
Asun®
• _m1crosystems

-- / ...

·o'.

-~.;

. SoftwargT¢c;:ljiiic~l Bulletin
· .. ·1Jecember·19S1

- - . . ' . . - ' - . .

·iSoftware1nfo_rniationSJrvicgs'

. Part Number 812 ~870 j, lt
· lssuc 1987 ; U

· December 1937

; \.'

-·.':-

:;..-

,.·

,' . ' ,•.

',-o''',,-­:-. :: :·
.-;;,·' ':'.'

":o· ·,.
: ··., ... "

0

0

0

Software Technical Bulletin
December 1987

Software Information Services

Part Number 812-8701-11
Issue 1987 - 11
December 1987

Software Technical Bulletins are distributed to customers with software/hardware or software only support
contracts. Send comments or corrections to 'Software Technical Bulletins' at Sun Microsystems, Inc.,
2550 Garcia Ave., M/S 2-312, Mountain View, CA 94043 or by electronic mail to sun!stb-editor. Customers
who have technical questions about topics in the Bulletin should call Sun Customer Software Services
AnswerLine at 800 USA-4-SUN.

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.
DEC, DNA, VAX, VMS, VT!OO, WPS-PLUS, and Ultrix are registered trademarks of Digital Equipment Cor­
poration.
Courier 2400 is a trademark of U.S. Robotics, Inc.
Hayes is a trademark of Hayes Microcomputer Products, Inc.
Multibus is a trademark of Intel Corporation.
Postscript and Transcript are trademarks of Adobe Systems, Inc.
Ven-Tel is a trademark of Ven-Tel, Inc.
Sun-2, Sun-2/xxx, Sun-3, Deskside, SunStation, Sun Workstation, SunCore, DVMA, Sun Windows,
NeWS, NFS, SunUNIFY™, SunView™, SunGKS, SunCGI, SunGuide, SunSimplify, SunLink, Sun
Microsystems, and the Sun logo are trademarks of Sun Microsystems, Inc.
UNIFY™ is a trademark of Unify Corporation.
ENTER, PAINT, ACCELL, and RPT are trademarks of Unify Corporation.
SQL™ is a trademark oflntemational Business Machines Corporation.
Applix® is a registered trademark of Applix, Inc.
SunA!is™ is a trademark of Sun Microsystems, Inc. and is derived from Alis, a product marketed by
Applix, Inc.
SunINGRES™ is a trademark of Sun Microsystems, Inc. and is derived from INGRES, a product
marketed by Relational Technology, Inc.

Copyright © 1987 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part ofthis pub­
lication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any
form, or by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical,
or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0

0

0

Contents

Section 1 N01ES & COMMENTS .. 975

Editor's Notes .. 975

Software Release Levels .. 977

World Hotlines .. 979

Errata... 980

Section 2 ARTICLES ... 983

Using adb .. 983

Missing lost+found .. 985

SunOS Release 3.5 .. 987

SunTrac Release 1.0 ... 1000

Section 3 STB SHORT SUBJECTS ... 1007

Using boot ... 1007

Super Eagle Disks .. 1009

Sunlngres 5.0 .. 1010

Section 4 IN DEPTH ... 1013

Passing Commons .. 1 O 13

Section S QUESTIONS, ANSWERS, HINTS, AND TIPS 1023

Q&A, and Tip of the Month 1023

Section 6 THE HACKERS' CORNER ...• ,fa.,.,occc+ .mg,,,'•d\,,.

Porting SunView ···,Af"•+ ''+··'+;. .. ::,:,.gy
Section 7 CUMULATIVE INDEX: 1987 ,,g;oc,,c;;,;;::: ,W++·······,,+;::,.,:.;;;

-iii-

0

0

0

0
1

NOTES & COMMENTS

NOTES & COMMENTS ... 975

Editor's Notes .. 975

Software Release Levels .. · 977

World Hotlines .. 979

Errata... 980

0

0

0

O'

0

0

0

0

Editor's Notes

Editor's Notes

Current Sun Software Products
and Release Levels Table

STB Mailing

Call the AnswerLine First

1
NOTES & COMMENTS

The December editor's notes for the Software Technical Bulletin (STB) include
the current Sun software products and release levels table, a note on STB
mailing, and a reminder to first use the AnswerLine number when calling for
support. Finally, in The Hackers' Corner, this issue includes three example
programs that illustrate ways to process event-driven input when running
SunView.

The December Software Technical Bulletin (STB) includes the current version
table. The current release level is shown for each product.

Use this table along with STB articles that appear for a particular product. You
can then better determine what your software needs are, what functions are
available in a new release, and whether the release you are using is down-level
from the most current product release.

The Customer Service Division (CSD) of Sun Microsystems, Inc. is putting new
bulk mailing procedures into place to ensure proper tracking, sorting, and
mailing of STB issues.

The transition to the new procedures and implementation of United States Postal
Service regulations has caused a delay in the availability of some STB issues.

Thank you for your patience in this regard.

Please use your 1-800-USA-4-SUN AnswerLine first when calling for software
support. This number allows Sun to dispatch your call and determine necessary
billing information, based on your warranty or contract status, prior to a response
from the appropriate United States Answer Center (USAC) support group.

975 December 1987

976 Software Technical Bulletin issue 1987-11

World Hotlines Table

The Hackers' Corner

USAC looks forward to answering your questions, but can do so only after a 0
necessary seivice order number is generated by the dispatcher. Please refer to the
article entitled 'Using USA-4-SUN' on page 567 of the September 1987 STB for
details on dispatching, contract issues, and billing procedures that begin with
your initial call to your AnswerLine.

For Sun customers outside the United States, please call your local support group
and follow the local software support procedures.

For your convenience, a table containing seivice hotlines around the world now
appears monthly in the STB, beginning with this issue. Look for the world
hotlines table in the Notes and Comments section each month.

This month's Hackers' Corner includes three example programs to illustrate
how event-driven input is processed when running Sun View.

Again, please note that such applications, scripts, or code are not offered as
released Sun products, but as items of interest to enthusiasts wanting to try out
something for themselves. They may not not work in all cases, and may not be
compatible with future SunOS releases. Please consult your local shell script or
programming expert regarding any application, script, or code problems.

Thanks.
The STB Editor

December 1987

0

0

Section 1 - Notes & Comments 977

0 Software Release Levels

As of N overnber 20, 1987
Product Name Current Release

SunOS 3.4
Cross Compilers 2.0
SunLink BSC3270 4.0
SunLink Local 3270 5.0
SunLink SNA3270 5.0
SunLink Peer-to-Peer 5.0
SunLinklR 5.0
SunLinkDDN 5.0
SunLinkDNI 5.0
SunLink OSI 5.0
SunLinkMCP 5.0
SunLink TElOO 4.0

0
SunLink X.25 5.0
Sun FORTRAN 1.0
SunPro 2.0
NeWS 1.0
Sun Common Lisp-D 2.1
Sun Common Lisp-E 1.1
Modula-2 1.0
SunAlis 2.1
SunGKS 2.1
SunINGRES 5.0
SunSimplify 1.0
SunUNIFY 2.0
Transcript 2.0
SunIPC 1.1
PC-NFS 2.0
SunTrac 1.0

0
December 1987

978 Software Technical Bulletin issue 1987-11

Current Sun Software
Products and Release Levels

Sun FORTRAN Note

The table appearing above contains a list of current Sun software products and
their respective current release levels.

You will note that the Software Technical Bulletin (STB) contains articles from
time to time that detail technical changes in a given software product's next
available release.

Please contact your sales representative if you decide that you would like to
update the release level of a Sun software product you already use, or wish to
purchase another product. Use the table below to detennine whether your release
is the current release level.

This table appears monthly in the STB for your convenience.

Please note that Sun FORTRAN is a value-added product that supports VMS
extensions to the f77 compiler, which is automatically included with SunOS
release 3.4.

December 1987

0

0

0

0 World Hotlines

World Hotlines

Australia

Canada

France

0 Germany

Japan

The Netherlands

Switzerland

United Kingdom

United States

lntercon

0

Section I - Notes & Comments 979

Sun Customers throughout the world have service hotlines available for both
software and hardware support questions. The service hotlines are shown below.
If your country is not shown in the table, please phone your local Sun sales
office.

Sun Australia
Lionel Singer Group

Montreal Branch
Ottawa
Vancouver Branch
Western Branch

Paris
Sun Microsystems France SA

Munich
Sun Microsystems GmbH

C. Itoh Data Systems
Nihon Sun

Soest
Sun Microsystems Nederland BV

Zurich
Sun Microsystems Schweiz AG

Camberley
Sun Microsystems UK Ltd

All,
including Puerto Rico

All countries outside the
USA, Europe, and northern Africa

(011-61-2) 957-2522
(011-61-2) 957-2655

(514) 879-1914
(613) 748-9617
(604) 641-1296
(403) 295-0150

(33) 1 4630 2324

(49) 89/95094-321

(011-81-3) 497-4676
(011-81-3) 221-7021

(31) 2155 24888

(41) 1 828 9555

(44) 276 62111

1-800-USA-4-SUN

(415) 691-6775

December 1987

980 Software Technical Bulletin issue 1987-11

Errata

Errata

European Hotlines

Client UNIX Status

~------~o

Please enter the corrections shown below into the appropriate articles.

The 'European Hotlines' note on page 562 in Section I of the September 1987
STB needs updating. Please delete the European service hotline shown for
Germany and replace it with the new Germany hotline (49)89/95094-321.

Enter the corrections listed below into the 'Client UNIX Status' article found on
pages 577-579 in Section 2 of the September 1987 STB.

1. Subheading ping, page 577

2.

In line I of the first paragraph under this subheading, delete imc
echo and add icmp echo.

In line 2 of the same paragraph, delete 'Inter-Process' and add 'Internet
Protocol'.

Subheading rpc. rstatd, page 578

All references to 'rstat' should refer to 'rstatd(8C)' All references to
'rpc. rstat' should refer to 'rstat(3R)'

3. Subheading pmap_rmtcall, page 578

In line 4 of the first paragraph under this subheading, delete 'a user
interface' and add 'an rpc library call'.

At the end of this section, add the following sentence: 'The user level
program which allows you to determine if particular rpc daemons are
running is 'rpcinfo(8)' .'

December 1987

0

0

0
2

ARTICLES

ARTICLES .. 983

Using adb .. 983

Missing lost+found .. 985

SunOS Release 3.5 .. 987

Sun Trac Release 1.0 ... 1000

0

0

0

0

o;
;

i

0

0

0

Using adb

Using adb: Determining
Your nd Server

2
ARTICLES

You can use adb as in interactive, general-purpose debugger to conveniently to
detennine which server is your Network Disk (nd) server.

Running adb on your /vmunix returns the storage address where the needed
internet address infonnation is located. You then use that information to
detennine your nd server internet address. After converting the address to a
decimal representation, using the ypmatch command lets you determine your
nd server machine name.

The . adb command displays the nd server internet number in hexadecimal
notation. An example is shown below. Note that the commands and values you
enter are shown in bold.

machine% adb -k /vmunix /dav/mam <return>
sbr f068464 slr 649
physmem lfe
nd+708/X <return>
_nd+Ox708: c0090437
OtOxcO=D <return>

192
Ot0x09=D <return>

9
Ot0x04=D <return>

4
Ot0x37=D <return>

55
"'D <return>
machine%

The second and third lines are adb messages and can be ignored. Entering
'nd+ 708/X' causes two values to appear. The first value is the address requested
and the second portion is the value stored at that address. This value is the
hexadecimal representation of your nd server's internet address.

983 December 1987

984 Software Technical Bulletin issue 1987-11

Hexadecimal-to-Decimal
Conversion

Detennining Your nd Server
Machine Name

References for Further
Infonnation

Continuing through the example shown above, you now need to convert the
hexadecimal representation of the nd server internet address to a decimal fonnat.
Do this by entering the commands as shown.

This example yields a decimal representation of 192.9.4.55 for the nd server
internet address.

You can now detennine your nd server machine name since you know the
server's internet address. If you are not on yellow pages, the nd server name and
internet address are found in your / etc/hosts file.

If you are on yellow pages, detennine your nd server machine name by using the
ypmatch command as shown below.

machine% ypmatch 192.9.4.55 hosts.byaddr
192.9.4.55 fredonia # Department ND server
machine%

Please note that you must substitute your nd server internet address for the
address used in the example above.

adb(l)

0

Refer to chapter 4, 'adb Tutorial', in the manual Debugging Tools for the Sun Q,
Workstation, part number 800-1325, for details on how to use adb.

Related commands include cc(JV), dbx(l), kadb(l), ptrace(2), ILa.out(5),
mem(4S), and core(S).

December 1987

0

Q Missing lost+found

0

0

Missing lost+found

The Problem

The Workaround

Reference for Further
Information

The Shell Script

Section 2 - Articles 985

This article contains information on a problem described in Bug Reference
Number 1001492, and an available workaround.

m/ifs(B) is the command that is run to initialize a new disk partition for a
filesystem. The directory /usr/lost+found should be created by m/ifs(B) as
part of this process for later use as needed by fsck(B).

The problem is that setup for ·all SunOS releases 3.x removes the directory
/usr/lost+found on standalone systems. This directory must be recreated
manually.

Use the script contained in this article to manually create the directory
/usr / lost+found. Follow the steps shown below.

I. Log in as root using s u, the set user command.

2. Using cd, change directory to the root directory of the file system that
is missing its /usr / lost+found directory.

3. Run the mklost+found shell script appearing below.

Refer to fsck(B) for more detailed information on the /usr/lost+found
directory.

The shell script appears on the following page.

December 1987

986 Software Teclmical Bulletin issue 1987-11

#!/bin/csh -f

Shell script 'mklost+found'

Creates a lost+found directory of the correct size

rm -rf lost+found
mkdir lost+found
chmod 755 lost+found
chown root lost+found
chgrp wheel lost+found

cd lost+found

touch { 0, 1, 2, 3, 4, 5) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) \
6{0,1,2,3,4,5){0,1,2,3,4,5,6,7,8,9)

rm (0-6)*

ls -ld. I grep -s 8192
switch ($status)
case 0:

echo "${0}: lost+found directory created"
exit (0)

default:
echo "${0}: lost+found directory created but size is incorrect"
exit (1)

endsw

0

0

0
December 1987

0

0

0

Sun0S Release 3.5

SunOS Release 3.5

Introduction

New Hardware Product
Support

Section 2 -Articles 987

This article is a brief overview of Sun Operating System (SunOS) Release 3.5,
which will be shipped with all new Sun-2 and Sun-3 orders, and provided free
(upon request) to all existing Sun workstation users holding current software
support contracts.

SunOS Release 3.5 includes the functions and features in Releases 3.3 and 3.4,
and is upwardly compatible with Releases 3.2, 3.3, and 3.4. Thus, any program
developed to run under these previous releases will run properly under Release
3.5.

SunOS Rel:ease 3.5 incorporates the following:

o Support for new hardware products

o High-priority bug fixes

o Reduced media set

Each of these is discussed below.

SunOS Release 3.5 supports the following new hardware products:

o Sun-3/60 Desktop Workstation

o Sun-3 Eurocard Board (3E)

o Double buffering capability

This support provides a Release 3.X base for new hardware products, thus
allowing Sun customers greater flexibility in determining when to adopt future
operating system releases in order to upgrade system hardware capabilities.

SunOS Release 3.5 eliminates the need for special support tapes, by
consolidating support for the Sun-3/60 and 3E products. Additionally, the double
buffering support will provide higher quality rendering of graphics images on
future Sun graphics workstations. To utilize double buffered graphics images,
additional code is provided by SunOS Release 3.5.

December 1987

988 Software Technical Bulletin issue 1987-11

Bug Fixes Included in SunOS
Release 3.5

Release 3.4.1 Bug Fixes

SunOS Release 3.5 incorporates all bug fixes from Release 3.4.1 and Release
3.4.2, in addition to new fixes since Release 3.4.2. These bugs are summarized by
reference number, release(s) in which the bug occurred, and a brief one-line
synopsis, as follows.

Reference Number: 1004642

Release: 3.4 beta 3
Synopsis: screenblank allows the -k and-moptions

while in sun tools.

Reference Number: 1003572

Release: 3.2
Synopsis: Bad inquire_cell_array and inquire_pixel_array

name argument.

Reference Number: 1003687

Release: 3.2
Synopsis: The cg i mouse cursor is always visible.

Reference Number: 1004825

Release: 3.4 beta 3
Synopsis: -lcgi requires -lsuntool to compile a cgi

program.

Reference Number: 1005251

Release: 3.4
Synopsis: close_ cgi _pw () fails if no viewsurface is active.

Reference Number: 1003864

Release: 3.2
Synopsis: The crosshair cursor does not work when CANVAS _FAST_ MONO

is used.

Reference Number: 1004500

Release: 3.1, 3.2 (Sun3 fix only)
Synopsis: A program compiled using -ffpa causes an

FPA KERNEL BUS ERROR to occur.

December 1987

0

0

0

0

0

0

Section 2- Articles 989

Reference Number: 1003023

Release: 3.2
Synopsis: The fsck: HOLD BAD BLOCK message is undocumented.

Reference Number: 1005131

Release: 3.2
Synopsis: The resolver has the wrong loopback address.

Reference Number: 1003151

Release: 3.2
Synopsis: make does not always build the objects that it should.

Reference Number: 1004791

Release: 3.4
Synopsis: ping says machines are up even when they are not.

Reference Number: 1004074

Release: 3.2
Synopsis: 1 prm causes line printer daemon to disappear.

Reference Number: 1005140

Release: 3.2
Synopsis: A rexd race condition occurs when mounting in /tmp.

Reference Number: 1004639

Release: 3.2, 3.4 beta
Synopsis: Emulex SCSI tape controller and DocuPro page scanner do

not work together correctly on the SCSI bus

Reference Number: 1005042

Release: 3.2
Synopsis: Yellow Page alias must use primary host names.

Reference Number: 1003135

Release: 3.2
Synopsis: panic: mfree occurswithAF_UNIX SOCK STREAM

out-of-band (OOB) data.

December 1987

990 Software Technical Bulletin issue 1987-11

Release 3.4.2 Bug Fixes

Reference Number: 1000895

Release: 1.1
Synopsis: Transfonnation of a Suncore segment containing text is not

clipped.

Reference Number: 1004898

Release: 3.4
Synopsis: The install_ sunpro script fails for all configurations.

Reference Number: 1004731

Release: 3.2
Synopsis: termcap entry forTERM=wy breaks initscr ().

Reference Number: 1003647

Release: 3.2
Synopsis: Lexically recursive # inc 1 ude s confuse dbx.

Reference Number: 1004996

Release: 3.4, 3.2
Synopsis: dbx shows segmentation violation while stepiing.

Reference Number: 1005466

Synopsis: sysdiag's sptest fails w/ /dev/tty[a,b]; does
not respond.

Reference Number: 1005360

Release: 3.4, 3.3
Synopsis: SCSI disk driver hangs when ACB4000 reports write fault.

Reference Number: 1005363

Release: 3.4, 3.3
Synopsis: Some SCSI MD21 (141 MB) errors cause system hang.

Reference Number: 1006127

Release: 3.4, 3.3
Synopsis: Ethernet problems induced by bad ICMP address mask reply.

December 1987

0

0

0

0

0

0

Section 2 - Articles 991

Reference Number: 1005930

Release: 3.3, 2.X, 1.X
Synopsis: physio bug causes writev (2V) failure.

Reference Number: 1001069

Release: 1.X, 2.X
Synopsis: Bug in physio breaks readv.

Reference Number: 1006165

Release: 3.4
Synopsis: sysdiag's softfp and mc68881 tests core dump on an

illegal instruction.

Reference Number: 1004863

Release: 3.2
Synopsis: GPl_PR_PGON_TEX problem.

Reference Number: 1004984

Release: 3 .2
Synopsis: GPl_PR_ROP _ TEX semantics are wrong for a 1-bit deep

src.

Reference Number: 1005359

Release: 3.4, 3.2
Synopsis: pw_line and pw_polyline do not draw a vector

from left to right when the starting point has a negative
'x' coordinate.

Reference Number: 1004336

Release: 3.4, 3.2
Synopsis:· lockf () very slow.

Reference Number: 1003885

Release: 3.2
Synopsis: look may dump core on long lines.

Reference Number: 1004765

Release: 3.3
Synopsis: Subnet broadcast address computed incorrectly.

December 1987

992 Software Technical Bulletin issue 1987-11

Reference Number: 1005489

Synopsis: NFS attribute cache functions incorrectly.

Reference Number: 1004739

Release: 3.2
Synopsis: rpc. lockd fails to free, thus using excess memory.

Reference Number: 100320?

Release: 3.2
Synopsis: SCCS uses delta times for diffs.

Reference Number: 1005438

Release: 3.2
Synopsis: SCCS deledit duplicates random lines in a file.

Reference Number: 1005366

Release: 3.3

0

Synopsis: System returns panic: Bus error message when using
ttya with a configured kernel on a system with a SCSI3 0·
host adapter.

Reference Number: 1006154

Release: 3.4
Synopsis: System is flooded with z s interrupts on synca/b

transitions.

Reference Number: 1004598

Synopsis: make does not handle square bracket characters in
target filenames.

Reference Number: various sunpro make bugs.

Synopsis: Various unnumbered fixes as described below.

Descriptions:

1) make no longer dumps core if the source needed to build a
library member does not exist; instead reports
"Don't know how to build x".

2) Fixed the -k option so that it works for lists of targets
given on the make command line. 0

December 1987

0

0

0

Bug Fixes New to Sun0S
Release 3.5

Section 2 - Articles 993

3) Remove the . make.state lock file if make is interrupted.

4) Use the varargs mechanism for the error routines.

Reference Number: 1004559

Release: 3.4, 3.2
Synopsis: UNIX hangs while booting if xt controller has on-line

drive.

Reference Number: 1006132

Release: 3.4
Synopsis: TCP/IP file transfer using ftp hangs/stops when using 3.4.

Reference Number: 1001271

Synopsis: ptrace interaction with interrupting slow system calls.

Reference Number: 1002675

Release: 3.2, 3.0, 2.0
Synopsis: Driver error message is 'cryptic' (MI'I).

Reference Number: 1002968

Release: 3 .2
Synopsis: Incorrect comment in /usr / include/ sys/buf. h.

Reference Number: 1004165

Release: 3.2
Synopsis: Setting raw mode under bk (4} line discipline panics.

Reference Number: 1004195

Release: 3.4beta
Synopsis: vi breaks on ! ! command with long output.

Reference Number: 1004200

Release: 3.2
Synopsis: SCSI tape drivers error handling inconsistent.

December 1987

994 Software Technical Bulletin issue 1987-11

Reference Number: 1004256

Release: 3.2, 3.0
Synopsis: ld -r confuses dbx.

Reference Number: 1004323

Release: 3.2
Synopsis: Re-debugging prog w aborted open of pipe crashes system.

Reference Number: 1004364

Release: 3 .2
Synopsis: overwrite in 4.3 -lcurses drops core.

Reference Number: 1004503

Release: 3.2
Synopsis: Serial port device driver panic.

Reference Number: 1004577

Release: 3.2
Synopsis: printf padding strings with leading zeros is broken.

Reference Number: 1004768

Release: 3.3, 3.2
Synopsis: Maxusers causes sys pt too small message when booting.

Reference Number: 1004840

Release: 3.2
Synopsis: RS TAT (3R) always returns O in statstime. if_opackets

Reference Number: 1005063

Release: 3.2
Synopsis: ld -A produces bogus symbol tables.

Reference Number: 1005068

Release: 3.2
Synopsis: Misspelled error message in trap. c.

December 1987

0

0

0

0

0

0

Reference Number: 1005165

Release: 3.2

Section 2- Articles 995

Synopsis: 3.X kernel can't handle failure of TOD chip on 3/50s.

Reference Number: 1005241

Release: 3 .2
Synopsis: Boot from 1/2" tape (tm/cdc) on 3/260 hangs system.

Reference Number: 1005242

Release: 3.4
Synopsis: Upgrade doesn't install symlinks for screenld.

Reference Number: 1005252

Release: 3.4
Synopsis: tektool: PROPS key no longer works.

Reference Number: 1005253

Release: 3.4
Synopsis: tektool: menu missing items and no tonger in walking

style.

Reference Number: 1005260

Release: 3.2
Synopsis: tektool: certain data streams causes core dump.

Reference Number: 1005310

Release: 3.4
Synopsis: cgt wo driver watchdogs if no vector is specified

Reference Number: 1005381

Synopsis: rasfilter8tol. lg has wrong filename suffix,
should be' .l'

Reference Number: 1005391

Release: 3.4, 3.3
Synopsis: • c in diag using SCSI-3 host adaptor causes error message.

December 1987

996 Software Technical Bulletin issue 1987-11

Reference Number: 1005485

Release: 3.4
Synopsis: TCP perfonnance problem.

Reference Number: 1005580

Synopsis: sysdiag puts logs in /usr2, filling the root
partition.

Reference Number: 1005812

Release: 3.4, 3.2
Synopsis: Programs whose inodes exceed the 512 Mb point will core

dump with a segmentation violation.

Reference Number: 1005983

Release: 3.2
Synopsis: PR_PGON_TEX does not clip texture to screen properly

on GP.

Reference Number: 1006055

Release: 3.4
Synopsis: Upgrade on 68010 does not upgrade ndll.

Reference Number: 1006093

Release: 3.2
Synopsis: pr_ load may behave badly in case of error.

Reference Number: 1006103

Release: 3.2
Synopsis: if. c changes to support MCP and subnets.

Reference Number: 1006202

Release: 3.4
Synopsis: Some colonnap updates fail on 3/60 color frame buffer.

December 1987

0

0

0

0

0

0

Section 2 - Articles 997

Reference Number: 1005304

Release: 3.4, 3.2
Synopsis: Shell script crashes 3/200 series kernel.

Reference Number: 1006668

Release: 3.4
Synopsis: pr _polypoint on GP may draw first point incorrectly.

Reference Number: 1006164

Release: 3.4
Synopsis: sysdiag assumes you are always on console.

Reference Number: 1003351

Release: 3.4, 3.2
Synopsis: pw_line () draws in window space instead of canvas

space.

Reference Number: 1006123

Release: 3.4, 3.2
Synopsis: pw_line () draws incorrectly when pw_batch_on ().

Reference Number: 1006690

Synopsis: 2.59 sysdiag disables disk testing in systems with
GP/GB.

Reference Number: 1006255

Release: 3.4, 3.3
Synopsis: network routing deamon in. routed dies periodically

with 3.3 and 3.4.

Reference Number: 1006729

Release: 3.4
Synopsis: routing daemon in. routed sometimes uses wrong

interface.

December 1987

998 Software Teclmical Bulletin issue 1987-11

Reduced Media Set

Upgrade Considerations

Obtaining SunOS Release 3.5

Order Number
UPSYS2-01F
UPSYS2-02F
UPSYS2-03F
UPSYS2-04F
UPSYS3-01F
UPSYS3-02F
UPSYS3-03F
UPSYS3-04F
UPSYS-OOF

Reference Number: 1004864

Release: 3.4, 3.2
Synopsis: last incorrectly reports 'still logged in'.

Reference Number: (ts/A)

Synopsis: fsck silently fails to fix partially truncated inodes.

The entire system software media set is contained on five (5) tapes, thus reducing
the number of tapes necessary for operating system installation.

The upgrade path on the SunOS Release 3.5 distribution set can be used to
upgrade from either SunOS Release 3.2 or Release 3.4.

SunOS Release 3.5 consists of a full distribution set of five (5) tapes, a Right­
To-Use (RTU) license, and documentation set for domestic and international
customers, as shown below.

Format Includes License Type
68010 1/4" tape, RTU, documentation Domestic
68010 1/2" tape, RTU, documentation Domestic
68010 1/4" tape, RTU, documentation Export
68010 . 1/2" tape, RTU, documentation Export
68020 1/4" tape, RTU, documentation Domestic
68020 1/2" tape, RTU, documentation Domestic
68020 1/4" tape, RTU, documentation Export
68020 1/2" tape, RTU, documentation Export

RTU license only

December 1987

0

0

0

0

0

0

Section 2 - Articles 999

Workstations which are covered under a current software support contract will be
provided with the full distribution set at no additional charge. This release will
not be automatically shipped, but is available upon customer request. To request
the SunOS Release 3.5 set, call (800) USA-4-SUN. This number can also be used
by contract customers who would like to obtain only the Release 3.5
documentation set.

December 1987

1000 Software Technical Bulletin issue 1987-11

SunTrac Release 1.0

SunTrac Release 1.0

Introduction

SunTrac Project Management
Tools

This article is an overview of SunTrac Release 1.0, Sun Microsystems' new
graphics-based project management software that can be used on Sun-2, Sun-3,
and Sun-4 workstations running Sun Operating System (SunOS) Release 3.2 or
higher.

SunTrac Release 1.0 is a graphics-based planning and scheduling project
management package that has been developed for the Sun View window
environment. SunTrac combines Gantt charts showing task durations, PERT
(Program Evaluation and Review Technique) charts showing the entire project
broken down into smaller tasks, and Critical Path analysis techniques with a
unique risk assessment methodology. The SunTrac system accommodates all
levels of project participation by building hierarchical project models to offer a
full range of detail, from individual task to summary-level overviews.

SunTrac's primary objective is to provide all levels of technical management

0

with the capability to accurately create, analyze, and communicate the planning,
scheduling, and controlling functions that are necessary to ensure the completion 0
of all project objectives within specified schedule and budget limitations. To
achieve this objective, SunTrac utilizes a new algorithmic technique called Trac
(Total Risk Analysis Calculation) to address the effects of uncertainty in
project cost and schedule milestones. Trac analyzes the risk factors with regard
to the project schedule, thus aiding the user in directing ongoing work
appropriately.

Instead of focusing on a single critical path, SunTrac assigns a criticality index to
each of the project's activities. This criticality index has a value between zero
Oeast critical) and one (most critical).

In addition to Trac, the SunTrac project management system incorporates the
following tools.

Sketch (Network Diagram Editor): Sketch is the graphics editor used to create
PERT network diagrams and associated data. Sketch creates ASCII files for use
as input to the Trac analysis program. Sketch also accepts output produced by
other SunTrac tools, and incorporates this data back into the PERT diagram.
Sketch is also used to print the network diagram on a laser printer.

Level (Interactive/ Automatic Resource Leveling Tool): Level simultaneously
displays a Gantt chart of task durations with a resource profile to graphically
represent resource usage, schedule activity, and control activity.

December 1987

0

0

0

0

Traditional Analysis Methods
and the Trac Algorithm

Section 2 - Articles 1001

Assign (Optimal Overtime Allocation Tool): Assign is used to create, display,
and select an overtime allocation plan. Assign plans the least-cost reduction in a
project schedule, keyed to a user-selected productivity factor. The data obtained
from the Assign overtime allocation plan can then be merged with the Sketch
input data.

Profile (Graphic Summary): Profile SunTrac's graphing tool, displays,
analyzes, and prints staffing level and cost profiles for the network and data
selected from the most recent Trac execution.

Report (Tabular Data Output): Report reviews, sorts, and extracts detailed
tabular data for each activity, diagram, or subnetwork of a project. The data can
be sorted on any of the data column headings. Report takes its input from four
temporary files created by Trac.

HelpTrac (On-Line Help): HeipTrac is SunTrac's on-line help facility, which
provides systematic application development and assistance for all of the
SunTrac tools, in addition to listings of error messages and explanations for all
SunTrac applications.

With traditional PERT analysis, optimistic and pessimistic estimates of task
completion times are considered in calculations, but no attempt is made to use
these estimates in a probabilistic analysis of the overall project completion time.
Another limitation of PERT analysis is that it ignores all activities that are not on
the critical path, as well as the stochastic (involving a random variable) nature of
their respective completion times.

With the Monte Carlo simulation approach, a time is drawn from each of the
activity distributions, a total project time is generated as in a detenninistic
model, then the process is repeated a large number of times, in order to detennine
a reliable sample mean and variance. This approach has as its main disadvantage
the computer processing time required to fonn a statistically meaningful sample.

The Trac algorithm for stochastic analysis takes the data entered into Sketch (the
input metrics) and calculates all of the essential output metrics necessary for
other SunTrac programs to produce their respective reports and displays, such as
Gantt charts, network diagrams, and tables and graphs of metric data. The Trac
algorithm models the time to complete each task as a probability distribution by
using the optimistic and pessimistic completion times as deviations from a mean
completion time, where the optimistic and pessimistic estimates are actually
interpreted as three standard deviations from the mean.

December 1987

1002 Software Technical Bulletin issue 1987-11

Trac Summary Metrics

While the concept of using probability distributions instead of fixed times in
PERT analysis is not new, it has been difficult to find a useful mathematical
model, because of the complications involved in calculating probabilities for
networks that contain many parallel paths. In contrast to these methods, the Trac
algorithm uses a piecewise linear model of the distribution to calculate project
completion probabilities quickly enough to allow repeated "what-if' trials of
project scheduling and staffing.

Trac reports several completion times (deterministic, optimistic, expected, and
pessimistic) for the project being analyzed. The different completion dates result
from different ways Trac calculates the schedule.

Deterministic completion time is based on the expected value of each activity.
The expected value of each activity duration is the 50% probability duration,
which is not necessarily the same as the most likely duration estimate. The
deterministic project completion date is usually near the 30% completion date.
Because the deterministic schedule uses only one calculated duration value for
each activity, it has no uncertainty associated with it.

Optimistic completion time has the same meaning in reference to project
completion as the optimistic estimate does in activity completion; that is, there is
less than a 1 % chance of completing sooner than this date.

0

Expected completion time is equivalent to the 50% completion time. The Q
expected date is always later than or the same as the deterministic date. There is ,
an even chance of completing the project by this date.

Pessimistic completion time has the same meaning in reference to project
completion as the pessimistic estimate does in activity completion; that is, there
is less than a 1 % chance of completing later than this date.

Some network summary metrics are also included in the Trac report to help the
user compare two or more project plans. Most of the metrics are straightforward
and easy to understand. A few required more detailed explanation, as follows.

Network Complexity is a measure of network cross-connectedness. It is
calculated using the following formula.

(number of arcs - number of nodes) / number of arcs

As values of network complexity approach unity (+ 1), the network is considered
to be increasingly complex; that is, the number of arcs is greater than the number
of nodes. Very simple networks can have negative values; that is, the number of
nodes is greater than the number of arcs.

Stochastic Complexity, another measure of network complexity, measures the
degree of occurrence of near critical paths. Values of stochastic complexity 0
range between zero and one. A zero represents the simple network, with no
near-critical paths, and a one represents a network with maximum cross-

December 1987

0

0

0

Maximum Values for SunTrac
Applications

Installation and Use
Considerations

Required Risk Analysis for
Department of Defense (DoD)
Contractors

Section 2 - Articles 1003

connectedness, where Network Complexity approaches + 1 and all paths are
critical. In a comparison of two paths, the lower complexity factor is more
desirable.

Stochastic Density is a summary measure of the slack in a project schedule, and
is calculated using the following formula.

A / (A + B)

where A is the sum of all expected durations, and B is the sum of all free slack.
The value falls between zero and one. A zero represents no duration, or infinite
slack; a one represents no project slack. Lower stochastic density is desirable.

Plans with lower density are easier to manage for the following reasons:

o Project schedules are easier to shorten

o Staffing profiles are easier to level

o Recovery from unforeseen disasters is easier

Maximum values and limits for SunTrac applications are as follows.

Application
Maximum Units

Value
Sketch 250 nodes per diagram

250 arcs per diagram
Trac 4000 nodes total per analysis

4000 arcs total per analysis
200 diagrams per analysis

Level 800 activities
Assign 800 activities
Profile 1800 days

Refer to the Software READ THIS FIRST document provided with your copy of
SunTrac Release 1.0 media for information relating to SunTrac installation and
usage.

SunTrac can be used by organizations who contract with the Federal Government
and must comply with Department of Defense Standard DoD-STD-2167 when
producing the required Risk Management Procedures in software development
plans. Refer to Appendix A of the SunTrac Reference Guide, part number 800-
2059, for complete information.

December 1987

1004 Software Teclmical Bulletin issue 1987-11

Additional Swap Space
Required

The Trac process requires 3 MB of free swap space in addition to the swap space
currently being used.

~~sun ~~ mtcrosystems
December 1987

0

0

0

0
3

STB SHORT SUBJECTS

STB SHORT SUBJECTS .. 1007

Using boot ... 1007

Super Eagle Disks .. 1009

Sunlngres 5.0 .. 1010

0

0

0

0

0,

0

0

0

Using boot

Using the boot Command
from the PROM Monitor
Prompt

3
STB SHORT SUBJECTS

Use the boot command to list the contents of the root directory when in the
PROM monitor. This is particularly useful when /vmunix is corrupted or
missing and you are looking for a backup version of the kernel.

An example of using boot from the PROM monitor prompt is shown below.

>b *

This will list all of the contents of the root partition. The sample result shown
below is a typical listing for a Sun-3 seiver.

>b *
bin
boot
dev
etc
kadb
lib
lost+found
mnt
private
private .MC68020
pub
pub.MC68020
stand
sys
tftpboot
tmp
usr
usr .MC68020
vmunix
vmunix.gen

1007 December 1987

1008 Software Teclmical Bulletin issue 1987-11

In this example, the backup version of the kernel is vmunix. gen. 0

0

0
December 1987

0 Super Eagle Disks

0

0

Super Eagle Disk File System
Sizes

The Problem

The Cause

The Workaround

References for Further
Information

Section 3 - STB Short Subjects 1009

Customers having the Super Eagle disk will find information in this article
helpful to avoid core dumps and segmentation violation errors.

The Fujitsu 2361 Super Eagle is a 694Mb, 10-1/2" SMD disk drive using the
Xylogics 451 controller.

Some large programs fail with a segmentation fault and core dump. The bug ID
reference number is 1005812.

This problem has the appearance of being intermittent, failing on some
compilations and applications and not on others. A program will run in certain
directories and not in others.

The problem has been observed on systems with Super Eagle drives.

The cause has been identified as a limitation in the file system. If any partition is
larger than 512Mb, programs located past the 512Mb point will not page
correctly. Those programs stored on disk with disk block addresses exceeding
this point will core dump with a segmentation violation.

You can avoid this problem by reconfiguring your Super Eagle so that no
partition is larger than 512Mb.

Refer to the manual and article listed below for detailed information on disk
drive formatting, labeling, and using setup to set file system sizes.

o Installing UNIX on the Sun Workstation, Section 3.6, 'Disk Overview
and Philosophy', part number 800-1521

o System Administration for the Sun Workstation, Chapter 4, 'Disks and
File Systems', part number 800-1323

o Software Technical Bulletin, November 1987, 'System and SunOS
Installation Aids', page 775, part number 812-8701-10

December 1987

1010 Software Technical Bulletin issue 1987-11

Sunlngres 5.0

Upgrading to Sunlngres
Release 5.0

The Problems Defined

The Workaround

For those customers upgrading from Sunlngres release 3.0 to release 5.0, you
may encounter three problems during the upgrade installation. This short subject
contains problem descriptions and a suggested workaround.

The three main problems are described below.

o Permissions

The permissions for ingres/lib/* are all 444. The old libraries
are therefore not overwritten when the new tape is tarred.

o Root Ownership

Two processes are owned by root and therefore cannot be overwritten.
The processes are ingres/bin/kill _ ing and

ingres/bin/ntproc.

o Undeleted Binaries and Libraries

The binaries and libraries that are no longer used in Sunlngres release
5.0 are not deleted. The customer then has binaries and libraries taking
up extra disk space unnecessarily.

The workaround for these problems is to delete ingres/bin/ * and
ingres/ lib* prior to the upgrade installation. This will assure you that all

of the libraries and binaries are the release 5.0 version.

CAUTION: Ensure that ingres/data and ingres/files are not
deleted.

~~sun ~~ microsystems
December 1987

0

0

0

0
4

IN DEPTH

IN DEPTH ... 1013

Passing Commons .. 1013

0

0

0

0

0

0

0

0

Passing Commons

Passing FORTRAN Common
Variables to C

Example of a Common Block

Passing a Common Block to a C
Function

4
IN DEPTH

This tu.torial explains how to pass FORTRAN common variables to and from C
programs.

Let us start with a very simple example. Here is a FORTRAN program with a
blank (unnamed) common variable.

common// hello
integer hello

'before initialization: hello= ',hello print * ' hello = 9
print * '

'after initialization: hello= ',hello
end

When you compile this program using f 7 7 f . f and run it, you will get the
output shown below.

before initialization: hello= 0
after initialization: hello= 9

Now, suppose you want to pass the FORTRAN common to a C language
subroutine. In this example, the C routine will change the value of hello and
print it.

On the next page, let's see the FORTRAN program again with a call to a C
routine and a print statement added.

1013 December 1987

1014 Software Technical Bulletin issue 1987-11

common// hello
integer hello
print*, 'before
hello = 9

initialization: hello= ',hello

print*, 'after initialization: hello= ',hello
call csub ()
print*, 'after return from csub: hello= ',hello
end

The C function has the effect of changing the value of hello.

struct commonBLNK

BLNK

csub_()
{

int hello;

printf("csub:at the top: hello= %d\n", BLNK .hello);
BLNK .hello= 7;

printf("csub:after the value change: hello= %d\n", BLNK .hello);

0

When you compile and run these together using the command f7 7 t. f c. c , Q,
you get the following output.

Appended Trailing Underscores

before initialization: hello= 0
after initialization: hello= 9

csub:at the top: hello= 9
csub:after the value change: hello 7

after return from csub: hello= 7

In line 5 of the called C routine, note that the subroutine name csub has an
underscore (_) following it. Note also that _ BLNK_ in lines 4, 8, 9, and 10
has two trailing underscores. The internal name of the blank common is
_ BLNK_. However, all references to _ BLNK _ in the C subroutine require the
additional trailing underscore.

Note that these underscores are required since the f 7 7 compiler appends a
trailing underscore to all external names in FORTRAN programs. Refer to
Section 4.5, 'Interprocedure Interface', of the FORTRAN Programmer's Guide,
part number 800-1371, for further information on C and FORTRAN interfacing.

The structure type commonBLNK has as its members the variables in the
common block. In this case it has the integer hello.' The name of the actual
structure is BLNK_. Thus, in the C code you reference, the variables in a
FORTRAN common as structure members. FORTRAN commons are global
data. Therefore, the C structures that you declare must also be global.

December 1987

0

0

0

0

Examples Using Naming
Conventions

Section4-InDepth 1015

If your common has a name, use the same naming convention in your C
subroutine. Substitute the common name for each occurrence of BLNK .

Here are our examples again. The common now has the name greetings.

The FORTRAN main program follows.

common /greetings/ hello
integer hello
print*, 'before initialization: hello=' ,hello
hello= 9
print*, 'after initialization: hello= ',hello
call csub ()
print*, 'after return from csub: hello=' ,hello
end

The C subroutine is shown again below. Note that greetings has replaced
the term BLNK

struct comrnongreetings
{

int hello;
greetings_;

csub_()
{

printf("csub:at the top: hello= %d\n", greetings_.hello);
greetings_.hello = 7;
printf("csub:after the value change: hello= %d\n", greetings_.hello);

Complex Example

You will see the following program output after compilation using the command
f7 7 t . f c. c, and then executing the program.

before initialization: hello= 0
after initialization: hello= 9

csub:at the top: hello= 0
csub:after the value change: hello 7

after return from csub: hello= 9

Note that greetings has one trailing underscore like csub and BLNK .

The following exam pie shows a more complex common. This one has variables
of several different types and sizes.

The FORTRAN code is shown on the next page.

December 1987

1016 Software Technical Bulletin issue 1987-11

cormnon /greetings/ hello,shortone, string, pad, longone
integer hello
integer*2 shortone
character*3 string
character* 3 pad
integer longone
print*, 'before initialization: hello= ',hello
print*, 'before initialization: shortone = ',shortone
print*, 'before initialization: string= ',string
print*, 'before initialization: pad= ',pad
print*, 'before initialization: longone = ',longone
hello = 9
shortone = 45
string = 'yz\0'
pad = 'pad'
longone = 167
print * 'after initialization: hello = ' ,hello

' print * 'after initialization: shortone = ' , short one
' print * '

'after initialization: string = ', string
print *, 'after initialization: pad= ' ,pad
print * 'after initialization: longone ' ,longone ' call csub ()
print * 'after return from csub: hello = , ,hello ,
print * , 'after return from csub: shortone = , ,shortone
print * 'after return from csub: string = ' ,string ,
print *, 'after return from csub: pad= , ,pad
print * 'after return from csub: longone = , ,longone ,
end

The C subroutine code follows on the next page.

December 1987

0

0

0

0

0

0

Section 4 - In Depth 1017

struct cornmongreetings_

int hello;
short shortone;
char string[3];
char pad[3];
int longone;

greetings_;
csub_ ()
{

printf("csub:at the top: hello= %d\n", greetings_.hello);
printf("csub:at the top: shortone = %d\n", greetings_.shortone);
printf("csub:at the top: string= %s\n", greetings_.string);
printf("csub:at the top: pad= %s\n 11

, greetings_.pad);
printf("csub:at the top: longone = %d\n 11

, greetings_.longone);
greetings_.hello = 7;
greetings_.shortone = 15;
greetings_.string[O] 'd';
greetings_.string{l] = 'e';
greetings_.string[2] = '\0';
greetings_.pad[O] 'g';
greetings_.pad[l] = 'h';
greetings_.pad[2] = '\0';
greetings_.longone = 67;
printf("csub:after value change: hello= %d\n", greetings_.hello);
printf("csub:after value change: shortone = %d\n", greetings_.shortone);

printf("csub:after value change: string= %s\n", greetings_.string);
printf("csub:after value change: pad= %s\n", greetings_.pad);
printf("csub:after value change: longone = %d\n", greetings_.longone);

On the next page, the output shown results after compiling these programs.

December 1987

1018 Software Technical Bulletin issue 1987-11

Long Variables and Word­
Boundaries

C Main Programs with
FORTRAN Subroutines

before initialization: hello= 0
before initialization: shortone 0
before initialization: string=
before initialization: pad=
before initialization: longone 0
after initialization: hello= 9
after initialization: shortone 45
after initialization: string= yz
after initialization: pad= pad
after initialization: longone 167

csub:at the top: hello= 9
csub:at the top: shortone = 45
csub:at the top: string= yz
csub:at the top: pad= pad
csub:at the top: longone = 167
csub:after value change: hello= 7
csub:after value change: shortone 15
csub:after value change: string= de
csub:after value change: pad= gh
csub:after value change: longone = 67

after return from csub: hello= 7
after return from csub: shortone 15
after return from csub: string= de
after return from csub: pad= gh
after return from csub: longone = 67

You should have no trouble creating C structures to match FORTRAN commons.
FORTRAN is the more restrictive language for long variables being located on
word-boundaries. However, if you are creating a FORTRAN common from a C
structure that already exists, you may have to add some extra padding space to
both the C structure and the FORTRAN common to align them with the
FORTRAN word-boundary rules.

To see this, remove the declarations and all references to 'pad' from the above
examples. The FORTRAN program will give you an error message when you
compile it, but the C program will not.

The examples up to this point show you how to call a C subroutine from
FORTRAN and use I/0 in both. However, if you have a C main program you
will have to make a few minor changes as shown in the following paragraphs.

Here are our original two programs, but now reversed. The C program is the
main routine, and the FORTRAN program is the subroutine.

The C code follows on the next page.

December 1987

0

0

0

0

0

0

Section 4 - In Depth 1019

struct coromonBLNK

BLNK

main()
{

int hello;

printf("main:before initialization: hello= %d\n", _BLNK_.hello);
BLNK.hello - 9;
printf("main:after initialization: hello= %d\n", BLNK .hello);
fsub_ () ;
printf(11main:after return from fsub: hello= %d\n", _BLNK_.hello);

The FORTRAN code appears below.

subroutine fsub
common / / hello
integer hello
print*, 'fsub:at the top: hello= ',hello
hello - 7
print*, 'fsub:after the value change: hello
end

', hello

But, look at what happens when you try to compile them. The results follow.

muse>> f77 t.f c.c
t .f:
t.f:

fsub:
c.c:
Linking:
Undefined:

MAIN
muse>>

You get this error message occurs because the link editor (ld) is trying to link in
parts of the FORTRAN 1/0 subsystem to initialize it correctly. To resolve the
problem, we create a 'dummy' FORTRAN main program and make the C main
program an ordinary subroutine that looks and acts like a C main program, as
shown in the next example.

'Dummy' FORTRAN Main
Program Examples

Note that much of the added code you will see below in the modified C program
is not needed for our small test case. The example shows all changes needed to
make the typical C main program run properly. In particular, the example shows
you how to incorporate command-line argument processing without changing
most of the source code. For our simple case, you would only need to rename
'main'.

December 1987

1020 Software Teclmical Bulletin issue 1987-11

The modified C code appears below.

struct comrnonBLNK

int hello;
BLNK

extern int xargc; I* allow access to argv and argc from a routine */
extern char **xargv;· /* other than main */

I* xargc and xargv are declared and initialized *I
/* in standard library code */

cmain () /* rename main, remember the trailing"_"*/

/* declare argc and argv to use in the rest*/
/* of your old main program*/

int argc;
char **argv;
argc = xargc; /* initialize argc, and argv */
argv = xargv; /* now argument processing can occur without

/* further modification to your old C main*/

printf("main:before initialization: hello= %d\n", BLNK .hello);
BLNK.hello = 9;

printf("main:after initialization: hello= %d\n", BLNK .hello);
fsub_();

printf("main:after return from fsub: hello= %d\n", _BLNK_.hello);

The modified FORTRAN code follows.

integer cmain,n
n = cmain ()
end

subroutine fsub
common// hello
integer hello
print*, 'fsub:at the top: hello=' ,hello
hello= 7
print*, 'fsub:after the value change: hello
end

', hello

The only FORTRAN code change is the addition of the 'dummy' main program.
We make cmain a function to obtain its return value, if any. We can call
exit with this value to signal either normal or abnormal program completion.

Note that in dbx, you need to use the name MAIN to stop in the FORTRAN
dummy main program. Use the name cmain to stop in the C main routine,
since we have renamed it.

December 1987

0

0

0

0

0

0

QUESTIONS, ANSWERS, HINTS,
AND TIPS

5

QUESTIONS, ANSWERS, HINTS, AND TIPS ... 1023

Q&A, and Tip of the Month .. 1023

0

Ol

o:

0

Q&A, and Tip of the Month

Hints & Tips #9

0

Generic and Custom Kernels

0

5
QUESTIONS, ANSWERS, HINTS,

AND TIPS

This is the ninth in a continuing series of this column which I have created for
two purposes.2 First, some questions are asked regularly on the AnswerLine. I
feel everyone can benefit from distributing discussions of these problems as
widely as possible. Second, a large and constantly growing body of information,
hints, and tips are not documented anywhere.

I will collect and distribute these information nuggets in this continuing column
so that we can all learn from them. I will cover unusual topics, but this column
should not be used as an alternative to contacting your support center or using the
AnswerLine.

If you have a question that you would like answered in this column, please mail
your question to 'Software Technical Bulletins' at Sun Microsystems, Inc., 2550
Garcia Avenue, MIS 2-312, Mountain View, CA 94043. You can also send in
your question by electronic mail to sun!stb-editor. U. S. customers can call Sun
Customer Software Services AnswerLine at 800 USA-4-SUN for technical
questions on this column or any other article in this bulletin. I look forward to
hearing from you!

One of the last steps to in the system installation process is configuring your
system kernel. This is described in chapter 7, 'Configuring the System Kernel',
in the Installing UNIX on the Sun Workstation manual, part number 800-1317.

Yet, many people neglect to do so. This important step should not be forgotten
since it is an important part of making the most of your Sun workstation.

Since a generic kernel has to boot on an arbitrary configuration, every device
driver for all devices supported by Sun is compiled into the kernel so the driver
can be used if needed. This makes the kernel very large.

2 This continuing column is submitted by Chuq Von Rospach, Customer Software Services.

1023 December 1987

1024 Software Teclmical Bulletin issue 1987-11

Setting Maxusers

Tip of the Month

When you boot your system, the kernel loads itself into memory. Any memory
used by the kernel is unavailable for your user processes. Even if the drivers are
not used, they are loaded into memory.

Configuring so that only the needed drivers for your system are compiled into
your kernel can release up to 250k of memory. On a smaller system like a 4
megabyte Sun 3/50, this can mean the difference between a system slowed by a
high paging rate and a system with reasonable performance.

Another reason to configure a kernel is to properly size UNIX internal tables.
Some data structures are stored in fixed-size tables. If maxusers is set too small
the system will get spurious failures and error messages like 'text: table is full'.
If you see this message, or similar messages for the 'proc' or 'inode' tables, then
the kernel is overflowing its tables and the table sizes need to be expanded.

The size of these tables is controlled by the 'maxusers' variable in the kernel
configuration file. This name is unfortunate, because the size of this value is not
directly related to the number of users on the system, but to the loading and
activity on the system. A system with a dozen people running the vi screen
editor will perform happily with a smaller maxusers setting than the same system
with a single user using a number of tools in the suntools environment.

0

The generic kernel shipped on the Sun0S distribution tape has maxusers set to 4.
For many system loads, this is too small. If you are using a bitmap and Q:
suntools, you should set maxusers to 8 or more.

One final hint on configuring a kernel. When you build your kernel configuration
file, make sure you change the 'ident' line to something other than 'GENERIC'.
This is a special ident that causes some special code to be compiled into the
kernel code, that you do not need in a custom kernel. In one case, this custom
code even causes problems. If you attempt to build a kernel with two swap
spaces and a GENERIC ident, the kernel compilation will fail with an unresolved
variable setconf. The fix is to use an ident other than 'GENERIC'.

Finally, refer to the article 'Booting a Specific Kernel' on page 771 of the
November 1987 STB. This article contains information on booting one of two
available kernels in the case that you prefer to run a customized kernel for some
applications.

This month's Tip is from Daniel Steinberg, and is a short C program that allows
you to check whether some account or machine is in a netgroup. It is also
interesting because it is a good practical example of how to program the yellow
pages interface.

For more information on yellow pages netgroups, refer to Chapter 2, 'Sun
Network Services', in the System Administration for the Sun Workstation
manual, part number 800-1323.

December 1987

0

0

0

0

Section 5 - Q&A, Hints and Tips 1025

Finally, if you have a favorite short program, piece of code, or interesting tip or
trick, send it to folklore@plaid.sun.com.

The C program code is shown on the following pages.

December 1987

1026 Software Technical Bulletin issue 1987-11

I*
* innetgr - interface to innetgr() yp routine to determine if a given
* machine or user is in a netgroup

*
* Daniel Steinberg
*/

#include <stdio.h>

main(argc, argv)
int argc;
char *argv [l;

char *prog;
char *netgroup;
char *roach= NULL;
char *user= NULL;
char *domain= NULL;
char *key, *val;
int keylen, vallen;
char thisdomain[256];
int err;

prog = argv[O];
if (argc < 3) {

fprintf (stderr,
"usage:

exit(l);
%s netgroup machine [user [domain]]\n", prog);

if (getdomainname(thisdomain, sizeof(thisdomain)) < 0)
fprintf(stderr, 11 %s: could not get current domain\n", prog);
exit (1);

netgroup = argv[l];
key= netgroup;
keylen = strlen(key);
if (yp_match(thisdomain, "netgroup", key, keylen, &val, &vallen))

fprintf(stderr, "%s: no such netgroup as '%s' in %s\n",
prog, key, thisdomain);

exit (1);

if (*argv[2] != '\0')
roach = argv[2];
key= roach;
keylen = strlen(key);

if (yp_match(thisdomain, "hosts.byname",
key, keylen, &val, &vallen))

fprintf (stderr,

exit(l);

"%s: no such machine as '%s' in %s\n",
prog, key, thisdomain);

0

0

0
December 1987

0

0

0

if ((argc > 3) && (*argv[3] != '\0'))
user = argv[3];
key= user;
keylen = strlen(key);
if (yp_match(thisdomain, 11 passwd.byname",

key, keylen, &val, &vallen))
fprintf (stderr,

exit (1);

"%s: no such user as '%s' in %s\n'',
prog, key, thisdomain);

if ((argc>4) && (*argv[4] !='\0'))
domain= argv[4];
key= domain;
keylen = strlen(key);
if (yp_match(thisdomain, 11 networks.byname",

key, keylen, &val, &vallen))
fprintf (stderr,

exit (1);

"%s: no such domain as '%s' in %s\n",
prog, key, thisdoroain);

printf("%s %s %s %s %s\n",
netgroup,
(err= innetgr(netgroup, roach, user, domain)) ?
"contains" : "does not contain",
roach ? roach : 1111

,

user? user : "'',
domain? domain "");

exit(err? 0 : 1);

Section 5 - Q&A, Hints and Tips 1027

December 1987

0:
'

I

o!

0

0
6

THE HACKERS' CORNER

THE HACKERS' CORNER ... 1031

Porting Sun View .. 1031

0

0

0

O'

0

0

0

Porting Sun View

Porting Applications to
Sun View

Input Processing in Sun View

Mainline Input Processing

Event-Driven Input Processing

6
THE HACKERS' CORNER

This month's Hackers' Corner contains three example programs that illustrate
processing event-driven input when running Sun View.

Please consult your local shell script or programming expert regarding any script
or code problems. The example programs are not offered as a supported Sun
product, but as items of interest to enthusiasts wanting to try out something for
themselves. Note that Hackers' Corner code may not work in all cases, and
may not be compatible with future Sun0S releases.

Many customers have difficulty when porting an existing program to Sun
workstations running Sun View. This difficulty is typically in the area of input
processing.

To understand the problem, it is helpful to understand how two different
programming styles, 'mainline' and 'event-driven', effect where flow of control
resides within a program.

Mainline input processing is the traditional type of flow of control. The flow of
control resides within the main program, and the program blocks when it expects
input. For example, a C programmer may use scanf () or get char () to
wait for characters on st din (standard input).

SunView supports event-driven input processing. The program specifies event
handlers at initialization time, e.g. via the WIN_ EVENT _PROC attribute. After
initialization, the program passes the flow of control to the notifier with
window_main_loop(base_frame).

The notifier calls the specified event handler each time the specified event occurs.
After processing the event, the handler returns control to the notifier. The notifier
normally returns the flow of control to the main program only when the
base_frame is destroyed.

1031 December 1987

1032 Software Technical Bulletin issue 1987-11

The Problem

A Solution

The Notifier: What It Is and
What It Does

The Notifier: How to Run It

The SunView Programmer's Guide, part number 800-1345, fully describes how
to program in the event-driven style, but it does not give many clues about
programming in the mainline style. Furthermore, many customers new to
Sun View may not recognize that the manual is describing something which is
incompatible with what they have in mind ..

The input handling problem usually occurs when trying to port an existing
program to Sun View since most existing programs are written in the mainline
style. The event-driven style is certainly very well suited to writing window­
based applications, with their many different input objects (keyboard, mouse,
panel items, pop-up menus, and so forth). But it is often impractical to convert
an existing program from mainline to event-driven style.

The first step toward a solution is to understand the two programming styles, and
to recognize each when you encounter it. New programs should be written in the
event-driven style if at all possible, and existing mainline programs will usually
have to remain mainline.

0

Next we need to find a way to perform mainline input in SunView. The manual
tells you in the notifier chapter how to use notify_dispatch () and
notify_do_dispatch () to write a mainline program which reads stdin
and the like, but this does not help when trying to read event-driven input like
mouse events and other SunView events. Example programs 2 and 3 below
show how this can be done. 0
The notifier is not as is sometimes imagined some central process which
distributes all of the events to the appropriate processes. It is, rather, a set of
functions linked in from the sun tool and sunwindow libraries. The notifier
is actually a part of your code and runs as your process when you call it.

The notifier's purpose is to collect all of the events directed to your process, and
to call the appropriate event handlers for each event. Some of these event
handlers will be written by you (setup with WIN_ EVENT_ PROC, or
notify_ interpose_destroy_ func (), for two examples). Other event
handlers come straight from the libraries (Open, Close, Move, resize the
frame, scroll, repaint canvas, and so forth).

Note it is very important to invoke the notifier as frequently as possible,
otherwise your application will appear to be 'dead'. If the notifier is not running,
it cannot receive requests to Move or Close the frame, for example. Usually
the notifier is running while you are waiting for input. If you become CPU­
bound, you should call the notifier from time to time during your computation.

window_rnain_loop () is used by event-driven programs in the normal
Sun View style.

notify_dispatch () runs the notifier once as notify_dispatch (} 0
processes the first event in each queue. Note that notify_dispatch (} ·
should be called more than once to be more sure of processing all events. If any

December 1987

0

Doing Standard I/0

0

Quitting the Frame

0

Section 6 -The Hackers' Comer 1033

events are pending, it calls the handlers for those events, and then returns. In
mainline-style programs, it is useful for keeping the window alive during
compute-intensive periods, for catching non-blocking input, and for taking action
after calls like window_set (window, WIN_SHOW, TRUE, 0).

notify_start (} runs the notifier continuously. It returns only if
notify_ stop (} is called in an event handler, or if the frame is quit. It can be
used to do blocking input.

notify_do_dispatch (} and notify_no_dispatch (} tum implicit
dispatching on and off. Alternative versions of read(2) and select(2) are loaded
from the sunwindow library which run the notifier while blocked when
implicit dispatching is on. In this way, your window will not become dead while
using get char (} and the like.

Please note one warning: if a notify_ stop(} is executed while a function is
blocked, it will unblock unsatisfied.

The stdio of a window program is (like any other program) inherited from the
environment from which it was invoked. In most cases this means that the
stdio appears in the shelltool or cmdtool from which it was run.
Please note that input to your window is seen by you as events, while input to the
parent shell too 1 is seen by you as st din, and can be read with
get char (}.

You will need to decide where you want the keyboard dialogue to take place.
Many programs do not use any stdio, but make use of input events and
pw _ text (}. Other programs have stdio scattered throughout their code
(printf and scanf, getchar and putchar, or FORTRAN READ and
WRITE) or require the dialogue to take place on a scrolling, terminal-like area.
These programs will need to use stdio, and can make use of either the parent
shell tool, or use a ttysw for systems running SunOS release 3.4.

Please note that these programs require SunOS release 3.4 due to the use of
TTY_ARGV_DO_NOT_FORK. However, SunOS release 3.4 is not required if all
one wants to do is use a STDIO TTYSW. Refer to the the example 1 code that
follows.

Existing programs are unlikely to understand the 'quit' option in the frame menu.
When the quit option is taken, the frame will be destroyed, but the program will
not automatically exit. In fact, it may not even be aware that the frame has
disappeared.

December 1987

1034 Software Teclmical Bulletin issue 1987-11

Three Example Programs

There are three ways to respond in this case.

o disable the option

(Set the Quit item to MENU_INACTIVE.) This method ensures that the
problem does not arise, and is used in example program 2.

o detect the quit, and cause an exit

This is a very severe action, much like typing control-C, and the applica­
tion may consider this undesirable. This method is used in example pro­
gram 1.

o detect the quit, and return status and/or clear ajiag

This is cleanest method, but it may be inconvenient for the application
to have to keep testing the status or flag. This method is used in exam­
ple program 3.

Please note that all examples have a quit handler for the sake of completeness,
though in example 2 this can never be called, because the quit option has been
made inactive.

0

Three example programs are shown at the end of this article. Example 1 is a o,
simple program using graphic output, but no event-driven input This is as
described in 'Porting Programs to SunView', section 16.6 of the SunView
Programmer's Guide, part number 800-1345.

Example 2 does event-driven input, using notify_ start () to block,
waiting for input. When the event occurs, an event handler is called which stores
the event, and calls notify_ stop () . This causes the notifier to exit, and so
notify_ start () unblocks. The mainline can then retrieve and process the
event.

Example 3 additionally shows such features as non-blocking input, and
redirection of ASCII events to the st din window.

Examples 1 and 3 use the symbol STDIO_TTYSW to select between stdio
appearing in the parent shell (0), and appearing in a subwindow of its own (1) for
systems running SunOS release 3.4.

All examples are compiled using the command shown below.

machine% cc -o example example.c -lsuntool -lsunwindow -lpixrect

0
December 1987

0

0

0

References for Further
Information

Example I

Section 6 - The Hackers' Comer 1035

The following sections of the Sun View Programmer's Guide, part number 800-
1345, are suggested for details on the topics shown below.

Section

2.4
4
5
6
7
16
16.6

Topic

Notifier introduction
How to create windows
Canvases
How to interpret the input event
The graphic primitives
The Notifier
Explicit and implicit dispatching

In addition to chapter 7 shown above, also refer to the Pixrect Reference Manual,
part number 800-1254, for pixrect details.

The code for mainline input example 1 follows. This is the simplest example. It
uses stdio, and writes graphics to a canvas, but does not accept any event­
driven input such as mouse clicks and the like.

Example 1 uses implicit dispatching, as described in section 16.6 of the SunView
Programmer's Guide, part number 800-1345.

Whe using implicit dispatching, you will need to find out when the frame is
'quit' by the user, in order to know when to terminate your program. To do so,
interpose in front of the frame's destroy event handler with
notify_interpose_destroy_func () so that you can notice when the
frame goes away. At this point we call notify_stop () to break the read out
of a blocking state.

December 1987

1036 Software Teclmical Bulletin issue 1987-11

#define STDIO TTYSW 1

/*

/* Changed to 1. --r */

Mainline input example 1.

*I

#include <stdio.h> /* added. --r */
#include <suntool/sunview.h>
#include <suntool/canvas.h>
#include <suntool/tty.h>

static Frame base frame;
static Canvas canvas;
static Tty ttysw;
static Pixwin *pw;

static Notify_value my_notice_destroy();

main()
(

int s, tty_fd;

base_frame = window_create(O, FRAME, O);
#if STDIO TTYSW

ttysw = window_create(base_frame, TTY,
WIN_ROWS, 8,
TTY_ARGV, TTY_ARGV_DO_NOT_FORK,
0) ;

/* deleted line w/ signal. --r */
tty_fd = (int)window_get(ttysw, TTY_TTY_FD);
dup2(tty_fd, 0);
dup2(tty_fd, 1);

#endif
canvas= window_create(base_frame, CANVAS, 0);
pw = canvas_pixwin(canvas);

notify_interpose_destroy_func(base_frame, my_notice_destroy);
window_set(base_frame, WIN_SHOW, TRUE, 0);
notify_dispatch(); /* make the windows appear*/

notify_do_dispatch();

while (1)
printf ("Enter size of square (suggest 100): 11

);

scanf("%d", &s);
if(feof(stdin))

break;
if(s==O)

break;

/* added. --r */
/* added. --r */

pw_writebackground(pw, O, O,
(int)window_get(canvas, CANVAS_WIDTH),

0

0

0
December 1987

0

0

0

(int)window_get(canvas, CANVAS_HEIGHT),
PIX_CLR);

pw_writebackground(pw, 10, 10, s, s, PIX_SET);

fprintf(stderr, "exiting nicely\n");
exit(O);

static Notify_value
my_notice_destroy(frame, status)

Frame frame;
Destroy_status status;

if(status !- DESTROY_CHECKING)
fprintf(stderr, "exiting abruptly\n");

notify_ stop() ;
exit (0);
)

return.(notify_next_destroy_func (frame, status)) ;

Section 6 -The Hackers' Comer 1037

December 1987

1038 Software Technical Bulletin issue 1987-11

Mainline Input Example 2 The code for mainline input example 2 follows. This example shows event­
driven input. Important features are described below.

Event Input

Quit

Event-driven input processing uses MS LEFT and
MS_ RIGHT to write a string to the location of the event
on the canvas, and ASCII events are echoed to the
canvas.

This is mainline blocking event-driven input, and is an
example for traditional CAD/CAB-style programs.

Finally, note that as an alternative to interposing on our
destroy proc as in example 1, here we disable the 'quit'
option from the frame's menu.

December 1987

0

0

0

0

0

0

Section 6-The Hackers' Comer 1039

I*
Mainline input example 2.

*/

#include <suntool/sunview.h>
#include <suntool/canvas.h>

static Frame
static Canvas
static Pixwin *pw;

base_frame;
canvas;

static Notify_value getevent_notice_destroy();
static void getevent_canvas_event_proc();

I*--*/
main()
{

Event *event;
Window window;

base_frame = window_create(O, FRAME, 0);
canvas= window_create(base_frame, CANVAS,

WIN_CONSUME_KBD_EVENT, WIN_ASCII_EVENTS,
WIN_EVENT_PROC,
0) ;

pw = canvas_pixwin(canvas);

getevent_canvas_event_proc,

/* Inactivate the frame menu's "Quit" option. */
menu_set (

(Menu)menu_find(
(Menu)window_get(base frame, WIN_MENU),

MENU_STRING, "Quit", 0),
MENU_INACTIVE, TRUE, 0);

window_set(base_frame, WIN_SHOW, TRUE, 0);
notify_dispatch();

while(get_event(&event, &window))
if (event_is_up(event))

continue;
switch(event_id(event))
case MS RIGHT:

pw_text(pw, event_x(event), event_y(event),
PIX_SRC, O, "Clunk");

break;
case MS LEFT:

pw_text(pw, event_x(event), event_y(event},
PIX_SRC, O, "Click");

break;
default:

if(event is_ascii(event)

December 1987

1040 Software Technical Bulletin issue 1987-11

pw_char(pw, event_x(event), event_y(event),
PIX_SRC, O, event_id(event));

break;

printf("exiting nicely\n");
exit(O);

static Event getevent_event;
static Window getevent_window;

I*-- *I
get_event(event, window)
Event **event;
Window *window;

notify_start(); /* this blocks until notify_stop() */
*event = &getevent_event;
*window= getevent_window;
return (getevent_window !=NULL);

/* -- */
static void
getevent_canvas_event_proc(canvas, event)
Canvas canvas;
Event *event;

getevent_event = *event;
getevent_window = canvas;
notify_stop ();

0

0

0
December 1987

0 Mainline Input Example 3

0

0

Section 6-The Hackers' Corner 1041

The code for mainline input example 3 follows. This example shows event­
driven input. The major features are described below.

Event Input MS_ LEFT writes a string to the location of the event on
the canvas, and ASCII events are echoed to the canvas.

This is mainline blocking event-driven input, and is
another example for traditional CAD/CAE-style
programs.

Compute-Intensive MS MIDDLE selects a compute-intensive task.
notify_dispatch () is used to keep the frame and
scrollbars alive, and to allow non-blocking input to
occur. Input is tested, and, if present, breaks out of the
compute loop.

stdio

Scrollbars

Menus

Quit

The 'new string' option on the menu (selected with
MS_RIGHT) reads stdin with scanf (). This
option uses implicit dispatching as described in 'Porting
Programs to SunView', section 16.6, of the SunView
Programmer's Guide, part number 800-1345.

It sets up WIN_ INPUT _DESIGNEE to redirect ASCII
events to the window handling stdio, to avoid
moving the mouse into that window for stdin entry.
However, note that ASCII events are consumed when
get_event () is called.

The canvas uses scroll bars to display a part of a larger
bitmap.

Events must be translated from canvas to window
space.

A flag is cleared and can be tested when the 'quit'
option is selected on the frame menu.

December 1987

1042 Software Teclmical Bulletin issue 1987-11

#define STDIO_TTYSW 1

I*
Mainline input example 3.

*I

#include <stdio.h>

/* added. --r */

/* deleted #include <signal.h>. --r */
#include <suntool/sunview.h>
#include <suntool/scrollbar.h>
#include <suntool/canvas.h>
#include <suntool/tty.h>

static Frame base frame; -
static Canvas canvas;
static Tty ttysw;
static Pixwin *pw;

/* Support for get_event(); */

static Event getevent_event;
static Window getevent_window;
static int getevent_gotevent;
static int getevent_continue_flag 1;
static ~nt getevent_blocking;
static int getevent_nonblocking;

I*-- *I
rnain(argc, argv)
int argc;
char **argv;
{

Event *event;
Window window;
Menu menu;

static char string[96J "Click";
char str[20];
int a, i, j, k, y;

menu= menu create(MENU_STRINGS,
"One",
"Two",
"Three",
"New string",
0,
0) ;

init_windows ();

while(get_event_test_continue()
get event(&event, &window);

0

0

0
December 1987

0

0

0

Section 6 - The Hackers' Comer 104 3

if (event_is_up(event))
continue;

switch(event_id(event))
case MS LEFT:

/*
show that we can see the x & y position of the event

*/
pw_text(pw, event_x(event), event_y(event),

PIX_SRC, .0, string);
break;

case MS RIGHT:
/*
show that we can use menus

*I
canvas_window_event(canvas, event);

notify_no_dispatch();
a= (int)menu_show(menu, canvas, event, 0);

notify_do_dispatch();
canvas_event(canvas, event);
switch (a) {
case 1:
case 2:
case 3:

sprint£ (str, 11 %d11
, a);

pw_text(pw, event_x(event), event_y(event),
PIX_SRC, O, str);

break;
case 4:

printf("Enter a string: 11
);

scanf("%s", string);
break;

break;
case MS_MIDDLE:

/*
Do something compute intensive, use non-blocking
input to test for interruptions.
*/
pw_text(pw, 5, 20, PIX_SRC, O,

"This will take a while ... ");
pw text(pw, 5, 40, PIX_SRC, O,

"Hit a mouse button to interrupt");
y = 50;
pw_vector(pw, 0, y, 500, y, PIX_CLR, 1);
get_event_noblocking(l);
for(i=O; i<500 ;i++) {

notify_dispatch();
if(get_event_test_event()

break;
pw_vector(pw, i, y, i, y, PIX_SET, l);
for(k=O; k<2000; k++);

December 1987

1044 Software Technical Bulletin issue 1987-11

get_event_noblocking(O);
pw_writebackground(pw, 0, O, 400, 45, PIX_CLR);
break;

default:
if(event is_ascii(event))

pw_char(pw, event_x(event), event_y(event),
PIX_SRC, 0, event_id(event));

break;

fprintf(stderr, "exiting nicely\n");

/*--*I
static Notify_value
getevent_notice_destroy(frame, status)

Frame frame;
Destroy_status status;

if(status != DESTROY_CHECKING)
getevent_window = (Window)O;
getevent_continue_flag = 0;
notify_stop();

return(notify_next_destroy_func(frame, status));

I*-- *I
static void
getevent_canvas_event_proc(canvas, event)
Canvas canvas;
Event *event;

if(getevent_blocking)
/* return any event */
getevent_event = *event;
getevent_window = canvas;
getevent_gotevent = 1;
notify_stop () ;

else
if(getevent_nonblocking)

/* return only 'major' events */
if(event_is_down(event))

switch(event_id(event)
case MS LEFT:
case MS MIDDLE:
case MS RIGHT:

getevent_event = *event;
getevent window= canvas;
getevent_gotevent = 1;

break;
)

0

0

0
December 1987

0

0

0

Section 6 - The Hackers' Corner 104 5

I*--*/
int
get_event_test_event()
{

return getevent_gotevent;

!*--*I
int
get_event_test_continue()
{

return getevent_continue_flag;

I*--*/
int
get_event_noblocking(s)
int s;

getevent_nonblocking s;

I*-- *I
int
get_event(event, window)
Event **event;
Window *window;

if(getevent_gotevent -- 0) {
getevent_blocking = 1;
window_set(canvas, WIN_CONSUME_KBD EVENT, WIN_ASCII_EVENTS,
notify_start(); /* this blocks until notify_stop()
window_set(canvas, WIN_IGNORE_KBD_EVENT, WIN_ASCII_EVENTS,
getevent_blocking - 0;
)

*event = &getevent_event;
*window= getevent_window;
getevent_gotevent = O;
return (getevent_window != (Window)O);

0) ;

*I
0) ;

I*-- *I
init_windows ()
{

base frame
window_create(O, FRAME,

FRAME_LABEL, "Mainline input demo",
0) ;

canvas=
window_create(base_frame, CANVAS,

December 1987

1046 Software Technical Bulletin issue 1987-11

WIN_ROWS,
CANVAS_WIDTH,
CANVAS_HEIGHT,

16,
1200,
1200,

WIN VERTICAL SCROLLBAR,scrollbar_create(O), /* changed --r */
WIN_HORIZONTAL_SCROLLBAR,scrollbar_create(O), /* changed --r */
CANVAS_AUTO_EXPAND,
CANVAS_AUTO_SHRINK,
WIN_EVENT_PROC,
0) ;

FALSE,
FALSE,

getevent_canvas_event_proc,

pw = canvas_pixwin(canvas);

#if STDIO TTYSW
ttysw = window_create(base_frame, TTY,

WIN_ROWS,
TTY_ARGV,
0) ;

8,
TTY_ARGV_DO_NOT_FORK,

/* deleted call to signal. --r */
dup2((int)window_get(ttysw, TTY_TTY_FD), O);
dup2((int)window_get(ttysw, TTY_TTY_FD), l);
window_set(canvas,

#else

WIN_INPUT_DESIGNEE, (int)window_get(ttysw, WIN_DEVICE_NUMBER),
0) ;

window_set(canvas,

#endif

WIN_INPUT_DESIGNEE, win_nametonumber(getenv("WINDOW_ME")),
0) ;

window_fit_height(base_frame);

notify_interpose_destroy_func(base_frame, getevent_notice_destroy);
window_set(base_frame, WIN_SHOW, TRUE, O);
notify_dispatch();
notify_do_dispatch();

0

0

0
December 1987

0
7

CUMULATIVE INDEX: 1987

CUMULATIVE INDEX: 1987 ... 1049

0

0

0'

0

0

0
7

CUMULATIVE INDEX: 1987

0

0
1049 December 1987

0

0

0

0

0

Index

Special Characters
.cshrc

at usage, 211
slow, 67
with interactive shell. 68

. login, 67
/dev

ownership, 54
/etc/group

searches, 26
YP master server, 27

/etc/hosts
INR, 51

/tmp
with NFS partitions, 355

1
1-800-USA-4-SUN

device driver calls, 787
use of, 763, 975

3
3270SNA

bugs, 922

8
800 USA-4-SUN

use of, 364

A
ACCELL

databases, 271
accellerator

floating poin4 700
adb

finding nd servers, 983
address

device drivers, 195
address mask, 74
addresses

classes of, 391
lnteme, 391

alias
used with history, 781

aliases
mail, 291
namestripes, 220

-1051-

aliases, conJinued
sendmail, 269

AnswerLine, 5, 26, 67,219,291,401, 605, 737, 797, 1023
device driver calls, 787
use of, 763, 975

answermail
script, 321, 324
script installation, 321

applications
Sun View porting, 1031

architecture
Prism, 287
Sun4,403

ARP,393
arrow keys

mapping, 265
asm

errata, 689
with C source, 215

assembler
bugs, 416

assembler bugs
compilers, 806

assembly code
with C source, 215

at
used with . cshrc, 211

at (1)
answennail script. 321

B
back-to-back packets, 245
backups

Hackers' Comer, 801
beta sites, 673, 683

questionnaire, 687
bind

port numbers, 213
blocking

using select (), 62
boot

from PROM monitor, 1007
booting

specific kernel, 771
Bourne shell

bugs, 478
Bourne shell bugs

Index - Continued

Bourne shell bugs, conJinued
bugs, 875

bridge box, 719
broadcasting

subnets, 391
brouchure

Sun Education, 688
Browser

installation, 612
program, 611

bsc3270
bugs, 507,915

bscrje
bugs,507,916

buffer
Ethernet, 245

buffers

bug

bugs

color frame, 276
frame, 358

3/50 CPU board, 189
reporting, 206

3270 SNA bugs, 922
assembler, 83, 416, 806
Bourne shell, 140,478, 875
bsc3270, 103,507
bsc3270 bugs, 915
bscrje, 103,507
bscrje bugs, 916
C compiler, 84,417,807
C shell, 140, 478, 875
cgi, 120, 454, 853
cgp,854
compiler general, 835
compiler library, 99,437,826
compiler utilities, 102, 444, 836
compilers, 83,416, 806
dai bugs, 919
Datacomm,103,507,915
debugger, 90, 423
debugger documentation, 839
debuggers, 813,814
demo, 123
diagnostics, 109,445,838
dna, 105,511
dna bugs, 920
documentation, 111,447, 839
driver, 460, 857
editor utility, 495, 901
fixed in SunOS 3.5, 988
formatter, 156,495
formatter utility, 901
FORTRAN compiler, 93, 426
FORTRAN documentation, 447,840
general utility, 906
gp, 123,456
graphics, 120, 454, 853
index entries, 347
installation, 490, 898
kernel, 128,460, 857
kernel general bugs, 859
library utility, 904

bugs, continued
linker, 440

- 1052-

lint, 100, 440, 829
LISP, 170, 528
Local 3270 bugs, 920
mail, 158, 497
mail utility, 904
make, 158, 498
make utility, 905
Modula 2, 171, 529
Modula2, 937
network, 135, 470, 868
network general, 474, 871
network library, 135, 470, 868
network program, 137,474,872
network protocol, 873
network Yellow Pages, 874
nfs, 135,470,868
nse, 938
optimize~ 100,441,830
osi bugs, 920
PC-NFS,530
pixrect, 123,457, 855
printer, 159, 498
printer utility, 907
program utilities documentation, 841
program utility, 499, 907
protocol, 138, 475
RPC, 874
setup, 490, 899
shell, 140, 478, 875
sna3270, 108,515
Sun Common Lisp, 936
SunAlis, 167, 504, 912
SunAlis database, 504, 912
SunAlis documentation, 504,912
SunAlis general, 504, 913
SunAlis spreadsheet, 505, 913
SunCORE, 124, 855
SunCORE documentation, 447, 841
SunCORE graphics, 457
SunGKS, 520, 926
SunGKS library, 520, 926
SunINGRES, 168,523,929
SunINGRES documentation, 523, 929
SunINGRES general, 525
SunINGRES general bugs, 932
SunINGRES library, 525, 932
SunINGRES program, 527,934
SunSimplify, 532, 944
SunSimplify library, 532
SunSimplify program, 532
SunUNIFY, 172, 534, 946
Sun View, 142,480,879
Sun View docwnentation. 448, 842
Sun View general, 890
Sun View library, 480, 879
Sun View program, 486, 890
Sun Windows, 488,896
syscall, 467, 865
sysem administration docwnentation. 844
system administration, 148, 490, 898
system administration documentation, 448
system administration utilities, 494, 899

0

0

0

0

0

0

bugs, conJinued
transcript. 531,940
User documentation, 849
user manuals, 451
utilities, 156, 495, 901
utility programs, 160
uucp, 165, 501, 909
vtl 00 emulation bugs, 924
vtlOOtool, 108,517
windows documentation, 839
X.25, 517
X.25 bugs, 925
yeJlow pages, 139

Bulletin Board, 250
bulletin board

Sun Education, 688

C
C

calling NeWS, 407
passing FORTRANvariables, 1013

C compiler
bugs, 417

C compiler bugs
compilers, 807

C sheJI
bugs, 478

C sheJI bugs
bugs, 875

canvas
colormaps, 282

carrier sense, 724
CDB

errata, 296
cgi

bugs,454
cgi bugs

graphics, 853
checksum

Ethernet. 380
child processes

dbxtool, 192
PID, 192

chip
83586,188

client
sample programs, 13
stream socket, 12

collisions
detection of, 724

color, 275
maps, 276

colormaps, 357
common variables

passed to C, 1013
compatibility

Sun4 binary, 403
Sun View 2, 597

compiler
FORTRAN 1.0 extensions, 707

compiler utility
bugs, 444

compilers, 806
assembler bugs, 83,416,806
bugs, 83,416, 806
C compiler bugs, 84,417,807
compiler library bugs, 99,437
debugger bugs, 90,423,813,814
FORTRAN compiler bugs, 93,426
general bugs, 835
library bugs, 826
linker bugs, 440
lint bugs, 100,440,829
optimizerbugs, 100,441,830
utility bugs, 102, 444, 836

configuration
custom kernels, 1023

configurations
controllers, 580
disks, 580
Sun-2, 582
Sun-3, 581

console messages
program, 743

CONSULT-HSPEED
high-speed disciplines, 789

CONSULT-PLOCK
lock process text. 789

consulting
device drivers, 787
specials, 787

controller
Ethernet. 245

controllers

-1053-

combinations with disks, 581, 582
disk configurations, 580
SunOS installation, 775

conventions
naming common variables, 1015

conversion
color to monochrome, 358
hex-to-decimal, 984

corrections
April TOM, 224
routing, 296

courses
device drivers, 792
Sun Education, 688

CPU
multiple, 244

CRLF
end-of-line, 44

CSD Consulting
device drivers, 787
specials, 787

cumulative index
use of, 347

Customer Software Services, 5, 39
customer~training@sun.com

Sun Education, 688

Index- Continued

Index - Continued

D
dai

bugs, 919
DARPA, 73
database bugs

SunA!is database, 912
databases

incompatible, 271
SunA!is database bugs, 504

datacomm, 915
3270 SNA bugs, 922

Datacomm
bsc3270 bugs, 103,507,915
bscrje bugs, 103,507,916
bugs, 103, 507, 915

datacomm
dai bugs, 919

Datacomm
dna bugs, 105, 511, 920

dataconun
Local 3270 bugs, 920
osi bugs, 920

Datacomm
sna32 7 O bugs, 108, 515

datacomm
vtlOO emulation bugs, 924

Datacomm
vtl OOtool bugs, 108, 517
X.25 bugs, 517,925

datagrams
fragmentation of, 393
reassembly of, 393

daylight savings time
kemel,24

dbxtool
child processes, 192

dd (1)
slow disk test, 263

debugger bugs
compilers, 813,814

Debugger documentation
bugs, 839

debuggers
bugs, 423

Debuggers
documentation bugs, 839

defaults
monitor types, 402

defaultsedit
mouse, 606

demultiplexing
TCP/IP,377

device drivers
Consulting Services, 194
courses, 792
device addresses, 195
phone support, 787
references, 793
third party, 789

device names
SunOS installation, 775

-1054-

devices
ones present, 301

diagnostics, 838

disk
bugs, 109,445,838

combinations with controllers, 581,582
determining configurations, 580
enlarging procedure, 569
enlarging SunIPC, 569
slow test, 263

disk space
saving, 355

disks
size using mkfs, 267
size using setup, 267

dispatching
procedures, 567

DMA, 194
dna

bugs, 511, 920
documentation, 839

bugs, 111,447,839
debugger documentation bugs, 839
FORTRAN documentation bugs, 447, 840
program utilities documentation bugs, 841
SunAlis documentation bugs, 504
SunCORE documentation bugs, 447, 841
SunINGRES documentation bugs, 523
Sun View documentation bugs, 448,842
system administration documentation bugs, 844
User documentation bugs, 849
user manual bugs, 451
windows documentation bugs. 839

documentation bugs
SunA!is documentation, 912
SunINGRES, 929

DoD, 73
critical path specification, 1003

domain system
Internet, 387

driver
bugs, 460, 857

drivers
courses, 792
references, 793
third party, 789

DST,24
Australia, 2A
Europe, 24
rules table, 25

dump
ndl partitions, 266
with host names, 270

dumping tapes
Hackers' Comer, 801

DVMA, 194

E
editor utility

bugs, 495, 901
education

courses, 688

0

0

0

0

0

0

education, continued
SunOS courses, 777

Educational Services
courses, 688

email
Sun Education, 688

end-of-line
definitions, 44

environment
answennail variables, 322

errata, 563, 980
April TOM, 224
asm usage, 689
disk controllers, 767
MayCDB,296
routing, 296

errno
EWOULDBLOCK, 64

errors
leO, 21

Etheme~ 380
back-to-back packets, 245
buffer, 245
controller, 245
header, 380
throughput, 246, 719

Europe
hotlines, 562

event-driven input, 1031
Hackers' Comer, 1031

experiment
answerrnall script, 321
calling NeWS from C, 407
devices present, 301

extensions
FORTRAN 1.0 compiler, 707

F
fast mode

Weitek chips, 702
file systems

maxirnwn size, 1009
files

after power failures, 783
lilesystems

backups, 801
fixes

SunOS 3.5, 988
floating point

accellerator, 700
fork()

child processes, 192
formatter

bugs, 495
forrnaner utility

bugs, 901
FORTRAN

1.0 announcemen~ 707
1.0 extensions, 707
compiler bugs, 426

FORTRAN documentation
bugs, 447, 840

fragmentation
datagrams, 393

frame buffers
with screendump. 358

frames
quitting, 1033

fsck(8), 985
ftirne, 24

- 1055 -

FTP, 370

G
gateway, 74
gateways, 390
general bugs

compilers, 835
SunView, 890

general utility
bugs, 906

generic kernels
configuring, 1023

getpagesize(),300
gettimeofday, 24
gettytab

modem entries, 209
GMT,24
gp

bugs, 456
gp bugs

graphics, 854
graphics, 853

bugs,120,454,853
cgi bugs, 120,454, 853
demo bugs, 123
gp bugs, 123, 456, 854
pixrect bugs, 123, 457, 855
SunCORE bugs, 124,457, 855

grpck
YP map problems, 27

H
Hackers' Comer

answermail scrip~ 321
devices present, 301
memory size, 299
NeWS,407
SunView, 1031
survey, 239

hardware
color frame buffers, 276

Hayes-Compatible, 219
headers

IP, 379
octets, 375
overview, 377

hexadecimal
conversion to decimal, 984

history
use of, 781

host names
with dump, 270
with f dump, 270

Index - Continued

Index - Continued

hostid(l) L 0
tip,798 labels

hotline pedestal, 580
Europe, 562 LANCE,21
procedures, 567 packets, 21
UK,562 layering
use of, 363 mail, 375

hotline@sun.COM leO
reporting bugs, 206 errors, 21

hotlines level 1
world, 976, 979 network hardware, 732

I
level 2

network hardware, 732
I/0 library bugs

sockets, 9 compilers, 437, 826
ICMP,386 network. 470
id, 720 network library, 868
ieO spurious interrupt SunGKS,926

SunOS 3.2, 187 SunINGRES, 525, 932
images SunSimplify, 532

converting to monochrome, 358 Sun View, 480,879

incompatibility library utility
databases, 271 bugs, 904

index line speeds
bug entries, 347 uucp,214

inline, 689 linker

input bugs, 440
event-driven, 1031 lint

INR,51 bugs, 440

0 requirements for, 53 lint bugs
installation compilers, 829

bugs, 490 LISP
SunOS, 775 bugs, 170, 528

installation bugs Lisp
system administration, 898 quick check, 698

Intercon Local3270
hotline, 979 bugs, 920

Internet local time, 25
addresses, 391 lockd
domain system, 387 rieeding statd, 589
protocols, 369 long variables

interprocedure interface, 1014 word boundaries, 1018
IP, 369 lost+found

headers, 379 missing, 985
script to restore, 985, 986

K lpr
kernel, 857 flow control, 43

booting specific, 771
M bugs, 128,460,857

configuration, 1023 mail,371
daylight savings time, 24 aliases, 291
driver bugs, 460, 857 bugs, 497
general bugs, 462, 859 formats, 293
swap space, 232 layering, 375
syscall bugs, 467, 865 pitfalls, 293
time zones, 23 routing, 389

keys systems, 353
mapping, 265 transport systems, 354

user agents, 353

0 Mail Service,250
mail utility

bugs, 904

-1056-

0

0

0

make
bugs, 498

make bugs
nse,938

make utility
bugs, 905

management
SunTrac software, 1000

manuals
proprietaiy, 197

maps
color, 276
YP,34

mask
address, 74

maxusers
setting, 1024

memory
size, 299
SunAlis requirements, 251
Sun!NGRES requirements, 259

rnkfs
disk sizes, 267

m/ifs(8), 985
MMU,366
modems

gettytab entries, 209
high speed, 693
software installation, 693

Modula2
bugs, 171, 529

Modula2, 937
bugs, 937

monitors
defaults, 402
determining type, 401
high-resolution, 358

mouse
defaultsedit, 606

MS-DOS,569

N
names tripes

aliases, 220
reprogramming, 27

naming convention
read, 243
transfer, 243
write, 243

naming conventions
common variables, 1015

ND
swap space, 229

nd servers
using adb, 983
using ypmatch, 984

ndl
dumping partitions, 266

network, 868
bugs, 135,470,868
general bugs, 474, 871

-1057-

network, continued
libraiy bugs, 135,470, 868
nfs bugs, 135,470,868
program bugs, 137,474,872
protocol bugs, 138, 475, 873
RPC bugs, 874
yellow pages bugs, 139, 874

networks
carrier sense, 724
collision detection. 724
Ethernet theory, 723
hardware problems, 731
loopbadc. 738
performance of, 727
Q&A, 733
services, 737
thin Ethernet, 731

newfs
dumping partitions, 266

NeWS
called from C, 407
with Sun View 2, 595

NFS,372
bugs, 470
partitions, 57
partitions with root, 355

nfs bugs
network, 868

nodes
multiple, 244

notifier
definition of, 1032
rumting, 1032

SunPro", 938
bugs, 938
make bugs, 938

0
octets

TCP/IP headers, 375
optimizer, 689

bugs, 441
optimizer bugs

compilers, 830
osi

bugs, 920
out-of-band data

sockets, 9

p
packets, 380

back-to-back, 245
LANCE,21

page faults
overview, 366

panic: iechkcca,187
partition

calculating size, 230
swap space, 229

partitions
dumping ndl, 266
read protection, 57

Index - Continued

Index - Continued

passing
FORTRAN variables, 1013

PC-NFS
bugs, 530

pedestal
information, 580

Personal AnswerLine, 5
PERT analysis

SunTrac, 1001
PF keys

mapping, 265
physmem, 299
PID

child processes, 192
ping,577

script, 578
pixrect

bugs, 457
pixrect bugs

graphics, 855
pmap_rmtcall,578
port number

assignment of, 213
porting

Sun View, 1031
PostScript

pscat output, 198
setlinewidth, 208

pounds sterling
symbol printing, 49

power failures
diskless workstations, 783

printer
bugs,498

printer utility
bugs, 907

printing
images, 357

Prism
windows, 287

procedure
enlarging Sun!PC disk, 569
hotline, 567

products
release levels, 349,560,681,766,978

program
FORTRAN to C, 1013

program bugs
network, 474, 872
Sun!NGRES, 527, 934
SunSimplify, 532
Sun View, 486, 890

Program utilities documentation
bugs, 841

program utility
bugs, 499, 907

PROM monitor
using boot, 1007

proprietary manuals, 197
protocol

bugs, 475

protocol bugs
network, 873

pscat
PostScript, 198

ptroff
pounds sterling, 49

pty
ownership, 54

Q
questionnaire

beta sites, 687
quitting

frames, 1033
quota

-1058-

delays, 605
symbolic links, 606

R
rdump

with host names, 270
read

nainingconvention,243
read optimization, 59
reduced time, 591
write permission, 59

read protection
NFS,57

Read This First
purpose, 584

reassembly
datagrams, 393

recomputation
floating point, 700

recovery
RPC timeouts, 773

references
device drivers, 793

register
saving D2, 46

release level
SunOS,205

releases
software products, 349, 560, 681, 766, 978
SunOS 3.5, 987

reporting bugs, 206
RETRN

end-of-line, 44
root

access, 355
file permissions, 57
read pennissions, 57

rotdelay, 591
routing

mail, 389
RPC, 577

tinleoutrecovery,773
timeouts, 773

RPCbugs
network, 874

rpc. etherd, 578

0

0

0

0

0

0

rpc. rstatd, 578
RTF

purpose, 584
Rutgers University, 369

s
SCB, 188
SCLISP

quick check, 698
screendump, 357

color windows, 288
screenload, 358
script

answennail, 324
restoring lost+found, 986

SCSI
slow disk test, 263

seek
read optimization. 59

select()
exceptions, 64
non-blocking mode, 62

sendmail, 353
aliases, 269
zero-length messages, 797

server
stream socket. 10
Sun View 2, 596

setlinewidth,208
setup

bugs, 490
disk sizes, 267

setup bugs
system administration, 899

shell,875
Bourne shell bugs, 140, 478, 875
bugs, 140,478,875
C shell bugs, 140, 478, 875

shoebox
disk labels, 581

SIGIO, 9
SIGPIPE

server, 10
SIGQUIT

server, 10
SIGURG, 9
sleep,43
SMTP

application example, 384
sna3270

bugs, 515
sockets

example programs, 10
out-of-band data, 9, 15
programming examples, 9
servers, 10
well-known, 381

Software Information Services, 1, 39
specials

CSD Consulting, 787
device drivers, 787

-1059-

specific kernel
booting, 771

spreadsheet bugs
SunA!is spreadsheet, 505, 913

statd
with lockd, 589

STB
duplication of, 181

stdio
read optimization, 59
window programs, 1033

subnets
address mask, 74
broadcasting, 391
definition, 73
enabling, 77
Exterior Gateway Protocol, 73
lintitations, 75
SunOS release 3.3, 264

subnetting, 73
Sun Common Lisp, 936

bugs, 936
Sun Education

device driver course, 792
SunOS courses, 777

sun/hotline
reporting bugs, 206
use of, 363

Index Continued

sun!stb-edilor, 26, 39, 67, 70,181,219,291,401,605, 737, 797,
1023

sun!sunbugs
reporting bugs, 206

suncustomer¥training
Sun Education, 688

Sun4
architecture, 403
binary compatibility, 403

SunAlis, 912
bugs, 167,504,912
database bugs, 504, 912
documentation bugs, 504,912
general bugs, 504, 913
memory requirements, 251
release 2.0, 249
spreadsheet bugs, 505, 913
support of, 592
windows, 252

SunA!is 1.0
discontinued support of, 592

SunAlis 2.0
upgrade program, 592

sunbugs@sun.COM
reporting bugs, 206

SunCGI, 280
SunCore, 282
SunCORE

bugs, 855
documentation bugs, 447,841

SunCore
printing images, 357

SunCORE bugs

Index - Continued

SunCORE bugs, continued
graphics, 855

SunCore documentation
bugs, 841

SunCORE graphics
bugs, 457

SunGKS, 926
bugs, 520, 926
library bugs, 520, 926

SunGKS library
bugs, 520

SunINGRES, 929
bugs, 168,523,929
documentation bugs, 523, 929
general bugs, 525, 932
installing release 5.0, 258
library bugs, 525, 932
memory requirements, 259
program bugs, 527, 934
release 5.0, 254

Sunlngres 5.0
upgrade workaround, 1010

SunIPC
enlarging disk, 569

SunLink Internet Router, 51
requirements for, 53

SunOS
determining release of, 205
installation, 775
network services, 737
release 3.3 and subnets, 264
release 3.5, 987

·SunSimplify, 944
bugs, 532, 944
library bugs, 532
program bugs, 532

Suntools
exiting, 55

suntools
frame buffers, 277
reprogramming namestripes, 27

SunTrac
release 1.0, 1000

SunUNIFY, 946
bugs,172,534,946

SunUnify
diskful configuration, 705
diskless configuration, 706
installation, 703

Sun View, 879
bugs, 142,480,879
color frame buffers, 278
documentation bugs, 448, 842
general bugs, 890
Hackers' Comer, 1031
library bugs, 480, 879
porting applications, 1031
program bugs, 486, 890
SunWindow bugs, 488, 896

Sun View 2
changes, 597
compatibility issues, 597

Sun View 2, conlinued
differences from Sun View, 595
introduction, 595

Sun View documentation
bugs, 448, 842

SunWindow
bugs,488

Sun Window bugs
Sun View, 896

super eagle
file system size, 1009

support
discontinuation of, 592

swap space
ND,229
SunINGRES, 782

switcher(!)
colormaps, 287

symbolic links
quota, 606

syscall
bugs, 467, 865

system administration, 898
bugs, 148,490,898
documentation bugs, 448, 844
installation bugs, 490, 898
setup bugs, 490, 899
utility bugs, 494, 899

system administration documentation
bugs, 844

system administration utilities
bugs, 494

T
tables

software release levels, 349,560,681,766,978
tape drives

SunOS installation, 775
tape dump

Hackers' Comer, 801
tape verification, 210
TCP, 369

sockets, 12
TCP/IP

demultiplexing, 377
references, 394

telnet, 44, 370
Bridge terminal server, 44

terminal
tty problems, 590

testing

-1060-

beta sites, 683
The Hacker's Comer

Browser, 611
console messages, 743

thin Ethernet
specification, 731

tluoughput
Ethernet, 246, 719

time zones
TZ,23

0

0

0

Index- Continued

0 time zones, continued uucp, conlinued
uucico, 23 bugs, 501, 909

timeouts Hayes-Compatible, 220
recovery options, 773 line speeds, 214
RPC, 773

training V
Sun Education, 688 variables

transcript, 940 answermail environment, 322
bugs, 531,940 common,1013

transfer long word boundaries, 1018
naming convention, 243 verification

troff tapes, 210
previewing output, 198 vi

tty maps, 69
ownership, 54 vtlOO emulation
virtual, 590 bugs, 924

tunefa(8) vtlOOtool
read times, 591 bugs, 517

TZ,23
DST rules table, 25 w

Weitek u fast mode chips, 702
UDP,386 well-known sockets, 381
UK windows, 276

hotline, 562 color frame buffers, 277
underscores Prism, 287

appended in C, 1014 server-based, 596
trailing in C, 1014 with SunAlis, 252

0
UNIX Windows documentation

monitoring status of, 577 bugs, 839
update, 783 word boundaries, 1018
upgrade workaround

SunA!is program, 592 SunlNGRES, 782
USA-4-SUN Suningres 5.0, 1010

use of, 364, 567 world hotlines, 979
USAC introduction, 976

feedback, 365 write

User documentation naming convention, 243
bugs, 849 write permission

User Documentaiton read, 59
documentation bugs, 849 wstat

user manuals floating point, 701

bugs, 451
X utilities, 901

bugs, 156,495,901 X.11

editor bugs, 495, 901 with Sun View 2, 595

formatter bugs, 156,495,901 X.25, 61
general bugs, 906 bugs, 517,925
library bugs, 904 y mail bugs, 158,497,904
make bugs, 158, 498, 905 yellow pages, 31
printer bugs, 159, 498, 907 installation, 32
program bugs, 499, 907 mail aliases, 291
utility program bugs, 160 utilities list, 33
uucp bugs, 165, 501, 909 Yellow Pages bugs
yellow pages, 33 networ~ 874

utility bugs YP,31
compilers, 836 clients, 31

0
system administration, 899 domains, 32

uucico installation, 32
time zones, 23 maps,34

uucp master server, 32

- 1061-

Index - Continued

YP, continued
rpc, 33
server maps, 31
slave servers, 31
utilities list, 33

ypbind,32
ypmatch

finding nd servers, 984
ypserv, 32

0

0

0
-1062-

0

Revision History

Reviswn Date Comments

FINAL December 1987 Eleventh issue of Software Technical
Bulletin (Software Infonnation Services).

0

0

0

0

'· ·oi
_,,.·

--.,/" ,

I
I

·'-. ··-

:;"<;::of1i~i-ate J:If~d_qil~rtfr_s\
, Sun_Micios)'strmii:";_-1n~.: :· ,-· .·
:. :-2550_G~I_cia-A.Vepllf{"·:--':.--.. ':. ·
, ·_'-M_Ol!·n_tilfo°X(ie~,:GA_.f)~3_, __ :,

, , 415960-1300': · ,, ...
'TlX 2'878J5 ,
·,-~·FO_t·tJ.~s.,s~1JS-dffice
: '.1<fcatiOl1s,-<:ll11(1

, "., , ,

' 800 821'4643 :''
1,fcA:soo·szi-4642 . _f:_.

'·\ _f;~~bpea~ a~~~il~~rt,~r_~:: .. - ' .·
.. :SuP, Mkro~)'st¢.ri1S'.E_U_iq()e.; JO~. ~
SunHouse ,:·- -. .- .<.:· '.: · :-·
.31_:41_-PeU}br~ke- B.r~'ad~8y- <·
. Cani6et1~y: ~:, ·
Surrey Gl/153XD

., Eng1ana ·: ·, ·
·, 0276,621Jl ',.

TLX85901T'

A~str~JiJi6!;2:4)6°469g'
', Ca#ada:4}6477:6745_ ,
:France{ (1)46:)02324·. _
·-·:(;ermany,·(089)'950_94-0:.
;,Japan: (03)221:7021,
-~--Th'e'Ne-i:hirlallds~ 02:155·24888-'.
·· .u&i1l2766:iHr . ·

. ·- . -· -'

,:

.· · eiulk'Rate·. ·
. ,· Us.'.Postage
' PAID •
Perfrlii !',lo. 515 .: .

M9-1.fntain;Yie~,.CA,

-. :Europe; {Wi_~dle ~~t; _arid.1\fd~~j-­
,can Etitopean He~dquarforS:. : ·
027662111 · .. ·. · ;' >

. . . - ' . '

. .: Eise-WlieFe iti-th·e ~Orld·, ·c;l1
'C_Oi:,pora:te Heai:l(Jua.riel"s:.·.}-_.. ·-

. ,415 960-1300 . ', . ·. · .. ,.
\:1~·terCo~'tirte"nta1-s;aies -

..' • ::· I -' ,.''

'

·,.

