREAMS modules can interact with 
any module that supports that interface. The figure below demonstrates this. 

Figure 2-12 Protocol Substitution 
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By defining a service interface through which applications interact with a tran­
sport protocol, it is possible to substitute a different protocol below that service 
interface in a manner completely transparent to the application. In this example, 
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Figure 2-13 

The Message Interface 

the same application can run over the Transmission Control Protocol (TCP) and 
the ISO transport protocol. Of course, the service interface must define a set of 
services common to both protocols. 

The three components of any service interface are the service user, the service 
provider, and the service interface itself, as seen in the figure below. 
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Typically, a user makes a request of a service provider using some well-defined 
service primitive. Responses and event indications are also passed from the pro­
vider to the user using service primitives. The service interface is defined as the 
set of primitives that define a service and the allowable state transitions that 
result as these primitives are passed between the user and provider. 

A message format has been defined to simplify the design of service interfaces 
using STREAMS. Each service interface primitive is a distinct STREAMS mes­
sage that has two parts: a control part and a data part. The control part contains 
information that identifies the primitive and includes all necessary parameters. 
The data part contains user data associated with that primitive. 

An example of a service interface primitive is a transport protocol connect 
request. This primitive requests the transport protocol service provider to estab­
lish a connection with another transport user. The parameters associated with 
this primitive may include a destination protocol address and specific protocol 
options to be associated with that connection. Some transport protocols also 
allow a user to send data with the connect request. A STREAMS message would 
be used to define this primitive. The control part would identify the primitive as 
a connect request and would include the protocol address and options. The data 
part would contain the associated user data. 

STREAMS enables modules to create these messages and pass them to neighbor 
modules. However, the read ( ) and write ( ) system calls are not sufficient to 
enable a user process to generate and receive such messages. First, read () and 
write ( ) are byte-stream oriented, with no concept of message boundaries. To 
support service interfaces, the message boundary of each service primitive must 
be preserved so that the beginning and end of each primitive can be located. 
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Also, read () and write () offer only one buffer to the user for transmitting 
and receiving STREAMS messages. If control information and data were placed 
in a single buffer, the user would have to parse the contents of the buffer to 
separate the data from the control information. 

Two new STREAMS system calls are available that enable user processes to 
create STREAMS messages and send them to neighboring kernel modules and 
drivers or receive the contents of such messages from kernel modules and 
drivers. These system calls preserve message boundaries and provide separate 
buffers for the control and data parts of a message. 

The pu tms g ( ) system call enables a user to create STREAMS messages and 
send them downstream. The user supplies the contents of the control and data 
parts of the message in two separate buffers. Likewise, the getmsg () system 
call retrieves such messages from a stream and places the contents into two user 
buffers. 

The syntax of putmsg () is as follows: 

int putmsg (fd, ctlptr, dataptr, flags) 
int fd; 
struct strbuf *ctlptr; 
struct strbuf *dataptr; 
int flags; 

f d identifies the stream to which the message will be passed, ctlptr and dataptr 
identify the control and data parts of the message, and.flags may be used to 
specify that a priority message should be sent. 

The strbuf structure is used to describe the control and data parts of a mes­
sage, and has the following format: 
r 

struct strbuf { 
int maxlen; 
int len; 
char *buf; 

I* Maximum buffer length* I 
I* Length of data * I 
I* Pointer to buffer* I 

bu/points to a buffer containing the data and Zen specifies the number of bytes of 
data in the buffer. maxlen specifies the maximum number of bytes the given 
buffer can hold, and is only meaningful when retrieving information into the 
buffer using getmsg ( ) . 

The getmsg () system call retrieves messages available at the stream head, and 
has the following syntax: 
r 

int getmsg (fd, ctlptr, dataptr, flags) 
int fd; 
struct strbuf *ctlptr; 
struct strbuf *dataptr; 
int *flags; 
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The arguments to getmsg () are the same as those for putmsg () . 

The remainder of this section presents an example that demonstrates how 
putmsg () and getmsg () may be used to interact with the service interface of 
a simple datagram protocol provider. A potential provider of such a service 
might be the IEEE 802.2 Logical Link Control Protocol Type 1. The example 
implements a user level library that would free the user from knowledge of the 
underlying STREAMS system calls. The Transport Interface of the Network Ser­
vices Library in UNIX System V Release 3.0 provides a similar function for tran­
sport layer services. The example here illustrates how a service interface might 
be defined, and is not an example of a complete IEEE 802.2 service interface. 

The example datagram service interface library presented below includes four 
functions that enable a user to do the following: 

o establish a stream to the service provider and bind a protocol address to the 
stream 

o send a datagram to a remote user 

o receive a datagram from a remote user 

o close the stream connected to the provider 

First, the structure and constant definitions required by the library are shown. 
These typically will reside in a header file associated with the service interface. 
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I* 
* Primitives initiated by the service user. 
*I 
#define BIND_REQ 1 
#define UNITDATA_REQ 2 
I* 

I* Bind request* I 
I* Unitdata request* I 

* Primitives initiated by the service provider. 
*I 
#define OK ACK 
#define ERROR_ACK 
#define UNITDATA IND 
I* 

3 
4 
5 

I* Bind acknowledgment * I 
I * Error acknowledgment * I 
I* Unitdata indication* I 

* The following structure definitions define the format 
* of the control part of the service inteif ace message 
* of the above primitives. 
*! 
struct bind_req { 

long PRIM_type; 
long BIND_addr; 

} ; 

struct unitdata_req { 
long PRIM_type; 
long DEST_addr; 

} ; 

struct ok_ack { 
long PRIM_type; 

} ; 

struct error_ack { 
long PRIM_type; 
long UNIX_error; 

} ; 

struct unitdata_ind { 
long PRIM_type; 
long SRC_addr; 

} ; 

union primitives { 
long 

} ; 

struct bind_req 
struct unitdata_req 
struct ok ack 
struct error ack 
struct unitdata ind 

I* Bind request * I 
I* Always BIND _REQ * I 
I * Addr to bind * I 

I* Unitdata request* I 
I* Always UNITDATA_REQ *I 
I * Destination addr * I 

I* Positive acknowledgment * I 
I* Always OK_ACK * I 

I * Error acknowledgment * I 
I* Always ERROR _ACK * I 
I* UNIX error code * I 

I* Unitdata indication * I 
I* Always UNITDATA_JND *I 

I* Source addr * I 

I* Union of all primitives* I 
type; 
bind_req; 
unitdata_req; 
ok_ack; 
error_ack; 
unitdata_ind; 

I* Header files needed by library* I 
#include <stropts.h> 
#include <stdio.h> 
#include <errno.h> 

Five primitives have been defined. The first two represent requests from the ser­
vice user to the service provider. These are: 
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BIND_REQ 
This request asks the provider to bind a specified protocol address. It 
requires an acknowledgement from the provider to verify that the contents of 
the request were syntactically correct. 

UNITDATA_REQ 
This request asks the provider to send a datagram to the specified destination 
address. It does not require an acknowledgement from the provider. 

The three other primitives represent acknowledgements of requests, or indica­
tions of incoming events, and are passed from the service provider to the service 
user. These are: 

OK ACK 
This primitive informs the user that a previous bind request was received 
successfully by the service provider. 

ERROR ACK 
This primitive informs the user that a non-fatal error was found in the previ­
ous bind request. It indicates that no action was taken with the primitive that 
caused the error. 

UNITDATA IND 
This primitive indicates that a datagram destined for the user has arrived. 

The structures defined above describe the contents of the. control part of each ser­
vice interface message passed between the service user and service provider. The 
first field of each control part defines the type of primitive being passed. 

The first routine presented below, inter_ open, opens the protocol driver device 
file specified by path and binds the protocol address contained in addr so that it 
may receive datagrams. On success, the routine returns the file descriptor associ­
ated with the open stream; on failure, it returns -1 and sets errno to indicate the 
appropriate error value. 
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inter_open(path, oflags, addr) 
char *path; 
{ 

int fd; 
struct bind_req bind_req; 
struct strbuf ctlbuf; 
union primitives rcvbuf; 
struct error_ack *error_ack; 
int flags; 

if ((fd = open(path, oflags)) < 0) 
return(-1); 

I* Send bind request msg down stream * I 
bind_req.PRIM_type = BIND_REQ; 
bind_req.BIND_addr = addr; 
ctlbuf.len = sizeof(struct bind_req); 
ctlbuf.buf = (char *)&bind_req; 
if (putmsg(fd, &ctlbuf, NULL, 0) < 0) 

close(fd); 
return(-1); 

After opening the protocol driver, inter_ open packages a bind request message to 
send downstream. pu tms g ( ) is called to send the request to the service pro­
vider. The bind request message contains a control part that holds a bind _req 
structure, but it has no data part. ctlbufis a structure of type strbuf, and it is 
initialized with the primitive type and address. Notice that the maxlen field of 
ctlbuf is not set before calling putmsg(). That is because putmsg () ignores 
this field. The dataptr argument to putmsg () is set to NULL to indicate that 
the message contains no data part. Also, the flags argument is 0, which specifies 
that the message is not a priority message. 

After inter_ open sends the bind request, it must wait for an acknowledgement 
from the service provider, as follows: 
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I* Wait for ack of request * I 
ctlbuf.maxlen = sizeof(union primitives); 
ctlbuf.len = O; 
ctlbuf.buf = (char *)&rcvbuf; 
flags= RS_HIPRI; 
if (getmsg(fd, &ctlbuf, NULL, &flags) < O) { 

close(fd); 
return(-1); 

I* Did we get enough to determine type * / 
if (ctlbuf.len < sizeof(long)) 

close(fd); 
errno = EPROTO; 
return(-1); 

I* Switch on type (first long in rcvbuf) * I 
switch(rcvbuf.type) { 

default: 
errno = EPROTO; 
close(fd); 
return(-1); 

case OK ACK: 
return(fd); 

case ERROR ACK: 
if (ctlbuf.len < sizeof(struct error_ack)) 

errno = EPROTO; 
close(fd); 
return(-1); 

error_ack = (struct error_ack *)&rcvbuf; 
errno = error_ack->UNIX_error; 
close(fd); 
return(-1); 

getmsg () is called to retrieve the acknowledgement of the bind request. The 
acknowledgement message consists of a control part that contains either an 
ok _ ack or error_ ack structure, and no data part. 

The acknowledgement primitives are defined as priority messages. Two classes 
of messages can arrive at the stream head: priority and normal. Normal mes­
sages are queued in a first-in-first-out manner at the stream head, while priority 
messages are placed at the front of the stream head queue. The STREAMS 
mechanism allows only one priority message per stream at the stream head at one 
time; any further priority messages are discarded until the first message is pro­
cessed. Priority messages are particularly suitable for acknowledging service 
requests when the acknowledgement should be placed ahead of any other mes­
sages at the stream head. 

These messages are not intended to support the expedited data capabilities of 
many communication protocols, as evidenced by the one-at-a-time restriction 
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just described. 

Before calling getmsg(), this routine must initialize the strbuf structure for 
the control part. buf should point to a buffer large enough to hold the expected 
control part, and max/en must be set to indicate the maximum number of bytes 
this buffer can hold. 

Because neither acknowledgement primitive contains a data part, the dataptr 
argument to getms g ( ) is set to NULL. The flags argument points to an integer 
containing the value RS_HIPRI. This flag indicates that getmsg () should 
wait for a STREAMS priority message before returning, and is set because the 
acknowledgement primitives are priority messages. Even if a normal message is 
available, getmsg () will block until a priority message arrives. 

On return from getmsg(), the Zen field is checked to ensure that the control part 
of the retrieved message is an appropriate size. The example then checks the 
primitive type and takes appropriate actions. An OK _ACK indicates a successful 
bind operation, and inter_ open () returns the file descriptor of the open 
stream. An ERROR_ACK indicates a bind failure, and errno is set to identify 
the problem with the request. 

The next routine in the datagram service library is inter _close, which closes the 
stream to the service provider. 

inter_close (fd) 
{ 

close(fd); 

The routine simply closes the given file descriptor. This will cause the protocol 
driver to free any resources associated with that stream. For example, the driver 
may unbind the protocol address that had previously been bound to that stream, 
thereby freeing that address for use by some other service user. 

The third routine, inter _snd, passes a datagram to the service provider for 
transmission to the user at the address specified in addr. The data to be transmit­
ted is contained in the buffer pointed to by buf and contains Zen bytes. On suc­
cessful completion, this routine returns the number of bytes of data passed to the 
service provider; on failure, it returns -1 and sets errno to an appropriate system 
error value. 

Revision A, of 27 March 1990 



68 STREAMS Programming 

Receiving a Datagram 

inter_snd(fd, buf, len, addr) 
char *buf; 
long addr; 
{ 

struct strbuf ctlbuf; 
struct strbuf databuf; 
struct unitdata_req unitdata_req; 

unitdata_req.PRIM_type = UNITDATA_REQ; 
unitdata_req.DEST_addr = addr; 
ctlbuf.len = sizeof(struct unitdata_req); 
ctlbuf.buf = (char *)&unitdata_req; 
databuf.len = len; 
databuf.buf = buf; 
if (putmsg(fd, &ctlbuf, &databuf, 0) < 0) 

return (-1); 
return (len); 

In this example, the datagram request primitive is packaged with both a control 
part and a data part. The control part contains a unitdata _req structure that 
identifies the primitive type and the destination address of the datagram. The 
data to be transmitted is placed in the data part of the request message. 

Unlike the bind request, the datagram request primitive requires no acknowledge­
ment from the service provider. In the example, this choice was made to minim­
ize the overhead during data transfer. Since datagram services are inherently 
unreliable, this is a valid design choice. If the putmsg () call succeeds, this 
routine assumes all is well and returns the number of bytes passed to the service 
provider. 

The final routine in this example, inter _rev, retrieves the next available 
datagram. bu/points to a buffer where the data should be stored, Zen indicates 
the size of that buffer, and addr points to a long integer where the source address 
of the datagram will be placed. On successful completion, inter _rev returns the 
number of bytes in the retrieved datagram; on failure, it returns -1 and sets the 
appropriate system error value. 
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inter_rcv(fd, buf, len, addr) 
char *buf; 
long *addr; 
{ 

struct strbuf ctlbuf; 
struct strbuf databuf; 
struct unitdata ind unitdata_ind; 
int retval; 
int flags; 

ctlbuf.maxlen = sizeof(struct unitdata_ind); 
ctlbuf.len = 0; 
ctlbuf.buf = (char *)&unitdata_ind; 
databuf.maxlen = len; 
databuf.len 0; 
databuf.buf buf; 
flags = 0; 
if ((retval getmsg(fd,&ctlbuf,&databuf,&flags)) < 0) 

return(-1); 
if (unitdata_ind.PRIM_type != UNITDATA_IND) 

errno = EPROTO; 
return(-1); 

if (retval) { 
errno = EIO; 
return(-1); 

*addr = unitdata_ind.SRC_addr; 
return(databuf.len); 

getmsg () is called to retrieve the datagram indication primitive, where that 
primitive contains both a control and data part. The control part consists of a 
unitdata_ind structure that identifies the primitive type and the source address of 
the datagram sender. The data part contains the data itself. 

In ctlbuf, buf must point to a buffer where the control information will be stored, 
and maxlen must be set to indicate the maximum size of that buffer. Similar ini­
tialization is done for databuf 

The flags argument to getms g ( ) is set to zero, indicating that the next message 
should be retrieved from the stream head, regardless of its priority. Datagrams 
will arrive in normal priority messages. If no message currently exists at the 
stream head, getmsg (} will block until a message arrives. 

The user's control and data buffers should be large enough to hold any incoming 
datagram. If both buffers are large enough, ge tms g ( } will process the 
datagram indication and return 0, indicating that a full message was retrieved 
successfully. However, if either buffer is not large enough, getmsg (} will only 
retrieve the part of the message that fits into each user buffer. The remainder of 
the message is saved for subsequent retrieval, and a positive, non-zero value is 
returned to the user. A return value of MORECTL indicates that more control 
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information is waiting for retrieval. A return value of MOREDATA indicates that 
more data are waiting for retrieval. A return value of MORECTL I MOREDATA 
indicates that data from both parts of the message remain. In the example, if the 
user buffers are not large enough (that is, getrnsg () returns a positive, non-zero 
value), the function will set errno to EIO and fail. 

The type of the primitive returned by getrnsg () is checked to make sure it is a 
datagram indication. The source address is then set and the number of bytes of 
data in the datagram is returned. 

The above example presented a simplified service interface. The state transition 
rules for such an interface were not presented for the sake of brevity. The intent 
was to show typical uses of the putrnsg () and getrnsg () system calls. See 
putrnsg ( 2) and getmsg ( 2) for further details. 
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This chapter provides detailed information on the use of the STREAMS mechan­
ism at the kernel level, including examples, information on development 
methods and design philosophy. It describes the use of STREAMS kernel facili­
ties for developing and installing modules and drivers, and is intended for system 
programmers with knowledge of UNIX kernel programming, device driver 
development, networking, and other data communication facilities. 

Examples are used throughout this chapter to highlight the most important and 
common capabilities of STREAMS. The descriptions are not meant to be exhaus­
tive. For simplicity, the examples reference fictional drivers and modules. 

The preceding STREAMS Application Programming chapter is the companion to 
this chapter-it provides an analogous discussion of the STREAMS applications 
level. 

Both of these chapters assumes a working knowledge of the material covered in 
the preceding Introduction to STREAMS chapter (hereafter simply called the 
Introduction to STREAMS). This introduction includes a useful Glossary of 
STREAMS-related terms. STREAMS kernel utilities, functions, and macros are 
summarized in the Utilities section of the Supplementary STREAMS Material 
chapter of this manual. STREAMS system calls are specified in Section 2 of the 
SunOS Reference Manual. The STREAMS modules and drivers available with 
SunOS are described in section 4 of the SunOS Reference Manual. STREAMS­
specific ioctl () calls are specified in streamio ( 4). 

The STREAMS facility was incorporated into SunOS to augment the existing 
character input/output (1/0) mechanism and to support the development of com­
munication services. A STREAMS driver may be a device driver that provides 
the services of an external 1/0 device, or a software driver, commonly referred to 
as a pseudo-device driver, that performs functions internal to a stream. The 
Stream Head provides the interface between the stream and user processes. Its 
principal function is to process STREAMS-related user system calls so that this 
processing does not have to be incoiporated in a module and driver. 

Data is passed between a driver and the Stream Head in messages. Messages that 
are passed from the Stream Head toward the driver are said to travel downstream. 
Similarly, messages passed in the other direction travel upstream. The Stream 
Head transfers data between the data space of a user process and kernel data 
space. Data to be sent to a driver from a user process are packaged into 
STREAMS messages and passed downstream. When a message containing data 
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arrives at the Stream Head from downstream, the message is processed by the 
Stream Head, which copies the data into user buffers. 

Within a stream, messages are distinguished by a type indicator. Certain mes­
sage types sent upstream may cause the Stream Head to perform specific actions, 
such as sending a signal to a user process. Other message types are intended to 
cany information within a stream and are not directly seen by a user process. 

One or more kernel-resident modules may be inserted into a stream between the 
Stream Head and driver to perform intermediate processing of data as it passes 
between the Stream Head and driver. STREAMS modules are dynamically inter­
connected in a stream by a user process. No kernel programming, assembly, or 
link editing is required to create the interconnection. 

General and STREAMS-specific system calls provide the user level facilities 
required to implement application programs. This system call interface is 
upwardly compatible with the character 1/0 facilities. The open ( 2) system call 
recognizes a STREAMS file and creates a stream to the specified driver. A user 
process can receive and send data on STREAMS files using :cead ( 2} and 
write ( 2} in the same manner as with character files. The io ct 1 ( 2} system 
call enables users to perform functions specific to a particular device and a set of 
generic STREAMS ioctl () commands (see streamio(4)) support a variety 
of functions for accessing and controlling streams. A close (2) will dismantle 
a stream. 

In addition to the generic i o ct 1 ( ) commands, there are STREAMS-specific 
system calls to support unique STREAMS facilities. The putmsg (2) and 
getmsg (2) system calls enable users to send and receive STREAMS messages, 
and are suitable for interacting with STREAMS modules and drivers through a 
service interface. 

STREAMS provides module and driver developers with integral functions, a set 
of utility routines, and facilities that expedite design and implementation. The 
principal development facilities are: 

o Message storage management - to maintain STREAMS' own memory 
resources for message storage 

o Flow control - to conserve STREAMS memory and processing resources 

o Scheduling - to control the execution of service procedures 

o Multiplexing- to switch data among multiple streams 

A stream implements a connection within the kernel between a driver in kernel 
space and a process in user space. It provides a general character input/output 
(1/0) interface for user processes that is upwardly compatible with the interface 
of the preexisting character 1/0 facilities. A stream is analogous to a shell pipe­
line except that data flow and processing are bidirectional to support concurrent 
input and output. 

The components that form a stream are the Stream Head, driver, and optional 
modules. A stream is initially constructed as the result of a user process 
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open ( 2) system call referencing a STREAMS file. The call causes a kernel­
resident driver to be connected with a Stream Head to form a stream. Subsequent 
ioctl ( 2) calls select kernel-resident modules and cause them to be inserted in 
the stream. A module represents intermediate processing on messages flowing 
between the Stream Head and driver. A module can function as, for example, a 
communication protocol, line discipline, or data filter. STREAMS allows a user 
to connect a module with any other module. The user determines the module 
connection sequences that result in useful configurations. 

A process can send and receive characters on a stream using write ( 2) and 
read ( 2) , as on character files. When user data enters the Stream Head or 
external data enters the driver, the data is placed into messages for transmission 
on the stream. All data passed on a stream is carried in messages, each having a 
defined message type identifying the message contents. Internal control and 
status information is transmitted among modules or between the stream and user 
process as messages of certain types interleaved on the stream. Modules and 
drivers can send certain message types to the Stream Head to cause the genera­
tion of signals or errors to be received by the user process. 

A module is composed of two identical sets of data structures called QUEUEs. 
One QUEUE is for upstream processing and the other is for downstream process­
ing. The processing performed by the two QUEUEs is generally independent so 
that a stream operates in a full-duplex manner. The interface between modules is 
uniform and simple. Messages flow from module to module. A message from 
one module is passed to the single entry point of its neighboring module. 

The last close (2) system call dismantles the stream and closes the file, 
semantically identical to character 1/0 drivers. 

STREAMS supports implementation of user-level applications with extensions to 
the above general system calls and STREAMS specific system calls: 
putmsg ( 2), getmsg ( 2) and a set of STREAMS generic ioctl ( 2) func­
tions. 

STREAMS constructs a stream as a linked list of kernel-resident data structures. 
In a STREAMS file, the vnode points to the stream header structure. The 
header is used by STREAMS kernel routines to perform operations on this 
stream that are generally related to system calls. Figure 3-1 depicts the down­
stream (write) portion of a stream (see Building a Stream, in the Introduction to 
STREAMS) connected to a header. There is one header per stream. From the 
header onward, a stream is constructed ofQUEUEs. The upstream (read) por­
tion of the stream (not shown here) parallels the downstream portion in the oppo­
site direction and terminates at the stream header structure. 

Downstream Stream Construction 

vnode 
Stream 
Head 

QUEUE 
H 

QUEUE 
Pl 

QUEUE 
P2 

QUEUE 
D 

At the same relative location in each QUEUE is the address of the entry point, a 
procedure to be executed on any message received by that QUEUE. The 
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Figure 3-2 

procedure for QUEUE H, at one end of the stream, is the STREAMS-provided 
Stream Head routine. QUEUE H is the downstream half of the Stream Head. The 
procedure for QUEUED, at the other end, is the driver routine. QUEUED is the 
downstream half of the stream end. Pl and P2 are pushable modules, each con­
taining their own unique procedures. That is, all STREAMS components are of 
similar organization. 

This similarity results in a uniform manner of navigating in either direction on a 
stream: messages move from one end to the other, from QUEUE to the next 
linked QUEUE, executing the procedure specified in the QUEUE. 

Figure 3-2 shows the data structures forming each QUEUE: queue_t, qinit, 
module_info, and module_stat. queue_t contains various modifiable 
values for this QUEUE, generally used by STREAMS. qini t contains a pointer 
to the processing procedures, module_info contains limit values, and 
module_stat is used for statistics. The two QUEUES in a module will gen­
erally each contain a different set of these structures. The contents of these struc­
tures are described in following sections. 

QUEUE data structures 

q qinfo 
<--- - -

q qinfo 
<--- - -

upstream 

read 

queue_t 

q next 

read 

downstream 

write 

queue_t 

q_qinfo 
i----=---- qini t 

q next 

write 
q qinfo 
--= - - -> 

queue_t queue_t 

upstream downstream 

module 
stat 

module 
info 

Figure 3-1 shows QUEUE linkage in one direction while figure 3-2 shows two 
neighboring modules with links (solid vertical arrows) in both directions. When 
a module is pushed onto a stream, STREAMS creates two QUEUEs and links each 
QUEUE in the module to its neighboring QUEUE in the upstream and down­
stream direction. The linkage allows each QUEUE to locate its next neighbor. 
The next relation is implemented between queue_ ts in adjacent modules by the 
q_next pointer. Within a module, each queue_t locates its mate (see dotted 
arrows in figure 3-2) by use of STREAMS macros, since there is no pointer 
between the two queue_ ts. The existence of the Stream Head and driver is 
known to the QUEUE procedures only as destinations towards which messages 
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are sent. 

When a file is opened (see open ( 2 ) ) , a STREAMS file is recognized by a 
non-null value in the d_str field of the associated cdevsw entry. d str 
points to a streamtab structure: 

struct streamtab 
struct qinit 
struct qinit 
struct qinit 
struct qinit 
char 

*st_ rdini t; / * defines read QUEUE * I 
*st_wrinit; /* defines write QUEUE *I 
*st_ muxr in it ; /*for multiplexing drivers only * I 
*st_ muxw ini t; /*for multiplexing drivers only * I 
**st _modl is t ; / * NULL-terminated list of 

modules to be pushed * I 

streamtab defines a module or driver and points to the read and write qini t 
structures for the driver. 

If this open ( ) call is the initial file open, a stream is created. First, the single 
header structure and the Stream Head (see figure 3-1) queue_ t structure pair 
are allocated. Their contents are initialized with predetermined values including, 
as noted above (see QUEUE H), the Stream Head processing routines. 

Then, a queue_ t structure pair is allocated for the driver. The STREAMS 
framework takes the responsibility for maintaining the fields of the queue_ t 
structure. It is unusual for a driver or module to need to examine any of these 
fields, especially with the intention of modifying them. The exception, though, is 
the q_ptr field, which is the means by which a module accesses its own private 
data. 

A single, common qini t structure pair is shared among all the streams opened 
from the same cdevsw entry, as are the associated module_info and 
module_stat structures (see figure 3-2.) 

Next, the q_next values are set so that the Stream Head write queue_t points 
to the driver write queue_ t and the driver read queue_ t points to the Stream 
Head read queue_t. The q_next values at the ends of the stream are set to 
NULL. Then, the driver open procedure (located via qini t) is called. 

If the st_ mo dl is t pointer is not NULL, it is assumed to point to the first 
member of a NULL-terminated array of pointers to module names. After the 
driver's open () procedure has been called, the modules whose names are 
pointed to by the members of that array are pushed onto t.h.e stream, in the order 
that they appear in the array. (See Adding and Removing Modules, below). If 
one of these modules cannot be pushed, the open () fails. 

If this open ( ) is not the initial open of this stream, the only actions performed 
are to call the driver open procedure and the open procedures of all pushable 
modules on the stream. 
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Adding and Removing 
Modules 

Closing 

As part of constructing a stream, a module can be added with an ioctl () 
I_PUSH (see the streamio ( 4) man page) system call. The push inserts a 
module beneath the Stream Head. Because of the similarity of STREAMS com­
ponents, the push operation is similar to the driver open. First, the address of the 
qini t structure for the module is obtained via an fmodsw entry. 

fmodsw is an array, analogous to cdevsw. Each fmodsw entry corresponds to 
a unique module and contains the name of the module (used by I_PUSH and cer­
tain other STREAMS ioct 1 () s) and a pointer to the module's streamtab. 
Next, STREAMS allocates queue_ t structures and initializes their contents as in 
the driver open, above. As with the driver, the read and write qini t structures 
are shared among all the modules opened from this fmodsw entry (see figure 3-
2). 

Then, q_ next values are set and modified so that the module is interposed 
between the Stream Head and the driver or module previously connected to the 
head. Finally, the module open procedure (located via qini t) is called. Unlike 
open ( ) , no other module or driver open procedure is called. 

Each push of a module is independent, even in the same stream. If the same 
module is pushed more than once onto a stream, there will be multiple 
occurrences of that module in the stream. The total number of pushable modules 
that may be contained on any one stream is limited by the kernel parameter 
NSTRPUSH (see the SunOS STREAMS Topics chapter) .. 

An ioctl () I_POP (see the streamio ( 4) man page) system call (pop) 
removes the module immediately below the Stream Head. The pop calls the 
module's close procedure. On return from the module close, any messages left 
on the module's message queues are freed (deallocated). Then, STREAMS con­
nects the Stream Head to the component previously below the popped module 
and deallocates the module's two queue_t structures. I_POP enables a user 
process to dynamically alter the configuration of a stream by pushing and pop­
ping modules as required. For example, a module may be removed or a new one 
inserted below a module. In the latter case, the original module is popped and 
pushed back after the new module has been pushed. 

An I POP cannot be used on a driver. 

The last close () system call to a STREAMS file dismantles the stream. Dis­
mantling consists of popping any modules on the stream, closing the driver and 
closing the file. Before a module is popped by close (), it may delay to allow 
any messages on the write message queue of the module to be drained by module 
processing. If O _NDELA Y [see open ( 2) ] is clear, close () will wait up to 
15 seconds for each module to drain. If O _NDELA Y is set, the pop is performed 
immediately. Note that a module's close routine may also choose to sleep wait­
ing for output to drain. The system call close () will then wait for the driver's 
write queue to drain. Messages can remain queued, for example, if flow control 
(see Other Facilities, in the Introduction to STREAMS). is inhibiting execution of 
the write QUEUE. When all modules are popped and any wait for the driver to 
drain is completed, the driver close routine is called. On return from the driver 
close, any messages left on the driver's message queues are freed, and the 
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queue_ t and header structures are deallocated. 

STREAMS frees only the messages contained on a message queue. Any messages 
used internally by the driver or module must be freed by the driver or module 
close procedure. 

Finally, the file is closed. 

A module and driver will contain, as a minimum, declarations of the following 
form: 

#include <sys/types.h> 
#include <sys/stream.h> 
#include <sys/param.h> 

I* required in all modules and drivers * I 
I* required in all modules and drivers * I 

static struct module info rminfo = {0,"mod",O,INFPSZ,0,0}; 
static struct module info wminfo = {0,"mod",O,INFPSZ,O,O}; 
static int modopen(), modrput(), modwput(), modclose(); 

static struct qinit rinit = 
modrput, NULL, modopen, modclose, NULL, &rminfo, NULL 

} ; 

static struct qinit winit = 
modwput, NULL, NULL, NULL, NULL, &wminfo, NULL 

} ; 

struct streamtab modinfo = { &rinit, &winit, NULL, NULL}; 

The contents of these declarations are constructed for the null module example in 
this section. This module performs no processing: Its only purpose is to show 
linkage of a module into the system. The descriptions in this section are general 
to all STREAMS modules and drivers unless they specifically reference the exam­
ple. 

The declarations shown are: the header set; the read and write QUEUE (rminfo 
and wminfo) module_info structures (see figure 3-2); the module open, 
readput, writeput, and close procedures; the read and write (rinit and winit) 
qini t structures; and the streamtab structure. 

The minimum header set for modules and drivers is types.hand stream. h. 
par am. h contains definitions for NULL and other values for STREAMS 
modules and drivers as shown in the Accessible Symbols and Functions section 
of the Supplementary STREAMS Material chapter. 

Configuring a STREAMS module or driver (see the SunOS STREAMS Topics 
chapter) does not require any procedures to be externally accessible, only 
streamtab. The streamtab structure name must be the prefix used in 
configuring, appended with "info." 
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As described in the previous section, streamtab contains qini t values for 
the read and write QUEUES, pointing to a module_info and an optional 
module stat structure. The two required structures, shown in figure 3-2), are 
these: 

struct qinit { 

} ; 

int (*qi_putp) (); 
int (*qi_srvp) (); 
int (*qi_qopen) (); 
int (*qi_qclose) (); 
int (*qi_qadmin) (); 
struct module info 
struct module stat 

struct module_info { 

} ; 

ushort 
char 
short 
short 
short 
ushort 

mi_idnum; 
*mi_idname; 
mi_minpsz; 
mi_maxpsz; 
mi_hiwat; 
mi_lowat; 

I * put procedure * I 
I * service procedure * I 
I* called on each open or a push * I 
I * called on last close or a pop * I 
I * reserved for future use * I 
*qi_minfo; /* information structure * I 
*qi_ msta t; /*optional statistics structure * I 

I* module ID number * I 
I* module name * I 
I* min packet size accepted.for developer use * I 
I* max packet size accepted, for developer use * I 
I* hi-water mark.for flow control * I 
I* lo-water mark.for flow control * I 

qini t contains the QUEUE procedures. All modules and drivers with the same 
streamtab (i.e., the same fmodsw or cdevsw entry) point to the same 
upstream and downstream qini t structure(s). The structure is meant to be 
software read-only, as any changes to it affect all instantiations of that module in 
all streams. Pointers to the open and close procedures must be contained in the 
read qini t. These fields are ignored in the write side. The example has no ser­
vice procedure on the read or write side. 

module info contains identification and limit values. All modules and 
drivers with the same streamtab point to the same upstream and downstream 
module_ info structure(s). As with qini t, this structure is intended to be 
software read-only. However, the four limit values are copied to queue_ t (see 
the Message Queues and Service Procedures section) where they are modifiable. 
In the example, the flow control high and low water marks (see the Drivers sec­
tion) are zero since there are no service procedures and messages are not queued 
in the module. 

Three names are associated with a module: the character string in fmodsw; the 
prefix for streamtab, used in configuring the module; and the module name 
field in the module info structure. The module name value used in the 
I_PUSH or other STREAMS ioctl () commands is contained in fmodsw. 
Each module ID and module name should be unique in the system. The module 
ID is currently used only in logging and tracing (see Other Facilities, in the 
Introduction to STREAMS). For the example in this section, the module ID is 
zero. 

Minimum and maximum packet size are intended to limit the total number of 
bytes contained in all (if any) of the M_DAT A blocks in each message passed to 
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this QUEUE. These limits are advisory except for the Stream Head. For certain 
system calls that write to a stream, the Stream Head will observe the packet sizes 
set in the write QUEUE of the module immediately below it. Otherwise, the use 
of packet size is developer dependent. In the example, INFPSZ indicates unlim­
ited size on the read (input) side. 

module_stat is optional, intended for future use. Currently, there is no 
STREAMS support for statistical information gathering. The structure is 
described in Kernel Structures in the Supplementary STREAMS Material chapter. 

The null module procedures are as follows: 

static int modopen(q, dev, flag, sflag) 
queue_ t * q; / * pointer to read queue * I 
dev _ t dev; / * major/minor device number -- zero for modules * I 
int flag; /*file open flags -- zero for modules * I 
int sf lag; /* stream open flags * I 

I * return success * I 
return (0); 

static int modwput (q, mp) /* write put procedure *I 
queue_t *q; /*pointer to the write queue * / 
mblk t *mp; / * message pointer * I 

putnext(q, mp); /*passmessagethrough *I 

static int modrput(q, mp) /*readputprocedure *I 
queue_ t *q; /*pointer to the read queue * I 
mblk t *mp; / * message pointer * I 

putnext (q, mp); /* pass message through * I 

static int modclose(q, flag) 
queue_ t * q; / * pointer to the read queue * I 
int flag; /*file open flags - zero for modules * I 

The form and arguments of these four procedures are the same in all modules and 
all drivers. Modules and drivers can be used in multiple streams and their pro­
ce1ures must be reentrant. 

modopen () illustrates the open call arguments and return value. The argu­
ments are the read queue pointer ( q), the major/minor device number ( dev, in 
drivers only), the file open flags (flag, defined in sys/ file. h), and the 
stream open flag (sf lag). For a module, the values of flag and dev are 
al ways zero. The stream open flag can take on the following values: 
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Module and Driver 
Environment 

STREAMS driver and module put 
procedures and service procedures 
have no user context. They cannot 
access the user structure of a pro­
cess and must not sleep. 

MODOPEN 
normal module open 

0 normal driver open (see the Drivers section). 

CLONEOPEN 
clone driver open (see the Example Driver section). 

The return value from open is >= 0 for success and OPENF AIL for error. When 
a driver is opened with CLONEOPEN set, the return value should be the minor 
device number of the device instance that the driver actually opened. The open 
procedure is called on the first I _PUSH and on all subsequent open ( ) calls to 
the same stream. During a push, a return value of OPENF AIL causes the 
I PUSH to fail and the module to be removed from the stream. If OPENFAIL is 
returned by a module during an open ( ) call, the open ( ) fails, but the stream 
remains intact. For example, it can be returned by a module/driver that only 
wishes to be opened by a superuser: 

if (!suser()) return (OPENFAIL); 

In the example, modopen () simply returns successfully. 

modrput () and modwput () illustrate the common interface to put pro­
cedures. The arguments are the read or write queue_ t pointer, as appropriate, 
and the message pointer. The put procedure in the appropriate side of the 
QUEUE is called when a message is passed from upstream or downstream. The 
put procedure has no return value. In the example, no message processing is per­
formed. All messages are forwarded using the putnext () macro (see Utilities 
in the Supplementary STREAMS Material chapter. putnext () calls the put pro­
cedure of the next QUEUE in the proper direction. 

The close procedure is only called on an I_ POP or on the last c 1 o s e ( ) call of 
the stream (see the last two sections of STREAMS Mechanism). The arguments 
are the read queue_ t pointer and the file open flags as in modopen ( ) . For a 
module, the value of flag is always zero. There is no return value. In the 
example, mode lose () does nothing. 

User context is not generally available to STREAMS module procedures and 
drivers. The exception is during execution of the open and close routines. 
Driver and module open and close routines have user context and may access the 
user structure (defined in user. h, see Accessible Symbols and Functions in 
the Supplementary STREAMS Material) Appendix. These routines are allowed to 
sleep, but must always return to the caller. That is, if they sleep, it must be at 
priority<= PZERO, or with PCATCH set in the sleep priority. (A process that is 
sleeping at priority > PZERO, with no PCATCH, and is sent a signal via 
kill ( 2), never returns from the sleep call. Instead, the system call is aborted.) 
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Messages are the means of communication within a stream. A message contains 
data or information identified by one of 18 message types (see Message Types in 
the Supplementary STREAMS Material chapter. Messages may be generated by a 
driver, a module, or the Stream Head. The contents of certain message types can 
be transferred between a process and a stream by use of system calls. STREAMS 
maintains its own pools for allocation of message storage. 

All messages are composed of one or more message blocks. A message block is 
a linked triplet; two structures and a variable length buffer block. These struc­
tures include the fields described below, along with others that are not docu­
mented. The reason some elements have been left undocumented is because they 
are used by the STREAMS mechanism internally and may change from one 
release to the next. Note also that programs that count on these structures to have 
a specific offset or size are not portable and may not work in future releases. 

The two structures in particular are msgb (mblk_t), the message block, and 
datab (dblk_t), the data block: 

* Fields marked with "RO" are read-only; STREAMS 
* modules and drivers are allowed to examine them, but not to change 
* them ( except indirectly through the appropriate utility routines). 
*I 

struct msgb { 
struct msgb 
struct msgb 
struct msgb 
unsigned char 
unsigned char 
struct datab 

} ; 

*b_next; /*RO: next message on queue * I 
*b_prev; /* RO: previous message on queue * I 
*b _cont ; / * next message block of message * I 
*b _ rpt r; /*first unread byte in buffer * I 
*b _ wpt r; /*first unwritten byte in buffer * I 
*b_datap; /* RO: data block * I 

typedef struct msgb mblk_t; 

struct datab 

} ; 

unsigned char *db_base; l*RO:firstbyteofbuffer* */ 
unsigned char *db_lim; /* RO: last byte+l of buffer * I 
unsigned char db_ref; /* RO: cntofmsgspointingto this block*/ 
unsigned char db_type; /* message type *I 

typedef struct datab dblk_t; 

mblk _ t is used to link messages on a message queue, link the blocks in a mes­
sage, and manage the reading and writing of the associated buffer. b rptr and 
b _ wptr are used to locate the data currently contained in the buffer.-As shown 
in figure 3-3, mblk _ t points to the data block of the triplet. The data block con­
tains the message type, buffer limits, and control variables. db base and 
db_ l im are the fixed beginning and end ( + 1) of the buffer. -
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Figure 3-3 

A message consists of one or more linked message blocks. Multiple message 
blocks in a message can occur, for example, because of buffer size limitations, or 
as the result of processing that expands the message. When a message is com­
posed of multiple message blocks, the type associated with the first message 
block determines the overall message type, regardless of the types of the attached 
message blocks. 
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A message may occur singly, as when it is processed by a put procedure, or it 
may be linked on the message queue in a QUEUE, generally waiting to be pro­
cessed by the service procedure. Message 1, as shown in figure 3-3, links to mes­
sage 2. In the first message on a queue, b _prev points back to the header in the 
QUEUE. The last b_next points to the tail. 

Note that a data block in message 1 is shared between message 1 and another 
message. Multiple message blocks can point to the same data block to conserve 
storage and to avoid copying overhead. For example, the same data block, with 
associated buffer, may be referenced in two messages, from separate modules 
that implement separate protocol levels. (Figure 3-3 illustrates the concept, but 
data blocks would not typically be shared by messages on the same queue). The 
buffer can be retransmitted, if required by errors or timeouts, from either protocol 
level without replicating the data. Data block sharing is accomplished by means 
of a utility routine (see dupmsg () in the Utilities section of the Supplementary 
STREAMS Material chapter.) STREAMS maintains a count of the message blocks 
sharing a data block in the db_ ref field, which modules may examine but not 
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change. 

STREAMS provides utility functions and macros, specified in the Utilities section 
of the Supplementary STREAMS Material chapter, to assist in managing messages 
and message queues, and to assist in other areas of module and driver develop­
ment. A utility routine should always be used when operating on a message 
queue or accessing the message storage pool. 

As discussed in the Introduction to STREAMS, most message types can be gen­
erated by modules and drivers. A few are reserved for the Stream Head. The 
most commonly used types are M_DATA, M_PROTO, and M_PCPROTO. 
These, and certain other message types, can also be passed between a process and 
the topmost module in a stream, with the same message boundary alignment 
maintained on both sides of the kernel. This allows a user process to function, to 
some degree, as a module above the stream and maintain a service interface (see 
the Service Interface section). M _PROTO and M _PCPROTO messages are 
intended to carry service interface information among modules, drivers, and user 
processes. Some message types can only be used within a stream and cannot be 
sent or received from user level. 

As discussed previously, modules and drivers do not interact directly with any 
system calls except open () and close (). The Stream Head handles all mes­
sage translation and passing. Message transfer between process and Stream Head 
can occur in different forms. For example, M _DATA, M _ PROTO, or 
M _ PCPROTO messages can be transferred in their direct form by getmsg ( 2) 
and putmsg (2) system calls (see the Service Interface section). Alternatively, 
a write ( ) causes one or more M _DATA messages to be created from the data 
buffer supplied in the call. M_DATA messages received from downstream at the 
Stream Head will be consumed by read ( 2) and copied into the user buffer. As 
another example, M _ SIG causes the Stream Head to send a signal to a process 
(see the Advanced Topics section). 

Any module or driver can send any message type in either direction on a stream. 
However, based on their intended use in STREAMS and their treatment by the 
Stream Head, certain message types can be categorized as upstream, down­
stream, or bidirectional. M _DATA, M _PROTO, or M _ PCPROTO messages, for 
example, can be sent in both directions. Other message types are intended to be 
sent upstream to be processed only by the Stream Head. Downstream messages 
are silently discarded if received by the Stream Head. 

The module shown below, crmod, is an asymmetric filter. On the write side, 
newline is converted to carriage return followed by newline. On the read side, no 
conversion is done. The declarations are essentially the same as the null module 
of the preceding section: 
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bappend () Subroutine 

I* Simple filter - converts newline -> carriage return, newline * I 

#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/stream.h> 

static struct module info minfo = {0,"crmod",O,INFPSZ,0,0}; 

static int modopen(), modrput(), modwput(), modclose(); 
static struct qinit rinit = { 

modrput, NULL, modopen, modclose, NULL, &minfo, NULL 
} ; 

static struct qinit winit = 
modwput, NULL, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab crmdinfo = { &rinit, &winit, NULL, NULL}; 

Note that, in contrast to the null module example, a single module_ info struc­
ture is shared by the read and write sides. The flag INFP s z is defined in 
sys/ stream. h. 

modopen (), modrput (), and modclose () are the same as in the null 
module of the preceding section. 

The module makes use of a subroutine, bappend (), which appends a character 
to a message block: 

'* 
* Append a character to a message block. If (*bpp) is null, it will allocate 
* a new block. Returns O when the message block is full, 1 otherwise 
*I 

#define MODBLKSZ 12 8 /*convenient buffer size * I 
static int bappend(bpp, ch) 
mblk_t **bpp; 
int ch; 

mblk t *bp; 

if (bp = *bpp) 
if (bp->b_wptr >= bp->b_datap->db_lim) 

return (0); 
else { 

if ( ( *bpp =bp = allocb (MODBLKSZ, BPRI_MED)) 
return (1); 

bp->b_datap->db_type M_DATA; 

*bp->b_wptr++ = ch; 
return (1); 

NULL) 
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bappend () receives a pointer to a message block pointer and a character as 
arguments. If a message block is supplied ( *bpp ! = NULL) , bappend () 
checks if there is room for more data in the block. If not, it fails. If there is no 
message block, a block with capacity MODBLKSZ is allocated through 
allocb () , described below. 

If the allocb () fails, bappend () returns success, silently discarding the 
character. This may or may not be acceptable. For tty-type devices, it is gen­
erally acceptable. If the original message block is not full or the allocb () is 
successful, bappend () stores the character in the block. 

The allocb () utility (see the Utilities section of the Supplementary STREAMS 
Material chapter) is used to allocate message storage from the STREAMS pool. 
Its declaration is: 

mblk_t *allocb(buffersize, priority) 

allocb () will return a message block containing a buffer of at least the size 
requested, providing there is a buffer available at the message pool priority 
specified, or it will return NULL on failure. 

Three levels of message pool priority can be specified (see the Utilities section of 
the Supplementary STREAMS Material chapter). Priority generally does not 
affect allocb () until the pool approaches depletion. In this case, for the same 
internal level of pool resources, allocb () will reject low priority requests 
while granting higher priority requests. This allows module and driver develop­
ers to use STREAMS memory resources to their best advantage and for the com­
mon good of the system. (Note that the current implementation disregards prior­
ity information, but this may change in future implementations.) Message pool 
priority does not affect subsequent handling of the message by STREAMS. 
BPRI_HI is intended for special situations, such as the transmission of urgent 
messages relating to time sensitive events, conditions that could result in loss of 
state, loss of data, or inability to recover. BPRI_ MED might be used, for exam­
ple, when requesting an M _DATA buffer for holding input, and BPRI _ LO might 
be used for an output buffer (presuming the output data can wait in user space). 
The Stream Head uses BPRI _ LO to allocate messages to contain output from a 
process (e.g., by write () or putmsg()). 

Note that allocb () will always return a message of type M_DATA. The type 
may then be changed if required. b_rptr and b_wptr are set to db_base 
(see mblk_t and dblk_t). 

allocb () may return a buffer larger than the size requested. In bappend (), 
if the message block contents were intended to be limited to MODBLKSZ, a 
check would have to be inserted. 

If allocb () indicates buffers are not available, the buf call () utility can be 
used to defer processing in the module or the driver until a buffer becomes avail­
able {buf call () is described in the Advanced Topics section). 
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Put Procedure 
modwput () processes all the message blocks in any downstream data (type 
M _DATA) messages. 

I* Write side put procedure * I 
static modwput(q, mp) 
queue_t *q; 
mblk_t *mp; 
{ 

switch (mp->b_datap->db_type) 
default: 

pu tnext ( q, mp) ; / * Don't do these, pass them along * I 
break; 

case M_DATA: { 
register mblk_t *bp; 
struct mblk_t *nmp = NULL, *nbp = NULL; 

for (bp = mp; bp != NULL; bp = bp->b_cont) 
while (bp->b_rptr < bp->b_wptr) { 

if (*bp->b_rptr == '\n') 
if (!bappend(&nbp, '\r')) 

goto newblk; 
if (!bappend(&nbp, *bp->b_rptr)) 

goto newblk; 

bp->b_rptr++; 
continue; 

newblk: 
if (nmp == NULL) 

nmp = nbp; 

I * link message block to tail of nmp * I 
else 

linkb(nmp, nbp); 

nbp = NULL; 

if (nmp == NULL) 
nmp = nbp; 

else linkb(nmp, nbp); 
f reemsg (mp) ; / * de-allocate message * I 
if (nmp) 

putnext(q, nmp); 
break; 

Data messages are scanned and filtered. modwput () copies the original mes­
sage into a new block(s), modifying as it copies. nbp points to the current new 
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message block. nmp points to the new message being formed as multiple 
M _DATA message blocks. The outer for() loop goes through each message 
block of the original message. The inner while() loop goes through each byte. 
bappend () is used to add characters to the current or new block. If bap­
pend () fails, the current new block is full. If nmp is NULL, nmp is pointed at 
the new block. If nmp is non-NULL, the new block is linked to the end of nmp 
by use of the 1 i nkb utility. 

At the end of the loops, the final new block is linked to nmp. The original mes­
sage (all message blocks) is returned to the pool by freemsg (). If a new mes­
sage exists, it is sent downstream. 

Service procedures, message queues and priority, and basic flow control are all 
intertwined in STREAMS. A QUEUE will generally not use its message queue if 
there is no service procedure in the QUEUE. The function of a service procedure 
is to process messages on its queue. Message priority and flow control are asso­
ciated with message queues. 

As discussed previously, there are structure elements that may be undocumented 
for reasons of privacy. Any elements that are used internally will not be shown 
here. The operation of a QUEUE revolves around the queue_ t structure, which 
contains the following fields, and possibly others that are undocumented: 

'* 
* Fields marked with "RO" are read-only; STREAMS 
* modules and drivers are allowed to examine them, but not to change 
* them ( except indirectly through the appropriate utility routines). 
*I 

struct queue { 

} ; 

struct qinit *q_qinfo; /*RO:proceduresandlimitsforqueue */ 
struct msgb *q_first; /*RO:headofmsgqueueforQUEUE *I 
struct msgb *q_last; l*RO:tailofmsgqueueforQUEUE *I 
struct queue *q_next; /*RO:nextQUEUEinstream *I 
caddr t q_ptr; /*to private data structure * / 
ushort q_count; l*RO:countofbytesonmessagequeue *I 
ushort q_ flag; /*RO: QUEUE state * I 
short q_ minps z; / * min packet size accepted by this QUEUE * / 
short q_ maxps z; / * max packet size accepted by this QUEUE * / 
ushort q_hiwat; /* msg queue high water mark,for flow control * I 
ushort q_lowat; / * msg queue low water mark,for flow control * I 

typedef struct queue queue_t; 

As described previously, two of these structures form a module. When a 
queue_ t pair is allocated, their contents are zero unless specifically initialized. 
The following fields are initialized by STREAMS: 
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Service Procedures 

A service routine must never sleep 
and it has no user context. It must 
always return to its caller. 

o q_qinfo - from streamtab 

o q_minpsz, q_maxpsz, q_hiwat, q_lowat -frommodule_info 
Copying values from module_info allows them to be changed in the 
queue_ t without modifying the template (i.e., streamtab and 
module_info) values. 

q_ count is used in flow control calculations and is the aggregate number of 
bytes in the messages currently on the queue. 

Put procedures are generally required in pushable modules. Service procedures 
are optional. The general processing flow when both procedures are present is as 
follows. A message is received by the put procedure in a QUEUE, where some 
processing may be performed on the message. The put procedure transfers the 
message to the service procedure by use of the putq () utility. putq () places 
the message on the tail (see q_last in queue_t) of the message queue. Then, 
putq () will generally schedule the QUEUE for execution by the STREAMS 
scheduler following all other QUEUES currently scheduled. After some indeter­
minate delay (intended to be short), the scheduler calls the service procedure. 
The service procedure gets the first message ( q_ first) from the message queue 
with the getq () utility. The service procedure processes the message and 
passes it to the put procedure of the next QUEUE with put next(). The service 
procedure gets the next message and processes it. This FIFO processing contin­
ues until the queue is empty or flow control blocks further processing. The ser­
vice procedure returns to caller. 

If no processing is required in the put procedure, the procedure does not have to 
be explicitly declared. Rather, putq () can be placed in the qini t structure 
declaration for the appropriate QUEUE side, to queue the message for the service 
procedure, e.g.: 

static struct qinit winit = { putq, rnodwsrv, ... }; 

More typically, put procedures will, as a minimum, process priority messages 
(see below) to avoid queueing them. 

The key attribute of a service procedure in the STREAMS architecture is delayed 
processing. When a service procedure is used in a module, the module developer 
is implying that there are other, more time-sensitive activities to be performed 
elsewhere in this stream, in other streams, or in the system in general. The pres­
ence of a service procedure is mandatory if the flow control mechanism is to be 
utilized by the QUEUE. 

The delay for STREAMS to call a service procedure will vary with implementa­
tion and system activity. However, once the service procedure is scheduled, it is 
guaranteed to be called before user level activity is resumed. 

Also see the Put and Service Procedures section of the Introduction to STREAMS. 
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Figure 3-3 depicts a message queue linked by b _ next and b _prev pointers. 
As discussed in the Introduction to STREAMS, message queues grow when the 
STREAMS scheduler is delayed from calling a service procedure because of sys­
tem activity, or when the procedure is blocked by flow control. When it is called 
by the scheduler, the service procedure processes enqueued messages in FIFO 
order. However, certain conditions require that the associated message (e.g., an 
M ERROR) reach its stream destination as rapidly as possible. STREAMS does 
this by assigning all message types to one of the two levels of message queueing 
priority- high priority and ordinary. As shown in figure 34, when a message is 
queued, the putq () utility will place high priority messages at the head of the 
message queue, FIFO within their order of queueing. 

Message Queue Priority 

QUEUE Message queue 

·::;:.::~::: ·····i I I I I I I I I I I I 1 
1 High Priority I Ordinary : 

Messages Messages 

Head Tail 

High priority messages are not subject to flow control. When they are queued by 
putq (), the associated QUEUE is always scheduled (in the same manner as any 
QUEUE; following all other QUEUEs currently scheduled). When the service 
procedure is called by the scheduler, the procedure uses get q ( ) to retrieve the 
first message on queue, which will be a high priority message, if present. Service 
procedures must be implemented to act on high priority messages immediately 
(see next section). The above mechanisms-priority message queueing, absence 
of flow control, and immediate processing by a procedure-result in rapid tran­
sport of priority messages between the originating and destination components in 
the stream. 

The priority level for each message type is shown in the Message Types section 
of the Supplementary STREAMS Material chapter. Message queue management 
utilities are provided for use in service procedures (see the Utilities section of the 
Supplementary STREAMS Material chapter). 

The elements of flow control are discussed in the Other Facilities section of the 
Introduction to STREAMS. Flow control is only used in a service procedure. 
Module and driver coding should observe the following guidelines for message 
priority. High priority messages, determined by the type of the first block in the 
message, 

(bp->b_datap->db_type > QPCTL), 

are not subject to flow control. They should be processed immediately and for­
warded, as appropriate. 
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Example 

For ordinary messages, flow control must be tested before any processing is per­
formed. The canput () utility determines if the forward path from the QUEUE 
is blocked by flow control. The manner in which STREAMS determines flow 
control status for modules and drivers is described under Driver Flow Control in 
the Drivers section. 

This is the general processing for flow control. Retrieve the message at the head 
of the queue with get q ( ) . Determine if the type is high priority and not to be 
processed here. If both are true, pass the message to the put procedure of the fol­
lowing QUEUE with putnext (). If the type is ordinary, use canput () to 
determine if messages can be sent onward. If can put () indicates messages 
should not be forwarded, put the message back on the queue with pu tbq ( ) and 
return from the procedure. In all other cases, process the message. 

The canonical representation of this processing within a service procedure is as 
follows: 

\. 

while (getq != NULL) 
if (high priority message I I canput) 

process message 
putnext 

else 
putbq 
return 

NOTE A service procedure must process all messages on its queue unless flow control 
prevents this. 

When an ordinary message is enqueued by putq (), putq () will cause the ser­
vice procedure to be scheduled only if the queue was previously empty. If there 
are messages on the queue, put q ( ) presumes the service procedure is blocked 
by flow control and the procedure will be automatically rescheduled by 
STREAMS when the block is removed. If the service procedure cannot complete 
processing as a result of conditions other than flow control (e.g., no buffers), it 
must assure it will return later (e.g., by use of bufcall (),seethe Advanced 
Topics section) or it must discard all messages on the queue. If this is not done, 
STREAMS will never schedule the service procedure to be run unless the 
QUEUE's put procedure queues a priority message with putq (). 

pu tbq ( ) replaces messages at the beginning of the appropriate section of the 
message queue in accordance with their message type priority (see figure 3-4). 
This might not be the same position at which the message was retrieved by the 
preceding getq (). A subsequent getq (} might return a different message. 

The filter module example of the Messages section is here modified to have a ser­
vice procedure. The declarations from the example are unchanged except for the 
following lines ( changes are shown in bold): 
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#include <sys/stropts.h> 

static struct module_info minfo = { 
O, "ps_crmod", 0, INFPSZ, 512, 128 

} ; 

static int modopen(), modrput(), modwput(); 
static int modwsrv(), modclose (); 

static struct qinit winit = { 
modwput, modwsrv, NULL, NULL, NULL, &minfo, NULL 

} ; 

stropt s. h is generally intended for user level. However, it includes 
definitions of flush message options common to user level, modules, and drivers. 
module_info now includes the flow control high- and low-watermarks (512 
and 128) for the write QUEUE (even though the same module_info is used on 
the read QUEUE side, the read side has no service procedure so flow control is 
not used). qini t now contains the service procedure pointer. modopen (), 
modclose (), and modrput () (read side put procedure) are unchanged from 
the Modules and Messages sections. The bappend () subroutine is also 
unchanged from the Messages section. 

The write side put procedures and the beginning of the service procedure are 
shown below: 

static int modwput(q, mp) 
queue_t *q; 
register mblk_t *mp; 
{ 

if (mp->b_datap->db_type > QPCTL && 
mp->b_datap->db_type != M_FLUSH) 

put next ( q, mp) ; 
else 

putq ( q, mp) ; /*Put it on the que-ue * I 

static int modwsrv(q) 
queue_t *q; 
{ 

mblk t *mp; 

while ((mp= getq(q)) != NULL) { 
switch (mp->b_datap->db_type) 

default: 
I* always putnext high priority messages * I 
if (mp->b_datap->db_type > QPCTL I I 

canput(q->q_next)) { 
putnext (q, mp) ; 
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continue; 

else { 
putbq(q, mp); 
return; 

case M FLUSH: 
if (*mp->b_rptr & FLUSHW) 

flushq(q, FLUSHDATA); 
putnext(q, mp); 
continue; 

ps _ crmod performs a similar function to crmod of the previous section, but it 
uses a service routine. 

modwput () , the write put procedure, switches on the message type. High 
priority messages that are not type M_FLUSH are putnext () to avoid 
scheduling. The others are queued for the service procedure. An M _ FLUSH 
message is a request to remove all messages on one or both QUEUEs. It can be 
processed in the put or service procedure. 

modwsrv () is the write service procedure. It takes a single argument, a pointer 
to the write queue_ t. modwsrv () processes only one high priority message, 
M _ FLUSH. All other high priority messages are passed through. Actually, no 
other high priority messages should reach modwsrv (). The check is included 
to show the canonical form when high priority messages are queued by the put 
procedure. 

For an M_FLUSH message, modwsrv () checks the first data byte. If 
FLUSHW (defined in stropts. h) is set in the byte, the write queue is flushed 
by use of flushq (). flushq () takes two arguments, the queue pointer and a 
flag. The flag indicates what should be flushed, data messages (FLUSHDATA) 
or everything (FLUSHALL). In this case, data includes M_DATA, M_PROTO, 
and M _PCPROTO messages. The choice of what types of messages to flush is 
module-specific. As a general rule, FLUSHDAT A should be used. 

Ordinary messages will be returned to the queue if 

canput(q->q_next) 

returns false, indicating the downstream path is blocked. 

In the remaining part ofmodwsrv (), M_DATA messages are processed simi-
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larly to the previous example: 
r 

case M_DATA: 
mblk_t *nbp NULL; 
mblk_t *next; 

if (!canput(q->q_next)) 
putbq (q, mp); 
return; 

I* Filter data, appending to queue * I 
for (; mp != NULL; mp next) 

while (mp->b_rptr < mp->b_wptr) 

if (*mp->b_rptr == '\n') 
if (!bappend(&nbp, '\r')) 

goto push; 
if (!bappend(&nbp, *mp->b_rptr)) 

goto push; 
mp->b_rptr++; 
continue; 

push: 
putnext (q, nbp) ; 
nbp = NULL; 
if (!canput(q->q_next)) 

if (mp->b_rptr >= mp->b_wptr) 
next= mp->b_cont; 
freeb (mp) ; 
mp=next; 

if (mp) 
putbq(q, mp); 

return; 

next= mp->b_cont; 
freeb (mp) ; 

if (nbp) 
putnext(q, nbp); 

The differences in M _DATA processing between this and the previous example 
relate to the manner in which the new messages are forwarded and to flow con­
trol. For the purpose of demonstrating alternative means of processing messages, 
this version creates individual new messages rather than a single message con­
taining multiple message blocks. When a new message block is full, it is 
immediately forwarded with put next () rather than being linked into a single, 
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3.6. Drivers 

Overview of Drivers 

large message (as was done in the previous example). This alternative may not 
be desirable because message boundaries will be altered and because of the addi­
tional overhead of handling and scheduling multiple messages. 

When the filter processing is performed (following push()), flow control is 
checked ( canput()) after, rather than before, each new message is forwarded. 
This is done because there is no provision to hold the new message until the 
QUEUE becomes unblocked. If the downstream path is blocked, the remaining 
part of the original message is returned to the queue. Otherwise, processing con­
tinues. 

Another difference between the two examples is that each message block of the 
original message is returned to the pool with freeb () when its processing is 
completed. 

This section describes the organization of a STREAMS driver, and discusses some 
of the processing typically required in drivers. Certain elements of driver flow 
control are discussed. Procedures for handling user ioctls, common to modules 
and drivers, are described. 

As discussed under Stream Construction in the STREAMS Mechanism section, 
driver and module organization are very similar. The interfaces to all the driver 
procedures are identical to module interfaces, and driver procedures must be 
reentrant~ As described under Environment in the Modules section, the driver put 
and service procedures have no user environment and cannot sleep. Other than 
with open () and close (), a driver interfaces with a user process by mes­
sages, and indirectly, through flow control. 

There are two significant differences between modules and drivers. First, a dev­
ice driver must also be accessible from an interrupt as well as from the stream, 
and second, a driver can have multiple streams connected to it. Multiple connec­
tions occur when more than one minor device uses the same driver and in the 
case of multiplexors (see the Multiplexing section). However, these particular 
differences are not recognized by the STREAMS mechanism; they are handled by 
developer-provided code included in the driver procedures. 

Figure 3-5 shows multiple streams (corresponding to minor devices), to a com­
mon driver. This depiction of two streams connected to a single driver is some­
what misleading. These are really two distinct streams opened from the same 
cdevsw (i.e., same major device). Consequently, they have the same stream­
tab and the same driver procedures. Modules opened from the same fmodsw 
might be depicted similarly if they had any reason to be cognizant, as do drivers, 
of common resources or alternate instantiations. 

Multiple instantiations (minor devices) of the same driver are handled during the 
initial open for each device. Typically, the queue_ t address is stored in a 
driver-private structure indexed by the minor device number. The structure is 
typically pointed at by q_ptr (see the Message Queues and Service Procedures 
section). When the messages are received by the QUEUE, the calls to the driver 
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put and service procedures pass the address of the queue_ t, allowing the pro­
cedures to determine the associated device. 

In addition to these differences, a driver is always at the end of a stream. As a 
result, drivers must include standard processing for certain message types that a 
module might simply be able to pass to the next component. 
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The same utilities ( described in the Message Queues and Service Procedures sec­
tion) and mechanisms used for module flow control are used by drivers. How­
ever, they are typically used in a different manner in drivers, because a driver 
generally does not have a service procedure. The developer sets flow control 
values (mi_hiwat and mi_lowat) in the write side module_info structure, 
which STREAMS will copy into q_hiwat and q_lowat in the queue_t 
structure of the QUEUE. A device driver typically has no write service pro­
cedure, but does maintain a write message queue. When a message is passed to 
the driver write side put procedure, the procedure will determine if device output 
is in progress. In the event output is busy, the put procedure cannot immediately 
send the message and calls the putq () utility (see the Utilities section of the 
Supplementary STREAMS Material chapter) to queue the message. (Note that the 
driver might have elected to queue the message in all cases.) putq () recog­
nizes the absence of a service procedure and does not schedule the QUEUE. 

When the message is queued, putq () increments the value of q_ count (the 
enqueued byte count, see the beginning of the Message Queues and Service Pro­
cedures section) by the size of the message and compares the result against the 
driver's write high water limit ( q_ hiwat) value. If the count exceeds 
q_hiwat, putq () will set the internal FULL (see Flow Control in the 
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Driver Programming 

Driver Declarations 

Introduction to STREAMS) indicator for the driver write QUEUE. This will cause 
messages from upstream to be halted ( canput () returns FALSE) until the 
write queue count reaches q_lowat. The driver messages waiting to be output 
are dequeued by the driver output interrupt routine with getq (), which decre­
ments the count. If the resulting count is below q_lowat, getq () will back­
enable any upstream QUEUE that had been blocked. The above STREAMS pro­
cessing also applies to modules on both write and read sides of the stream. 

Device drivers typically discard input when unable to send it to a user process. 
However, STREAMS allows flow control to be used on the driver read side, possi­
bly to handle temporary upstream blocks. This is described in the Advanced 
Topics section in the Advanced Flow Control section. 

To some extent, a driver or module can control when its upstream transmission 
will become blocked. Control is available through the M _ SETOPfS message 
(see the Advanced Topics section, here, and the Message Types section of Supple­
mentary STREAMS Material) to modify the Stream Head read side flow control 
limits. 

The example below shows how a simple interrupt-per-character line printer 
driver could be written. The driver is unidirectional and has no read side pro­
cessing. It demonstrates some differences between module and driver program­
ming, including the following: 

Open handling 
A driver is passed a minor device number or is asked to select one (see next 
section). 

Flush handling 
A driver must loop M _ FLUSH messages back upstream. 

Ioctl handling 
A driver must acknowledge, in the form of a nak, ioctl messages it does not 
understand. This is discussed under Driver and Module /octls, below. Write 
side flow control is also illustrated as described above. 

The driver declarations are as follows: 

/ * Simple line printer driver. * I 

#include "lp.h" 
#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/sysmacros.h> 
#include <sys/stream.h> 
#include <sys/stropts.h> 
#include <sys/dir.h> 
#include <sys/signal.h> 
#include <sys/user.h> 
#include <sys/errno.h> 

I* required/or user.h * I 
I* required/or user.h * I 

static struct module info minfo 
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0, "lp", O, INFPSZ, 150, 50 
} ; 

static int lpopen(), lpclose(), lpwput(); 

static struct qinit rinit = { 
NULL, NULL, lpopen, lpclose, NULL, &minfo, NULL 

} ; 

static struct qinit winit = { 
lpwput, NULL, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab lpinfo = { &rinit, &winit, NULL, NULL}; 

#define SET OPTIONS (('1'<<8) 11) /*reallymustbeina.hfile, 
see _IO(x,y) in syslioccom.h * I 

!* 
* This is a private data structure, one per minor device number. 
*! 
struct lp { 

} ; 

short flags; 
mblk_t *msg; 
queue_t *qptr; 

I* Flags bits * I 

I* flags -- see below * I 
I* current message being output * I 
I * back pointer to write queue * I 

#define BUSY 1 / * device is running and interrupt is pending * I 

struct lp lp_lp[NLP]; /*perdevicelpstructurearray *I 
int lp_cnt = NLP; /*numberofvalidminordevices */ 

As noted for modules in the Modules section, configuring a STREAMS driver 
does not require the driver procedures to be externally accessible; only stream­
tab must be. All STREAMS driver procedures would typically be declared 
static. 

There is no read side put or service procedure. The flow control limits for use on 
the write side are 50 and 150 characters. The private lp structure is indexed by 
the minor device number and contains these elements: 

f1ags 

msg 

A set of flags. Only one bit is used: BUSY indicates that output is active 
and a device interrupt is pending. 

A pointer to the current message being output. 

qptr 
A back pointer to the write queue. This is needed to find the write queue 
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Driver Open 

during interrupt processing. 

The driver open, lpopen (), has the same interface as the module open: 

static int lpopen(q, dev, flag, sflag) 
queue_t *q; /* read queue * I 
dev_t dev; 
int flag; 
int sflag; 
{ 

struct lp *lp; 

I* Check if non-driver open * I 
if (sflag) 

return (OPENFAIL); 

I * Dev is major/minor * I 
dev = minor(dev); 
if (dev >= lp_cnt) 

return (OPENFAIL); 

I* Check if open already. q_ptr is assigned below * I 
if (q->q_ptr) { 

u.u_error = EBUSY; /*only] useroftheprinteratatime *I 
return (OPENFAIL); 

lp = &lp_lp[dev]; 
lp->qptr = WR(q); 
q->q_ptr = (char*) lp; 
WR(q)->q_ptr = (char*) lp; 
return (dev) ; 

The stream flag, sf lag, must have the value 0, indicating a normal driver open. 
dev holds both the major and minor device numbers for this port. After check­
ing sf lag, the open flag, lpopen () extracts the minor device from dev, 
using the minor () macro defined in sysmacros. h. 

Remember that the use of major devices, minor devices, and the minor () 
macro may be machine dependent. 

The minor device number selects a printer and must be less than 1 p _ c nt. 

The next check, if ( q->q__pt r) ... , determines if this printeris already 
open. In this case, EBUSY is returned to avoid merging printouts from multiple 
users. q_ptr is a driver/module private data pointer. It can be used by the 
driver for any purpose and is initialized to zero by STREAMS. In this example, 
the driver sets the value of q__ptr, in both the read and write queue_ t struc­
tures, to point to a private data structure for the minor device, lp _ lp [ dev]. 
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WR is one of three QUEUE pointer macros. As discussed in the Stream Construc­
tion section, there are no physical pointers between QUEUEs, and these macros 
(see Utilities in the Supplementary STREAMS Material section) generate the 
pointer. WR(q) generates the write pointer from the read pointer, RD ( q) gen­
erates the read pointer from the write pointer and OT HER( q) generates the mate 
pointer from either. 

This example only has a write put procedure: 

static int lpwput(q, mp) 
queue_t *q; /*writequeue *I 
register mblk_t *mp; /* message pointer *I 
{ 

register struct lp *lp; 
int s; 

lp = (struct lp *)q->q_ptr; 

switch (mp->b_datap->db_type) 
default: 

freemsg(mp); 
break; 

case M FLUSH: 
I* Canonical flush handling * I 
if (*mp->b_rptr & FLUSHW) 

flushq(q, FLUSHDATA); 
s = splS (); 
I* also flush lp->msg since it is logically 
* at the head of the write queue * I 
if ( lp->msg) { 

freemsg(lp->msg); 
lp->msg = NULL; 

(void) splx(s); 

if (*mp->b_rptr & FLUSHR) { 
flushq(RD(q), FLUSHDATA); 
*mp->b_rptr &= -FLUSHW; 
qreply(q, mp); 

else 
freemsg(mp); 

break; 

case M IOCTL: 
case M DATA: 

putq(q, mp); 
s = splS (); 
if (! (lp->flags & BUSY)) 

lpout (lp); 
(void) splx(s); 
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Driver Flush Handling 

Driver Interrupt 

The write put procedure, lpwput (), illustrates driver M_FLUSH handling: 
Note that all drivers are expected to incorporate this flush handling. If FLUSHW 
is set, the write message queue is flushed, and also (for this example) the leading 
message (lp->msg). spl5 is used to protect the critical code, assuming the 
device interrupts at level 5. If FLUSHR is set, the read queue is flushed, the 
FLUSHW bit is cleared, and the message is sent upstream using qreply (). If 
FLUSHR is not set, the message is discarded. 

The Stream Head always performs the following actions on flush requests 
received on the read side from downstream. If FLUSHR is set, messages waiting 
to be sent to user space are flushed. If FLUSHW is set, the Stream Head clears 
the FLUSHR bit and sends the M _ FLUSH message downstream. In this manner, 
a single M _ FLUSH message sent from the driver can reach all QUEUEs in a 
stream. A module must send two M _ FLUSH messages to have the same effect. 

lpwput () enqueues M_DATA and M_IOCTL (see the Driver and Module 
/octls section, below) messages and, if the device is not busy, starts output by 
calling lpout (). Message types that are not recognized are discarded. 

lpintr () is the driver interrupt routine: 

I* Device interrupt routine. * I 

lpintr(dev) 
int dev; I * minor device number of lp * I 

register struct lp *lp; 

lp = &lp_lp[dev]; 
if (! (lp->flags & BUSY)) { 

printf("lp: unexpected interrupt\n"); 
return; 

lp->flags &= -BUSY; 
lpout(lp); 

I* Start output to device -
called at interrupt level, used by put procedure and driver * I 

lpout(lp) 
register struct lp *lp; 
{ 

register mblk_t *bp; 
queue_t *q; 

q = lp->qptr; 
loop: 

if ( (bp = lp->msg) NULL) { 
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if ((bp = getq(q)) == NULL) 
return; 

if (bp->b_datap->db_type 
lpdoioctl(lp, bp); 
goto loop; 

lp->msg = bp; 

if (bp->b_rptr >= bp->b_wptr) 
bp = lp->msg->b_cont; 
lp->msg->b_cont = NULL; 
freeb(lp->msg); 
lp->msg = bp; 
goto loop; 

lpoutchar(lp, *bp->b_rptr++); 
lp->flags I= BUSY; 

M_IOCTL) 

lpout () simply takes a character from the queue and sends it to the printer. 
The processing is logically similar to the service procedure in the Message 
Queues and Service Procedures section. For convenience, the message currently 
being output is stored in lp->msg. 

Two mythical routines need to be supplied: 

lpoutchar 
send a character to the printer and interrupt when complete 

lpsetopt 
set the printer interface options 

Driver and Module loctls Drivers and modules interface with ioctl ( 2) system calls through messages. 
Almost all STREAMS generic ioctl () s (see the streamio ( 4) man page) go 
no further than the Stream Head. The capability to send an ioctl () down­
stream, is provided by the I_ STR ioctl. The Stream Head processes an 
I_ STR by constructing an M _ IOCTL message (see Message Types in the Sup­
plementary STREAMS Material chapter) from data provided in the call, and sends 
that message downstream. 

NOTE In addition, since ioctl () codes in SunOS include the size of the parameter 
used for the ioctl () as well as an indication of whether this parameter is to 
be copied to or from the user process, the I_STR ioctl need not be used if 
the parameter contains 255 or fewer bytes and is of a fixed size. 

The user process that issued the i o ct 1 ( ) is blocked until a module or driver 
responds with either an M_IOCACK (ack) or M_IOCNAK (nak) message, or 
until the request "times out" after a user-specified interval. The STREAMS 
module or driver that generates an ack can also return information to the process. 
If the Stream Head does not receive one of these messages in the specified time, 
the ioctl() call fails. 
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A module that receives an unrecognized M _ IOCTL message should pass it on 
unchanged. A driver that receives an unrecognized M_IOCTL should nak it. 

lpout () traps M_IOCTL messages and calls lpdoioctl () to process them: 

lpdoioctl(lp, mp) 
struct lp *lp; 
mblk_t *mp; 
{ 

struct iocblk *iocp; 
queue_t *q; 

q = lp->qptr; 

I* 1st block contains iocblk structure * I 
iocp = (struct iocblk *)mp->b_rptr; 

switch (iocp->ioc_cmd) { 
case SET OPTIONS: 

I* Count should be exactly one short' s worth * I 
if (iocp->ioc_count != sizeof(short)) 

goto iocnak; 
I* Actual data is in 2nd message block * I 
lpsetopt(lp, *(short *)mp->b_cont->b_rptr); 

I* ACK the ioctl * I 
mp->b_datap->db_type 
iocp->ioc_count = 0; 
qreply(q, mp); 
break; 

default: 
iocnak: 

I* NAK the ioctl * I 
mp->b_datap->db_type 
qreply(q, mp); 

M_IOCACK; 

M_IOCNAK; 

lpdoioctl () illustrates M_IOCTL processing: The first part also applies to 
modules. An M_IOCTL message contains a struct iocblk in its first 
block. The first block is followed by zero or more M _DATA blocks. The 
optional M _DATA blocks typically contain any user-supplied data. 

The form of an iocblk is as follows: 
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struct iocblk { 

} ; 

int ioc_cmd; 
ushort ioc_uid; 
ushort ioc_gid; 
uint ioc_id; 
uint ioc_count; 
int ioc_error; 
int ioc_rval; 

I * ioctl command type * I 
I* effective uid of user * I 
I* effective gid of user * I 
I* ioctlid * I 
I* count of bytes in data field * I 
I * error code * I 
I* return value * I 

ioc_cmd contains the command supplied by the user. In this example, only one 
command is recognized, SET_OPfIONS. ioc_count contains the number of 
user supplied data bytes. For this example, it must equal the size of a short (2 
bytes). The user data is sent directly to the printer interface using 
lpsetopt (). Next, the M_IOCTL message is changed to type M_IOCACK 
and the ioc count field is set to zero to indicate that no data is to be returned 
to the user. Finally, the message is sent upstream using qr ep 1 y ( ) . If 
ioc _ count was left non-zero, the Stream Head would copy that many bytes 
from the 2nd - Nth message blocks into the user buffer. 

If the M _IOCTL message is not understood or in error for any reason, the driver 
must set the type to M_IOCNAK and send the message upstream. No data can 
be sent to a user in this case. The Stream Head will cause the ioctl () call to 
fail with the error number EINV AL. The driver has the option of setting 
ioc error to an alternate error number if desired. 

NOTE ioc_error can be set to a non-zero value by bothM_IOCACK and 
M IOCNAK. This will cause that value to be returned as an error number to the 
process that sent the ioctl (). 

Driver Close The driver close clears any message being output. Any messages left on the mes­
sage queue will be automatically removed by STREAMS. 

static int lpclose(q) 
queue_t *q; /* read queue *I 
{ 

struct lp *lp; 
int s; 

lp = (struct lp *) q->q_ptr; 
I* Free message, queue is automatically flushed by STREAMS * / 
s = splS(); 
if ( lp->msg) { 

freemsg(lp->msg); 
lp->msg = NULL; 

(void) splx(s); 
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3. 7. Example Driver 

Cloning 

Loop-Around Driver 

The clone mechanism has been developed as a convenience. It allows a user to 
open a driver without specifying the minor device. When a stream is opened, a 
flag indicating a clone open is tested by the driver open routine. If the flag is set, 
the driver returns an unused minor device number. The clone driver (see the 
clone ( 4) man page) is a system dependent pseudo driver. 

The loop-around driver is not part of the SunOS 4.1 release. It is documented 
here simply as another example of a STREAMS driver. 

The loop-around driver is a pseudo-driver that loops data from one open stream 
to another open stream. The user processes see the associated files as a full 
duplex pipe. The streams are not physically linked. The driver is a simple upper 
multiplexor (see the next section), which the driver simply passes messages from 
one stream's write QUEUE to the other stream's read QUEUE. 

To create a pipe, a process opens two streams, obtains the minor device number 
associated with one of the returned file descriptors, and sends the device number 
in a LOOP_ SET io ct 1 ( 2) to the other stream. For each open ( ) , the driver 
open places the passed queue_ t pointer in a driver interconnection table, 
indexed by the device number. When the driver later receives the LOOP _SET 
request as an M_IOCTL message, it uses the device number to locate the other 
stream's interconnection table entry, and stores the appropriate queue_t 
pointers in both of the streams' interconnection table entries. 

Subsequently, when messages other than M_IOCTL or M_FLUSH are received 
by the driver on either stream's write side, the messages are switched to the read 
QUEUE following the driver on the other stream's read side. The resultant logi­
cal connection is shown in figure 3-6. Flow control between the two streams 
must be handled by special code since STREAMS will not automatically pro­
pagate flow control information between two streams that are not physically 
interconnected. 
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Loop Around Streams 
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The declarations for the driver are: 

I* 
* Loop around driver 
*I 

#include "loop.h" 
#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/sysmacros.h> 
#include <sys/stream.h> 
#include <sys/stropts.h> 
#include <sys/user.h> 
*include <sys/errno.h> 

CLONE/ 
loop/dev7 

Stream 
Head 

Module(s) 

static struct module info minfo = { 
o, "loop", 0, INFPSZ, 512, 128 

} ; 

static int loopopen(), loopclose(), loopwput(); 
static int loopwsrv(), looprsrv(); 

static struct qinit rinit = { 
NULL, looprsrv,loopopen, loopclose,NULL, &minfo,NULL 

} ; 

static struct qinit winit = { 
loopwput, loopwsrv, NULL, NULL, NULL, &minfo, NULL 

} ; 

struct streamtab loopinfo {&rinit,&winit,NULL,NULL}; 
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I,. 

struct loop 
queue_ t * qpt r; / * back pointer to write queue * I 
queue_ t * oqpt r; /*pointer to connected read queue * I 

} ; 

#define LOOP SET _row ( 1, 1, int) /*should be in a .hfile, 
see _]OW(x,y,t) in syslioccom.h * I 

struct loop loop_loop[NLOOP]; 
int loop_cnt = NLOOP; 

The loop structure contains the interconnection information for a pair of 
streams. loop_ loop is indexed by the minor device number. When a stream 
is opened to the driver, the address of the corresponding loop_ loop element is 
placed in q_pt r (private data structure pointer) of the read and write side 
queue_ts. Since STREAMS clears q_ptr when the queue_t is allocated, a 
NULL value of q_ptr indicates an initial open (). loop_loop is used to 
verify that this stream is connected to another open stream. 

The open procedure includes canonical clone processing which enables a single 
file system node to yield a new minor device/vnode each time the driver is 
opened: 

static int loopopen(q, dev, flag, sflag) 
queue_t *q; 
{ 

struct loop *loop; 

!* 
* If CLONEOPEN, pick a minor device number to use. 
* Otherwise, check the minor device range. 
*I 
if (sflag == CLONEOPEN) { 

for (dev = 0; dev < loop_cnt; dev++) 
if (loop_loop[dev] .qptr == NULL) 

break; 

else 
dev = minor (dev) ; /*device not a clone, but specific * I 

if (dev >= loop_cnt) 
return (OPENFAIL); /*default= ENX/0 */ 

I* Set up data structures * I 
if ( q->q_pt r) / * already open * I 

return (dev) ; 

loop= &loop_loop[dev]; 
WR(q)->q_ptr = (char*) loop; 
q->q_ptr = (char*) loop; 
loop->qptr = WR(q); 
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I* 
* The return value is the minor device. 
* For CLONEOPEN case, this will be used for 
* newly allocated vnode 
*I 
return (dev) ; 

In loopopen (), sf lag can be CLONEOPEN, indicating that the driver 
should pick a minor device (i.e., the user does not care which minor device is 
used). In this case, the driver scans its private loop _loop data structure to find 
an unused minor device number. If sf lag has not been set to CLONEOPEN, 
the passed-in minor device is used. 

The return value is the minor device number. In the CLONEOPEN case, this 
value will be used by the STREAMS driver open code for the newly allocated 
vnode and will then be passed to the user. 

Since the messages are switched to the read QUEUE following the other stream's 
read side, the driver needs a put procedure only on its write side: 

static int loopwput(q, mp) 
queue_t *q; 
mblk_t *mp; 
{ 

register struct loop *loop; 

loop= (struct loop *)q->q_ptr; 

switch (mp->b_datap->db_type) 
case M_IOCTL: { 

struct iocblk *iocp; 
int error; 

iocp = (struct iocblk *)mp->b rptr; 
switch (iocp->ioc_cmd) { 
case LOOP_SET: { 

int to; /*other minor device * I 
I* 
* Sanity check. ioc _ count contains the amount of 
* user supplied data, which must equal the size of an int. 
*I 

if (iocp->ioc_count != sizeof (int)) { 
error= EINVAL; 
goto iocnak; 

I* fetch other dev from 2nd message block * / 

to= *(int *)mp->b_cont->b_rptr; 
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I* 
* More sanity checks. The minor must be in range, open already. 
* Also, this device and the other one must be disconnected. 
*I 

if (to>= loop_cnt I I to< 0 I I 
!loop_loop[to] .qptr) { 
error= ENXIO; 
goto iocnak; 

if (loop->oqptr I I loop_loop[to] .oqptr) { 
error= EBUSY; 
goto iocnak; 

I* 
* Cross connect streams via the loop structures 
*I 

loop->oqptr = RD(loop_loop[to] .qptr); 
loop_loop[to] .oqptr = RD(q); 

I* 
* Return successful ioctl. Set ioc count 
* to zero, since there is no data to return. 
*I 

mp->b_datap->db_type 
iocp->ioc_count = O; 
qreply(q, mp); 
break; 

M_IOCACK; 

default: 
error 

iocnak: 
I* 

EINVAL; 

* Bad ioctl. Setting ioc _ error causes the 
* ioctl call to return that particular errno. 
* By default, ioctl will return EINV AL on failure 
*I 
mp->b_datap->db_type = M_IOCNAK; 
iocp->ioc_error = error; /* setreturnederrno *I 
qreply(q, mp); 

break; 
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loopwput () shows another use of an ioctl () call (see Driver and Module 
/octls in the Drivers section, above). The driver supports a LOOP_ SET value of 
ioc_cmd in the iocblk of the M_IOCTLmessage. LOOP_SETinstructs the 
driver to connect the current open stream to the stream indicated in the message. 
The second block of the M _ IOCTL message holds an integer that specifies the 
minor device number of the stream to connect to. 

The driver performs several sanity checks: Does the second block have the 
proper amount of data? Is the "to" device in range? Is the "to" device open? Is 
the current stream disconnected? Is the "to" stream disconnected? 

If everything checks out, the read queue_ t pointers for the two streams are 
stored in the respective oqptr fields. This cross-connects the two streams 
indirectly, via loop_loop. 

Canonical flush handling is incorporated in the put procedure: 

case M FLUSH: 
if (*mp->b_rptr & FLUSHW) 

flushq(q, 0); 
if (*mp->b_rptr & FLUSHR) 

flushq(RD(q), O); 
*mp->b_rptr &= -FLUSHW; 
qreply(q, mp); 

else 
freemsg (mp) ; 

break; 
default: 

!* 
* If this stream isn't connected, send an M _ ERROR upstream. 
*I 
if (loop->oqptr == NULL) { 

(void) putctll(RD(q)->q_next, M_ERROR, ENXIO); 
freemsg(mp); 
break; 

putq(q, mp); 

Finally, loopwput () enqueues all other messages (e.g., M_DATA or 
M _PROTO) for processing by its service procedure. A check is made to see if 
the stream is connected. If not, an M _ ERROR is sent upstream to the Stream 
Head (see below). 

putctll () and putctl () (see below) are utilities that allocate a non-data 
(i.e., not M_DATA, M_PROTO, or M_PCPROTO) type message, place one byte 
in the message (for ,putctll{}} and call the put procedure of the specified 
QUEUE (see Utilities in the Supplementary STREAMS Material chapter). 
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Service Procedures Service procedures are required on both the write and read sides for purposes of 
flow control: 
r 

static int loopwsrv(q) 
register queue_t *q; 
{ 

mblk_t *mp; 
register struct loop *loop; 

loop= (struct loop *)q->q_ptr; 

while ((mp= getq(q)) != NULL) { 

I* 
* Check ifwe can put the message up the other stream read queue 
*I 

if (mp->b_datap->db_type <= QPCTL && 
!canput(loop->oqptr->q_next)) { 

putbq (q, mp) ; /* read side is blocked * I 
break; 

I * send message * I 
I* to queue following other stream read queue * I 

putnext(loop->oqptr, mp); 

static int looprsrv(q) 
queue_t *q; 

I* Entered only when "back enabled" by flow control * I 

struct loop *loop; 

loop= (struct loop*) q->q_ptr; /* guards against race condition *I 
if (loop->oqptr == NULL) 

return; 

I * manually enable write service procedure * I 

qenable(WR(loop->oqptr)); 

The write service procedure, loopwsrv (), takes on the canonical form (see the 
Message Queues and Service Procedures section) with a difference. The QUEUE 
being written to is not downstream, but upstream (found via oqptr) on the other 
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stream. 

In this case, there is no read side put procedure so the read service procedure, 
looprsrv (), is not scheduled by an associated put procedure, as has been 
done previously. looprsrv () is scheduled only by being back-enabled when 
its upstream becomes unstuck from flow control blockage. The purpose of the 
procedure is to re-enable the writer (loopwsrv()) by using oqptr to find the 
related queue_t. loopwsrv () cannot be directly back-enabled by STREAMS 
because there is no direct queue_ t linkage between the two streams. Note that 
no message ever gets queued to the read service procedure. Messages are kept on 
the write side so that flow control can propagate up to the Stream Head. There is 
a defensive check to see if the cross-connect has broken. qenable () schedules 
the write side of the other stream. 

loopclose () breaks the connection between the streams. 

static int loopclose(q) 
queue_t *q; 
{ 

register struct loop *loop; 

loop= (struct loop *)q->q_ptr; 
loop->qptr = NULL; 

!* 
* If we are connected to another stream, break the 
* linkage, and send a hangup message. 
* The hangup message causes the stream head to reject writes, 
* allow the queued data to be read completely, and then 
* return EOF on subsequent reads. 
*I 

if (loop->oqptr) { 
((struct loop *)loop->oqptr->q_ptr)->qptr = NULL; 
((struct loop *)loop->oqptr->q_ptr)->oqptr = NULL; 
putctl(loop->oqptr->q_next, M_HANGUP); 
loop->oqptr = NULL; 

loopclose () sends an M_HANGUPmessage (see above) up the connected 
stream to the Stream Head. 

This driver can be implemented much more cleanly by actually linking the 
q_next pointers of the queue_t pairs of the two streams. 
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Multiplexing Configurations This section describes how STREAMS multiplexing configurations are created 
and discusses multiplexing drivers. A STREAMS multiplexor is a pseudo-driver 
with multiple streams connected to it. The primary function of the driver is to 
switch messages among the connected streams. Multiplexor configurations are 
created from user level by system calls. The Other Facilities section of the 
Introduction to STREAMS contains the required introduction to STREAMS multi­
plexing. 

STREAMS-related system calls are used to set up the "plumbing", or stream inter­
connections, for multiplexing pseudo-drivers. The subset of these calls that 
allows a user to connect (and disconnect) streams below a pseudo-driver is 
referred to as the multiplexing facility. This type of connection will be referred 
to as a 1-to-M, or lower, multiplexor configuration. This configuration must 
always contain a multiplexing pseudo-driver, which is recognized by STREAMS 
as having special characteristics. 

Multiple streams can be connected above a driver by use of open ( 2) calls. 
This was done for the loop-around driver of the previous section and for the 
driver handling multiple minor devices in the Drivers section. There is no differ­
ence between the connections to these drivers, only the functions performed by 
the driver are different. In the multiplexing case, the driver routes data between 
multiple streams. In the device driver case, the driver routes data between user 
processes and associated physical ports. Multiplexing with streams connected 
above will be referred to as an N-to-1, or upper, multiplexor. STREAMS does not 
provide any facilities beyond open () and close ( 2) to connect or disconnect 
upper streams for multiplexing purposes. 

From the driver's perspective, upper and lower configurations differ only in the 
way they are initially connected to the driver. The implementation requirements 
are the same: route the data and handle flow control. All multiplexor drivers 
require special developer-provided software to perform the multiplexing data 
routing and to handle flow control. STREAMS does not directly support flow 
control among multi pie streams. 

M-to-N multiplexing configurations are implemented by using both of the above 
mechanisms in a driver. Complex multiplexing trees can be created by cascading 
multiplexing streams below one another. 

As discussed in the Drivers section, the multiple streams thai. represent minor 
devices are actually distinct streams in which the driver keeps track of each 
stream attached to it. The streams are not really connected to their common 
driver. The same is true for STREAMS multiplexors of any configuration. The 
multiplexed streams are distinct and the driver must be implemented to do most 
of the work. As stated above, the only difference between configurations is the 
manner of connecting and disconnecting. Only lower connections have use of 
the multiplexing facility. 
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A lower multiplexor is connected as follows: The initial open ( ) to a multiplex­
ing driver creates a stream, as in any other driver. As usual, open () uses the 
first two streamtab structure entries (see Opening a Stream in the Streams 
Mechanism section) to create the driver QUEUEs. At this point, the only distin­
guishing characteristic of this stream are non-NULL entries in the streamtab 
st_mux [rw] init (mux) fields: 
r 

struct streamtab 
struct qinit 
struct qinit 
struct qinit 
struct qinit 
char 

} ; 

*st_ rdini t; / * defines read QUEUE * I 
*st_wrinit; /*defines write QUEUE * I 
*st_ muxr ini t; /*for multiplexing drivers only * I 
*st_ muxw ini t; /*for multiplexing drivers only * I 
**st _modl is t ; / * list of modules to be pushed * I 

These fields are ignored by the open () (see the rightmost stream in figure 3-7). 
Any other stream subsequently opened to this driver will have the same 
streamtab and thereby the same mux fields. 

Next, another file is opened to create a (soon to be) lower stream. The driver for 
the lower stream is typically a device driver (see the leftmost stream in figure 3-
7). This stream has no distinguishing characteristics. It can include any driver 
compatible with the multiplexor. Any modules required on the lower stream 
must be pushed onto it now. 

Next, this lower stream is connected below the multiplexing driver with an 
I_LINK or I_PLINK ioctl () call (see the streamio ( 4) man page). These 
ioct ls differ in that the multiplexing configuration created by I_PLINK per­
sists after the upper stream is closed whereas that created by I_ PLINK does not. 
As shown in figure 3-1, all stream components are constructed in a similar 
manner. The Stream Head points to the stream-head-routines as its procedures 
(known via its queue_ t ). An I_ LINK to the upper stream, referencing the 
lower stream, causes STREAMS to modify the contents of the Stream Head in the 
lower stream. The pointers to the stream-head-routines, and other values, in the 
Stream Head are replaced with those contained in the mux fields of the multi­
plexing driver's streamtab. Changing the stream-head-routines on the lower 
stream means that all subsequent messages sent upstream by the lower stream's 
driver will, ultimately, be passed to the put procedure designated in 
st_muxrinit, the multiplexing driver. The I_LINK also establishes this 
upper stream as the control stream for this lower stream. STREAMS remembers 
the relationship between these two streams until the upper stream is closed, or the 
lower stream is unlinked. 

Finally, the Stream Head sends to the multiplexing driver an M _IOCTL message 
with ioc_cmd set to I_LINK or !_PLINK (see discussions of the iocblk 
structure in the Drivers section, above, and in the Kernel Structures section of 
Supplementary STREAMS Material chapter). The M_DATA part of the 
M_IOCTL contains a linkblk structure: 
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Disconnecting Lower Streams 

, 
struct linkblk { 

queue_t *l_qtop; 
queue_t *l_qbot; 
int l_index; 

} ; 

I * lowest level write que-ue of upper stream * I 
I* highest level write que-ue of lower stream * I 
I * system-unique index for lower stream. * I 

The multiplexing driver stores information from the linkblk in private storage 
and returns an M _IOCACK message (ack). l _ index is returned to the process 
requesting the I_ LINK or I_ PLINK. This value can be used later by the process 
to disconnect this stream, as described below. linkblk contents are further 
discussed below. 

An I_LINK or I_PLINK is required for each lower stream connected to the 
driver. Additional upper streams can be connected to the multiplexing driver by 
open () calls. Any message type can be sent from a lower stream to user 
process(es) along any of the upper streams. The upper stream(s) provides the 
only interface between the user process(es) and the multiplexor. 

Note that no direct data structure linkage is established for the linked streams. 
The q_ next pointers of the lower stream still appear to connect with a Stream 
Head. Messages flowing upstream from a lower driver (a device driver or 
another multiplexor) will enter the multiplexing driver (i.e., Stream Head) put 
procedure with l _ qbot as the queue_ t value. The multiplexing driver has to 
route the messages to the appropriate upper ( or lower) stream. Similarly, a mes­
sage coming downstream from user space on the control, or any other, upper 
stream has to be processed and routed, if required, by the driver. 

Also note that the lower stream (see the headers and file descriptors in figure 3-8) 
is no longer accessible from user space. This causes all system calls to the lower 
stream to return EINVAL, with the exception of close (). This is why all 
modules have to be in place before the lower stream is linked to the multiplexing 
driver. As a general rule, the lower stream file should be closed after it is linked 
(see following section). This does not disturb the multiplexing configuration. 

Note that the absence of direct linkage between the upper and lower streams 
means that STREAMS flow control has to be handled by special code in the multi­
plexing driver. The flow control mechanism cannot see across the driver. 

In general, multiplexing drivers should be implemented so that new streams can 
be dynamically connected to, and existing streams disconnected from, the driver 
without interfering with its ongoing operation. The number of streams that can 
be connected to a multiplexor is developer dependent. However, there is a sys­
tem limit, NMUXLINK, to the number of streams that can be linked in the sys­
tem (please refer to SunOS STREAMS Topics Tunable Parameters section). 

Dismantling a lower multiplexor is accomplished by disconnecting (unlinking) 
the lower streams. Unlinking can be initiated in three ways: an I_ UNLINK 
ioctl () referencing a specific stream, an !_UNLINK indicating all lower 
streams, or the last close () (i.e., causes the associated file to be closed) of the 
control stream. Note that if the connection was established with !_PLINK, then 
it needs to be undone with I_PUNLINK. As in the link, an unlink sends a 
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linkblk structure to the driver in an M_IOCTL message. The !_UNLINK call, 
which unlinks a single stream, uses the l_index value returned in the I_LINK 
to specify the lower stream to be unlinked. The latter two calls must designate a 
file corresponding to a control stream. This causes all the lower streams that 
were previously linked (by this control stream) to be unlinked. However, the 
driver sees a series of individual unlinks. 

If the file descriptor for a lower stream was previously closed, a subsequent 
unlink will automatically close the stream. Otherwise, the lower stream must be 
closed by close () following the unlink. STREAMS will automatically disman­
tle all cascaded multiplexors (below other multiplexing streams) if their control­
ling stream is closed. This holds true for connections established with I_ LINK 
but not true for I _PLINK, which is the whole point for I _PLINK. An I_ UNLINK 
will leave lower, cascaded multiplexing streams intact unless the stream file 
descriptor was previously closed. 

This section describes an example of multiplexor construction and usage. A 
multiplexing configuration similar to the Internet figure in the Other Facilities 
section of the Introduction to STREAMS is discussed. Figure 3-7 shows the 
streams before their connection to create the multiplexing configuration of figure 
3-8. Multiple upper and lower streams interface to the multiplexor driver. The 
user processes of figure 3-8 are not shown in figure 3-7. 

Internet Multiplexor Before Connecting 

r---------------------------------------------------, 
• Setup and Supervisory Process , 
I I 

~ I ~~e-~s~~~ _1_ I_~~~:. ~-,-1- ~~f ~--;-,-,- ~~e!:~~ -,-,--~,:~~:.-, ~ 
. . . . . . . . . . 

Stream Head 

QUEU~Pr. A 

Net 1 
Module 

Ethernet 
Driver 

Stream Head 

QUEU~Pr. B 

LAPB 
Driver 

Stream Head 

QUEU~Pr. C 

802.2 
Driver 

Stream Head 

QUEU~Pair 

Stream Head 

QUEU~Pair 

Multiplexor 
Driver 

The Ethernet, LAPB and IEEE 802.2 device drivers terminate links to other 
nodes. IP (Internet Protocol) is a multiplexor driver. IP switches datagrams 
among the various nodes or sends them upstream to a user(s) in the system. The 
Net modules would typically provide a convergence module that matches the IP 
and device driver interface. 
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Figure 3-8 

Figure 3-7 depicts only a portion of the full, larger stream. As shown in the dot­
ted rectangle above the IP multiplexor, there generally would be an upper TCP 
multiplexor, additional modules and, possibly, additional multiplexors in the 
stream. Multiplexors could also be cascaded below the IP driver if the device 
drivers were replaced by multiplexor drivers. 

Internet Multiplexor After Connecting 

r---------------------------, U , Setup and Supervisory , ser 
1 Process , Processes 

------ ------ ---~-----~-----------
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Driver 
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Internet Protocol 
Multiplexor Driver 

QUEU~PairB 

Net2Module 

LAPB 
Driver 

QUEU~PairC 

802.2 
Driver 

Streams A, B, and Care opened by the process, and modules are pushed as 
needed. Two upper streams are opened to the IP multiplexor. The rightmost 
stream represents multiple streams, each connected to a process using the net­
work. The stream second from the right provides a direct path to the multiplexor 
for supervisory functions. It is the control stream, leading to a process that sets 
up and supervises this configuration. It is always directly connected to the IP 
driver. Although not shown, modules can be pushed on the control stream. 

After the streams are opened, the supervisory process typically transfers routing 
information to the IP drivers (and any other multiplexors above the IP), and ini­
tializes the links. As each link becomes operational, its Stream is connected 
below the IP driver. If a more complex multiplexing configuration is required, 
the IP multiplexor stream with all its connected links can be connected below 
another multiplexor driver. 
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As shown in figure 3-8, the file descriptors for the lower device driver streams are 
left dangling. The primary purpose in creating these streams was to provide parts 
for the multiplexor. Those not used for control and not required for error 
recovery (by reconnecting them through an !_UNLINK ioctl()) have no 
further function. As stated above, these lower streams can be closed to free the 
file descriptor without any effect on the multiplexor. A setup process installing a 
configuration containing a large number of drivers should do this to avoid run­
ning out of file descriptors. 

This section contains an example of a multiplexing driver that implements an N­
to-1 configuration. This configuration might be used for terminal windows, 
where each transmission to or from the terminal identifies the window. This 
resembles a typical device driver, with two differences: the device handling func­
tions are performed by a separate driver, connected as a lower stream, and the 
device information (i.e., relevant user process) is contained in the input data 
rather than in an interrupt call. 

Each upper stream is connected by an open ( 2) • A single lower stream is 
opened and then it is linked by use of the multiplexing facility. This lower 
stream might connect to the tty driver. The implementation of this example is a 
foundation for an M to N multiplexor. 

As in the loop-around driver, flow control requires the use of standard and special 
code, since physical connectivity among the streams is broken at the driver. Dif­
ferent approaches are used for flow control on the lower stream, for messages 
coming upstream from the device driver, and on the upper streams, for messages 
coming downstream from the user processes. 

The multiplexor declarations are: 

#include "mux.h" 
#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/sysmacros.h> 
#include <sys/stream.h> 
#include <sys/stropts.h> 
#include <sys/errno.h> 

static int muxopen(), muxclose(), muxuwput(); 
static int muxlwsrv(), muxlrput(); 

static struct module_info info= { 
O, "mux", 0, INFPSZ, 512, 128 

} ; 

static struct qinit urinit = { /*upper read * / 
NULL, NULL, muxopen, muxclose, NULL, &info, NULL 

} ; 

static struct 
muxuwput, 

} ; 

static struct 
muxlrput, 

qinit 
NULL, 

qinit 
NULL, 

uwinit = { 

NULL, NULL, 

lrinit = { 

NULL, NULL, 

I * upper write *I 
NULL, &info, NULL 

I * lower read * I 
NULL, &info, NULL 
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} ; 

static struct qinit lwinit = { /* lower write * I 
NULL, muxlwsrv, NULL, NULL, NULL, &info, NULL 

} ; 

struct streamtab muxinfo = 
{&urinit, &uwinit, &lrinit, &lwinit}; 

struct mux { 
queue_ t * qpt r; / * back pointer to read queue * I 

} ; 

struct mux mux_mux[NMUX]; 
int mux_cnt = NMUX; 

queue_ t *muxbot; / * linked lower queue * I 
int muxerr; / * set if error of hangup on lower stream * I 

static queue_t *get_next_q(); 

The four streamtab entries correspond to the upper read, upper write, lower 
read, and lower write qini t structures. The multiplexing qini t structures 
replace those in each (in this case there is only one) lower Stream Head after the 
I_LINK has completed successfully. In a multiplexing configuration, the pro­
cessing performed by the multiplexing driver can be partitioned between the 
upper and lower QUEUES. There must be upper stream write and lower stream 
read put procedures. Typically, only upper write side and lower read side pro­
cedures are used. Application-specific flow control requirements might modify 
this. If the QUEUE procedures of the opposite upper/lower QUEUE are not 
needed, the QUEUE can be skipped over, and the message put to the following 
QUEUE. 

In the example, the upper read side procedures are not used. The lower stream 
read QUEUE put procedure transfers the message directly to the read QUEUE 
upstream from the multiplexor. There is no lower write put procedure because 
the upper write put procedure directly feeds the lower write service procedure, as 
described below. 

The driver uses a private data structure, mux _ mux. mux _ mux [ dev] points 
back to the opened upper read QUEUE. This is used to route messages coming 
upstream from the driver to the appropriate upper QUEUE. It is also used to find 
a free minor device for a CLONEOPEN driver open case. 
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The upper QUEUE open contains the canonical driver open code: 

static int muxopen(q, dev, flag, sflag) 
queue_t *q; 
{ 

struct mux *mux; 

if (sflag == CLONEOPEN) 
for (dev = O; dev < mux_cnt; dev++) 

if (mux_mux[dev] .qptr NULL) 
break; 

else 
dev = minor(dev); 

if (dev >= mux_cnt) 
return (OPENFAIL); 

mux = &mux_mux[dev]; 
mux->qptr = q; 
q->q_ptr = (char*) mux; 
WR(q)->q_ptr = (char*) mux; 
return (dev); 

119 

muxopen checks for a clone or ordinary open call. It loads q_ptr to point at 
the mux _ mux[] structure. 

The core multiplexor processing is the following: downstream data written to an 
upper stream is queued on the corresponding upper write message queue. This 
allows flow control to propagate towards the Stream Head for each upper stream. 
However, there is no service procedure on the upper write side. All M _DATA 
messages from all the upper message queues are ultimately dequeued by the ser­
vice procedure on the lower (linked) write side. The upper write streams are ser­
viced in a round-robin fashion by the lower write service procedure. A lower 
write service procedure, rather than a write put procedure, is used so that flow 
control, coming up from the driver below, may be handled. 

On the lower read side, data coming up the lower stream is passed to the lower 
read put procedure. The procedure routes the data to an upper stream based on 
the first byte of the message. This byte holds the minor device number of an 
upper stream. The put procedure handles flow control by testing the upper 
stream at the first upper read QUEUE beyond the driver. That is, the put pro­
cedure treats the stream component above the driver as the next QUEUE. 
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Figure 3-9 

Upper Write Put Procedure 

Example Multiplexor Configuration 

Multiplexor Routines 

L 

This is shown (sort of) in figure 3-9. Multiplexor Routines are all the above pro­
cedures. Ul and U2 are queue_ t pairs, each including a write queue_ t 
pointed at by an 1 qtop in a linkblk (see the beginning of this section). Lis 
the queue_ t pair that contains the write queue_ t pointed at by l _ qbot. Nl 
and N2 are the modules (or Stream Head or another multiplexing driver) seen by 
L when read side messages are sent upstream. 

muxuwput, the upper QUEUE write put procedure, traps ioctls, in particular 
I LINK and I UNLINK: - -

static int muxuwput(q, mp) 
queue_t *q; 
mblk_t *mp; 

int s; 
struct mux *mux; 

mux = (struct mux *)q->q_ptr; 
switch (mp->b_datap->db_type) 
case M_IOCTL: { 

struct iocblk *iocp; 
struct linkblk *linkp; 

I* 
* Ioctl. Only channel O can, do ioctls. Two 
* calls are recognized: I_LiNK, andl_UNUNK 
*I 

if (mux != mux_mux) 
goto iocnak; 

iocp = (struct iocblk *) mp->b_rptr; 
switch (iocp->ioc_cmd) { 
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case I LINK: 

I* 
* Link. The data contains a linkblk structure 
* Remember the bottom queue in muxbot. 
*I 

if (muxbot != NULL) 
goto iocnak; 

linkp = (struct linkblk *) mp->b_cont->b_rptr; 
muxbot = linkp->l_qbot; 
muxerr = O; 
mp->b_datap->db_type 
iocp->ioc_count = O; 
qreply(q, mp); 
break; 

case I UNLINK: 
!* 

M IOCACK; 

* Unlink. The data contains a linkblk structure. 
* Should not fail an unlink. Null out muxbot. 
*! 

linkp = (struct linkblk *) mp->b_cont->b_rptr; 
muxbot = NULL; 
mp->b_datap->db_type M_IOCACK; 
iocp->ioc_count = O; 
qreply(q, mp); 
break; 

default: 
iocnak: 

I* fail ioctl * I 

mp->b_datap->db_type 
qreply (q, mp) ; 

break; 

M_IOCNAK; 

First, there is a check to enforce that the stream associated with minor device 0 
will be the single controlling stream. Ioctls are only accepted on this stream. As 
described previously, a controlling stream is the one that issues the I_ LINK. 
Having a single control stream is a recommended practice. I_ LINK and 
I_UNLINK include a linkblk structure, described previously, containing: 

1_qtop 
The upper write QUEUE from which the ioctl is coming. It should always 
equal q. 
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l_qbot 
The new lower write QUEUE. It is the former Stream Head write QUEUE. It 
is of most interest since that is where the multiplexor gets and puts its data. 

1 index 
A unique (system wide) identifier for the link. It can be used for routing, or 
during selective unlinks, as described above. Since the example only sup­
ports a single link, l _ index is not used. 

For I_ LINK, l _ qbot is saved in muxbot and an ack is generated. From this 
point on, until an I_ UNLINK occurs, data from upper queues will be routed 
throughmuxbot. Note that when an I_LINK is received, the lower stream has 
already been connected. This allows the driver to send messages downstream to 
perform any initialization functions. Returning an M _ IOCNAK message (nak) in 
response to an I_ LINK will cause the lower stream to be disconnected. 

The I_ UNLINK handling code nulls out muxbot and generates an ack. A nak 
should not be returned to an I UNLINK. The Stream Head assures that the lower 
stream is connected to a multiplexor before sending an I_ UNLINK M _IOCTL. 

muxuwput handles M _ FLUSH messages as a normal driver would: 

case M FLUSH: 
if (*mp->b_rptr & FLUSHW) 

flushq(q, FLUSHDATA); 
if (*mp->b_rptr & FLUSHR) 

flushq(RD(q), FLUSHDATA); 
*mp->b_rptr &= -FLUSHW; 
qreply(q, mp); 

else 
freemsg(mp); 

break; 
case M DATA: 

I* 
* Data. I/we have no bottom queue--> fail 
* Otherwise, queue the data, and invoke the lower 
* service procedure. 
*I 
if (muxerr I I muxbot == NULL) 

goto bad; 
pu tq ( q, mp) ; / * place message on upper write message queue * I 
qenable (muxbot) ; / * lower service write procedure * I 
break; 

default: 
bad: 

I* 
* Send an error message upstream. 
*I 
mp->b_datap->db_type = M_ERROR; 
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base; 
*mp->b_wptr++ = EINVAL; 
qreply(q, mp); 
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M _DATA messages are not placed on the lower write message queue. They are 
queued on the upper write message queue. putq () recognizes the absence of 
the upper service procedure and does not schedule the QUEUE. Then, the lower 
service procedure, muxlwsrv is scheduled with qenable () (see Utilities in 
the Supplementary STREAMS Material chapter) to start output. This is similar to 
starting output on a device driver. Note that muxuwput can not access 
muxlwsrv (the lower QUEUE write service procedure, contained in muxbot) 
by the conventional STREAMS calls, putq () or putnext () (to a 
muxlwput). Both calls require that a message be passed, but the messages 
remain on the upper stream. 

muxlwsrv, the lower (linked) queue write service procedure is scheduled 
directly from the upper service procedures. It is also scheduled from the lower 
stream, by being back-enabled when the lower stream becomes unblocked from 
downstream flow control. 
r 

static int muxlwsrv(q) 
register queue_t *q; 
{ 

register mblk_t *mp, *bp; 
register queue_t *nq; 

I* 
* While lower stream is not blocked, find an upper queue to 
* service (get_ next_ q) and send one message from it downstream. 
*I 
while (canput(q->q_next)) 

nq = get_next_q(); 
if (nq == NULL) 

break; 
mp = getq (nq) ; 
I* 
* Prepend the outgoing message with a single byte header 
* that indicates the minor device number it came from. 
*I 
if ((bp = allocb(l, BPRI_MED)) == NULL) 

printf("mux: allocb failed (size 1)\n"); 
freemsg (mp) ; 
continue; 

*bp->b_wptr++ = (struct mux *)nq->q_ptr - mux_mux; 
bp->b_cont = linkb(bp,mp); 
putnext(q, bp); 

muxlwsrv takes data from the upper queues and puts it out through muxbot. 
The algorithm used is simple round robin. While we can put to 

sun 
microsysterns 
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muxbot->q_next, we select an upper QUEUE (via get_next_q) and move 
a message from it to muxbot. Each message is prepended with a one byte 
header that indicates which upper stream it came from. 

Finding messages on upper write queues is handled by get_ next_ q () : 

I* 
* Round-robin scheduling. 
* Return next upper queue that needs servicing. 
* Returns NUU when no more work needs to be done. 
*I 

static queue_t * 
get_next_q () 
{ 

static int next; 
inti, start; 
register queue_t *q; 

start= next; 
for (i = next; i < mux_cnt; i++) 

if (q = mux_mux[i] .qptr) { 
q = WR(q); 
if (q->q_first) 

next= i+l; 
return (q); 

for (i = O; i < start; i++) 
if (q = mux_mux[i] .qptr) 

q = WR (q); 
if (q->q_first) 

next= i+l; 
return (q); 

return (NULL); 

get_next_queue () searches the upper queues in a round robin fashion look­
ing for the first one containing a message. It returns the queue_ t pointer or 

Revision A, of 27 March 1990 



Lower Read Put Procedure 

Chapter 3 - STREAMS Module and Driver Programming 125 

NULL if there is no work to do. 

The lower (linked) queue read put procedure is: 

static int muxlrput(q, mp) 
queue_t *q; 
mblk_t *mp; 
{ 

queue_t *uq; 
mblk_t *b_cont; 
int dev; 

switch(mp->b_datap->db_type) 
case M FLUSH: 

I* 
* Flush queues. NOTE: sense of tests is reversed 
* since we are acting like a "stream head" 
*I 

if (*mp->b_rptr & FLUSHR) 
flushq(q, O); 

if (*mp->b_rptr & FLUSHW) 
*mp->b_rptr &= -FLUSHR; 
qreply(q, mp); 

else 
f reemsg (mp) ; 

break; 

case M ERROR: 
case M HANGUP: 

muxerr = 1; 
freemsg(mp); 
break; 

case M DATA: 
I* 
* Route message. First byte indicates 
* device to send to. No flow control. 
* 
* Extract and delete device number. If the leading block is 
* now empty and more blocks follow, strip the leading block. 
* The stream head interprets a leading zero length block 
* as an EOF regardless of what follows (sigh). 
*I 

dev = *mp->b_rptr++; 
if (mp->b_rptr == mp->b_wptr && 

(b_cont = mp->b_cont)) { 
freeb (mp) ; 
mp= b_cont; 
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I * Sanity check. Device must be in range * I 

if (dev < 0 I I dev >= mux_cnt) 
freemsg (mp); 
break; 

I* 
* If upper stream is open and not backed up, 
* send the message there, otherwise discard it. 
*! 

uq = mux_mux[dev] .qptr; 
if (uq != NULL && canput(uq->q_next)) 

putnext(uq, mp); 
else 

freemsg(mp); 
break; 

default: 
f reemsg (mp) ; 

muxlrput receives messages from the linked stream. In this case, it is acting 
as a Stream Head. It handles M _ FLUSH messages. Note the code is reversed 
from that of a driver, handling M _ FLUSH messages from upstream. 

muxlrput also handles M_ERROR and M_HANGUP messages. If one is 
received, it locks up the upper streams. 

M _DATA messages are routed by looking at the first data byte of the message. 
This byte contains the minor device of the upper stream. If removing this byte 
causes the leading block to be empty, and more blocks follow, the block is dis­
carded. This is done because the Stream Head interprets a leading zero length 
block as an EOF [see read ( 2 ) ]. Several sanity checks are made: Does the 
message have at least one byte? Is the device in range? Is the upper stream 
open? Is the upper stream not full? 

This mux does not do end-to-end flow control. It is merely a router (like the 
Department of Defense's IP protocol). If everything checks out, the message is 
put to the proper upper QUEUE. Otherwise, the message is silently discarded. 

The upper stream close routine simply clears the mux entry so this queue will no 
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longer be found by get_ next_ queue () : 
, 

!* 
* Upper queue close 
*! 
static int muxclose(q) 
queue_t *q; 
{ 

((struct mux *)q->q_ptr)->qptr NULL; 

STREAMS provides the means to implement a service interface between any two 
components in a stream, and between a user process and the topmost module in 
the stream. A service interface is defined at the boundary between a service user 
and a service provider. A service interface is a set of primitives and the rules for 
the allowable sequences of primitives across the boundary. These rules are typi­
cally represented by a state machine. In STREAMS, the service user and provider 
are implemented in a module, driver, or user process. The primitives are carried 
bidirectionally between a service user and provider in M_PROTO and 
M _ PCPROTO (generically, PROTO) messages. M _ PCPROTO is the high prior­
ity version ofM_PROTO. 

As described in the Message Types section of the Supplementary STREAMS 
Material chapter), PROTO messages can be multi-block, with the second 
through last blocks of type M _DATA. The first block in a PROTO message con­
tains the control part of the primitive in a form agreed upon by the user and pro­
vider and the block is not intended to carry protocol headers. (Although its use is 
not recommended, upstream PROTO messages can have multiple PROTO blocks 
at the start of the message. getmsg ( ) will compact the blocks into a single 
control part when sending to a user process.) The M_DATA block(s) contains 
any data part associated with the primitive. The data part may be processed in a 
module that receives it, or it may be sent to the next stream component, along 
with any data generated by the module. The contents of PROTO messages and 
their allowable sequences are determined by the service interface specification. 

PROTO messages can be sent bidirectionally (up and downstream) on a stream 
and bidirectionally between a stream and a user process. pu tms g ( 2 ) and 
getmsg ( 2) system calls are analogous, respectively, to write ( 2) and 
read ( 2) except that the former allow both data and control parts to be 
(separately) passed, and they observe message boundary alignment across the 
user-stream boundary. putmsg () and getmsg () separately copy the control 
part (M_PROTO or M_PCPROTO block) and data part (M_DATA blocks) 
between the stream and user process. 

An M _ PCPROTO message is normally used to acknowledge M _PROTO mes­
sages and not to carry protocol expedited data. M_PCPROTO insures that the 
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Example 

Declarations 

acknowledgement reaches the service user before any other message. If the ser­
vice user is a user process, the Stream Head will only store a single 
M _ PCPROTO message, and discard subsequent M _PCPROTO messages until 
the first one is read with getmsg ( 2) . 

The following rules pertain to service interfaces: 

o Modules and drivers that support a service interface must act upon all 
PROTO messages and not pass them through. 

o Modules may be inserted between a service user and a service provider to 
manipulate the data part as it passes between them. However, these modules 
may not alter the contents of the control part (PROTO block, first message 
block) nor alter the boundaries of the control or data parts. That is, the mes­
sage blocks comprising the data part may be changed, but the message may 
not be split into separate messages nor combined with other messages. In 
addition, modules and drivers must observe the rule that high priority mes­
sages are not subject to flow control and forward them accordingly (e.g., see 
the beginning ofmodwsrv () in the Message Queues and Service Pro­
cedures section). High priority messages also bypass flow control at the 
user-stream boundary (e.g., see putmsg (2) ) • 

The example below is part of a module that illustrates the concept of a service 
interface. The module implements a simple datagram interface. 

The service interface primitives are defined in the declarations: 

#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/stream.h> 
#include <sys/errno.h> 

I* 
* Primitives initiated by the service user: 
*I 
#define BIND_REQ 
#define UNITDATA_REQ 
I* 

1 
2 

I * bind request * I 
I * unit data request * I 

* Primitives initiated by the service provider: 
*I 
#define OK ACK 
#define ERROR ACK 
#define UNITDATA IND 
I* 

3 
4 
5 

I * bind acknowledgment * I 
I * error acknowledgment * I 
I * unit data indication * I 

* The following structures define the format of the 
* stream message block of the above primitives. 
*I 
struct bind_req { I * bind request * I 

long PRIM_type; I* always BIND _REQ * I 
long BIND_addr; I * addr to bind * I 

} ; 
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struct unitdata_req { I* unitdata request * I 
long PRIM_type; I* always UNITDATA_REQ *I 
long DEST_addr; I* dest addr * I 

} ; 

struct ok_ack { 
long PRIM_type; 

I * ok acknowledgment * I 
I* always OK_ACK * I 

} ; 

struct error_ack { /* error acknowledgment *I 
long PRIM_ type; / * always ERROR _ACK * I 
long UNIX_ error; / * SunOS error code * I 

} ; 

struct unitdata_ind { I * unitdata indication * I 
long PRIM_type; I* always UNITDATA_JND * I 
long SRC_addr; I * source addr * I 

} ; 

union primitives { /*unionofallprimitives */ 

} ; 

long type; 
struct bind_req bind_req; 
struct unitdata_req unitdata_req; 
struct ok_ack ok_ack; 
struct error_ack error_ack; 
struct unitdata_ind unitdata_ind; 

struct dgproto { 
short state; 
long addr; 

I* structure per minor device * I 
I * current provider state * I 

} ; 

I* Provider states * I 

#define IDLE 0 
#define BOUND 1 

I* net address * I 

In general, the M _PROTO or M _ PCPROTO block is described by a data struc­
ture containing the service interface information. In this example, union 
primitives is that structure. 

Two commands are recognized by the module: 

BIND_REQ 
Give this stream a protocol address, i.e. give it a name on the network. After 
a BIND_ REQ is completed, datagrams from other senders will find their 
way through the network to this particular stream. 

UNITDATA_REQ 
Send a datagram to the specified address. 

Three messages are generated: 

OK ACK 
A positive acknowledgement (ack) of BIND_ REQ. 

ERROR ACK 
A negative acknowledgement of BIND_ REQ. 
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Service Interface Procedure 

UNITDATA IND 
A datagram from the network has been received (this code is not shown). 

The ack of a BIND_ REQ informs the user that the request was syntactically 
correct (or incorrect if ERROR _ACK). The receipt of a BIND_ REQ is ack­
nowledged with an M _PCPROTO to insure that the acknowledgement reaches 
the user before any other message. For example, a UNITDAT A_ IND could 
come through before the bind has completed, and the user would get confused. 

The driver uses a per-minor device data structure, dgproto, which contains the 
following: 

state 
current state of the stream (endpoint) IDLE or BOUND 

addr 
network address that has been bound to this stream 

It is assumed (though not shown) that the module open procedure sets the write 
queue q_pt r to point at one of these structures. 

The write put procedure is: 

static int protowput(q, mp) 
queue_t *q; 
mblk_t *mp; 
{ 

union primitives *proto; 
struct dgproto *dgproto; 
int err; 

dgproto = (struct dgproto *) q->q_ptr; 

switch (mp->b_datap->db_type) 
default: 

I* don't understand it * I 
mp->b_datap->db_type = M ERROR; 
mp->b_rptr = mp->b_wptr = mp->b_datap->db_base; 
*mp->b_wptr++ = EPROTO; 
qreply(q, mp); 
break; 

case M FLUSH: 
I* standard flush handling goes here .. . * I 
break; 

case M PROTO: 
I* Protocol message -> user request * I 
proto = (union primitives*) mp->b_rptr; 

switch (proto->type) { 
default: 

mp->b_datap->db_type = M_ERROR; 
mp->b_rptr=mp->b_wptr=mp->b_datap->db_base; 
*mp->b_wptr++ = EPROTO; 
qreply(q, mp); 
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return; 

case BIND_REQ: 
if (dgproto->state != IDLE) { 

err= EINVAL; 
goto error_ack; 

if (mp->b_wptr - mp->b_rptr 
!= sizeof(struct bind_req)) 

err= EINVAL; 
goto error_ack; 

if (err= chkaddr(proto->bind_req.BIND_addr)) 
goto error_ack; 

dgproto->state = BOUND; 
dgproto->addr = proto->bind_req.BIND_addr; 
mp->b_datap->db_type = M_PCPROTO; 
proto->type = OK_ACK; 
mp->b_wptr = 

mp->b_rptr + sizeof(struct ok_ack); 
qreply ( q, mp) ; 
break; 

error ack: 
mp->b_datap->db_type = M_PCPROTO; 
proto->type = ERROR_ACK; 
proto->error_ack.UNIX_error = err; 
mp->b_wptr = 

mp->b_rptr + sizeof(struct error_ack); 
qreply(q, mp); 
break; 

case UNITDATA_REQ: 
if (dgproto->state != BOUND) 

goto bad; 
if (mp->b_wptr - mp->b_rptr 

!= sizeof(struct unitdata_req)) 
goto bad; 

if (err=chkaddr(proto->unitdata_req.DEST_addr)) 
goto bad; 

if (mp->b_cont) { 
putq(q, mp->b_cont); 

I * start device or mux output .. . * I 

break; 
bad: 

freemsg(mp); 
break; 
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3.10. Advanced Topics 

Recovering From No Buffers 

The write put procedure switches on the message type. The only types accepted 
are M_FLUSH and M_PROTO. For M_FLUSH messages, the driver will per­
form the canonical flush handling (not shown). For M _PROTO messages, the 
driver assumes the message block contains a union primitive and 
switches on the type field. Two types are understood: BIND_ REQ, and 
UNITDATA_REQ. 

For a BIND_ REQ, the current state is checked; it must be IDLE. Next, the mes­
sage size is checked. If it is the correct size, the passed-in address is verified for 
legality by calling chkaddr. If everything checks, the incoming message is 
converted into an OK_ ACK and sent upstream. If there was any error, the 
incoming message is converted into an ERROR_ ACK and sent upstream. 

For UNITDATA_REQ, the state is also checked; it must be BOUND. As above, 
the message size and destination address are checked. If there is any error, the 
message is simply discarded. (This action may seem rash, but it is in accordance 
with the interface specification, which is not shown. Another specification might 
call for the generation of a UNITDA TA_ ERROR indication.) If all is well, the 
data part of the message, if it exists, is put on the queue, and the lower half of the 
driver is started. 

If the write put procedure receives a message type that it does not understand, 
either a bad b_datap->db_type or a bad proto->type, the message is 
converted into an M _ ERROR message and sent upstream. 

Another piece of code not shown is the generation of UNITDAT A_ IND mes­
sages. This would normally occur in the device interrupt if this is a hardware 
driver (like Ethernet) or in the lower read put procedure if this is a multiplexor. 
The algorithm is simple: The data part of the message is appended to an 
M_PROTO message block that contains a unitdata_ind structure and sent 
upstream. 

The buf call () utility (see Utilities in the Supplementary STREAMS Material 
chapter) is used to recover from an allocb () failure. The call syntax is as fol­
lows: 

int bufcall(size, pri, func, arg); 
int size, pri, (*func) (); 
long arg; 

bufcall() will call (*func) (arg) whenabufferofsizebytesatpri 
priority is available. When func is called, it has no user context and must return 
without sleeping. Also, because of interrupt processing, there is no guarantee 
that when func is called, a buffer will actually be available (someone else may 
steal it). buf call () returns a nonzero integer on success, indicating that the 
request has been successfully recorded, or O on failure. On a failure return, the 
requested function will never be called. The caller should save the return value 
for JX>Ssible subsequent use as the argument to unbufcall (), which is used to 
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cancel an outstanding buf call () request, for example within a module's close 
routine. 

Two examples are provided. Example one is a device receive interrupt handler: 
r 

#include <sys/types.h> 
#include <sys/param.h> 
#include <sys/stream.h> 

dev_rintr(dev) 
{ 

!* 

I * process incoming message .. . * I 

I * allocate new buff er for device * I 
dev_re_load(dev); 

* Reload device with a new receive buffer 
*I 
dev_re_load(dev) 
{ 

mblk_t *bp; 

if ((bp = allocb(DEVBLKSZ, BPRI_MED)) == NULL) { 
log(LOG_ERR("dev: allocb failure (size %d)\n", 

DEVBLKSZ); 
!* 
* Allocation failed. Use buf call to 
* schedule a call to ourself. 
*I 
(void) bufcall(DEVBLKSZ, BPRI_MED, dev_re_load, 

dev); 
return; 

I* pass buff er to device .. . * I 

dev_rintr is called when the device has posted a receive interrupt. The code 
retrieves the data from the device (not shown). dev _rintr must then give the 
device another buffer to fill by a call to dev_re_load, which calls allocb () 
with the appropriate buffer size (DEVBLKSZ, definition not shown) and priority. 
If allocb () fails, dev _re_load uses bufcall () to call itself when 
STREAMS determines a buffer of the appropriate size and priority is available. 

NOTE Since bufcall () may/ail, there is still a chance that the device may hang. A 
better strategy, in the event buf call () fails, would be to discard the current 
input message and resubmit that buffer to the device. Losing input data is gen­
erally better than hanging. 
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The second example is a write service procedure, mod_wsrv (), which needs to 
prepend each output message with a header (similar to the multiplexor example 
of the Multiplexing section). mod_ wsrv () illustrates a case for potential 
deadlock: 
r 

static int mod_wsrv(q) 
queue_t *q; 
{ 

int qenable (); 
mblk_t *mp, *bp; 

while (mp= getq(q)) 

I* check for priority messages and canput ... * I 

!* 
* Allocate a header to prepend to the message. If 
* the allocb fails, use bu/call to reschedule ourself. 
*! 
if ((bp = allocb(HDRSZ, BPRI_MED)) == NULL) { 

if (!bufcall(HDRSZ, BPRI_MED, qenable, q)) 

!* 

I* 
* The bu/ call request has failed. Discard 
* the message and keep running to avoid hanging. 
*! 
freemsg (mp); 
continue; 

* Put the message back and exit, we will be re-enabled later 
*I 
putbq(q, mp); 
return; 

I* process message .... * I 

However, if allocb () fails, mod_wsrv () wants to recover without loss of 
data ands calls buf call (). In this case, the routine passed to buf call () is 
qenable () (see below and in the Utilities section of the Supplementary 
STREAMS Material chapter). When a buffer is available (of size HDRSZ, 
definition not shown), the service procedure will be automatically re-enabled. 
Before exiting, the current message is put back on the queue. This example deals 
with buf call () failure by discarding the current message and continuing in 
the service procedure loop. 

A module that issues a buf call () request should be prepared to cancel that 
request (with unbuf call () ) when its close routine is called. If it doesn't, the 
kernel is likely to crash later on when STREAMS calls the function given as 
bufcall () 's argument at a time when the data structures it manipulates are 
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no longer valid. 

STREAMS provides mechanisms to alter the normal queue scheduling process. 
putq () will not schedule a QUEUE if noenable ( q) had been previously 
called for this QUEUE. noenable () instructs putq () to queue the message 
when called by this QUEUE, but not to schedule the service procedure. noen­
able () does not prevent the QUEUE from being scheduled by a flow control 
back-enable. The inverse of noenable () is enableok ( q) . 

An example of this is driver upstream flow control. Although device drivers typ­
ically discard input when unable to send it to a user process, STREAMS allows 
driver read side flow control, possibly for handling temporary upstream blocks. 
This is done through a driver read service procedure which is disabled during the 
driver open with noenable () . If the driver input interrupt routine determines 
messages can be sent upstream (from canput()), it sends the message with 
putnext (). Otherwise, it calls putq () to queue the message. The message 
waits on the message queue (possibly with queue length checked when new mes­
sages are enqueued by the interrupt routine) until the upstream QUEUE becomes 
unblocked. When the blockage abates, STREAMS back-enables the driver read 
service procedure. The service procedure sends the messages upstream using 
getq () and can put () , as in Message Queues and Service Procedures. This 
is similar to loo pr srv () in the Complete Driver where the service procedure 
is present only for flow control. 

qenable (), another flow control utility, allows a module or driver to cause one 
of its QUEUEs, or another module's QUEUEs, to be scheduled. In addition to the 
usage shown in the Complete Driver and Multiplexing sections, qenable () 
might be used when a module or driver wants to delay message processing for 
some reason. An example of this is a buffer module that gathers messages in its 
message queue and forwards them as a single, larger message. This module uses 
noenable () to inhibit its service procedure and queues messages with its put 
procedure until a certain byte count or "in queue" time has been reached. When 
either of these conditions is met, the put procedure calls qenable () to cause 
its service procedure to run. 

Another example is a communication line discipline module that implements 
end-to-end (i.e., to a remote system) flow control. Outbound data is held on the 
write side message queue until the read side receives a transmit window from the 
remote end of the network. Then, the read side schedules the write side service 
procedure to run. 

STREAMS allows modules and drivers to cause a signal to be sent to user 
process(es) through an M_SIG or M_PCSIG message (see Message Types in the 
Supplementary STREAMS Material chapter) sent upstream. M _ PCSIG is a high 
priority version of M _SIG. For both messages, the first byte of the message 
specifies the signal for the Stream Head to generate. If the signal is not SIG­
POLL (see signal ( 2) and s igset ( 2) ), then the signal is sent to the process 
group associated with the stream (see below). If the signal is SIGPOLL, the sig­
nal is only sent to processes that have registered for the signal by using the 
I_SETSIG ioctl ( 2) (see also the streamio ( 4) call). 
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A process group is associated with a stream during the open of the driver or 
module. If the NEWCTTY flag is ORed into the value returned by the open ( ) 
procedure, the process on whose behalf the module or driver is being opened 
becomes a "session process group leader'' by executing the set spgldr () call 
(which is executed by the setpgrp () call in the System V environment, but 
not in the 4BSD environment). If that process does not already have a control­
ling tty, and the stream does not already have a process group, then the stream is 
assigned to the process group that the process is the leader of and becomes that 
process's controlling tty. 

If the driver or module wants to have a process group associated with the stream, 
it should OR the NEWCTTY flag into its return value. 

M _ SIG can be used by modules or drivers that wish to insert an explicit in band 
signal into a message stream. For example, an M _ SIG message can be sent to 
the user process immediately before a particular service interface message to gain 
the immediate attention of the user process. When the M _ SIG reaches the head 
of the Stream Head read message queue, a signal will be generated and the 
M _ SIG message will be removed. This leaves the service interface message as 
the next message to be processed by the user. Use of M_SIG would typically be 
defined as part of the service interface of the driver or module. 

The M _ SETOPTS message (see Message Types in the Supplementary STREAMS 
Material chapter) allows a driver or module to exercise control over certain 
Stream Head processing. An M _ SETOPTS can be sent upstream at any time. 
The Stream Head responds to the message by altering the processing associated 
with certain system calls. The options to be modified are specified by the con­
tents of the stroptions structure (see Message Types) contained in the mes­
sage. 

Six Stream Head characteristics can be modified. As described in Message 
Types, four correspond to fields contained in queue_ t (min/max packet sizes 
and high/low water marks). The other two are discussed here. 

The value for read options (so_readopt) corresponds to the three modes a 
user can set via the I_SROOPT ioctl () (see streamio) call: 

byte-stream (RNORM) 
The read ( 2) call completes when the byte count is satisfied, the Stream 
Head read queue becomes empty, or a zero length message is encountered. 
In the last case, the zero length message is put back on the queue. A subse­
quent read () will return O bytes. 

message non-discard (RMSGN) 
The read () call completes when the byte count is satisfied or at a message 
boundary, whichever comes first. Any data remaining in the message is put 
back on the Stream Head read queue. 

message discard (RMSGD) 
The read () call completes when the byte count is satisfied or at a message 
boundary. Any data remaining in the message is discarded. 
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Byte-stream mode approximately models pipe data transfer. Message non­
discard mode approximately models a tty in canonical mode. 

The value for write offset (so _wrof f) is a hook to allow more efficient data 
handling. It works as follows: In every data message generated by a write ( 2) 

system call and in the first M _DAT A block of the data portion of every message 
generated by a putmsg ( 2) call, the Stream Head will leave so _wrof f bytes 
of space at the beginning of the message block. Expressed as a C language con­
struct: 

bp->b_rptr = bp->b_datap->db_base + write offset 

The write offset value must be smaller than the maximum STREAMS message 
size, STRMSGSZ (see Tunable Parameters in the Supplementary STREAMS 
Material) Chapter. In certain cases (e.g., if a buffer large enough to hold the 
offset+data is not currently available), the write offset might not be included in 
the block. To be general, modules and drivers should not assume that the offset 
exists in a message, but should always check the message. 

The intended use of write offset is to leave room for a module or a driver to place 
a protocol header before user data in the message rather than by allocating and 
prepending a separate message. This feature is not general, and its use is 
discouraged. A more general technique is to put protocol header information in a 
separate message block and link the user data to it. 
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4.1. Configuring STREAMS 
Drivers 

4 
SunOS STREAMS Topics 

The configuration of STREAMS device drivers is not fundamentally different 
from the configuration of regular device drivers. This section, therefore, 
presumes familiarity with the Configuring the Kernel section of Writing Device 
Drivers manual, which explains in some detail how new drivers are configured 
into the kernel. 

Note that, while STREAMS give programmers a good deal of flexibility in regard 
to configuration issues, STREAMS drivers and protocol modules must still be 
precompiled into the kernel. STREAMS drivers are not dynamically loadable. 

SunOS STREAMS drivers use exactly the same autoconfiguration interface as do 
regular SunOS drivers. This interface is designed to allow drivers (and modules) 
to easily define their per-instance data structures, using the information supplied 
by config. However, if a given driver or module chooses to use some other 
scheme for allocating its resources (such as using kmem_alloc () when a pre­
viously unopened device is opened), it is free to do so. This differs significantly 
from the System V driver/kernel interface, which arranges for such storage to be 
allocated elsewhere. 

Each character device that is configured into the Sun kernel results in an entry 
being placed in the kernel cdevsw table. Entries for STREAMS drivers are no 
exception-they too are placed in cdevsw. However, since system calls to 
STREAMS drivers must be processed by the STREAMS routines, their cdevsw 
interface differs from that of non-STREAMS drivers. conf ig, it should be 
noted, knows nothing about STREAMS drivers. It handles them correctly 
because, as far as it's concerned, they are just regular character drivers. There is 
nothing in the format of entries in a config file that distinguishes STREAMS 
devices/modules from other character devices. 

There is, however, a difference between STREAMS and non-STREAMS cdevsw 
entries, in that STREAMS entries have only the d_str field set while other 
entries never have this field set. d _ str provides the appropriate single entry 
point for all system calls on STREAMS files, as shown below: 
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extern struct cdevsw { 

struct streamtab *d_str; 
cdevsw[]; 

The d _ str entry name is formed by appending the string "info" to the 
STREAMS driver prefix. The "info" entry is a pointer to the driver/module 
declared streamtab structure (see Kernel Structures) in Appendix A. The 
streamtab structure contains pointers to the qini t structures for the 
driver/module's read and write queues. Its declaration must be externally visible: 

struct streamtab .uinfo = { ... 

If the driver declares a streamtab namedx.xinfo, the d_str entry will contain 
a non-NULL pointer and the kernel will recognize the driver as a STREAMS 
driver and will call it by way of the appropriate STREAMS routines. If the 
d_str entry is NULL, the normal characterl/0 cdevsw interface will be used. 
Note that only streamtab must be externally visible in STREAMS drivers and 
modules, since it is used to uniquely identify the appropriate open, close, put, 
service, and administration routines. These driver/module routines should gen­
erally be declared static. 

When adding a new STREAMS module to a kernel, one must add an entry to the 
fmodsw array in /sys/sun/str_conf. c. This file is analogous to 
I sys/ sun/ conf. c (see the Configuring the Kernel chapter of Writing Device 
Drivers ) and its entries should be similarly conditional on the number of module 
instances being positive. For example, for the xx device: 

#if NXX > 0 
extern struct streamtab xx_info; 
#endif 

struct fmodsw fmodsw[] 
{ 

#if NXX > 0 
{ "xx", &xx_info), 

#endif 
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The first of the two fields in each fmodsw entry is the name of the module, 
which will be used in all STREAMS-related ioctl (} calls upon this module. 
The second is a pointer to the module's streamtab structure. 

Certain system parameters referenced by STREAMS are configurable when build­
ing a new kernel. These parameters can be changed only by editing the file 
param. c. In this discussion, the term "queues" refers to queue_t structures. 
The tunable parameters are: 

NMOXLINK 
Total number of streams in system that can be linked as lower streams to 
multiplexor drivers (by an I_LINK ioctl(2), see streamio(4)). 

NSTREVENT 
Initial number of internal event cells available in system to support buf­
cal l (} and poll ( 2} calls. 

MAXSEPGCNT 
The number of additional pages of memory that can be dynamically allo­
cated for event cells. If this value is 0, only the allocation defined by 
NSTREVENT is available for use. If the value is not O and if the kernel runs 
out of event cells, it will under some circumstances attempt to allocate an 
extra page of memory from which new event cells can be created. MAX­

SEPGCNT places a limit on the number of pages that can be allocated for this 
purpose. Once a page has been allocated for event cells, however, it cannot 
be recovered later for use elsewhere. 

NSTRPUSH 

Maximum number of modules that may be pushed onto a single stream. 

STRMSGSZ 
Maximum bytes of information that a single system call can pass to a stream 
to be placed into the data part of a message (in M_DATA blocks). Any 
write ( 2} exceeding this size will be broken into multiple messages. A 
putmsg ( 2} with a data part exceeding this size will fail. 

STRCTLSZ 
Maximum bytes of information that a single system call can pass to a stream 
to be placed into the control part of a message (in an M _ PROTO or 
M_PCPROTO block). A putmsg ( 2} with a control part exceeding this size 
will fail. 

Messages are reported to the console as a result of various error conditions 
detected by STREAMS. These messages and the action to be taken on their 
occurrence are described below. In certain cases, a tunable parameter (see previ­
ous section) may have to be changed. 

allocq:outofqueues 
A pair of queues could not be allocated for the Stream Head during the 
open (} of a driver, or a pair of queues could not be allocated for a push­
able module (I_ PUSH ioctl). This error message should never be seen, 
as additional space for queues is allocated dynamically when needed. 
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allocstr: out of streams 
Cannot allocate any more streams. 

bu/ call: could not allocate stream event 
A call to buf call () has failed because all stream event cells have been 
allocated. If this occurs repeatedly, increase N s TREVENT. 

esbbcall: could not allocate stream event 
Could not allocate and stream events. 

munlink: could not perform ioctl, closing anyway 
A linked multiplexor could not be unlinked when the controlling stream for 
that link was closed. The linked stream will be unlinked and the controlling 
stream will be closed anyway. 

xdballoc:outofdblks 

xmballoc: out of mblks 
The indicated resource could not be allocated during an allocb () call. 
These messages should never be seen as additional dblk and mblk space is 
allocated dynamically when needed. 

SunOS 4.1 includes implementations of two fundamental system mechanisms in 
terms of STREAMS. These are: 

1. The system terminal driver, which controls serial-line 1/0, and 

2. The Network Interface Tap (NIT) mechanism, which permits a process to 
talk to the "raw" Ethernet. NIT is the only networking facility which is thus 
far implemented in terms of STREAMS, though a TCP/IP implementation 
that can be accessed via STREAMS is planned. 

The following STREAMS modules, necessary to support the tty driver and the 
Network Interface Tap, are included in SunOS 4.1. 

o The "standard tty driver" module, which implements most of the standard 
tty driver behavior; it's a replacement for the current standard tty line discip­
line. (See ldterm(4M)). 

o The "ioctl mapping" module, which maps old V7 and 4BSD ioctl () 
calls into new-style ioctl () calls. This gets pushed on top of the standard 
tty driver module, giving a stream that responds either to the old-style or 
new-style ioctl () calls. (See ttcompat(4M)). 

o The keyboard and mouse modules, which replace the old keyboard and 
mouse line disciplines. (See kb ( 4M) and ms ( 4M). 

o The NIT ''packet filter'' module, which is given a set of criteria for selecting 
Ethernet packets, and passes only the selected packets upstream, discarding 
the others. For example, the Reverse ARP daemon requests that it receive 
only Reverse ARP packets; filtering can be done more efficiently in this 
fashion than if all packets were handed to the program and it had to do the 
filtering itself. This also makes it easier to handle a high rate of arrival of 
packets, since the program doesn't have to handle the ones it's not interested 
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in. (See nit_pf(4M)). 

o The NIT ''buffering'' module, which buffers up received Ethernet packets 
and delivers them to the user program in a single chunk. Such buffering 
reduces the number of read () calls done while monitoring the Ethernet, as 
is necessary when the rate at which packets arrive is very high. (See 
nit_buf(4M)). 

In order to support STREAMS terminal and pseudo-terminal drivers, SunOS has 
extended the AT&T STREAMS mechanism. This extension is called "Autopush" 
and is totally transparent to customer written STREAMS drivers, with the excep­
tion of the streamtab/modlist initialization. Future versions of STREAMS will 
replace this feature with the System V implementation. 

The Autopush feature includes a mechanism by which STREAMS drivers can 
specify a list of STREAMS modules to be automatically pushed onto the stream at 
device open time. This ( or a similar) feature is necessary to allow tty drivers to 
present an interface compatible with that which existed in previous system 
releases. 

Drivers wishing to use this facility must specify the address of a NULL­
terminated array of module names in the st_modlist field of the stream­
t ab structure. The modules named in this array will be pushed at open time in 
the order of their appearance in the array. For example: 
r 

char *mypushlist[] = { 
"ldterm", 
"ttcompat", 
NULL 

} ; 

struct streamtab mydrivertab 

char **mypushlist; /* st modlist field*/ 
} ; 

These definitions arrange to push the standard modules implementing tty seman­
tics when mydr i ver is opened. 

The set of internal interfaces and utility routines defined by the SunOS kernel 
differs considerably from that defined by the System V kernel. The 
STREAMS/kernel interface is well specified, however, and System V STREAMS 
modules and drivers that use only the interfaces it defines (see Accessible Sym­
bols and Functions in the Supplementary STREAMS Material chapter of this 
manual) should be adaptable to the SunOS kernel without many problems. How­
ever, it's easy to use kernel facilities (data structures and routines) other than 
those defined in the STREAMS interface. Any such use is likely to be non­
portable between System V and SunOS. 
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Similarly, STREAMS modules and drivers written for SunOS will only be port­
able to System V systems if their kernel interfaces are confined to the explicitly 
listed Accessible Symbols and Functions. If System V compatibility is not an 
issue, then STREAMS modules and drivers can use any of the driver-support rou­
tines listed in the Kernel Support Routines appendix of Writing Device Drivers. 

Note that STREAMS drivers, as opposed to modules, will always require a certain 
degree of rewriting for use on System V machines, since the SunOS 
autoconfiguration interface differs significantly from that used in System V. See 
The Bus-Resource Interface section of Writing Device Drivers manual for the 
details of the Sun interface. 

NOTE User-built line discipline code must be re-implemented within the STREAMS 
framework before it will work with release 4.1. This is not a simple matter of 
porting, for there there is nothing within the STREAMS framework that really 
corresponds to line disciplines. Infact, STREAMS modules themselves can be 
seen as generalizations of line disciplines, in the sense that the character transla­
tion that line disciplines used to manage is now the job of STREAMS modules 
themselves. In a word,pre-STREAMS driver code is "ported", because the 
lower-level code that actually interacts with the device is typically preserved 
within the new STREAMS framework. Line discipline code, however, is best 
"rewritten" within the STREAMS framework. See Sun Consulting. 

There is another reason why pre-4.0 line discipline code will no longer work­
such code probably accesses tty-specific internal structures, such as clist 
buffers. These structures no longer exist, having been replaced by STREAMS 
structures. For information on how to proceed with the conversion of a line dis­
cipline, contact the Sun consulting department. 

Character device drivers that do not implement line disciples can also be con­
verted to STREAMS form, though in this case the conversion is entirely optional. 
This is because the SunOS STREAMS implementation preserves the external 
interfaces to the character devices and drivers (e.g. through the standard tty com­
patibility module, ttcompat ( 4M), that implements most of the 4BSD tty 
interfaces under STREAMS). Thus, drivers that do not directly access underlying 
system data structures will continue to work without changes. 

Drivers that have fancy read and write routines (routines that do anything more 
than just import parameters and perhaps start another routine) are probably not 
good candidates for conversion into STREAMS form, since STREAMS read/write 
modules should just set up data for the STREAMS queues. 

A line-printer driver is an example of a character driver that could be written in 
terms of STREAMS, but doesn't need to be, and doesn't need to be converted to 
STREAMS if it already exists. After all, while a line-printer driver does 
transform a stream of characters (this transformation could certainly be built into 
a STREAMS module), its transformation is unlikely to be of interest to other pro- "' 
grams. Thus, there's little to be gained by encapsulating it in a module. And, 
since line-printer drivers implement no line discipline, they will continue to work 
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with SunOS 4.1. 
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streamtab 

QUEUE Structures 

A 
Supplementary STREAMS Material 

This appendix summarizes previously described kernel structures commonly 
encountered in S1REAMS module and driver development. 

S1REAMS kernel structures are contained in <sys/stream. h>. 

Many of the fields in the structures described below are inteded for the private 
use of the S1REAMS framework code. Modules and drivers should not access 
such fields in any way, as their meaning and even existence is subject to change 
from release to release. These fields are omitted from the descriptions below. 

Since these private fields can change from release to release, modules and drivers 
should not assume that the structures below have the same size from one release 
to the next. 

Certain of the public fields listed below are read-only for modules and drivers; 
that is, only the STREAMS framework code is allowed to change them. These 
fields are marked with the legend "RO:" at the beginning of the comments 
describing them. 

As discussed in the STREAMS Mechanism section of the STREAMS Module and 
Driver Programming chapter, this structure defines a module or driver: 

struct streamtab 
struct qinit 
struct qinit 
struct qinit 
struct qinit 
char 

} ; 

*st_rdinit; 
*st_wrinit; 
*st_muxrinit; 
*st_muxwinit; 
**st_modlist; 

I* defines read QUEUE * I 
I * defines write QUEUE * I 
I* for multiplexing drivers only * I 
I *for multiplexing drivers only * I 
I * NULL-terminated list of 

modules to be pushed * I 

Two sets of QUEUE structures form a module. The structures, discussed in the 
STREAMS Mechanism and Message Queues and Service Procedures sections of 
the STREAMS Module and Driver Programming chapter, are queue_ t, qini t, 
module_info and, optionally, module_stat: 
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struct queue { 

} ; 

struct qinit *q_ qinfo; /*RO: procedures and limits/or queue * I 
struct msgb *q_first; /* RO: head ofmsg queue/or this QUEUE* I 
struct msgb *q_last; l*RO:tailofmsgqueueforthisQUEUE*I 
struct queue *q_next; l*RO:nextQUEUEinstream*/ 
caddr t q_ptr; /* to private data structure* I 
ushort q_count; /*RO: count of characters on message queue* I 
ushort q_flag; /* RO: QUEUE state* I 
short q_ minps z / * min packet size accepted by this QUEUE * I 
short q_ maxps z; / * max packet size accepted by this QUEUE * I 
ushort q_ hiwat; / * msg queue high water mark.for flow control * I 
ushort q_lowat; / * msg queue low water mark.for flow control* I 

typedef struct queue queue_t; 

When a queue_ t pair is allocated, their contents are zero unless specifically ini­
tialized. The following fields are initialized: 

o q_qinfo - from streamtab.st_[rd/wr]init (or st_mux[rw]init) 

o q_minpsz, q_maxpsz, q_hiwat, q_lowat- from module_info 

o q_ptr - optionally, by the driver/module open routine 

struct qinit { 

} ; 

int (*qi__putp) (); 
int (*qi_srvp) (); 
int (*qi_qopen) (); 
int (*qi_qclose) (); 
int (*qi_qadmin) (); 
struct module_info 
struct module stat 

I* put procedure * I 
I * service procedure * I 
I* called on each open or a push * I 
I * called on last close or a pop * I 
I * reserved for future use * I 
*qi_minfo; /*information structure* I 
*qi_mstat; /*optional stats structure* I 

struct module_info { 
ushort mi_idnum; 
char *mi_idname; 
short mi_minpsz; 
short mi_maxpsz; 
short mi_hiwat; 
ushort mi_lowat; 

I* module ID number * I 
I* module name * I 

} ; 

I* min packet size accepted.for developer use * I 
I* max packet size accepted.for developer use * I 
I* hi-water mark.for flow control* I 
I* lo-water mark.for flow control* I 
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struct module_stat { 
long ms_pcnt; 
long ms_scnt; 
long ms_ocnt; 
long ms_ccnt; 
long ms_acnt; 
char *ms_xptr; 
short ms_xsize; 

} ; 
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I* count of calls to put proc * I 
I * count of calls to service proc * I 
I * count of calls to open proc * I 
I* count of calls to close proc * I 
I* count of calls to admin proc * I 
I * pointer to private statistics * I 
I* length of private statistics buffer * I 

Note that in the event these counts are calculated by modules or drivers, the 
counts will be cumulative over all instantiations of modules with the same 
fmodsw entry and drivers with the same cdevsw entry. 

As described in the Messages section of STREAMS Module and Driver Program­
ming, a message is composed of a linked list of triples, consisting of two struc­
tures and a data buffer: 

, 

struct msgb { 

} ; 

struct msgb *b_next; 
struct msgb *b_prev; 
struct msgb *b_cont; 
unsigned char *b_rptr; 
unsigned char *b_wptr; 
struct datab *b_datap; 

typedef struct msgb mblk_t; 

struct datab 

I* next message on queue * I 
I* previous message on queue * I 
I * next message block of message * I 
I * first unread data byte in buffer * I 
I * first unwritten data byte in buffer * I 
I* RO: data block* I 

unsigned char *db_base; l*RO:firstbyteofbuffer* *I 
unsigned char *db_lim; /* RO: last byte+l of buffer* I 
unsigned char db_ref; /*RO: cnt of msgs pointing to this block* I 
unsigned char db_type; /* message type* I 

} ; 

typedef struct datab dblk_t; 

As described in the Drivers section of the STREAMS Module and Driver Pro­
gramming chapter and in Message Types, below, this is contained in an 
M_IOCTL message block: 
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A.3. Message Types 

Ordinary Messages 

struct iocblk { 

} ; 

int 
ushort 
ushort 
uint 
uint 
int 
int 

ioc_cmd; 
ioc_uid; 
ioc_gid; 
ioc_id; 
ioc_count; 
ioc_error; 
ioc_rval; 

I * ioctl command type * I 
I * effective uid of user * I 
I* effective gid of user * I 
I* ioctl id* I 
I* count of bytes in data field * I 
I* error code * I 
I * return value * I 

As described in the Multiplexing section of STREAMS Module and Driver Pro­
gramming, this is used in lower multiplexor drivers: 

struct linkblk { 
queue_t *l_qtop; 
queue_t *l_qbot; 
int l_index; 

I* lowest level write queue of upper stream * I 
I* highest level write queue of lower stream * I 
I * system-unique index for lower stream. * I 

} ; 

Here the STREAMS message types are defined. The message types differ in their 
intended purposes, their treatment at the stream head, and in their message 
queueing priority (see the Message Queues and Service Procedures section of the 
STREAMS Module and Driver Programming chapter). 

STREAMS does not prevent a module or driver from generating any message type 
and sending it in any direction on the stream. However, established processing 
and direction rules should be observed. Stream head processing according to 
message type is fixed, although certain parameters can be altered. 

The message types are described below, classified according to their message 
queueing priority. Ordinary messages are described first, with high priority mes­
sages following. In certain cases, two message types may perform similar func­
tions, differing in priority. Message construction is described in the Messages 
section of the STREAMS Module and Driver Programming chapter. The use of 
the word module will generally imply "module or driver." 

These message types are subject to flow control. These are referred to as non­
priority messages when received at user level. 

M DATA 
Intended to contain ordinary data. Messages allocated by the allocb () 
routine (see Message Types, below) are type M_DATA by default. M_DATA 

messages are generally sent bidirectionally on a stream and their contents 
can be passed between a process and the stream head. In the getmsg ( 2) 
and putmsg (2) system calls, the contents of M_DATA message blocks are 
referred to as the data part. Messages composed of multiple message blocks 
will typically have M_DATA as the message type for all message blocks fol­
lowing the first. 
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M PROTO 
Intended to contain internal control information and associated data. The 
message fonnat is one M _ PROTO message block followed by zero or more 
M_DATA message blocks as shown below: The semantics of the M_DATA 
and M _ PROTO message block are determined by the STREAMS module that 
receives the message. 

The M_PROTO message block will typically contain implementation depen­
dent control infonnation. M _PROTO messages are generally sent bidirec­
tionally on a stream, and their contents can be passed between a process and 
the stream head. The contents of the first message block of an M _ PROTO 
message is generally referred to as the control part, and the contents of any 
following M_DATA message blocks are referred to as the data part. In the 
getmsg ( 2) and putmsg ( 2) system calls, the control and data parts are 
passed separately. These calls refer to M _PROTO messages as non-priority 
messages. 

Note that, although its use is not recommended, the format ofM_PROTO and 
M_PCPROTO (generically PROTO) messages sent upstream to the stream 
head allows multiple PROTO blocks at the beginning of the message. 
getmsg () will compact the blocks into a single control part when passing 
them to the user process. 

M_PROTO and M_PCPROTO Message Structure 

M PROTO 
or 

M PCPROTO 

M DATA 

M DATA 

M IOCTL 

...... 

... _....._ 

control 
info. 

[':ra I 

Generated by the stream head in response to an I_ S TR and certain other 
ioctl ( 2) system calls (see the streamio ( 4) man page.) When one of 
these ioctl ()sis received from a user process, the stream head uses 
values from the process and supplied in the call to create an M IOCTL mes­
sage containing them, and sends the message downstream. M -IOCTL mes­
sages are intended to perfonn the general ioctl functions of character device 
drivers. 

The user values are supplied in a structure of the following fonn, provided as 
an argument to the ioctl (} call (see I_STR in the streamio ( 4) man 
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r 

page). 

struct strioctl 
int ic_cmd; 
int ic_timout; 
int ic_len; 
char *ic_dp; 

I * downstream request * I 
/ * ACK/NAK timeout * / 
I * length of data arg * I 
I * ptr to data arg * I 

} ; 

where i c _ cmd is the request ( or command) defined by a downstream 
module or driver, ic _ t imout is the time the stream head will wait for ack­
nowledgement to the M_IOCTL message before timing out, ic_dp is a 
pointer to an optional data argument. On input, ic _len contains the length 
of the data argument passed in and, on return from the call, it contains the 
length of the data, if any, being returned to the user. 

The form of an M_IOCTL message is one M_IOCTL message block linked 
to zero or more M_DATA message blocks. STREAMS constructs an 
M_IOCTL message block by placing an iocblk structure in its data buffer: 

struct iocblk { 

} ; 

int ioc_cmd; 
ushort ioc_uid; 
ushort ioc_gid; 
uint ioc_id; 
uint ioc_count; 
int ioc_error; 
int ioc_rval; 

I* ioctl command type * I 
I* effective user id number * I 
I * effective group id number * I 
I* ioctl identifier * I 
I* byte count for ioctl data * I 
I * error code * I 
I * return value * I 

The iocblk structure is defined in <sys/stream. h>. ioc cmd 
corresponds to ic_cmd. ioc_uid and ioc_gid are the effective user 
and group IDs for the user sending the ioctl (), and can be tested to deter­
mine if the user issuing the i o ct 1 ( ) call is authorized to do so. 
ioc_count is the number of data bytes, if any, contained in the message 
and corresponds to ic_len. 

ioc_id is an identifier generated internally, and is used to match each 
M _ IOCTL message sent downstream with a response that must be sent 
upstream to the stream head. The response is contained in an M _ I OCACK 
(positive acknowledgement) or an M IOCNAK (negative acknowledgement) 
message. Both these message types have the same format as an M _ IOCTL 
message and contain an iocblk structure in the first block with optional 
data blocks following. If one of these messages reaches the stream head 
with an identifier that does not match that of the currently-outstanding 
M IOCTL message, the response message is discarded. A common means 
of assuring that the correct identifier is returned, is for the replying module 
to convert the M _ IOCTL message type into the appropriate response type 
and set i o c _count to 0, if no data is returned. Then, the qr ep 1 y ( ) 
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utility (see Utilities, below) is used to send the response to the stream head. 

ioc _ error holds any return error condition set by a downstream module. 
If this value is non-zero, it is returned to the user in errno. Note that both 
anM_IOCNAK and an M_IOCACK may return an error. ioc_rval holds 
any M _ IOCACK return value set by a responding module. 

If a user supplies data to be sent downstream, the stream head copies the 
data, pointed to by ic_dp in the strioctl structure, into M_DATA mes­
sage blocks and links the blocks to the initial M _ IOCTL message block. 
ioc_count is copied from ic_len. If there is no data, ioc_count is 
zero. 

If a module wants to send data to a user process as part of its response, it 
must construct an M _ IOCACK message that contains the data. The first mes­
sage block of this message contains the iocblk data structure, with any 
data stored in one or more M _DAT A message blocks linked to the first mes­
sage block. The module must set ioc _ count to the number of data bytes 
sent. On completion of the call, this number is passed to the user in 
ic _ len. Data associated with an M _ IOCNAK message is not returned to 
the user process, and is discarded by the stream head. 

The first module or driver that understands the request contained in the 
M _IOCTL acts on it, and generally returns an M _ I OCACK message. Inter­
mediate modules that do not recognize a particular request must pass it on. 
If a driver does not recognize the request, or the receiving module can not 
acknowledge it, an M _ I OCNAK message must be returned. 

The stream head waits for the response message and returns any information 
contained in an M IOCACK to the user. The stream head will "time out" if 
no response is received in ic_timeout interval. 

M CTL 
Generated by modules that wish to send information to a particular module 
or type of module. M _ CTL messages are typically used for inter-module 
communication, as when adjacent STREAMS protocol modules negotiate the 
terms of their interface. An M _ CTL message cannot be generated by a user­
level process and is always discarded if passed to the stream head. 

M BREAK 
Sent to a driver to request that BREAK be transmitted on whatever media the 
driver is controlling. 

The message format is not defined by STREAMS and its use is developer 
dependent. This message may be considered a special case of an M _ CTL 
message. An M _ BREAK message cannot be generated by a user-level pro­
cess and is always discarded if passed to the stream head. 

M DELAY 
Sent to a media driver to request a real-time delay on output. The data 
buffer associated with this message type is expected to contain an integer to 
indicate the number of machine ticks of delay desired. M _DELAY messages 
are typically used to prevent transmitted data from exceeding the buffering 
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capacity of slower terminals. 

The message format is not defined by STREAMS and its use is developer 
dependent. Not all media drivers may understand this message. This mes­
sage may be considered a special case of anM_CTL message. AnM_DELAY 
message cannot be generated by a user-level process and is always discarded 
if passed to the stream head. 

M PASSFP 
This is used by STREAMS to pass a file pointer from the stream head at one 
end of a stream pipe to the stream head at the other end of the same stream 
pipe. (A stream pipe is a stream that is terminated at both ends by a stream 
head; one end of the stream can always find the other by following the 
q_ next pointers in the stream. The means by which such a structure is 
created is not described in this document.) 

The message is generated as a result of an I_SENDFD ioctl () (see the 
streamio ( 4) man page) issued by a process to the sending stream head. 
STREAMS places the M_ PAS SFP message directly on the destination stream 
head's read queue to be retrieved by an I_RECVFD ioctl () (see the 
streamio (4) man page). The message is placed without passing it through 
the stream (i.e., it is not seen by any modules or drivers in the stream). This 
message type should never be present on any queue except the read queue of 
a stream head. Consequently, modules and drivers do not need to recognize 
this message type, and it can be ignored by module and driver developers. 

M SETOPTS 
Alters some characteristics of the stream head. It is generated by any down­
stream module, and is interpreted by the stream head. The data buffer of the 
message has the following structure: 

struct stroptions { 
short so_flags; 
short so_readopt; 
ushort so_wroff; 
short so_minpsz; 
short so_maxpsz; 
ushort so_hiwat; 
ushort so_lowat; 

I* options to set * I 
I* read option * I 
I* write offset * I 
I* minimum read packet size * I 
I * maximum read packet size * I 
I* read queue high-water mark * I 
I* read queue low-water mark * I 

} ; 

where so_ flags specifies which options are to be altered, and can be any 
combination of the following: 

SO ALL 
- Update all options according to the values specified in the remaining 

fields of the stroptions structure. 

SO READOPT 
- Set the read mode (see the read ( 2 ) man page) to RN ORM (byte 

stream), RMS GD (message discard), or RMSGN (message non-discard) as 
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specified by the value of so_readopt. 

SO WROFF 
Direct the stream head to insert an offset specified by so_wroff into 
the first message block of all M _ DATA messages created as a result of a 
write ( ) system call. The same offset is inserted into the first 
M _ DATA message block, if any, of all messages created by a 
putmsg () system call. The default offset is zero. 

The offset must be less than the maximum message buffer size (system 
dependent). Under certain circumstances, a write offset may not be 
inserted. A module or driver must test that b _ rptr in the mblk _ t 
structure is greater than db_ base in the dblk _ t structure to deter­
mine that an offset has been inserted in the first message block. 

SO MINPSZ 
Change the minimum packet size value associated with the stream head 
read queue to so_minpsz (see q_minpsz in the queue_t structure, 
in the Kernel Structures section, above) This value is advisory for the 
module immediately below the stream head. It is intended to limit the 
size of M_DATA messages that the module should put to the stream 
head. There is no intended minimum size for other message types. The 
default value in the stream head is 0. 

SO MAXPSZ 
Change the maximum packet size value associated with the stream head 
read queue to so_maxpsz (see q_maxpsz in the queue_t structure, 
in the Kernel Structures section, above). This value is advisory for the 
module immediately below the stream head. It is intended to limit the 
size of M _ DATA messages that the module should put to the stream 
head. There is no intended maximum size for other message types. The 
default value in the stream head is INFP S z, the maximum S1REAMS 
allows. 

SO BIWAT 
Change the flow control high water mark on the stream head read queue 
to the value specified in so_hiwat. 

SO LOWAT 

M SIG 

Change the flow control low water mark (see q_minpsz in the 
queue_ t structure, in the Kernel Structures section, above) on the 
stream head read queue to the value specified in so_lowat. 

Sent upstream by modules or drivers to post a signal to a process. When the 
message reaches the stream head, the first data byte of the message is 
transformed into a signal, as defined in <sys/ signal. h>, to the 
process( es) according to the following. 

If the signal is not SIGPOLL and the stream containing the sending module 
or driver is a controlling TTY, the signal is sent to the associated process 
group. If the stream does not have a process group, then M_SIG is discarded 
and the signal is ignored. 
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High Priority Messages 

If the signal is SI GPO LL, it will be sent only to those processes that have 
explicitly registered to receive the signal (see I_ SETS IG in the 
streamio ( 4) man page). 

High priority messages are not subject to flow control. 

M PCPROTO 
This message type has the same format and characteristics as the M_PROTO 
message type, except for priority and the following additional attributes. 

When an M _ PCPROTO message is placed on a queue, its service procedure 
is always enabled. The stream head will allow only one M_PCPROTO mes­
sage to be placed in its read queue at a time. If an M_PCPROTO message is 
already in the queue when another arrives, the second message is silently 
discarded and its message blocks freed. 

This message type is intended to allow data and control information to be 
sent outside the normal flow control constraints. 

The getmsg (2) and putmsg (2) system calls refer to M_PCPROTO mes­
sages as priority messages. 

M ERROR 
This message type is sent upstream by modules or drivers to report some 
downstream error condition. When the message reaches the stream head, the 
stream is marked so that all subsequent system calls issued to the stream, 
excluding close (2) and poll (2), will fail with errno set to the first 
data byte of the message. POLLERR is set if the stream is being poll () ed 
(see the poll ( 2) man page. All processes sleeping on a system call to the 
stream are awakened. An M _ FLUSH message with a FLUSHRW argument is 
sent downstream. 

M HANGUP 
This message type is sent upstream by a driver to report that it can no longer 
send data upstream. For example, this might be due to an error, or to a 
remote line connection being dropped. When the message reaches the 
stream head, the stream is marked so that all subsequent write ( 2 ) and 
putmsg ( 2) system calls issued to the stream will fail and return an 
ENXIO error. Those ioctl () s that cause messages to be sent downstream 
are also rejected. POLLHUP is set if the stream is being poll () ed (see the 
poll ( 2) man page. 

However, subsequent read ( 2) or getmsg ( 2) calls to the stream will not 
generate an error. These calls will return any messages (according to their 
function) that were on, or in transit to, the stream head read queue before the 
M _ HANGUP message was received. When all such messages have been read, 
read () will return 0, and getmsg () will set each of its two length fields 
to 0. 

This message also causes a S IGHUP signal to be sent to the process group, if 
the device is a controlling ITY (see M SIG). 
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M IOCACK 
This message type signals the positive acknowledgement of a previous 
M_IOCTL message. The message may contain information sent by the 
receiving module or driver. The stream head returns the information to the 
user if there is a corresponding outstanding M _ IOCTL request. The format 
and use of this message type is described further under M _ IOCTL. 

M IOCNAIC 
This message type signals the negative acknowledgement (failure) of a pre­
vious M_IOCTL message. When the stream head receives anM_IOCNAK, 
the outstanding i o ct 1 ( ) request, if any, will fail. The format and usage of 
this message type is described further under M _ IOCTL. 

M FLUSH 
This message type requests all modules and drivers that receive it to flush 
their message queues ( discard all messages in those queues) as indicated in 
the message. An M _ FLUSH can originate at the stream head, or in any 
module or driver. The first byte of the message contains flags that specify 
one of the following actions: 

FLUSBR: 
Flush the read queue of the module. 

FLUSBW: 
Flush the write queue of the module. 

FLUSBRW: 
Flush both the read and the write queue of the module. 

Each module passes this message to its neighbor after flushing its appropri­
ate queue(s), until the message reaches one of the ends of the stream. 

Drivers are expected to include the following processing for M_ FLUSH mes­
sages. When an M_FLUSH message is sent downstream through the write 
queues in a stream, the driver at the stream end discards it if the message 
action indicates that the read queues in the stream are not to be flushed ( only 
FLUSHW set). If the message indicates that the read queues are to be 
flushed, the driver sets the M_FLUSH message flag to FLUS HR, and sends 
the message up the stream's read queues. When a flush message is sent up a 
stream's read side, the stream head checks to see if the write side of the 
stream is to be flushed. If only FLUS HR is set, the stream head discards the 
message. However, if the write side of the stream is to be flushed, the 
stream head sets the M_FLUSH flag to FLUSHW and sends the message down 
the stream's write side. All modules that enqueue messages must recognize 
and process this message type. 

M PCSIG 
This message type has the same format and characteristics as the M _ s IG 
message type except for priority. 

M START and M STOP - -
'I1iese messages request devices to start or stop their output. They are 
intended to produce momentary pauses in a device's output, not to tum 
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A.4. Utilities 

The utilities contained in this appen­
dix represent an interface that will 
be maintained in subsequent ver­
sions of SunOS. Other than these 
utilities (see also the Accessible Sym­
bols and Functions section, below) 
functions contained in the STREAMS 
kernel code may change in future 
releases. 

devices on or off. 

The message format is not defined by STREAMS and its use is developer 
dependent. These messages may be considered special cases of an M _ CTL 
message. These messages cannot be generated by a user-level process and 
each is always discarded if passed to the stream head. 

This appendix specifies the set of utilities that STREAMS provides to assist 
development of modules and drivers. There are many utility routines and mac­
ros. 

The general purpose of the utilities is to perform functions that are commonly 
used in modules and drivers. A utility must always be used when operating on a 
message queue and when accessing the buffer pool. 

The utilities are contained in either the system source file os / str _ buf. c or, if 
they are macros, in <sys/ stream. h>. 

All structure definitions are contained in the Kernel Structures section, above, 
unless otherwise indicated. All routine references are found in this section unless 
otherwise indicated. The following definitions are used. 

Blocked 
A queue that can not be enabled due to flow control (see the Flow Control 
section in the Introduction to STREAMS chapter of the System Services Over­
view). 

Enable 
To schedule a queue. 

Free 
De-allocate STREAMS storage. 

Message block (bp) 
A triplet consisting of an mblk _ t structure, a dblk _ t structure, and a data 
buffer. It is referenced by its mblk_t structure (see the Messages section of 
the STREAMS Module and Driver Programming chapter). 

Message (mp) 
One or more linked message blocks. A message is referenced by its first 
message block. 

Message queue 
Zero or more linked messages associated with a queue (queue_t structure). 

Queue (q) 
A queue_ t structure. This is generally the same as QUEUE in the rest of 
this document (e.g., see the definitions for enable and schedule). When it 
appears with "message" in certain utility description lines, it means "mes­
sage queue." 

Schedule 
Place a queue on the internal linked list of queues which will subsequently 
have their service procedure called by the STREAMS scheduler. 
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The word module will generally mean "module and/or driver." The phrase 
"next/following module" will generally refer to a module, driver, or stream head. 
Message queueing priority (see the Message Queues and Service Procedures sec­
tion of the STREAMS Module and Driver Programming chapters and the Message 
Types section, above) can be ordinary or high priority (to avoid "priority prior­
ity"). 

STREAMS buffers are normally allocated with allocb () , described above. An 
associated set of allocation priorities has been established, which are also used in 
other utility routines: 

BPRI LO 
Low priority. At this priority, allocb () may fail even though the 
requested buffer size is available. This priority is used by the stream head 
write routine to hold data associated with user calls. 

BPRI MED 
Medium priority. This priority is typically used for normal data and control 
block allocation. As above, allocb () may fail at this priority even 
though a buffer of the requested size is available. However, for a given 
block size, a BPRI_LO allocb () call will fail before a BPRI_MED 
allocb () call. 

BPRI BI 
High priority. This priority is typically used only for critical control mes­
sage allocations. Calls to allocb () will succeed if a buffer of the 
appropriate size is available. Developers should exercise restraint in use of 
BPRI_HI allocation requests. 

The values BPRI_LO, BPRI_MED, and BPRI_HI are defined in 
<sys/ stream. h>. 

STREAMS does not guarantee successful buffer allocation-any set of resources 
can be exhausted under the right or wrong conditions. The bufcall () func­
tion will help modules recover from buffer allocation failures, but it does not 
guarantee that the resources will ever be available. Developers should be aware 
of this when implementing modules. 

int adjmsg(mp, len) 
mblk_t *mp; 
int len; 

'I 

ad jmsg () trims bytes from either the head or tail of the message specified by 
mp. If Len is greater than zero, it removes Len bytes from the beginning of mp. If 
Len is less than zero, it removes len bytes from the end of mp. If Len is zero, 
adjmsg () does nothing. adjmsg (} only trims bytes across message blocks 
of the same type. It will fail if mp points to a message containing fewer than Len 
bytes of similar type at the message position indicated. adjmsg (} returns 1 on 
success, and O on failure. 
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a11ocb () - Allocate a 
Message Block 

backq () -Get Pointer to 
Queue Behind a Given Queue 

bu£ ca11 () - Recover from 
Failure of a11ocb () 

canput () - Test for Room 
in a Queue 

mblk_t *allocb(size, pri) 
int size, pri; 

allocb () returns a pointer to a message block of type M_DATA, in which the 
data buffer contains at least size bytes. pri indicates the priority of the allocation 
request, and can have the values BPRI_LO, BPRI_MED, or BPRI_HI (see 
Buffer Allocation Priority, above). If a block can not be allocated as requested, 
allocb () returns a NULL pointer. 

[ queue_t *backq(q) 
queue_t *q; ] 

backq () returns a pointer to the queue behind a given queue. That is, it returns 
a pointer to the queue whose q_next (see queue_t structure) pointer is q. If 
no such queue exists (as when q is at a stream end), backq () returns NULL. 

int bufcall(size, pri, func, arg) 
uint size; 
int pri; 
int ( *func) () ; 
long arg; 

buf call () is provided to assist in the event of a block allocation failure. If 
allocb () returns NULL, indicating a message block is not currently available, 
bufcall () may be invoked. 

buf call () arranges for (*func)(arg) to be called when a buffer of size bytes 
atpri priority (see Buffer Allocation Priority, below) is available. Whenfunc is 
called, it has no user context. It cannot reference the user structure and must 
return without sleeping. buf call () does not guarantee that the desired buffer 
will be available whenfunc is called since interrupt processing may acquire it. 

bufcall () returns a non-zero value on success, indicating that the request has 
been successfully recorded, or O on failure. On a failure return,func will never 
be called. A failure indicates a (temporary) inability to allocate required internal 
data structures or a size value that is so large as to be never satisfiable. 

The success return value should be saved for possible future use as described 
below. When a module or driver is closed, its close routine should cancel all 
pending buf call () requests by calling unbufcall () with the saved return 
value from buf call () as argument. 

[ int canput (q) 
queue_t *q; ] 

canput () determines if there is room left in a message queue. If q does not 
have a service procedure, canput () will search further in the same direction in 
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Message is a Data Message 

dupb () - Duplicate a 
Message Block Descriptor 

Appendix A - Supplementary STREAMS Material 161 

the stream until it finds a queue containing a service procedure (this is the first 
queue on which the passed message can actually be enqueued). If such a queue 
cannot be found, the search terminates on the queue at the end of the stream. 
canput () tests the queue found by the search. If the message queue in this 
queue is not full (see the Flow Control section in the Introduction to STREAMS 
chapter of the System Services Overview) canput () returns 1. This return indi­
cates that a message can be put to queue q. If the message queue is full, can­
put () returns 0. In this case, the caller is generally referred to as blocked. 

[ mblk_t *copyb(bp) 
mblk_t *bp; ] 

copyb ( ) copies the contents of the message block pointed at by bp into a 
newly-allocated message block of at least the same size. copyb ( ) allocates a 
new block by calling allocb () withpri set to BPRI _ MED (see Buffer Alloca­
tion Priority, above). All data between the b _rptr and b _ wptr pointers of a mes­
sage block are copied to the new block, and these pointers in the new block are 
given the same offset values they had in the original message block. On success­
ful completion, copyb () returns a pointer to the new message block containing 
the copied data. Otherwise, it returns a NULL pointer. 

( mblk_t *copymsg(mp) 
mblk_t *mp; ] 

copymsg () uses copyb () to copy the message blocks contained in the mes­
sage pointed at by mp to newly-allocated message blocks, and links the new mes­
sage blocks to form the new message. On successful completion, copymsg () 
returns a pointer to the new message. Otherwise, it returns a NULL pointer. 

( #define datamsg(mp) ... ) 
The datarnsg macro returns TRUE if mp (declared as mblk t *mp) points to 
a data type message. Types M_DATA, M_PROTO, M_PCPROTO, and M_DELAY 
count as data (see the Message Types section, above). If mp points to any other 
message type, datamsg returns FALSE. 

[
mblk_t *dupb (bp) J 

mblk_t *bp; 

----------
dupb () duplicates the message block descriptor {mblk _ t structure) pointed at 
by bp by copying it into a newly allocated message block descriptor. A message 
block is formed with the new message block descriptor pointing to the same data 
block as the original descriptor. The reference count in the data block descriptor 
(dblk_t structure) is incremented. dupb () does not copy the data buffer, only 
the message block descriptor. 
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dupmsg () - Duplicate a 
Message 

enab1eok () - Re-allow 
Queue to be Scheduled 

esba11oc () -Extended 
STREAMS Buffer Allocation 

esbbca11 () -bufcall for 
extended buffers 

On successful completion, dupb (} returns a pointer to the new message block. 
If dupb (} cannot allocate a new message block descriptor, it returns NULL. 

This routine allows message blocks that exist on different queues to reference the 
same data block. In general, if the contents of a message block with a reference 
count greater than 1 are to be modified, copyb ( } should be used to create a new 
message block and only the new message block should be modified. This insures 
that other references to the original message block are not invalidated by 
unwanted changes. 

[ mblk_t *dupmsg(mp) 
mblk_t *mp; 

dupmsg (} calls dupb (} to duplicate the message pointed at by mp, by copy­
ing all individual message block descriptors, and then linking the new message 
blocks to form the new message. dupmsg (} does not copy data buffers, only 
message block descriptors. On successful completion, dupmsg (} returns a 
pointer to the new message. Otherwise, it returns NULL. 

[ #define enableok(q) ... 

The enableok (} macro cancels the effect of an earlier noenable (} on the 
same queue q (declared as queue_t *q). It allows a queue to be scheduled 
for service that had previously been excluded from queue service by a call to 
noenable (}. 

mblk t * 
esballoc(base, size, pri, fr_rtn) 

unsigned char *base; 
int size, pri; 
frtn_t *fr_rtn; 

] 

J 

esballoc (} allocates message and data blocks that point directly to a client­
supplied buffer. Message and data blocks allocated this way are indistinguishable 
from the normal data blocks. The client-supplied buffers are processed as if they 
were normal STREAMS buffers. Fr_ rt n points to a f rt n _ t structure ( defined 
in <sys/ stream. h>) containing the address of a function and an argument to 
that function. This function is called with that argument when the message block 
that esballoc returns is freed. 

r 

\. 

int 
esbbcall(pri, func, arg) 

int pri; 
int ( *func) () ; 
long arg; 
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£1ushq () - Flush a Queue 

freeb () - Free a Message 
Block 

freemsg () - Free All 
Message Blocks in a Message 

getq () - Get a Message 
from a Queue 
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esbbcall () is an analog ofbufcall () that can be called when esbal­
loc () fails. See the description ofbufcall () for more information. 

\. 

flushq (q, flag) 
queue_t *q; 
int flag; 

flushq () removes messages from the message queue in queue q and frees 
them, using freemsg (). If.flag is set to FLUSHDATA, then flushq () dis­
cards all M_DATA, M_PROTO, M_PCPROTO, and M_DELAY messages (see 
datamsg), but leaves all other messages on the queue. If.flag is set to 
FLUS HALL, all messages are removed from the message queue and freed. 
FLUS HALL and FLUSHDATA are defined in <sys/ stream. h>. 

If a queue behind q is blocked, flushq () may enable the blocked queue, as 
described in putq (). 

[

freeb(bp) ] 

-· __ mb_l_k __ t_*_b_p_; ___________________ _, 

freeb () will free (de-allocate) the message block descriptor pointed at by bp, 
and free the corresponding data block if the reference count (see dupb{)) in the 
data block descriptor ( db 1 k _ t structure) is equal to 1. If the reference count is 
greater than 1, freeb () will not free the data block, but will decrement the 
reference count. 

[ freemsg (mp) 
mblk_t *mp; 

freemsg () uses freeb () to free all message blocks and their corresponding 
data blocks for the message pointed at by mp. 

( mblk_t *getq(q) 
queue_t *q; 

getq () gets the next available message from the queue pointed at by q. 
getq () returns a pointer to the message and removes that message from the 
queue. If no message is queued, getq () returns NULL. 

] 

] 

getq (), and certain other utility routines, affect flow control in the stream as 
follows: If getq () returns NULL, the queue is internally marked so that the next 
time a message is placed on it, it will be scheduled for service ( enabled, see qen -
able{)). Also, if the data in the enqueued messages drops below the low-water 
mark, q_lowat, and a queue behind the current queue had previously attempted 
to place a message in the queue and failed (i.e., was blocked, see canput()), 
then the queue behind the current queue is scheduled for service (see the Flow 
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insq () - Put a Message at a 
Specific Place in a Queue 

linkb () - Concatenate 
Two Messages into One 

msgdsize () - Get Number 
of Data Bytes in a Message 

noenable () - Prevent a 
Queue from Being Scheduled 

OTHERQ () - Get Pointer to 
the Mate Queue 

Control section in the Introduction to STREAMS chapter). 

insq(q, emp, nmp) 
queue_t *q; 
mblk_t *emp, *nmp; 

insq () places the message pointed at by nmp in the message queue contained 
in the queue pointed at by q immediately before the already-enqueued message 
pointed at by emp. If emp is NULL, the message is placed at the end of the 
queue. If emp is non-NULL, it must point to a message that exists on the queue q, 
or a system panic could result. 

Note that the message is placed where indicated, without consideration of mes­
sage queueing priority. The queue will be scheduled in accordance with the rules 
described in putq () for ordinary priority messages. 

r 

linkb (mp 1, mp2) 
mblk t *mpl; 
blk_t *mp2; 

linkb () puts the message pointed at by mp2 at the tail of the message pointed 
at by mpl. 

[ int msgdsize(mp) 
mblk_t *mp; 

ms gds i z e ( ) returns the number of bytes of data in the message pointed at by 
mp. Only bytes included in data blocks of type M_DATA are included in the 
total. 

( #define noenable(q) ... 

] 

J 
The noenable () macro prevents the queue q (declared as queue_t *q) 
from being scheduled for service by putq () or putbq () when these routines 
enqueue an ordinary priority message, or by insq () when it enqueues any mes­
sage. no enable () does not prevent the scheduling of queues when a high 
priority message is enqueued, unless it is enqueued by insq (). 

( #define OTHERQ(q) ... 

The OT HERQ ( ) macro returns a pointer to the mate queue of q ( declared as 
queue_ t *q). If q is the read queue for the module, it returns a pointer to the 
module's write queue. If q is the write queue for the module, it returns a pointer 
to the read queue. 

J 
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pu11upmsg () -
Concatenate Bytes in a 
Message 

putbq () - Return a 
Message to the Beginning of a 
Queue 

putct1 () - Put a Control 
Message 

putct11 () - Put One-byte 
Parameter Control Message 

int pullupmsg(mp, len) 
mblk_t *mp; 
int len; 
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pullupmsg () concatenates and aligns the first Zen data bytes of the passed 
message into a single, contiguous message block. Proper alignment is 
hardware-dependent. To perform its function, pullupmsg () allocates a new 
message block by calling allocb () with pri set to BPRI _ MED (see Buffer 
Allocation Priority, above). pullupmsg () only concatenates across message 
blocks of similar type. It will fail if mp points to a message of less than Zen bytes 
of similar type. A Zen value of -1 requests a pull-up of all the like-type blocks in 
the beginning of the message pointed at by mp. 

At completion of concatenation, pull upmsg () replaces mp with a pointer to 
the new message block, so that mp still points to the same message block at the 
end of the operation. However, the contents of the message block may have been 
altered. On success, pullupmsg () returns 1. On failure, it returns 0. 

\. 

putbq(q, bp) 
queue_t *q; 
mblk_t *bp; 

putbq (} puts the message pointed at by bp at the beginning of the queue 
pointed at by q, in a position in accordance with the message's type. High prior­
ity messages are placed at the head of the queue, and ordinary messages are 
placed after all high priority messages, but before all other ordinary messages. 
The queue will be scheduled in accordance with the same rules described in 
putq (). This utility is typically used to replace a message on a queue from 
which it was just removed. 

int putctl(q, type) 
queue_t *q; 
int type; 

putctl () creates a control (not data, see datamsg, above) message of type 
type, and calls the put procedure in the queue pointed at by q, with a pointer to 
the created message as an argument. putctl (} allocates new blocks by calling 
allocb () with pri set to BP RI_ HI (see the Buffer Allocation Priority section, 
above). On successful completion, putctl () returns 1. It returns O if it cannot 
allocate a message block, or if type M _ DATA, M _ PROTO, or M_ PCPROTO was 
specified. 

, 

\. 

int putctll(q, type, p) 
queue_t *q; 
int type; 
int p; 
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putnext () - Put a Message 
to the Next Queue 

putq () - Put a Message on 
a Queue 

qenab1e () - Enable a 
Queue 

putctll () creates a control (not data, see datamsg, above) message of type 
type with a one-byte parameter p, and calls the put procedure in the queue 
pointed at by q, with a pointer to the created message as an argument. 
putctll () allocates new blocks by calling allocb () withpri set to 
BPRI _HI (see the Buffer Allocation Priority section, above). On successful 
completion, putctll () returns 1. It returns O if it cannot allocate a message 
block, orif type M_DATA, M_PROTO, orM_PCPROTO was specified. 

( #define putnext(q, mp) ... 

The putnext () macro calls the put procedure of the next queue in a STREAM, 
and passes it a message pointer as an argument. The parameters must be 
declared as queue_t *q and mblk_t *mp. q is the calling queue (not the 
next queue) and mp is the message to be passed. put next () is the typical 
means of passing messages to the next queue in a STREAM. 

putq(q, bp) 
queue_t *q; 
mblk_t *bp; 

put q ( ) puts the message pointed at by bp on the message queue contained in 
the queue pointed at by q and enables that queue. put q ( ) queues messages 
appropriately by type (i.e., message queueing priority, see the Message Queues 
amd Service Procedures section of the STREAMS Module and Driver Program­
ming chapter). 

putq () will always enable the queue when a high priority message is queued. 
put q ( ) will enable the queue when an ordinary message is queued if the fol­
lowing condition is set, and enabling is not inhibited by noenable (). The 
condition is set if the module has just been pushed (see I_PUSH in 
streamio(4)), orif no message was queued on the last getq () call and no 
message has been queued since. 

putq () is intended to be used from the put procedure in the same queue in 
which the message will be queued. A module should not call putq () directly 
to pass messages to a neighboring module. putq () may be used as the 

J 

qi _putp put procedure value in either or both of a module's qini t structures. 
This effectively bypasses any put procedure processing and uses only the 
module's service procedure(s). 

[ qenable ( q) 
queue_t *q; 

qenable () places the queue pointed at by q on the linked list of queues that 
are ready to be called by the STREAMS scheduler (see the definition for 
"Schedule" above, and the Put and Service Procedures section in the Introduc­
tion to STREAMS chapter). 

J 
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qrep1y () -Send Reverse­
Direction Message 

qsize () -Find the 
Number of Messages on a 
Queue 

RD () - Get Pointer to the 
Read Queue 

rmvb () - Remove a 
Message Block from a 
Message 

rmvq () - Remove a 
Message from a Queue 

qreply(q, bp) 
queue_t *q; 
mblk_t *bp; 
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qreply () sends the message pointed at by bp up (or down) the stream in the 
reverse direction from the queue pointed at by q. This is done by locating the 
partner of q (see OTHERQ () , below), and then calling the put procedure of that 
queue's neighbor (as in put next()). qreply () is typically used to send back 
a response {M _ I OCACK or M_ I OCNAK message) to an M _IOCTL message (see 
Message Types, above). 

[ int qsize (q) 
queue_t *q; 

qs i z e ( ) returns the number of messages present in queue q. If there are no 
messages on the queue, qsize () returns 0. 

] 

(.._i_d_e_f_i_· n_e_RD_(_q_)_._·_· _____________________ ] 

The RD () macro accepts a write queue pointer, q (declared as queue_ t *q), 
as an argument and returns a pointer to the read queue for the same module. 

mblk_t *rmvb(mp, bp) 
mblk_t *mp; 
mblk_t *bp; 

rmvb () removes the message block pointed at by bp from the message pointed 
at by mp, and then restores the linkage of the message blocks remaining in the 
message. rmvb () does not free the removed message block. rmvb () returns a 
pointer to the head of the resulting message. If bp is not contained in mp, 
rmvb ( ) returns a -1. If there are no message blocks in the resulting message, 
rmvb ( ) returns a NULL pointer. 

rmvq(q, mp) 
queue_t *q; 
mblk_t *mp; 

rmvq ( ) removes the message pointed at by mp from the message queue in the 
queue pointed at by q, and then restores the linkage of the messages remaining on 
the queue. If mp does not point to a message that is present on the queue q, a 
system panic could result. 
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sp1str () - Set Processor 
Level 

testb () - Check for an 
Available Buffer 

unbuf ca11 () - Cancel an 
outstanding buf call 
request 

un1inkb () - Remove 
Message Block from Message 
Head 

WR () - Get Pointer to the 
Write Queue 

[ int splstr () 

splstr () increases the system processor level to block interrupts at a level 
appropriate for STREAMS modules when those modules are executing critical 
portions of their code. splstr () returns the processor level at the time of its 
invocation. Module developers are expected to use the standard kernel function 
splx ( s), wheres is the integer value returned by splstr (), to restore the 
processor level to its previous value after the critical portions of code are passed. 

int testb(size, pri) 
register size; 
uint pri; 

te stb ( ) checks for the availability of a message buffer of size size at priority 
pri (see Buffer Allocation Priority, below) without actually retrieving the buffer. 
te stb () returns 1 if the buffer is available, and O if no buffer is available. A 
successful return value from testb () does not guarantee that a subsequent 
allocb () call will succeed (e.g., in the case of an interrupt routine taking 
buffers). 

[ void unbufcall(id) 
int id; 

] 

] 
unbuf call () cancels the pending buf call () request denoted by id, where 
idis the value returned previously by bufcall (). This routine is typically 
called in a module's close routine to clean up before returning. (Clean up is often 
necessary to prevent executing the function supplied to buf call () with a 
no-longer-valid argument.) 

[
mblk_t *unlinkb(mp) J 

.._ ___ mb_l_k ___ t_*_m_p_: ____________________ __ 

unlinkb () removes the first message block pointed at by mp and returns a 
pointer to the head of the resulting message. unlinkb () returns a NULL 
pointer if there are no more message blocks in the message. 

[ i!def ine WR ( q) ... 

The WR macro accepts a read queue pointer, q (declared as queue_t *q), as 
an argument and returns a pointer to the write queue for the same module. 

] 
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This appendix summarizes STREAMS module and driver design guidelines and 
rules presented in previous chapters. Additional rules that developers must 
observe are included. Where appropriate, the section of this document contain­
ing detailed information is named. 

Unless otherwise noted, "module" implies "modules and drivers". 

The following are general rules that developers should follow when writing 
modules. 

1. Modules cannot access information in the user structure associated with a 
process. Modules are not associated with any process, and therefore have no 
concept of process or user context. 

The capability to pass user structure information upstream using messages 
has been provided where required. This can be done in M_IOCTL handling 
(see the Drivers section of the STREAMS Module and Driver Programming 
chapter and also Message Types, above). A module can send error codes 
upstream in an M _ IOCACK or M _ IOCNAK message, where they will be 
placed in u_ error by the stream head. Return values may also be sent 
upstream in a M _ I OCACK message, and will be placed in u _ rv al 1. Infor­
mation can also be passed to the user structure via a M _ ERROR message 
(see the Complete Driver section of the STREAMS Module and Driver Pro­
gramming chapter and also Message Types, above). The stream head will 
recognize this message type and inform the next system call that an error has 
occurred downstream by setting u _error. Note that in both instances, the 
downstream module cannot access the user structure, but it informs the 
stream head to do so. 

2. In general, modules should not require the data in an M _ DATA message to 
follow a particular format, such as a specific alignment. This makes it easier 
to arbitrarily push modules on top of each other in a sensible fashion. Not 
following this rule may limit module re-usability (the ability to use the 
module in multiple applications). 

3. Every module must process an M_FLUSH message according to the value of 
the argument passed in the message. (See the Message Queues and Service 
Procedures and Drivers sections of STREAMS Module and Driver Program­
ming, and also Message Types, above). 

4. A module should not change the contents of a data block whose reference 
count is greater than 1 (see dupmsg () in the Utilities section, above) 
because other modules that have references to the block may not want the 
data changed. To avoid problems, it is recommended that the module copy 
the data to a new block and then change the new one. 

5. Modules should only manipulate message queues and manage buffers with 
the routines provided for those purposes, (see the Utilities section, above). 

6. Filter modules pushed between a service user and a service provider (see the 
Service Interface section of the STREAMS Module and Driver Programming 
chapter) may not alter the contents of the M_PROTO or M_PCPROTO block 
in messages. The contents of the data blocks may be manipulated, but the 
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System Calls 

Data Structures 

Header Files 

message boundaries must be preserved. 

These rules pertain to modules and drivers as noted. 

l. open and close routines may sleep, but the sleep must return to the routine in 
the event of a signal. That is, if they sleep, they must be at priority <= 
P ZERO, or with PCATCH set in the sleep priority. 

2. The open routine must return>= 0 on success or OPENFAIL if it fails. This 
ensures that a failure will be reported to the user process. errno may be set 
on failure. However, if the open routine returns OPENFAIL and errno is 
not set, STREAMS will automatically set errno to ENXIO. 

3. If a module or driver recognizes and acts on an M _ IOCTL message, it must 
reply by sending a M _ I OCACK message upstream. A unique id is associated 
with each M_IOCTL, and the M_IOCACK orM_IOCNAK message must con­
tain the id of the M _ IOCTL it is acknowledging. 

4. A module (not a driver) must pass on any M _IOCTL message it does not 
recognize (see Message Types, above). If an unrecognized M _ IOCTL 
reaches a driver, the driver must reply by sending an M _ I OCNAK message 
upstream. 

Only the contents of q_ptr, q_minpsz, q_maxpsz, q_hiwat, and 
q_ low at in a queue_ t structure may be altered. The latter four quantities are 
set when the module or driver is opened, but may be modified subsequently. 

As described in the SunOS STREAMS Topics chapter, every module and driver is 
configured in with the address of a streamtab structure (see also the STREAMS 
Mechanism section of the STREAMS Module and Driver Programming chapter). 
For a driver, a pointer to its streamtab is included in cdevsw. For a module, 
a pointer to its streamtab is included in fmodsw. 

The following header files are generally required in modules and drivers: 

types.h 
contains type definitions used in the STREAMS header files 

stream.h 
contains required structure and constant definitions 

stropts.h 
primarily for users, but contains definitions of the arguments to the 
M_FLUSH message type also required by modules 

One or more of the header files described below may also be included (also see 
the following section). No standard SunOS system header files should be 
included except as described in the following section. The intent is to prevent 
attempts to access data that cannot or should not be accessed. 

errno.h 
defines various system error conditions, and is needed if errors are to be 
returned upstream to the user 
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sysmacros.h 
contains miscellaneous system macro definitions 

param.h 
defines various system parameters, particularly the value of the P CATCH 

sleep flag 

signal.h 
defines the system signal values, and should be used if signals are to be pro­
cessed or sent upstream 

file.h 
defines the file open flags, and is needed if O _ NDELAY is interpreted 

The following lists the only symbols and functions that modules or drivers may 
refer to (in addition to those defined by STREAMS), if hardware and UNIX­
system release independence is to be maintained. Drivers and modules that use 
symbols not listed here will not be compatible with System V systems. 

user. h (from open/close procedures only) 

struct proc *u_procp 
char u error 
ushort u uid 

I* process structure pointer *I 
I* system call error number *I 
I* effective user ID *I 

ushort u_gid I* effective group ID * I 
ushort u ruid I* real user ID * I 
ushort u_rgid I* real group ID *I 

proc . h (from open/ close procedures only) 

short p_pid 
short p_pgrp 

I* process ID *I 
I* process group ID * I 

Functions accessible from open/close procedures only 

flg = sleep(chan, pri) I* sleep until wakeup *I 

Universally accessible functions 

bcopy(from, to, nbytes) l*copydataquickly*I 
bzero (buffer, nbytes) /* zero data quickly *I 
t = max (a, b) /* return max of args *I 
t = min (a, b) /* return min of args *I 
mem=rm_alloc (map, size) /* allocate resource *I 
rmfree (map, size, addr) /* de-allocate resource *I 
rminit(mp, size, addr, name, mapsize) l*initializeresourcemap *I 
printf (format, ... ) /* print message *I 
s = spln () /* set priority level *I 
timeout (func, arg, ticks)/* schedule event *I 
untimeout (func, arg) /* cancel event *I 
wakeup (chan) /*wakeup sleeper *I 

sysmacros.h 

t = major (dev) 
t = minor (dev) 

kernel.h 

I* return major device * I 
I* return minor device * I 
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Rules for Put and Service 
Procedures 

struct timeval boot time /* time since system came up*! 
struct timeval time /* current time*! 

param.h 

PZERO 
PCATCH 
hz 
NULL 

types.h 

dev t 
time t 

I* zero sleep priority *I 
I* catch signal sleep flag *I 
I* clock ticks per second * I 
!* 0 *I 

I* combined major/minor device *! 
I* time counter *I 

All data elements are software read-only except: 

u error I* may be set on a failure return of open *I 

To ensure proper data flow between modules, the following rules should be 
observed in put and service procedures. The following rules pertain to put pro­
cedures. 

1. A put procedure must not sleep. 

2. Each QUEUE must define a put procedure in its qini t (see Kernel Struc­
tures, above) structure for passing messages between modules. 

3. A put procedure must use the putq () (see Utilities, above) utility to 
enqueue a message on its own message queue. This is necessary to ensure 
that the various fields of the queue_ t structure are maintained consistently. 

4. When passing messages to a neighbor module, a module may not call 
putq () directly, but must call its neighbor's put procedure (see put­
next () in Utilities). Note that this rule is distinct from the one above it. 
The previous rule states that a module must call put q ( ) to place messages 
on its own message queue, whereas this rule states that a module must not 
call putq () directly to place messages on a neighbor's queue. 

However, the q_qinfo structure that points to a module's put procedure 
may point to putq () (i.e. putq () is used as the put procedure for that 
module). When a module calls a neighbor's put procedure that is defined in 
this manner, it will be calling putq () indirectly. If any module uses 
putq () as its put procedure in this manner, the module must define a ser­
vice procedure. Otherwise, no messages will ever be sent to the next 
module. Also, because putq () does not process M _FLUSH messages, any 
module that uses put q ( ) as its put procedure must define a service pro­
cedure to process M_FLUSH messages. 

5. The put procedure of a QUEUE with no service procedure must call the put 
procedure of the next QUEUE directly, if a message is to be passed to that 
QUEUE. If flow control is desired, a service procedure must be provided. 

Service procedures must observe the following rules: 
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1. A service procedure must not sleep. 

2. The service procedure must use getq (} to remove a message from its mes­
sage queue, so that the flow control mechanism is maintained. 

3. The service procedure should process all messages on its message queue. 
The only exception is if the stream ahead is blocked (i.e., canput (} fails, 
see Utilities, above). Adherence to this rule is the only guarantee that 
STREAMS will enable (schedule for execution) the service procedure when 
necessary, and that the flow control mechanism will not fail. 

If a service procedure exits for any other reason (e.g., buffer allocation 
failure), it must take explicit steps to assure it will be re-enabled. 

4. The service procedure must follow the steps below for each message that it 
processes. STREAMS flow control relies on strict adherence to these steps. 

Step 1: 
Remove the next message from the message queue using getq (}. It is pos­
sible that the service procedure could be called when no messages exist on 
the queue, so the service procedure should never assume that there is a mes­
sage on its message queue. If there is no message, return. 

Step 2: 
If all the following conditions are met: 

o canput (} fails and 

o the message type is not a priority type (see Message Types) and 

o the message is to be put on the next QUEUE, 

then, continue at Step 3. Otherwise, continue at Step 4. 

Step 3: 
The message must be replaced on the head of the message queue from which 
it was removed using putbq (} (see Utilities). Following this, the service 
procedure is exited. The service procedure should not be re-enabled at this 
point. It will be automatically back-enabled by flow control. 

Step 4: 
If all the conditions of Step 2 are not met, the message should not be 
returned to the queue. It should be processed as necessary. Then, return to 
Step 1. 

Back Enable To enable (by STREAMS) a preceding blocked QUEUE when STREAMS deter­
mines that a succeeding QUEUE has reached its low water mark. 

Blocked A QUEUE that cannot be enabled due to flow control. 

Clone Device A STREAMS device that returns an unused minor device when initially opened, 
rather than requiring the minor device to be specified in the open ( 2} call. 
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Close Procedure The module routine that is called when a module is popped from a stream and the 
driver routine that is called when a driver is closed. 

Control Stream In a multiplexor, the upper stream on which a previous I_ LINK ioctl (to the 
associated file, see streamio(4)) caused a lower stream to be connected to the 
multiplexor driver at the end of the upper stream. 

Downstream The direction from stream head towards driver. 

Device Driver In the STREAMS context, the term "device driver" refers to the end of the stream 
closest to an external interface. The principal functions of a device driver are 
handling an associated physical device, and transforming data and information 
between the external interface and stream. 

Driver A module that forms the stream end. It can be a device driver or a pseudo-device 
driver. In STREAMS, a driver is physically identical to a module (i.e., composed 
of two QUEUEs), but it has additional attributes. 

Enable Schedule a QUEUE. 

Flow Control The STREAMS mechanism that regulates the flow of messages within a stream 
and the flow from user space into a stream. 

Lower Stream A stream connected below a multiplexor pseudo-device driver, by means of an 
I LINK ioctl. The far end of a lower stream terminates at a device driver or 
another multiplexor driver. 

Message One or more linked message blocks. A message is referenced by its first message 
block and its type is defined by the message type of that block. 

Message block Carries data or information, as identified by its message type, in a stream. A 
message block is a triplet consisting of a data buffer and associated control struc­
tures, an mblk _ t structure, and a dblk _ t structure. 

Message Queue A linked list of zero or more messages connected to a QUEUE. 

Message type A defined set of values identifying the contents of a message block and message. 

Module A pair of QUEUEs. In general, module implies a pushable module. 

Multiplexor A STREAMS mechanism that allows messages to be routed among multiple 
STREAMS in the kernel. A multiplexor includes at least one multiplexing 
pseudo-device driver connected to one or more upper STREAMS and one or more 
lower STREAMS. 

Open Procedure The routine in each STREAMS driver and module called by STREAMS on each 
open (2) system call made on the stream. A module's open procedure is also 
called when the module is pushed. 

Pop A STREAMS ioctl () (see streamio(4)) that causes the pushable module 
immediately below the stream head to be removed (popped) from a stream 
(modules can also be popped as the result of a close ( 2) ) • 

Pseudo-device Driver A software driver, not directly associated with a physical device, that performs 
functions internal to a stream such as a multiplexor or log driver. 
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Push A STREAMS ioctl () (see streamio(4)) that causes a pushable module to be 
inserted (pushed) in a stream immediately below the stream head. 

Pushable Module A module interposed (pushed) between the stream head and driver. Pushable 
modules perform intermediate transformations on messages flowing between the 
stream head and driver. A driver is a non-pushable module and a stream head 
includes a non-pushable module. 

Put Procedure The routine in a QUEUE that receives messages from the preceding QUEUE. It is 
the single entry point into a QUEUE from a preceding QUEUE. The procedure 
may perform processing on the message and will then generally either queue the 
message for subsequent processing by this QUEUE's service procedure, or will 
pass the message to the put procedure of the following QUEUE. 

QUEUE A STREAMS defined set of C structures. A module is composed of a read 
(upstream) QUEUE and a write (downstream) QUEUE. A QUEUE will typically 
contain a put and service procedure, a message queue, and private data. The read 
QUEUE ( cf. read queue) in a module will also contain the open procedure and 
close procedure for the module. 

The primary structure is the queue_ t structure, occasionally used as a synonym 
fora QUEUE. 

Read Queue The message queue in a module or driver containing messages moving upstream. 
Associated with a read ( 2) system call and input from a driver. 

Schedule Place a QUEUE on the internal list of QUEUEs which will subsequently have their 
service procedure called by the STREAMS scheduler. 

Service Interface A set of primitives that define a service at the boundary between a service user 
and a service provider and the rules (typically represented by a state machine) for 
allowable sequences of the primitives across the boundary. At a stream/user 
boundary, the primitives are typically contained in the control part of a message; 
within a stream, in M_PROTO or M_PCPROTO message blocks. 

Service Procedure The routine in a QUEUE that receives messages queued for it by the put pro­
cedure of the QUEUE. The procedure is called by the STREAMS scheduler. It 
may perform processing on the message and will generally pass the message to 
the put procedure of the following QUEUE. 

Service Provider In a service interface, the entity (typically a module or driver) that responds to 
request primitives from the service user with response and event primitives. 

Service User In a service interface, the entity that generates request primitives for the service 
provider and consumes response and event primitives. 

Stream The kernel aggregate created by connecting STREAMS components, resulting 
from an application of the STREAMS mechanism. The primary components are 
the stream head, the driver, and zero or more pushable modules between the 
stream head and driver. 

Stream End The end of the stream furthest from the user process, containing a driver. 

Stream Head The end of the stream closest to the user process. It provides the interface 
between the stream and the user process. 
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STREAMS 

Upper Stream 

Upstream 

Water Marks 

Write queue 

A kernel mechanism that supports development of network services and data 
communication drivers. It defines interface standards for character input/output 
within the kernel, and between the kernel and user level. The STREAMS 
mechanism comprises integral functions, utility routines, kernel facilities, and a 
set of structures. 

A stream terminating above a multiplexor pseudo-device driver. The far end of 
an upper stream originates at the stream head or another multiplexor driver. 

The direction from driver towards stream head. 

Limit values used inflow control. Each QUEUE has a high water mark and a low 
water mark. The high water mark value indicates the upper limit related to the 
number of characters contained on the message queue of a QUEUE. When the 
enqueued characters in a QUEUE reach its high water mark, STREAMS causes 
another QUEUE that attempts to send a message to this QUEUE to become 
blocked. When the characters in this QUEUE are reduced to the low water mark 
value, the other QUEUE will be unblocked by STREAMS. 

The message queue in a module or driver containing messages moving down­
stream. Associated with a write ( 2) system call and output from a user pro­
cess. 
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