Issue 1987 8 :
Septembcr 1987_..[.

O S
4% sunr

microsystems

Software Technical Bulletin
September 1987

Software Information Services

Part Number 812-8701-08
Issue 1987 — 8
September 1987

Software Technical Bulletins are distributed to customers with software/hardware or software only support
contracts. Send comments or corrections to ‘Software Technical Bulletins' at Sun Microsystems, Inc.,
2550 Garcia Ave., M/S 2-312, Mountain View, CA 94043 or by clectronic mail to sun/stb-editor. Customers
who have technical questions about topics in the Bulletin should call Sun Customer Software Services
AnswerLine at

800 USA-4-SUN.

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.
DEC, DNA, VAX, VMS, VT100, WPS-PLUS, and Ultix are registered trademarks of Digital Equipment Cor-
poration.

Courier 2400 is a trademark of U.S. Robotics, Inc.

Hayes is a trademark of Hayes Microcomputer Products, Inc.

Multibus is a trademark of Intel Corporation.

PostScript and TranScript are trademarks of Adobe Systems, Inc.

Ven-Tel is a trademark of Ven-Tel, Inc.

Sun-2, Sun-2/xxx, Sun-3, Deskside, SunStation, Sun Workstation, SunCore, DVMA, SunWindows,
NeWsS, NFS, SunUNIFY™, SunView™, SunGKS, SunCGI, SunGuide, SunSimplify, SunLink, Sun
Microsystems, and the Sun logo are trademarks of Sun Microsystems, Inc.

UNIFY™ ig a trademark of Unify Corporation.

ENTER, PAINT, ACCELL, and RPT are trademarks of Unify Corporation.

SQL™ ig a trademark of International Business Machines Corporation.

Applix® is a registered trademark of Applix, Inc.

SunAlis™ is a trademark of Sun Microsystems, Inc. and is derived from Alis, a product marketed by
Applix, Inc,

SunINGRES™ is a trademark of Sun Microsystems, Inc. and is derived from INGRES, a product
marketed by Relational Technology, Inc.

Copyright © 1987 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this pub-
lication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any
form, or by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical,
or otherwise, without prior explicit written permission from Sun Microsystems.

Section 1 NOTES & COMMENTS ...
Editor’s NOES ...oooeoeeeeeeee e

European Hotlines

Errata

Section 2 ARTICLES .

Using USA-4-SUN ... sssissssossssn

SunIPC Logical Hard Disks ..o R 569
ClEnt UNIX SLAIUSc.ocoocrreeecmeesmsssmesersssssssssssssss st sasssssssss st essssssssssssssssess sssssssssons 577
Disk/Controlier CombINAtIONS ... s 580
Read ThiS FirSI PUTPOSE ... sssmssssssss s sssssssmssssssssssmssasesssssessssisssssinns . 584
Section 3 STB SHORT SUBJECTS ..., 589
lockd and DUMPING COTE ...t eeereseseeseeessssonene 589
tty and Terminal DISPIAYSmmeemmmmsmemmsmsemmsssmsmssss s s sssssssssssmssssssssssssssoes 590
Optimizing Read TIMESccouuemimeerconesssssiessrsseesssssesmtsssessmssoessssessessssesesssssees 591
SunAlis 1.0 SUPPOTLEIIAS ... iermeenemisnssssssssrssssssssns s s sesssssssassmsssnes 592
Section 4 IN DEPTH

SunView 2: A New Platformrvmmmerorncnn
Section 5 QUESTIONS, ANSWERS, HINTS, AND TIPS
Q&A, and Tip of the Month .
Section 6 THE HACKERS' CORNER
Browsing Mail Conveniently ..o
Section 7 CUMULATIVE INDEX: 1987

—ii-

EQITOI S INOLES ..o eeeecoemess e eenesseeseens eemesssseseessssesaens s asenss s esesseesesss e 559
Sun Software Produce REICASES ... oo seoseeneeoresssersenesessessesmesmnrsesorses 560
European HOLHNES csmeermeess s sssssssssssssssssesssssssssssesssssssss s sssssssesens 562

Editor’s Notes

Editor’s Notes

Current Sun Software Products
and Release Levels Table

UK and Europe Hotlines

The Hackers’ Corner

-NOTES & COMMENTS

The September editor’s notes for the Software Technical Bulletin (STB) include
the current Sun software products and release levels table, current customer
service hotlines available in the United Kingdom and Europe, and a Browse
program.

The September Software Technical Bulletin (STB) includes the current version
table. The current release level is shown for each product.

Use this table along with STB articles that appear in one or two issues after a
new current release is available for a particular product. You can then better
determine what your software needs are, what functions are available in a new
release, and whether the release you are using is down-level from the most
current product release.

Look further into this Notes and Comments section for a listing of United
Kingdom and European service hotlines. These phone lines are available for
both software and hardware support questions.

Again, please note that such applications, scripts, or code are not offered as
released Sun products, but as items of interest to enthusiasts wanting to try out
something for themselves. They may not not work in all cases, and may not be
compatible with future SunOS releases. Please consult your local shell script or
programming expert regarding any application, script, or code problems.

Thanks.

The STB Editor
S u n 559 September 1987
microsystems

560 Software Technical Bulletin issue 1987-8

Sun Software Produce Releases L

Current Software Sun Products and Release Levels

Product Name Current Release
SunOS 34
Cross Compiler 1.0
SunLink BSC3270 4.0
SunLink Local 3270 4.0
SunLink SNA3270 4.0
SunLink IR 4.0
SunLink DDN 4.0
SunLink DNI 4.0
SunLink OSI 4.0
SunLink TE100 4.0
SunLink X.25 4.0
NeWS 1.0
Sun Common Lisp 2.0 h
Modula-2 1.0
SunAlis 2.1
SunGKS 2.0
SunINGRES 5.0
SunSimplify 1.0
SunUNIFY 2.0
TranScript 2.0
SunIPC 1.1
PC-NFS 2.0
Current Sun Software The table appearing above contains a list of current Sun software products and
Products and Release Levels their respective current release levels.

You will note that the Software Technical Bulletin (STB) contains articles from
time to time that detail technical changes in a given software product’s next

available release.

4ysun

microsystems

September 1987

Section 1 — Notes & Comments 561

Please contact your sales representative if you decide that you would like to
update the release level of a Sun software product you already use, or wish to
purchase another product. Use the table below to determine whether your release
is the current release level.

This table appears monthly in the STB for your convenience.

sun September 1987

microsystems

562 Software Technical Bulletin issue 1987-8

European Hotlines [J O

European Service Hotlines Sun Customers in the United Kingdom and Europe have service hotlines
available for both software and hardware support questions. The service hotlines
are shown below,

United Kingdom Camberley (44) 276 62111

UK Headquarters
France Central/Northern Regions (33) 146302324 Paris HQ

: South West Region (33) 6144 4477 Toulouse

South East Region (33) 78355141 Lyon
Germany Munich (49) 89 926 9000

Germany Headquarters
The Netherlands Soest (31) 2155 24888

Netherlands Headquarters

é%?? U September 1987
mkirosystems

Section 1 — Notes & Comments 563

{ d .
Q Errata [

Errata Two typographical errors occur in the June 1987 STB, on page 230, in the In
Depth article entitled ND Second Swap Space.

In the second paragraph under the heading ‘Step Two: Edit /etc/nd. local’,
please change /etc.nd.localto /etc/nd.local intwo places.

P
QV microsysterns September 1987

ARTICLES

ARTICLES ...t e e 567
USING USA-A-SUN ..oooossoosseenees st 567
SunIPC Logical Hard DISKS ..o oeseesees oo 569
Client UNIX STatus ... 577
Disk/Controller COMDINALIONS ..o 580
Read TRIS FIrSEPUIPOSE ... s e 584

-

Using USA-4-SUN

Using 800 USA-4-SUN

ARTICLES

All Sun customers may call the 800 USA-4-STUN phone line for assistance in the
use of Sun software, hardware, and network products. This article explains what
information you will need when you call, and how your call is routed to the
service engineer who helps you. Your call will be routed to different support
locations, depending on whether you have a support contract and on what type of
product you are using that requires customer suppott.

When calling the 800 USA-4-SUN number, you should always have the
information listed below ready. If any of the information is not readily available,
it may take longer to route your call properly.

o wotkstation model and serial number

o purchase order (PO) number (for those customers not holding support
contracts)

o name
0 company Or organization name and address

o SunOS release number (See the June STB short subject, page 205, to
find how to determine your SunOS release level.)

o problem description

n 567 September 1987
SIS

568 Software Technical Bulletin issue 1987-8

Routing Your Calls

@

Many customers call after talking to their sales representatives. Others call
‘cold’. In either case, you are prompted by a prerecorded message. It asks those
not holding support contracts to have their PO number handy. The recording
then asks you to dial a number, depending on the type of support needed. The
current options are listed below.

Dial 1 for software support

Dial2 for hardware support, including refuming or exchanging parts

Dial 3 to schedule the installation of a new system
Dial 6 for telemarketing, to purchase customer service products or
service contracts

After you select a number, a service dispatcher will ask you for the information
listed above and for a brief description of your problem. The dispatcher then
uses your problem description to route your call to a support engineer who
specializes in the product that is the subject of your phone call.

The dispatcher logs your service call and will give you a service (SO) number
that you may use as a reference to your call in future calls, mail, or email. Your
call is now routed to specialists who answer calls for their particular subject
matter area.

You can now expect an engineer to return your call that same day, or during the
next normal working day.

Sun September 1987

microsystems

<

Section 2 — Articles 569

O SunIPC Logical Hard Disks

Creating a 30 Mbyte SunIPC
Logical Hard Disk

Background and Requirements

Two Procedures

Procedure 1I: IBM AT
Diagnostics Diskette Available

Use the procedures shown in the Sun IPC™ User’s Guide, part number 814-
1002, chapter 4, ‘Using Disks’ to create logical hard disks up to 20 Mbytes in
size.

Use the procedures contained in this article to create a 30 Mbyte SunIPC logical
hard disk.

You may wish to increase the size of your SunIPC logical hard disk as your disk
needs increase. Initially, your SunIPC logical hard disk occupies about 1 Mbyte
of storage space. The name of this file(s) is /usr/pctool/drive_C.pc0
through /usr/pctool/drive_C.pc3, depending on your having up to
four SunIPC boards installed in your system. In this article the case of a single
SunIPC board and file /usr/pctool/drive C.pcO is considered.

The logical hard disk grows to approximately 10 Mbytes by default as users store
more files or PC applications or both. The maximum disk size upper limit may
be reset, allowing additional disk storage.

You must have access 1o a SunlPC floppy disk subsystem to change the SunlPC
logical hard disk size. You will create a bootable floppy before beginning the
procedures in this article. This is required since the existing drive C is destroyed
when changing the logical hard disk size. Note that you cannot backup your
logical hard disk to an NFS server since it is not possible to boot SunlPC from a
network device.

Also note that it is best to change the logical hard disk size when you first receive
the SunIPC board. Backup time at a later date may be greatly increased by your
having many PC application programs stored on the Iogical disk.

Use one of the two procedures shown in the following paragraphs, depending on
whether you have an IBM AT Diagnostics diskette available. Use Procedure I if
you have the disk, otherwise use Procedure IL

Use this procedure in the case that you have a copy of the DOS User's Manual
and an IBM AT Diagnostics diskette.

1. Backup the SunIPC logical hard disk contents onto floppy disks. Use
either the MS-DOS copy or backup command. See the DOS User's
Manual for command definitions if needed. The logical disk, drive C,
contains the MS-DOS, NFS, GWBASIC, and system utility files
included with the SunIPC board, plus any user files.

Note that additional backup procedures may be required, depending on
your application programs. Some application programs create ‘hidden’

N September 1987
terms

570

Software Technical Bulletin issue 1987-8

10.

11.

12.

files that may not be copied unless you use a special backup procedure.
This is part of some application programs’ software protection schemes,
Refer to your application program user manual for any special backup
procedures.

Make a new system floppy disk. Insert a blank floppy disk in drive A.
Move to directory ¢ :\msdos and enter the command shown below.

c:\msdos> format a:/s

This command causes MS-DOS to copy the necessary system files from
the SunIPC logical hard disk to the new system floppy disk.

Use the MS-DOS copy command to transfer the files listed below
from drive C to the new system floppy disk in drive A. Note that you
need to copy the Restore.Com file only if you used the backup
command in step 1.

COMMAND .COM
FDISK.COM
FORMAT .EXE
RESTORE .COM

Remove the new system floppy disk from the SunIPC floppy disk drive
A. Insert the IBM AT Diagnostics diskette and reboot the PCTOOL.

From the menu that appears, select option four, setup, and press
<Retum,

When prompted, verify the correct date and time. Change the date and
time as required.

When prompted with The following options have been set:.... Are these
options correct (Y/N)?, press <N> and then press <Returm>.

When prompted with Are diskette drive types correct (Y/IN)?, press <Y>
and then press <Return>. Do not change the floppy disk options.

When prompted with Your fixed disk drive types are set to the
following:.... Is this correct (Y/N)?, press <N> and then press <Return>,

When prompted with How many fixed disks are installed?, press <1>
and then press <Returmn>.

When prompted with Enter fixed disk type (1-15) for fixed disk drive C.,
press <8> which signifies a 30 Mbyte hard disk.

Check the next screen to ensure that you have entered the correct disk
type and then press <Y> if correct. Press <N> if incorrect and then
repeat steps 10 through 12.

%@ S1c un September 1987

microsystems

-l

-

O

Section 2 — Articles S

Procedure II: IBM AT
Diagnostics Diskette not
Available

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Do not change any subsequent options.

The final screen prompts you with the selected options and asks for
verification that the options are correct. Check that the Fixed Disks
Drive C - Type is type 8 for the 30 Mbyte hard disk. Also check that no
other options were changed. Press <Y> if the options are correct and
then press <Return>. Press <N> if the options are not cotrect, press
<Retum>, and then repeat steps 8 through 14.

Remove the IBM AT Diagnostics diskette from the SunIPC floppy disk
drive A, Insert the new system floppy disk you created in steps 2 and 3.

Press <Returmn> or use the mouse to reset the PCTOOL.

Reboot the SunIlPC from the new system floppy disk. You must
reboot since you cannot change the disk size at the same time you are
running SunIPC from that disk.

Run the MS-DOS fdisk utility from the new system floppy disk. -
This modifies the existing drive C to enlarge the logical hard disk.

Referto the fdisk utility documentation in the DOS User’s Manual.

First, select the third menu item, Delete DOS Partition. Second, select
the first menu item, Create DOS Partition. Third, select the second
menu item, Changing the Active Partition.

The fdisk utility forces you to reboot SunIPC again from the new
system floppy disk once the utility has finished changing the logical hard
disk partition.

Format the logical hard disk by entering the command shown below.,

> format c:/s/v

Copy the files from the backup floppy disk(s) you created in step 1 onto
the new, 30 Mbyte SunIPC logical hard disk. Use either the MS-DOS
copy or the restore command, depending on whether you used the
copy orthe restore command to create the backup floppy disk(s).

Reboot the SunlPC from the logical hard disk on drive C.

The procedure is completed. You are now ready to use the SunIPC as usual.

Use this procedure in the case that you do not have a copy of the DOS User's
Manual and an IBM AT Diagnostics diskette. You will use the MS-DOS
debug command to enlarge the size of the SunIPC logical hard disk.

September 1987

572

Software Technical Bulletin issue 1987-8

Again, note that up to four SunIPC logical hard disks may be installed on your

system.

They wuse files /usx/pctoecl/cmos ram.pcO through

/usr/pctool/cmos_ram.pc3, respectively. In this article the case of a
single SunIPC board and file /usr/pctool/cmos_ram.pcO is considered.

L

Backup the SunIPC logical hard disk contents onto floppy disks. Use
either the MS-DOS copy or backup command. See the DOS User’s
Manual for command definitions if needed. The logical disk, drive C,
contains the MS-DOS, NFS, GWBASIC, and system utility files
included with the SunIPC board, plus any user files.

Note that additional backup procedures may be required, depending on
your application programs. Some application programs create ‘hidden’
files that may not be copied unless you use a special backup procedure.
This is part of some application programs’ software protection schemes.
Refer to your application program user manual for any special backup
procedures.

Make a new system floppy disk. Insert a blank floppy disk in drive A.
Move to directory c: \msdos and enter the command shown below.

c:\msdos> format a:/s

This command causes MS-DOS to copy the necessary system files from
the SunIPC logical hard disk to the new system floppy disk.

Use the MS-DOS copy command to transfer the files listed below
from drive C to the new system floppy disk in drive A. Note that you
need to copy the Restore.Com file only if you used the backup
command in step 1.

COMMAND , COM
FDISK.COM
FORMAT .EXE
RESTORE .COM

From a UNIX window, copy file /usr/pctool/cmos ram.pcO to
a file named cmos-tmp in a directory that is both accessible and
mountable via PC-NFS.

From a PCTOOL or a PC running PC-NFS on your network, continue
with this procedure and perform the following steps.

Use the PC-NFS NET USE command to mount the UNIX directory
containing the cmos-tmp file you made in step 4. An example is
shown below.

NET USE <?>: \\<host>\<dir>...

September 1987

Section 2 — Articles 573

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Change the current hard disk to the PC-NFS volume by issuing a ?:
where ?: is the drive designation you used inthe NET USE command
example shown in step 6.

Type the DOS command debug cmos-tmp and then press
<Return>,

You now see the debug prompt, a dash, on the left side of the screen.
The next 16 steps (steps 10 through 25) are done from the debug
prompt. Note that <sp> signifies typing a space using the space bar, and
<Return> signifies pressing the <Return> key. Type each command
exactly as shown in steps 10 through 235.

e <sp> 100 <Return>

26 <Retum>

e <sp> 102 <Return>

16 <Retum>

e <sp> 112 <Return>

80 <Returr>

¢ <sp> 114 <Retum>

33 <Reftum>

e <sp> 12F <Retum>

55 <Return>

e <sp> 142 <Return>

45 <Retum>

e <sp> 143 <Returmn>

4A <Returr>

w <Returmn>

q <Return>

September 1987

574

Software Technical Bulletin issue 1987-8

-d ¢3:100

33CC:0100

33CC:0110

33CC:0120

33CC:0130

33CC:0140

L44

26

* %

20

00

00

20

00 16

X%

00 80

* %

00 00

06 19

4C 45

* Kk

26. Type the DOS command debug cmos-tmp and then press @

27.

28.

00 15

00 33

* %

00 00

80 00

4R

* %k

29.

30.

31.

32.

33.

34,

<Return>, You will again see the debug prompt, a dash.
d <sp> ¢s:100 <sp> L44 <Returmn>
Check that the screen obtained from step 27 contains the new values you

entered in steps 10 through 23. A sample screen is shown below with
the actual changes highlighted with asterisks (**).

00 06 04-03 87 26 02 50 80 00 00 .. &.P..

80 02 00-00 00 00 00 00 00 00 00 . N

00 00 00-00 00 00 00 00 00 01 55U

* %k

00 00 00-00 00 00 00 00 00 00 00 iiiinuvnunenn.

If your screen obtained from step 27 matches the screen shown above,
go to step 32, skipping steps 30 and 31.

If your screen obtained from step 27 does not match the screen shown
above, from the debug dash prompt, type the debug command q
and then press <Return,

Type the MS-DOS command del c¢mos-tmp and then press
<Return>. Go to step 4, and repeat this procedure by repeating steps 4
and 5. Then skip step 6, and repeat steps 7 through 29,

From the debug dash prompt, type the debug command q and then
press <Return>.

If steps 6 through 32 were issued from a PCTOOL, use the right mouse
button to ‘quit’ the PCTOOCL.

Begin working from a UNIX window on a Sun workstation.

September 1987

-

Section 2 — Aricles 575

For Further Information

@

35.

36.
37,
38.

39,

40.

41.

42,

43.

44,

Copy the cmos-tmp file edited in this procedure to file
/usr/pctool/cmos_ram.pc0. Note again that this procedure
assumes that only one SunIPC logical hard disk is on your system. Up
to four IPC boards may be installed wusing files
/usr/pctool/cmos_ram.pcO through
/usr/pctool/cmos_ram.pc3, respectively.

Insert the new system floppy disk you created in steps 1 through 3 into
drive A.

Open a SunIPC window by entering pctool and pressing <Return>
which boots from the new system floppy disk.

Run the MS-DOS fdisk utility from the new system floppy disk.
This modifies the existing drive C to enlarge the logical hard disk.

Referto the f£disk utility documentation in the DOS User’s Manual.

First, select the third menu item, Delete DOS Partition. Second, select
the first menu item, Create DOS Partition. Third, select the second
menu item, Changing the Active Partition.

The fdisk utility forces you to reboot SunIPC again from the new
system floppy disk once the utility has finished changing the logical hard
disk partition,

Format the logical hard disk by entering the command shown below.

> format c:/s/v

Copy the files from the backup floppy disk(s) you created in step 1 onto
the new, 30 Mbyte SunIPC logical hard disk. Use either the MS-DOS
copy or the restore command, depending on whether you used the
copy orthe restore command to create the backup floppy disk(s).

Reboot the SunIPC from the logical hard disk on drive C.

Regardless of whether you used procedure I or II, the resulting file
emos_ram.pcO (for one SunIPC board) will now expand to a maximum of 30

Mbytes.

See the SunIPC™ User’ s Guide, part number 814-1002, chapter 4, ‘Using Disks’
for a discussion that includes the additional topics appearing below.

o

w]

sSun

microsys

differences between logical and physical hard disks

creating a board-independent autoexec.bat file

September 1987

576 Software Technical Bulletin issue 1987-8

o installing PC applications .

o using disk drives D through V to work with NFS files

o reducing the logical hard disk size

o changing the logical hard disk location

C

Q@ S u n September 1987

microsysterms

Section 2 — Articles 577

O Client UNIX Status

Determining UNIX Status on
a Client

ping

L 4

Local network-related commands, such as netstat and etherfind, are not
suitable for remote use. Therefore, when developing a program to monitor the
status of UNIX of a given file server’s clients, provide this information using a
Remote Procedure Call (RPC) to specific software. Several methods can be
used.

In addidon w traffic(lC) with ether (8C), as described in the
Commands Reference Manual, part number 800-1295-04, the following can be
used:

o ping

o rpc.statd (dacmon)

0 rpc.etherd (daemon)

o Portmap pmap_rmtcall

The information returned by each of these methods varies the meaning of the
status of the remote machine and network or both.

ping refers to the imc echo packet, which reports whether or not the kernel
has gone through the initialization process enough to initialize the Inter-Process
(IP) code. ping keeps trying to send the packet and to report the reply until
either a specified timeout period has elapsed, or a reply is received. The default
timeout period is 20 seconds.

Thus, ping can be used to determine whether a remote machine is halted or
powered on/off. However, it cannot be used to determine whether or not a user
can remotely log in to the machine, using rlogin. It cannot be used to
determine whether or not the user can send or receive Network File System
{NFS) requests or responses to the remote machine.

If the remote machine is operating in multi-user mode, the user is usually able to
rlogin, as well as send and receive NFS requests responses. If rlogin is
unsuccessful, the NFS server can be pinged by calling the null procedure of the
NEFS server, similar to the function of rcpinfo.

Additional information on the use of ping and rpcinfo is included in the
Commands Reference Manual, part number 800-1295-04.

sun September 1987

microsystems

578 Software Technical Bulletin issue 1987-8

rpc.etherd

rpc.rstatd

pmap rmtcall

A Simple ping Script

rpc.etherd is a server which puts the appropriate interface into promiscuous
mode, and keeps summary statistics of all packets received on that interface. It
reports whether or not the host is sending or receiving packets, because much
network traffic on clients consists of Network Disk (ND) and NFS requests
generated in response to user programs running on those clients. rpc.etherd
is used because the kemel does not specifically send out any status packets. The
usermust be root touse rpc.etherd.

rpc.etherd is useful only on local networks. For additional information,
refer to the etherd(8C) description in the Commands Reference Manual, part
number 8§00-1295-04, and the ether (3R} description in the UNIX Interface
Overview manual, part number 800-1341-02,

rpc.rstatd is used for obtaining performance statistics from the kernel, and
are graphically displayed by the perfmeter. rpc.rstatd reports whether
or not the rstat daemon is running. If the rstat daemon is running, this
usually indicates that the remote machine is operating in multi-user mode. This
also indicates that the network is functioning and can successfully respond to the
user.

Additional information on the use of rpc.rstatd is included in the
Commands Reference Manual, part number 800-1295-04.

The problem described in using rpc.xrstatd, above, can be avoided by using
pmap_rmtcall to determine whether or not the rstat daemon is running,
and so indicate that the remote machine is operating in multi-user mode, as well
as proper functioning of the network. pmap_rmtcall is a user interface to
the portmap service, which instructs portmap residing on the host at the IP
address *addr to make an RPC call on the user’s behalf to an RPC procedure
on that host.

One consideration to keep in mind is that pmap_rmtcall cannot notify the
user if the network is having problems. For example, the following network
status messages, normally appearing in the user’s console screen as well as in the
/usr/adm/messages file, are not returned by pmap_rmtcall.

ie0: no carrier
ie0: Ethernet jammed

Additional information on the use of pmap_rmtcall is included in the
manual Networking on the Sun Workstation, part number 800-1324-03.

The following ping script can also be used to determine the status of clients.
This script is especially useful within smaller networks where gateways are not
involved. Keep in mind that this script does not check for ypbind, nor does it
allow for the user to specify the net number and timeout as optional arguments.

sun September 1987

micresystems

-

Section 2 — Articles 579

O Note that the timeout on the call to ping is set at 15 seconds; you may prefer a
shorter or longer timeout period.

#!/bin/csh -f
foreach host (‘ypcat hests | grep 192.9.201 | awk ’{print $2}"")

fusr/etc/ping Shost 15>/dev/null

if ($status == 0) then #if host is wup
echo S$Shost
endif
end

Due to a limitation with ping, this script should not be run in two or more
windows simultaneously.

n September 1987
B8Mms

580 Software Technical Bulletin issue 1987-8

Disk/Controller Combinations

Identifying Controller and
Disk Configurations

Deskside Pedestal Label
Information

@

() ©

It is often necessary for users to determine the controller/disk configuration of
their Sun hardware. Use the following guidelines to determine the existing
hardware configuration on different systems.

Deskside pedestals have the following information included on a label located on
the front cover of the pedestal. This label is visible after removing the gray
faceplate.

DISK DRIVE CONFIGURATION
DRIVE 0 1
FUNITSU IZI O
VERTEX a O
MICROPOLIS O O
OTHER O O @
OTHER

The appropriate disk(s) contained in the pedestal will be marked on this Iabel.
The pedestal label does not specify the disk information listed below.

o Disk interface type -- Small Computer System Interface (SCSI), or
Storage Module Disk (SMD)

o Disk capacity
o Disk model designation
The disk interface type can be ascertained as shown below.
o Disks contained within the CPU pedestal are SCSI-type disks.
o Disks within expansion pedestals are SMD-type disks.

The disk capacity and model designation or both can be usually ascertained from
the following information, @

S u n September 1987

micresystems

Section 2 — Atticles 581

Sun-3 ‘Shoebox’ Disk
Subsystem Label Information

Sun-3 System Controller and
Disk Combinations

4

Newer Sun-3 disk subsystems (commonly referred to as ‘shoeboxes’) have a
small label affixed to the rear. For 71MB disk subsystems, the label appears as
shown below.

DISK DRIVE CONFIGURATION

FUIITSU 01 MICROPOLIS 1325 O

For 141MB disk subsystems, the label appears as shown below.

DISK CONFIG

O MICROPOLIS 1355
00 TOSHIBA MK156FA

All Sun-3 disk subsystems utilize the SCSI interface.

The following lists the controller and disk combinations used in Sun-3 systems.

sun Septernber 1987

microsystoms

582 Software Technical Bulletin issue 1987-8

Sun-3 ‘Shoebox’ Disk Subsystems:

71MB | Adaptec controller. Disks are primarily Micropolis 1325 and
Fujitsu M2243AS.

14IMB | Emulex controller. Disks are Micropolis 1355 and
Toshiba MK156F.

Sun-3/160 with SCSI Disk(s) in the CPU Pedestal

71 MB | Adaptec controller. Disks are primarily Micropolis 1325
and Fujitsu M2243AS.

141IMB | Emulex controller. Disks are Micropolis 1355 and
Toshiba MK 156F.,

Sun-3/160 and 3/260 with SMD Disks in an Expansion Pedestal:

280MB [Xylogics 451 controller. Disk is the Fujitsu M2333.

Rack-mount SMD Disks:

S75MB | Xylogics 451 controller. Disk is the Fujitsu M2361 Eagle XT
(also known as the ‘Super Eagle’).

Sun-2 System Controller and The following lists the controller and disk combinations used in Sun-2 systems. @
Disk Combinations

C

@% sun ' September 1987

microsysiems

Section 2 — Articles 583

Sun-2 ‘Shoebox’ Disk Subsystems:

71MB Adaptec controller, Disks are primarily Micropolis 1325 and
Fujitsu M2243A8S.

100U with SMD Disk(s).

‘84MB’ | Xylogics 450 controller. Fujitsu M2312K disk.
This combination is also referred to as a ‘FAT” box, for
Fujitsu-disk and Archive Tape.

Sun-2/120 with SCSI Disk(s) in the CPU Pedestal:

42MB | Adaptec controller. Disks are Micropolis 1325
and Maxtor XT-1050.

71IMB | Adaptec controller. Disks are primarily Micropolis 1325
and Fujitsu M2243AS.

Sun-2/130 and Sun-2/160 with SCSI Disk(s) in the CPU Pedestal:

71MB | Adaptec controller. Disks are primarily Micropolis 1325
and Fujitsu M2243AS.

Sun-2/120, Sun-2/130 and Sun-2/160 with SMD Disk(s) in an Expansion Pedestal:

130MB [Xylogics 450 controller. Disk is the Fujitsu M2322.
Rack-Mount SMD Disks: '

‘169MB’ | Xylogics 450 controller. Disk is the Fujitsu M2284,
This is only found in 150U and Sun-2/170 systems.

380MB | Xylogics 450 controller. Disk is the Fujitsu M2351 Eagle.

4 sun

September 1987

584 Software Technical Bulletin issue 1987-8

Read This First Purpose [J

Using the Read This First This article contains a discussion of the purpose and use of the Read This First
(RTF) Document (RTF) document provided with all Sun Microsystems software,

The primary purpose of the RTF is to provide the user with current, pertinent
information about the corresponding software product. This includes installation
considerations of importance to system administrators when installing a new
product or upgrading an existing product. Additionally, details are provided of
new or changed features of importance to product users.

Read the RTF thoroughly before beginning the installation or upgrade since
much of this information should be kept in mind at that time.

The RTF Format The format of the RTF is designed to include the ifems Iisted below,

o Software compatibility with Sun system hardware and operating system
release levels

o Environmental requirements, such as physical space and minimum swap @
space needed for proper operation

o Product or release anomalies or both
o Howto get help

The RTF is the designated document to include information describing
installation and usage problems encountered during the final testing of the
product. These descriptions usually include workaround methods. The RTF also
describes any errors in the product documentation, as well as the revised form,
reflecting the current state of the product.

Copying and Distributing the In some locations, the individual responsible for installing product software does

RTF to Other Users not actually use the product. In these situations, the person installing the
software will want to have copies of the RTF made for internal distribution to the
Sun Workstation end-users. This ensures that information affecting product use
is provided to developers and users of the corresponding product and dependent
applications.

The primary contact person or department may duplicate the ‘master’ RTF copy
for all Sun Workstation end-users, as well as to those who need the information.
So long as the copies are duplicated and routed intemnally to employees working
for a company having the product license, there are no copyright infringement

problems. @

%?? sun September 1987

microsystems

Section 2 — Atticles 585

@

This limited permission is for the convenience of Sun customers only. It does
not include any other Sun documentation, nor does it permit any duplication for
resale or distribution outside your company.

sun September 1987

microsystems

STB SHORT SUBJECTS

STB SHORT SUBJECTS ..o 589
lockd and Dumping COr€ ..o 589
tty and Terminal DISPIAYS ... seessessssss st sons 590
Optimizing Read Times ... 591
SURATES 1.0 SUPPOTEENAS ..o 502

lockd and Dumping Core

Running /etc/rpc.lockd

and /etc/rpc.statd
Concurrently

The Workaround

STB SHORT SUBJECTS

g J

Customers have observed a problem with /etc/rpe.lockd which fails in
the case that /etc/rpc.statd is not running at the same time.

The network lock daemon (/etc/rpc.lockd) fails if the network status
monitor (/etc/rpc.statd) is not also running, /etc/rpc.lockd enters
a loop trying to contact /etc/rpc.statd and allocates memory which it
never frees. This eventually causes /etc/rpc.lockd to terminate without
any message. This may also affect other processes since swap space is used up
by /etc¢/rpe.statd.

This problem has been reported as bug ID number 1004739 and will be fixed in a
future SunOS release. The workaround is to ensure that both
/etc/rpc.statd and /etc/rpc.lockd are running. The default startup
is for both /ete/rpc.statd and /etc/rpc.lockd to be started.
Generally, you should not expect to see this problem.

589 September 1987

590 Software Technical Bulletin issue 1987-8

tty and Terminal Displays []

Virtual tty Lines and Terminal displays may become garbled when someone logs onto a virtual tty
Terminal Display Problems line (/dev/ttyp?), usnally via rlogin(l), and finds processes running
from the previous user of the virtmal tty line.

Such problems have been observed while running SunOS release 3.2. They
interfere with proper terminal displays when using vi, for one example. Merely
killing the ‘left-over’ processes does not correct the problem.

The Problem Defined and This problem is caused by some terminal size attributes being reset only when

Solved the last process closes the terminal. If someone logs in and kills all of the *left-
over’ processes, the tty line is not reset and the new processes continue to use the
old settings,

On SunOS release 3.2 and later systems, add the following code to the .login
file to correct the problem. Note that this code implies /bin/csh.

if ($term != "sun™) then
stty everything |& fgrep -s columns
@ setscreensize = $status
if ($setscreensize) stty rows 0 cols 0 c:::
endif
é{t?f sun September 1987
microsystems

Section 3 — STB Short Subjects 591

O Optimizing Read Times

tunefs(8) to Optimize Read
Times

The Default Value

Resetting the Default Value

The ~o Optimization
Preference Option

In case you find your disk read and write times a little slow for your application,
consider resetting a default value for funefs(8) to reduce overall read and write
time.

You can use funefs(8) to change certain dynamic parameters in the superblock
which the kermnel vses when laying out the file system.

The rotdelay flag -d specifics the time expected to service a transfer
completion interrupt and to initiate a new transfer on the same disk. This flag is
used to decide how much rotational spacing to place between successive blocks
in a file.

The rotdelay default value is set to 4 msec. This optimizes the read time at
the expense of the write time. In one case, this defauit value resulted in 30
seconds to write 10 Mbytes, and only 12 seconds to read the 10 Mbytes. This
default setting resulted in an overall read and write rate of 341 kbytes/second.

By increasing the rotdelay parameter to 5 msec, the write time is reduced
and the read time is increased. Both would then be about 17 seconds, resulting in
a reduced overall read and write rate of 602 kbytes/second. Note that these
transfer rates are based on the number of unformatted bits per second that pass
under the read head. Your rates will vary.

Also note that funef5(8) does not report a current default setting unless you try to
change it. You might have a piece of paper handy to write down your old values
before trying any experiments.

You may find an undocumented option, -o, useful. This option sets the
optimization preference to either ‘time’ to minimize allocation time or ‘space’ to
minimize disk fragmentation and disk space used.

@ SL n September 1987

592 Software Technical Bulletin issue 1987-8

SunAlis 1.0 Support Ends

Discontinuation of Support
for SunAlis Release 1.0

SunAlis Software Upgrade
Program

Discontinuation of Telephone
Support

The short subject describes the plan to discontinue SunAlis Release 1.0 support.

New features, functions, and performance enhancements included in SunAlis
Release 2.0 provide faster operation and greater product reliability than SunAlis
Release 1.0. For these reasons, Sun strongly recommends that SunAlis
customers upgrade from Release 1.0 o Release 2.0.

SunAlis Release 2.0 has been automatically shipped free of charge to all Sun
customers holding SunAlis support contracts. In addition, Sun is offering
SunAlis Release ‘2.0 free of charge to SunAlis licensees without support
contracts. This free upgrade offer to customers not holding SunAlis support
contracts is a one-time offer. In the future, customers without SunAlis support
contracts will be charged for upgrade releases of the product.

The following information is required to obtain the Release 2.0 upgrade,
o Your company name, contact name, address, and phone number
o The original sales order number for SunAlis Release 1.0
o The date of purchase
o The machine type(s) running SunAlis Release 1.0
Mail this information to the address below.

Ms. Carol Adams

SunAlis Marketing Manager
Sun Microsystems, Inc.

M/S A4-40

2550 Garcia Avenue
Mountain View, CA 94043

Effective November 1, 1987, Sun will not provide telephone support for SunAlis
Release 1.0, since improvements in Release 2.0 correct most of the problems
reported with Release 1.0, Therefore, if you are using SunAlis Release 1.0 and
encounter any problems with the product, please upgrade to Release 2.0 to verify
the existence of the problem with Release 2.0 before calling for assistance.

y L1 September 1987

) ©

i
T

SunView 2: A New Platform

An Introduction to SunView 2

O Overview

Audience

SunView and SunView 2
Differences

SunView 2

IN DEPTH

This in-depth article gives a general overview of Sun Microsystem’s plans to port
the SunView user interface toolkit to a new window system platform. You will
find a summary of the changes this new platform will introduce to SunView’s
programmatic interface. This article provides an early direction for application
developers working with the current SunView.

The SunView graphical, window-based environment has become familiar to both
end-users and application developers over the past year. Sun Microsystems has a
strong commitment towards maintaining SunView as a stable basis for
continuing development in the future. This commitment is reflected in the
decision to move the SunView? environment from its current SunWindows base
to the newly announced X.11/NeWS platform. The new version of SunView will
be called SunView 2.

This and future SunView 2 compatibility documents are intended for use by the
experienced SunView application developer who is familiar with the current
SunView and its underlying platform, SunWindows. Application developers
new to SunView should read the SunView Programmer’s Guide, part number
800-13435, prior to investigating the changes described in this article.

Attribute names do not change, the current event structure is maintained, and
Pixfont continues to be supported.

SunView 2 is a new vession of the current SunView user interface toolkit
designed to run on the X.11/NeWS window system. It provides a migration path
for moving existing SunView applications onto X.11/NeWS$S, and delivers
network flexibility for SunView 2 applications.

2 In this document, *SunView’ without a ‘2 after it refers to the current SunView product, which first
shipped with SunOS release 3.0. SunView has been enhanced and included in each release since SunOS
release 3.0.

sSun 595 September 1987

596 Software Technical Bulletin issue 1987-8

When? SunView 2 on the X.11/NeWS platform will become available on Sun @
workstations in the spring of 1988. SunView 2 will be the basis for future
SunView enhancements. However, in addition to SunView 2, SunView on
SunWindows will continue to be included with Sun workstations, in order to
allow Sun customers to make a graceful transition from the eatlier to the later
version.

Network SunView X.11/NeWS is a server-based window system. The display manager, or window
server, is a single, user-level process on the machine with the physical display.
Applications ask the server to draw on the screen and to notify them of user-input
events.

SunView 2 applications will inherit many of the benefits provided by a server-
based window system. They will be able to run on one machine and display their
output in windows on another machine anywhere on the network, They will also
be able to run on different X.11/NeWS servers using a variety of display
hardware.

Why Are There Changes? Moving from SunWindows to X.11/NeWS involves changing from a kemnel-
based to a server-based architecture, and from a machine-specific to a portable
platform.3 The programmatic interface to SunView must change -- the
underlying system is fundamentally different. For example, in a server-based
system, window applications cannot access the display themselves, since the
display may reside on another machine. They must ask the window server to @
draw on the display for them.

The SunView 2 Changes paragraphs that follow include a discussion of the
planned changes and likely incompatibilities between SunView and SunView 2,

Future window-system technology will be server-based. Sun will give your
applications the ability to run applications across many machine types on a
heterogeneous network. This will be accomplished by developing a new version
of an existing toolkit. This will be a full-featured user interface which will use
the new generation of window servers. By migrating SunView onto the
X.11/NeWS platform, Sun lets you move your existing SunView applications
onto a statc-of-the-art window system. The applications which are included with
SunView (textedit, cmdtool, mailtool, perfmeter, dbxtool,
and so forth) will continue to provide both users and developers a productive,
integrated working environment.

SunView 2 Changes Compatibility with the current SunView is the primary goal of SunView 2.
Compatibility has been preserved except where change was necessary to make
SunView work well in the X.11/NeWS environment.

3 See the Technical Overview, part number 800-1498-05, for a discussion and comparison of different
window system technologies. e

%@ § un - September 1987

fcrosyetems

Section 4 — In Depth 597

O Overview

Compatibility with the Current
SunView

Some Compatibility with Lower
Levels

Incompatibility with Pre-
SunView Routines

@

While SunView 2 is not completely compatible with the current SunView, large
areas of the programmatic interface will remain unchanged. Much of the
SunView Programmer’s Guide will remain unchanged as noted below.

o The structure of applications need not change.

Programs will look the same as before -- first object creation, then
installation of notify procedures, and then window _main loop(} to
begin processing.

o The philosophy and organization of SunView does not change.

The same basic window types (frames, canvases, panels, text
subwindows, and tty subwindows) and objects (menus, icons, cursors
and scrolltbars) will carry over with most of the same attributes.

Most of the changes that have been made result from moving the SunView
interface to a server-based window system. These changes are summarized
below,

o Windows are no longer pseudo-devices (with FDs) that you open, since
the underlying window system is not kemel-based.

o You no longer have access to some data structures, since they now
reside in the server.

o You cannot access the screen directly, since it is controlled by the
 server. Note that it may even be on another machine,

o SunView 2 does not include many of the routines from SunOS releases
prior to release 3.0. Such routines predate SunView. Further, SunView
2 does not include many of the lowest-level routines that support the
current SunView. Functionality at this level is the responsibility of the
X.11/NeWS server.

SunView 2 is highly compatible with the current SunView at the higher level of
the SunView packages. The higher-level packages in SunView are implemented
in SunView 2. Such packages include the window types and objects mentioned
above, and the notifier.

The current SunView is based on the SunWindows kernel-based window system,
and the Pixrect drawing library. Some of the lower-level SunWindows and
Pixrect routines are implemented by the X.11/NeWS server, some by SunView 2,
and some are not supported. The programmatic interface to directly access
X.11/NeWS functionality from SunView 2 is being designed at this time.

Many pre-SunView window routines will no longer be supported. These are
routines’ documented in the outdated SunWindows Reference Manual from
SunOS releases 1.X; and the Programmer’s Reference Manual for SunWindows,

S 118 n September 1987

microsystems

598 Software Technical Bulletin issue 1987-8

part number 800-1167, for release 2.X. In particular, compatibility does not
extend to low-level SunWindows features that predate SunView such as
SIGWINCH, struct tool,and struct toolio.

See the diagram shown below for the relationships among SunView, SunView 2
and SunOS releases.

Higher | early SunWindows || Packages
/——-"‘_"‘-—.-
Level tool() A T~
routines Panels /
Lower . ' __—
SunWindows
Level \/
¢ Pixrects ‘ — -
1.1 - 2.0 3.0 4,0 \ SunView 2 on top
SunOS Releases remove of X.11/NeWS @
Relationship of SunView, SunView 2, and SunOS Releases
Differences and The following paragraphs describe specific areas of incompatibility between
Incompatibilities SunView 2 and the current SunView. Packages not mentioned here (panels,

menus, and the like) are generally fully compatible, although other areas of
incompatibility may arise as implementation progresses.

Windows There is no access to windows by their WIN_FDs, since windows are not
devices in a server-based window system. One advantage is that the UNIX
limitation on the number of file descriptors per process no longer restricts the
number of windows in an application.

Some SunWindows routines that use window FDs will not be supported. In
SunView 2, windows have an opaque window /D in place of an FD-number, For
compatibility, the WIN_FD attribute will retrieve the window ID. Wherever
possible, routines that are currently passed a window FD will work with this
window ID. See the SunView System Programmer's Guide, part number 800-
1342, for such routines.

Cursor and Icon structs You will be able to create cursors and icons dynamically only. You will not be
able to create them statically using the #DEFINE_CURSOR FROM IMAGE @
and #DEFINE ICON FROM IMAGE routines.

%@ S ll n September 1987

microsystems

o

Section4 —InDepth 599

Cursors

Stacking Menus

menu_ prompt ()

Input

Pixwins

You will not be able to access the fields inthe cursor and icon structs.

= You should convert access to these structs into iconfcursor
create (), set(},and get () calls now.

The X.11/NeWS server supports a mask-type cursor. Therefore, not all cursor
RasterOp logical operations can be provided by the X.11/N server.

Crosshairs are not supported by the X.11/NeWS server.

Old-style, stacking menus from SunQOS release 1.1 will not be converted to
SunView 2, Since SunOS release 3.0, Sun has provided a full-featured, walking
menu package, with much greater functionality. In SunOS release 4.0, users will
get the new-style menus by default. Note that the old-style menus will continue
to be available, for downward compatibility.

=> You should convert to the new menu package as soon as possible to save
conversion effort when SunView 2 becomes available.

Support for the old SunWindows menu_prompt () routine will be removed in
SunView 2. Sun is introducing the alerts package in SunQOS release 4.0 as a
replacement for menu prompt (). Alerts provide improved functionality
compared with menu_prompt (). As with old-style menus,
menu_prompt () will continue to be available, again for downward
compatibility.

= When SunOS release 4.0 becomes available, you should convert all uses of
menu_prompt () to the new alerts package.

The X.11/NeWS server does not support SunView’s current click-to-type model,
since it does not have separate pick and keyboard input masks.

The pixwin struct is not included in SunView 2. Pixwins in SunView 2
will be strictly opaque objects. You will not be able to access their fields.

However, SunView 2 has the same imaging model as in the current SunView,
and most pw_* () routines will be supported. Some new window attributes will
be available to manipulate pixwins. '

SunView 2 will not support pixwin regions since the pw region ()} will no
longer exist. You will create multiple windows instead.

Other unsupported pixwin calls include routines for locking, batching, and
double-buffering. Functionality at this level is the responsibility of the
X.11/NeWS server.

In SunView 2, there is no pixrect associated with a pixwin that you can use to
draw directly on the screen. Pixwins are not based on pixrects in SunView 2.
They are an interface to drawing routines implemented on the server.

sun September 1987

microsystems

600 Software Technical Bulletin issue 1987-8

Pixrects

Fonts

Repaint

Different Internals

You will not be able to use pr_open (/dev/£b) to open a pixrect which
represents a remote screen. Also, you will not be able to use pixrect calls to draw
on the X.11/NeWS server’s screen.* Drawing at the pixrect level usually implies
‘going around’ the window system anyway.

However, the Pixrect package will remain unchanged. You can continue to build
and manipulate pixrects as you do now. Pixrects can be created from files
produced by iconedit, just as before, and the current rasterfile formats will
continue to be supported. A similar interface will be provided for remote
pixrects -- pixrects whose bit images reside in the X.11/NeWS server, not in your
program.

Pixwin routines that take one or more pixrect arguments such as pw_rop (),
pw_replrop(), and pw batchrop () will only be able to use memory
pixrects as arguments.

You can load only the fonts that are available to the X.11/NeWS server.
However, after loading a font, you can continue to access the bits in its glyphs
since the Pixfont struct remains unchanged.

You can ask the server to make a window retained. However, there is no
guarantee that it will have the resources to retain all the pixels of the window in
mermory.

= Applications that us¢ canvases to draw on must be prepared to repaint them-

selves. This has always been recommended in the current SunView, and

now in SunView 2 as well.
The X.11/NeWS server has a different architecture than kernel-based
SunWindows. Thus most of the low-level routines giving clients access to the
internals of the current window system do not apply to the new platform. The
following listed chapters of the SunView System Programmer’'s Guide cover the
internals of SunView on SunWindows. Much of their information, therefore, will
not apply to SunView 2,

o SunView System Model

o TheAgent and Tiles

0 Windows

o Desktops

o Workstations

4 If the screen is on the same machine, ¢lient prograrns not using SunView 2 can continue to use the
raw Pixrect package to draw on the screen as before.

S u n September 1987

microsystems

<

-

Section 4 — In Depth 601

o Advanced imaging
o Window Management

Similar facilities are provided by the X.11/NeWS server. Similar functionality
will be available for clients who access the window system at this low level.

Virtual User Input Devices " The X.11/NeWS server provides support for input devices. The SunView VUID
interface layer is not supported.

@4 _ n September 1987

QUESTIONS, ANSWERS, HINTS,

AND TIPS

QUESTIONS, ANSWERS, HINTS, AND TIPS .

Q&A, and Tip of the Month ...

Q&A, and Tip of the Month

Hints & Tips #6

Avoiding Quota Delays

QUESTIONS, ANSWERS, HINTS,
AND TIPS

This is the sixth in a continuing series of this column which I have created for
two purposes.d First, some questions are asked regularly on the AnswerLine. I
feel everyone can benefit from distributing discussions of these problems as
widely as possible. Second, a large and constantly growing body of information,
hints, and tips are not documented anywhere.

I will collect and distribute these information nuggets in this continuing column
so that we can all learn from them. I will cover unusual topics, but this column
should not be used as an alternative to contacting your support center or using the
AnswerLine.

If you have a question that you would like answered in this column, please mail
your question 10 ‘Software Technical Bulletins® at Sun Microsystems, Inc., 2550
Garcia Avenue, M/S 2-312, Mountain View, CA 94043. You can also send in
your question by electronic mail to sun/stb-editor. U. S. customers can call Sun
Customer Software Services AnswerLine at 800 USA-4-SUN for technical
questions on this column or any other article in this bulletin. I look forward to
hearing from you!

Is it sometimes very slow to log onto your Sun? Does it seem to take forever
from typing the password to getting your prompt? If your answers are yes, you
are likely getting delayed by quota checking done at login time.

Even if you are not running the quota system and quotas are not configured into
your kernel, the program /usr/ucb/quota is executed by /bin/login.
‘Quota’ will take a look at every mounted file system, both local and NFS. For
each NFS file system, it sends an RPC request to the server and requests that it
verify that you are not over quota.

5 'This continuing colomn is submitted by Chug Von Rospach, Customer Software Services.

@ sSsun 605 . September 1987
microsystems

606 Software Technical Bulletin issue 1987-8

This checking can take considerable time if you have a large number of file @
. Systems mounted on your machine. The checks are done sequentially. This can

cause additional delays if quota hangs until its check request times out. This can

be caused by any of the three following conditions. '

o one of the mounted file systems is down
o the NFS server is running a SunOS release older than release 3.0
o rpc.quotad is not running

It is possible on a machine with a large number of NFS mounts or a down server
to cause a login procedure to take two or three minutes in the worst case! '

Fortunately, there are two ways around this problem. If you do not run quotas
anywhere in your organization, it is possible to disable the /usr/ucbh/quota
program completely by replacing it with a symbolic link to the /bin/true
program as shown in the example below,

cd /usr/uch
mv quota quota.hold
1n -s /bin/true quota

Please note, do not simply delete or move /usr/ucb/quota, or the login
program will fail.

This example does not work if some of your machines are running quotas since it
removes the quotacheck completely, If you want to check quotas on some
machines but not on others, you can use the noguota option in
/etc/fstab. If you add noquota to the mount options on all of the file
systems that are not under quota control, the /usr/ucb/quota program will
skip them and not try to verify the quota over the network. An example £stab
entry for this is shown below.

blurfl:/usr/blurfl /usr/blurfl nfs rw,nogquota,soft,bg 0 0

By removing the quota checks from the file systems that are not under quota
control, you can remove most of the time delays you are seeing while logging in.

Tip of the Month (TOM) This month’s Tip of the Month includes a few hints on making your mouse more
responsive. There are a number of variables you can set with Defaultsedit
that can make your mouse work more to your liking. If you start up
Defaultsedit and go to the Input section, you will see the options
‘Jitter_Filter’ and ‘Speed_Enforced’. By default, these options are On and Yes,
respectively. However, these options are useful only to very early machines such
as the 100U. For Sun2, Sun3, and Sun4 machines, these two options should be
turned off.

Another improvement you can make is to modify the Mouse Motion Scaling. By @
default, the distance you move the mouse corresponds directly to the distance the

@?? sun September 1987

microsystems

Section 5 — Q&A, Hints and Tips 607

mouse-arrow is moved on the screen. If you change the scaling, though, you can
cause the mouse-arrow to move faster on the screen than you move the mouse on
the mouse tablet. A good set of defaults to get you started are shown below,

/Input/lst ceiling ™"1“
/Input/lst_factor "1“
/Input/2nd ceiling "16"
/Input/2nd_factor ngw
/Input/3rd ceiling "32"
/Input/3rd factor "“3™
/Input/4th_ceiling "65535"
/Input/4th_ factor "5"

Once you do this, you need to make sure that input_from defaults isrun
when you log onto your workstation. Note to run it only when you are on the
console, since you do not want to change the defaults for someone else
accidentally! Put this the following in your .login file.

if (“tty) == /dev/console) input from defaults

Your mouse customization will now be active next time you log in.

sun September 1987

THE HACKERS” CORNER

THE HACKERS’ CORNER 611

Browsing Mail CONVENIBILY ... sormemssmresessessssessesssssessssen 611

Browsing Mail Conveniently

Browser, A Mail Program

O The Script

Browser

THE HACKERS’ CORNER

L)

The Browser program introduced in this article has been developed by several
programmers, consultants, and enthusiasts interested in tool development.
Browser is a graphical, SunView-based application for viewing files and
directories. It has been developed over a period of time and has been widely
tested, especially in the United Kingdom.

The Browser program is submitted to the STB from Sun Europe. The program
appears at the end of this article.

Comments on Browser program features, improvements, or the user interface are
welcomed. Please send them to sun/stb-editor. 1 will then forward them to Sun
Europe.

Please consult your local shell script or programming expert regarding any script
or code problems, The Browser source archive is not offered as a supported Sun
product, but as an item of interest to enthusiasts wanting to try out something for

themselves. Note that the program may not work in all cases, and may not be
compatible with future SunOS releases,

Browser has evolved over time. The most recent features are shown below.

o takes an optional directory argument, and passes window arguments;
robust to problems with the initial directory

o streiches text display horizontally, has scrollbars in any orientation; and
incorporates any plane-group combination for all Sun 3 systems

o understands small fonts, though it enforces a maximum font size

o the tool icon now labeled with the directory name when closed

u 611 September 1987

612 Software Technical Bulletin issue 1987-8

Notes on Usage

Browser Program Installation

o uses cmdtool if TERM is sun-cmd for SunOS release 3.4,
otherwise uses SHELLTQOL from the environment for shells

o allocates the canvas and directory ‘cache’ dynamically, reducing
memory ovethead

o removes the restriction on the maximum permitted directory entries
o contains scrollbars that reflect the directory size

Browser is a window-based application containing a canvas on which a graphical
representation of the current directory is displayed. The archive contains icons
for the different types of objects in the file system.

Selecting an object now selects that object only. Selection is now integrated with
the SunView selection mechanism. You must ‘double-click’ or use the menu to
actually view the object.

You can select an item by pointing at it and clicking the left mouse button. The
name of the file or directory then becomes the SunView selection as well. This is
the relative pathname, except in the case of *.”. In this case it is more useful to
provide the full, absolute pathname,

‘Double-clicking’ the left mouse button lets you view the selected object.
Directories cause Browser to change directory into them and display their
contents on the canvas. Files then are displayed as text sub-windows. Objects
are displayed in reverse-video upon sclection, and then are displayed in mid-grey
while being accessed.

A menu is displayed when you click the right mouse button, allowing editing or
deleting of files (not directories). Greyed-out items on the canvas or menu
signify that you do not have sufficient file-access permissions.

Pressing and holding the control key while ‘double-clicking’ or selecting from
the menu starts a separate textedit process for the file, in lieu of using a
pop-up window. You can then view multiple files easily. In the case of a
directory, the control key starts another Browser process in that directory.

Choices on the menu quickly take you to the root directory (/0, home ($HOME),
and the previous directory just as if you had followed a symbolic link, Note that
the previous directory is not the same as °..”. Another accelerator prompts you,
asking for the name of the directory you want. You can also take the desired
directory name from a source outside the tool. For example, you may select the
directory name from pwdin a shelltoocl, and then choose ‘view’ from the
menu,

Follow the steps listed below to install the Browser application.

S u n September 1987

microsystems

Section 6 — The Hackers® Comer 613

@

Sun

microsysiems

Save the mail you receive in a file as filename.

Edit the file to remove everything above the line containing
#!/bin/sh. This saves the shar portion of the mail message.

sh <filename> <return>
make browser <return>

browser <retumn>

September 1987

614 Software Technical Bulletin issue 1987-8

#! /bin/sh

this is a shell archive, meaning:

1. Remove everything above the #! /bin/sh line

2, Save the resulting text in a file.

3. Execute the file with /bin/sh to create the files:
Makefile

browser.h

#

br_canv.c
br main.c

br_menu.c

Dbr_seln.c

¥ Dbr_text.c

confirm.c

bbad,icon

bblk.icon

bcha.icon

bdir,icon

bexe.icon

bfil.icon

brca.icon

brok.icon

brow.icon

This archive created: Tue Jun 30 12:08:05 BST 1987
export PATH; PATH=/bin:$PATH

#

if [-f Makefile]
then
echo shar: will not over-write existing file Makefile
else
echo shar: extracting 'Makefile’, 326 characters
cat > Makefile <<'Funky_ Stuff’

#

browser - makefile

#

LIBS = -lsuntool -lsunwindow ~lpixrect

BROBJS = br_main.o br_canv.o br text.o br_seln.o br_menu.o confirm.o
BRSRC = br main.c br_canv.c br_text.c br _seln.c br_menu.c confirm.c

browser : $(BROBJS))
$(CC) ${(CFLAGS) $5(LDFLAGS) $%(BROBJS) $(LIBS) -0 browser

sources : $(BRSRC)

$ (BRSRC)
sccs get 3@
Funky_ Stuff
len=‘w¢ -¢ < Makefile®
if [$len != 326 1 ; then
echo error: Makefile was $len bytes long, should have been
£fi .

- 4¥sun

micreaystams

326

September 1987

-

Section 6 — The Hackers® Corner

615

fi # end of overwriting check
if [-f browser.h]

then
echo shar: will not over-write existing file browser.h
else
echo shar: extracting 'browser.h’, 3301 characters
cat > browser.h <<'Funky_Stuff’
/%

* browser.h - include file for browser gleobal data
* .
*

*/

#include <suntoocl/sunview.h> /* SunView header files */
#include <sunwindow/notify.h>

#include <suntool/canvas.h>

#include <suntool/scrollbar.h>

#include <suntool/textsw.h>

#include <stdio.h> /* system header files */
#include <sys/stat.h>
#include <sys/dir.h>
#include <sys/file.h>

extern int errno:

extern char br name[]; /* version status */
extern char br version([];

extern struct stat sbuf; /* buffer for file stats */
extern struct stat *sp;

extern Frame base frame, /* directory frame */
view_frame; /* edit pop~up */

extern Canvas canvas; /* directory window */

extern Pixwin *pw; /* pixwin of that window */

extern Scrollbar vertical sb, /* for scrolling directory */
' horizontal sb; '

extern Menu action_menu; /* file menu */

extern Textsw viewsw; /* edit window */

extern Textsw scratch; /* scratch window */

#define SEMI_SCROLL_FILES 100

#define SEMI SCROLL_COLS 8
#define SPACE_WIDTH 10
#define IMAGE SIZE 64

#define NAME OFFSET 47 /* ((IMAGE SIZE/2)+15) */
#define BR_SCROLL_TO_TOP TRUE

#define BR_DONT_SCROLL FALSE

#define BR_CONTINUE TRUE

@ September 1987

616 Software Technical Bulletin issue 1987-8

#define BR_GETVALUE 2
extern int maxcols; /* width of canvas in images */
extern int noindir; /* number of directory entries */
extern char home dir[]; /* users home directory */
extern char root_dir([]: /* root directory */
extern char real dirl[]; /* current directory */
extern char last_dirf]: /* last current directory */
/* not .. if followed symbolic link */
extern char text_dir(]; /* where textsw contents came from */
extern char sel dirl[}; /* current selection */
extern char name_stripe[]: /* frame stripe buffer */

#ifdef DEBUG

extern int debug; /* trace status */
#endif
struct dir_disp { /* our record of dir entry */
char dname[256]; /* file name */
int dmode; /* file mode, 0 = bad stat */
int dx; /* pixel co-ord of image */
int dy;
Pixrect *dicon; /* associated image */

extern struct dir_disp *d_start;
extern struct dir disp *dptr:;

extern char shelltoolf]l; /* user preferred shelltool #*/
#define highlight (aptr) image rop({aptr, PIX NOT{PIX DST), (Pixrect *)0)

extern Pixrect bdir pr;
extern Pixrect bblk pr;
extern Pixrect bcha pr;
extern Pixrect bexe pr;
extern Pixrect bfil pr;
extern Pixrect bbad pr;

/* from br main.c */

extern int sort_ents();
extern void scan_dir();
extern wvoid sort_dir{);
extern void do_delete():
extern vold do dix{):
extern int good_dir{);

/* from br_menu.c */

extern wvoid init_menu() ;
extern Menu_item do_menu();
extern void do_default_action(};

4rsun

microsystems

September 1987

Section 6 — The Hackers’ Comer 617

extern void do_action(};

/* from br_canv.c */

extern wvoid image rop():

extern wvoid clear_canvas();

extern woid init_canv{():

extern wvoid resize_canvas(};
extern vwvoid resize canvas_window(};
extern struct dir disp *identify():;
extern int double_click();

extern wvoid show_action_started();
extern void show _action stopped():;
extern void track_selection();
extern void select_proc();

extern void draw_dir();

extern void name_rop () ;

/* from br_text.c */

extern wvoid init text();
extern int ok _to_reset({):

extern wvoid check_done () ;
extern Notify value check_quit{):
extern void do_edit () ;

extern wvoid do_process () ;

Funky Stuff
len=‘wc —¢ < browser.h®
if [$len != 3301 1 ; then
echo error: browser.h was $len bytes long, should have been
fi
fi # end of overwriting check
if [-f br_canv.c]
then
echo shar: will not over-write existing file br_canv.c
else
echo shar: extracting ’'br_canv.c’, 9596 characters
cat > br canv.c <<'Funky_Stuff’
/*
* br canv.c - canvas routines for browser
*
*
x/
#include "browser.h"

#include <sys/time.h>

char br canv_sid[] = "@(#)br_canv.c 1.5 6/30/87";
int tracking = FALSE; /* state wvariables -~ ugh */
int spawning = TRUE;

4rsun

micrasystems

3301

September 1987

618 Software Technical Bulletin issue 1987-8

long click_timeout;
int click_space;
int last xz = 0;
int last y = 0;

struct timeval tnow;
struct timeval tlast;
struct timezone tzone;

char *rindex{);
/* image definitions */

static short brow_image[] = | /* icon for program */
#include "brow.icon"
e

static mpr_static(brow pr, 64, 64, 1, brow_image);

static short bfil image[] = { /* regular file image */
#include "bfil.icon"

}:

static mpr_static(bfil_pr, 64, 64, 1, bfil image);

static short bdir imagel[l = { /* directory image */
#include "bdir.icon”

}i

static mpr_static(bdir_pr, 64, 64, 1, bdir_ image):

static short bexe image([l = { /* executable image */
#include "bexe.icon"

s

static mpr_static(bexe pr, 64, 64, 1, bexe_image);

static short bbad image([] = { /* unknown image */
#include "bbad.icon"

}:

static mpr_static(bbad pr, 64, 64, 1, bbad_image);

static short bblk_image[] = { /* block device image */
#include "bblk.icon"

bi

static mpr_static(bblk_pr, 64, 64, 1, bblk_image):

static short bcha_image[] = { /* character device image */
#include “bcha.icon”

bi

static mpr_static{bcha_pr, 64, 64, 1, bcha image);:

/* mask definitions */
static short gray25[16] = | /* 25 % gray pattern*/
#include <images/square_ 25.pr>
bi
static mpr_ static(gray25 pr, 16, 16, 1, gray25);

@ S u n September 1987

microsystems

O

Section 6 — The Hackers’ Comer

619

static short gray_out[lé] = { /* 50 % gray pattern */
#include <images/square 50.pr>

b:

static mpr_static(gray_out_pr, 16, 16, 1, gray out};

Pixfont *br_font; /* font in use */

int f width, f_height; /* max character size in pizels */
int name_split; /* where to split long name */

void

image rop(ptr,op,mask)
struct dir disp *ptr:
int op;
Pixwin *mask;
{
/* draw or modify a file image */

if (ptr != NULL)
pw_rop{pw,ptr->dx,ptr->dy, IMAGE SIZE, IMAGE SIZE,op,mask,0,0);
#ifdef DEBUG
else
{
if (debug)
fprintf (stderr, "image rop: null pointer (ignored)in"):;
}
#endif
}

void
clear_canvas(scroll_to_top)
int scroll_te top;
{
/* clear the canvas and scroll to top left */

#ifdef DEBUG
if (debug)
fprintf {stderr, “clearing canvas\n");
#endif
pw_writebackground(pw, 0, 0, window_get (canvas, CANVAS_WIDTH),
windew_get (canvas, CANVAS HEIGHT), PIX_CLR);

if (scroll_to_top)

{ :
scrollbar scroll_to(vertical_sb, 1);
scrollbar scroll_to(horizontal sb, 1):

}

void
init_canv ()
i
/* hook icons to frames - this is not really canvas stuff
but all other icon material is in here */

Q% Sun September 1987

microsystems

620

Software Technical Bulletin issue 1987-8

Icon brow_icon;

brow_icon = icon_create(
ICON_IMAGE, é&brow pr,
ICON_ LABEL, "",
0) ¢ :

window_set (base_ frame, FRAME ICON, brow_icon, 0);
/* create scrollbars for canvas */

vertical sb = screllbar create (SCROLL LINE_HEIGHT, 20,
0):

horizontal_sb = scrollbar_create{SCROLL_LINE HEIGHT, 20,
0):

canvas = window_create(base frame, CANVAS,
CANVAS FAST MONO, TRUE,
CANVAS AUTO_SHRINK, FALSE,
CANVAS FIXED IMAGE, FALSE,
WIN_ VERTICAL_SCROLLBAR, vertical_sb,
WIN_HORIZONTAL SCROLLBAR, horizontal sb,
WIN_CONSUME_PICK_ EVENTS,
WIN_MOUSE_BUTTONS,
LOC_DRAG,
0,
WIN EVENT PROC, select_proc,
0):

/* check the font is okay */
br_ font = (Pixfont *)window_get (canvas, WIN_FONT) :
if (br_font == NULL

[l (£ width = br_font->pf defaultsize.x) > 8

I} { £_height = br font->pf defaultsize.y) > 16
)

br_font = pf open("/usr/lib/fonts/fixedwidthfonts/screen.r.14");

if { br_font == NULL)
{
perror ("screen.r.14");
exit(l);
}
f_width = br_font->pf_defaultsize.x;
f_height = br_ font->pf defaultsize.y;
} .

name_split = IMAGE SIZE / (f_width + 1):
pw = canvas pixwin{canvas):;

4rsun

micresystems

September 1987

o

Section 6§ — The Hackers’ Comer 621

/* determine and check double-click options (use text ones) */

click_space = defaults get_integer check(

"/Text/Multi click_space",

3, /* default */
0, /* min */
IMAGE_SIZE, /* max */
0);

click_timeout = 1000L * (long)defaults_get_integer_check(

}

void

"/Text/Multi_click_timeout™,

390, /* default */
100, /* min */
1000, /* max */

0):

resize canvas (width, height)
int width,height;

{

window_set (canvas,

}

void

CANVAS_WIDTH, width,
CANVAS HEIGHT, height,
0):

resize_ canvas_window ()

{

}

window_set (canvas,

WIN WIDTH, (int)window_get (canvas, CANVAS_WIDTH)

+ {int) screllbar_get (vertical_sb, SCROLL_WIDTH),

WIN HEIGHT, (int)window_get (canvas, CANVAS HEIGHT)

+ (int}scrollbar get (horizontal sb, SCROLL HEIGHT),

0);

struct dir_disp *
identify(x,v)

{

/* map pixel selection co-ordinates to a file */

int srow,scol;
struct dir_disp *retptr = NULL;

srow = (y - SPACE WIDTH) / (IMAGE_SIZ2E + SPACE_WIDTH);
scol {x - SPACE_WIDTH) / (IMAGE_ SIZE + SPACE_WIDTH);

retptr = d_start + (srow * maxcols + scol);

if (scol >= maxcols || retptr >= d start+noindir)
{

retptr = NULL;
1

#ifdef DEBUG

€ sun

microsystems

September 1987

622 Software Technical Bulletin issue 1987-8

if (debug)
fprintf (stderr, "active file %x %s\n", retptr,
(retptr != NULL)?retptr->dname:"void"):

#endif

return (retptr):;
}
int
double click (event)
Event *event;
{

int d clicked = FALSE;

long usecs;

int now_x, now y, dis_x, dis y:

now_x = event_x(event); /* where are we ? */

now_y = event_y(event);

gettimeofday (&tnow, &tzone): /* what is the time ? */
usecs = tnow.tv_usec;

dis_x = (now x > last x)?(now_x - last_x):(last_x - now_x);
{now_y > last_y)?(now_y - last y):(last_y - now_y);

£
[
“n
kf
I

/* check that time elapsed since last click is less than timecut
and that movement is less than maximum allowed */

if (tnow.tv_sec == tlast.tv_sec + 1)
usecs += 1000000;
if (! (tnow.tv_sec > tlast.tv _sec + 1)

&& (usecs - tlast.tv_usec < click timeout)
&& dis_x <= click_space && dis_y <= click_space)
d_clicked = TRUE;

tlast.tv_sec = tnow.tv _sec; /* remember time */
tlast.tv_usec = tnow.tv_usec:
last_x = now_x; /* remember position */

last_y = now_y;

return(d_clicked);
}
void
show_action_started()
{

if (dptr != NULL)

{

highlight (dptr) ;

pw_replrop(pw, dptr->dx, dptr->dy,
IMAGE SIZE, IMAGE_SIZE,
PIX SRC "~ PIX DST,
{Pixrect *)&gray25 pr,
dptr—~>dx, dptr->dy):

%@ S u n September 1987

microsystems

-

Section 6 -— The Hackers’ Comer 623

o
}
void
show_action_stopped()
{
if (dptr != NULL)
{
pw_replrop{pw, dptr->dx, dptr->dy,
IMAGE_SIZE, IMAGE SIZE,
PIX_SRC ~ PIX DST,
{Pixrect *)&gray25 pr,
dptr->dx, dptr->dy);

highlight {(dptr);

}

void
- track_seln({event)
Event *ewvent;

{
struct dir disp *olddptr = NULL;

olddptr = dptr; /* where we were */

dptr=identify(event_x(event), event_ ylevent));/* where we are */

(::> if (olddptr !'= dptr) /* moved? */
{ .
if (olddptr != NULL)
highlight (olddptr):;

if (dptr != NULL)
highlight (dptr);

}

void

select proc(window, event, arg)
Window window;

Event *event;

caddr_t arg:;

{

/* called by notifier when events occur on canvas */

#ifdef DEBUG
if (debug)
fprintf (stderr, "event %d received\n®™, event_id(event)):;

#endif

spawning = event_ctrl is down(event)?TRUE:FALSE;

switch ({ event_id{event))

{
C::> case MS_RIGHT:

é&?@ sun * Septemmber 1987

rosystorns

624 Software Technical Bulletin issue 1987-8

if (event_is_down({event)) @
{
menu_show (action menu,
window,
canvas_window_event (canvas,event),
0y
}
break;

case LOC DRAG:
if (tracking)
track selnf{event); /* continue tracking */
break;
case MS_LEFT:
if (event_is_ down(event))
¢ .
tracking = TRUE; /* start tracking */

unset_selection();

track_seln(event);

}

else if (tracking)

{
/* left button up */
if (dptr != NULL) : @
{

if (double clicki{event))
do_default_action():;

/* dptr is stale if we did a cd */

if (dptr != NULL)
set_selection (dptr->dname) ;
}
tracking = FALSE; /* stop tracking */
}
break;
case LOC_RGNEXIT:
if (tracking)
{
if { dptr != NULL)}
{
highlight (dptr) ;
dptr = NULL;
}
tracking = FALSE;
}
break:;
}
} -

void

é{% S un September 1987

microsystems

Section 6 — The Hackers’ Comer 025

draw_dir(scroll _to top)
int scroll_to_top:
{
/* draw dir() actually does the drawing.
The pixwin calls are batched for efficiency. */

Icon brow icon;

#ifdef DEBUG
if (debug)
fprintf (stderr, "drawing directory\n"):
#endif
dptr = d_start;

pw_batch_on{pw) ;
clear_canvas(scroll_to_top):
while (dptr < d start+ncindir)

{
image rop(dptr, PIX SRC, dptr->dicon);

name_rop (dptr->dx, dptr->dy+NAME OFFSET, dptr->dname):;

if (access(dptr->dname,R OK } != 0)
{
pw_zreplrop(pw, dptr->dx, dptr->dy,

IMAGE_SIZE, IMAGE_SIZE,
PIX SRC & PIX DST,
(Pixrect *}&gray out_pr,
dptr=->dx, dptr->dy):

}

dptr++;

}

pw_batch_off (pw) ;

sprintf (name stripe, "%s %s - %s (%d entries)",
br name,
br version,
real dir,
noindir) ;

brow_icon = {Icon)window get (base_frame, FRAME ICON);

icon_set (brow_icon, ICON_LABEL, (rindex{real dir, */’)+l), 0):

window_set (base_frame,
FRAME LABEL, name_stripe,
FRAME ICON, brow_icon,
0):

dptr = NULL; /* ensure no file is active */
unset_selection{);

4rsun

microsystems

September 1987

626 Software Technical Bulletin issue 1987-8

}

void

name_rop (x,¥,onp)

int x,y;

char *onp;

{
char ¢ = "\0";
int 1,twice split;
char nnp{256];
char *np,*1lp;

strepy (nnp, onp) ; /* save name in local buffer */

np = nap; /* may need to offset base */

1 = strlen(np):

twice split = name_split * 2;

if (1 > twice split) /* too long for only two lines */
{ np += 1 - twiée_split;

*np = ')';
}

lp = np + name_split; /* second half */
if (1 > name_ split) /* write first half */
{

c = *lp;

*1p = '\0";

}
pw _text(pw, x + 4 , y, PIX SRC, bx_font, np);

if (¢ 1= "\0O") /* write second half */
{
*1p = ¢;
pw_text (pw, x+4, y+15, PIX SRC, br font, 1lp):

1
Funky Stuff
len=‘wc -¢ < br_canv.c®
if [$len != 9596] ; then
echo errcr: br canv.c was $len bytes long, should have been 9596
£fi _
fi # end of overwriting check
if [-f br_main.c]

then
echo shar: will not over-write existing file br_main.c
else
echo shar: extracting ’'br_main.c’, 6867 characters
cat > br _main.c <<'Funky Stuff’
/*

@ sun September 1987

microsystoms

O

Section 6 — The Hackers’ Comer 627

* browser — a graphical tool for viewing/editing files and directories
*

*
*/

#include "“browser.h"
#include <sys/param.h> /* for NOFILE */
char br main sid[] = "@(#)br main.c 1.5 6/30/87";

char br _name[] = "Browser"; /* version status */
#ifdef MERGED
char br_version[]
#else

char br version[]
#endif

ll1.6(M) “;

ll1.6ﬂ’.

struct stat sbuf; /* buffer for file stats */
struct stat *sp = &sbuf;

Frame base_frame, /* directory frame */
view frame; /* edit pop-up */

Canvas canvas; /* directory window */

Pixwin *pw; /* pixwin of that window */

Scrollbar vertical_sb, /* for scrolling directory */

horizontal sb;

Menu action menu; /* file action menu */

Textsw viewsw; /* edit window */

Textsw scratch; /* scratch window */

int mazxcols = 0; /* width of canvas in images */

int noindir = 0; /* number of directory entries */

char home_dir[256] = "v; /* users home directory */

char root_dir[256] = "/*; /* root directory */

char real dir[256] = "*; /* current directory */

char last_dir[256] = “r; /* last current directcory */
/* not .. if followed symbolic link */

char sel dir[256] = "v; /* current selection */

char name_stripe[256]; /* frame stripe buffer */

#ifdef DEBUG

int debug = FALSE; /* trace status */

#endif

struct dir_disp *d_start; /* base of directory cache */

struct dir_disp *dptr; /* current entry in cache */

char shelltool[256] = "shelltool™; /* user preferred shelltoocl */

char *malloc{):

September 1987

628 Software Technical Bulletin issue 1987-8

#ifdef MERGED

browser main({argc, argv)
#else
main{argc,
#endif
int argce:;
char **gargv;

{

argv)

/* initialisation */

int i;
char *hp, *getenv{);
if «(

(hp = getenv ("HOME")) != NULL)/* where is home */

strcpy (home_dir, hp);

if (¢(hp = getenv("TERM")) != NULL && strcmp(hp, "sun-cmd"™)
strcpy (shelltool, “cmdtool™}:

else if ({hp = getenv("SHELLTOQOL")) != NULL)
strepy (shellteool, hp):;

/* if we exec from another window based tool, all kinds of
material is left open; close it all to avoid
running out of fds when we exec ourselves */

for { i = 3 ;
close (i) ;

i < NOFILE ; i++)

base frame = window_create (0, FRAME,
FRAME SHOW_ LABEL, TRUE,
WIN HEIGHT, O,
WIN WIDTH, 0,
WIN ROW_HEIGHT, IMAGE SIZE + SPACE_WIDTH,
WIN COLUMN WIDTH, IMAGE SIZE + SPACE_WIDTH,
FRAME ARGC PTR ARGV, &argc, argv,
0):

view_frame = window create(base frame, FRAME,
FRAME SHOW LABEL, TRUE,
FRAME DONE_PROC, check done,
0);

init_seln():

init_text ();

init_canv();

init_menu();

notify interpose destroy func(base_ frame, check_guit);

if (arge > 1)

sun

microsystems

I
I
o
—

September 1987

Section 6 — The Hackers’ Comer 629

if (good_dir(argv[l])})
{
do_dir(argv[1l]);
}
else

{
perror{argv[l]);
exit (1) ;

}
else
{
if (good dir(".™))
{
do_dir(".");
}
else
{

perror{".%);
exit (1) ;

}

resize_canvas_window();
window fit (base_frame);
window main_loop (base_frame);
exit_seln();

exit (0) ;-
}

int
sort_ents (pl,p2)
struct dir disp *pl;
struct dir disp *p2;
{
/* called from gsort to compare two entries */

return({(int)strcemp{ pl->dname, p2->dname));
}
wvoid
scan_dir ()

{

-

/* read and sort the directory */
struct dir disp *dptr:

DIR *dir_header = opendir({real_dir);

@ Sun September 1987

microsystems

630 Software Technical Bulletin issue 1987-8

=Y
struct direct *dp = readdir(dir_header);
#ifdef DEBUG
if (debug }
fprintf (stderr, "scanning %s\n",real dir);
#endif

if (d_start != NULL)
free{d start);

if { (d_start =
(struct dir_disp *)malloc{sizeof (struct dir disp)))} == NULL)

.user_confirm("malloc", TRUE, errno);
return;

dptr = d start;
noindir = 0;

while (dp != NULL)
{
if (dp->d_fileno != 0)
{
strepy (dptr->dname, dp->d name) ;/* name */

if (stat(dptr->dname, sp) < 0)/* mode */ c:iD
{
dptr->dmode = (;
)
else
{
dptr->dmode = sp->st_mode;

}

switch{ dptr->dmode & S_IFMT)

{

case S_IFDIR:
dptr->dicon
break;

case S_TIFBLK:
dptr->dicon = &bklk_pr;
dptr->dmode = 0;
break;

case S5_TFCHR:
dptr->dicon = &bcha pr;
dptr->dmode = 0;
break;

case S_TFREG:
if (dptr->dmode & S IEXEC)

dptr->dicon = &bexe pr; @

&bdir pr;

else
dptr->dicon = &bfil pr;

@?? sun September 1987

mictosystems

Section 6 — The Hackers® Comer 631

£
' break;

default:

dptr->dicon = &bbad pr;
dptr->dmode = 0
break;
}
noindir++;
d_start = (struct dir_disp *)realloc(d start,

sizeof (struct dir disp)*(noindir+l));

if (d_start == NULL)
{
user confirm(“"realloc", TRUE, errno);
return;
1
dptr = d_start + noindir;
}
dp = readdir(dir header);
}
closedir(dir_header) ;
}
void
soxrt_dir()
{

struct dir disp *dptr;

int row = 0Q;
int col = Q;
int width, height;

/* sort the entries */
gsort ((char *)d start, noindir, sizeof (struct dir_disp), sort_ents);
/* set required canvas size */
if (noindir < SEMI_SCROLL FILES)
maxcols = SEMI_SCROLL_COLS;
else
maxcols = (1152 - 20 - SPACE WIDTH)/
(IMAGE__SIZE + SPACE_WIDTH);
width = ((IMAGE SIZE + SPACE_WIDTH) * maxcols) + SPACE WIDTH;
height = {((noindir / maxcols) +
((noindir % maxcols)?1:0))
*(IMAGE_SIZE + SPACE WIDTH)
+ SPACE_WIDTH;

resize canvas(width, height);

c::) /* allocate image positions */

Q;)? Sun September 1987

miczosystems

632 Software Technical Bulletin issue 1987-8

dptr = d_start; @

while { dptr < d_start+noindir)
{

dptr->dx = col * (IMAGE_SIZE + SPACE_WIDTH)
+ SPACE WIDTH:

dptr->dy = row * (IMAGE_SIZE + SPACE WIDTH)
+ SPACE_WIDTH;

col++;

if { col >= maxcols }
{

col = 0;

rowt+;

}
dptrt++;

}

void
do_delete()

{
char mybuf [256];

struct dir_disp *nptr = gdptr + 1; Ci:)
sprintf (mybuf, "Confirm that vou wish to delete %s™, dptr->dname);

if (user_ confirm{mybuf, FALSE, FALSE))
{
if { unlink{dptr->dname) < 0)
{
sprintf (mybuf, "unlink %s", dptr->dname):
user confirm{mybuf, TRUE, errno);
}
else
{
while (nptr < d_start+noindir)
{
$ifdef DEBUG
if (debug)
fprintf (stderxr, "compress %x %x %s\n", dptr, nptr, nptr->dname);
#endif
strepy (dptr->dname, nptr->dnane) ;
dptr->dmode = nptr->dmode;
dptr->dicon = nptr->dicon;
dptr++;
nptr++;

}

noindir—-;
draw_dir (BR_DONT_SCROLL) ; O

QV m;c,!;}stm September 1987

Section 6 — The Hackers” Comer 633

}
1
do_move ()
{
user confirm("Option not currently available",BR CONTINUE,FALSE):

}

void
do_dir(new_dir)
char *new_dir;
{
/* c¢d to named directory and display */

char rmybuf [80];

if (chdir(new_dir) < 0)
{
sprintf (mybuf, "chdir %s", new dir);
user_confirm{mybuf, TRUE, errno):
}
else if (strcmp(new dir, ".™) 1= 0)
{
strepy(last_dir, real_dir):
}
if (getwd(real dir) < 0)
{
user_confirm(“getwd", TRUE, errno);
}
else
{
scan_dir();
sort_dir({);
draw_dir (BR_SCROLL_TO_TOP);

}

/* check a name is an existing, readable, directory */
int

good dir(tname)

char *tname;

{
int good name = TRUE;

if (tname == NULL
| *tname == *\0’
| stat{tname, sp) < 0
| {(sp—->st_mode&S_ IFMT) != §_IFDIR)
| access(tname, R_OK) != 0)
good name = FALSE;

[
I
I
|
return (good name) ;

microsystems

é«é:? sun September 1987

634 Software Technical Bulletin issue 1987-8

Funky_Stuff
len=‘wc -c < br main.c’
if [8len != 6867] ; then -
echo error: br main.c was $len bytes long, should have been
fi
fi # end of overwriting check
if [-f br menu.c]
then
eche shar: will not over-write existing file br menu.c
else _
echo shar: extracting ‘br_menu.c’, 4191 characters
cat > br menu.¢ <<’Funky Stuff’
/%
* browser - br_menu.c - menu handling for browser
*
*
*/
#include <suntool/sunview.h> /* SunView header files */

#include "browser.h"
char br_menu_sid[] = "@(#)br menu.c 1.5 6/30/87";

#define ACT_ VIEW
#define ACT EDIT
#define ACT DEL
#define ACT_ROOT
#define ACT HOME
#define ACT_BACK
#define ACT_ PROMPT
#define ACT_ SHELL
#define ACT TRACE
#define ACT MOVE

H e o n b W

extern int spawning;
Menu action menu;

void
init_menu ()
{

/* initialise the canvas menu */
action_menu = menu create(
MENU_INITIAL_SELECTION SELECTED, TRUE,

MENU_ITEM,
MENU_STRING, "View",
MENU_GEN_PROC, do_menu,
MENU VALUE, ACT_VIEW,

0,

MENU_ITEM,

4ysun

microsystems

6867

September 1987

Section 6 — The Hackers’ Comer 633

MENU_STRING,
MENU_GEN_PROC,

"Edit " ‘
de_menu,

MENU VALUE, ACT EDIT,

o,

MENU_ITEM,
MENU_STRING,
MENU GEN_PROC,

"Delete",
do_menu,

MENU VALUE, ACT DEL,

a,
#ifdef MOVING
MENU_ITEM,
MENU_STRING,
MENU_GEN_PROC,

"Move™,
do_menu,

MENU VALUE, ACT MOVE,

0,
#endif
MENU_ITEM,
MENU_STRING, “Root",
MENU GEN_PROC, do_menu,
MENU_VALUE, ACT ROOT,
0,
MENU_ITEM,
MENU_ STRING, "Home",
MENU_GEN_ PROC, do_menu,
MENU_VALUE, ACT_ HOME,
0,
MENU_ITEM,
MENU_STRING, "Previous",
MENU_GEN_PROC, do_menu,
MENU_VALUE, ACT_BACK,
0,
MENU_ITEM,
MENU_STRING, "Prompt™,
MENU_GEN_PROC, do_menu,
MENU_VALUE, ACT_ PROMPT,
0,
MENU_ITEM,
MENU_STRING, “"Shell"®,
MENU_GEN PROC, do_menu,
MENU_VALUE, ACT_SHELL,
0,
#ifdef DEBUG
MENU_ITEM,
MENU_ STRING, {debug) ?"Trace Off":"Trace On",
MENU_GEN_PROC, do_menu,
MENU VALUE, ACT TRACE,
0,
#endif

0);
}
Menu_item
do_menu (mi, op)
Menu_item mi;

4ysun

September 1987

636 Software Technical Bulletin issue 1987-8

Menu_generate op;
{

/* menu generate proc */

int inactive = FALSE;
int mval = (int) menu_get {mi, MENU_VALUE) ;
#ifdef DEBUG
if (debug)
fprintf (stderr, “do menu op = %d, item = 3d\n", op,
#endif
switch({ op)
{
case MENU DISPLAY:
switch{ mval)}
{
case ACT_VIEW:
if (dptr == NULL)
{
if (! good dir(get selection()))
inactive = TRUE;
}
else
{
if (dptr->dmode & S_IFDIR)
{
if (! good dir(dptr->dname))
inactive = TRUE;

}
else
{
if { dptr->dmode ==]
access (dptr->dname, R _OK) != 07)
inactive = TRUE;
1
}
break;

case ACT MOVE:
case ACT_EDIT:
case ACT _DEL:

if { dptr == NULL
|| dptr->dmode ==
|l (dptr->dmode & S_IFDIR)
|| access(dptr->dname,W OK} != 0 }

inactive = TRUE;
break:;
case ACT BACK:
if (! good_dir(last_dir))
inactive = TRUE;
break;
case ACT HOME:
if (! good dir(home _dir))
inactive = TRUE;
break;

4ysun

mictosystems

nval) ;

September 1987

-

Section 6 — The Hackers’ Comer 637

O #ifdef DEBUG

case ACT TRACE:
menu_set (mi,
MENU_ STRING, debug?"Trace Off":"Trace On",
0);
break;
#endif
}
menu_set (mi, MENU INACTIVE, inactive, 0);
break;
case MENU NOTIFY:
do_action (mval};
break;
}
return (mi);
}
void :
do_default_action{)

{ .
/* action required, but menu based checks have not been done */

if (dptr != NULL
&& dptr->dmode != 0
_&& access{dptr->dname,R OK) == 0)

do_action(ACT VIEW);

Q!
void

do_action (action)

int action;

{ .
show_action_started();

switch (action)
{
case ACT_VIEW:
if { dptr == NULL)
{
do_dir(sel_dir):
}
else if (dptr->dmode & 5_IFDIR)
{
if { spawning)
deo_process ("browser", dptr->dname):;
else
do_dir (dptr->dname) ;
}
else /* assume ordinary file */
{
if (spawning)
do_process ("textedit™, dptr->dname);

else
C::D do_edit (real_dir, dptr->dname, "view"}:

@ sSun September 1987
microsystems

638 Software Technical Bulletin issue 1987-8

break;
case ACT_EDIT:
if { spawning)
do_process("textedit",dptr->dname) ;
else
do_edit (real_dir, dptr->dname, "edit"):
break;
case ACT DEL:
do_delete();
break;
case ACT ROOT:
do_dix(root_dir);
break;
case ACT_HOME:
do dir(home dir):
break;
case ACT BACK:
do_dir({last_dir);
break:;
case ACT PROMPT:
if (user confirm("Give new directory name: 7,
BR_GETVALUE, FALSE))
do_dir{user_value()):
break;
case ACT SHELL:
do_process(shelltool, 0);
break;
case ACT MOVE:
do_move () ;
break;
#ifdef DEBUG
case ACT TRACE: :
debug = !debug;
break;
#endif
} .
show_action stopped{();
}

Funky_ Stuff
len=‘wc -c < br_menu.c’
if [$len != 4191] ; then
echo error: br menu.c was $len bytes long, should have been
fi '
fi # end of overwriting check
if [-f br_seln.c]
then .
echo shar: will not over-write existing file br_seln.c
else
echo shar: extracting 'br_seln.c’, 3336 characters
cat > br_seln.c <<'Funky Stuff’
/*

* browser — br_seln.c - selection handling for browser

4{%5&11

microsysterns

4191

September 1987

-

Section 6 — The Hackers' Comer 639

*/

#include "browser., h"

#include <suntocl/seln.h>

static char br_seln_id[] = "@(#)br_seln.cl.4 5/29/87";
static Seln_client s_client;

static char s_buffer[256];

void fkey proc{);
Seln result reply proc{);

init_seln{()
{
#ifdef DEBUG
if (debug)
fprintf{stderr,"initialise selection client\n"):;
#endif
s_client = seln create(fkey_proc, reply_proc, (char *)0);

if (s_client == NULL)
user_confirm{"unexpected error creating selection client™,
TRUE,. '
errno);

}

exit_seln()

{
#ifdef DEBUG
if (debug)
fprintf (stderr, "destroy selection client\n"):
#endif

seln destroy({s_client);

char *
get_selection()
{
Seln holder holder;
Seln request *sel_buf;

holder = seln inquire{SELN_PRIMARY) ;
sel buf = seln_ask({&holder,

SELN REQ CONTENTS_ASCII,

0,

0);

strncpy(sel _dir, sel buf->data + sizeof (Seln_attribute), 256):

%;}? sun September 1987

microsystems

640 Software Technical Bulletin issue 1987-8

#ifdef DEBUG @

if {debug)

) fprintf (stderr, "get selection returns %s\n",sel dir);
#endlif

return(sel dir);

}

void

set_selection{value)

char *value;

{

#ifdef DEBRUG

if {(debug)

fprintf (stderr, "set selection to %s\n",value);

%

#endif
if { seln_acquire(s_client, SELN_PRIMARY) != SELN_PRIMARY)
user_ confirm("unexpected errcor acquiring selection™,
TRUE,
errno) ;
if (strlen{value) == 1 && *value == 7.’)
strepy (s_buffer, real dir);
else

strepy(s_buffer, value);

}
void @
unset_selection{()

{
#ifdef DEBUG
if (debug) :
fprintf (stderr, "unset selection\n");
#endif

*s buffer = \0’;
1

void
fkey proc(cdata, args)
char *cdata;
Seln_function_buffer *args;
{

Seln holder *holder;

#ifdef DEBUG
if (debug)
fprintf (stderr, "fkey proc: activated\n");
#endif
switch (seln figure_response(args, &holder))
{
case SELN_IGNORE:

break;
case SELN REQUEST: . @

break;

microsystemns

%@? sSun September 1987

Section 6 — The Hackers' Comer 641

O case SELN_SHELVE:

break;
case SELN FIND:
break;
case SELN DELETE;
break;
}
}
Seln result
reply proc(item, context, length)
Seln_attribute item;
Seln replier data *context;
int length;
{
int size, needed;
char *destp = NULL;

switch (context->rank)

{

case SELN PRIMARY:
break;

case SELN_ SECONDARY:
break;

case SELN_SHELF:

break;
o

switch (item)
{
case SELN_REQ CONTENTS_ASCII:

#ifdef DEBUG
if (debug)
fprintf (stderr, “reply proc: give ascii selection\n"});
#endif
context->context = s_buffer;

size = strlen{context->context):
destp = (chaxr *)context->response_pointer;

needed = size + 4;

if (size % 4 !'= 0)
needed += 4 - size % 4;

strcpy{destp, context->context);
destp += size;

while ((int)destp % 4 1= 0)
*destptt = ‘\07;

O context->response pointer = (char **)destp;
*context->response pointer++ = 0;

Q‘}, Sun September 1987

microsystems

642 Software Technical Bulletin issue 1987-8

return(SELN_SUCCESS);
case SELN_REQ YIELD:

#ifdef DEBUG
if (debug)
fprintf (stderr,"reply proc: yield selection\n");
#endif
if (dptr != NULL)
{
highlight (dptzr);
dptr = NULL;
}

unset_selection();
*context->response;pointer++ = (char *)SELN_SUCCESS;
return(SELN SUCCESS):

case SELN REQ BYTESIZE:

#ifdef DEBUG
if {debug }
fprintf {stderr,"reply proc: give selection size\n");
#endif
*context->response_pointer++ = (char *)strlen(s_buffer);

return{ SELN_SUCCESS };
case SELN_REQ END REQUEST:

return (SELN_SﬁCCESS):
default:

return{ SELN_UNRECOGNIZED };
}
}
Funky_ Stuff
len=‘wc -c¢ < br seln.c’
if [$len != 3336] ; then
echo error: br_seln.c was $len bytes long, should have been
fi
fi # end of overwriting check
if [-f br_text.c]
then
eche shar: will not over-write existing file br_ text.c
else
echo shar: extracting ’‘br_text.c’, 2626 characters
cat > br_text.c <<'Funky_Stuff’
/%
* br_text.c - text routines for browser
*

3336

September 1987

-

O

i window_set (view_frame, WIN_ SHOW, FALSE, 0);.
. }
}

Section 6 — The Hackers® Comner 643

* Alistair Skinner ~ March 1986 Sun Microsystems Europe Inc.

*
*

#include “browser.h"™

char br_text_sid[] = "€ (#)br_text.c 1.5 6/30/87";
void
init_text ()
{
scratch = window_create(view_frame, TEXTSW,

viewsw =

}

int

TEXTSW_DISABLE CD, TRUE,
TEXTSW_DISABLE_LOAD, TRUE,
WIN _ROWS, 1,

WIN X, O,

0);

window_create (view_frame, TEXTSW,

WIN BELOW, scratch,

WIN X, 0,

TEXTSW_BROWSING, TRUE,
TEXTSW DISABLE_CD, TRUE,
TEXTSW DISABLE LOAD, TRUE,
%)

ok_to_reset()

{

/* check there are no edits outstanding */

int modified = TRUE:

if (!

(int)window_get (viewsw, TEXTSW_MODIFIED)

[l user_confirm("** This action will destroy unsaved edits **v,6 \

textsw_reset (viewsw, 500, 500):

FALSE,FALSE))

modified = FALSE;

return |

}

void

Imodified);

check done {donef)
Frame donef;

{

/* called by the notifier when user selects "done" */

if (ok _to_reset())

{

4y sun

microsystems

September 1987

644 Software Technical Bulletin issue 1987-8

Notify value @

check _quit {quitf, dstatus)
Frame quitf;
Destroy status dstatus;

{

/* called by the notifier when user selects "quit"™ */

if (dstatus == DESTROY_CHECKING && !ok_to_reset())
{
notify veto destroy(base frame);
return (NOTIFY_DONE) ;
i
textsw_reset (scratch,500,500);

return{ notify next destroy_ func(quitf, dstatus)):;
}
void
do_edit (t_directory,t_file,t_action)
char *t_directory;
char *t_file;
char *t_action;
{

/* edit or view the currently active file */

char full name[256];

int len = 0; @

#ifdef DEBUG
if (debug) 7
fprintf (stderr, "%sing %s\n", t_action, t_file);
fendif
if (ok_to_reset())
{
/* use full path name in case we change directory later */

strepy (full_name, t_directory);
len = strlen{full name);

full name[len++] = *//;

strepy (&full _name{len],t_file);

window_ set (viewsw,
TEXTSW _FILE, full name,
TEXTSW_BROWSING, (*t action=='v’),
0);

sprintf (name_stripe, "%s3 %s (%5) - %5 (%d bytes)",
br name,
br version,
t_action,
t_file,
window_get (viewsw, TEXTSW LENGTH)
O

@é S u 1 September 1987

microsysioms

Section 6 — The Hackers’ Comer 645

window_set (view frame,
FRAME_LABEL, name stripe,
WIN SHOW, TRUE,
0);

}

void

do_process {pname, parg)
char *pname;

char *parg;

{ .
/* spawn a new, detached process */

switch (vEork())
{
case Q:
switch(vfork())
{
case 0:
execlp (pname, pname, parg, 0);
perror ("browser: could not exec process™);
_exit(-1}:
break;
case -1:
perror(“*browser: could not dettach process™);
_exit(-1);
break:;
default:
_exit (0);
}
break;
case -1:
user confirm("cannot fork process", TRUE, TRUE);
break;
default:
wait (0) ;
break;
}
}
Funky_ Stuff
len=‘we =-c < br_text.c¢®
if | $len != 2626 1 : then
echo error: br_text.c was $len bytes long, should have been
fi
fi 4 end of overwriting check
if [~f confirm.c]
then ‘
echo shar: will not over-write existing file confirm.c
else
echo shar: extracting 'confirm.c’,
cat > confirm.c <<’'Funky Stuff’
/%

* confirm.c -~ user confirmation routines

4369 characters

4rsun

ricrosystems

2626

September 1987

646 Software Technical Bulletin issue 1987-8

¥ ook s 3k oF o b b oF M 6 O % Ok Ok 2 Ok Ok 3k o O % % o ¥ o 2 O Ok Ok F X H A ¥ ¥ ¥ ¥ ¥ X * X

isanerr now contains errno - 15 Apr 87 AES
Based on example code in the SunView Programmers Guide.

These routines provide a confirmer pop-up which the
user must respond to. The interface is:

int

user confirm{prompt, isacont, isanerr)
char *prompt; .

int isacont:

int isanerr;

It returns TRUE if the user said yes/continue
or FALSE if the user said no

Use in one of three ways, in the first two cases, the
only choice is to continue.

(1) For informational messages after a system error:
user_ confirm{"my message®™, TRUE, errno);

in this case the message appears with the system
error message appended in the style of perror(3)

{(2) For informational messages when there is nc system error:
user_confirm{"my message", TRUE, FALSE);

{3) For situations where the user must confirm an action:
user_confirm{"my message", FALSE, FALSE):

The remaining case, where there has been a system error

and the user must confirm an action, will work but the

format of the output will probably not be suiltable, and

there will probably be toc much information for the user.

/

#include <suntocl/sunview.h>
#include <suntool/panel.h>

#define MAX_MSG 80
#define BR_CONTINUE TRUE
#define BR_GETVALUE 2

extern int errno;
extern int sys_nerr;
extern int *sys_errlist[]:

4rsun

microsystems

September 1987

Section 6 —The Hackers’ Comer 647

static short ok_image(] = {
#include "brok.icon™

b

mpr static{ok_button, 64, 64, 1, ok image);

static short ca_ image{] = {
#include "brca.icon™
b

mpr_static(ca button, 64, 64, 1, ca_image);

static wvoid
yes_no{item, event)
Panel item item;
Event *event;

{

window_return(panel_get (item, PANEL CLIENT DATA));

Frame conf;

Panel panel;

-Panel item file spec;
char uvalue_store[80];

static Frame
init_conf {(prompt,isacont, isanerr)
char *prompt;
int isacont;
int isanerr;
{
char msgbuf [MAX MSG];
char *cp;
Panel_item msg;

int left, top, width, height;
Rect *r:

struct pixrect *pr;

conf = window_create (0, FRAME,

FRAME_SHOW_LABEL, FALSE,

0):

panel = window create(conf, PANEL, 0);

pr = &ok_button;

cp = msgbuf;

if (prompt == NULL || *prompt == 7\07
strepy(cp, "(null message)");

else

strncpy{cp, prompt, MAX MSG):

€rsun

microsystems

)

September 1987

648

Software Technical Bulletin issue 1987-8

¢cp = msgbuf + strlen(msgbuf):; @

if { isanerr)
{
if { errno < sys_nerr)
sprintf{cp,"™ : %s",sys_errlist[isanerr]);
else :
sprintf(cp, " : Errcr Number %d",isanerr):

}

if (isacont == BR_GETVALUE)
{
file spec = panel create item{panel, PANEL_TEXT,

PANEL_ITEM Y, ATTR ROW(1),
PANEL_LABEL_STRING, msgbuf,
PANEL VALUE DISPLAY LENGTH, 20,
PANEL VALUE, “",
0);

else

msg = panel_create_item(panel, PANEL MESSAGE,
PANEL LABEL STRING, msgbuf,
PANEL ITEM Y, ATTR ROW(1l),
0):

panel create_item(panel, PANEL_ BUTTON,
PANEL_ITEM X, 25,
PANEL_ITEM ¥, 50,
PANEL LABEL IMAGE, pr,
PANEL CLIENT DATA, 1,
PANEL NOTIFY PROC, yes_no,
0):

panel create item(panel, PANEL MESSAGE,
PANEL ITEM X, 95,
PANEL ITEM Y, 75, ,
PANEL LABEL_STRING, "Continue with current action”,
0):

if (isacont != BR_CONTINUE)
{
panel create item(panel, PANEL BUTTON,

PANEL ITEM X, 25,
PANEL ITEM Y, 120,
PANEL_LABEL IMAGE, &ca_button,
PANEL CLIENT DATA, O,
PANEL NOTIFY PROC, yes no,
0);

panel create_ item(panel, PANEL MESSAGE, O

Q?? S u n . September 1987

microsystems

Section 6 — The Hackers’ Corner 649

PANEL_ITEM X, 95,
PANEL_ITEM Y, 145,

PANEL LABEL STRING, "Abort current action”,

0):
}

window fit {panel);
window_fit (conf);

r = (Rect *) window_get (conf, WIN SCREEN_RECT);
width = (int) window_get (conf, WIN_WIDTH);
height = (int) window_get (conf, WIN_HEIGHT):

left = (r->r width - width)/2;
top = (r->r_height - height)/2;
if (left < 0)

left = 0;
if { top < 0)
top = 0;

window_set (conf, WIN_X, left, WIN Y, top, 0);

return (conf) ;
}
int
user_confirm{prompt, isacont, isanerr)
char *prompt;
int isacont;
int isanerr;
{
Frame conf;
int ans:

conf = init_conf (prompt, isacont, isanerr);

ans = (int) window_locop (conf);

if (isacont == BR_GETVALUE)

strepy (uvalue_ store, (char *)panel get_value(file_spec));

else
*uvalue_store = "\0';

window_set (conf, FRAME_NO_CONFIRM, TRUE, 0);

window_destroy (conf) ;

return{ans);
}
char *
user value ()
{
if (*uvalue store == NULL)
return{ NULL);
else
return{ uvalue store);

4ysun

microsystems

September 1987

650 Software Technical Bulletin issue 1987-8

: -
Funky Stuff

len=‘wc -¢ < confirm.c?

if [$len 1= 4369 1 ; then

echo error: confirm.c was $len bytes long, should have been 4369

f£fi
fi # end of overwriting check
if { -f bbad.icon 1]

then

echo shar: will not over-write existing file bbad.icon
else

echo shar: extracting ’'bbad.icon’, 1933 characters

cat > bbad.icon <</Funky Stuff’
/* Format_version=l, Width=64, Height=64, Depth=1, Valid bits_per_ item=16
*/
0x0000,0x0000,0x0000,0x0000, 0x0000,0x20000,0x0000,0x0000,
0x0003, OXFFFF, OXFFFC, 0x0000, 020002, 0x0000,0x0004, 0x0000,
0x0002,0x0000,0x0004,0x0000, 0x0002, 0x0000,0x0004, 0x0000,
0x0002, 0x0000, 0x0004, 0x0000, 0x0002, 0x0000,0x0004, 0x0000,
0x0002,0x0000,0x0004, 020000, 0x0002, 0x001F, 0xC004, 0x0000,
0x0002, 0x003F, 0xE004, 0x0000, 0x0002, 0x0060, 023004, 020000,
0x0002, 0x0060,0x3004,0x0000,0x0002,0x0060, 0x3004, 0x0000,
0x0002,0x0000,0x3004,0x0000, 0x0002, 0x0000, 0x3004, 0x0000,
0x0002,0x0001,0xE004, 0x0000,0x0002, 0x0003, 0xC004, 0x0000,
© 0x0002,0x0006,0x0004, 0x0000, 0x0002, 0x0006,0x0004,0x0000,)
0x0002,0x0006,0x0004, 0x0000,0x0002, 0x0006, 0x0004, 020000, _ c::>
0x0002,0x0006,0x0004, 0x0000,0x0002, 020006, 0x0004,0x0000,
0x0002,0x0000, 0x0004, 0x0000,0x0002,0x0000,0x0004,0x0000,
0x0002,0x0006, 0x0004, 0x0000, 00002, 0x0006, 00004, 0x0000,
0x0002,0x0000, 0x0004, 0x0000, 0x0002, 00000, 0x0004, 0x0000,
0x0002,0x0000,0x0004, 0x0000,0x0003, OxFFFF, 0xFFFC, 0x0000,
0x0000, 020000, 0x0000, 0x0000,0x0000, 0x0000, 020000, 0x0000,
0x0000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000,0x0000, 0x0000,
0x0000,0x0000,0x0000, 00000, 0x0000, 020000, 0x0000,0x0000,
0x0000,0x0000,0x0000, 0x0000, 0x0000, 0x0000, 020000, 0x0000,
020000, 020000, 0x0000, 0x0000, 0x0000, 0x00Q0, 0x0000, 0x0000,
020000, 0x0000, 020000, 0x0000, 0x0000, 0x0000, 020000, 020000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000,0x0000, 0x0000,0x0000, 0x0000, 020000, 0x0000,0x0000,
0x06000,0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 020000,
0x0000,0x0000,0x0000, 0x0000,0x0000, 020000, 0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000, 00000, 0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,
0x0000, 0x0000,0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000, 0x0000, 0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000, 020000, 0x0000,0x0000, 020000, 0x0000,
0x0000,0x0000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000, 0x0000
Funky Stuff
len=‘wc -c¢ < bbad.icon®
if [$len != 19332 1 ; then
echo error: bbad.icon was $len bytes long, should have been 1933
C
fi # end of overwriting check

éz?? S u n September 1987

microsystems

Section 6 — The Hackers” Comer 651

if [
then
ec
else
ec
ca

/* Format_version=1, Width=64, Height=64, Depth=1, Valid bits per item=16

*/

Funk
le
if

£i
fi #
if [
then
ec
else
ec
ca

/* Format_version=1, Width=64, Height=64, Depth=1, Valid bits_per item=16

-f bblk.icon]
ho shar: will not over-write existing file bbilk.icon
ho shar: extracting ‘bblk.icon’, 1933 characters

t > bblk.icon <</Funky Stuff’

0x0000, 020000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x007F, 0xE000,0x0000,0x0000,0x0180,0x1800,0x0000,
0x0000,0x0600,0x0600,0x0000,0x0000,0x1800,0x0180,0x0000,
0x0000, 0x2000,0x0040, 0x0000,0x0000, 0x3800,0x01C0,0x0000,
0x0000, 0x2600, 0x0640, 0x0000, 0x0000, 02180, 0x1840, 00000,
0x0000, 0x207F, 0xE040,0x0000, 0x0000,0x2000, 020040, 0x0000,
0x0000,0x2000,0x0040,0x0000,0x0000,0x2000,0x0040,0x0000,
0x0000,0x2000,0x0040,0x0000,0x0000,0x2000,0x0040,0x0000,
0x0000,0x2000,0x0040,0x=0000,0x0000,0x2000,0x0040, 0x0000,
0x0000,0x2000,0x0040,0x0000,0x0000,0x2000,0x0040,0x0000,
0x0000,0x2000,0x0040,0x0000,0x0000,0x2000,0x0040,0x0000,
0x0000,0x2000, 0x0040,0x0000,0x0000,0x20060,0x0040, 0x0000,
0x0000,0x2000,0x0040,0x0000,0x0000,0x2000,0x0040, 0x0000,
0x0000,0x1800,0x0180,0x0000,0x0000, 020600, 0x0600, 020000,
0x0000,0x0180,0x1800,0x0000,0x0000,0x007F,0xEQ00, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000, 020000, 00000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0200600, 00000, 0x0000, 00000,
0x0000, 020000, 0x0000, 0x%x0000,0x0000, 00000, 0x0000, 0x0000,
0x0000, 020000, 0x0000, 0x0000,0x0000,0x00060,0x0000,0x0000,
0x0000, 00000, 0x0000, 00000, 0x0000, 00000, Ox0000, 00000,
0x0000, 020000, 0x0000, 0x0000, 0x0000,0x0000,0x0000,0x0000,
0x0000, 00000, 00000, 0x20000,020000, 0220000, 0x0000, 020000,
0x0000, 0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 0x0000, 0x0000, 00000, 020000, 020000, 0x0000,0x0000,
0x0000, 0x0000, 0x0000, 00000, 0x0000,0x0000, 0x0000,0x0000,
0x0000, 00000, 0x0000, 0x0000, 020000, 0x0000, 0x0000, 0x0000,
0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000,0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
y_Stuff

n=‘wc -c < bblk.icen?

[$len != 1933 1 ; then

echo error: bblk.icon was $len bytes long, should have been 1933

end of overwriting check
-f bcha.icon]

ho shar: will not over-write existing file bcha.icon

ho shar: extracting "bcha.icon’, 1933 characters
t > bcha.icon <<'Funky Stuff’

4rsun

microsystems

September 1987

652 Software Technical Bulletin issue 1987-8

y | C

0x0000, 0x0000,0x0000,0x0000, 0x0000, 00000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,0x0000,0x0000, 0x1FFF, 0xFFF8, 0x0000,
0x0000,0x1000,0x0008,0x0000,0x0000,0x11FF,(0xFF88, 0x0000,
0x0000, 0x1200,0x0048,0x0000,0x0000,0x1400,0x0028, 00000,
020000, 0x1400,0x0028,0x0000,0x0000,0x1400,0x0028, 0x0000,
0x0000,0x1400,0x0028, 0x0000, 0x0000,0x1400,0x0028,0x0000,
0x0000,0x1400,0x0028, 0x0000, 0x0000,0x1400,0x0028, 0x0000,
0x0000,0x1400,0x0028, 0x0000,0x0000,0x1400,0x0028,0x0000,
0x0000,0x1400,0x0028, 00000, 0x0000,0x1400,0x0028, 020000,
0x0000,0x1400,0x0028,0x0000,0x0000,0x1400,0x0028,0x0000,
0x0000,0x1400,0x0028,0x0000,0x0000,0x1200,0x0048, 0x0000,
0x0000, 0x11FF, 0xFF88, 0x0000, 0x0000, 01000, 0x0008, 020000,
0x0000, 0x1FFF, 0XFFF8, 020000, 0x0000, 0x0004,0x2000, 0x0000,
0x0000,0x0004,0x2000,0x0000, 0x0000, 0xFFFF, 0xFFFF, 0x0000,
0x0000,0x8000, 00001, 0x0000, 0x0000, 0x8000,0x0001,0x0000,
0x0000, 0xFFFF, 0xFFFF, 020000, 0x0000, 0x0000,0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000, 0x0000,0x0000, 0x0000, 0x0000, 00000,
0x0000,0x0000,0x0000,0x0000,0x0000, 020000, 0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 0x0000, 0x0000,0x0000, 0x0000, 020000, 0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
020000, 0=x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000Q,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0%0000, 0x0000, 0x0000, 0x0000, @
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 020000, 0x0000, 0x0000,0x0000,0x0000, 0x0000, 0x0000,
0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000,0=0000,0x0000,
0x0000,0x0000,0x0000, 00000, 0x0000,0x0000,0x0000, 0x0000,
0x0000,0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, Gx0000
Funky Stuff
len=‘wc ~c < bcha.icon?
if [$len != 1932 1 ; then
echo error: bcha.icon was $len bytes long, should have been 1933
fi
fi # end of overwriting check
if [-£f bdir.icon]

then

echo shar: will not over-write existing file bdir.icon
else

echo shar: extracting ’'bdir.icenf, 1933 characters

cat > bdir.icon <<’Funky Stuff’

/* Format_version=1, Width=64, Height=64, Depth=1, Valid bits_per item=16

*/
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,0x0000, 0x0000,
0x0000, 0x01FE, 0x0000, 020000, 0%x0000, 0xFEQ1, 0XFFFF, 0x0000,
0x0000,0x8400,0x8001, 00000, 00003, 0xFC00, OxXFFFD, 0x0000,
0x0002,0x0000, 0x0005, 0x0000, 0x000F, 0xFFFF, OxXxFFF5, 0x0000,
0x0008, 0x0000,0x0015, 0206000, 0x0008, 0x0000,0x0015, 0x0000, c::>
0x0008, 0x0000,0x0015, 0x0000, 020008, 0=x0000, 0x0015,0x0000,

»{%& sun September 1987

microsystems

Section 6 — The Hackers’ Comer

653

0x0008,0x0000,0x0015,0x0000, 0x0008, 00000, 0x0015, 0x0000,
0x%0008,0x0000, 0x0015, 0x0000, 0x0008, 0x0000, 020015, 00000,
0x0008, 0x0000, 0x0015,0x0000, 0x0008, 0x0000Q,0xQ015, 00000,
020008, 0x0000,0x0015, 0x0000, 0x0008, 0x0000,0x0015, 020000,
0x0008, 0x0000,0x0015,0x0000, 0x0008, 0x0000, 0x0015,0x0000,
0x0008, 0x0000,0x0015,0x0000,0x0008,0x0000,0x0015,0x0000,
0x0008, 0x0000,0x0015,0x0000, 00008, 0x0000,0x0015,0x0000,
0x0008,0x0000,0x0015,0x0000, 00008, 0x0000,0x0017,0x0000,
0x0008, 0x0000, 0x0014, 0x0000, 0x0008, 020000, 0x001C, 0x0000,
020008, 0x0000, 0x0010,0x0000, 0x000F, OxFFFF, 0xFFF0, 0x0000,
0x0000, 0x0000,0x0000,0x0000, 0x0000, 0x0000, 0x0000,0x0000,
0x0000, 0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 020000, 0x0000, 0x0000,0x0000, 0x0000,0x0000,0x0000,
0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 0x0000,0x0000, 0x0000,0x0000, 0x0000, 00000, 0x0000,
0x0000,0x0000,0x0000,0x0000, 00000, 0x0000,0x0000, 0x0000,
0x0000,0x0000,0x0000, 0x0000, 0x0000, 0x0000,0x0000,0x0000,
0x0000, 020000, 0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000,
0x0000, 0x0000,0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000,
0x0000, 0x0000,0x0000,0x0000,0x0000,0=x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
Funky_ Stuff
len=‘wc -¢ < bdir.icon®
if [$len = 1933] ; then
echo error: bdir.icon was $len bytes long, should have been 1933
£fi
fi # end of overwriting check
if [-f bexe.icon]}

then

echo shar: will not over-write existing file bexe.icon
else

echo shar: extracting ‘bexe.icon’, 1933 characters

cat > bexe.icon <<'Funky_Stuff’

/* Format_version=1l, Width=64, Height=64, Depth=1, Valid bits per item=16
*/ -
0x0000, 0x0000,0x0000,0x0000, 00000, 0x0000,0x0000,0x0000,
0x0003, OxFFFF, 0xF000,0x0000,0x0002, 0x0000,0x1800,0x0000,
0x0002,0x0000,0x1C00,0x0000,0x0002,0x0000, 0x1E00,0x0000,
0x0002, 0x0000,0x1F00, 0x0000,0x0002,0x0000, 0x1F80,0x0000,
0x00602, 0x0000,0x1FC0O, 0x0000,0x0002, 00000, 0x1FE(Q, 0x0000,
0x0002, 0x0000, 0x1FF0,0x0000,0x0002,0x0000, 0x1FF8,0x0000,
0x0002, 0x0000, 0x1FFC, 0x0000,0x0002,0x0000,0x0004, 0x0000,
0x0002, 020000, 0x0004, 0x0000, 0x0002, 0x0000,0x0004,0x0000,
0x0002, 0x0000, 020004, 0x0000,0x0002, 0x0000,0x0004,0x0000,
0x0002,0x0000, 0x0004,0x0000,0x0002,0x0000,0x0004,0x0000,
0x0002, 0x0000, 0x0004, 00000, 00002, 0x0000,0x0004, 0x0000,
0x0002,0x0000,0x0004,0x0000,0x0002, 0x0000,0x0004, 00000,
0x0002,0x0000,0x0004,0x0000,0x0002,0x0000,0x0004, 0x0000,

Q?? sun September 1987

microsyslems

654 Software Technical Bulletin issue 1987-8

0x0002,0x0000, 0x0004,0x0000,0x0002,0x0000,0x0004,0x0000, <:i>
0x0002, 0x0000, 0x0004, 00000, 0x0002, 0x0000,0x0004,0x0000, :
0x0002,0x0000,0x0004,0x0000, 00003, 0xFFFF, 0XFFFC, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000, 0x0000, 0x0000,0x0000, 0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000,0x0000,
0x0000,0x0000, 0x0000, 0x0000, 0x0000, 0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000, 0x0000,0x0000, 00000, 0x0000, 0x0000,
0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x20000,0x0000,
0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,
0x0000, 020000, 0x0000,0x0000,0x0000,0x0000, 0x00080, 0x0000,
0x0000,0x0000,06x0000,0x0000,0x0000,0x0000,0x0000,0x0000
Funky_ Stuff

len=‘w¢ -¢ < bexe.icon}

if [$len != 1933] ; ‘then
echo error: bexe.icon was $len bytes long, should have been 1933

fi

fi # end of overwriting check

if [-f bfil.icon] @
then '

echo shar: will not over-write existing file bfil.icon
else
echo shar: extracting “bfil.icon’, 1933 characters
cat > bfil.icon <</Funky_ Stuff’
/* Format_version=1, Width=64, Height=64, Depth=1, Valid bits per_item=16

*/
0x0000,0x0000, 0x0000, 0x0000,0x0000, 6x0000,0x0000,0x0000,
0x0003, OxFFFF, 0xF000, 0x0000,0x0002, 0x0000,0x1800,0x0000,
0x0002,0x0000, 021400, 0x0000,0x0002, 0x0000,0x1200,0x0000,
0x0002,0x0000,0x1100,0x0000,0x0002,0x0000,0x1080,0x0000,
0x0002, 00000, 0x1040, 0x0000, 00002, 0x0000, 0x1020, 0x0000,
0x0002, 0x0000,0x1010,0x0000, 020002, 0x0000, 0x1008, 0x0000,
0x0002, 0x0000, 0x1FFC, 0x0000, 020002, 0x0000, 020004, 0x0000,
0x0002, 0x0000, 0x0004,0x0000, 00002, 020000, 0x0004, 0x0000,
0x0002,0x0000, 0x0004, 0x0000, 0x0002, 0x0000,0x0004, 0x0000,
0x0002, 0x0000, 0x0004, 0x0000, 0x0002,0x0000,0x0004, 0x0000,
0x0002,0x0000, 0x0004, 0x0000, 0x0002,0x0000,0x0004,0x0000,
020002, 0x0000,0x0004,0x0000,0x0002,0x0000,0x0004,0x0000,
0x0002, 0x0000,0x0004, 020000, 0x0002,0x0000, 0x0004, 00000,
0x0002, 0x0000, 0x0004,0x0000,0x0002, 0x0000Q, 0x0004, 0x0000,
0x0002,0x0000,0x0004, 020000, 0x0002, 020000, 0x0004,0x0000,
0x0002,0x0000, 020004, 0x0000, 0x0003, OXFFFF, OXFFFC,0x0000,
0x0000,0x0000, 0x0000,0x0000,0x0000, 0x0000, 020000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000,
0x0000,0x0000, 0x0000, 020000, 00000, 00000, 0x0000, 0x0000, <:i>
0x0000, 0x0000, 0x0000, 020000, 0x0000, 0x0000,0x0000, 0x0000,

@;}? sun , September 1987

microsystems

Section 6 — The Hackers’ Comer 655

Funk
le
if

fi
fi #
if [
then
ec
else
ec
ca

/* Format version=1, Width=64, Height=64, Depth=1, Valid bits per item=16

o

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,
0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000, 00000, 0x0000,0x0000,0x0000, 0x0000,
0x0000, 020000, 0x0000, 0x0000,0x0000,0x0000,0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 0x00C¢0, 0x0000,0x0000,0x0000,0x0000,0x0000¢, 0x0000,
0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 0x0000, 0x0000, 0x0000,0x0000, 020000, 00000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000, 00000, 00000, 0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000
y_Stuff

n=‘wc -c¢ < bfil.icon’

[$len != 1833 1 ; then

echo error: bfil.icon was $len bytes long, should have been 1933

end of overwriting check
-f brca.icon]

ho shar: will not over-write existing file breca.icon

he shar: extracting 'brca.icon’, 1933 characters
t > brea.icon <<'Funky Stuff’

0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x00060,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000, 0x0000, 0x0000,020000,0x0000,0x0000,
0x00FF, OXFFFF, OxFFFF, OXFF00, 0x01FF, OxFFFF, 0xFFFF, OxFF80,
0x03FF, 0XFFFF, 0XFFFF, 0xFFC0, 0x07C0, 0x0000, 020000, 0x03EQ,
0x0780, 0x0000,0x0000,0x01E0,0x0700,0x0000,0x0000, 0x00EQ,
0x0700,0x0000,0x0000,0x00E0,0x0700,0x0000,0x0000, 0x00EQ,

0x0700,0x0000,0x0000,0x00E0,0x0700,0x0000,0x0000, 0x00EQ,

0x0700,0x0000,0x0000, 0x00E0, 00700, 020000, 0x0000, 0x00EQ,
0x0700,0x0000,0x0000, 0x00EQ, 00700, 0x0000, 0x0000, 0x00ED,
0x0700,0x0000,0x00060, 0x00E0, 020700, 020000, 0x0000, 0x00EQ,
0x0700,0x0000,0x0060, 0x00EQ, 020700, 00000, 00000, 0x00EQ,
0x0700,0x0000,0x0000, 0x00E0, 00707, 020422, 0x38F9, 0x00ED,
0x0708, 0x8432, 0x4481, 0x00E0, 0x0708, 0x8A32, 0x4481, 0x00EQ,
0x0708, 0x0R2A, 0x4081, 0x00E0, 020708, 0x0A2A, 0x40F1, 0x00EQ,
0x0708,0x1126,0x4081, 0x00E0,0x0708, 0x9F26, 0x4481,0x00EQ,
0x0708, 0x9122, 0x4481, 0x00E0, 00707, 0x1122, 0x38F9, O0xFOED,
0x0700,0x0000,0x0000, 0x00E0, 00700, 0x0000,0x0000,0x00EQ,
0x0700, 0x0000,0x0000, 0x00E0, 020700, 0x0000,0x0000, 0x00EQ,
0x0700,0x0000, 0x0000, 0x00E0D, 020700, 020000, 020000, 0x00EQ,
0x0700,0x0000,0x0000, 0x00E0,0x07030, 0x0000, 0x0000, 0x00EC,
0x0700,0x0000,0x0000, 0x00EQ, 00700, 020000, 0x0000, 0x00ED,
0x0700,0x0000,0x0000, 0x00EQ,0x0700, 0x0000, 0x0000, 0x00EQD,
0x0700, 00000, 0x0000, 0x00E0, 0x0700,0x0000, 0x0000, 0x00EQ,
0x0700, 0x0000,0x0000, 0x00£0,0x0780, 0x0000,0x0000, 0x01E0Q,
0x07C0, 0x0000,0x0000,0x03EQ, 0x03FF, 0xFFFF, 0XFFFF, 0xFFCO,

4rsun

microsystems

September 1987

656

Software Technical Bulletin issue 1987-8

Funky Stuff
len=‘wc -c < brca.icon®
if [$len != 1933 1 ; then
echo error: brca.icon was $len bytes long, should have been
fi
fi # end of overwriting check
if [-f brok.icon]
then
echo shar: will not over-write existing file brok.icon
else
eche shar: extracting “brok.icen’, 1933 characters
cat > brok.icon <<’/Funky Stuff’

/* Format_ version=1l, Width=64, Height=64, Depth=1, Valid bits_per item=16

*/

0x01FF, OxFFFF, 0xFFFF, 0XFF80, 0x00FF, 0XFFFF, 0xFFFF, 0xFF00,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,
0x0000, 020000, 00000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 00000, 0x0000, 0x0000, 00000, 0x0000,
0x0000,0x0000, 0x0000, 020000, 0x0000, 0x0000, 0x0000, 0x0000

0x0000,0x0000, 0x0000, 0x0000,0x0000,0x0000, 0x0000, 0x0000,
0x0000,0x%0000, 0x0000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000, 020000,
020000, 020000, 0x0000, 00000, 0x0000,0x0000,0x0000, 0x0000,
OXOOFF,OxFFFF,OxFFFF,OXFFO0,0XOIFF,OXFFFF,OXFFFF,OXFFBO,
0x03FF, OXFFFF, 0xFFFF, 0xFFCO, 0x07C0, 020000, 0x0000, 0x03E0,
0x0780,0x0000, 00000, 0x01EQ, 6x0700,0x0000, 0x0000, 0x00ED,
0x0700,0x0000,0XOOO0,0XOOE0,0x0700,0x0000,0x0000,0XOOEO,
0x0700,0x0000, 0x0000, 0x00EQ, 020700, 0x0000, 0x0000, 0x00EQ,
0x0700, 0x0000,0x0000, 0200EQ, 0x0700, 0x0000, 0x0000, 0x00EQ,
0x0700,0x0000,0x0000, 0x00E0, 0x0700, 0x0000, 0x0000, 0x00EQ,
0x0700, 0x0000,0x0000, 0x00E0, 0x0700,0x0000, 0%0000, 0x00EQ,
0x0700, 0x0000,0x0000, 0x00E0, 020700, 0x0000, 0x0000, 0x00EQ,
0x0700, 00000, 0x0000, 0x00EQ, 0x0700, 0x001C, 0x4400, 0x00EQ,
0x0700,0x0022,0x4800,0XOOE0,0x0700,0x0022,0x5000,0XOOEO,
0x0700,0x0022,0x6000,0XOOE0,0x0700,0x0022,0x5000,0x00E0,
0x0700,0x0022,0x4800, 0x00E0, 020700, 0x0022, 0x4800, 0x00ED,
0x0700,0x20022,0x4400, 0x00E0, 020700, 0x001C, 0x4400, 0x00E0,
0x0700,0x0000,0x0000, 0x00E0, 0x0700, 0x0000, 0x0000, 0x00E0,
0x0700, 00000, 0x0000, 0x00E0, 00700, 0x0000, 0x0000, 0x00EQ,
0x0700, 020000, 0x0000, 0x00ED, 0x0700,0x0000, 0x0000, 0x00EQ,
0x0700,0x0000,0x0000, 0x00EQ, 0x0700, 0x0000, 020000, 0x00EQ,
0x0700, 020000,0x0000, 0x00E0, 0x0700, 020000, 0x0000, 0x00EQ,
0x0700,0x0000,0x0000, 0x00EQ, 0x0700, 0x0000, 0x0000, 0x00ED,
0x0700,0x0000, 0x0000, 0x00EQ, 020700, 0x0000, 0x0000, 0x00EQ,
0x0700,0x0000,0x0000, 02x00EQ, 0x0780,0x0000, 0x0000, 0x01EQ,
0x07C0, 0x0000,0x0000, 0x03E0, 0x03FF, OXFFFF, 0xFFFF, 0xFFCQ,
0x01FF, OxFFFF, OXFFFF, 0xFFB0, 0x00FF, 0XFFFF, 0XFFFF, 0xFF00,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000, 0x0000,
0x0000,0x0000,0=0000,0x0000,0x0000,0x0000, 020000, 0x0000,
0x0000, 020000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000, 00000,
0x0000,0x0000, 00000, 00000, 020000, 00000, 0x0000, 0x0000

Funky Stuff
len=‘w¢ -c¢ < brok.icon?

4¥sun

microsystems

September 1987

©

Section 6 — The Hackers’ Corner 657

if

fi
£i #
if [
then
ec
else
ec
ca

/* Format_version=1, Width=64, Height=64, Depth=1, Valid bits_per item=16

*/

Funk
le
if

fi
£fi #

{ 8len != 1933] ; then

echo error: brok.icon was $len bytes long, should have been 1933

end of overwriting check

-f brow.icon }
ho shar: will not over-write existing file brow.icon
ho shar: extracting ’‘brow.icon’, 1933 characters
t > brow.icon <<'Funky_ Stuff’

OXFFFF, 0xFFFF, OXFFFF, 0XFFFF, OXFFFF, 0XFFFF, 0xFFFF, 0xFFFF,
0xC000,0x0000,0x0000,0x0003, 0xC000,0x0000,0x0000, 0x0003,
0xC000,020000,0x0000,0x0003, 0xC000, 0xx7C00, 0x0000, 0x0003,
0xCO3F, 0x83FC, 0x3FFF, 0xC003, 0xC020, 0x0004, 0x2000, 0x6003,
O0xCOFF, OxFFF4, 0x2000, 0x5003, 0xC080,0x0014, 0x2000, 0x4803,
0xC080,0x0014, 0x2000, 0x4403, 0xC080, 020014, 0x2000, 0x4203,
0xC080,0x0014, 02000, 0x7F03, 0xC080, 0x0014, 0x2000, 0x0103,
0xC080,0x0014,0x2000,0x0103,0xC080,0x0014,0x2000,0x0103,
0xC080,0x0014,0x2000,0x0103,0xC080,0x0014, 0x2000,0x0103,
0xC080,0x0014,0x2000,0x0103,0xC080,0x0014,0x2000, 00103,
0xC080,0x001C, 0x2000,0x0103,0xC080, 0x0010, 0x2000, 0x0103,
0xCOFF, 0xFFFQ, 0x3FFF, 0XxFF03, 0xC000, 0x0000, 020000, 0x0003,
0=xC000,0x0000, 0x0000, 0x0003, 0xCOFF, 0XFF00, 0x3FFF, 0xC003,
0xC080,0x0180, 0x2000, 0x6003, 6xC0OB0, 020140, 0x2000, 0x7003,
0xC080,0x0120,0x2000,0x7803,0xC080,0x0110,0x2000,0x7C03,
0xC080,0x0108,0x2000,0x7E03,OxCOBO,OXOIFC,OxZOOO,0x7F03,
0xC080, 0x0004, 0x2000,0x0103, 0xC080,0x0004, 0x2000, 0x0103,
0xC080,0x0004,0x2000,0x0103,0xCO80,0x0004,0x2000,0x0103,
OxCOS0,0x0004,0x2000,0x0103,0xC080,0x0004,0x2000,0x0103,
0xC080,0x0004,0x2000,0x0103,0xC080,0x0004,0x2000,0x0103,
OxCOS0,0x0004,0x2000,0x0103,0xCOFF,OxFFFC,Ox3FFF,0xFF03,
OxCOO0,0xOOO0,0x0000,0x0003,0x0000,0x0000,0x0000,0x0003,
0xC000,0x0000,0x0000,0x0003,0xC000,0x0000,0x0000,0x0003,
OXFFFF,OXFFFF,OXFFFF,OxFFFF,OxFFFF,OxFFFF,OxFFFF,OxFFFF,
0x0000,0x0000,0x0000,0XOOO0,0XOOO0,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000, 0x0000,0x0000, 0x0000, 0x0000, 0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,0xOOO0,0x0000,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000,OXOOOO,OXOOOO,0x0000,0x0000,0x0000,0x0000,
0x0000,0x0000, 0x0000,0x0000, 0x0000,0x0000, 0x0000, 0x0000
y_Stuff

n=‘wc -c < brow.icon‘

[$len != 1933 1 ; then

echo error: brow.icon was $len bytes long, should have been 1933

end of overwriting check

4ysun

microsysterns

September 1987

CUMULATIVE INDEX: 1987

CUMULATIVE INDEX: 1987 ... 661

Special Characters

.¢shrc

at usage, 211

slow, 67

with interactive shell, 68
.login, 67
/dev

ownership, 54
/etc/group

searches, 26

YP master server, 27
/etc/hosts

INR, 51
/tmp

with NFS partitions, 355

8
800 USA4-SUN
use of, 364

A

ACCELL

databases, 271
address

device drivers, 195
address mask, 74
addresses

classes of, 391

Internet, 391
aliases

mail, 291

namestripes, 220

sendmail, 269
AnswerLine, 5, 26, 67, 219, 291, 401, 605
answermail

script, 321, 324

script installation, 321
architecture

Prism, 287

Sund, 403
ARP, 393
arrow keys

mapping, 265
asm

with C source, 215
assembler

bugs, 416

— 663 -

assembly code

with C source, 215
at

used with .cshre, 211
at (1)

answermail script, 321

B
back-to-back packets, 245
bind
port numbers, 213
blocking
using select (), 62
Bourne shell
bugs, 478
broadcasting
subnets, 391
Browser
installation, 612
program, 611
bsc3270
bugs, 507
bscrje
bugs, 507
buffer
Ethernet, 245
buffers
color frame, 276
frame, 358
bug
3/50 CPU boazd, 189
reporting, 206
bugs
assembler, 83, 416
Bourme shell, 140, 478
bsc3270, 103, 507
bscrije, 103, 507
C compiler, 84, 417
C shell, 140, 478
cgi, 120,454
compiler library, 99, 437
compiler utilities, 102, 444
compilers, 83, 416
Datacomm, 103, 507
debugger, 90, 423
demo, 123
diagnostics, 109, 445

Index — Continued

bugs, continued
dna, 105, 511
documentation, 111, 447
driver, 460
editor utility, 495
formatter, 156, 495
FORTRAN compiler, 93, 426
FORTRAN documentation, 447
gp, 123,456
graphics, 120, 454
index entries, 347
installation, 490
kernel, 128, 460
linker, 440
lint, 100, 440
LISP, 170, 528
mail, 158, 497
make, 158, 498
Modula 2, 171, 529
network, 135, 470
network general, 474
network library, 135, 470
network program, 137, 474
nfs, 135,470
optimizer, 100, 441
PC-NFS, 530
pixrect, 123, 457
printer, 159, 498
program utility, 499
protocol, 138, 475
setup, 490
shell, 140, 478
sna3270, 108, 515
SunAlis, 167, 504
SunAlis database, 504
SunAlis documentation, 504
SunAlis general, 504
SunAlis spreadsheet, 505
SunCORE, 124
SunCORE documentation, 447
SunCORE graphics, 457
SunGKS, 520
SunGKS library, 520
SunINGRES, 168, 523
SunINGRES documentation, 523
SunINGRES general, 525
SuniNGRES library, 525
SunINGRES program, 527
SunSimplify, 532
SunSimplify library, 532
SunSimplify program, 532
SunUNIFY, 172, 534
SunView, 142, 480
SunView documentation, 448
SunView library, 480
SunView program, 486
SunWindows, 488
syscall, 467
system adminisiration, 148, 490
system administration documentation, 448
system administration utilities, 494
transeript, 531 '
user manuals, 451
utilities, 156, 495

- 664

bugs, continued
utility programs, 160
uucp, 165, 501
vt100tool, 108, 517
X.25,517
yellow pages, 139
Bulletin Beard, 250

C

calling NeWS, 407
C compiler

bugs, 417
C shell

bugs, 478
canvas

colormaps, 282
CDB

errata, 296

C

cgi
bugs, 454
checksum
Ethernet, 380
child processes
dbxtool, 192
PID, 192
chip
83586, 188
client
sample programs, 13
stream socket, 12
color, 275
maps, 276
colormaps, 357
compatibility
Sun4 binary, 403
SunView 2, 597
compiler utility
bugs, 444
compilers
assembler bugs, 83, 416
bugs, 83,416
C compiler bugs, 84, 417
compiler library bugs, 99, 437
debugger bugs, 90, 423
FORTRAN compiler bugs, 93, 426
linker bugs, 440
lint bugs, 100, 440
optimizer bugs, 100, 441
utility bugs, 102, 444
configurations
controllers, 580
disks, 580
Sun-2, 582
Sun-3, 581
controller
Ethernet, 245
controllers
combinations with disks, 581, 582
disk configurations, 580
conversion
color to monochrome, 358

Index — Continued

corrections
April TOM, 224
routing, 296
CPU
multiple, 244
CRLF
end-of-line, 44
cumulative index
use of, 347
Customer Sofiware Services, 5, 39

D
DARPA, 73
databases
incompatible, 271
SunAlis database bugs, 504
Datacomm
bsc3270 bugs, 103, 507
bscrje bugs, 103, 507
bugs, 103, 507
dna bugs, 105, 511
sna3270 bugs, 108, 515
vt100tool bugs, 108, 517
X.25 bugs, 517
datagrams
fragmentation of, 393
reassembly of, 393
daylight savings time
kemel, 24
dbxtool
child processes, 192
dd (1)
slow disk test, 263
debuggers
bugs, 423
defaults
monitor types, 402
defaultsedit
mouse, 606
demultiplexing
TCPAP, 377
device drivers
Consulting Services, 194
device addresses, 195
devices
ones present, 301
diagnostics
bugs, 109, 445
disk
combinations with controllers, 581, 582
determining configurations, 580
enlarging procedure, 569
enlarging SunlPC, 569
slow test, 263
disk space
saving, 355
disks
size using mkfs, 267
size using setup, 267
dispatching
procedures, 567

— 665~

DMA, 194

dna
bugs, 511

documentation
bugs, 111, 447
FORTRAN documentation bugs, 447
SunAlis documentation bugs, 504
SunCORE documentation bugs, 447
SunINGRES documentation bugs, 523
SunView documentation bugs, 448
user manual bugs, 451

DoD, 73

domain system
Internet, 387

driver
bugs, 460

DST, 24
Australia, 24
Europe, 24
rules table, 25

dump
ndl partitions, 266
with host names, 270

DVMA, 194

E
editor utility
bugs, 495
end-of-line
definitions, 44
environment
answermail variables, 322
errata, 563
April TOM, 224
May CDB, 296
routing, 206
errno
EWOULDBLOCK, 64
erTors
le0,21
Ethernet, 380
back-to-back packets, 245
buffer, 245
controller, 245
header, 380
throughput, 246
Europe
hotlines, 562
experiment
answermuail script, 321
calling NeWS from C, 407
devices present, 301

F

fork()

child processes, 192
formatter

bugs, 495
FORTRAN

compiler bugs, 426
FORTRAN documentation

Index — Continued

FORTRAN documentation, continued

bugs, 447
fragmentation
datagrams, 393
frame buffers
with screendump, 358
ftime, 24
FTP, 370

G

gateway, 74
gateways, 390
getpagesize (), 300
gettimeofday, 24
gettytab

modem entries, 209
GMT, 24

bugs, 456
graphics

bugs, 120, 454

cgi bugs, 120, 454

demo bugs, 123

gp bugs, 123, 456

pixrect bugs, 123, 457
. SunCORE bugs, 124, 457

grpck

YP map problems, 27

H

Hackers’ Comer
answermail script, 321
devices present, 301
memory size, 299
NeWs, 407
survey, 239

hardware
color frame buffers, 276

Hayes-Compatible, 219

headers
1P, 379
octets, 375
overview, 377

host names
with dump, 270
with fdump, 270

hotline
Europe, 562
procedures, 567
UK, 562
use of, 363

hotline@sun.COM
reporting bugs, 206

I
/O
sockets, 9
ICMP, 385
ie0 spuriocus interrupt
SunOS 3.2, 187
images

— 666 —

images, continued
converting to monochreme, 358
incompatibility
databases, 271
index
bug entries, 347
INR, 51
requirements for, 53
installation
bugs, 490
Internet
addresses, 391
domain system, 387
protocols, 369
1P, 369
headers, 379

K
kemnel
bugs, 128, 460
daylight savings time, 24
driver bugs, 460
general bugs, 462
swap space, 232
syscall bugs, 467
time zones, 23
keys
mapping, 265

L

labels

pedestal, 580
LANCE, 21

packets, 21
layering

mail, 375
lel

errors, 21
library bugs

compilers, 437

network, 470

SunINGRES, 525

SunSimplify, 532

SunView, 480
line speeds

uucp, 214
linker

bugs, 440
lint

bugs, 440
LISP

bugs, 170, 528
localtime, 25
lockd

needing statd, 589
lpr

flow control, 43

M
mail, 371
aliases, 291
bugs, 497

O

Index — Continued

mail, continued
formats, 293
layering, 375
pitfalls, 293
routing, 389
systems, 353
transport systems, 354
user agents, 353
Mail Service, 250
make
bugs, 498
manuals
proprietary, 197
maps
color, 276
YP, 34
mask
address, 74
memory
size, 299
SunAlis requirements, 251

SunINGRES reqguirements, 259

mkfs
disk sizes, 267
MMU, 366
modems
gettytab entries, 209
Modula 2
bugs, 171, 529
monitors
defaults, 402
determining type, 401
high-resolution, 358
mouse
defaultsedit, 606
MS-DOS, 569

N
narnestripes
aliases, 220
reprogramming, 27
naming convention
read, 243
transfer, 243
write, 243
ND
swap space, 229
ndl
dumping partitions, 266
network
bugs, 135, 470
general bugs, 474
library bugs, 135, 470
nfs bugs, 135,470
program bugs, 137, 474
protocol bugs, 138, 475
yellow pages bugs, 139
newfs
dumping partitions, 266
NeWs
called from C, 407
with SunView 2, 595

— 667 —

NFS, 372

bugs, 470
partitions, 57
partitions with root, 355

nodes

multiple, 244
0

octets

TCP/IP headers, 375

optimizer

bugs, 441

out-of-band data

sockets, 9

P

packets, 380

back-to-back, 245
LANCE, 21

page faults

overview, 366

panic: iechkeca, 187
partition

calculating size, 230
swap space, 229

partitions

dumping ndl, 266
read protection, 57

PC-NFS

bugs, 530

pedestal

information, 580

Personal AnswerLine, 5
PF keys

mapping, 265

physmem, 299

PID

child processes, 192

ping, 577

script, 578

pixrect

bugs, 457

prmap_rmtecall, 578

port

number
assignment of, 213

PostScript

pscat output, 198
setlinewidth, 208

pounds sterling

symbol printing, 49

printer

bugs, 498

printing

images, 357

Prism

windows, 287

procedure

enlarging SunIPC disk, 569
hotline, 567

products

release levels, 349, 560

Index — Continued

_ program bugs

network, 474

SunINGRES, 527

SunSimplify, 532

SunView, 486
program utility

bugs, 499
proprietary manuals, 197
protocol

bugs, 475
pscat

PostScript, 198
ptroff

pounds sterling, 49
Pty

ownership, 54

Q
quota

delays, 605
symbolic links, 606

R

rdump

with host names, 270
read

naming convention, 243

read optimization, 59

reduced time, 591

write permission, 59
read protection

NFS, 57
Read This First

purpose, 584
reassembly

datagrams, 393
register

saving D2, 46
release jevel

Sun0s, 205
releases

software products, 349, 560

reporting bugs, 206
RETRN

end-of-line, 44
root

access, 355

file permissions, 57

read permissions, 57
rotdelay, 591
routing

mail, 389
RPC, 577
rpc.etherd, 578
rpec.rstatd, 578
RTF

purpose, 584
Rutgers University, 369

— 668 —

S
SCB, 188
screendump, 357
color windows, 288
screenload, 358
script
answermail, 324
SCSI
slow disk test, 263
seek
read optimization, 59
select {}
exceptions, 64
non-blocking mode, 62
sendmail, 353
aliases, 269
server
stream socket, 10
SunView 2, 596
setlinewidth, 208
setup
bugs, 490
disk sizes, 267
shell
Bourne shell bugs, 140, 478
bugs, 140, 478
C shell bugs, 140, 478
shoebox
disk labels, 581
SIGIO, 9
SIGFPIFE
server, 10
SIGQUIT
server, 10
SIGURG, 9
sleep, 43
SMTP
application example, 384
sna3270
bugs, 515
sockets
example programs, 10
out-of-band data, 9, 15
programming examples, 9
servers, 10
well-known, 381
Software Information Services, I, 39
spreadsheet bugs
SunAlis spreadsheet, 505
statd
with lockd, 589
STB
duplication of, 181
stdio
read optimization, 59
subnets
address mask, 74
broadcasting, 391
definition, 73
enabling, 77
Exterior Gateway Protocol, 73

O

O

subnets, continued
limitations, 75
SunOS release 3.3, 264
subnetting, 73
sunlhotline
reporting bugs, 206
use of, 363

sunlstb-editor, 26, 39, 67, 70, 181, 219, 291, 401, 605

sunlsunbugs
reporting bugs, 206
Sund
architecture, 403
binary compatibility, 403
SunAlis
bugs, 167, 504
database bugs, 504
docurnentation bugs, 504
general bugs, 504
memory requirements, 251
release 2.0, 249
spreadsheet bugs, 505
support of, 592
windows, 252
SunAlis 1.0
discontinued support of, 592
SunAlis 2.0
upgrade program, 592
sunbugs@sun.COM
reporting bugs, 206
SunCGI, 280
SunCore, 282
SunCORE
documentation bugs, 447
SunCore
printing images, 357
SunCORE graphics
bugs, 457
SunGKS
bugs, 520
library bugs, 520
SunGKS library
bugs, 520
SunINGRES
bugs, 168, 523
documentation bugs, 523
general bugs, 525
installing release 5.0, 258
library bugs, 525
memory requirements, 259
program bugs, 527
release 5.0, 254
SunlPC
enlarging disk, 569
SunLink Internet Router, 51
requirements for, 53
Sun0OS
determining release of, 205
release 3.3 and subnets, 264
SunSimplify
bugs, 532
library bugs, 532
program bugs, 532

- 669 —

Suntools

exiting, 55
suntools

frame buffers, 277

reprogramming namestripes, 27

SunUNIFY
bugs, 172, 534
SunView
bugs, 142, 480
color frame buffers, 278
documentation bugs, 448
library bugs, 480
program bugs, 486
SunWindow bugs, 488
SunView 2
changes, 597
compatibility issues, 597

differences from SunView, 595

introduction, 595
SunView documentation
bugs, 448
SunWindow
bugs, 488
support
discontinuation of, 592
swap space
ND, 229
switcher (1)
colormaps, 287
symbolic links
quota, 606
syscall
bugs, 467
system administration
bugs, 148, 490
documentation bugs, 448
installation bugs, 490
setup bugs, 490
utility bugs, 494
system administration utilities
bugs, 494

T

tables

software release levels, 349, 560

tape verification, 210
TCP, 369
sockets, 12
TCPAP
derultiplexing, 377
references, 394
telnet, 4, 370
Bridge terminal server, 44
terminal
tty problems, 590
The Hacker’s Corner
Browser, 611
throughput
Ethernet, 246
time zones
TZ, 23

uucico, 23

Index — Continued

Index — Continued

transcript

bugs, 531
transfer

naming convention, 243
troff

previewing output, 198
tty

ownership, 54

virtual, 590
tunefs (8)

read times, 591
TZ,23

DST rules table, 25

U
UDP, 386
UK
hotline, 562
UNIX
menitoring status of, 577
upgrade
SunAlis program, 592
USA-4-SUN
use of, 364, 567
USAC
feedback, 365
user manuals
bugs, 451
utilities
bugs, 156, 495
editor bugs, 495
formatter bugs, 156, 495
mail bugs, 158, 497
make bugs, 158, 498
printer bugs, 159, 498
program bugs, 499
utility program bugs, 160
uuep bugs, 165, 501
yellow pages, 33
uucico
time zones, 23
uucp
bugs, 501
Hayes-Compatible, 220
line speeds, 214

A%

variables

answermail environment, 322
verification

tapes, 210
vi

maps, 69
vt100tool

bugs, 517

W
well-known sockets, 381
windows, 276
color frame buffers, 277
Prism, 287
server-based, 596

~670—

windows, continued

with SunAlis, 252
write

naming convention, 243
write permission

read, 59

X
X.11
with SunView 2, 595
X.25,61
bugs, 517

Y
yellow pages, 31
installation, 32
mail aliases, 291
utilities list, 33
YP, 31
clients, 31
domains, 32
instaflation, 32
maps, 34
master server, 32
rpc, 33
server maps, 31
slave servers, 31
utilities list, 33
ypbind, 32
ypserv, 32

-

Revision History

Revision

Date

Comments

FINAL

September 1987

Eighth issue of Software Technical Bulletin
{Software Information Services).

-t - Perrit No, 515 -
-Mounfain View; CA

