
®

Part Number: 800-3844-10
Revision A of 27 March, 1990

Sun Workstation® is a trademark of Sun "111 '"" .. "·'-'"'ct"''".,c

SunOS™ is a trademark Sun "11 1 •'"'1"f"\QUQf-'31"1r"IQ

Copyright© 1989 Sun Inc. - Printed in

All rights reserved.
means - graphic,,,
retrieval system, nnt·Mnlll"

Restricted rights use, or a1sc101smre
subparagraph (c)(l)(ii) of the Rights in Technical Data
similar clauses in FAR and FAR i:'.)U1JPH~mt:mr.

Sun Graphical Interface was developed
now ledges the pioneering efforts of Xerox in, 4A . .., ,..,

faces for the computer industry. holds a n011-eJ(CU1snre ,
which license also covers Sun's licensees.

This product is protected one or more of
4,679,014 4,435,792 19,569 4,550,368 in....,, -'&.

....i..n.vu•u. , in any or any
in an information

in

licensees. Sun ack-
or graphical user inter­

Xerox Graphical User Interface,

4,745,407

Contents

Chapter 1 Using The Sun C Compiler .. 1

1.1. Basics - Compiling and Running C Programs .. 1

1.2. C Compiler .. 3

1.3. cc Options... 3

-a Option.. 3

-align _block_ Option .. 3

- B binding Option .. 4

-c Option.. 4

-c Option.. 4

-dalign Option ... 4

-dry run Option ... 4

-D name [=de!J Option .. 4

-E Option.. 4

Floating-Point Options .. 4

-g Option.. 5

-go Option ... 5

-help Option .. :.:.:'.;; .. ;,;.,,............ 5

- I pathname Option 5

-J Option 5

-1 library Option 5

- L dir Option 5
~~00 5

-misalign Option 6

-o outputfile Option 6

-iii-

Contents - Continued

Chapter 5 The Standard I/O Library .. 27

5 .1. The Standard I/O Library .. 27

5.2. Using the Standard I/O Library ... 27

5.3. The Standard Input and Standard Output .. 29

Reading Standard Input and Writing Standard Output........................... 29

5.4. Error Handling- stderr and exit() .. 31

5 .5. Miscellaneous I/O Functions .. 31

Chapter 6 Accessing Files Through Standard I/O ... 33

6.1. Accessing Files ... 36

f open () - Open a File .. 36

f reopen () - Reopen a File ... 37

ff lush () -Flush Stream Buffer.. 37

fclose () -Close A File... 38

setbuf () - Set Buffer for File I/O ... 38

fileno () -Obtain File Descriptor ;.................................... 39

rewind () -Rewind a Stream... 40

Chapter 7 Character 1/0 ... 41

getc (} Macro - Get a Character from a File 41

fgetc () Function- Get Character from File 42

getchar () Macro -Get a Character from Standard Input......... 43

fgets () - Read a String from a File.. 44

unget c () - Push a Character Back on a Stream 44

put c () Macro Put a Character to a File .. 45

fputc (} Function-Put a Character to a File 46

put char () Macro - Put a Character to Standard Output 46

fput s (} - Put a String to a File .. 47

feof () -Test for End Of Pile .. 47

7.1. Formatted Input and Output.. 48

Formatted Output Conversions ... 48

Formatted Input Conversions ... 48

The Format Control Templates ... 49

-v-

8.1.

Conversion

d - Dec;imal

u-

- Character Conversion ,,

Conversion, .. .

50

50

50

51

51

51

52

e .1.v"~u.u:;:;;. Conversion ... 52

f

g-

Left Field,, ... ,

54

55

55

57

57

57 Is Character

Character Jooercase Letter 57

is lower (- Is ,u, ... Lowercase Letter

- Is ,,u'""'""'"' Uecirnal

-Is

isalnum (Is Character Letter or

- Is Character w tutesm1ce, , ,

- Is Character Punctuation .. .

- Is Character Printable .. .

58

58

iscntrl Character Control Character 58

is as c ii Is Character an ASCII Character 5 8

() - Is Character a Visible "-'"''"~•-"· ,, ,

8.2. Macros 58

- Convert Lowercase to 58

Contents - Continued

tolower () - Convert Uppercase to Lowercase 58

toascii () - Ensure Character is ASCII ... 58

8.3. Functions for Handling Null-Terminated Strings ... 58

Null Pointers versus Null Strings .. 59

strlen () - Find Length of String... 59

strcmp () and strncmp () - Compare Strings 59

strcpy () and strncpy () - Copy Strings 60

strcat () and strncat () - Concatenate Strings 60

index () and r index () - Find Character in String 60

8.4. Byte String and Bit String Functions ... 61

bcmp (} -Compare Byte Strings .. 61

bcopy () - Copy Byte Strings ... 61

b:;;-;ero () - Clear Byte String to Zero.. 61

ff s () - Find First Bit Set .. 61

Appendix A Low-Level File I/O .. 63

A. l. File Descriptors ... 63

A.2. read () and write () ... 64

A.3. open(), close(}, unlink(} .. 66

A.4. Random Access - lseek () .. 67

A.5. Error Processing.. 68

Appendix B Binary I/O ... 71

fread () Read Data from File ... 71

fwri te () - Write Data to File .. 71

Appendix C Memory Management ... 73

C. l. malloc () -Allocate Memory ... 73

C.2. free () - Free Allocated Memory .. 73

C.3. calloc () - Allocate Memory for C Objects .. 73

C.4. cf ree () - Free Allocated Memory ... 74

C.5. realloc () - Change Size of Allocated Block.................................... 74

C.6. memalign () -Allocate to Alignment Boundary 74

-vii-

Contents - Continued

D.1.

valloc () -

alloca)

u.J.'-''"'"'"""' Memory on a Page Boundary 7 4

11.J.'-''"'"'"'"' NLem.orv on Stack ... 7 5

:stc~ra~~e Allocation Heap 75

Errors Mt~rn<)fV Mc:mage1ne1at Routines

Representations

float and double Representation

77

77

79

.... ,,,. ,.... on Extreme Values 9 gUoW•He9UUHumu~~u•uu•wn 80

.LLJ._;r;;,uJ..1..1 J.J.L Passing Mechanism

Ke:ren:mcmg Data in C

o+-o.-o ,....,,,.,,,.. .:SJlmDie Variables ... 82

Ke:tenmctng With Pointers

83

84

Appendix E

E.1.

E.2. Name , .. ,CJ, ,. ..

E.3. Characters and lntt:!i!e.rs

E.6.

E.7.

E.8.

1)

87

87

87

88

88

88

E.10.

E.11. struct

E.

E.

E.

E.

E.17.

E.18. Anachronisms

-ix-

Contents Continued

and 1) .. 88

88

1)

11.1)

89

89

Tables

Table 5-1 Standard I/O Library Names Accessible to User Programs 28

Table D-1 Storage Allocation for Data Types ... 77

Table D-2 Representation of short .. 78

Table D-3 Representation of int and long ... 78

Table D-4 float Representation .. 78

Table D-5 double Representation ... 79

Table D-6 float Representations .. 79

Table D-7 double Representations... 79

Table D-8 Extreme Values Usage... 80

Table D-9 Addition and Subtraction Results .. 81

Table D-10 Multiplication Results ... 81

Table D-11 Division Results .. 81

Table D-12 Comparison Results .. 82

-xi

Figures

Figure 6-1 Example of Using fopen () .. 36

Figure 6-2 Example of Using freopen () ... 37

Figure 6-3 Example of Using setbuf () ... 39

Figure 6-4 Example of Using fileno () 39

Figure 7-1 Example of Using getc (} ... 42

Figure 7-2 Example of Using fgetc () .. 43

Figure 7-3 Example of Using get char () ... 43

Figure 7-4 Example of Using fgets () .. 44

Figure 7-5 Example of Using ungetc () ... 45

Figure 7-6 Example of Using fputc () .. 46

Figure 7-7 Example of Using put char () ... 47

Figure 7-8 Example of Using fputs () .. 47

Figure 7-9 Example of d Format Specification ... 50

Figure 7-10 Example of o Format Specification .. 50

Figure 7-11 Example of x Format Specification .. 51

Figure 7-12 Example of u Format Specification 51

Figure 7-13 Example of c Format Specification 52

Figure 7-14 Example of s Format Specification , ««;,,,.,,, .• ;:;.;:;: •. «,_,,,:,,.:,. .. ,.,.,;;.,::,::

Figure 7-15 Example of e Format Specification ·····•!«H·· .. ,.,,,,;,.; .. ,.,.,,,.,., ...• ,,.,;, ... ,,;:.::,;:;,, .. ,,.::<:::,·

Figure 7-16 Example of f Format Specification ;,,,,;; . .:••···";;;;·;., ... ;,."••·•··:·······;;,;:;::,~~;·;'.d' >

Figure 7-17 Example of g Format Specification ;·; ... ,,,;:.;'··:•"',.;;;;:~;., , ;,; ... ,>::::.::.·

Figure 7-18 Example of Literal Character Output , ;.;,;;"~,··"•:••:•/•···'i•>:..;::"·:·•;•··

Figure 7-19 Example of Field Width Specifications :·:······· .. .-............. .

- xiii-

54

55

8-1

D- ,...Variable References

59

1.1. Basics - Compiling
and Running C
Programs

1
Using The Sun C Compiler

This chapter describes how to compile C programs under the SunOS version of
the UNIXt operating system running on Sun Microsystems' Sun-3 and Sun-4
(SPARC) workstations.

If you are already familiar with using cc, (the UNIX C compiler), either on Sun
workstations or on other UNIX systems, you can probably ignore or skim the rest
of this chapter without regretting it later.

If you need to learn about programming in C, or about SunOS programming
tools, you should refer to one or more of the introductory books available that
address the topic.

This section shows how to compile and run a minimal C program. Consider this
C program that just displays a message and exits:

Using your preferred text editor, save the text of this program in a file called
hackers. c. After you have saved the file, compile it with the cc command:

(
tutorial% cc hackers.c J

__ t_u_t_o_r_i_·a_i_~_o ___ __

cc works silently unless there are errors in the program. In this case, there are
no errors, and cc compiles the program and saves an executable version of it in a
file named a. out.

t UNIX is a registered trademark of AT&T.

Revision A of27 March, 1990

1.2. C Compiler

1.3. cc Options
-a Option

'7align _block_ Option

3

More generally, if a function f () is declared with a result type, but ends without
returning a result, and the (undefined) result off () is used in an expression con­
taining a call to f () , then the program is in error.

Some earlier versions of the compiler permitted programs that did not incor­
porate either a terminating exit () or return function.

This section describes the compiler options supported by Sun Microsystems' C
compiler. Later sections cover specific dependencies and features of Sun C
under SunOS.

(~~--c_c ___ [o_p_u_on_s_J __ fi_le_n_a_me ___ u_ib_r_a_ri-es_J_._·_· __________________________]

cc translates programs written in C into executable load modules, (or into relo­
catable binary programs for later linking with ld(l)), and optionally links (or
binds) the result with object files generated by cc or other language processors.

cc accepts a list of C source files and various object files contained in the list of
files specified by filename The resulting executable is placed in the file a.out,
unless the (-o) option is specified (see below).

cc lets you compile and link any combination of the following:

o C source files (with a . c suffix)

o C preprocessed source files with a . i suffix

o SunOS system object-code files with . o suffixes

o Assembler source files with . s suffixes

After successfully linking, cc places the product of linking those files in the file
a. out, or in the file specified by the -o option. Note that, unless otherwise
specified, options may follow the the filename, as in cc file. c -o file.

This option directs cc to insert code to count how many times each basic block
in a program is executed. This creates a . d file for every . c file compiled that
accumulates execution data for its corresponding source file. On the Sun-3,
Sun-4, and SP ARCStation, you can then run t cov(1) on the source files to gen­
erate statistics about the program.

Since this option entails some optimization, it is incompatible with -g.

This option directs cc to page-align the uninitialized global uninitialized data
symbol block, which is equivalent to a FORTRAN common block. This
increases its size to a whole number of pages, and places its first byte at the
beginning of a page. Multiple -align options may be given.

sun
mlcrosystems

Revision A of 27 March, 1990

4

-c

Sun-4

-Dname

the

preprocessor This is
oei~mnmtg of the source. If you don't

.., •. ,.,A...,&~~ may be

on

sm:gu~-prec:is1on arithmetic in com-
that do not

Note that

v , ,.,,....,. some programs run
...,...,,"""··"''"·Be aware that some can

March, 1990

-f soft

-f store

This option directs cc to generate software floating-point calls
(this is the default for all Sun-3 workstations).

This option insures that expressions allocated to extended preci­
sion registers are rounded to storage precision whenever an
assignment occurs in the source code.

Only effective if-f68881 is specified (Sun-3 systems only).

-f switch This directs cc to generate runtime-switched floating-point calls.

5

The compiled object code is linked at runtime to routines that sup­
port one of the above types of floating-point code. This option is
not recommended.

-g Option

-go Option

-help Option

- Ipathname Option

This option produces additional symbol table information for dbx(l) and
dbxtool(I), and passes the -lg flag to ld(l) so as to include the g library,
/usr I lib/ libg. a. This option suppresses the -0 and -R options.

This option produces additional symbol table information for adb(1). When this
option is given, the -0 and -R options are suppressed.

This option displays information about cc.

This option adds pathname to the list of directories that are searched for
#include files with relative filenames (those not beginning with slash/).

The preprocessor first searches for #include files in the directory containing
sourceftle, then in directories named with -I options (if any), and finally, in
/usr I include. Programs that use systems calls, for example, would need to
use the file types.has one of their #include files. types. h contains
many type definitions used by common system calls.

-J Option This option generates 32-bit offsets in switch() statement branches (Sun-3 sys­
tems only).

-1 library Option This option directs ld to link with object library library. The ordering of
libraries in the compile line is important, as symbols are resolved from left to
right.

Note This option must follow the source/de arguments.

-L dir Option This option adds dir to the list of directories containing object-library routines
(for linking with ld).

-M Option This option runs only the macro preprocessor on the named C programs, request­
ing that it generate makefile dependencies and send the result to the standard out­
put (see make(I) for details about makefiles and dependencies).

Revision A of27 March, 1990

6 Guide

-mi

Note

-pg

-g,

external or indirect variables.

4 Same

If you use

vu1.Lu . .1..1..c. uses and definitions of external variables. -03
['\. 1 ""'''"n~u· L-03 nor -04

-02.

the C preprocessor, It then
in a file with a Does not include line number

.... .,.,.,,.,....., ,.._ ... in the VUIHJUIL,

...... ,.,,r1.,,,."""' oo:s1tton-1niaetJenlC1.e:nt code. Each reference to a

but lets the
rare cases where

offset table. Each
... U,J'-6J-o._.._ a

on Sun-3 sys-

offset table span the range of
data,,. ,,

Revision A of 27 1990

Option

-Qoption prog

Option

-s Option

dir Option

7

intermediate files, between com-

This option passes the option to the compiler phase prog. The option must
appropriate to that program and may begin with a minus sign. prog can be

one or

This into the search path used to locate com-
components. path also searched first for certain relocatable

object files that are implicitly referenced the compiler for example
*crt *. o and link. o. lets you choose whether or not to use default
.. "'''"'""'"""" of programs invoked during compilation.

source type

c C source

.i cpp .

. o file from as.

. s ccorn, or c2.

sej;~mc~nt with the text segment for
.., ,,, ... , by this compilation is read­

hpt·u'"''""" processes. This option

option
program.

cc to produce an assembly source but not to assemble the

This option ge:ne1·au~s extra table information for the Sun Source Code
Browser. is an unbundled product that will be released based on 4.1.

This option object files for the processor architecture. Unless
used in conjunction with one of the Sun Cross-Compilers, correct programs can
be architecture of the host on which the compilation is per-

arch can be one of:

-sun2 files for a

-sun3 Produce object files for a system.

-sun4 files a systems.

option sets the directory to contain temporary files generated during the
compilation process to be

Revision A of 27 March, 1990

8

This

directs cc to report execution times for the various compilation

removes any initial definition cpp symbol name. This option
-D Multiple -U v1..1a . .1.vA.1.a may be given.

directs to not

systems only.) When no floating-point option is
..,v ,, .. uses the value this environment variable (if set).

are: 68881, f switch and £soft.

Revision A of 27 March, 1990

2.1. Basics - Accessing
Command Line
Arguments

2
Accessing a Program's Environment

This chapter discusses two basic topics:

o How to get the arguments from the command line used to run a program.

o How to access environment variables.

Assuming that you have written a C program, you might like to be able to get
information from the command line when the user starts up the program.
Although many SunOS system programs are run as filters - they obtain input
from the standard input and send output to the standard output, sometimes you
might like to be able to specify alternative files to operate upon, or to specify
options on the command line to control the program's behavior.

When a C program is run as a command, the arguments on the command line are
made available to the program's main (} function as its first two arguments, an
argument count argc and an array argv of pointers to character strings that
contain the arguments. By convention, argv [0] is the command name itself,
so argc is always greater than 0. Since argv is not NULL-terminated, you
must use argc when traversing it.

The following program illustrates the mechanism: it simply echoes its arguments
back to the terminal - this is essentially the echo command.

argv is a pointer to an array whose elements are pointers to arrays of characters;
each is terminated by \ O, so they can be treated as strings. The program starts by
printing argv [1] and loops until it has printed argv [argc-1 J .

9 Revision A of 27 March, 1990

next

Here is a short program to

as

tutorial% cc environ.c

tutorial%

"", "' are to so if you want to
you must copy them to ext1em;al

environment vari­
a program.

to its main function.
there is an array

comrm~1e the environment.

of the form name
(envp itself is

run it as fol-

March, 1990

Accessing Environment
Variable Using getenv ()

tutorial% a.out PATH

Environment 11

While environ. c i&, somewhat useful, parsing the name= value pairs is rather
tedious, so there is a C library function called getenv () whose purpose is to
get values from the environment. Here is the interface definition for getenv ():

(

char *getenv(name) J
~----c-h __ a_r _____ *_n_a_m_e_; __ _,,

Now we can compose a program that displays the value of a variable supplied as
an argument on its command line:

After compiling this program, you can use it like this:

PATH= /usr/doctools/bin:/usr/local: .:/usr/ucb:/bin:/usr/bin
tutorial% a.out nonesuch
a.out: no variable nonesuch
tutorial% a.out
Usage: a.out name
tutorial%

J

~\sun ~ microsystems
Revision A of 27 March, 1990

12

Revision A of 27 1990

3.1. The system()
Function

3.2. Low-Level Process
Creation - execl ()
and execv ()

3
Processes

The following section describes how to execute one program from within
another. This makes it possible to use existing programs rather than always hav­
ing to write new ones.

The easiest way to execute a program from another is to use the standard library
routine system (). system () takes one argument, a command string exactly
as typed at the terminal (except for the newline at the end) and executes it- for
instance, to timestamp the output of a program, and returns a status word.

main ()
int stat;

stat= system("date");

/* rest of processing */

The in-memory formatting capabilities of sprintf () are useful if you must
build the command string from pieces.

If you' re not using the standard library, or if you need finer control over what
happens, you will have to construct calls to other programs using more primitive
routines that the standard library's system (} routine is based on1.

The most basic operation is to execute another program without returning, by
using the routine execl (). For example, you can display the date as the last
action of a running program:

execl("/bin/date", "date", NULL);

1 system () uses /bin/sh (the Bourne Shell) to execute the command string, so syntax specific to the C­
Shell will not work.

~\sun ~ microsystems
13 Revision A of 27 March, 1990

14

you pass to

1.

2

as a comma-

4. a NULL arnmn1e11Lt.

The execl exitstJng program with the new one, runs
then exits. There is no return to the program.

The one .,,.,.,.,..,,,. .. ,t-.,,.,..... program never
occurs when there is an error in n&:>•'"f"n•,...,...,...,,..... the execl
if or is not If you
is you

filename is
program.

control back
for exi:imp1e

where date (

in

the

name

a
commandline that ,...,,.,., f-"'•n"

a
co1mr:11et:e command as it would have

at then

1990

3.3. Process Control -
fork() and wait()

Chapter 3-Processes 15

execl ("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/ sh. Its argument -c says to
treat the next argument as a whole command line, so it does just what you want.
The only problem is in constructing the right information in commandline.

So far what we've talked about isn't really all that useful by itself. Next we show
how to regain control after running a program with execl () or execv (} .
Since these routines simply overlay the new program on the old one, to save the
old one requires that it first be split into two copies; one of these can be overlaid,
while the other waits for the new, overlaying program to finish. The splitting is
done by a routine called fork () :

(proc_id =fork();]
This call splits the program into two copies, both of which continue to run. The
only difference between the two is the value of proc _id, the process id. In one
of these processes (the child), proc_id is zero. In the other (the parent),
proc _id is nonzero; it is the process number of the child. Thus the basic way
to call, and return from, another program is

if (fork () == 0)
execl("/bin/sh", "sh", "-c", cmd, NULL); /*in child*/

And in fact, except for handling errors, this is sufficient. The fork () makes
two copies of the program. In the child, the value returned by fork () is zero,
so it calls execl () which does the command and then dies. In the parent,
fork () returns nonzero, so it skips the execl (). If there is an error, fork ()
returns -1.

More often, the parent wants to wait for the child to terminate before continuing
itself. This can be done with the function wait () :

int status;

if (fork () == 0)
execl (...) ;

wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the
execl () or fork (),or the possibility that there might be more than one child
running simultaneously. The wait () returns the process id of the terminated
child, in case you want to check it against the value returned by fork ().
Finally, this fragment doesn't deal with any unusual behavior on the part of the

Revision A of 27 March, 1990

16 Guide

child these three lines are the heart of the
we'll show in a moment.

the three file descriptors 0, 1, and 2 are set
~ >.1..11..1...,..,, ""' A. and all other possible file

nrr,n-rl'.lm calls another one, correct
r>ru"lr1•lr•A•"I<' hold. Neither fork () nor

ne1·wf~en two cooperating processes:
process reads the pipe.

two processes. Most

which connects the output of 1 s to the input pr. Some-
hn''"'""'""".. it is most convenient for a process to set up its own plumbing; in

sec:non. we illustrate and used.

call
two

int fd[

stat
if (

a is used for both reading
actual usage is like

an error ...

f d is an array of two file d.e~;cnlptc)rs, where f d [0] is the read side of the pipe
and f d [1 J is for These may be used in write () and

e any

~ .. ,.,,...,.,,.I;!. if a process

~mom~:s somewhat. If the
of file.

Revision A of 27 1990

3 - Processes 17

To illustrate the use of pipes in a realistic setting, let us write a function called
popen (cmd, mode), which creates a process cmd (just as system () does),
and returns a file descriptor that will either read to or write from that process,
according to mode. That is, the call

(f out ~ popen ("pr", WRITE) ;

creates a process that executes the pr command; subsequent write () calls
using the file descriptor f out will send their data to that process through the
pipe.

J

popen () first creates the pipe with a pipe () system call; it then fork () 's to
create two copies of itself. The child decides whether it is supposed to read or
write, closes the other side of the pipe, then calls the shell (via execl ())to run
the desired process. The parent likewise closes the end of the pipe it does not
use. These closes are necessary to make end-of-file tests work properly. For
example, if a child that intends to read fails to close the write end of the pipe, it
will never see the end of the pipe file, just because there is one writer potentially
active.

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tst(a, b) (mode
static int popen_pid;

popen(cmd, mode)
char *cmd;
int mode;

int p[2];

if (pipe (p) < 0)
return (NULL);

READ ? (b)

if ((popen_pid =fork()) == O} {
close(tst(p[WRITE], p[READ]));
close(tst(O, l));
dup(tst(p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));

(a))

execl ("/bin/sh", "sh", "-c", cmd, 0);
_exit(l); /*disaster has occurred if we get here*/

if (popen_pid == -1)
return(NULL);

close(tst(p[READ], p[WRITE]));
return(tst(p[WRITE], p[READ]));

The sequence of close () 'sin the child is a bit tricky. Suppose that the task is
to create a child process that will read data from the parent. Then the first

~\sun ~ microsystems
Revision A of 27 March, 1990

18 C Pro:grrunmer's Guide

close () closes the write side of the pipe, leaving the read side open. The lines

are the conventional way to associate the pipe descriptor with the standard input
of the child. The close () closes file descriptor 0, that is, the standard input.

() is a system call that returns a duplicate of an already open file descriptor.
File descriptors are assigned in increasing order and the first available one is
returned, so effect of the () is to copy the descriptor for the pipe
(read side) to file descriptor O; thus the read side of the pipe becomes the standard
input2. Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed
to write to the parent instead of reading. You may find it a useful exercise to step
through that case.

job is not done, for we still need a function pclose (} to close the
pipe created by popen (). The main reason for using a separate function rather
than close () is that it is desirable to wait for the termination of the child pro-

the return value from s e () indicates whether the process suc-
important when a process creates several children is that only a

bounded number ofunwaited-for children can exist, even if some of them have
terminated; performing the wait () lays the child to rest. Thus:

=If include

...., _1.u.:i'e (fd)
int f d;

.h>

I* close fd */

r, (*hstat) () , (* istat) () , (*qstat) () ;
int status;
extern int

close(fd);
istat

hstat
while ((r
if (r == -1

(SIGINT, S
(SIGQUIT, S
(SIGHUP, S

wait (&status})

status = -1;
u~-~u~-~(SIGINT, istat);

SIGQUIT,);
(SIGHUP, hstat);

return(status);

2 Yes, this is a bit tricky, but it's a standard idiom.

&& r != -1);

Revision A of27 March, 1990

3 - Processes 19

The calls to signal () make sure that no interrupts, etc., interfere with the
waiting process; this is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at a
time, because of the single shared variable popen _pid; it really should be an
array indexed by file descriptor. A popen () function, with slightly different
arguments and return value, is available as part of the standard 110 library dis­
cussed later. As currently written, it shares the same limitation.

sun
rnicrosys!ems

Revision A of 27 March, 1990

20

Revision A of 27 March, 1990

Signals - Interrupts and All That

This chapter is concerned with how to deal gracefully with signals from the out­
side world (like interrupts) and with program faults. Since there's nothing very
useful that can be done from within a C program about program faults, which
arise mainly from illegal memory references or from execution of peculiar
instructions, we'll discuss only the outside world signals: interrupt and quit,
which are generated from the keyboard, hangup, caused by hanging up the phone
on dialup lines, and terminate, generated by the kill command. When one of
these events occurs, the signal is sent to all processes which were started by the
corresponding user - the signal terminates the process unless other arrange­
ments have been made. In the quit case, a core image file is written for debug­
ging purposes.

signal () is the routine which alters the default action. signal () has two
arguments: the first specifies the signal to be processed, and the second argument
specifies what to do with that signal. The first argument is just a numeric code,
but the second is either a function, or a somewhat strange code that requests that
the signal either be ignored or that it be given the default action. The include file
signal. h gives names for the various arguments, and should always be
included when signals are used. Thus

#include <signal.h>

signal(SIGINT, SIG_IGN);

means that interrupts are to be ignored, while

[_~_i_·g_n_a_l~(s_r_G_r_N_T_,~s-r_G ___ D_F_L~)-;~~~~~~~~~~~~~~~~~-]
restores the default action of process termination. In all cases, signal ()
returns the previous value of the signal. The second argument to signal (}
may instead be the name of a function (which must be declared explicitly if the
compiler hasn't seen it already). In this case, the named routine is called when
the signal occurs. Most commonly this facility is used so that the program can
clean up unfinished business before terminating, for example to delete a tem­
porary file:

~\sun ~ microsystems
21 Revision A of27 March, 1990

nh:: t- , 1 ... , and to con-
The code as written

nr"'""""'"" state a

A of27 1990

Chapter 4 - Signals - Interrupts and All That 23

The include file set jmp. h declares the type jmp _ buf - an object in which a
process's state can be saved. s jbuf is such an object. The set jmp () routine
then saves the state. When an interrupt occurs the onintr (} routine is called,
which can display a message, set flags, or whatever. longjmp () takes as argu­
ment an object set by set jump () , and restores control to the location following
the call to set jump () , so control (and the stack level) will pop back to the
place in the main routine where the signal is set up and the main loop entered.
Notice, by the way, that the signal gets set again after an interrupt occurs.

Some programs that want to detect signals simply can't be stopped at an arbitrary
point, for example in the middle of updating a linked list. If the routine called
when a signal occurs sets a flag and then returns instead of calling exit () or
longjmp (),execution continues at the exact point it was interrupted. The
interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is
reading the standard input when the interrupt is sent. The specified routine is
duly called; it sets its flag and returns. If it were really true, as we said above,
that 'execution resumes at the exact point it was interrupted,' the program would
continue reading st din until the user typed another line. This behavior might
well be confusing, since the user might not know that the program is reading; he
presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the read when execution resumes
after the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be
prepared for 'errors' which are caused by interrupted system calls.

sun
microsystems

Revision A of27 March, 1990

24 C Pro,gnummer's Guide

are read (, wait (, pause (). A program
sets int resets the interrupt signal, and

returns, • ..,.,.,,, .. r,,.. code like when it reads the standard

if

else
true end-of-file *

if fork
execl (...) ;

(SIGINT, S

.............. '" signals is
'-'""'1-fl-f'"""'""' a program catches interrupts,

other programs can be

* until the child is done */
I restore *

Suppose the pro­
subprogram, it will

...... r ,., read from stdin. But
subprogram and read

same input is very unfortunate,
should get each line of

program ignore interrupts until the
standard library function

Revision A of27 March, 1990

Chapter 4 - Signals - Interrupts and All That 25

As an aside on declarations, the function signal () obviously has a rather
strange second argument. It is in fact a pointer to a function, and this is also the
type of the signal routine itself. The two values SIG_IGN and SIG_DFL have
the right type, but are chosen so they coincide with no possible actual functions.
For the enthusiast, here is how they are defined for the Sun system - the
definitions should be sufficiently ugly and nonportable to encourage use of the
include file.

r

-#define SIG DFL
-#define SIG IGN

~\sun ~ microsystems

(void (*) ()) 0
(void (*) ()) 1

Revision A of 27 March, 1990

Revision A of 27 March, 1990

5.1. The Standard I/O
Library

5.2. Using the Standard I/O
Library

The names stdin, stdout, and
stderr are constants and may not
be assigned values. They
correspond to file descriptors 0, 1
and 2, respectively.

The Standard 1/0 Library

Input and output are, strictly speaking, not an intrinsic part of the C programming
language. Rather, the input and output functions are supplied by a library which
comes with each implementation.

This chapter describes the Standard I/O Library available to C programmers on
Sun workstations.

The standard I/O library was designed with the following goals in mind:

1. It must be as efficient as possible, both in time and in space, so that there
will be no hesitation in using it, no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious
calls whose use mars the understandability and portability of many programs
using older packages.

3. The interface provided should be applicable on all machines, whether or not
the programs which implement it are directly portable to other systems, or to
non-Sun machines running a version of UNIX.

The stdio. h routines are in the normal C library, so no special library argu­
ment must be declared in your program for linking. All names in the include file
intended only for internal use begin with an underscore L) to reduce the possi­
bility of collision with a user name. The names intended to be visible outside the
package are listed in Table 5-1.

The routines in this package offer the convenience of automatic buffer allocation
and output flushing where appropriate.

Any program which uses the Standard I/O Library must have the following line
in the program source text, before using any of the functions in the library.

(#include <stdio.h>
J

Putting this include statement in your program defines some macros and vari­
ables for the program.

27 Revision A of27 March, 1990

28

Name

stdin

stdout

stderr

Table 5-1

The name of the standard file. This file is,Au. , connected at program
from which a program

is the value -1.
or error conditions.

is a notation for
cate an error.

iob a

cmmecte:d at program
........... .i-, , ... ,. responses

is size suitable for a use~r-su01:>11e~d u ... , ,. ,'-' buffer. BUFSIZ is See
setbuf () function described below.

The functions c
ror , and fileno
later in

is

co1.1ec~uo1n of routines intended to ,.,,TY.,.

"'"'""'",...'"'"' for most C programs. The standard 110
so programs that,

transt:>ar1ted from one ~"~~t-,,,. 1m

This describes the basics of the standard I/O chapters
contain a fuller of the and ,, .. _._.,,;:;;, conventions of the

Revision A of 27 March, 1990

5.3. The Standard Input
and Standard Output

Reading Standard Input and
Writing Standard Output

5 -The Standard I/O Library 29

first part of the discussion in this chapter describes those file descriptors that are
defined automatically. Following sections describe how to get your own descrip­
tors connected to files in the system.

Three files are connected automatically when a SunOS program starts up. These
files are called the standard input (st din), the standard output (stdout),
and the standard error (st der r) .

The very simplest standard I/O call for output is to use put char (c) to put the
character c on the standard output, which is normally the user's screen.

If the user redirected the standard output by using the > syntax on the command
line, the standard output is redirected. For example, if you typed:

(tutorial% prog > outputfi1e

on the command line, the standard output from prog is written to outputfile and
the program is unaware that the standard output is going to a file instead of the
screen. outputfile is created if it doesn't exist; if it already exists, its previous
contents are overwritten.

Similarly, you can send the standard output from a program through a pipe with
the command line:

J

[_t_u_t_o_r_i_·a_i_~_o_p_r_o_g~-'-o_t_h_e~rp~r-o_g~~~~~~~~~~~~~~~~-J
and the standard output of prog goes into the standard input of otherprog.

The simplest input mechanism is to read from the 'standard input,' which is gen­
erally the user's keyboard. The function get char () returns the next input
character each time it is called. A file may be substituted for the keyboard by
using the< convention (input redirection): if prog uses get char () , the com­
mand line

(tutorial% prog <filename

makes prog read from the file specified by filename, instead of from the key­
board. prog itself need know nothing about where its input is coming from.
This is also true if the input comes from another program through the pipe
mechanism:

J

(_t_u_t_o_r_i_·a_i_~_o_o_t_h_e_rp~r_o_g~-'-p~r_o_g~~~~~~~~~~~~~~~~--J
provides the standard input for prog from the standard output (see above) of
otherprog.

Revision A of 27 March, 1990

30

it encounters the end file (or an
error) on you are reaamg. EOF is normally defined to be

knowledge. As will become
you when you compile a pro-

but it is unwise to take any adiv-anLtas;~e
is automatically '"'""1

"'""''"'

any concern.

in various ways, uses the same
f () and () may

.................. i.v s canf (formatted input conversion.
scanf () input and breaks it up into strings, numbers, etc., as
desired. s canf () uses the same as () , so calls to them
may also

Many programs read one input and write one for such programs 1/0
with (), (), scanf) , and () may be entirely
................................. and it is almost always to get started. This is particularly true
if the SunOS is used to connect the of one program to the

program strips out all ASCII control
characters newline and

from a program. the way, the call
.... A~·-A·~A&A work properly, but it

nA
1
nn·<:1 1 termination status (con­

discusses return-

Revision A of27 March, 1990

5.4. Error Handling -
stderr and exit()

5.5. Miscellaneous I/O
Functions

5 - The Standard 1/0 Library 31

stderr is assigned to a program in the same way that stdin and stdout are.
Output written on stderr appears on the user's terminal even if the standard
output is redirected, unless the standard error is also redirected. For example, the
command we writes its diagnostics on stderr instead of stdout so that if one
of the files can't be accessed for some reason, the message finds its way to the
user's terminal instead of disappearing down a pipe or into an output file.

The argument of exit () is made available to whatever process called the pro­
cess that is exiting (see Section 3.3), so the success or failure of the program can
be tested by another program that uses this one as a subprocess. By convention,
a return value of 0 indicates that all is well; nonzero values indicate abnormal
situations.

exit() itself calls fclose () foreachopenoutputfile, toflushoutanybuf­
fered output, then calls a routine named_ exit () . The function_ exit () ter­
minates the program immediately without any buffer flushing; it may be called
directly if desired.

The standard I/O library provides several other I/O functions besides those illus­
trated above.

Normally, output with putc () and such is buffered-use ff lush (fp) to
force it out immediately.

fscanf () is identical to scanf (),except that its first argument is a file
pointer that specifies the file from which the input comes; it returns EOF at end of
file.

The functions sscanf () and sprintf () are identical to fscanf () and
fprintf (),except that the first argument names a character string instead of a
file pointer. The conversion is done from the string for s s canf () and into it
for sprintf (),and no input or output is done.

fgets (buf, size, fp) copies the next line from stream fp, up to and
including a newline, into buf; at most size-1 characters are copied; it returns
NULL at end of file. fput s (buf, fp) writes the string in buf onto file or
stdio stream fp.

Note The "stream" referred to above is not related to UNIX System V streams.
The functions gets() and puts() work like fgets () and fputs (),but
they default to operation with stdin and stdout, respectively. The macro
ungetc (c, fp) 'pushes back' the character c onto the input stream fp; a sub­
sequent call to getc (), f scanf (),and so on will encounter c. Only one
character of pushback is guaranteed to work.

Revision A of 27 March, 1990

32

Revision A of 27 March, 1990

6

Accessing Files Through Standard 1/0

Previous examples have all read the standard input and written the standard out­
put, which we have assumed are magically predefined. The next step is to write a
program that accesses a file that is not already connected to the program. One
simple example is we, which counts the lines, words and characters in a set of
files. For instance, the command

(~t_u_t_o_r_i_·a_1_~_o_w_c __ x __ .c __ y __ .c ____ ~----------------------------------']
displays the number of lines, words and characters in x . c and y . c and the
totals.

The question is how to arrange for the named files to be read - that is, how to
connect the filenames to the I/O statements which actually read the data.

The rules are simple - you have to open a file by the standard library function
fopen () before it can be read from or written to. f open () takes an external
name (like x . c or y . c} , does some housekeeping and negotiation with the
operating system, and returns a pointer which must be used in subsequent reads
or writes of the file.

This pointer, called a FILE pointer, to a structure which contains information
about the file, such as the location of a buffer, the current character position in
the buffer, whether the file is being read or written, and the like. The only
declaration needed for a file pointer is exemplified by

(_F_r_L_E _____ *_f_p __ ,_*_f_op_e_n __ (_)_; ________________ ~-------------------]
This says that fp is a pointer to a FILE, and f open (} returns a pointer to a
FILE.

The actual call to fopen () in a program has the form:

(fp = fopen(name, mode);
J

•\sun ~ rnicrosystems
33 Revision A of 27 March, 1990

file once it is open. There are
are the sm1p11~st.
nn11nti:•r to

it returns EOF when

returns c as its value. () and
return EOF on error.

way, we can now we. The
convenient for many programs: if there are

orc>cesse:o in If are no arguments,
program can standalone or

Revision A of 27 March, 1990

Chapter 6 - Accessing Files Through Standard I/O 35

The function fprintf () is identical to printf (),except that the first argu­
ment is a file pointer that specifies the file to be written.

The function f close () is the inverse off open () ; it breaks the connection
between the file pointer and the external name that was established by f open () ,
freeing the file pointer for another file. There is a limit, depending on available
memory, on the number of files that a program may have open simultaneously,
so you should free things when they are no longer needed. There is another rea­
son to call f c 1 o s e () on an output file - it flushes the buffer in which

Revision A of 27 March, 1990

Guide

is when a program ter-

Accessing Several stdio routines needed to f'\O ,.,.~ file
.._,,..,_,,..., .. ,_,_,..,._.._, are Uv.:JOVJ..l.ILJVU.

() - a

file.

an Trying to
read a file that does not exist is an error, and there may be other causes of error as

to a without is an error,
() returns

A 27 March, 1990

freopen () - Reopen a File

Figure 6-2

ff lush () -Flush Stream
Buffer

FILE *freopen(filename, type, ioptr)
char *filename;
char *type;
FILE

The stream named by ioptr is closed, if necessary, and then reopened as if by
fopen (). If the attempt to open fails, NULL is returned; otherwise ioptr is
returned, which now refers to the new file. Often the reopened stream is stdin
or stdout. The filename and type parameters are as for fopen ().
filename is a character string that specifies the name of the file.
type is a character string (not a single character) that specifies the access

mode of the file. type can be one of:
r reopen the file for reading,
w reopen the file for writing,
a reopen the file for appending.

ioptr is a pointer to the existing stream which is to be closed.

The value of the freopen () function is a file pointer. If the value of the file
pointer is NULL, the attempt to open the file failed.

Example of Using freopen ()

The ff lush () function flushes the stream buffer for a given file pointer. The
interface to ff lush () is:

[ff lush (ioptr)
FILE *fp;

Any buffered information on the output stream designated by i opt r is written
out to the file. Common use is to f flush (stdout) so that the prompt
appears immediately.

J

Output files are normally buffered if they are not directed to a screen. alwaysst­
doutis The stderr file usually starts off unbuffered, and remains unbuffered

+~!!.!! Revision A of27 March, 1990

38

fclose (-

setbuf
File

Guide

A

setbuf ()

The setbuf

is reopened.

user can desig­
chooses, or the

used after a file is 001;me1a. but before any
that file.

the stream becomes Otherwise, the
buf must be a sufficiently large character
is to ae<~Iaire

Here's an ex::imple of setbuf usage:

Revision A of 27 March, 1990

Figure 6-3

f ileno () - Obtain File
Descriptor

Figure

fileno () is used when a
() but you want to use a

a

f ileno (usage:

39

is the file descriptor

T'\TP•U1r\1Hlll•u opened with

descriptor

Revision A of 27 March, 1990

40

rewind
Stream

a
eter.

If you file

Revision A of27 March, 1990

getc () Macro- Get a
Character from a File

7
Character 1/0

This section describes those macros and functions which are concerned with
reading and writing characters from and to streams.

The getc () macro gets a character from a file. The definition is:

The get c () macro obtains the next character from the stream designated by
fp. fp is a file pointer such as is returned by the f open () function, or is a
name such as st din.

When the end of file is reached, the integer EOF is returned. The character \ O is
a valid character from getc (}.

Note that get c (} is a macro, not a function.

sun
microsvstems

41 Revision A of 27 March, 1990

character O is

macro. This means
an~uTine11ttoanotherhu~~~,.~~

March,

Figure 7-2

getchar () Macro - Get a
Character from Standard
Input

Figure 7-3

7 - Character 1/0 43

Example of Using fgetc ()

•••

....
..

,
. ..

: ... > ::: .. :., •.

The get char () macro obtains a single character from the standard input. The
interface to get char () is:

[int getchar()]

The getchar () macro is a shorthand notation for

(_g_e_t_c __ (_s_t_d_i_n_) __ J

Note that get char () is a macro, not a function.

Example of Using get char ()

Revision A of27 March, 1990

44

a a

function reads up to n -1 characters from the stream ae1~1gna1:ea
into array"""''"'""''"'

Note

NULL if an error or an end

a The onto a stream. The
Character interface definition

onto

A of 27 March, 1990

7 - Character I/O 45

Only one character may be pushed back between two reads.

Figure 7-5 Example of Using ungetc ()

putc () Macro-Put a
Character to a File

The put c () macro puts a single character to a specified file. The interface
definition is:

putc(c, ioptr)
char c;
FILE *ioptr;

The putc () macro writes the character c onto the output stream designated by
ioptr, where ioptr is a file pointer such as is returned by the fopen () func­
tion, or is a name such as stdout or stderr.

The character c is normally returned as a value from the macro, but if an error
occurs during the transfer, the value EOF is returned.

Note that put c () is a macro, not a function.

~\sun ~~ microsystems
Revision A of27 March, 1990

a The inter-

() macro. means
,, ... rnn"lr>01'~f" to another function, and

so on.

7-6
·::: :: ·.,,·:,. " :;:::. :,:: ::: :: >< ,:. '

... {.'·. :.
::::.:: ·;: " .. ·::: \'.t :::::.:··:·: :::: ...

:.:: ::.:• : :
/): ... : (: :: '}

·:: : ·:::: :::<:'
:;;

:..: <·:: :::::' .:. ::::
:

;::
':'::::: /.:: ... ·;:

<
::::: :(.:

::•·•:: : :.:: / ? :: :
...

··:

: .

) .. , :::::.;;'.: •::::. ·.·
..

I :

•••••

·:: ...
... ::::

:< :: ..
.: : :::·::

::::,:

<
·. :: ::: > ::;:

: ·.· :

,;; r
> '\;<

.·.· :. ······::·:·::
:· ::. •:

"" .. </f ••• .:;:,: :;: } .:: :;: •.•.::: ():: {
;::: ::: «;:

:•:: :.: { : ?·:::•: ··.·.•· ·:::::::::::: :;:; :::::
....• , ::,.:::::::::::: ... ·:: .:::• ·'.'. { <· :::: :: " :::.:·::·'•:}::::::• ::.:: ·":

:;.
.. ..

putchar(a character to output The
Character to ,

The (macro is a shorthand notation for

Revision A of 27 March, 1990

Figure 7-7

fputs () -Put a String to a
File

Figure 7-8

feof () -Test for End Of
File

7 - Character 1/0 4 7

Note that put char () is a macro, not a function.

Example of Using put char ()

"· : ::: ·.·. (: .. :.":::» :: ::· .·: ·· . .'::::".·· .. ·.·:::1
·::: .· :..:.::·:<<v•'·.:.7!:';~·>·.·· J>: <) :::: :: <) >> ·::. :·:· ·.:·: ••:::
.. :.• ··: "" " ::. ··•: ···•:•" < r •·•· / : < :•::·:: ::·•• ·.·.·. :?"" · ······:.•.·•·

fput s () writes a character string to a file. The interface definition is:

fputs(s, ioptr)
char *s;
FILE

The fput s () function writes the null-terminated character string s (which is a
character array) to the stream designated by ioptr.

fputs () does not append a newline to the string.

fput s () does not return a value.

Example of Using fputs ()

The feof () function checks for an end of file on a specified file. The interface
definition is:

sun Revision A of 27 March, 1990
microsystems

48 C Pro:graitnmer·s Guide

7.1. Formatted
Output

Formatted Output
Conversions

Formatted Input

function returns a nonzero value if an end-of-file has occurred on

f stores
in memory.

There are

nrr'u1 i"i'3C extensive facilities for formatted conversions of
and the conversion of numeric

Conversions can be done between the standard input or
in memory. The subsections follow-

functions: they are all similar
destination of the formatted string.

to the standard output.

a cnatrac:ter string (character array)

....... ..,, 0 are the equivalents of the
scanf () functions per­

are thus used

Revision A of 27 March, 1990

The Format Control
Templates

Conversion Specifications

fscanf (ioptr, format, arg
1

, ...)

FILE *ioptr;
char *format;

7 - Character I/O 49

f s canf () reads the formatted string from the file designated by iopt r.

r

sscanf (s, format, arg
1

, . . .)

char *s;
char *format;

sscanf () gets the formatted string from a character string (character array) in
memory.

All six print and scan functions accept a format argument, followed by
zero or more arg arguments.

n

The format argument is a template, in the form of a character string. The for­
ma t character string consists of two kinds of objects:

D

D

It can contain fixed parts which are sent to the destination unchanged
(for formatted output) or match characters in the input source (for
formatted input).

It can also contain conversion specifications, which indicate how the
corresponding arg are to be converted and placed into the final
formatted output strlng, or recognized in the input, and converted to
internal form and placed in the location pointed to by the arg .

n

A conversion specification is marked by a percent sign % , and ends with a
conversion character. In between the% sign and the conversion character, there
can be modifiers. These modifiers are described below after the descriptions of
the conversion characters. Any character in a format that is not part of a conver­
sion specification is passed or recognized as is.

Here is a pr intf () call with a simple string template and no conversion
specifications:

printf("Calling occupants of interactive space\n");

This example simply prints the quoted string on the standard output.

The following paragraphs describe the effects of the conversion characters.
There are also modifiers for the conversion specifications, and these are described
below.

~\sun ~ microsystems
Revision A of 27 March, 1990

o-

r:<:

.... :: <<· .•• :: ... :•.:·•·••••·• ... < ········•••·• :/: } ••••· ··••· ···••··•··•···... • r• .. c (YY< '.

, l ; .. I $!~·~• (·~#:·~·~]~· ·i····~··/~··:··~•••••• .. •• .. •··:·:·•· .. ···:• .. •• .. ••• .. •• >···· > .. >)· .. ·.:. +········· .. ••:::(· <····••·•••• ··••••···· 2/··\·/>••:>·.:·: i················• .. •••••·. /·....... •··••· > ..
... \•··'.·'.·~·,;;·.;.:.: ;.· :::· ·::•: ::•• ,:... ·· •.... , : ;, :•: :::•

:() .. · : ·: :.:: ::: : < ··:· :::· ·::':::•':· ···::•:••••.•:::::;::::::'<:j

/ ..• ·••• ... ··········: ',' :·:: •:·:: · •::::::::.::·•::: << :/ < .· ·
•.• .:: ::://.::• ? > : •

······

......
.... { ::

'

·,·,
........

(• .. ?
• ••

. ··. : ·:.·:

the

March, 1990

Figure 7-11

h - Short Conversion on Input
Only

u - Unsigned Decimal
Conversion

Figure 7-12

c - Character Conversion

7 - Character 110 51

Example of x Format Specification

r\:'<":':",-::,::":<:>"::":;::::'::·":::::':;::"''.::: '·

,•••' :::

\ ...

When the above program is run, it generates the result:

(~T-h_e ___ v_a_1_u_e __ o_f ___ d_a __ t_a __ i_s_: __ o_x_1_9 ______________________________________ J

Note that the programmer explicitly coded the "Ox" in the generated number.

A conversion character of h is used only for formatted input, and specifies that
the associated argument is a pointer to a short int data item.

A conversion character of u specifies that the associated argument is converted to
(or from) unsigned decimal notation.

Example of u Format Specification

::' "':;

', ····· ·, ::

.. ::

When the above program is run, it generates the result:

(_T_h_e ___ v_a_1_u_e __ o_f ___ d_a_t __ a ___ i_s_: __ 4_2_9_4_9 __ 6_7_2_7_1 ____________________________ ~]

A conversion character of c specifies that the associated argument is to be con­
verted to (or from) a single character.

Revision A of 27 March, 1990

52 C ProJgrarnmt~r· Guide

s-

When the

1990

Figure 7-15

f - Fractional Floating
Conversion

Figure 7-16

g - Adaptable Floating
Conversion

7 - Character I/O 53

Example of e Format Specification

When the above program is run, it generates the result:

(_T_h_e __ v_a_1_u_e __ o_f __ d_a_t_a ___ i_s_: __ 1_._2_3_4_s_6_o_e_+_o_2 _________________________]

A conversion character of f specifies that the associated argument is assumed to
be a float or a double. It is converted to (or from) a fixed-decimal notation.

([-]mmrn.nnnnnn

where the length of the string of n's is specified by the precision. The default
precision is six decimal places. The precision does not determine the number of
digits printed in f format, but the number of decimal places displayed.

Example of f Format Specification

When the above program is run, it generates the result:

]

(_T_h_e __ v_a_1_u_e __ o_f __ d_a_t_a ___ i_s_: __ 1_2_3 ___ 4_s_6_0_0_1 ___________________________]

A conversion character of g specifies that the associated argument is to be con­
verted to (or from) either e or f format, depending upon which is the shorter.
Non-significant zeros are not printed in g format. This is similar to FORTRAN's
G format conversion.

sun
microsystems

Revision A of27 March, 1990

C Prc1gnumner" s Guide

:>•

•:•

.........

<> •.. < ·
·~· :•:::•

the

.....

... ·'.".·•
<>
...

..

"

<<<

not a conversion ,....,"" .. '""' 1'0~

use a format conversion
char-

>' < ···············•··· ·.·. r. <>········· } •••••

When

The two are as one, and the unknown conversion ~· .L ~
The value of the data variable in the list is .. ,....,,.,...,.,..,

.. "" ... u_,,'-&. since no conversion in the format data.

some may
are,., ,,,..,

Revision A of 27 1990

Left Justify Field

Minimum Field Width and
Precision Specifications

7 - Character I/O 55

A minus sign (-) appearing before the conversion character specifies that the
argument is to be left-justified in the output field. The minus sign is optional.

After the minus sign can appear width and precision specifications, as described
next.

The form of the optional field width and precision specifications are:

D

D

D

a digit string, which specifies a minimum field width. The converted
number is printed in a field at least this wide, and wider if required.
If the converted argument has fewer characters than the field width,
it is padded on the left (or on the right, if a minus sign was given)
with enough padding characters to make up the specified field width.
The padding character is normally a space. If the field width is
specified with a leading zero the output field is padded with zeros.

a period character, which separates the field width from the next
digit string.

a digit string, which is the precision. The precision means one of
two things. In the case of a float or a double argument, the pre­
cision is the number of digits to be printed to the right of the decimal
point. In the case of a string argument, the precision is the number
of characters to be printed from the string.

The examples below show the way that the justification, width, and precision
specifications apply to string values when they are output. The value to be
printed is the string "Wizard", which is six characters long. It is printed in a
variety of format specifications, and there are vertical bars at either end of the
field to show the extent of the field.

Figure 7-19 Example of Field Width Specifications

When the above program is run, it generates the results:

Revision A of27 March, 1990

56

data in %4s format is: I Wizard I
data in %-4s format is: Wizard
data in %10s format is: I Wizard I
data in Os format is: !Wizard
data in 10.4s format is I Wiza
data in %-1 .4s format is: I Wiza
data in %.4s format is: I Wiza

a it means that the associated
... u ,,"'a.'"'.:i a do ub 1 e. If no length modifier pre-

.... .:i.:iv.., a. argument is assumed to be an
""'nu~»reo·1,-,.n .,, ... "'''"1"""'..,,.,,.., is in Sun C

In to scanf (),the ar,g.umLernts are Sizes in format specifiers must
lf for doubles.

Revision A of 27 1990

8.1. Character
Classification

isalpha () -Is Character
Alphabetic
isupper () -Is Character
Uppercase Letter
is lower () -Is Character
Lowercase Letter
isdigi t (} -Is Character
Decimal Digit

8
String-Handling Functions

The C programming language has no language-defined facilities for manipulating
character string data. The C library does, however, provide a fairly rich set of
primitives for manipulating character strings.

This chapter discusses three major areas relating to string handling:

0

0

0

Macros for classifying characters (is a character, uppercase, letter,
digit, and such), plus macros for doing some minimal conversions
(convert uppercase to lowercase).

Functions for handling null-terminated strings.

Functions for handling bit strings and byte strings.

The following macros classify ASCII-coded integer values. Each is a predicate
returning nonzero for true, zero for false. isascii () is defined for all integer
values; the rest are defined only where isascii (c) is true and on the single
non-ASCII value EOF(see stdio(3S)).

You should have the line:

(_#_i_·n_c_i_u_d_e __ <_c_t_y_p_e_._h_> __)

at the beginning of any program unit that uses these macros.

is alpha (c) c is a letter- a through z or A through z.

is upper (c) c is an upper case letter- A through z.

is lower (c) c is a lower case letter- a through z.

isdigi t (c) cis a digit- 0 through 9.

57 Revision A of 27 March, 1990

isalnum() -

to lower

toascii () - ~:nc:n1•,p

. ..,,.,.,.. ... ,., .. is ASCII

8.3.

or A

ora

character

characters.

Note that this only works
,...,.,..,,. ... ,...,,.,,,,,. character to start with \ v "'.u,A

Revision A of 27

Figure 8-1

Null Pointers versus Null
Strings

strlen () - Find Length of
String

strcmp () and strncmp ()
- Compare Strings

Chapter 8 - String-Handling Functions 59

Such a string appears in memory as:

Layout of Null-Terminated String in Memory

Functions described in this section operate on null-terminated strings. They do
not check for overflow of any receiving string.

You must have the line:

(~*-i_·n_c_i_u_d_e __ <_s_t_r_i_·n_g_s __ .h_> __]

at the beginning of any program unit that uses the functions described here.

On Sun workstations (and on most other machines), you cannot use a zero
pointer to indicate a null string. Dereferencing a null pointer is an error and
results in aborting the program. If you wish to indicate a null string, you must
have a pointer that points to an explicit null string.

Programmers using NULL to represent an empty string should be aware that such
programs work by coincidence, if at all, rather than by intent and should be
aware that testing for zero pointers is inherently nonportable.

[strlen (s)
char *s;]

strlen () returns the number of non-null characters ins.

\.

strcmp(string_l, string_2)
char *string_l, *string_2;

strncmp(string_l, string_2, n)
char *string_l, *string_2;

strcmp () compares its arguments and returns an integer greater than, equal to,
or less than 0, according as string_] is lexicographically greater than, equal to, or
less than string_2.

sun
microsyslems

Revision A of27 March, 1990

ex:am1m~s at most n characters.

on Sun worksta-

n l"h~l1"".:11r"tA·rc

may not be null-terminated if the
is n or more. Both return

strcat (

occurrence s,or

rindex (returns a to the last occurrence of character c in strings, or
zero if c does not occur in the

8.4. Byte String and Bit
String Functions

bcmp () - Compare Byte
Strings

bcopy () - Copy Byte
Strings

bzero (} - Clear Byte
String to Zero

ff s () - Find First Bit Set

Functions described in this section operate on byte strings and bit strings. They
do not recognize null-terminated strings, unlike the functions described in Sec­
tion 8.3.

bcmp(bl, b2, length)
char *bl, *b2;
int length;

bcmp () compares length bytes at address bl against length bytes at address b2,
returning zero if they are identical, nonzero otherwise.

bcopy(bl, b2, length)
char *bl, *b2;
int length;

bcopy () copies length bytes, in left-to-right order, from string bl to string b2.
Overlapping strings are handled correctly.

Note: The order of arguments is backwards from that of strcpy () -that
is, bcopy () copies from its first argument to its second argument,
while strcpy () copies from its second argument to its first argu­
ment.

bzero () zeroes length bytes in the string b.

ff s () finds the first bit set in the argument passed it and returns the index of
that bit. Bits are numbered starting at 1 from the right. A return value of-1
indicates the value passed is zero.

sun Revision A of 27 March, 1990
microsystems

62

Revision A of27 March, 1990

A.1. File Descriptors

appendix describes the bottom
lowest level I/O in SunOS nrr\u1 •'1PC'

moving data; it in a
entirely on your own, but on
happens. And the calls
sounds.

1/0

on The
........ u 4AA .. ,.., or any other services except

You are

most control over what
isn't as bad as it

In SunOS, all is done by because all peripheral dev-
ices, even the user's terminal, are in This means that a sin-

homogeneous interface handles all ,,, u...., , between a program and
peripheral devices.

to write on a
your right to do so:
all is the C'UC1~Pm

File pointers are in to
fundamental. A file pointer is a !-'""'"'' .. "'""·

things, the file f'IPC',..M'l''\t"r\1"

•nT,,.,.~nllt-·•n.n about an
to the file only by

to make this convenient.
rermunai are so common, soectal

When the command interpreter (the
'shell') runs a program, it opens rlOC',,... 1-ri.-rC" 0, 1, and 2,
called standard "'""'"r1 . ., .. r1 error of these are

file descriptor 0 and
opening the files.

If as

63 Revision A of 27 March, 1990

read()

Note

The two most com­

Revision

and
This latter

exam-

to
and out-

1990

If the file size is not a multiple of BUFSI some read () will return a smaller
number of bytes, and the next call to read () after that will return zero.

It is instructive to see how read () and write () can be used to construct
higher-level routines like char (),put char (),etc. For example, here is
a version of () which does unbuffered input.

c must be declared char, because read () requires a character pointer. The
character being returned must be masked with O xf f to ensure that it is positive;
otherwise sign extension may make it negative. The constant Oxff is appropri­
ate for Sun workstations but not necessarily for other machines.

The second version of get char () does input in big chunks, and hands out the
characters one at a time:

sun Revision A of 27 March, 1990
mlcrosystems

A.4. Random Access -
lseek ()

There is a limit (typically 64) on the number of files which a program may have
open simultaneously. Accordingly, any program which intends to process many
files must be prepared to reuse file descriptors. The routine close (fd) breaks
the connection between a file descriptor and an open file, and frees the file
descriptor for use with some other file. File descriptors 0, 1, and 2 can also be
closed if you need to obtain extra file descriptors. Program termination through
exit or return from the main program closes all open files.

The function unlink (filename) removes the file filename from the file
system.

File I/O is normally sequential: each read (} or write () takes place at a
position in the file right after the previous one. When necessary, however, the
data in a file can be read or written in any arbitrary order. The system call
ls eek () provides a way to move around in a file without actually reading or
writing:

sun
mlcrosystems

Revision A of 27 March, 1990

68

To

Notice the

........... ,,. ,.,,JOJ.IW.V'"'-• or from the end of the

could also be written

seek to the end before

of the file would be

exam­
or
you may

A of 27 March, 1990

character strings which can be indexed by err no and displayed by your pro­
gram.

sun
microsyslems

Revision A of27 March, 1990

70 C Prc1gn:unrner's Guide

Revision A of27 March, 1990

WARNING

f read () - Read Data from
File

fwrite () - Write Data to
File

Binary 1/0

The binary I/O facilities of the C library provide for record-oriented sequential
access to files.

Using these routines may result in data incompatabilities when porting pro­
grams to or from some other machines. See the description of Sun's External
Data Representation (XDR) standard for creating portable code as described in
Network Programming

The fread () function reads some number of objects into a block, from a
specified file. The interface to fread () is:

fread(pointer, sizeof *pointer, items, stream)
char *pointer;
int items;
FILE *stream;

The arguments to fread () have the following meanings:

pointer is a pointer to a block of objects

items is a count of the number of objects of a data type determined by the
type of whatever pointer points to

stream is the named input stream

The value of the fread () function is the number of objects actually read.

The fwr i te () function writes some number of objects from a block, onto a
specified file. The interface to fwr i te ()

fwrite
char
int items;
FILE *stream;

sun
microsystems

items, stream)

71 Revision A of 27 March, 1990

~ .. n-""""'"'",." to fwr i te meanings:

IJVJU_. " to a

items of a data type determined by the

number objects actually written

Revision A of 27 March, 1990

C.1. malloc () -
Allocate Memory

C.2. free() -Free
Allocated Memory

C.3. calloc () -
Allocate Memory for
C Objects

Memory Management

These routines provide a general-purpose memory allocation package. They
maintain a table of free blocks for efficient allocation and coalescing of free
storage. When there is no suitable space already free, the allocation routines call
sbrk (see brk(2)) to get more memory from the system.

Each of the allocation routines returns a pointer to space suitably aligned for
storage of any type of object. They return a null pointer if the request cannot be
completed.

[char *m~lloc(num)
unsigned num;]

allocates n um bytes. The pointer returned is aligned so as to be usable for any
purpose. NULL is returned if no space is available. The result of malloc (O) is
undefined.

[

int free(ptr) J
-·----c-h_a_r ___ *_p_t_r_; __ _.

free () frees up memory previously allocated by malloc (). Disorder can be
expected if the pointer was not obtained from malloc ().

char *calloc(num, size);
unsigned num;
unsigned size;

allocates space for num items, each of size size. The space is guaranteed to be
set to 0 and the pointer is aligned so as to be usable for any purpose. NULL is
returned if no space is available.

73 Revision A of27 March, 1990

ze
on

1990

C.8. alloca () -
Allocate Memory on
Stack

Warning

C.9. Memory Allocation
Debugging

malloc_debug () -Set
Debug Level

malloc_verify() ~
Check Storage AHocation
Heap

Appendix C - Memory Management 75

alloca () allocates size bytes of space in the stack frame of the caller, and
returns a pointer to the allocated block. This temporary space is automatically
freed when the caller returns.

[char.*all~ca(size) J
-·----i_n_t __ s_i_z_e_;---

alloca () is both machine- and compiler-dependent; its use is strongly
discouraged. It is possible to request more stack space than is available, but if
you do, there is no way to detect this condition.

More detailed diagnostics can be made available to programs using the memory
management routines described in this chapter by including a special relocatable
object file at link time. This file also provides routines for control of error han­
dling and diagnosis, as defined below. Note that these routines are not defined in
the standard library.

[

int malloc_debug(level)
. int level;]
malloc _debug () sets the level of error diagnosis and reporting during subse­
quent calls to malloc (), calloc (), realloc (), valloc (),
memalign (), cfree (),and free (). The value of level is interpreted as
follows:

0 malloc(),calloc(},realloc(),valloc(),memalign(),
cfree (),and free () behave the same as in the standard library.

1 malloc(),calloc(),realloc(),valloc(),memalign(),
cfree () , and free () abort with a message to stderr if errors are
detected in arguments or in the heap. If a bad block is encountered,
its address and size are included in the message.

2 Same as level 1, except that the entire heap is examined on every call
to malloc (),callee (), realloc (), valloc (),
memalign (), cfree (),and free ().

malloc _debug () returns the previous error diagnostic level. The default
level is 1.

(_1_·n_t __ m_a_1_1_o_c ___ v_e_r_i_f_y_(_) __ J

malloc _verify () attempts to determine if the heap has been corrupted. It
scans all blocks in the heap (both free and allocated) looking for strange

~\sun ~ microsystems
Revision A of27 March, 1990

cf ree

EINVAL

ENOMEM memory

1990

D.1. Storage Allocation

D
Sun C Data Representations

This appendix describes how Sun C represents data in storage and the mechan­
isms for passing arguments to functions. This chapter is intended as a guide to
programmers who wish to write or use modules in languages other than C and
have those modules interlace to C code.

This section describes how storage is allocated to variables of various types.

In general, any word value is always aligned on a two-byte boundary. Values
that can fit into a single byte are aligned on a byte boundary.

Table D-1 Storage Allocation for Data Types

Data Type I ntemal Representation

char elements a single 8-bit byte.

short integers one word (two bytes or 16 bits), aligned on a two-byte boun-
dary.

int and long 32 bits (four bytes or two words), aligned on a two-byte boun-
dary.

float 32 bits (four bytes or two words), aligned on a two-byte boun-
dary. A float has a sign bit, 8-bit exponent and 23-bit frac-
tion. On a Sun-4, they are aligned on 4-byte boundaries.

double 64 bits (eight bytes or four words), aligned on a word boundary.
A double element has a sign bit, an 11-bit exponent and a
52-bit fraction. On a Sun-4, they are aligned on 8-byte boun-
daries.

D.2. Data Representations Bit numberings of any given data element depend on the architecture in use:
Sun-3s, Sun-4s, and SPARCStations use bit 0 as the most significant bit, with
byte 0 being the most significant byte.

sun
microsystems

77 Revision A of27 March, 1990

78

There are used in

Table D-2

Table D-3

double ANSI IEEE

D-4 float

0-22 Fraction

Revision A of 27 March, 1990

Table D-5 double Representation

Bits Name Content
63 Sign 1 iff number is negative.

52-62 Exponent Eleven-bit exponent, biased by 1023. Values of all zeros, and all
ones, reserved.

0-51 Fraction 52-bit fraction component of normalized significand. The "one"
bit is "hidden".

A float or double number is represented by the form:

where "1.f' is the significand and "f' is the bits in the significand fraction.

Extreme Number Normalized float and double numbers are said to contain a "hidden" bit,
Representation providing for one more bit of precision than would otherwise be the case.

Table D-6 float Representations

normalized number (0<e<255): (-1)Sign 2(exponent-127) 1./

subnormal number (e=O, f!=O): (-l)Sign 2(126)

zero (e=O, f=O):
(-l)Sign Q

signaling NaN s=u, e=255(max); f=.Ouuu-uu (at least one bit must be nonzero)
Quiet NaN s=u, e=255(max); f=. luuu-uu
Infinity s=u, e=255(max); f=.0000-00 (all zeroes)

Table D-7 double Representations

normalized number (0<e<2047):

subnormal number (e=O,

zero (e=O, f=O):

signaling NaN
Quiet NaN
Infinity

(-l)Sign 2(exponent-1023) 1./

1./

(-l)Sign Q

s=u, e=2047(max); f=.Ouuu-uu (at least one bit must be nonzero)
s=u, e=2047(max); luuu-uu
s=u, e=2047(max); f=.0000-00 (all zeroes)

79

sun
mlcrosystems

Revision A of27 March, 1990

80

Hexadecimal Keprc~se:nuau.cm
of Numbers

+O
-0

+1.0
-1.

00000000

4008000000000000

000000000
000000000

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx

C arrays are stored in
array varies fastest.

are arrays

NULL pointer is equal to zero.

the last subscript in a multi-dimensional

on This subsection describes the results derived from applying the basic arithmetic
,... ,,. .. "'"'""',"to extreme and values.

No

Table D-8 Extreme Values

underflow, and cancellation are
abbreviations have the fol-

of values that result from arithmetic
different of operands.

Revision A of 27 1990

Appendix D - Sun C Data Representations 81

Table D-9 Addition and Subtraction Results

Addition and Subtraction

Left Operand Right Operand

0 Num Inf NaN

0
0 Num Inf NaN

Num Num Num Inf NaN

Inf Inf Inf Note NaN

NaN NaN NaN NaN NaN

Note: Inf+ Inf= Inf; Inf - Inf= NaN

Table D-10 Multiplication Results

Multiplication

Left Operand Right Operand

0 Num Inf NaN

0
0 0 NaN NaN

Num
0 Num Inf NaN

Inf
NaN Inf Inf NaN

NaN NaN NaN NaN NaN

Table D-11 Division Results

Division

Left Operand Right Operand

0 Num Inf NaN

0
NaN 0 0 NaN

Num
Inf Num 0 NaN

Inf
Inf Inf NaN NaN

r NaN NaN NaN NaN NaN

•\sun ~ rnicrosystems
Revision A of 27 March, 1990

in Sun C.

reverse

a double is

to argu-

a

Revision A of 27 1990

Figure D-1

Referencing With Pointers

Figure D-2

Referencing Array Elements

Examples of Simple Variable References

double sin();
int egress;
float lightly;
char coal;

I* Declare some simple variables */

extern double sin();

egress = 10;
/* Now reference those variables */
/* Set the int to a constant */

83

printf ("%f", sin (lightly)); /* Pass it as argument */

putc (coal); /* Write it to the standard output */

A variable can also be declared as a pointer to another object. In this case, the
reference to the object must be done with the pointer notation. Placing an aster­
isk character * in front of an identifier uses that identifier as a pointer to an
object, and the thing that is read from or written to is the object that the identifier
points to.

Examples of Pointer References

int *egress;
float *lightly;
char *coal;

/* Declare some pointer variables */

extern double sin();

*egress = 10;
I* Now reference those variables */
I* Set it to a constant */

printf ("%f", sin (*lightly)); /* Pass it as argument*/

putc (*coal); /* Write it to the standard output */

When an identifier of an array type appears in an expression, the identifier is con­
verted to a pointer to the first member of the array.

The subscript operation [J is interpreted such that

~\sun ~~ rnicrosysterns
Revision A of 27 March, 1990

84 C Prc1gnumner·'s Guide

is to the construct

Declare some array variables */
int egress[lO ;
float [5 [5]
char
extern double sin
int idx;
int

Now reference those variables *I
0; idx < 1 ; idx++)

egress [idx] = 10; * Set int to a constant *I

for (idx 0; idx < 5;
for

"%f", sin)) ;

for (idx idx O; idx++)
putc coal idx] Write to standard output *

Referencing Structures and There are

1. A member of the structure or
. or

2. address structure or taken, with the &

3. same with the

in contexts where the structure or union identifier is avail­
identifier

............. ,.,, ""''"can passed as
., v, of the same struc-

Revision A of 27 March, 1990

Figure D-4 Examples of Accessing Members of Structures

#define MAXLEN 256
#define NULL 0
demo (wanted)

char *wanted;

struct
I* Declare a couple of structures */

/* This one is fairly simple */
int level;
char
char pbuffer[MAXLEN];

putter;

struct vallist /* This one is a linked list */
char *name;
char valtype;
int value;
struct vallist *nextval;

struct vallist

.level
for (i = O;

*val tail;

*pointer;
I* Now access the members

10;
i < MAXLEN;

[i] *putter.cp;

*/

for
I* Access members through pointers */

valhead;
!= NULL;

= pointer->nextval)
if (strcmp (pointer->name, wanted) == 0)

return (pointer);

/* End of the demo function

85

• S ll fl Revision A of 27 March, 1990
~ microsystems

86

1990

E.1. Keywords (§A.2.3)

E.2. Name Spaces (§A.4)

E.3. Characters and
Integers (§A.6.1)

E.4. float and double
(§A.6.2)

E
Sun C Extensions

The language described by Kernighan and Ritchie in The C Programming
Language (referred to hereafter as "K&R C"), while close to Sun C, is not identi­
cal to it. The extensions to K&R C embodied in Sun Care described below, with
the relevant section of Appendix A of The C Programming Language listed for
each topic discussed.

Sun C includes the additional keywords void and enum.

In Sun C, functions may be declared to return the type void. This means that
the function doesn't return any value, and so is functionally a subroutine. There
are no objects of type void.

Sun C provides separate address spaces for

o struct/union and enum tags

o Elements of each different type of struct I union

o Everything else: regular variables and functions

K&R C provides two name spaces: one for struct/union tags, and the other
for all variables, functions, typedef'd names, and so on.

Sun C's characters are signed, and all ASCII characters are positive. Unsigned
characters are, of course, unsigned, and promote to unsigned. See also refer­
ence to 8.2 below.

In K&R C, whenever a float appears in an expression it is lengthened to dou­
ble by zero-padding its fraction.

In Sun C, floats are lengthened to doubles in expressions, but with consider­
ably more work, since the exponent part is of a different width, and of a different
bias. (See Chapter D for further discussion.)

Sun C also provides a compiler option, -f single, to avoid this widening in
expressions using only floats. -fsingle will not prevent float formal
parameters from being rewritten as doubles, nor float-valued actual parame­
ters from being promoted to double.

87 Revision A of27 March, 1990

in C

short or
rather than

ruct or union.

pass as parame-

be in error.

March, 1990

E.12. Switch Statement
(§A.9.7)

E.13. External Function
Definitions (§A.10.1)

E.14. Lexical Scope
(§A.11.1)

E.15. Scope of Externals
(§A.11.2)

E.16. Explicit Pointer
Conversions
(§A.14.4)

E.17. Constant Expressions
(§A.15)

E.18. Anachronisms
(§A.17)

Sun C Extensions

Sun C accepts switch expression of to and
enum, as well as the integer

Sun C 0
.............

0
.... ""'"' ... ,.... struct

tions.

down" an outer
class extern is in an inner

until the of the file, and if it
with a definition in an outer
about a variable.

it will elicit a complaint from the vVJLUIJ'"'"''

D

D

0

K&RC:

A tentative definition in a
be loaded. A true,, .. u,_~,_...,u

module will not cause the module to

or tentative declaration in a module that is

If the linker sees any true definitions of a name among the AH'L, , "' to
be this overrides all tentative u1,.;Ju.u.1.uv.11k'I.

includes the case where the true definition allocates less space for the
named than the tentative would.

o If the linker sees no true of a name, the name is,,.L "

the and space is allocated. The amount of space u.u.,_, u

be the maximum in any
,..,.,.,_.. " ... " in the modules

On Sun a pointer correso011ds to a 32-bit integer, while addresses
are measured in 8-bit bytes. of data depends on the
form.

For more

Arl<"1"'lf·ArC as of constant vA!Jll .. ,.;:1.:HLIH.:l, in preproces-
sor constant ...,,,.,_,,,"'"'J.\-'H"' § ,.-.. c ,., .. ,.,, ... is also

lowed.

17 of The C Pro-
gramming

Revision A of 27 1990

Index

A
accessing command line arguments, 9 thru 1 O
accessing environment variables, 10 thru 12
alloca (), 75
argc, 9
argv, 9

B
bcmp O, 61
bcopy (), 61
bit string functions, 61

ffs (), 61
buffered 110 package

accessing files, 33 thru 40
standard input and output, 29 thru 30

byte string functions, 61
bcmp (), 61
bcopy (), 61
bzero (), 61

c
calloc (), 73
cfree (), 74
character classification, 57 thru 58

isalnum (), 58
i salpha (), 57
isascii (),58
iscntrl (), 58
isdigit (), 57
isgraph (), 58
i slower (}, 57
isprint (), 58
ispunct (), 58
isspace (), 58
isupper (), 57
isxdigit (), 58

character conversion, 58
toascii (), 58
to lower (), 58
toupper O, 58

character I/O, 41thru56

check heap
malloc_verify(),75

child process, 15
clear byte strings

bzero (), 61
close(), 66

-91-

command line arguments, 9 thru 10
argc, 9
argv, 9

compare byte strings
bcmp (), 61

compare strings
strcmp (), 59
strncmp () , 59

compiling C programs, 1 thru 8
concatenate strings

strcat (), 60
strncat (), 60

controlling processes
fork(), 15
wait(), 15

convert character
toascii (), 58
to lower (), 58
toupper (), 58

copy byte strings
bcopy (}, 61
strcpy (}, 60
strncpy (), 60

creating processes
execl (), 13
execv (), 13

D
data representation

Sun-3, 77 thru 82
Sun-4, 77 thru 82

debugging memory management, 75 thru 76
malloc_debug (), 75
malloc_verify(),75

descriptors, 63

E
environment variables, 10 thru

getenv (), 11
EOF, 30, 31
error processing in low level input-output,<68
execl (), 13
execv O, 13
exit(), 2, 16

Index-Continued

F
feof) 47
ff lush
ffs (, 61
fgetc (, 42
fgets () 44
file 63
find character in

index (60
rindex , 60

fork 15
fputc (), 46
fputs } , 47
free memory

cfree (74
free 0 73

f scanf 31

getc(),41
getchar(
getenv 0

I
index

index (60
rindex 60

index (,
in line,

stream
ungetc

29 thru

seek (,
im:1m--oumi.:t1:-low-level routines, 63

close) , 66
file 63

iscntrl)
isdigit (
isgraph (
islower O,

printf (), 30
proc_id, 15
process control

fork(), 15
wait(), 15

processes, 13 thru 19
execl (), 13
execv (), 13
pipes, 16
system (), 13

putc (), 45
put char (), 29, 46

R
random access

lseek (), 67
seek(), 67

read(), 64
realloc (), 74
rindex () , 60

s
scanf (), 30, 31
seek(), 67
setjmp.h, 23
sh, 14
SIG_DFL, 25
SIG_IGN, 25
signal (), 21, 25
signal. h, 21
signals, 21 thru 25
sprintf (), 13, 31
sscanf (), 31
standard I/O package

accessing files, 33 thru 40
standard input and output, 29 thru 30

stdin, 23
stdio.h, 27
storage allocation, 73 thru 76

alloca (), 75
calloc (), 73
cfree (), 74
free(), 73
malloc (), 73
malloc debug(), 75
malloc-verify(},75
memalign () , 74
realloc (), 74
valloc (), 74

storage management, 73 thru 76
storage management debugging, 75 thru 76
strcat (), 60
strcmp (), 59
strcpy (), 60
stream

ungetc (), 31
string handling, 57 thru 61
string operations

strcat (), 60
strcpy (), 60

-93-

string operations, continued
strncpy () , 60
index(), 60
rindex () , 60
strcmp (), 59
strlen (), 59
strncmp (), 59

strlen (), 59
strncat (), 60
strncmp (), 59
strncpy () , 60
system (), 13
system-level input-output, 63 thru 69

T
toascii (), 58
tolower (), 58
toupper (), 58

u
ungetc (), 31, 44
unlink () , 66

v
valloc (), 74

Index - Continued

variables, accessing from environment, 10 thru 12
verify heap

malloc_verify(),75

w
wait(), 15
write(), 64

z
zero byte strings

bzero (), 61

