
un ®

Debugging Tools Manual

Part Number: 800-3849-10
Revision A of 27 March, 1990

Contents

Chapter 1 Introduction .. 1

1.1. Three Debuggers .. 1

dbx ... 1

dbxtool .. 1

adb ... 1

Chapter 2 dbx and dbxtool Compared... 3

2.1. Debugging Modes of dbx and dbxtool .. 3

2.2. Common Features of dbx and dbxtool .. 3

Filenames 4

Expressions 4

db x Scope Rules 5

Chapter 3 dbxtool .. 7

3.1. dbxtool Options.. 8

3.2. dbxtool Subwindows ... 8

3.3. Scrolling .. 9

3.4. The Source Window ... ; •......... 9

3.5. Constructing Commands 10

3.6. Command Buttons ... ; ; .. ~................ 10

3.7. The Display Window l

3.8. Editing in the Source Window .. :...... 12

3.9. Controlling the Environment 12

3.10. Other Aspects of dbxtool .. ,.~.............. 12

- iii-

Contents - Continued

1

ford.bx

14

16

17

18

4.4. 18

and Post-Mortem Procedures... 19

Commands

4.11. Miscellaneous,,_,,,.,

4.

,,...,.,.,,,,..,,, ,,.Child Processes

and FORTRAN .. .

Pointers

Parameters

21

24

25

33

35

40

42

42

46

Contents - Continued

5.3. Using adb with FORTRAN.. 49

Chapter 6 adb Tutorial.. 53

6.1. A Quick Survey .. 53

Starting adb .. 53

Current Address 54

Fonnats ... 54

General Command Meanings .. 55

6.2. Debugging C Programs .. 56

Debugging A Core Image .. 56

Setting Breakpoints ... 59

Advanced Breakpoint Usage.. 62

Other Breakpoint Facilities ... 63

6.3. File Maps .. 65

407 Executable Files 65

410 Executable Files ... 66

413 Executable Files ... 67

Variables .. 67

6.4. Advanced Usage... 68

Fonnatted Dump ... 68

Accounting File Dump .. 70

Converting Values .. 70

6.5. Patching ... 70

6.6. Anomalies .. 72

Chapter 7 Sun386i adb Tutorial .. 73

7 .1. A Quick Survey .. 73

Starting adb .. 73

Current Address 7 4

Fonnats ... 74

General Request Meanings .. 7 5

7.2. Debugging C Programs on Sun386i ... 75

Debugging A Core Image .. 75

-v-

Contents-

87

90

93

96

99

Contents - Continued

8.11. Examples ofFPA Disassembly... 104

Chapter 9 Debugging SunOS Kernels with adb .. 107

9 .1. Introduction ... 107

Getting Started .. 107

Establishing Context ... 108

9.2. adb Command Scripts ... 108

Extended Formatting Facilities ... 108

Traversing Data Structures .. 112

Supplying Parameters... 113

Standard Scripts ... 114

9.3. Generating adb Scripts with adbgen ... 115

Chapter 10 Generating adb Scripts with adbgen .. 117

10.1. Example of adbgen .. 118

10.2. Diagnostic Messages from adbgen ... 118

10.3. Bugs in adbgen ... 118

Index... 119

-vii-

Tables

Table 2-1 Operators Recognized by dbx ... 4

Table 2-2 Operator Precedence and Associativity ... 5

Table 3-1 Attribute-Value Pairs for dbxtool ... 13

Table 4-1 dbx Functions ... 15

Table 4-2 Tracing and its Effects .. 23

Table 6-1 Some adb Fonn.at Letters ... 55

Table 6-2 Some adb Commands.. 55

Table 7-1 Some adb Fonn.at Letters... 74

Table 7-2 Some adb Commands.. 75

Table 9-1 Standard Command Scripts .. 114

-ix-

Figures

Figure 3-1 Five dbxtool Subwindows .. 9

Figure 6-1 Executable File Type 407 .. 65

Figure 6-2 Executable File Type 410 .. 66

Figure 6-3 Executable File Type 413 .. 67

Figure 7-1 Executable File Type 407 .. 85

Figure 7-2 Executable File Type 410 .. 86

Figure 7-3 Executable File Type 413 .. 87

-xi-

1.1. Three Debuggers

dbx

dbxtool

adb

1
Introduction

This manual describes three debuggers available on Sun Workstations™: dbx,
dbxtool, and adb. This document is intended for C, assembler, FORTRAN,
Modula-2, and Pascal programmers.

dbx is an interactive, line-oriented, source-level, symbolic debugger. It lets you
determine where a program crashed, view the values of variables and expres
sions, set breakpoints in the code, and run and trace a program. In addition,
machine-level and other commands are available to help you debug code. A
detailed description of how to use dbx is found in Chapter 4.

dbxtool is a window-based interface to dbx. Debugging is easier because you
can use the mouse to enter most commands from redefinable buttons on the
screen. You can use any of the standard dbx commands in the command win
dow. A detailed description of how to use dbxtool is found in Chapter 3.

adb is an interactive, line-oriented, assembly-level debugger. It can be used to
examine core files to determine why they crashed, and provides a controlled
environment for program execution. Since it dates back to UNIXt Version 7, it is
likely to be available on UNIX systems everywhere. Chapters 6 and 7 are tutorial
introductions to adb for the Sun-3 and the Sun386i, respectively, and Chapter 8
is a reference manual for it.

This manual begins with material about the debuggers of choice, dbxtool and
dbx. They are much easier to use than adb, and are sufficient for almost all
debugging tasks. adb is most useful for interactive examination of binary files
without symbols, patching binary files or object code, debugging programs when
the source code is not at hand, and debugging the kernel.

Some programs produce core dumps when an internal bug causes a system fault.
You can usually produce a core dump by typing (CTRL-\J while a process is run
ning. If a process is running in the background, or originated from a different
process group, you can get it to dump core by using the gcore(l) utility.

t UNIX is a registered trademark of AT&T.

Revision A of 6 March 1990

2

Revision A March

2.1. Debugging Modes of
dbx and dbxtool

NOTE

2.2. Common Features of
dbx and dbxtool

db and dbxtool Compared

Both dbx and dbxtool support three distinct types of debugging: post-mortem,
live-process, and multiple-process. References to dbx below apply to dbxtool
as well.

You can do post-mortem debugging on a program that has created a core file.
Using the core file as its image of the program, dbx retrieves the values of
variables from it. The most useful operations in post-mortem debugging are get
ting a stack trace with where, and examining the values of variables with
print. Operations such as setting breakpoints, suspending and continuing exe
cution, and calling procedures, are not supported with post-mortem debugging.

In live-process debugging, a process's execution is controlled by dbx. From
there, the user can:

o set the process' starting point

o set and clear breakpoints

o restart a stopped process.

The most useful operations are getting a stack trace with where, examining the
values of variables with print and display, setting breakpoints with stop,
and continuing execution with step, and cont.

Multiple-process debugging is most useful when debugging the interaction
between two tightly coupled programs. For example, in a networking situation it
is common to have server and client processes that use some style of inter
process communication (remote procedure calls, for example). To debug both
the client and the server simultaneously, each process must have its own instance
of dbx. When using dbx for multiple-process debugging, it is advisable to
begin each dbx in a separate window. This gives you a way to debug one pro
cess without losing the context of the other debugging session.

This does not mean that either dbx or dbxtool supports remote debugging.
You can debug only processes running on your machine.

The following symbols and conventions apply to both dbx and dbxtool; as
before, references to dbx apply to dbxtool as well.

3 Revision A of 6 March 1990

4

Table

+

*

&

*

>
<=
>=

&&

I
sizeof

add

left shift

bitwise and
or

not
not

to

JLVj;;,,AV•'4.A and
A..., or
size a variable or

cast

used

to

structure field .. ,,...-,,. .. ,,.,n,.,.o

.,....,.,.,,""'fr' .. to structure field reference

.....,..,,; ,. as well as with records
.... ,..; it is supported).

and are described

A 6 March 1990

dbx Scope Rules

5

Table 2-2

. -> left to

- ! (type) * & sizeof

* I % div left to right

+ -

<< >>

< <= > >=

!=

&

&&

11

? : lowest

Of course, if the ...,. .. ,.....,.. .. ,,...., and there is no core
you only use expressions v111..u1.uu1~ also H .. ,.. u..,

that the program be active.

dbx uses two variables to ... '°'"'"""'0 Section
4.8). The off ile
are entered and during '-'1'.''"''-'l.Jll..•~·1•

changed by user. Changing fun c however,
changing file does not func.

'"'"""'J.UUV'"· as in the command

1)

Finally, search outer
FORTRAN, and the outer
cal-for

The search order is:

func.

the file contain-

program in the case of C and
order in the case

the one named
.. ,..,.,,h ... •n named

is allowed, as as routine a
has been entered but not Note that the file containing the routine a
might have to be specified when the name its suffix) is the same as a
routine name. For example, if routine a is found in module a. c, then
a ' would not would to use

a name, use

Revision A of 6 March 1990

6

wherei to ,,.en•~"'
... .., ,.., name - in this case

The to:

1)

a source

which has

A March 1990

3
dbxtool

dbxtool [-kdb] [-I dir] [objectfile [corefile I process!D]]

dbxtool is a source-level debugger with a window and mouse-based user inter
face, accepting dbx's commands with a more convenient user interface. Using
the mouse, one can set breakpoints, examine variable values, control execution,
browse source files, and so on. There are subwindows for viewing source code,
entering commands, and several other uses. This debugger functions in the sun
tool s(l) environment, so that the standard tool manager actions, such as mov
ing, resizing, moving to the front or back, and so on can be applied to it. For
more information on dbxtool, see the dbxtool (1) man page.

In the usage above, objectfile is an object file produced by cc, f 7 7, pc, or
Modula-2 or a combination thereof, with the -g flag specified to produce the
appropriate symbol information. If no objectfile is specified, one may use the
debugger's debug command to specify the program to be debugged. The object
file contains a symbol table which includes the names of all the source files
translated by the compiler to create it. These files are available for perusal while
using the debugger, and can be seen with the modules command.

NOTE Every stage of the compilation process, including the linking and loading phases,
must include the -g option.

dbxt oo l can be used to examine the state of the program when it faulted if a
file named core exists in the current directory, or a corefile is specified on the
command line or in the debug command.

Giving a process/D instead of a corefile, halts that process and begins debugging
it. Detaching the debugger from the process allows that process to continue to
execute.

7 Revision A of 6 March 1990

are:

status

source

command Provides a

A of March 1990

Figure 3-1

3.3. Scrolling

3.4. The Source Window

Five dbxtool Subwindows

Awaiting Execution
I Fi le Displayed: ./eiumple.c

I
"'!

!"'

struct few few2 = { 3, 4, NULL, "world" } ;
struct few few1 = { 1, 2, &few2, "hello" }

"' write a main program to use the structures
"'!
main()
{

!"'
* declare the variable "'fewp
* to p[oint to a few-type structure
"'!

struct few *fewp;
/"'

"' print out a message
"'!

Chapter 3 - dbxtool 9

Lines: 13-32

! for (fewp = &few1; fewp != NULL; 11111= fewp -> next) {
printf("'!..s ", fewp ->message);

}
~ }

print)(print *)(next](step](stop at)[cont](stop in](clear](where

(up)(down)(run)

~Reading symbolic information ...
'j.~Read 155 symbols
7 (dbxtool) run
0 Running: example
{:::hello world
~{execution completed, exit code is 0
%program exited with 0
% (dbxtool) stop at "example .c" :29
::?:: (2) stop at "example .c" :29
-+: (dbxtool) print fewp
~~"fewp" is not active
~ (dbxtool)

The source, command, and display windows have scroll bars to facilitate brows
ing their contents. The scroll bar is at the left edge of each window.

See the Sun View User's Guide for a more complete description of scroll bars.

The source window displays the text of the program being debugged. Initially, it
displays text from either the main routine, if there is no core file, or the point at
which execution stopped, if there is a core file. Whenever execution stops during
a debugging session, it displays the point at which it stopped. The file com
mand can be used to switch the source window to another file; the focus of atten
tion moves to the beginning of the new file. Similarly, the func command can
be used to switch the source window to another function; the new focus of atten
tion is the first executable line in the function.

Breakpoints are indicated in the source window by a solid stop sign at the begin
ning of the line. The point at which execution is currently stopped is marked by
a rightward pointing outlined or hollow arrow.

Revision A of 6 March 1990

10

a
command.

uses the text selection

........... ,.,,~manner. That one first selects the
left mouse Each

command.

The Button Command

3.7. The Display Window

3 - dbxtool 11

cont Resume execution from the point where it is currently stopped. The
cont button ignores the selection.

stop in Set a breakpoint at the first line of a given function or procedure.
Since this button expands the selection, identifiers may be printed by
selecting only one character.

clear Clear all breakpoints at the currently selected point. <lineno>
clear clears all breakpoints at the specified line number.

where Prints a procedure traceback. <number> where prints number
top procedures in the traceback.

up Moves up the call stack one level. <number> up moves the call
stack up number levels.

down Moves the call stack down one level. <number> down moves the
call stack down number levels.

run Begins execution of the program. <arguments> run begins
execution of the program with new arguments.

The button command defines buttons in the buttons window. It can be used in
. dbxini t to define buttons not otherwise displayed, or during a debugging ses
sion to add new buttons. The first argument to but ton is the selection interpre
tation for the button, and the remainder is the command associated with it. The
default set of buttons can be replicated by the following sequence:

button expand
button expand print *
button next
button step
button lineno stop at
button ignore cont
button expand in
button ignore clear
button ignore where
button up
button down
button run

The unbutton command may be used in . dbxinit to remove a default but
ton from the buttons window, or during a debugging session to remove an exist
ing button. The argument to unbutton is the name of the command associated
with the button.

The display window provides continual feedback of the values of selected vari
ables. The display command specifies variables to appear in the display win
dow, and undisplay removes them. Each time execution of the program
being debugged stops, the values of the displayed variables are updated.

~~SU ~~ microsystems
Revision A of 6 March 1990

12

3.8. Editing in the Source
Window

3.9. Controlling
Environment

3.10. Other Aspects of
dbxtool

toolenv

The source window is a standard text subwindow (see SunView User's Guide
details). dbxtool puts the source subwindow in browse mode, mean-
ing that capabilities are suppressed. dbxtool adds a "start editing"

to the text subwindow menu in the source window. When this
menu is selected, the in the source window becomes editable, the menu
item changes to , and (stop signs and arrows) are
removed. The "stop editing" menu item is a pull-right menu with two options:

changes" and "ignore changes". either of these menu items
ables editing, changes the menu item back to "start editing", and causes the anno
tations to return.

'"'"'Al·U•Fo, a source it is advisable to rebuild the program, as the source file
no longer reflects the executable nrr'\CTT".lm

The toolenv command provides control over several facets of dbxtool 's
environment, including the vertical size of the source, com-

and windows, the horizontal and the minimum
lines between the top or bottom of the source window and the arrow.

These are in the . dbxini t file to control initialization of the
but may be issued at any

scope rules, etc.
commands,

so they are described

toolenv attribute value

and unbutton
See Chapter 4 for descrip-

Revision A of 6 March 1990

button

unbutton

menu

Table 3-1

3 - dbxtool 13

Set or print attributes of the dbxtool window. This command has no effect in
dbx. The possible attribute-value pairs and their interpretations are as follows:

Attribute-Value Pairs for dbxtool

Attribute-Value Description
font f ontfile change the font to that found infontfile; default is taken

from the DEFAULT FONT shell variable. -
width nchars change the width of the tool window to nchars charac-

ters; default is 80 characters.

srclines nlines make the source subwindow nlines high; default is 20
lines.

cmdlines nlines make the command subwindow nlines high; default is 12
lines.

displines nlines make the display subwindow nlines high; default is 3
lines.

topmargin nlines keep the line with the arrow at least nlines from the top
of the source subwindow; default is 3 lines.

botmargin nlines keep the line with the arrow on it at least nlines from the
bottom of the source subwindow; default is 3 lines.

The toolenv command with no arguments prints the current values of all the
attributes.

button selection command-name

Associate a button in the buttons window with a command in dbxtool. This
command has no effect in dbx. The argument selection may be any of

expand, lineno, command and ignore, as described in Section
3.5 . The command_ name argument may be any sequence of words correspond
ing to a dbxtool command.

unbutton command-name

Remove a button from the buttons window. The first button with a matching
command-name is removed.

The menu command defines the menu list in the buttons window. It can be used
in . dbxini t to define menu items not otherwise displayed, or during a debug
ging session to add new menu items. The first argument to menu is the selection
interpretation for the menu, and the remainder is the command associated with it.
The default set of menu items can be replicated by the following sequence:

~~s ~~ microsystems
Revision A of 6 March 1990

14

unmenu

Table 4-1

4
dbx

dbx [-r] [-kbd] [-I dir] [objectfile [corefile I process/D]]

dbx is a tool for source-level debugging and execution of programs, that accepts
the same commands as dbxtool, but has a line-oriented user interface, which
does not use the window system. It is useful when you can't run Sun View. (See
also the dbx(l) man page.)

dbx Functions

dbx Functions

Function Commands
list active procedures down, up, where

name, display, and set variables assign, display, dump,
print, set, set81,
undisplay, whatis, where is,
which

set breakpoints catch, clear, delete,
ignore, status, stop, when

run and trace program call, cont, next, rerun,
run, step, trace

access source files & directories cd, edit, file, func, list,
pwd, use, /, ?

machine-level commands nexti, stepi, stopi,
tracei, address, +

miscellaneous commands alias, dbxenv, debug,
detach, help, kill, make,
modules, quit, sh, source,
setenv

Although dbx provides a wide variety of commands, there are a few that you
will execute most often. You will probably want to

o find out where an error occurred,

~\sun ~ microsystems
15 Revision A of 6 March 1990

March 1990

4.3. dbx Options

dbx begins execution by printing:

Reading symbolic information ...
Read nnn symbols
(dbx)

To exit dbx and return to the command level, type:

4-dbx 17

For additional information and assistance, see Debugging Tips for Programmers
in Chapter 5 where a sample FORTRAN program and several examples are pro
vided. With a few changes and modifications to the examples this chapter may
also be useful for C programmers.

The options to dbx are:

-r Execute objfile immediately. Arguments to the program being debugged
follow the object filename (redirection is handled properly). If the program
terminates successfully, dbx exits. Otherwise, dbx reports the reason for
termination and waits for your response. When -r is specified and standard
input is not a terminal, dbx reads from I dev It t y.

-kdb
Debugs a program that sets the keyboard into up-down translation mode.
This flag is necessary if a program uses up-down decoding.

-I dir
Add dir to the list of directories searched when looking for a source file.
Normally, dbx looks for source files in the directory where obj.file is located,
and if the source files can't be found there or in the current directory, the
user must tell dbx where to find the source files; either by specifying the -I
option or by setting the directory search path with the use command.

The objfile contains compiled object code. If it is not specified, one can use
dbx' s debug command to specify the program to be debugged. The object file
contains a symbol table, which includes the names of all the source files the com
piler translated with -g. These files are available for perusal while using the
debugger.

If a file named core exists in the current directory, or a core.file is specified,
dbx can be used to examine the state of the program when it faulted. If a pro
cess/Dis given instead, dbx halts that process and begins debugging it. If you
later detach the debugger from it, the process continues to execute.

Revision A of 6 March 1990

18 Debugging Tools

.dbxinit

with the above the first

4.4.

11

4.5. Listing Active and
Post-Mortem
Procedures

4.6. Naming and
Displaying Data

4-dbx 19

If your program fails to execute properly, you probably want to find out the pro
cedures that were active when the program crashed. Use the where command,
like this:

[~_w_h_e_re __ [_n_]~--J
where displays a list of the top n active procedures and functions on the stack,
and associated sourcefile line numbers (if available). If n is not specified, all
active procedures are displayed.

When debugging a post-mortem dump of the example. c program above, dbx
prints the following:

demo%·dbx example· core
Reading symbolic. information ...
Read.41 symbols
program terminated by signal A.BRT (abort)
(dbx)

(dbx) where
abort{) at Ox8 Oe5
d.umpcore(), line in "example.c"
main (Oxl, Oxfffd84, Oxfffd8c),. line 7 in "example~
(dbx)

Two other commands useful for viewing the stack are:

up [n]
Move up the call stack (towards main) n levels. If n is not specified, the
default is one. This command allows you to examine the local variables in
functions other than the current one.

down [n]
Move down the call stack (towards the current stopping point) n levels. If n
is not specified, the default is one.

You can name and display your data with the following commands:

pr int expression[, expression ...]
Print the values of specified expressions. An expression may involve func
tion calls if you are debugging an active process. If execution of a function
encounters a breakpoint, execution halts and the dbx command level is re
entered. A stack trace with the where command shows that the call ori
ginated from the dbx command level.

Variables having the same name as one in the current function may be refer
enced asfuncname' variable, or .filename' funcname' variable. The
.filename is required iffuncname occurs in several files or is identical to a
.filename. For example, to access variable i inside routine a, which is
declared inside module a . c, you would have to use print a 'a 'i to
make the name a unambiguous. Use whereis to determine the fully
qualified name of an identifier. For more details, see dbx Scope Rules in
Chapter 5.

+~1m Revision A of 6 March 1990

a 1 i as command in con-
..... '"'' '""'PVJ••· see in

di

........,. ,....., ,.. ex1ore:ss1on is as a
,,,.,.,..,.,..""''"""'"r1''""" Pvv'\rP~~~1 r\n is deleted from the

maybe
to print all

outer

no conver-

Revision A of 6March1990

4.7. Setting Breakpoints

4-dbx 21

Breakpoints are set with the stop and when commands, which have the follow
ing forms:

stop at source-line-number [if condition]
Stop execution at the given line number whenever the condition is true. If
condition is not specified, stop every time the line is reached.

stop in procedure/function [if condition]
Stop execution at the first line of the given procedure or function whenever
the condition is true. If condition is not specified, stop every time the pro
cedure or function is entered.

stop variable [if condition]
Stop execution whenever the value of variable changes and condition is true.
If condition is not specified, stop every time the value of variable changes.
This command performs interpretive execution, and thus is significantly
slower than most other dbx commands.

stop if condition
Stop execution whenever condition becomes true. This command performs
interpretive execution, and thus is significantly slower than most other dbx
commands.

when in procedure/function { command; . . . }
Execute the given dbx command(s) whenever the specified procedure or
function is entered.

when at source-line-number { command; . . . }
Execute the given dbx command(s) whenever the specified source-line
number is reached.

when condition { command; ... }
Execute the given dbx command(s) whenever the condition is true before a
statement is executed. This command performs interpretive execution, and
thus is significantly slower than most other dbx commands.

NOTE In the when commands, the braces and the semicolons between commands are
required.

The following commands can be used to view and change breakpoints:

stat us [>.filename]
Display the currently active trace, stop, and when commands. A
command-number is listed for each command. The .filename argument
causes the output of status to be sent to that file.

delete command-number [[,] command-number ...]
delete all

Remove the trace, when, and/or stop commands corresponding to the
given command-numbers, or all of them. The status command explained
above displays the numbers associated with these commands.

clear [source-line-number]
Clear all breakpoints at the given source line number. If no source-line
number is given, the current stopping point is used.

Revision A of 6 March 1990

22

Table 4-2

4-dbx 23

If no argument is specified, each source line is displayed before it is exe
cuted. Execution is substantially slower during this form of tracing.

The clause in procedure/function restricts tracing information to be
displayed only while executing inside the given procedure or function. Note
that the procedure/function traced must be visible in the scope in which the
trace command is issued-see the func command.

The condition is a Boolean expression evaluated before displaying the trac
ing information; the information is displayed only if condition is true.

The first argument describes what is to be traced. The effects of different
kinds of arguments are described below:

Tracing and its Effects

source-line-number Display the line immediately before executing it.
Source line numbers in a file other than the
current one must be preceded by the name of the
file in quotes and a colon, for example,
"mumb 1 e . p n : 1 7.

procedure/function Every time the procedure or function is called,
display information telling what routine called it,
and what parameters were passed to it. In addi-
tion, its return is noted, and if it is a function, the
return value is also displayed.

expression The value of the expression is displayed whenever
the identified source line is reached.

variable The name and value of the variable are displayed
whenever the value changes. Execution is sub-
stantially slower during this form of tracing.

Tracing is turned off whenever the function in which it was turned on is
exited. For instance, if the program is stopped inside some procedure and
tracing is invoked, the tracing will end when the procedure is exited. To
trace the whole program, tracing must be invoked before a run command is
issued.

When using conditions with trace, stop, and when, remember that variable
names are resolved with respect to the scope current at the time the command is
issued (not the scope of the expression inside the trace, stop, or when com
mand). For example, if you are currently stopped in function f oo () and you
issue the command

the variable x refers to the x in function f oo (),not in bar (}. The func com
mand can be used to change the scope before issuing a trace, stop, or when
command, or the name can be qualified, for example, bar . x== 5.

~\su ~ microsystems
Revision A of 6 March 1990

24

Note: The FPA register names
$fpa0 .. $fpa31 can be used in
arithmetic expressions and in set
commands on machines with a
FPA. This extension applies
on a machine with an Note
that if an FPA register is used in an
expression or assignment, its type
is assumed to be double precision.
FPA registers can be displayed in
single precision using the / f
display format. Double-precision
values are displayed using the /F.

next [n]
Execute the next n source and then

statements.

If
u•'-·"""11-'V•:> are ern;oulnt(~re<l. ""·"'"""'" .. ''v••

level is reentered. A stack trace with the where command shows that the
dbx c01mn1aI1lO

the number
must ensure that 'l .. ll,,ft", 0 n1-"

the stack as

FORTRAN

These commands let access source

name current

Revision A of 6 March 1990

4.10. Machine-Level
Commands

4-dbx 25

region of the file is shown in the source window and extends from the first
line number to the end of the window.

use [directory ...]
Set the list of directories to search when looking for source files. If no direc
tory is given, print the current list of directories. Supplying a list of direc
tories replaces the current (possibly default) list. The list is searched from
left to right.

cd [dirname]
Change dbx's notion of the current directory to dirname. With no argu
ment, use the value of the HOME environment variable.

pwd
Print dbx 's notion of the current directory.

I string[/]
Search downward in the current file for the regular expression string. The
search begins with the line immediately after the current line and, if neces
sary, continues until the end of the file. The matching line becomes the
current line.

?string[?]
Search upward in the current file for the regular expression string. The
search begins with the line immediately before the current line and, if neces
sary, continues until the top of the file. The matching line becomes the
current line.

When dbx searches for a source file, the value off ile and the use directory
search path are used. The value off ile is appended to each directory in the
use search path until a matching file is found. This file becomes the current file.

dbx knows the same filenames as were given to the compilers. For instance, if a
file is compiled with the command

(_% __ c_c __ -_c __ -_g __ ._._1_m_i_p_l_s_c_a_n_._c ________________________________ ___.J

then dbx knows the filename .. /rnip/ scan. c, but not scan. c.

These commands are used to debug code at the machine level:

tracei [address] [if cond]
tracei [variable] [at address] [if cond]

Tum on tracing of individual machine instructions.

stopi [variable] [if cond]
stopi [at address] [if cond]

Set a breakpoint at the address of a machine instruction.

stepi
nexti

Single step as in step or next, but do a single machine instruction rather
than a line of source.

Revision A of 6 March 1990

Mode

i
d

x

s
f
F

E

$

to

..., ,,r-. at the first address and continuing

Does

been displayed. If a + is
most recently is used.

if omitted, the
modes are supported:

a

..,v ... ,...,A,u by preceding a name
1..1• ..., • ..., "' ... H•h. a name with a dollar sign $.

Name

Name

as
as$

Revision A of 6 March 1990

4-dbx 27

may be expressions made up of other addresses and the operators+ (plus), -
(minus), * (multiply), and indirection (unary *). The address may be a+ alone,
which causes the next location to be displayed.

See the SPARC Architecture Reference Manual and the Sun-4 Assembly
La.nguage Reference Manual for information about Sun-4 registers and address
ing.

Here is the list of Sun386i registers:

Register Name

$ss stack segment register
$ef lags flags

$cs code segment register
$eip instruction pointer
$eax general register
$ebx general register
$ecx general register
$edx general register
$esp stack pointer
$ebp frame pointer
$esi source index register
$edi destination index register
$ds data segment register
$es alternate data segment register
$fs alternate data segment register
$gs alternate data segment register

On the Sun386i, to print the contents of the data and address registers in hex,
type &$eaxl JOX or &$eax,&$eip!X. Data segment registers are always printed
together, so &$cs/X is the same as &$cs ,&$gs!X. The print command can also
be as in print $eax.

You can also access parts of the Sun386i registers. Specifically, the lower halves
(16 bits) of these registers have separate names, as follows:

Register Name

$ax general register
$ex general register
$dx general register
$bx general register
$sp stack pointer
$bp frame pointer
$si source index register
$di destination index register
$ip instruction pointer, lower 16 bits

$flags flags, lower 16 bits

Revision A of 6 March 1990

sh

$ah
$cl

$
$dh

$fctrl

16 can two

Name

Name

The SHELL

occurs. For exam-

creates a mem command that takes an " ,..,. evaluates its meml->mem2

and the result.

the useful

Revision A of 6 March 1990

Note :All FPA instructions are
disassembled by the off option,
not just those used in conjunction
with the fpaasm subcommand.

4-dbx 29

when that file was created by redirecting a status command from an ear
lier debugging session.

Exit dbx.

dbxenv
Set dbx attributes. The dbxen v command with no argument prints the
attributes and their current values.

dbxenv case sensitivelinsensitive
The keyword case controls whether upper and lower case letters are con
sidered different. The default is sensitive; insensitive is most use
ful for debugging FORTRAN programs.

dbxenv on I off
Controls the disassembly of FP A instructions. If you specify off with the
dbxenv fpaasm command, FPA instructions are disassembled as move
instructions. If you specify on, FPA instructions are disassembled by means
of FPA assembler mnemonics. On a machine with an FPA, fpaasm is on
by default. On machines without fpaasm is off by default.

dbxenv fpabase a[0-7] I off
Designates an MC68020 address register for FP A instructions
plus-short-displacement addressing to address the FP A.

use base-

If the value is on, long move instructions use the designated address
register in base-plus-short-displacement mode are assumed to address the
FP A, and are disassembled using FP A assembler mnemonics.

If the value is all based-mode FPA v••"' are disassembled and
single-stepped as move instructions. The default of is off.

dbxenv makeargs args
The keyword makeargs defines which arguments will be passed to make
when it is invoked from dbx.

dbxenv speed seconds
The keyword determines the interval between execution of source
statements during tracing (default 0.5 ... ,..,...,v "'I·

dbxenv
The keyword controls the maximum number characters
printed for a char *variable in a C program (default 5

debug [obj.file [core.file/]]

s

Terminate debugging of the current program (if any), and begin debugging
the one found in obj.file with the given core.file or live process, without incur
ring the overhead of reinitializing dbx. Ifno arguments are specified, the
name of the program currently debugged and its arguments are
printed. You must have both the or process available
to perform debugging.

microsysterns
Revision A of 6 March 1990

30

"" 111 "..,,'l,. remains of a window
ftat'UHTt"TO.. or allow the

more

error mes-

execute. The process is no

programs
want to use the

the amount source level

set USE commands or

A March 1990

4-dbx 31

to control the size of the dbx internal symbol tables when debugging large
programs.

If the modules selection list is set and a particular object file of the executable file
is not included in the list, the debugger will ignore debugging information for
that file. The effect is the same as if the file had not been compiled with the -g
flag.

Set the modules selection list to include specified object files with this command.

[~ ___ m_o_d_u_i_e_s __ s_E_L_E_c_T __ ob_if_na_m_e ___ [_o_b_ifna __ m_e __ J __ ._·_· __________________ __,]

Display the current list with the command.

(~ ___ m_o_d_u_i_e_s __ s_E_L_E_c_T ______________________________________ ~_J
Before reading debugging information for a particular object file, the debugger
checks whether the modules selection list is set. If it is set, the debugger
compares the name of the object file against the modules selection list. If the
name appears, its debugging information is read, otherwise it is ignored.

Disable the selection list with this command.

(modules SELECT ALL

Once you set a modules selection list, all subsequent DEBUG commands will
interrogate it. Change the list with additional

J

(~ __ m_o_d_u_i_e_s __ s_E_L_E_c_T_o_b_if_na_m_e __ [__ o_b.J_·na __ m_e __] __ ._·_· ____________________ J

commands.

Revision A of 6 March 1990

.y

in the

command.

man

March

4.13. Debugging Child
Processes

Do not press I Return l yet.

4-dbx 33

demo* pstat -s
6584k allocat~d+~1Zk~reserv~d ~ 7096k
available
demo# xrikfila ;.;.riv 20m /home/swapfi1a
/home/swapfile2097f520 bytes
demo# /usr/etc/swapo:n. Iho:me/swapfiie

You may find that debugging programs with dbx or dbxtool is difficult when
the program does a fork () and thereby creates child processes. Debugging can
be done, but it does not fit into dbx nicely. You will have to change the source
code during debugging.

Use the steps below and either dbx or dbxtool to debug programs that create
child processes.

1. Insert a sleep (2 0) or a similar call in the child process path of the code
which was started by the fork (). This delays the child code execution.
There are many alternatives that can be used. You could also use
get char () or an infinite loop that can be broken by the dbx command
set.

2. On Sun OS releases prior to 4.0, link with the - N flag. This ensures that after
the fork () , the child and parent processes have their own copies of the text
segment for the process, rather than sharing the segment. Beginning with
SunOS 4.0, this flag is not necessary due to the copy-on-write capability
provided by the virtual memory subsystem.

3. Start dbx on the parent process. Put a break point in the parent process code
as needed. Be sure to put a break in the execution path of the parent process
right after the fork () point, in order to obtain the child process PID.

Do not put any breakpoints in the child process at this point.

4. Start another copy of dbx, or dbxtool, and enter the first part of a
command as shown below.

demo ·.% dbx executable _filename . .. J
5. Start parent process code execution in the first dbx. Obtain the child

process PID number after reaching the breakpoint set in step 3 above. We
will use "1234" as the PID in this example.

6. Now complete the command as shown below.

This command starts a second db x process to debug the child process
suspended earlier by the sleep (2 0) or functionally-equivalent command

Revision A of 6 March 1990

34

to the

A

March

4.14. dbx FPA Support

4-dbx 35

In another commandtool or shelltool use the pid and read in the child process
as shown in the following example (1537 is the pid of the sample process):

demo% dbx a.out 1537
Reading symbolic information ...
Read 42 symbols
(dbx) list

13 sleep(20);
14
15
16

(dbx)

1. The fpaasm debugger variable controls disassembly ofFPA instructions.
This variable may be set or displayed by means of the dbxenv command.
The syntax of the command is:

If the value of fpaasm is all FP A instructions are disassembled as
move instructions. If the value is on, FP A instructions are disassembled
with FP A assembler mnemonics. Defaults: on a machine with an FP A,
fpaasm is initially set to on; on machines without an FP A, it is initially set
to off.

2. The fpabase debugger variable designates a 68020 address register for
FPA instructions that use base-plus-short-displacement addressing to address
the FP A. The syntax is:

If FP A disassembly is disabled (if fpaasm is off), its value is ignored.
Otherwise, its value is interpreted as follows:

value in .. a 7]:
Long move instructions that use the designated address register in base
plus-short-displacement mode are assumed to address the FPA, and are
disassembled using FP A assembler mnemonics. Note that this is
independent of the actual run-time value of the register.

value= off:
All based-mode FP A instructions arc disassembled and single-stepped
as move instructions.

The default value of fpabase is
ter.

~\su ~~ microsystems

which designates no FP A base regis-

Revision A of 6 March 1990

36

4.15. Example FP A
Disassembly

program '-"'"'' '""'-'-
*, f (1. 0 1.

end

function f (x,
f atan
return
end

Assume that this program has been compiled with the -g option into the file

f

with an we disassemble the function fas

line
f =

FORTRAN ATAN is directly supported by

"example

can disabled by setting debugger variable fpaasrn to
causes dbx to disassemble FP A instructions as long moves to

rf .. ""''"""" on the FP A

Revision A of 6 March 1990

4.16. Examples of FP A
Register Use

dbx 37

When tracing a more complex program, one may occasionally want to step into a
routine that has been compiled with optimization on. In such routines, it is often
the case that the compiled code addresses the FP A page by using base+short
offset addressing. Such code can be difficult to recognize unless it is known
ahead of time that a particular address register is being used to address the FP A.
This situation can be identified by the presence of an instruction that loads the
address of the FP A page (OxeOOOOOOO) into an address register before doing any
floating-point arithmetic.

For example, here is a disassembly of the beginning of an optimized FORTRAN
routine compiled with the -o and -f fpa options:

(dbx) &ddot_/7i
ddot~: link
ddot +Ox4: moveml
ddot +Ox8: lea.
ddot +Oxe: movl
ddot +Ox14: movl
ddot +Oxla: movl
ddot_+Ox20: movl

a6,i-Ox2a0
l<d2,d3,d4,d5,d6,d7,a2,a3,a4,
e0000000:1,a2
a2@(0xe20),a6@(-0x278)
a2@(0xe24),a6@(-0x274)
a2@(0xe28),a6@(-0x270)
a2@(0xe2c),a6@(~0x26c)

sp@

dbx does not know which register (if any) is being used to address the FPA in a
given sequence of machine code. However, you may set the dbxenv variable
fpabase to designate an MC68020 address register as an FPA base register. In
this example, we note that the compiler has loaded the address of the FP A page
into register a 2, and so we designate a2 as the FPA base register to obtain the
following:

(dbx) dbxenv fpabase a2
(dbx) &d.dot_/7i
ddot : link a6,l-Ox2a0
ddot +Ox4: moveml :#<d2,d3,d4,d5,d6,d7,a2,a3,a4,a5>,sp@
ddot +Ox8: lea e0000000:1,a2
ddot +Oxe: fpmoved@2 fpa4,a6@(-0x278)
ddot +Oxla: fpmoved@2 fpa5,a6@(-0x270)
ddot +Ox26: fprnoved@2 204ce:l,fpa5
ddot +Ox36: fprnoved@2 204ce~l,fpa4

FP A data registers can be displayed using a syntax similar to that used for the
MC68881 co-processor registers. Note that unlike the MC68881 registers, FP A
registers may contain either single-precision (32-bit) or double-precision (64-bit)
values; MC68881 registers always contain an extended-precision (96-bit) value.

For example, if fpaO contains the single-precision value 2.718282, we may
display it as follows:

(dbx) &$fpa0/f
fpaO Ox402df855 +2. 718282e+OO

·.

Revision A of 6 March 1990

Note that the value is ---·---J
ti on.

no ta-

A 6 March 1990

NOTE

Sample program

al.£

a2.f

a3.f

Debugging Tips for Programmers

This chapter provides a number of debugging tips. Primarily, the examples
presented here are in the FORTRAN language. However, with some minor
changes and modifications, the sample program and the examples in this chapter
may also be of use to C language programmers.

FORTRAN arrays can be specified using either parentheses() or brackets []. dbx
can take both.

The following sample program (with bug) is used in several examples:

20
10

parameter (n=2)
real twobytwo(2,2) I 4 *-1 I
call mkidentity(twobytwo, n
print *, determinant(twobytwo
end

subroutine mkidentity (array, m)
real array(m,m)
do 10 i = 1, m
do 20 j = 1, m
if (i .eq. j) then

array (i, j) 1.
else

array(i,j) 0.
endif
continue
continue
return
end

39 Revision A of 6 March 1990

a{ 1

with the -g

A of 6 March 1990

breakpoint

Chapter 5 - Debugging Tips for Programmers 41

To quit dbx, enter the command quit.

To set a breakpoint before the first executable statement, wait for the (dbx)
prompt, then type "stop in MAIN".

(dbx) stop in MAIN
(2) stop irt MAIN
(dbx)

run After the (dbx) prompt appears, type run to begin execution. When the break
point is reached, dbx displays a message showing where it stopped, in this case
at line 3 of file a 1 . f .

print

(dbx) run
Running: silly
stopped in.MAIN at line 3 in file "al.f"

3 call mkidentity(twobytwo, n)
(dbx)

The command "print n" displays 2, since dbx knows about parameters.

[_: __ n_:~_=_:2_:_p_r-in_t __ n------------------~---------------'-'-'-"!
The command "print twobytwo" displays the entire matrix, one element per
line. Note that dbx displays square brackets (not parentheses) when it references
array element~.

(dbx) print twobytwo
twobytwo = [1,1] -1.0

[2, 1] -L 0
[1, 2] -1. 0
[2,2] -1.0

(dbx)

The command "print array" fails because mkidentity is not active at
this point.

(dbx) print array
"array" is not active
(dbx)

~~sun ~if' microsystems
Revision A of 6 March 1990

42

next command

Calling a

items such as structure,
v.l', .. U-H•IJ""'·'" show dbx with these

March 1990

Chapter 5 -Debugging Tips for Programmers 43

Compile for dbx using the -g option, load it in dbx, and list it.

demo% f77 -o debstr -g debl. f
debl. f:

MAIN:
demo% dbx debstr
Reading symbolic information .. ~
Read 269 symbols
(dbx) listl,30

1 * debl.f: Show dbx with structures and pointers
2 STRUCTURE /PRODUCT/
3
4
5
6
7
8
9

INTEGER*4
CHARACTER*16
CHARACTER*B
REAL*4
REAL*4

END STRUCTURE

ID
NAME
MODEL
COST
PRICE

10 RECORD /PRODUCT/ PRODl, PROD2
11 POINTER (PRIOR, PRODl), (CURR, PROD2)
12
13 PRIOR= MALLOC(36)
14 PRODl. ID = 82
15 PRODl.NAME = "Schlepper"
16 PRODl.MODEL = "XL"
17 PRODLCOST = 24. 0
18 PRODl.PRICE = 104.0
19 CURR= MALLOC(36)
20 PROD2 PRODl
21 WRITE (*, *) PROD2.NAME
22 STOP
23 END

(dbx)

Set a breakpoint at a specific line number, and run it under dbx.

(dbx:) stop at 21
(1) stop at "debl. f 11: 21
{dbx) run

Running: debstr
stopped in main at line 21 in file "debl.f"

21 WRITE (*, *) PROD2.NAME
(dbx)

Revision A of 6 March 1990

44

names.

id
name

I

all fields of the including field

Revision A of 6 March 1990

Parameters

Uppercase

Chapter 5 - Debugging Tips for Programmers 45

The dbx debugger recognizes parameters - the compiler generates pseudo
variables for parameters when programs are compiled for dbx with the -g
option. The following examples show using dbx with parameters.

Compile for dbx using the -g option, load it in dbx and list it. Print some
parameters.

demo% £77 -o silly -g deb2.f a2.f a3.f
deb2.f:
deb2.f:

MAIN silly:
a2.f:
a2.f:

mkidentity:
a3.f:
a3.f:

determinant:
Linking:
demo% dbx silly
Reading symbolic information ...
Read 269 symbols
(dbx) list 1,30

program silly 1
2
3
4

5
6
7

parameter (n=2r nn=n*n
real twobytwo(n,n)

(dbx) print n
'deb2'MA.IN'n = 2
(dbx) print nn
nn == 4
(dbx) quit

demo%

data twobytwo /nn *-1 I
call mkidentity(twbbytwo, n)
print *, determinant(twobytwo)
end

If your program has uppercase letters in any identifiers, and you want dbxtool
to recognize them, then you need to give dbxtool a specific command, as
follows.

(~•~-db~x_e_n_v __ c_a~s_e_._i_n_s_e_n_s_i~t-i_v_e--"--~-------------~----'-------'----_;...J
Once you've done the above command, then when dbxtool finds and displays
uppercase identifiers, you can select them and dbxtool can find them.

Caveat: Once you've done the above command, then the command
"stop in MAIN" does not work.

Revision A of 6 March 1990

46

FORTRAN

the

March 1990

Passing Arguments to a Main
Program

Note that the arguments are passed
not on the dbx or dbxtool
command line, nor on the debug
command line.

To specify main program arguments correctly within dbx, place them on the
run command of dbx, as follows:

demo% cat tesargs.f
character argv*lO
integer i, iargc, m
m = iargc()
i = 1
do while i . . m

call getarg (i, argv
write (*, ' C i2, lx, a) '
i = i + 1

end do
stop
end

demo % a.out first second last
1 first
2 second
3 last

demo% d.bx a.out
Reading symbolic information ...
Read 292 symbols
(dbx) run first second last
Running: a.out first second last

1 first
2 second
3

execution completed, exit code is 0
program exited with 0
(dbx)

i, argv

47

Where Exception Occurred You can find the source code line where a floating-point exception occurred by
using the ieee _handler routine with either dbx or dbxtool. For example:

48 Debugging Tools

Note the
"catch FPE"
dbx command. ~

Print in

MAIN:

demo% dbx a.out

FPE

: a.out
FPE (

in MAIN at
5

set all

code

information ...

*,r/s

cannot use the to in
ne:x.a<1ec~1m1ru. you can use the alias command with machine-level ..,v,, U AU~

same
named mem which rt:>rHH't"t:>C"

then that below

* (! :

of March 1990

5.3. Using adb with
FORTRAN

compile

revised a 1.f

49

Using the following command, you can now set up a button in dbxtool so that
the mouse could select the object.

(fdbxtool) button expand mem

This section introduces the use of the adb low-level debugger with the
FORTRAN language.

The adb debugger can be used to provide a stack traceback at a lower level.
adb can be used on any program regardless of whether or not it was compiled
with the -q debugging flag. For more information on adb, see adb Tutorial,
Chapter 6.

The adb program does not display any prompt at all; it just waits for input;
except if you enter only a (Return), then it will display the prompt adb.

J

With the same three files as in the first dbx example, if you compile and run, you
get NaN (not a number). If you get an abort, you can get an adb low-level trace
back; so force an abort with an exception handler.

r

parameter (n=2)
real twobytwo(2,2) I 4 *-1 I
external hand
i = ieee_handler ('set', 'all', hand)
call mkidentity(twobytwo, n)
print *, determinant(twobytwo)
end

integer function hand (sig, code, context)
integer sig, code, context(S)
call abort ()
end

Revision A of 6 March 1990

MAIN

which in tum

tum

run, a

-£68881 -o a1.f a2.f .f

a C backtrace as follows.

' '

Ox20258) + 1

) + Sa

FORTRAN MAIN .. ,.,.,,.h...,,..

the function determinant,

Revision A of 6 March 1990

instructions

quit

blank common

Chapter 5 - Debugging Tips for Programmers 51

Display, say, lO(hex) machine instructions and their addresses starting from the
entry point determinant.

determinant.:_.,lO?ia
determinant : - -

determinant:
determinant +4: - -
determinant +Oxa: - -
determinant +Oxe: - -

determinant+Ox18:
determinant +Oxlc: - -
determinant +Ox20: - -
determinant +Ox24: - -
determinant+Ox2a: - -
determinant +Ox2e: - -
determinant +Ox34! - -
determinant +Ox38: - -

determinant+Ox3e:
determinant +Ox42: - -
determinant +Ox48:
determinant +Ox4a: - -

+Ox4e:

linkw a6,if0

To quit adb, type $q or $Q or "'D. For example:

addl :Jf:-8,a7
moveml #0,sp@
f movemx ,a6@ f-8:1)
movl a6@ (8) , aO
movl a6@(8),a1
fmoves al@,fpO
fmuls aO@(Oxc),fpO
movl a6@ (8) ,a.a
£moves a.o@ <8 > , tp1
movl a6@(8),a0
fdivs a0@(4),fp1
f subx fpl,fpO
fmoves f po , a 6@. (~ 8)
nop
movl a6@(-8).,d0

Variables can be displayed in a variety of formats, but their addresses must be
known. The addresses of some external variables are easy to determine.

For example, to print the first four bytes after the label __ BLNK __ ,in a decimal
format, do this.

which is equivalent to the dbx command "print n" if n is the first variable in
blank common.

The addresses of local variables are usually difficult to determine.

Revision A of 6 March 1990

52

You can examine this data

0,3?D
0:

demo%

three

4

fort. 4 which contains a
11nt-,....rt'n'ltt.c>ri record two count words

.....,,.,.,_,...,,,....,,,.,. and record.

with adb as follows.

at location 0, 3 times,

4 4

Revision A of 6 March 1990

6
adb Tutorial

6.1. A Quick Survey Available on most UNIX systems, adb is a debugger that permits you to examine
core files resulting from aborted programs, display output in a variety of formats,
patch files, and run programs with embedded breakpoints. This chapter provides
examples of the most useful features of adb. The reader is expected to be fami
liar with basic SunOS commands, and with the C language.

NOTE This chapter describes adb use on the Sun-3 and Sun-4 only. Chapter 7
describes adb use on the Sun386i.

Starting adb Start adb with a shell command of the form

(~ <tdb(objeclfiJCj tc~reftle] J

where objectfile is an executable SunOS file and coreft.le is a core dump file. If
the object file is named a. out, then the invocation is

If you place object files into a named program file, then the invocation is

(9t adb progrnm

The filename minus(-) means ignore the argument, as in:

(% adb -core

This is for examining the core file without reference to an object file. adb pro
vides requests for examining locations in either file: ? examines the contents of
objectfile, while I examines the contents of corefile. The general form of these
requests is:

[~a-d-dr_e_ss~?--fo_r_m_a_t----------------~------------------------__.J
or

[_a_d_dr_e_ss __ l __ fo_r_m_a_t __ _.J

~\sun ~ microsystems
53 Revision A of 6 March 1990

54

adb acurrentorlriiro•~~ the
current address is set to that .. v ... ·u.a.•·vu .•

can be decremented

Formats

A of 6 March 1990

Table 6-1

General Command Meanings

Table 6-2

6- adb Tutorial 55

Some adb Format Letters

Letter Description

b one byte in octal
B one byte in hex
c one byte as a character
0 one 16-bit word in octal
d one 16-bit word in decimal
f one single-precision floating point value
i MC68020 instructions on Sun-3,

SP ARC instruction on Sun-4.
s a null-terminated character string
a the value of dot
u one 16-bit word as an unsigned integer
n print a newline
r print a blank space
A backup dot (not really a format)
+ advance dot (not really a format)

Format letters are also available for long values: for example, D for long
decimal, and F for double-precision floating point. Since integers are long words
on the Sun-3 capital letters are used more often than not.

The general form of a command is:

[~_[_a_d_dr_e_ss_[_,_c_o_un_r_J_J __ co_m_m __ and ___ [_m_o_d_~_e_r_J ___________________________]

which sets dot to address and executes command count times. The following
table illustrates some general adb command meanings:

Some adb Commands

Some adb Commands
Command Meaning

? Print contents from object file
I Print contents from core file
= Print value of "dot"
: Breakpoint control
$ Miscellaneous requests
; Request separator
! Escape to shell

Since adb catches signals, a user cannot use a quit signal to exit from adb. The
request $q or $Q (or (CTRL-D I) must be used to exit from adb.

Revision A of 6 March 1990

56

6.2. Debugging C
Programs

Debugging A Image

#include <stdio.h>

char "this is a sentence.";

main(argc
int argc;
char *

FILE
char

if (argc 1) {

if

cp = 'T';
while (c

exit

argv[
1]

bug is that the character T is stored
pointed to cp. Compile

%s

"w")

want to compile pro-
tables. will make

compile programs
optimized, and may

was written in the source

a common error made by C pro
lowcr case t to an upper

character string to the

, argv[O]);

NULL) {

Revision A of 6 March 1990

6 - adb Tutorial 57

[~~ain[8074J (2,fffd7c,fffd88) + 92]

which produces a C backtrace through the subroutines called. The output from
adb tells us that only one function - main - was called, and the arguments
argc and argv have the hexadecimal values 2 and f ff d7 c, respectively.
Both these values look reasonable - 2 indicates two arguments, and ff f d 7 c is
the stack address of the parameter vector. The next request

$C
_main[8074] (2, fffd7c, fffd88) + 92

fp: 10468
c: 104

generates a C backtrace plus an interpretation of all the local variables in each
function, and their values in hexadecimal. The value of the variable c looks
incorrect since it is outside the ASCII range. The request

$r
dO 54 frame+24
dl 77 frame+47
d2 2 manl
d3 0 exp
d4 0 exp
d5 0 exp
d6 0 exp
d7 0 exp
aO 54 f rame+24
al 0 exp
a2 0 exp
a3 fffd7c
a4 fffd88
a5 0 exp
a6 fffd64
sp fffd5c
pc 8106 main+92
ps 0 exp

main+92: ???
'-

displays the registers, including the program counter, and an interpretation of the
instruction at that location. The request

$e
environ: fffd88

_sys_nerr: 48
ctype: 202020

exit nhandlers: - -
exit tnames:
lastbuf: 10684
root: 0

0
9b06

Revision A of 6 March 1990

58

lbound: 0

curbrk:
0
12dd4
8000

~d_big_pot: 8000

errno:
end:

displays the

8000

0
0

8000

of all external variables.

A map exists each file handled by adb. map for object files is referenced
? , whereas the map for core files is referenced by I. Furthermore, a good rule

of thumb is to use ? for instructions and I for data when looking at programs.
To display information about maps,

$m
bl = 2000 el bOOO fl 800
b2 = 10000 e2 11000 f 2 3800
I map 'core'
bl 10000 el 13000 fl 1800
b2 = fffOOO e2 1000000 f 2 4800

This produces a report of the contents of the maps. More about these maps later.

In our example, we want to see contents of the string pointed to by cp.
We would want to see the string pointed to by cp in the core file:

Because the pointer was set to 'T' (hex and then incremented, it now equals
On there are no symbols below address 2000 (8000 on a

Sun-2), so the data address 55 cannot be found. We could also display informa
tion about the arguments to a function. To the decimal value of the argc
argument to main, which is a long integer,

To display the
the function

Note that these are the addresses of the

Revision A of 6 March 1990

Setting Breakpoints

#include <stdio.h>

#define MAXLIN 80
#define YES 1
#define NO 0
#define TABSP 8

int tabs[MAXLIN];

main ()
{

int *ptab, col, c;

6- adb Tutorial 59

typing these hex values should yield the command-line arguments:

[_!_:_:_:_~-~-~-s ________ a __ .o_u_t ____________________________________]

The request

[·= ff f dcO]
displays the current address (not its contents) in hex, which has been set to the
address of the first argument. The current address, dot, is used by adb to
remember its current location. It allows the user to reference locations relative to
the current address. For example

(fffdc6: zzz]

prints the first command-line argument.

Set breakpoints in a program with the : b instruction, which has this form:

[_a_d_d_re_s_s_:b---[-re_q_u_e_st_J __ __.J

Consider the C program below, which changes tabs into blanks, and is adapted
from Software Tools by Kernighan and Plauger, pp. 18-27.

ptab = tabs;
settab(ptab); /* set initial tab stops */
col = 1;
while ((c = getchar()) != EOF)

switch (c) {
case '\t':

while (tabpos(col) !=YES) {
putchar (' ') ;
col++;

putchar(' ');
col++;

Revision A of 6 March 1990

exit 0

return tab if not *

if

TABSP spaces

i i

Run and then set four breakpoints as fol-

command

Revision A of 6 March 1990

Chapter 6 - adb Tutorial 61

A breakpoint is bypassed count-1 times before causing a stop. The command
field indicates the adb requests to be executed each time the breakpoint is
encountered. In this example no command fields are present.

Display the instructions at the beginning of function sett ab () in order to
observe that the breakpoint is set after the link assembly instruction:

This request displays five instructions starting at sett ab with the address of
each location displayed. Another variation is

settab,S?i
set tab:
set tab: link

addl
moveml
clrl
cmpl

a6,#0
#-4,a7
#<>,sp@
a6@(-4)
#50,a6@(-4)

which displays the instructions with only the starting address. Note that we
accessed the addresses from a. out with the? command. In general, when ask
ing for a display of multiple items, adb advances the current address the number
of bytes necessary to satisfy the request; in the above example, five instructions
were displayed and the current address was advanced 26 bytes.

To run the program, type:

:r

To delete a breakpoint, for instance the entry to the function tabpos (),type:

(_t_a_b_po_s_:_d __]

Once the program has stopped, in this case at the breakpoint for set tab (),
adb requests can be used to display the contents of memory. To display a stack
trace, for example, type:
r

$c
_settab[8250] (10658) + 4
_main [807 4] (1, fffd84, fffd8c) + la

~~sun \'if{(I microsystems
Revision A of 6 March 1990

And to three locations each from the array called tabs,

tabs,

0

0

You will need to the a
you

0
0
0

0

Examine the tabs array once more: now it is

tabs,

0
0

0

0

0
0

0
0
0

0
0

0
0
0

0
0
0

0
0
0

0
0
0

If

output,
'-=-~:;;:_;:;;':-I to terminate

than on the program being
debugged is stopped

adb and on to

Revision A of 6 March 1990

r

settab+4:b settab,S?ia
:r
set tab:
set tab:
settab+4:
settab+a:
settab+e:
settab+12:
set tab+ la:

link
addl
moveml
clrl
cmpl

breakpoint settab+4:

6- adb Tutorial 63

a6,#0
#-4,a7
#<>,sp@
a6@(-4)
#50,a6@(-4)

addl #-4,a7

It is possible to stop every two breakpoints, if you type , 2 before the breakpoint
command. Variables can also be displayed at the breakpoint, as illustrated
below.

tabpos+4,2:b main.col?X
:c

x
fffd64:
fffd64:
breakpoint

1
2
_tabpos+4: addl #0,a7

This shows that the local variable col changes from 1 to 2 before the occurrence
of the breakpoint.

NOTE Setting a breakpoint causes the value of dot to be changed. However, executing
the program under adb does not change the value of dot.

Other Breakpoint Facilities

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:

settab+4:b main.ptab/X; main.c/X
:r
fffd68:
fffd60:
breakpoint

10658
0
settab+4: addl #-4,a7

A semicolon is used to separate multiple adb requests on a single line.

Arguments and redirection of standard input and output are passed to a program
as follows. This request kills any existing program under test and starts the
object file anew:

[_=_r~a-r-gl~ar_g_2_._ .. _<_i_nfi_z_e~>-ou_¢_z_e~~~~~~~~~~~~~~~~~-J
The program being debugged can be single stepped as follows. If necessary, this
request starts up the program being debugged and stops after executing the first
instruction:

Revision A of 6 March 1990

64

the breakpoint by:

and can be killed

Revision A of 6 March 1990

6.3. File Maps

407 Executable Files

Figure 6-1

object

core

6 - adb Tutorial 65

SunOS supports several executable file fonnats. Executable type 407 is gen
erated by the cc (or ld) flag-N. Executable type 410 is generated by the flag
-n. An executable type is generated by the flag -z; the default is type 413.
adb interprets these different file fonnats, and provides access to the different
segments contained in them through a set of maps. To display t11e maps, type $m
inside adb.

In 407-fonnat files, instructions and data arc intcnnixed. This makes it impossi
ble for adb to differentiate data from instructions, but adb will display in either
fonnat. Furthennore, some symbolic addresses look incorrect (for
example, data addresses as offsets from routines). Here is a picture of 407-
fonnat files:

Executable File 407

Here are the maps and variables for 407-fonnat files:

$m
? map 'object'
bl 2000 el
b2 8000 e2
I map 'core'
bl 8000 el
b2 = fffOOO e2

variables
b 0100000
d = 03070
e = 0407
m = 0407
s = 010000
t = 07450

8f28
9560

b800
1000000

fl
f 2

fl
f 2

20
20

1800
5000

Revision A of 6 March 1990

files:

f2 f 48

fl 1800
f2 4 00

Revision A of 6 March 1990

6- adb Tutorial 67

413 Executable Files In 413-fonnat files (pure demand-paged executable) the instructions and data are
also separate. However, in this case, since data is contained in separate pages,
the base of the data segment is also relative to address zero. In this case, since
the addresses overlap, it is necessary to use the ? * operator to access the data
space of the object file. In both 410 and 413-fonnat files the corresponding core
file does not contain the program text. Here is a picture of 413-fonnat files:

Variables

Figure 6-3 Executable File Type 413

object' ~h-d~rJ ________ te_x_t ______ _._ __________ d_at_a ________ ___,

core hdr data stack

The only difference between a 410 and a 413-fonnat file is that 413-fonnat seg
ments are rounded up to page boundaries. Here are the maps and variables for
413-fonnat files:

$m
? map 'abort'
bl = 2000 el 9000 fl 800
b2 = 10000 e2 10800 f 2 1800
I map 'core'
bl 10000 el 12800 fl 1800
b2 = fffOOO e2 1000000 f 2 4000
$v
variables
b 0200000
d = 04000
e = 0413
m = 0413
s = 010000
t = 010000

The b, e, and f fields are used to map addresses into file addresses. The f 1 field
is the length of the header at the beginning of the file - 020 bytes for an object
file and 02000 bytes for a core file. The f2 field is the displacement from the
beginning of the file to the data. For a 407-fonnat file with mixed text and data,
this is the same as the length of the header; for 410-fonnat and 413-fonnat files,
this is the length of the header plus the size of the text portion. The b and e fields
are the starting and ending locations for a segment. Given the address A, the
location in the file (either object or core) is calculated as:

bl <A<el file address
b2<A<e2 file address

(A-bl) +fl
(A-b2) +f2

Revision A of 6 March 1990

The $ v request

d

t

rn

can of variables by

a can

to know if under

file to find the values for
or if it

symbol tables since

displays.

Formatted command line four octal words their
the data space the core file:

base address the data '"'"'''fm•"T"l'f

, 1 count is used
some error condition

broken down

of 6 March 1990

Chapter 6 - adb Tutorial 69

4" Back up the current address 4 locations (to the original start of the
field).

BC Print 8 consecutive characters using an escape convention; each char
acter in the range 0 to 037 is displayed as followed by the correspond
ing character in the range 0140 to 0177. An@ is displayed as@@.

n Print a new line.

The following request could have been used instead to allow the displaying to
stop at the end of the data segment. (The request <d provides the data segment
size in bytes.)

(~<-b_?_<_d_/_4_o_4_A_s_c_n __ J

Because adb can read in scripts, you can use formatting requests to produce
image dump scripts. Invoke adb as follows:

(7 ~~ .. Objecthie·. ci<>~.f.fife < .d~file]

This reads in a script file, dumpf ile, containing fonnatting requests. Here is
an example of such a script:

120$w
4095$s
$v
=3n
$m

=3n"C Stack Backtrace"
$C
=3n"C External Variables"
$e
=3n"Registers"
$r
0$s
=3n"Data Segment"
<b,-1/8ona

The request 120$w sets the width of the output to 120 characters (normally, the
width is 80 characters). adb attempts to display addresses as:

[_sy __ m_b_oz __ + __ offi_s_e_t ___ J

The request 4 0 9 5 $ s increases the maximum permissible offset to the nearest
symbolic address from the default 255 to 4095. The request= can be used to
display literal strings. Thus, headings are provided in this dump program with
requests of the fonn:

(_~_3_n_'_'c __ s_t_a_c_k __ B_a_c_k_t_r_a_c_e_" ______________________________________ J

Revision A of 6 March 1990

70

Accounting File Dump

Converting Values

This spaces three lines and displays the string. The request $v displays all
non-zero adb variables. The request 0 $ s sets the maximum offset for symbol
matches to zero, thus suppressing the display of symbolic labels in favor of octal
values. Note that this is only done displaying the data segment. The request

displays a from the base of the data segment to the end-of-file with an octal
address field and 8 octal numbers per line.

As another,u""'''J'A•• consider a set of requests to dump the contents
/utmp or adm/wtmp, which are composed of 8-character

terminal names, login names, 16-characterhost names, and a 4-byte
integer representing

The c format is 8 times, 8 times, and 16 times. The 8 t means go to
align on an 8-character-position boundary, and 16t means to align on a 16-
character-position boundary. Y causes 4-byte integer representing the login
time to print in ct

You can use adb to convert values from one representation to another. For
example, to print the hexadecimal number ff in octal, decimal, and hexade
cimal,

The default input radix adb is hexadecimal. Formats are remembered, so that
typing subsequent numbers will display in the same format. Character
values may be converted as well:

This technique may also be used to evaluate expressions, but be warned that all
binary operators have the same precedence, which is lower than for unary opera
tors.

6.5. Patching Patching with adb is accomplished with the write requests w or w. This is
often used in conjunction with the locate requests l or L. In general, the syntax
for these is as follows:

Chapter 6 - adb Tutorial 71

The 1 matches on two bytes, whereas L matches four bytes. The w request writes
two bytes, whereas w writes four bytes. The value field in either locate or write
requests is an expression. Either decimal and octal numbers, or character strings,
are permitted.

In order to modify a file, adb must be invoked as follows:

[_:%_•••·-a~db-···_-_w_ ••.. _fi~k-J_fi_~~2-···-------------------------------------J
When invoked with this option,filel andfile2 are created if necessary, and
opened for both reading and writing.

NOTE The $W command has the same effect during an adb session as the -w option
used on the command line.

For example, consider the following C program, zen. c: We will change the
word "Thys" to "This" by compiling zen.
r

char strl[] = "Thys is a character string";
int one = 1;
int number 456;
long lnum = 1234;
float fpt = 1.25;
char str2[] = "This is the second character string";

main ()
{

one 2;

Use the following requests:

[~·~~,~~···~-·~~T-·~-i~:~_:_z_e_n~···.·~-~·--~~--------~~--------~~--'----~------------"']
The request <b? 1 starts at the start of the data segment and stops at the first
match of "Th", having set dot to the address of the location found. Note the use
of? to write to the object file. The form ?* would be used for a 410-format
file.

More frequently the request is typed as:

[_?_l __ '_T_h_'_; __ ?_s ___ J
which locates the first occurrence of "Th", and display the entire string. Execu
tion of this adb request sets dot to the address of those characters in the string.

NOTE When using the? 1 or ?L commands, be cautious of gaps in the address range
that you want to search.

Revision A of 6 March 1990

72

6.6.

1)

consider a C program
could be set using adb, before running

through a process or start a pro
case it starts a. out as a subprocess with argu

..., ,11..11..,,.,,,,;,..., running, adb writes to it rather
to be changed in the memory of the

that users should be aware of.

variables in the most recently

Revision A of 6 March 1990

7.1. A Quick Survey

Starting adb

7
Sun386i adb Tutorial

Available on most UNIX systems, adb is a debugger that permits you to examine
core files resulting from aborted programs, display output in a variety of formats,
patch files, and run programs with embedded breakpoints. This document pro
vides examples of the more useful features of adb. The reader is expected to be
familiar with basic SunOS commands, and with the C language.

Start adb with a shell command like

(% adb objectfile cotefile ~
where object.file is a SunOS executable file and core.file is a core dump file. If
you leave object files in a . out, then the invocation is simple:

(% adb]

If you place object files into a named program, then the invocation is a bit
harder:

(% adb program

The filename minus (-) means ignore the object file argument, as in:

(% .. adb. - core

This is for examining the core file without reference to an object file. adb pro
vides requests for examining locations in either file: ? examines the contents of
object.file, while I examines the contents of core.file. The general form of these
requests is:

(address ? format

or

(address I format

]

J

J

J

~\sun ~ microsystems
73 Revision A of 6 March 1990

74

Current Address

Formats

Table 7-1

adb maintains a current,,....,..,,..,, called dot. When an address is entered, the
current address is set to

[_01_26-?i~~~~~~~~~~~-J
sets dot to octal 126 and displays the

displays 10, ... ,uu, .. u numbers starting at
of the last When used

typing

at that address. The request

Dot ends up referring to the address
? or I requests, the current

it can be decremented by typing "'.

Addresses are .. ,,. .. , .. ,,.,,,,."t"11 x01·es~am1s are made up of decimal
11v/'1.uu•v1.1u.11UA uu ... ,i:;....., • ..,, and symbols from the program integers, octal

under test.
(multiply), % ·----,-~--

operators+ (plus), - (minus), *
I (bitwise inclusive or), # (round

up to the next and - ,.. ... ,, ,..,,, .. .,,, within adb is 32 bits. When
typing a symbolic address for a C

To display data, specify a and characters to describe the for
mat of the Formats are remembered, in the sense that typing a request
without a format displays the new in the previous format. Here are the
most commonly used format letters:

Some adb Format Letters

Letter

b one
B one
c
0

d one word in
f one single-precision floating
i
s a null-terminated character
a the dot
u
n

r

+ advance dot

Format letters are also available for
decimal, and F for double-precision .. ,,_, ,.i:;..
on the are

..,,,.~uu~.1.1.v, D for
Since integers are long-words

than not.

Revision A of 6 March 1990

General Request Meanings

Table 7-2

7 .2. Debugging C
Programs on Sun386i

Debugging A Core Image

7 -Sun386i adb Tutorial 75

The general form of a request is:

(address, count command modifier

which sets dot to address and executes command count times. The following
table illustrates some general adb command meanings:

Some adb Commands

Some adb Commands
Command Meaning

? Print contents from object file
I Print contents from core file
= Print value of expression
: Breakpoint control

Miscellaneous requests
; Request separator
! Escape to shell

Since adb catches signals, you cannot use a quit signal to exit from adb. The
request $q or $Q (or I CTRL-D I) must be used to exit from adb.

If you use adb because you are accustomed to it, you will want to compile pro
grams with the -go option, to produce old-style symbol tables. This will make
debugging proceed according to expectations.

J

Consider the C program below, which illustrates a common error made by C pro
grammers. The object of the program is to change the lower case t to an upper
case Tin the string pointed to by ch, and then write the character string to the
file indicated by the first argument.

#include <stdio.h>

char *cp "this is a sentence.";

main(argc,
int argc;
char **argv;
{

FILE

char c;

if (argc 1)
fprintf (
exit(l);

"usage: %s file\n", argv[O]);

if (((a rgv [1] , "w")) NULL) {

perror(argv[l]);
exit(2);

cp = 'T';

Revision A of 6 March 1990

76

.. ,.. ··~._, .. ,,,,..., in each
value of the variable c

Revision A of 6 March 1990

$r
gs OxfbffOOOO
f s OxfbffOOOO
es Oxfcff0083
ds Ox83
edi Ox30890
esi Ox28680
ebp Oxfbfffec8
esp Oxfcff97e0
ebx Ox2a0c0
edx Oxfbf ff e6a
main+OxlOf: mo vb

7 - Sun386i adb Tutorial 77

ecx Ox28680
eax Ox54
retaddr Oxfc06e38e
trapno Oxe
err Ox4
eip Oxl20b main+OxlOf
cs Ox7b
efl Oxl0206 end+Ox7202
uesp Oxfbff fecO
SS Ox83

(%eax),%al

displays the registers, including the program counter, and an interpretation of the
instruction at that location. The request
r

$e
cp: Ox55
exit nhandlers: -
exit tnames:

ctype: Ox20202000
smbuf: Ox65c0
iob: OxO
mallinfo: OxO

root: OxO
lbound: OxO
ubound: OxO

curbrk: Ox9004
errno: OxO
environ: Oxfbfffef 4
end: OxO

OxO
Ox35dc

displays the values of all external variables.

A map exists for each file handled by adb. The map for a. out files is refer
enced by ? whereas the map for core files is referenced by I. Furthermore, a
good rule of thumb is to use ? for instructions and I for data when looking at
programs. To display information about maps, type:

'

"'\

$m
bl = 8000 el bOOO fl 800
b2 = 10000 e2 11000 f 2 3800
I map 'core'
bl 10000 el 13000 fl 1800
b2 = fffOOO e2 1000000 f 2 4800

This produces a report of the contents of the maps. More about these maps later.

In our example, we might want to see the contents of the string pointed to by cp.
We would want to see the string pointed to by cp in the core file:

Revision A of 6 March 1990

78

To display the hex values of the three consecutive cells ,_,.,, to argvin
the hu·•nhr,-,.~

current address
the first The current is

remember its current location. It allows the user to reference '"""h'"'""' to
For ov•:lm·n•""

Setting form:

Revision A of 6 March 1990

#include <stdio.h>

#define MAXLIN 80
#define YES 1
#define NO 0
#define TABSP 8

int tabs[MAXLIN];

main ()
{

int *ptab, col, c;

ptab = tabs;
settab(ptab); /* set initial tab stops */
col = 1;
while ((c = getchar()) != EOF)

switch (c) {
case '\t':

while (tabpos(col) !=YES) {
putchar (' ') ;
col++;

putchar(' ');
col++;
break;

case '\n':
putchar('\n');
col = 1;
break;

default:
putchar(c);
col++;

exit(O);

tabpos(col) /* return YES if col is a tab stop, NO if not*/
int col;

if (col > MAXLIN)
return(YES);

else
return(tabs[col]);

settab(tabp)
int *tabp;

/* set initial tab stops every TABSP spaces */

int i;

for (i
(i

0; i <= MAXLIN; i++)
% TABSP) ? (tabs[i] =NO) (tabs[i] YES);

7 - Sun386i adb Tutorial 79

Revision A of 6 March 1990

80

Run set two breakpoints as

to

the address of

"'t-,, .. h address. Note that we
In,

Revision A of 6 March 1990

7 - Sun386i adb Tutorial 81

were displayed and t he current address was advanced 26 bytes.

To run the program, type:

:r

To delete a breakpoint, for instance the entry to the function tabpos (),type:

[_t_a_b_p_o_s_:d ___ J
Once the program has stopped, in this case at the breakpoint for set tab (},
adb requests can be used to display the contents of memory. To display a stack
trace, for example, type:
,

$c
settab[8250] (10658) + 4
main [8 0 7 4] (1 , ff f d8 4 , ff f d8 c) + 1 a

Revision A of 6 March 1990

82

And to display three lines of eight locations each from the array called tabs,
type:

tabs,3/SX
tabs:
tabs: 0

0
0

0
0
0

0
0
0

0

0
0

0
0
0

0
0
0

0
0
0

0
0
0

At this time (at location set tab) the tabs array has not yet been initialized. If
you just deleted the breakpoint at tabpos, put it back by typing:

(tabpos:b]
To continue execution of the program from the breakpoint type:
r

You will need to give the a. out program a line of data, as in the figure above.
Once you do, it will encounter a breakpoint at tabpos+4 and stop again.
Examine the tabs array once more: now it is initialized, and has a one set in
every eighth location:

tabs,3/SX
tabs:
tabs: 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

You will have to type : c eight more times in order to get your line of output,
since there is a breakpoint at every input character. Type I CTRL-D I to terminate
the a. out process; you are back in command-level of adb.

Advanced Breakpoint Usage The quit and interrupt signals act on adb itself, rather than on the program being
debugged. If such a signal occurs, then the program being debugged is stopped
and control is returned to adb. The signal is saved by adb and passed on to the
test program if you type:

)

NOTE

Other Breakpoint Facilities

Chapter 7 -Sun386i adb Tutorial 83

Now let's reset the breakpoint at set tab () and display the instructions located
there when we reach the breakpoint. This is accomplished by:

settab+S:b settab,S?ia
:r
settab,S?ia
set tab:
set tab:
settab+S:

jmp
movl
jmp
movl
movl

settab+Ox58
$0,-4(%ebp)
settab+Ox48
-4(%ebp),%eax
$8,%ecx

settab+Oxc:
settab+Oxll:
settab+Ox14:
settab+Ox19:
breakpoint settab+S: movl $0,-4(%ebp)

It is possible to stop every two breakpoints, if you type , 2 before the breakpoint
command. Variables can also be displayed at the breakpoint, as illustrated
below:

tabpos+4,2:b main.col?X
:c

x
fffd64:
fffd64:
breakpoint

1
2
tabpos+S: movl $0x50,%eax

This shows that the local variable co 1 changes from 1 to 2 before the occurrence
of the breakpoint.

Setting a breakpoint causes the value of dot to be changed. However, executing
the program under adb does not change the value of dot.

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:
r

settab+4:b main.ptab/X; main.c/X
:r
fffd68:
fffd60:
breakpoint

10658
0
settab+S: movl $0,-4(%ebp)

The semicolon is used to separate multiple adb requests on a single line.

Arguments and change of standard input and output are passed to a program as
follows. This request kills any existing program under test and starts a . out
afresh:

[_=_r __ a_r_g_1_a_rg_2_._ .. __ <_in_~_k __ >_o_u_tfi_k ____________________________________ ~]

Revision A of 6 March 1990

also n breakpoints when continu-

Revision A of 6 March 1990

7 - Sun386i adb Tutorial 85

7.3. File Maps SunOS supports several executable file formats.

407 Executable Files

a.out

core

NOTE On the Sun386i, all executable files are COFF files. An additional COFF header
precedes the a.out header; this a. out header is slightly different than the Sun-3
or Sun-4 a . out header. However, the executable file types are identical.

Figure 7-1

lhdrl

hdr

Executable type 407 is generated by the cc (or ld) ftag-N. Executable type 410
is generated by the ftag-n. An executable type 413 is generated by the flag-z;
the default is type 413. adb interprets these different file formats, and provides
access to the different segments through a set of maps. To display the maps, type
$m from inside adb.

In 407-format files, instructions and data are intermixed. This makes it impossi
ble for adb to differentiate data from instructions, but adb will happily display
in either format. Furthermore, some displayed symbolic addresses look incorrect
(for example, data addresses as offsets from routines). Here is a picture of 407-
format files:

Executable File Type 407

text+ data

text+ data

Here are the maps and variables for 407-format files:

$m
? map
bl = 8000
b2 = 8000
I map
bl 8000
b2 = fffOOO
$v
variables
b 0100000
d = 03070
e = 0407
m = 0407
s = 010000
t = 07450

'a.out'
el 8f28
e2 9560

'core'
el b800
e2 1000000

stack

fl
f 2

fl
f 2

20
20

1800
5000

Revision A of 6 March 1990

a.out

core

Here are

128
0 0

fl 0

f 2

fl

f 2

f48

8
4000

Revision A of 6 March 1990

413 Executable Files

Figure 7-3

7 - Sun386i adb Tutorial 87

In 413-format files (pure demand-paged executable) the instructions and data are
also separate. However, in this case, since data is contained in separate pages,
the base of the data segment is also relative to address zero. In this case, since
the addresses overlap, it is necessary to use the ? * operator to access the data
space of the a. out file. In both 410 and 413-format files the corresponding core
file does not contain the program text. Here is a picture of 413-format files:

Executable File Type 413

a.out! ~h-d_rl~------t-ex_t ______ __.. ______ ~---da_t_a ________ __.

core hdr data stack

The only difference between a 410 and a 413-format file is that 413 segments are
rounded up to page boundaries. Here are the maps and variables for 413-format
files:

~\sun ~~ microsystems
Revision A of 6 March 1990

88

d

s

t

m execution

the uses of adb is to ..,, AAA.UA"'

cannot handle of task.
•'-''-IU"-'"k:I to

Formatted

f 1 field

The request

can

to if under

values for
or if it

dbx
you can even combine formatting

below.

by their

Revision A of 6 March 1990

7 - Sun386i adb Tutorial 89

Broken down, the various requests mean:

<b The base address of the data segment.

<b, -1 Print from the base address to the end-of-file. A negative count is used
here and elsewhere to loop indefinitely or until some error condition
(like end-of-file) is detected.

The format 4o4 "'8Cn is broken down as follows:

4 o Print 4 octal locations.

4 "' Back up the current address 4 locations (to the original start of the
field).

8 c Print 8 consecutive characters using an escape convention; each char
acter in the range 0 to 037 is displayed as followed by the correspond
ing character in the range 0140 to 0177. An@ is displayed as@@.

n Print a newline.

The following request could have been used instead to allow the displaying to
stop at the end of the data segment.

(<b,<d/404'8Cn

The request <d provides the data segment size in bytes. Because adb can read
in scripts, you can use formatting requests to produce image dump scripts.
Invoked adb as follows:

This reads in a script file, dump, containing formatting requests. Here is an
example of such a script:

]

Revision A of 6 March 1990

90

(nonnally,

to the nearest
.. "'"''"'"""''" = can be used to

dump program with

displays all
symbol

of octal
The ... ar111a01"

with an octal

Revision A of 6 March 1990

7 .5. Patching

7 - Sun386i adb Tutorial 91

This technique may also be used to evaluate expressions, but be warned that all
binary operators have the same precedence, which is lower than for unary opera
tors.

Patching files with adb is accomplished with the write requests w or w. This is
often used in conjunction with the locate requests 1 or L. In general, the syntax
for these requests is as follows:

[_1_1 __ va_z_ue--~]
The 1 matches on two bytes, whereas L matches four bytes. The w request writes
two bytes, whereas W writes four bytes. The value field in either locate or write
requests is an expression. Either decimal and octal numbers, or character strings,
are permitted.

In order to modify a file, adb must be invoked as follows:

(% Mb -W filel fi/e2

When invoked with this option,filel andfile2 are created if necessary, and
opened for both reading and writing.

For example, consider the following C program, zen. c: We will change the
word "Thys" to "This" in the executable file.

char strl[] = "Thys is a character string";
int one = l;
int number
long lnum
float fpt =
char str2 []

main ()
{

one 2;

456;
= 1234;

1. 25;
= "This is the second character string";

Use the following requests:

J

[_:~_;_a_·.~_!_.~_.:_:_,_z_e~n-··--~---------~~----~-----------------'-__;.-'-'--"l
The request ? 1 starts a dot and stops at the first match of "Th", having set dot to
the address of the location found. Note the use of? to write to the a. out file.
The form ? * would be used for a 411 file.

sun Revision A of 6 March 1990
microsystems

92

as

Below

1)

a C program
before running

or start a pro-

"""'"''"'''""'"'"''.,.., with argu-
to it rather

be aware

from the
names to be

not happen if ?

in the most recently

Revision A of 6 March 1990

8.1. adb Options

8.2. Using adb

a db Ref ere nee

adb [-w] [-k] [-I: dir] [objectfile [corefile]]

adb is an interactive, general-purpose, assembly-level debugger, that examines
files and provides a controlled environment for executing SunOS programs.

Normally objectfile is an executable program file, preferably containing a symbol
table generated by the compiler's -go option. If the file does not contain a sym
bol table, it can still be examined, but the symbolic features of adb cannot be
used. The default objectfile is a. out.

The core.file is assumed to be a core image file produced by executing objectfile
and having a problem causing the core image to be dumped to the file core. The
default core.file is core.

-w If either objectfile or core.file does not exist, create the nonexistent file and
open both files for reading and writing.

-k Do SunOS kernel memory mapping; should be used when core.file is a
SunOS crash dump or I dev /mem.

-I Specifies a directory where files to be read with $<or$<< (see below) will
be sought; the default is I us r I 1 ib I a db.

adb reads commands from the standard input and displays responses on the stan
dard output, ignoring QUIT signals. An INTERRUPT signal returns to the next
adb command.

adb saves and restores terminal characteristics when running a subprocess. This
makes it possible to debug programs that manipulate the screen. See tty(4).

In general, requests to adb are of the form

[address] [, count] [command] [;]

The symbol dot (.)represents the current location. It is initially zero. If address
is present, then dot is set to address. For most commands count specifies how
many times the command is to be executed. The default count is 1 (one). Both
address and count may be expressions.

93 Revision A of 6 March 1990

94

8.3. adb Expressions

+

The value of dot.

The value of dot incremented by the current increment.

The value of dot decremented by the current increment.

& The last address typed; this used to

integer

"

A number. The prefixes Oo and 00 (zero oh) force interpretation in octal
radix; prefixes O t and 0 T force interpretation in decimal radix; the
prefixes Ox and ox force interpretation in hexadecimal radix. Thus Oo2 O=
0t16= Ox 1 O = If no prefix appears, then the def a ult radix is used;
see the $ d command. The default radix is initially hexadecimal. Hexade
cimal digits are 012345678 9abcdefABCDEF with the obvious values.
Note that if a hexadecimal number starts with a letter, but docs not duplicate
a defined symbol, it is accepted as a hexadecimal value. To enter a hexade
cimal number that is the same as a defined symbol, precede it by 0, 0 x, or
ox.

'cccc'
The ASCII value of up to 4 characters. A backslash(\) may be used to
escape a'.

<name
The value of name, which is either a variable name or a register name; adb
maintains several variables (see VARIABLES) named by single letters or
digits. If name is a register name, then the value of the register is obtained
from the system header in corefile. The register names arc those printed by
the $ r command.

symbol
A symbol is a sequence of upper or lower case letters, underscores or digits,
not starting with a digit. The backslash character(\) may be used to escape
other characters. The value of the symbol is taken from the symbol table in
objectfile. An initial_ will be prepended to symbol if needed.

_symbol
In C, the true name of an external symbol begins with underscore(_). It
may be necessary to use this name to distinguish it from internal or hidden
variables of a program.

NOTE _symbol U.Ul'JLu:., only to Sun-3 and Sun-4 systems. It is not used on Sun386i sys
tems.

routine .name

es

The address of the variable name in the specified C routine. Both routine
and name are symbols. If name is omitted the value is the address of the
most recently activated C stack frame corresponding to routine. Works only
if the program has been compiled the -go flag. See

S,

Revision A of 6 March 1990

Unary Operators

Binary Operators

Chapter 8 - adb Reference 95

(expr) The value of the expression expr.

*expression
The contents of the location addressed by expression in corefile.

%expression
The contents of the location addressed by expression in objectfile (used to be
@).

-expression
Integer negation.

- expression
Bitwise complement.

#expression
Logical negation.

"Fexpression
(Control-f) Translates program addresses into source file addresses. Works
only if the program has been compiled using the -go flag. See cc(l).

"Aexpression
(Control-a) Translates source file addresses into program addresses. Works
only if the program has been compiled using the -go flag. See cc(l).

'name
(Back-quote) Translates a procedure name into a source file address. Works
only if the program has been compiled using the -go flag. See cc(l).

"filename"
A filename enclosed in quotation marks (for instance, main. c) produces
the source file address for the zero-th line of that file. Thus to reference the
third line of the file main.c, we say: "main. c"+3. Works only if the pro
gram has been compiled using the -go flag. See cc(l).

Binary operators are left associative and are less binding than unary operators.

expression-]+ expression-2
Integer addition.

expression-1-expression-2
Integer subtraction.

expression-] * expression-2
Integer multiplication.

expression-] % expression-2
Integer division.

expression-] & expression-2
Bitwise conjunction.

expression-] I expression-2
Bitwise disjunction.

~\sun ~ microsystems
Revision A of 6 March 1990

adb

an

e

m

a

adb are:

@

RETURN

the shell to execute the

1.

or

adb but are

source.

'"'""a.nt:>?- in If corefile
are set from objectfile.

on the file's type.

locations in objectfile or
has been compiled using

a count 1. Dot is incremented by

are

Revision A of 6 March 1990

? , I, @, and = Modifiers

8 - adb Reference 97

The first four verbs described above take the same modifiers, which specify the
format of command output. Each modifier consists of a format letter (fletter)
preceded by an optional repeat count (rcount). Each verb can take zero, one, or
more modifiers.

{ ? , I, @, = } [[rcount] fletter ...]

Each modifier specifies a format that increments dot by a certain amount, which
is given below. If a command is given without a modifier, the last specified for
mat is used to display output. The following table shows the format letters, the
amount they increment dot, and a description of what each letter does. Note that
all octal numbers output by adb are preceded by 0.

Format Dot+= Description

0 2 Print 2 bytes in octal.

0 4 Print 4 bytes in octal.

q 2 Print in signed octal.

Q 4 Print long in signed octal.

d 2 Print in decimal.

D 4 Print long in decimal.

x 2 Print 2 bytes in hexadecimal.

x 4 Print 4 bytes in hexadecimal.

h 2 Sun386i only. Print 2 bytes in hexadecimal in reverse
order.

H 4 Sun386i only. Print 4 bytes in hexadecimal in reverse
order.

u 2 Print as an unsigned decimal number.

u 4 Print long as an unsigned decimal.

f 4 Print the value as a floating point number.

F 8 Print the 64-bit number as a double floating point
number.

b l Print the addressed byte in octal.

B 1 Sun386i only. Print the addressed byte in hexadecimal.

c 1 Print the addressed character.

c 1 Print the addressed character using the standard escape
convention. Print control characters as "'x and the delete
character as " ? .

s n Print the addressed characters until a null character is
reached; n is the length of the string including its zero ter-
minator.

Revision A of 6 March 1990

98

Format Dot+=

s n n is the
zero tenninator.

y 4

i n n is the number
In this fonnat, variables 1

source and destina-

M n

rcs~ctively.

z n instructions with MC68010 Sun-2
number of bytes occupied by

variables 1 and 2 are set to
the source and destination

I 0 Print by dot(@ command),
to dot(? command).

a 0 Symbols are
have an appropriate ty~ as

or
or
or

p 4

A 0

p 4 in source-file symbolic
Works if the program has

See

t 0 tabs to the next appropriate
8 t moves to the next 8-space

r 0

n 0

n n 0

0 Dot current increment; nothing is printed.

Dot is

Dot

Revision A 6March1990

? and I Modifiers

: Modifiers

8 - adb Reference 99

Only the verbs ? and I take the following modifiers:

[? I] 1 value mask
Words starting at dot are masked with mask and compared to value
until a match is found. If the command is L instead of l, the match is
for 4 bytes at a time instead of 2. If no match is found dot is
unchanged; otherwise dot is set to the matched location. If mask is
omitted then -1 is used.

? I] w value ...
Write the 2-byte value into the addressed location. If the command is
w instead of w, write 4 bytes instead of 2. If the command is v, write
only 1 byte. Odd addresses are not allowed when writing to the sub
process address space.

? I] m bl el fl [? I]
New values for (bl, el ,fl) are recorded. If fewer than three
expressions are given, then the remaining map parameters are left
unchanged. If the ? or I is followed by *, then the second segment
(b2, e2,j2) of the address mapping is changed (see Address Mapping
below). If the list is terminated by ? or I, then the file, objectfile or
corefile respectively, is used for subsequent requests. For example,
/m? causes I to refer to objectfile.

Only the verb : takes the following modifiers:

a cmd Sun386i only. Set a data access breakpoint at address. Like b except
that the breakpoint is hit when the program reads or writes to address.

b cmd Set breakpoint at address. The breakpoint is executed count-1 times
before causing a stop. Each time the breakpoint is encountered the
command cmd is executed. If this command is omitted or sets dot to
zero, then the breakpoint causes a stop.

w Sun386i only. Set a data write breakpoint at address. Like b except
that the breakpoint is hit when the program writes to address.

B c Like b but takes a source file address. Works only if the program has
been compiled using the -go flag. See cc(l).

d Delete breakpoint at address.

D Like d but takes a source file address. Works only if the program has
been compiled using the -go flag. See cc(l).

z Sun386i only. Delete all breakpoints.

r Run objectfile as a subprocess. If address is given explicitly, then the
program is entered at this point; otherwise, the program is entered at its
standard entry point. An optional count specifics how many break
points are to be ignored before stopping. Arguments to the subprocess

~~ S ll fl Revision A of 6 March 1990
~ rnicrosysterns

the

commands
further commands in the file

stream

An argument start
to be established

subprocess.

If

is sent.

signals are

is given
it will be inter-

command is executed in a
is the current

and it is zero,

Revision A of 6 March 1990

adb Reference 101

command is ignored. The value of the count is in variable 9
before first command is ,..,.,.,..,,, .. t-,..,...

<<file Similar to<, but can be commands without closing the
file. 9 is saved this and
restored it cornoJletes. Not more than 5 << files
sim ul taneousl y.

>file Append output a•>f-Orll if it not is
omitted, output is '""'., • .,.....,,.,... to the terminal.

? Print the process the
registers. Produces the same,llJV•""""'

r Print addressed by program

b Print all breakpoints and their associated counts and commands.

c C backtrace. If is it is taken as the address of the
current frame instead of contents of the If
count is given, only the first count frames are nnntl'•li

c Similar to c, but in addition prints
automatic and static U'l?-.'l""""'"

....... r .. ,...,....., has

d Set the default radix to and report the new Note that
address is interpreted in the current radix. Thus 10 $ d never
changes the default radix. To make radix use
Ot10$d.

w

s Set the limit for symbol matches to

0

q

v

rn

f

p

Regard all input

adb.

as

Print a list of known source

Print a

names.

p For kernel debugging. the current kernel mapping to
map the designated user structure to address by the symbol

u. address argument is the address the user's proc structure.

i Show which signals are to the subprocess with the minimum
adb Signals to or deleted from this list

: i and : t l"nrnm'lnl"tC"

s Revision A of 6 March 1990
microsystems

-w

adb

in

March

8.9. Bugs

8.10. Sun-3 FP A Support
in adb

8 - adb Reference 103

There is no way to clear all breakpoints with a single command, except on the
Sun386i.

Since no shell is invoked to interpret the arguments of the : r command, the cus
tomary wildcard and variable expansions cannot occur.

Since there is little type checking on addresses, using a source file address in an
inappropriate context may lead to unexpected results.

Release of the floating-point accelerator (FPA) for the Sun-3 required some
changes to adb, in order to support assembly language debugging of programs
that use the FP A.

1. The debugger variables A through z are reserved for special use by adb.
They should not be used in adb scripts.

2. The FPA registers fpaO through 1 are recognized and can be used or
modified in debugger commands. This extension only applies to systems
with an

3. The debugger variable F governs FP A disassembly. This is equivalent to the
dbx environment variable fpaasm. A value of 0 indicates that all FPA
instructions are to be treated as move instructions. A nonzero value is used
to indicate that FPA instruction sequences are to be disassembled and single
stepped using FP A assembler mnemonics. On a machine with an FP A, the
default value is 1; on other machines, the default value is 0.

4. The debugger variable B is used to designate an FP A base register. This is
equivalent to the dbx environment variable fpabase. IfFPA disassembly
is disabled (the F flag = 0), its value is ignored. Otherwise, its value is inter
preted as follows:

0 through 7:
Based-mode FP A instructions that use the corresponding address regis
ter in [a 0 .. a 7] to address the FP A are also disassembled using FP A
assembler mnemonics. Note that this is independent of the actual run
time value of the ron•ct".:•r

otherwise:
All based-mode FPA instructions are disassembled and single-stepped
as move instructions.

The default value of the FP A base register number is -1, which designates
no FP A base register.

5. The command $x has been added to display the values ofFPA registers
fpaO through fpa15, along with FPA control registers and the current con
tents of the FPA instruction pipeline. All registers are displayed in the for
mat:

s Revision A of 6 March 1990
microsystems

the above out-

March 1990

8- adb Reference 105

variable has the value -1, which means that no register should be assumed to
point to the FP A, so only instructions that access the FP A using absolute address
ing are recognized as FP A instructions.

For the example program, a machine with an FP A produces the following output:

adb foo.o
<F""'d

1 (default value of 'F' on
<R=d

....;1 (default value of 'B')
foo,3?ia
foo:
Ox6:
Oxa:
Oxe:

fpadds dO,fpaO (FPA disassembly)
movl d0,a0(f(Ox380) (normal disassembly)

· movl dOfaS@ (Ox380) (normal disassembly)

Note that the second and third instructions are still disassembled as moves, since
adb cannot assume that they access the FP A. Continuing this example, if the
FP A base register number is set to 5, the following output is produced:

% adb foo.o
S>B
<B=d

5
foo,3?ia
foo:
Ox6:
Oxa:
Oxe:

fpadds dO,fpaO (FPA disassembly)
movl ao, a0@(0x380) (normal disassemb:Ly)
fpadds@S dO,fpaO (FPA disassembly)

Note that the second instruction is still disassembled as a move, since a5, the
register designated as the FP A base, is not used in it.

FP A data registers can be displayed using a syntax similar to that used for the
MC68881 co-processor registers. Note that unlike the MC68881 registers, FP A
registers may contain either single-precision (32-bit) or double-precision (64-bit)
values; MC68881 registers always contain an extended-precision (96-bit) value.

For example, if fpaO contains the value 2.718282, we may display it as follows:

[
<fpaO=f J

fpa3 Ox402df855 +2.718282e+OO

Revision A of 6 March 1990

A 6 March 1990

9.1. Introduction

Getting Started

Debugging SunOS Kernels adb

This document describes the use of extensions made to the SunOS debugger adb
for the purpose of debugging the SunOS kernel. It discusses the changes made to
allow standard adb commands to function properly with the kernel and intro
duces the basics necessary for users to write adb command scripts that may be
used to augment the standard adb command set. The examination techniques
described here may be applied to running systems, as well as the post-mortem
dumps automatically created by savecore(8) after a s;stem crash. The reader
is expected to have at least a passing familiarity with the debugger command
language.

Modifications have been made to the standard UNIX debugger adb to simplify
examination of the post-mortem dump generated automatically following a sys
tem crash. These facilities may also be used when examining SunOS in its nor
mal operation. This document serves as an introduction to the use of these facili
ties, but should not be construed as a description of how to debug the kernel.

Use the-k option of adb when you want to examine the SunOS kernel:

The -k option makes adb partially simulate the Sun virtual memory manage
ment unit when accessing the core file. In addition, the internal state maintained
by the debugger is initialized from data structures maintained by the SunOS ker
nel explicitly for debugging. t A post-mortem dump may be examined in a simi
lar fashion:

Supply the appropriate version of the saved operating system image, and its core
dump, in place of the question mark.

t If the -k flag is not used when invoking adb, the user must explicitly calculate virtual addresses. With
the -k option, adb interprets page tables to perform virtual-to-physical address translation automatically.

107 Revision A of 6 March 1990

108

starts

vmcore.3

8

d5
0

d71

the kernel.

March 1990

sr
27000000

8: pObr pOlr
105000 40000022 fd7f 4 lffe

8: s
1 0

arO comm
d7160 3fb2 dtime"'@"@"'@~@"@

58: argO
lOOlc

uap error
2958 2eb46 1 0

- u+lb2: rvl rv2 eosys
0 0

uid
49 10

10 -1 -1 -1
-1 -1 -1 .:..1

49 10
tsize ssize

7 lb 2
u+344: odsize assize outime

0 0 0
0: signal

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

50: onstack old.mask code
0 80002 0

0 0

Revision A of 6 March 1990

1

swrss
0

pObt
105000

%cpu
0

0

real itimer

swaddr
0
xlink

15

6 2
ndx idhash pptr
d70d4

0 0 0 0

0
Od8418$<text
d8418:

28'4
0
0

ptdaddr
184

rs size
4 0

ctx
5f236

daddr
0 0
0
0

7

swrss
01 01

0
0

d7160

count
0 0

0
0

0

caddr iptr
d47e0

ccount
0

s1ptim poip

The cause of the crash was a panic (see the stack trace) due to a duplicate
in ode allocation detected by the ialloc (} routine. The majority of the
dump was done to illustrate the use of command scripts used to format kernel
data structures. The u script, invoked by the command u$<u, is a lengthy series
of commands to pretty-print the user vector. Likewise, proc and text are
scripts to format the obvious data structures. Let's quickly examine the text
script, which has been broken into a number oflines for readability here; in actu
ality it is a single line of text.

The first line produces the list of disk block addresses associated with a swapped
out text segment. Then format forces a newline character, with 12 hexadecimal
integers printed immediately after. Likewise, the remaining two lines of the
command format the remainder of the text structure. The expression l 6t tabs to
the next column which is a multiple of 16.

The majority of the scripts provided are of this nature. When possible, the for
matting scripts print a data structure with a single format to allow subsequent
reuse when interrogating arrays of structures. That the previous script could
have been written:

s Revision A of 6 March 1990
microsysterns

last of the

next

March 1990

Supplying Parameters

%·adb -k /vmunix /dev/roem
sbr 50030 slr 51e
physmem 3c0
$<callout
calltodo:
calltodo: time arg -

d9fc4: 5 0
d9f94: 1 0
d9fd4: 1 0
d9fa4: 3 0
d9fe4: 0 0
d9fb4: 15 0
d9ff4: 12 0
da044: 736 d7390
da004: 206 d6fbc
da024: 649 d74lc

f unc
roundrobin -
if slowtimo -

_schedcpu
_pffasttimo
_schedpaging
_pfslowtimo
_arptimer

_realitexpire
_realitexpire
_realitexpire

da034: 176929 d7304 _realitexpire

A command script may use the address and count portions of an adb command
as parameters. An example of this is the setproc script, used to switch to the
context of a process with a known process ID:

(~o-t_9_9_$_<_s_e_t_p_r_o_c ___ J

The body of setproc is:

.>4
*nproc>l
*proc>f
$<setproc.nxt

The body of setproc. nxt is:

(*(<f+Ot42)&0xffff)="pid "D
,#(((*(<f+Ot42)&0xffff))-<4)$<setproc.done
<1-1>1
<f+Ot140>f
,#<1$<
$<setproc.nxt

The process ID, supplied as the parameter, is stored in the variable <4, the
number of processes is placed in < 1, and the base of the array of process struc
tures in <f. Then setproc. nxt performs a linear search through the array
until it matches the process ID requested, or until it runs out of process structures
to check. The script setproc. done simply establishes the context of the pro
cess, then exits.

Revision A of 6 March 1990

114

are

structure

structure

control block

9.3. Generating adb
Scripts with adbgen

#include "sys/types.h"
#include "sys/text.h"

text

You can use the adbgen program to write the scripts presented earlier in a way
that does not depend on the structure member offsets of referenced items. For
example, the text script given above depends on all printed members being
located contiguously in memory. Using adbgen, the script could be written as
follows (again it is really on one line, but broken apart for ease of display):

./"daddr"n{x_daddr,12X}n\
"ptdaddr"16t"size"16t"caddr"l6t"iptr"n\
{x_ptdaddr,X}{x_size,X}{x_caddr,X}{x_iptr,X}n\
"rssize"8t"swrss"8t"count"8t"ccount"8t"flag"8t"slptim"8t"poip"n\
{x_rssize,x}{x_swrss,x}{x_count,b}{x_ccount,b}\

{x_flag,b}{x_slptime,b}{x_poip,x}{END}

The script starts with the names of the relevant header files, while the braces del
imit structure member names and their formats. This script is then processed
through adbgen to get the adb script presented in the previous section. See
Chapter 10 of this manual for a complete description of how to write a db gen
scripts. The real value of writing scripts this way becomes apparent only with
longer and more complicated scripts (the u script for example). When scripts are
written this way, they can be regenerated if a structure definition changes,
without requiring that the offsets be recalculated.

~~sun ~~ microsystems
Revision A of 6 March 1990

1

Revision A of 6 March 1990

10
Generating adb Scripts with adbgen

/usr/1ib/adb/adbgen file.adb ...

This program makes it possible to write adb scripts that do not contain hard
coded dependencies on structure member offsets. After generating a C program
to detennine structure member offsets and sizes, adbgen proceeds to generate
an adb script.

The input to adbgen is a file named.file. adb containing adbgen header infor
mation, then a null line, then the name of a structure, and finally an adb script.
The adbgen program only deals with one structure per file; all member names
occurring in a file are assumed to be in this structure. The output of adbgen is
an adb script in.file (without the . adb suffix).

The header lines, up to the null line, are copied verbatim into the generated C
program. These header lines often have #include statements to read in header
files containing relevant structure declarations.

The second part of.file.adb specifies a structure.

The third part contains an adb script with any valid adb commands (see
Chapter 6 of this manual), and may also contain adbgen requests, each enclosed
in braces. Request types are:

1) Print a structure member. The request fonn is {member ,format} where
member is a member name of the structure given earlier, and format is any
valid adb fonnat request. For example, to print the p _pid field of the
proc structure as a decimal number, say { p _pid, d}.

2) Reference a structure member. The request form is {*member, base}
where member is the member name whose value is wanted, and base is an
adb register name containing the base address of the structure. For exam
ple, to get the p _pid field of the proc structure, get the proc structure
address in an adb register, such as <f, and say { *p _pid, <f}.

3) Tell adbgen that the offset is OK. The request form is { OFFSETOK}.
This is useful after invoking another adb script which moves the adb dot.

4) Get the size of the structure. The request form is {SI ZEOF}; a db gen
simply replaces this request with the size of the structure. This is useful for
incrementing a pointer to step through an array of structures.

sun 117 Revision A of 6 March 1990
microsystems

118

March 1990

Index

Special Characters
! adb verb, 96
$ adb verb, 96
I adb verb, 96
I dbx command, 26
: adbverb, 96
= adb verb, 96
> adb verb, 96
? adb verb, 96
@ adb verb, 96

0
O adb variable - last value printed, 96

1
1 adb variable - last offset, 96

2
2 adb variable -previous value of 1, 96

9
9 adb variable - count on last read, 96

A
accessing source files and directories, 24
adb

debug,49
adb address mapping, 102
adb commands, 96 thru 102
adb expressions, 94 thru 96
adb variables, 96

O - last value printed, 96
1 - last offset, 96
2 - previous value of 1, 96
9 - count on last read, 96
b - data segment base, 96
d - data segment size, 96
e - entry point, 96
m - magic number, 96
s - stack segment size, 96
t - text segment size, 96

adb verbs, 96
!, 96
$,96
/,96
:, 96

119

adb verbs, continued
=,96
>,96
?,96
@,96
RETURN, 96

address mapping in adb, 102
arguments to main in dbx, 47
arrays

large, dbx, 46
arrays large dbx , 30
assign dbx command, 20

B
b adb variable-data segment base, 96
blank common

and adb, 51
breakpoints in dbx, 21thru22
buttons subwindow in dbxtool, 8

c
call dbx command, 24
catch dbx command, 22
catch FPE in dbx, 47
child processes

debugging with dbx, 33
clear command button in dbxtool, 11
clear dbx command, 21
command buttons in dbxtool

clear, 11
cont, 11
down, 11
next, 10
print, 10
print*, 10
run, 11
step, 10
stop at, 10
stop in, 11
up, 11
where, 11

command subwindow in dbxtool, 8
commands in adb, 96 thru 102
cont, 3
cont command button in dbxtool, 11
cont dbx command, 22

Index-Continued

core, 3

d adb variable - data segment size, 96
dbx, 3

,,., 11 '""'tC' to main,
Tllnl"hrvn 42

catch FPE, 47
commands, 40
detmg:girtg child processes, 33

dbx and FORTRAN, 40
dbx commands

as 20
call,
catch, 22
clear, 21
cont,22
dbxenv, 29
delete all, 21
detach, 30

20
dump,
help,
ignore, 22
kill,
modules, 30
next, 24
nexti, 25
print, 19
quit,
rerun, 22
run,22
set,20
set81, 20
setenv, 30
sh,28
source, 28
status, 21
step, 24
stop at, 21
stop if, 21
stop in, 21
stop, 21
stopi, 25
trace, 22
tracei, 25

what is,
when at, 21
when in, 21
whereis, 20
which, 20
alias, 28
cd, 25
debug, 29
delete, 21
down,
edit,24
file, 24

20

dbx commands, continued
24

dbx machine-level commands, 25 thru 27
miscellaneous commands, 29 thru 30

conun~mel, 29

extensions, 42
parameters, 45

dbx and child processes, 33
delete command, 21
detach dbx command, 30
display,

data in thru 20
display dbx command, 20

subwindow in dbxtool,
down command button in dbxtool,
dump dbx command, 20

E
e adb variable entry 96
exc:;e"P1t10n location in dbx, 4 7
ex1Jre:ssuJns in adb, thru 96

F
files

preparing, 16
files too big, 32
FP A disassembly, 36
FP A register use, 37
FP A support, 35
FPE catch in dbx, 47
function call in dbx, 42

H
help dbx command, 28
hex print in dbx

in dbx, 48

I
ignore dbx command, 22
invoking dbx, 16

K
kill dbx command, 30

L
large arrays in dbx, 30, 46
large files, 32
large programs, 30
listing procedures, 19
listing source code, 18

M
m adb variable - magic number, 96
machine-level dbx commands, 25 thru 27
main arguments dbx, 47
miscellaneous dbx commands, 29 thru 30
modules dbx command, 30

N
name data in dbx, 19 thru 20
next, 3
next command button in dbxtool, 10
next dbx command, 24
nexti dbx command, 25

0
options

dbxtool, 8

p
parameters

debug,45
parts of large arrays in dbx, 46
pointer

debug, 44
preparing files, 16
print, 3

in hex, in dbx, 48
parts of large arrays in dbx, 46

print command button in dbxtool, 10
print dbx command, 19

-121-

process debugging, children with dbx, 33

Q
quit dbx command, 29

R
record

debug,44
record debug, 42
rerun dbx command, 22
RETURN adb verb, 96
run command button in dbxtool, 11
run dbx command, 22
running programs in dbx, 22 thru 24

s
s adb variable- stack segment size, 96
scrolling in dbxtool, 9
set dbx command, 20
set 81 dbx command, 20
setenv dbx command, 30
setting breakpoints in dbx, 21 thru 22
sh dbx command, 28
source code, listing, 18
source dbx command, 28
source subwindow in dbxtool, 8
status dbx command, 21
status subwindow in dbxtool, 8
step, 3
step command button in dbxtool, 10
step dbx command, 24
stop, 3
stop at command button in dbxtool, 10
stop at dbx command, 21
stop dbx command, 21
stop if dbx command, 21
stop in command button in dbxtool, 11
stop in dbx command, 21
stopi dbx command, 25
structure debug, 42
swap space, 32

T
t adb variable - text segment size, 96
trace dbx command, 22
tracei dbx command, 25
tracing programs with dbx, 22 thru 24

u
undisplay dbx command, 20
unformatted files

and adb, 52
up command button in dbxtool, 11
upper case

debug,45

Index-Coniinued

Index - Continued

RETURN, 96

whatis dbx command,
when at dbx command,
when in dbx cmnmtan1C1,
where, 3
where command button
whereis dbx command,
which dbx command,

Notes

Notes

