
·~sort~ i~"1 ; . mic5ro,sy~tenfs

. . <_o·· ·:· .. ·.

. '8oftware TichnicalBulletin
'Jqnuary198_8···

.. : Softwc1relnf orrnation Services
;,-, ' . . .

Pait N'umbcr812-880I-OL /
. 1ssuc1988 c:c OJ

ian· u· ,,1-. ..; .-1n(>;,,;:
".· ~1.; ~/C,; ..

·o---__ (, ,-

. - .:-

.;-..

->

' ,- -- .

"' . .----·-
·~ ·o __ ._-_-_--_-. . . '

-,'-':'~.' --~· -.""-.
.-.;.·: ... ·

. •'-,;, ' .·'

0

0

Software Technical Bulletin
January 1988

Software Information Services

Part Number 812-8801-01
Issue 1988 -01

January 1988

Software Technical Bulletins are distributed to customers with software/hardware or software only support
contracts. Send comments or corrections to 'Software Technical Bulletins' at Sun Microsystems, Inc.,
2550 Garcia Ave., MIS 2-312, Mountain View, CA 94043 orby electronic mail to sun!stb-editor. U.S customers o,
who have technical questions about topics in the Bulletin should call the Sun Customer Software Services
AnswerLine at 800 USA-4-SUN. Other customers should call the numbers listed in World Hotlines appearing in
Section 1.

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarks of AT&T Bell Laboratories.
DEC, DNA, VAX, VMS, VTlOO, WPS-PLUS, and Ultrix are registered trademarks of Digital Equipment Cor­
poration.
Courier 2400 is a trademark of U.S. Robotics, Inc.
Hayes is a trademark of Hayes Microcomputer Products, Inc.
Multibus is a trademark of Intel Corporation.
Postscript and TranScript are trademarks of Adobe Systems, Inc. Q
Ven-Tel is a trademark of Ven-Tel, Inc.
Sun-2, Sun-2/xxx, Sun-3, Deskside, SunStation, Sun Workstation, SunCore, DVMA, Sun Windows,
NeWS, NFS, SunUNIFY™, SunView™, SunGKS, SunCGI, SunGuide, SunSimplify, SunLink, Sun
Microsystems, and the Sun logo are trademarks of Sun Microsystems, Inc.
UNIFY™ is a trademark of Unify Corporation
ENTER, PAINT, ACCELL, and RPT are trademarlcs of Unify Corporation.
SQL™ is a trademark of International Business Machines Corporation.
Applix® is a registered trademark of Applix, Inc.
SunAlis™ is a trademark of Sun Microsystems, Inc. and is derived from Alis, a product marketed by
Applix, Inc.
SunINGRES™ is a trademark of Sun Microsystems, Inc. and is derived from INGRES, a product
marketed by Relational Technology, Inc.

Copyright© 1988 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part ofthis pub­
lication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any
form, or by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical,
or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

tMM14iiM\MMtWiJ/dtiffifu : :: & ·

Contents

Section 1 N01ES & COMMENTS .. 1

Editor's Notes .. I

Software Release Levels .. 4

World Hotlines .. 7

STB Duplication ... 8

USAC Organization .. 9

Using USAC ... 10

Using sun! hotline ... 11

0 Reporting Bugs .. 13

Using USA-4-SUN .. 15

SunOS Release Level .. 17

The Read This First .. 18

'Dot Dot' Releases .. 20

Sun Education .. 26

Section 2 ARTICLES ... 29

Time Changes .. 29

Yellow Pages.. 32

Using screendurnp 36

Expanded SunlPC Disk 39

Device Drivers .. .

Device Driver Calls .. ,,'+'·.•+ii

Disks and Controllers .. , •• ,":!!+"
SunOS Installation Aid .. ,.,

Subnetting ... , Ek'+hw"i'''······ 66

Section 3 STB SHORT SUBJECTS .. ,""""·············· 73

0
- iii-

Contents - Continued

Using boot ... 73 0
Port Numbers .. 75

Booting Kernels .. 76

Power Interrupts .. 77

Using history ... 78

Packet Overload .. 79

Bridge Box Limits ... 81

Section 4 IN DEPTH ... 85

Internet Protocols ... 85

Networlc Transfers ... 114

Sockets .. 126

Color Maps .. 139

Section 5 QUESTIONS, ANSWERS, HINTS, AND TIPS 155

Q&A, and Tip of the Month .. 155

Section 6 THE HACKERS' CORNER... 163

Devices Present ... 163

Section 7 CUMULATIVE INDEX: 1988 ... 185

0

0
-iv-

0
1

NOTES & COMMENTS

NOTES & COMMENTS ... 1

Editor's Notes .. 1

Software Release Levels ,... 4

World Hotlines 7

STB Duplication ... 8

USAC Organization .. 9

Using USAC ... 10

Q Using sun'hotline ... 11

Reporting Bugs .. 13

Using USA-4-SUN .. 15

SunOS Release Level .. 17

The Read This First .. 18

'Dot Dot' Releases .. 20

Sun Education .. 26

0

0

0

0

0

Editor's Notes

Editor's Notes

Q The 'Best of 1987' Features

0

1
@ @iMiii¥@8 iNW :;;;rn; M: MMWht?JrA

NOTES & COMMENTS

The January 1988 Software Technical Bulletin (STB) editor's notes include an
introduction to the 'Best of 1987' features, a set of expanded Sun software
product and release level tables, notes on world hotlines, and this month's The
Hackers' Corner in which additions to your . cshrc file provide greater user
convenience.

This month's STB features those short subjects, articles, and in-depth discussions
that were most requested, and answered many customer service questions
received during 1987.

These articles fall into the general categories described below.

a Preparing for Your USAC Calls

You will find the items in Section 1, Notes and Comments, helpful in
having needed information ready when you call 800-USA-4-SUN.
These items include STB duplication permission; a description of the
USAC organization; using USAC, sun!hotline, and 800-USA-4-SUN;
how to report bugs; and how to determine the SunOS release level you
are running.

a Other Available Information

a

These items include how to use the information in the Read This First
shipped with each new product or release level, a description of SunOS
'Dot Dot' releases, and information available from the Sun Education
email bulletin board.

Articles

The articles in this issue include helpful information on making changes
to your system clock when changing from standard- to daylight-time

I January 1988

2 Software Technical Bulletin issue 1988-01

Expanded Current Sun Software
Products and Release Level
Tables

World Hotlines

The Hackers' Corner

according to applicable local law; using the yellow pages and Q
screendump; expanding your SunIPC logical hard disk; writing and
calling about device drivers; information on disk controllers and disks;
and subnetting details.

a Short Subjects

Short items on various topics of interest appear, including information
on network packet overload and the limitations of Bridge Box units.

a InDepthFeatures

Emphasis on networking topics continues with detailed discussions on
internet protocols, network transfers, and a description of sockets. Color
maps are also discussed in this section.

a Q&A,andTipoftheMonth

This month's article repeats the customized . cshrc file that adds
convenience to your workstation working environment.

This January 1988 Software Technical Bulletin (STB) introduces a set of
expanded tables listing available Sun software products and the current release
level for each, as of the date shown at the beginning of the tables.

Five tables are now included each month for the categories listed below.

a Operating Systems

a Communications Products

a Unbundled Languages

a Unbundled Graphics

a Unbundled Applications

Use these tables along with STB articles that appear for a particular product.
You can then better determine what your software needs are, what functions are
available in a new release, and whether the release you are using is down-level
from the most current product release.

For Sun customers served by your local service groups, use the customer service
telephone numbers listed in this monthly item. Also, look to this section during
the upcoming year for details on your local support call policies and procedures.

This month's Hackers' Corner includes code that allows system administrators
to conveniently determine the devices attached to their systems.

January 1988

0

0

0

0

0

Section I -Notes & Comments 3

Again, please nole that such applications, scripts, or code are not offered as
released Sun products, but as items of in1erest to enthusiasts wanting to try out
something for themselves. They may not not work in all cases, and may not be
compatible with future SunOS releases. Please consult your local shell script or
programming expert regarding any application, script, or code problems.

Thanks.
The STB Editor

January 1988

4 Software Teclmical Bulletin issue 1988-01

Software Release Levels

As of December 18, 1987

Operating Systems

Product Name

SunOS (Sun-2 and Sun-3 Operating System)
Sys4 (Sun-4 Operating System)

Communications Products

Product Name

SunLink BSC3270
SunLink BSCRJE
SunLink Local 3270
SunLink SNA3270
SunLink Peer-to-Peer
SunLinkIR
SunLinkDDN
SunLinkDNI
SunLinkOSI
SunLinkMCP
SunLink TElOO
SunLink X.25

0

Current Release

3.4
3.2

Current Release

3.0
5.0
5.0
5.0
5.0
5.0 0
5.0
5.0
5.0
5.0
5.0
5.0

0
January 1988

0

0

0

Section I - Notes & Comments 5

Unbundled Languages

Product Name Current Release

Sun FOR1RAN* (for Sun-2 and Sun-3 systems) 1.0
Sun FOR1RAN* (for Sun-4 systems) 1.05
SunPro 2.0
NeWS 1.0
Sun Common Lisp-D 2.1
Sun Common Lisp-E 1.1
Modula-2 1.0
Cross Compilers 2.0

* Sun FORTRAN Note The f7 7 compiler is automatically included with SunOS release 3, which
includes SunOS releases 3.2, 3.4, and 3.5. Sun FOR1RAN release 1.0 (for Sun-2
and Sun-3 systems) and Sun FOR1RAN Release 1.05 (for Sun-4 systems) are
value-added products that support VMS extensions to the f7 7 compiler, and
must be purchased separately from the operating system.

Unbundled Graphics

I SunGKS

Product Name Current Release

2.1

Unbundled Applications

Product Name Current Release
SunAlis 2.1
SunINGRES 5.0
SunSimplify 1.0
SunUNIFY 2.0
Transcript 2.0
SunIPC 1.1
PC-NFS 2.0
SunTrac (for Sun-2 and Sun-3 systems) 1.0
SunTrac (for Sun-4 systems) 1.0/3.2

January 1988

6 Software Technical Bulletin issue 1988-01

Current Sun Software
Products and Release Levels

The preceding tables contain lists of current Sun software products and their Q
respective current release levels.

You will note that the Software Technical Bulletin (STB) contains articles from
time to time that detail technical changes in a given software product's next
available release.

Please contact your sales representative if you decide that you would like to
update the release level of a Sun software product you already use, or wish to
purchase another product. Use the tables to determine whether your release is the
current release level.

These tables appear monthly in the STB for your convenience.

January 1988

0

0

Section 1 - Notes & Comments 7

Q World Hotlines

World Hotlines Sun Customers throughout the world have service hotlines available for both
software and hardware support questions. The service hotlines are shown below.
If your country is not shown in the table, please phone your local Sun sales
office.

Australia Sun Australia (011-61-2) 957-2522
Lionel Singer Group (011-61-2) 957-2655

Canada Montreal Branch (514) 879-1914
Ottawa (613) 748-9617
Vancouver Branch (604) 641-1296
Western Branch (403) 295-0150

France Paris (33) 1 4630 2324
Sun Microsystems France SA

0 Gennany Munich (49) 891')5094-321
Sun Microsystems GmbH

Japan C. Itoh Data Systems (011-81-3) 497-4676
NihonSun (011-81-3) 221-7021

The Netherlands Soest (31) 2155 24888
Sun Microsystems Nederland BY

Switzerland Zurich (41) 1 828 9555
Sun Microsystems Schweiz AG

United Kingdom Camberley (44) 276 62111
Sun Microsystems UK Ltd

United States All, 1-800-USA-4-SUN
including Puerto Rico

lntercon All countries outside the (415) 691-6775
USA, Europe, and northern Africa

0
January 1988

8 Software Technical Bulletin issue 1988-01

STB Duplication

Duplicating the STB

Direct STB Purchase

Further Questions

Your company's software support contract includes a monthly issue of the STB,
which contains a quarterly, updated Customer Distributed BugsList (COB).
Each month, the copy of your STB is mailed to your company's primary contact
person or department. Sites with more than one contract may receive more than
one STB copy, depending on how the contracts are set up.

Your primary contact person or department may duplicate this 'master' STB
copy for all Sun woikstation end-users. So long as you duplicate copies and
route them only internally, there are no copyright infringement problems.

This limited pemiission for duplication is for your convenience only, however,
and does not include any duplication for resale, for distribution outside your
company, or for distribution to employees of companies not having a Sun
software support contract.

The STB is sent to the primary contact person named in all software support
contracts. Sun is looking into methods by which customers holding these
contracts may purchase extra copies directly.

Look to this column for an announcement regarding the purchase of extra STB
copies.

If you have any questions, comments, or articles regarding the STB or COB,
please send your ideas and questions to sun!stb-editor.

January 1988

0

0

0

Q USAC Organization

Phone Support Organization

Product Groupings

Q U.S. Answer Center

Why the Change

0

Section I - Notes & Comments 9

The Customer Software Services organization is organized to better serve our
support contract customer base.

This structure features support groups that are organized around product
categories. These are:

D UNIX

o Graphics

o Languages

o Data Communications

o Applications (e.g. Sun Ingres, Alis)

o Personal Answer Line

Collectively, these groups report to the position of U.S. Answer Center manager.
The USAC manager reports directly to the Director of Customer Software
Services.

This organization allows more technical depth in specific areas rather than a
generalist approach. It also allows much room for expansion, flexibility and
growth as customer requirements change.

This organization fits in with our already announced services (AnswerLine and
Personal AnswerLine).

Customer Software Services expects this organization to improve our
productivity and, we hope, improve customer satisfaction. Please feel free to
send us your comments, and remember that we are convinced this change will
bring about a permanent improvement.

January 1988

10 Software Technical Bulletin issue 1988-01

UsingUSAC

U.S. Answer Center:
Feedback Wanted

Here in the U.S. Answer Center (USAC), we strive to maintain the highest level
of commitment to our customers, listening and responding to their needs. In
order to help us improve our service, we encourage your feedback. Please send
all letters to the address shown below.

Sun Microsystems, Inc.
2550 Garcia Ave.
Mt. View, CA 94043
Attn: Marion Brown 2-30

January 1988

0

0

0

Q Using sun/hotline

Using your sun/hotline

0

0

Section 1 - Notes & Comments 11

The email address sun! hotline is for use by customers holding software support
contracts. When sending email to sun/hotline, you should always include the
information listed below. If any of the information is missing, it may take longer
to get the needed support.

o workstation model and serial number

o name

o phone number and area code

o electronic mail address (sendmail does not always show the correct
address.)

o company or organization name and address

o SunOS release number (See the note SunOS Release Level in this issue
to find how to determine your SunOS release level.)

o any information which may help diagnose the problem

Information that helps diagnose the problem includes what was running when the
problem occurred, a description of symptoms including exact text of any error
messages, a small test program that exhibits the problem, your hardware
configuration, or any other information that seems appropriate to the problem at
hand.

Please avoid sending large files by email.

January 1988

12 Software Technical Bulletin issue 1988-01

A service call is logged and the call is assigned 10 an engineer. After the call is Q
logged, you will receive email giving the service order (SO) number and an
engineer's phone number to call. 1bis usually is done the same day the email is
received.

Use the phone number when you have not received a response from an engineer
within 24 hours. Please note that a response is not necessarily an answer. The
engineer may simply send email just to say 'I have it and am working on it'

Finally, please note that sun/hotline is for software-related questions only. For
customers holding support contracts, hardware troubleshooting questions may be
called in 10 800 USA-4-SUN.

January 1988

0

0

0 Reporting Bugs

Submitting Software Bugs:
U.S.

0

Summary

0

Section 1 - Notes & Comments 13

This anicle contains infmmation on reporting bugs within the U.S., for customers
holding and not holding suppon contracts. International customers should report
bugs through their respective local support groups.

Sun's U.S. Answer Center within the Customer Services Division (CSD) accepts
software bug reports from Sun users via electronic mail and by phone. The
method you use to submit a bug report varies with your needs.

U.S. users holding support contracts can report bugs to the Sun U.S. Answer
Center via the (800) USA-4-SUN phone hotline. The U.S. Answer Center phone
hotline is the fastest way for a customer to find out if a problem is known and if a
workaround exists. The status of previously-reported bugs can also be obtained in
this way. The list of open software bugs is contained in the Customer
Distributed BugsList (CDB) and appears on a quarterly basis as a part of this
bulletin.

Customers holding support contracts can also submit bug reports electronically to
the address sun/hotline (hotline@sun.COM). This method generates a service
order, and can be used when lines of code or other information difficult to relay
over the phone is needed to describe the bug.

Customers who do not hold Sun software support contracts can repon bugs via
electronic mail to the address sun!sunbugs (or sunbugs@sun.COM). These
reports are reviewed periodically to determine proper disposition. Those reports
determined to be from supported customers are forwarded to the U.S. Answer
Center for handling. Reports from customers who cannot be verified as holding a
support contract are reviewed by Sun's Software Quality Assurance (SQA)
personnel. An internal bug report is generated if the reported bug is new and
verifiable.

For U.S. contract customers, (800) USA-4-SUN is the best method to report
bugs. The electronic mail address sun/hotline is also available to report less
time-critical bugs, and for submission of materials that are difficult to relay over
the phone.

For non-contract customers, the electronic mail address sun!sunbugs is available
to report bugs.

January 1988

14 Software Technical Bulletin issue 1988-01

To help us serve you better, please include the following infmmation with all 0
electronic mail reports:

o Yourname

o The name and address of your organization

a Your Sun site code, if available

a Your worlcstation model and serial number

a The software release(s) you are running
(See the note SunOS Release Level in this issue!)

a A description of the problem that you are experiencing

0

0
January 1988

0 Using USA-4-SUN

Using 800 USA-4-SUN

0

Routing Your Calls

0

Section 1-Notes & Comments 15

All Sun customers may call the 800 USA-4-SUN phone line for assistance in the
use of Sun software, hardware, and network products. lbis article explains what
information you will need when you call, and how your call is routed to the
service engineer who helps you. Your call will be routed to different support
locations, depending on whether you have a support contract and on what type of
product you are using that requires customer support.

When calling the 800 USA-4-SUN number, you should always have the
information listed below ready. If any of the information is not readily available,
it may take longer to route your call properly.

o workstation model and serial number

o purchase order (PO) number (for those customers not holding support
contracts)

o name

o company or organization name and address

o SunOS release number (See the note SunOS Release Level in this issue
to find how to determine your SunOS release level.)

o problem description

Many customers call after talking to their sales representatives. Others call
'cold'. In either case, you are prompted by a prerecorded message. It asks those
not holding support contracts to have their PO number handy. The recording
then asks you to dial a number, depending on the type of support needed. The
current options are listed below.

Dial 1

Dial2

Dial 3

Dial 6

for software support

for hardware support, including returning or exchanging parts

to schedule the installation of a new system

for telemarketing, to purchase customer service products or
service contracts

After you select a number, a service dispatcher will ask you for the information
listed above and for a brief description of your problem. The dispatcher then
uses your problem description to route your call to a support engineer who
specializes in the product that is the subject of your phone call.

January 1988

16 Software Technical Bulletin issue 1988-01

The dispatcher logs your service call and will give you a service (SO) number 0
that you may use as a reference to your call in future calls, mail, or email. Your
call is now routed to specialists who answer calls for their particular subject
matter area.

You can now expect an engineer to return your call that same day, or during the
next normal working day.

January 1988

0

0

Q SunOS Release Level

0

0

What Sun0S Release are You
Running?

Section 1 - Notes & Comments 17

Customers may need to know exactly which Sun0S release they are running
when a problem occurs. Toe AnswerLine people often need this infonnation to
help customers find a solution to a particular problem.

There are a variety of ways to detennine your SunOS release. One commonly
used method is the command shown below.

cat /etc/motd

This command displays the current contents of the message-of-the-day file. This
is fine in many cases since the SunOS release level is usually indicated in this
file.

However, in cases where the customer has modified the mechanism in
/etc/re. local which loads / etc/motd, the release level may be
inaccurate, or may be missing completely. For this reason, a more reliable way
to detennine your SunOS release level is to use the following pipeline.

strings /vmunix I grep UNIX

The above displays the version string from the disk image of the kernel always
booted under normal conditions. Unless you are running a specially named
kernel for debugging purposes, the above sequence will indicate the release level
for the system you are actually running at the time the command is executed.
This is the surest method of knowing what SunOS release you are using.

Make a note of your SunOS release level when you next call your AnswerLine.
The infonnation will then be up-to-date and handy when needed.

January 1988

18 Software Technical Bulletin issue 1988-01

The Read This First

Using the Read This First
(RTF) Document

The RTF Format

Copying and Distributing the
RTF to Other Users

'This article contains a discussion of the purpose and use of the Read This First
(RTF) document provided with all Sun Microsystems software.

The primary purpose of the RTF is to provide the user with current, pertinent
information about the corresponding software product 'This includes installation
considerations of importance to system administrators when installing a new
product or upgrading an existing product. Additionally, details are provided of
new or changed features of importance to product users.

Read the RTF thoroughly before beginning the installation or upgrade since
much of this information should be kept in mind at that time.

The format of the RTF is designed to include the items listed below.

o Software compatibility with Sun system hardware and operating system
release levels

0

o Environmental requirements, such as physical space and minimum swap Q
space needed for proper operation

o Product or release anomalies or both

o How to get help

The RTF is the designated document to include information describing
installation and usage problems encountered during the final testing of the
product. These descriptions usually include worlcaround methods. The RTF also
describes any errors in the product documentation, as well as the revised form,
reflecting the current state of the product.

In some locations, the individual responsible for installing product software does
not actually use the product. In these situations, the person installing the
software will want to have copies of the RTF made for internal distribution to the
Sun Workstation end-users. 'This ensures that information affecting product use
is provided to developers and users of the corresponding product and dependent
applications.

The primary contact person or department may duplicate the 'master' RTF copy
for all Sun Worlcstation end-users, as well as to those who need the information.
So long as the copies are duplicated and routed internally to employees working
for a company having the product license, there are no copyright infringement
problems.

January 1988

0

0

0

0

Section I - Notes & Comments 19

This limited pennission is for the convenience of Sun customers only. It does
not include any other Sun documentation, nor does it permit any duplication for
resale or distribution outside your company.

January 1988

20 Software Teclmical Bulletin issue 1988-01

'Dot Dot' Releases

Sun0S 'Dot Dot' Releases

Sun0S 'Dot Dot' Release
Availability

'Dot Dot' Ordering Infonnation

Sun Microsystems is now releasing tapes containing bundled patches every two
or three months, between other SunOS releases. These new releases are called
'Dot Dot' releases. Look to this article and future articles in the STB 'Notes and
Comments' section that contain announcements of 'Dot Dot' releases, lists of
specific fixes, fix reference nUillbers, and a synopsis of each corrected problem.

SunOS 'Dot Dot' releases are available at no charge to Sun customers holding
software support contracts, and to all Sun customers under warranty. Other Sun
customers wishing to purchase a particular release may do so for $200 USD.

To request or order a release, please call 1-800-USA-4-SUN and request the
release by its 'Dot Dot' nUillber, or by the Order Management and Retrieval
(OMAR) nUillber appearing in the next paragraph and in the Customer Support
price list. For Sun Europe customers, please call your local support group or
sales representative.

0

The first two releases available at this time are SunOS releases 3.4.1 and 3.4.2.
Please note that these two dot dot releases can be installed separately or together
on systems currently running SunOS release 3.4. 0
Use the infonnation below to order SunOS releases 3.4.1 or 3.4.2 or both.

A list of release contents appears at the end of this article. Use these two lists to
determine whether you need either release.

Sun0S Release 3.4.1

Description CPU-type Media Size OMAR# Unit Price

Docs,&Tape 68010 1/4" DOTI-01-3.4.1 $200
Docs,& Tape 68010 1/211 DOTI-02-3.4.1 $200
Docs,& Tape 68020 1/4" DOT3-0l-3.4. l $200
Docs, & Tape 68020 1/2" DOT3-02-3.4.1 $200

Sun0S Release 3.4.2

Description CPU-type Media Size OMAR# Unit Price

Docs,&Tape 68010 1/4" DOTI-01-3.4.2 $200
Docs,&Tape 68010 1/2" DOTI-02-3.4.2 $200
Docs,& Tape 68020 1/4" DOT3-01-3.4.2 $200
Docs, & Tape 68020 1/2" DOT3-02-3.4.2 $200

January 1988

0

0 SunOS Release 3.4.1

Section 1 - Notes & Comments 21

A list of SunOS 3.4.1 fixes, fix reference numbers, and a synopsis for each solved
problem appears below.

CJ blank, Reference Number: 1004642

Synopsis: screenblank allows the -k and -moptions while
in suntools.

CJ cgi, Reference Number: 1003572

Synopsis: Bad inquire_cell_array and
inquire_pixel_array nameargument

CJ cgi, Reference Number: 1003687

Synopsis: The CGI Mouse cursor is always visible.

CJ cgi, Reference Number: 1004825

Synopsis: -lcgi requires -lsuntool to compile a cgi pro­
gram.

CJ cgi, Reference Number: 1005251

Q Synopsis: close_cgi_pw () fails ifno viewsurface is active.

0

CJ cursor, Reference Number: 1003864

Synopsis: The crosshair cursor does not work when
CANVAS FAST MONO is used. - -

CJ fpa, Reference Number: 1004500

Synopsis: A program compiled using -ffpa causes an FPA
KERNEL BUS ERROR to occur.

CJ f sck, Reference Number: 1003023

Synopsis: The fsck: HOLD BAD BLOCK message is undocu­
mented.

CJ gpl, Reference Number: 1004863

CJ

Synopsis: This is a GPl_PR_PGON_TEX problem.

gpl, Reference Number: 1004984

Synopsis: GPl_PR_ROP_TEX semantics are wrong fora 1-bit
deep src.

January 1988

22 Software Technical Bulletin issue 1988-01

o loopback, Reference Number: 1005131

Synopsis: The resolver has the wrong loopback address.

o make, Reference Number: 1003151

Synopsis: make does not always build the objects that it should.

o ping, Reference Number: 1004791

Synopsis: ping says machines are up even when they are not.

o printer, Reference Number: 1004074

Synopsis: lprm causes line printer daemon to disappear.

o rexd, Reference Number: 1005140

Synopsis: A rexd race condition occurs when mounting in
/tmp.

o scsi2, Reference Number: 1004639

Synopsis: This is a bug in the Sun-2 SCSI driver.

o sendmail, Reference Number: 1005042

Synopsis: Yellow Page alias must use primary host names.

o socket,ReferenceNumber: 1003135

Synopsis: panic: mfree occurs with AF UNIX
SOCK_ STREAM out-of-band (OOB) data.

o suncore, Reference Number: 1000895

Synopsis: Transformation of text that does not clip.

o sunpro, Reference Number: 1004898

Synopsis: The install_ sunpro script fails for all
configurations.

o termcap, Reference Number: 1004731

Synopsis: termcap entry for TERM=wy breaks initscr ().

January 1988

0

0

0

Q SunOS Release 3.4.2

0

0

Section I - Notes & Comments 23

A list of SunOS 3.4.2 fixes, fix reference numbers, and a synopsis for each solved
problem appears below.

o dbx, Reference Number: 1003647

Synopsis: Lexically recursive *includes confuse dbx

o dbx, Reference Number: 1004996

Synopsis: dbx shows segmentation violation while stepiing

o diag, Reference Number: 1005466

Synopsis: sysdiag's sptest fails with /dev/tty [a,b];
does not respond

o disk, Reference Number: 1005360

Synopsis: SCSI disk driver hangs when ACB4000 reports write
fault

o disk, Reference Number: 1005363

Synopsis: Some SCSI MD21 (141 MB) errors cause system hang

o ether, Reference Number: 1006127

Synopsis: Ethernet problems induced by bad ICMP address mask
reply.

o io, Reference Number: 1005930

Synopsis: physio bug causes writev(2V) failure

o io, Reference Number: 1001069

Synopsis: bug in physio breaks readv

o kernel, Reference Number: 1006165

Synopsis: sysdiag's softfp and mc68881 core dump (illegal
instruction)

o line, Reference Number: 1004863

Synopsis: This is a GPl_PR_PGON_TEX problem.

January 1988

24 Software Teclmical Bulletin issue 1988-01

o line, Reference Number: 1004984

Synopsis: GPl_PR_ROP_TEX semantics are wrong for a 1-bit
deep src.

o line, Reference Number: 1005359

Synopsis: Problem using pw_line and pw__polyline

o lockf, Reference Number: 1004336

Synopsis: lockf () very slow

o look, Reference Number: 1003885

Synopsis: look may dump core on long lines

o net, Reference Number: 1004765

Synopsis: subnet broadcast address computed incorrectly

o nfs, Reference Number: 1005489

Synopsis: NFS attribute cache functions incorrectly

o rpc, Reference Number: 1004739

Synopsis: rpc. lockd fails to free, thus using excess memory

o secs, Reference Number: 1003207

Synopsis: SCCS uses delta times for diffs

o secs, Reference Number: 1005438

Synopsis: SCCS deledi t duplicates random lines in a file

o scsi3, Reference Number: 1005366

Synopsis: System panics when using t t ya with SCSI3

o serial, Reference Number: 1006154

Synopsis: system is flooded with zs interrupts on synca/b tran­
sitions

o sun pro, Reference Number: 1004598

0

0

Synopsis: make does not handle square bracket characters in target
filenames Q

January 1988

0

0

0

Section I - Notes & Conunents 25

o sunpro, seven unnumbered fixes

Descriptions:

IJ

IJ

1) No longer dumps core if the source needed to build a library
member does not exist; instead reports "Don't know how to build x".

2) Fixed the -k option so that it worlcs for lists oftargets given on
the make command line.

3) Remove the .make. state lock file if make is interrupted.

4) Use the varargs mechanism for the error routines.

5) Fixed bug that caused very long command lines to be read
incorrectly.

6) Fixed bug that caused $ $ { X} . il to be read incorrectly when
used as a dependency.

7) Made it possible to undefine default suffix rules from the user's
makefile.

tape, Reference Number: 1004559

Synopsis: UNIX hangs while booting if xt controller has on-line
drive

transfer, Reference Number: 1006132

Synopsis: TCP/IP file transfer using ftp hangs/stops when using
3.4

January 1988

26 Software Technical Bulletin issue 1988-01

Sun Education

Sun Educational Services
email Bulletin Board

How to Be Added to the email
Bulletin Board

The New Educational Services
Course Brochure

Sun Educational Services, located in Milpitas, California, has set up an 'email
Bulletin Board' facility for Sun Microsystems customers.

This facility provides a means for interested customers to learn about new
courses and related developments happening within Educational Services. This
facility is also a good means for customers to direct questions and general
requests for information to Educational Services. These questions and requests
might be regarding course outlines, catalogs, how to arrange for a dedicated class
at the customer's site, and so on.

Customers who want to be added to the Education Services email Bulletin Board
should send their Usenet or DARPA addresses to:

customer-training@sun.com,
suncustomer-training

To ask questions, simply send the question to one of the above email addresses.

Sun Microsystems customers should soon be receiving the new Sun Educational
Services course brochure. The brochure contains complete course descriptions as
well as the course offerings scheduled from January, 1988 through June, 1988.

If you do not receive this brochure by November 10,1987, please contact your
local sales office or Sun Educational Services directly at either of the toll-free
numbers listed below.

In California:
Elsewhere in the continental U.S.:

800-423-8020
800-4 22-8020

Sun customers in the United Kingdom and in Europe should contact their local
service center or sales representative.

January 1988

0

0

0

0

JliM!I · iffiil \:;;::!Mdll!irrMJI

ARTICLES

ARTICLES

Time Changes

Yellow Pages

Using screendump

Expanded SunIPC Disk

Device Drivers .. .

Device Driver Calls

Q ~~~sani:~~::::e:~ .. :::

Subnetting

0

2

29

29

32

36

39

47

51

59

63

66

0

01

01

0

0

0

Time Changes

UNIX Kernels and Greenwich
Mean Time (GMT)

Time Zone (TZ) Problems

2
ARTICLES

All UNIX kernels use GMT. However, some systems allow users to set
environmental time variables as they like. This allows users to dial in from any
time zone and have the date command reflect the correct local user time.

The time zone, TZ, variable is supported by any program built in the System V,
release 3.2 environment This includes all commands in /usr/5bin, which
contains less than 1 % of the commands. Sun supplies S5 versions of commands
where there is a significant incompatibility between release 4.2 and S5 versions.
Thus, 99% of the commands are located in /bin, /usr/bin, /usr/ucb,
and the like. These commands are built with the release 4.2 libraries and do not
understand the TZ environment variable.

There are two problems with the TZ environment variable. First, it is difficult to
get TZ into every process' environment. Vanilla S5 systems attempt a solution
by setting TZ in /etc/ re for programs and their children that run from there.
TZ is also set in /etc/profile for login Bourne shells. This, however,
omits any user with non-Bourne login shells. You can fix this for the C-shell by .
putting TZ in your . login, or by making a system-wide . login file
(/ etc/ csh. login, for example) and placing TZ there.

However, this fix does not solve the TZ problem for some specialized
applications where the login shells are not shells in the standard UNIX sense.
You can fix TZ here by modifying the S5 login to preserve the TZ value in its
environment and having something set TZ before running getty. Note that
init does not run getty directly in S5. init has a table telling it what
programs to run and when. Each line in the table contains a UNIX command to
be run. For example, you could run the env command with arguments telling it
to set TZ and then to run getty.

29 January 1988

30 Software Technical Bulletin issue 1988-01

A History of Time

Time and Time Again: Sun
OS Release 3.2

The standard S5 as distributed by AT&T uses Eastern Standard Time (EST) if 0
TZ is not set. Vendors may change the time to their local time zone. Xenix
continues to use the V7 ft ime call, which gets time zone information from the
kernel. You are not forced to set TZ in the environment to get a local time zone.

Second, some programs do not use the user time zone but need to know the time
zone in which the the computer is located. An example is uucico, which
makes long-distance calls to other machines after 2300 in the computer's time
zone, not that of the user. A user can force the computer to make a long-distance
call at any local time by setting TZ as required and then running uucico.

Prior to the V7 ftime call, V6 had neither an environment nor an ftime call.
It supported the time zone complied into the C library only. If you were not in
the same time zone as Dennis Richie's computer, you had to recompile ctime
and rebuild every command that used the date.

V7, from AT&T and not Be!keley, fixed this by adding an ft ime call that
provided the current clock value, finer time resolution to include milliseconds,
the local time zone offset from GMT, and a flag indicating whether Daylight
Savings Time (DST) was to be used. You then merely had to reconfigure the
kernel. Release 4.lBSD, based on UNIX/32V which is a VAX variation of V7,
used ftime as well.

Release 4.2BSD improved ftime by replacing it with gettimeofday. This o
new call provided the time as timeval. It provided higher resolution in a
standard, system-wide format, the GMT offset, and the DST flag. The flag now
included what type DST was to be used. This accounted for the fact that not all
countries go on and off DST at the same time as the United States. Further, the
dates for the beginning and end of DST differ as well. Release 4.2BSD provided
tables for some locations outside the USA, but those tables were not always
correct. Some fixes were made in release 4.3BSD. Sun OS release 3.2 provides
additional fixes correct at the time of release.

System Ill did not include ft ime. It sets the current time zone from the TZ
environment variable. This arrangement has the same problems detailed above
and it still does not cover time zones outside the USA. Problems arise when the
USA, Australia, and Europe did not go to DST at the same times.

Release 4.2BSD is somewhat more accurate, although it does not understand
Australian and European rules completely. Canada is treated as being under the
same rules as the USA and the USA DST changes of 1987 are not incorporated.
Release 4.3BSD has corrected some of the European and Australian rules, as well
as Canadian rules that did not change in the mid 1974-5.

Sun OS Release 3.2 has rules that should be correct for Europe. The Australian
rules have two variants. The first starts on the last Sunday in October and ends
on the first Sunday in March. The second does the same thing until 1985 when it Q,
ends on the last Sunday before March 21 and in 1986 when it starts on the last
Sunday in October and ends on the last Sunday before March 21.

January 1988

0

0

0

The TZ Environment
Variable

Section 2 - Articles 31

According to the Australian consulate, DST starts on the next-to-the-last Sunday
in October and ends on the last Sunday before March 21. Finally, Sun OS
Release 3.2 includes USA changes made in 1987.

Sun OS Release 3.2 should also choose the proper time to start and end DST. It
starts at 0200 standard time and ends at 0200 DST in the USA and Canada. It
starts at 0200 standard time and ends at 0300 DST in Australia. It starts at 0100
standard time and ends at 0200 DST in Great Britain, Eire, and the Western
European time zone. It starts at 0200 standard time and ends at 0300 DST in the
Central European time zone.

Note that these latest tables are compiled into the ct ime code. Only
applications built with the Release 3.2 library will use them. Applications built
with earlier library versions will give the same results under Release 3.2 that they
gave under earlier releases.

There is no facility in Release 4.2 to do the same time calculations. However,
Arthur Olson at the US National Institutes of Health (NIH), implemented a new
version of the time zone code that pennits four things:

1. Pennits you to set TZ to alter the time zone infonnation you see.

2. Pennits programs like uucico to see the correct local time zone,
regardless of the TZ value.

3. Pennits you to set up any time zone conversions in accordance with the
wisdom of your local politicians.

4. Pennits you to change time zone conversions as political wisdom changes,
as it is want to do from time to time.

The TZ environment variable is treated like a filename. The file contains a DST
rules table. Given the filename, a routine reads in the table. If the table has not
already been read in, ctime, local time, and the SS routine tzset call
this routine with the value of the TZ environment variable as the filename. The
routine looks for the file named local time if a null pointer is passed. You
will then get the proper local time if TZ is not set or if the program explicitly
calls this routine with a null pointer like uucico does.

This will probably appear in Release 4.4BSD (date unknown) and may appear in
a future Sun OS release. This would free developers from having to anticipate
future DST rules changes.

January 1988

32 Software Technical Bulletin issue 1988-01

Yellow Pages

The Purpose of the Yellow
Pages (YP) Service

The Yellow Pages (YP) Seivice provides a sei of maps or data files common to
one or several systems. These maps contain network configuration infonnation
about these systems. Workstations and tenninals then use these maps instead of
having files of their own.

The yellow pages seiver contains a set of yellow pages maps. YP clients bind to
the seiver to access these maps. Only the seiver maps need updating since it sets
up a domain to which YP slave seivers and clients belong. Multiple YP domains
may exist on the same network.

The YP seiver makes its maps from configuration files used in Ethernet
networking with other systems. A YP client checks its local file first. Not
finding the infonnation locally, it then consults the YP seiver maps. The
configuration files used to create the maps are shown below.

/usr/lib/aliases
/etc/ethers
/etc/hosts
/etc/ethers
/etc/group
/etc/netgroup
/etc/networks
/etc/passwd
/etc/protocols
/etc/services

Customers get the best use of the yellow pages seivice at a site including large
numbers of computers which are networked together in a common network.
Such sites are constantly dynamic, adding or moving systems, and adding or
removing users from the networked systems. A number of Sun workstations may
be included which network with each other and other computers through utilities
including rlogin, rsh, telnet, ftp and tftp.

System administrators may have difficulty maintaining the several network
configuration files for each system when the environment is constantly changing.
The yellow pages seivice helps by having only one set of master maps that is
changed by the master YP seiver for all Suns workstations on the network.

Other workstations use the master maps by binding to the YP seiver. This bind
process runs continually on the YP client, the workstation being seived, and is
called ypbind. The YP seiver runs /etc/ypserv and /etc/ypbind to
seive its YP clients.

January 1988

0

0

0

0

0 YP Server Installations

0

Section 2-Articles 33

Once a day or week the system administrator updates the YP master server
/etc/hosts, /etc/others, /etc/passwd, and other files. The system
administrator then updates the yellow pages by remaking the YP maps. This
procedure takes only a few minutes. The YP clients then bind to the YP server
and use the updated maps to find host- and user-names only after the client
determines that its local files do not have the needed information.

A single YP server may not be sufficient to meet client YP requests in a large
networlc environment Sun yellow pages have YP slave servers configured in
such large networlcs. These YP slave servers access YP maps and clients bind to
these slave servers using / etc/ypserv and / etc/ypbind. To further aid
the customer, YP slave server configuration files are updated automatically,
receiving the updated YP maps from the YP master server.

More than a single YP master server is found in very large networking
environments. You may find multiple domains on these large networlcs since
each YP master server defines a separate YP domain. There is no conflict since
each YP clients knows which domain it is in. The YP client's domain name and
YP slave server hosts are determined when the YP master server is configured by
setup. The /bin/domainname utility returns the YP domain name to
which a YP client or slave server belongs.

The YP master server, slave server, and client system is installed using the steps
listed below.

1. The system administrator initially runs setup to install the Sun system.
The YP master server is configured as such at this time. The names for all
possible YP slave servers are also configured on this same machine. The
names are also configured on the YP slave servers at this time.

2. Update the YP master server YP maps daily by changing the YP master
server configuration file or files (/etc/hosts, /etc/passwd, and the
like), and by running /etc/ypmake <mapname> or /etc/ypinit
for all maps as needed.

3. The YP master server then sends these updated YP maps out to the YP slave
servers. They should be running /etc/ypserv to automatically receive
the updated maps. The system administrator otherwise has to do a yppush
to the slave server when it is ready.

4. The YP client then can run /etc/ypbind which is broadcast to all YP
slave servers. The slave server responding first is the one to which the YP
client is bound. This process assumes that the YP slave server responding
first is the least busy so that the networlcing load is most evenly distributed.
This process continues and the client stays bound to the same slave server
until the YP client reboots.

January 1988

34 Software Technical Bulletin issue 1988-01

YP Utility Summary

5. The YP client automatically rebinds to another YP server in the event a YP 0
server goes down. The YP client requests a YP service to its YP server via
an rpc call. The server may or may not respond. The client drops its
ypbind with this server and ypbinds to another server if a second
request results in no response.

6. For example, the YP clients runs a request for telnet host56832. First, the
YP client's own /etc/hosts file is consulted. Ifno entry forhost56832
is found, the YP client requests a service for a YP map lookup using an
rpc call to the YP server. This request for the internet host56832 address
goes to the client's YP slave server or to the master server if no slave server
exists. The YP server then responds with the internet address. The YP
client continues and performs a telnet request to host56832.

A selected list of YP utilities appears below.

1. /etc/ypserv

The process the YP master or slave server runs to serve YP maps.

2. /etc/ypbind

The process any YP master or slave server or client runs to issue or resolve o-
YP requests via rpc.

3. / etc/ypwhich

Returns the YP service domain name.

4. /etc/ypwhich -m

Returns which YP master or slave server owns the YP maps. The one which
ran ypmake is the one who made the new map. Check this if you suspect
that your YP maps are incorrect. It may be the wrong server who ran the
ypmake.

5. /etc/yppoll

To find out the version of the YP maps you are using. This command may
be run on any machine, YP server, or client.

6. /bin/ domainname

Returns the YP domain name that the system is in. This is set in the
/etc/re.local file on each system whether a YP server or client. This should
be checked if the YP maps appear incorrect.

January 1988

0

0

0

0

Section 2 -Articles 35

7. /etc/ypcat

Does a cat of a YP map. For example: "/etc/ypcat hosts" should provide a
list of the hosts known to YP.

8. /etc/ypmatch

This utility is new to release 3.0 and provides a grep-like feature. For exam­
ple, "/etc/ypmatch joe passwd" should show a passwd entry known to YP.

January 1988

36 Software Technical Bulletin issue 1988-01

Using screendump

screendump: Saving and
Printing Images

Saving Images

Printing Saved Images

Customer Support receives many questions on how to save screen images to files
for subsequent display or hardcopy output. This article summarizes usage and
possible pitfalls of the related utilities on the Sun workstation.

Type the following command to save a screen image to a file named
raster file.

% screendump rasterfile

If you now runfile(l) on rasterf ile you will see a response something like
the example shown below.

% file rasterfile
rasterfile: rasterfile, 1152x900xl standard format image

0

file(1) is reporting the width, height and depth of the raster image in pixels,
respectively. If this image had been created on a color screen, the depth would
have been listed as '8'. For those interested in the details of rasterfile format, see
the Pixrect Reference Manual, part number 800-1254, and Q
/usr/ include/rasterfile. h.6

Once an image has been saved, it is available for redisplay or printing. To
display the image on the screen, simply use screenload(l) as shown below.7

% screenload rasterfile

To print rasterfile on the Sun Laserwriter, a special TRANSCRIP'r8 filter
has been created for use by lpr. Thus, the command shown below will access
this filter and print rasterfile.

% lpr -v rasterfile

Printing can be a problem with color images, however. Since the Laserwriter
represents only monochrome images, you must first convert a color rasterfile
before sending it to the printer. A handy filter for this purpose is rasfi/ter8tol (1).

6 In particular, Sun View and Pbr.rect programmers will want to know that screendump creates rasterfiles
with a colonnap sire of 256. SunCore programmers should be aware that the screendump colonnap takes
color intensity values from zero to 255 rather than from zero to one as in Sun Core. SunCore programs need to
convert from one colonnap type to the other to interface with screendump.

7 The Sun View, Pixrect. and SunCore packages all have internal facilities for loading a rasterfile as well.
See pr _load() in the Pixrect Reference Manual, and file _Jo _!aster() in the SunCore Reference Manual, part

munber 800-1257, for details.

s TRANSCRIPf is a trademark of Adobe Systems, Inc.

January 1988

0

0

0 Current Frame Buffer Details

0

Section 2 -Articles 37

Use the command shown below to print an image created on a color monitor.

% rasfilter8tol < rasterfile I lpr -v

In addition, screendump on color monitors can fail, causing a corrupted
image, if anything on the screen is moving during the dump. Examples include
moving the mouse cursor, a ticking clock, a perfmeter (performance meter), or
even a blinking caret. So be sure to exit or cover any tool which is updating the
screen while screendump is active.

Another special case is the Sun high-resolution, monochrome monitor. If a
screendump made on this monitor is printed, part of the image will be cut off.
The solution is to access the TRANSCRIPT filter explicitly, telling it to scale the
image so as to fit all on one page. Try the command shown below to scale the
image to fit on an eight-inch page.

% screendump I pssun -s 8 I lpr

Note that since the filter pssun is being called explicitly, the -v option to
lpr should be omitted. Calling the filter explicitly provides several additional
capabilities in the form of options to ps sun, including rotation and replication.
See the pssun(1)9 manual page for more information.

Details follow describing how screendump knows to dump the current frame
buffer. screendump has a default notion of the frame buffer, / dev / fb.
However, there are cases in which one wants to dump images from a frame
buffer other than / dev / fb, for example, on a machine with two frame buffers.
For this purpose, screendump has a -f option which, in the example shown
below, will store the image currently displayed on the color frame buffer, even if
that frame buffer is not represented by / dev / fb. Note that screenload
has a parallel -f option.

% screendump -f /dev/cgtwoO rasterfile

Another reason to specify the frame buffer name is the unique frame buffer
configuration of the Sun-3/110. This machine has two frame buffers, one
monochrome (/dev/bwtwoO) and one color (/dev/cgfourO), plus an
overlay plane. The switcher(]) man page describes how to invoke suntools
twice, once on each frame buffer. When starting suntools in this way, be
sure to use the -f option of screenload or screendump to access the
desired frame buffer.

Some users like to start suntools on the 'merged' frame buffer, that is,
combining the color and monochrome frame buffers and using the overlay plane
to indicate which frame buffer is being used on a per-pixel basis. Note that
starting suntools without any options means running in the merged frame

9 This manual page must be loaded from the TRANSCRIPT installation tape.

January 1988

38 Software Teclmical Bulletin issue 1988-01

For Further Infonnation

buffer. Color windows, e.g. color images from a graphics package, reside in 0
cgfourO and monochrome windows, e.g. shelltools, cmdtools,
textedit windows, and the like, reside in bwtwoO.

As a result, it is not currently possible to screendump the entire screen in this
particular case. Running screendump on cgfourO saves the color images
while specifying bwtwoO stores the monochrome. In either case, the parts of
the screen defined by the other frame buffer are left blank in the resulting
rasterfile. If no frame buffer is specified, / dev / fb is used and this corresponds
to /dev/cgfourO.

UNIX manual pages used as references in preparing this article are listed below.

D screendump(I)

D screenload(I)

D rasfi/ter8tol (1)

D pssun(I)

D rastrepl(I)

D file(I)

D lpr(I)

D switcher(I)

o suntools(I)

Sun manuals used as references are shown below.

o Pixrect Reference Manual, part number 800-1254

o Sun View Programmer's Guide, part number 800-1345

o SunCore Reference Manual, part number 800-1257

o Release 3.2 Manual for the Sun Workstation, part number 800-1364

o Release 3.4 Manual for the Sun Workstation, part number 800-1614

The following inc 1 u de file is used for reference.

o /usr/include/rasterfile.h

January 1988

0

0

Q Expanded SunlPC Disk

0

0

Creating a 30 Mbyte SunIPC
Logical Hard Disk

Background and Requirements

Two Procedures

Procedure I: IBM AT
Diagnostics Diskette Available

Section 2 - Articles 39

Use the procedures shown in the Sun /PC™ User's Guide, part number 814-
1002, chapter 4, 'Using Disks' to create logical hard disks up to 20 Mbytes in
size.

Use the procedures contained in this article to create a 30 Mbyte SunIPC logical
hard disk.

You may wish to increase the size of your SunIPC logical hard disk as your disk
needs increase. Initially, your SunIPC logical hard disk occupies about 1 Mbyte
of storage space. The name of this file(s) is /usr/pctool/drive_C.pcO
through /usr/pctool/drive_C.pc3, depending on your having up to
four SunIPC boards installed in your system. In this article the case of a single
SunIPC board and file /usr/pctool/ drive_ C. pcO is considered.

The logical hard disk grows to approximately 10 Mbytes by default as users store
more files or PC applications or both. The maximum disk size upper limit may
be reset, allowing additional disk storage.

You must have access to a SunIPC floppy disk subsystem to change the SunIPC
logical hard disk size. You will create a bootable floppy before beginning the
procedures in this article. This is required since the existing drive C is destroyed
when changing the logical hard disk size. Note that you cannot backup your
logical hard disk to an NFS server since it is not possible to boot SunIPC from a
networlc device.

Also note that it is best to change the logical hard disk size when you first receive
the SunIPC board. Backup time at a later date may be greatly increased by your
having many PC application programs stored on the logical disk.

Use one of the two procedures shown in the following paragraphs, depending on
whether you have an IBM AT Diagnostics diskette available. Use Procedure I if
you have the disk, otherwise use Procedure II.

Use this procedure in the case that you have a copy of the DOS User's Manual
and an IBM AT Diagnostics diskette.

1. Backup the SunlPC logical hard disk contents onto floppy disks. Use
either the MS-DOS copy or backup command. See the DOS User's
Manual for command definitions if needed. The logical disk, drive C,
contains the MS-DOS, NFS, GWBASIC, and system utility files
included with the SunlPC board, plus any user files.

Note that additional backup procedures may be required, depending on
your application programs. Some application programs create 'hidden'

January 1988

40 Software Technical Bulletin issue 1988-01

files that may not be copied unless you use a special backup procedure. Q
This is part of some application programs' software protection schemes.
Refer to your application program user manual for any special backup
procedures.

2. Make a new system floppy disk. Insert a blank floppy disk in drive A.
Move to directory c: \ms dos and enter the command shown below.

c:\msdos> fo:cmat a:/s

This command causes MS-DOS to copy the necessary system files from
the SunIPC logical hard disk to the new system floppy disk.

3. Use the MS-DOS copy command to transfer the files listed below
from drive C to the new system floppy disk in drive A. Note that you
need to copy the Restore. Com file only if you used the backup
command in step 1.

COMMAND.COM
FDISK.COM
FORMAT.EXE
RESTORE.COM

4. Remove the new system floppy disk from the SunlPC floppy disk drive
A. Insert the IBM AT Diagnostics diskette and reboot the PCTOOL.

5. From the menu that appears, select option four, setup, and press
<Return>.

6. When prompted, verify the correct date and time. Change the date and
time as required.

7. When prompted with The following options have been set: Are these
options correct (YIN)?, press <N> and then press <Return>.

8. When prompted with Are diskette drive types correct (YIN)?, press <Y>
and then press <Return>. Do not change the floppy disk options.

9. When prompted with Your fixed disk drive types are set to the
following: Is this correct (YIN)?, press <N> and then press <Return>.

10. When prompted w,ith How many fixed disks are installed?, press <1>
and then press <Return>.

11. When prompted with Enter fixed disk type (l-15)for fixed disk drive C.,
press <8> which signifies a 30 Mbyte hard disk.

12. Check the next screen to ensure that you have entered the correct disk
type and then press <Y> if correct. Press <N> if incorrect and then
repeat steps 10 through 12.

January 1988

0

0

0

0

0

Procedure II: IBM AT
Diagnostics Diskette not
Available

Section 2 -Articles 41

13. Do not change any subsequent options.

14. The final screen prompts you with the selected options and asks for
verification that the options are correct. Check that the Fixed Disks
Drive C - Type is type 8 for the 30 Mbyte hard disk. Also check that no
other options were changed. Press <Y> if the options are correct and
then press <Return>. Press <N> if the options are not correct, press
<Return>, and then repeat steps 8 through 14.

15. Remove the IBM AT Diagnostics diskette from the SunlPC floppy disk
drive A. Insert the new system floppy disk you created in steps 2 and 3.

16. Press <Return> or use the mouse to reset the PCTOOL.

17. Reboot the SunlPC from the new system floppy disk. You must
reboot since you cannot change the disk size at the same time you are
running SunIPC from that disk.

18. Run the MS-DOS fdisk utility from the new system floppy disk.
This modifies the existing drive C to enlarge the logical hard disk.

19. Refer to the fdisk utility documentation in the DOS User's Manual.

20. First, select the third menu item, Delete DOS Partition. Second, select
the first menu item, Create DOS Partition. Third, select the second
menu item, Changing the Active Partition.

21. The fdisk utility forces you to reboot SunlPC again from the new
system floppy disk once the utility has finished changing the logical hard
disk partition.

22. Format the logical hard disk by entering the command shown below.

> format c:/s/v

23. Copy the files from the backup floppy disk(s) you created in step l onto
the new, 30 Mbyte SunIPC logical hard disk. Use either the MS-DOS
copy or the restore command, depending on whether you used the
copy or the restore command to create the backup floppy disk(s).

24. Reboot the SunlPC from the logical hard disk on drive C.

The procedure is completed. You are now ready to use the SunIPC as usual.

Use this procedure in the case that you do not have a copy of the DOS User's
Manual and an IBM AT Diagnostics diskette. You will use the MS-DOS
debug command to enlarge the size of the SunIPC logical hard disk.

January 1988

42 Software Technical Bulletin issue 1988-01

Again, note that up to four SunIPC logical hard disks may be installed on your Q
system. They use files /usr/pctool/cmos_rarn.pcO through
/usr/pctool/cmos_rarn.pc3, respectively. In this article the case of a
single SunIPC board and file /usr/pctool/ cmos_ram. pcO is considered.

1. Backup the SunlPC logical hard disk contents onto floppy disks. Use
either the MS-DOS copy or backup command. See the DOS User's
Manual for command definitions if needed. The logical disk, drive C,
contains the MS-DOS, NFS, GWBASIC, and system utility files
included with the SunIPC board, plus any user files.

Note that additional backup procedures may be required, depending on
your application programs. Some application programs create 'hidden'
files that may not be copied unless you use a special backup procedure.
This is part of some application programs' software protection schemes.
Refer to your application program user manual for any special backup
procedures.

2. Make a new system floppy disk. Insert a blank floppy disk in drive A.
Move to directory c: \msdos and enter the command shown below.

c:\msdos> fo,:mat a:/s

This command causes MS-DOS to copy the necessary system files from
the SunlPC logical hard disk to the new system floppy disk.

3. Use the MS-DOS copy command to transfer the files listed below
from drive C to the new system floppy disk in drive A. Note that you
need to copy the Restore. Com file only if you used the backup
command in step 1.

COMMAND.COM
FDISK.COM
FORMAT.EXE
RESTORE.COM

4. From a UNIX window, copy file /usr/pctool/cmos_rarn.pcO to
a file named cmos-tmp in a directory that is both accessible and
mountable via PC-NFS.

5. From a PCTOOL or a PC running PC-NFS on your networlc, continue
with this procedure and perform the following steps.

6. Use the PC-NFS NET USE command to mount the UNIX directory
containing the cmo s-tmp file you made in step 4. An example is
shown below.

NET USE<?>: \\<host>\<dir> ...

January 1988

0

0

0

0

0

Section 2 - Articles 4 3

7. Change the current hard disk to the PC-NFS volume by issuing a ? :
where ? : is the drive designation you used in the NET USE command
example shown in step 6.

8. Type the DOS command debug cmos-tmp and then press
<Return>.

9. You now see the debug prompt, a dash, on the left side of the screen.
The next 16 steps (steps 10 through 25) are done from the debug
prompt. Note that <sp> signifies typing a space using the space bar, and
<Return> signifies pressing the <Return> key. Type each command
exactly as shown in steps 10 through 25.

10. e <sp> 100 <Return>

11. 26 <Return>

12. e <sp> 102 <Return>

13. 16 <Return>

14. e <sp> 112 <Return>

15. 80 <Return>

16. e <sp> 114 <Return>

17. 33 <Return>

18. e <sp> 12F <Return>

19. 55 <Return>

20. e <sp> 142 <Return>

21. 45 <Return>

22. e <sp> 143 <Return>

23. 4A <Return>

24. w <Return>

25. q <Return>

January 1988

44 Software Technical Bulletin issue 1988-01

26. Type the DOS command debug cmos-tmp and then press 0
<Re!Um>. You will again see the debug prompt, a dash.

-d cs:100 L44

27. d <sp> cs:100 <sp> lA4 <Re!Um>

28. Check that the screen obtained from step 27 contains the new values you
entered in steps 10 through 23. A sample screen is shown below with
the ac!Ual changes highlighted with asterisks (**).

33CC:0100 26 00 16 00 15 00 06 04-03 87 26 02 50 80 00 00

** **
& ••••••••• &.P •••

33CC:0110 20 00 80 00 33 80 02 00-00 00 00 00 00 00 00 00 ••• 3 ..•••••••••

** **

33CC:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 01 55

**
............... u

33CC:0130 00 00 19 80 00 00 00 00-00 00 00 00 00 00 00 00

33CC:0140 20 4C 45 4A

** **

29. If your screen obtained from step 27 matches the screen shown above,
go to step 32, skipping steps 30 and 31.

30. If your screen obtained from step 27 does not match the screen shown
above, from the debug dash prompt, type the debug command q
and then press <Return>.

31. Type the MS-DOS command del cmos-tmp and then press
<Re!Um>. Go to step 4, and repeat this procedure by repeating steps 4
and 5. Then skip step 6, and repeat steps 7 through 29.

32. From the debug dash prompt, type the debug command q and then
press <Re!Um>.

33. If steps 6 through 32 were issued from a PCTOOL, use the right mouse
button to 'quit' the PCTOOL.

34. Begin working from a UNIX window on a Sun wmkstation.

January 1988

0

0

0

0

For Further Information

0

Section 2 -Articles 45

35. Copy the cmos-tmp file edited in this procedure to file
/usr/pctool/cmos_ram.pcO. Note again that this procedure
assumes that only one SunIPC logical hard disk is on your system. Up
to four IPC boards may be installed using files
/usr/pctool/cmos_ram.pcO through
/usr /pctool/ cmos _ ram. pc3, respectively.

36. Insert the new system floppy disk you created in steps 1 through 3 into
drive A.

37. Open a SunlPC window by entering pctool and pressing <Return>
which boots from the new system floppy disk.

38. Run the MS-DOS f disk utility from the new system floppy disk.
This modifies the existing drive C to enlarge the logical hard disk.

39. Refer to the fdisk utility documentation in the DOS User's Manual.

40. First, select the third menu item, Delete DOS Partition. Second, select
the first _menu item, Create DOS Partition. Third, select the second
menu item, Changing the Active Partition.

41. The fdisk utility forces you to reboot SunIPC again from the new
system floppy disk once the utility has finished changing the logical hard
disk partition.

42. Format the logical hard disk by entering the command shown below.

> fo:r:mat c:/s/v

43. Copy the files from the backup floppy disk(s) you created in step 1 onto
the new, 30 Mbyte SunIPC logical hard disk. Use either the MS-DOS
copy or the restore command, depending on whether you used the
copy or the restore command to create the backup floppy disk(s).

44. Reboot the SunlPC from the logical hard disk on drive C.

Regardless of whether you· used procedure I or II, the resulting file
cmos _ram. pcO (for one SunIPC board) will now expand to a maximum of 30
Mbytes.

See the Sun/PC™ User's Guide, part number 814-1002, chapter 4, 'Using Disks'
for a discussion that includes the additional topics appearing below.

c, differences between logical and physical hard disks

c, creating a board-independent autoexec. bat file

January 1988

46 Software Technical Bulletin issue 1988-01

o installing PC applications 0
o using disk drives D through V to work with NFS files

o reducing the logical hard disk size

o changing the logical hard disk location

0

0
January 1988

0 Device Drivers

0

0

Sun Workstation Device
Drivers: What We Support,
Common Questions, and
Answers
What Consulting Services Can
Do

Common Device-Driver
Questions and Answers

Section 2 -Articles 47

Sun's Customer Service Division (CSD) refers many customers with device­
driver questions to the Consulting Services group. Complicated questions that
are beyond standard support are most often referred to Consulting Services.

Our Consulting Services group answers questions which fall into the categories
shown below.

o Undocumented software and features

o Questions about hardware architecture

o Questions about software sources

o Questions about driver s e 1 e ct and nuna p routines

o Complicated memory management issues

o Device driver design issues

o Drivers which require a knowledge of, and access to, source code including

- block device drivers
- sophisticated pixrect drivers
- network interface drivers
- coprocessor drivers
- serial communications multiplexers

Writing a device driver requires some knowledge of UNIX internals, fluency in
the C programming language, and familiarity with Sun hardware and software.

An overview of customer concerns about device drivers can be gained by looking
at the most commonly asked questions and their answers. If you have a question
that remains unanswered, call your sales representative or your Answer Center.

o What is the difference between Direct Memory Access (DMA) and Direct
Virtual Memory Access (DVMA)?

DVMA is Sun's term for OMA. The difference between OMA and DVMA
is that DVMA goes through the Memory Management Units (MMUs).

January 1988

48 Software Technical Bulletin issue 1988-01

o Can a vme16dl6 device do DVMA?

No. At least 20 bits are needed to perform multibus DVMA, and 24 bits to

perform VMEbus DVMA.

o Does Sun conform to the VMEbus standard?

Sun follows the Motorola VMEbus specification. Many customers are
developing drivers for VMEbus devices. A useful document is the User's
Guide to the Sun-3/100 VMEbus, part number 800-1487, which may be
obtained through your Sun sales representative.

o At which bus grant level should a VMEbus device be set?

Bus grant level 3.

o What about VMEbus address modifiers? How do you tell the Sun to
generate the correct VMEbus address modifier?

0

From the device end, jumpers are usually set on the board. You can also
write the address modifier to the board via software. Q
If the driver resides in the kernel, the address modifiers telling the board
which addresses to respond to are normally Ox.OD (hex) for vme32 devices,
Ox2D (hex) for vme16 devices, and Ox3D (hex) for vme24 devices. The
Sun worlcstation automatically generates the correct address modifier since
the kernel configuration / de v file is already opened. This file tells the
system the address space in which the device resides.

If the driver is a memory-mapped user process, the device must wotk with
Sun CPU-generated user function codes. Appropriate address modifiers are
Ox.09 (hex), Ox.29 (hex), and Ox39 (hex) for vme32, vmel 6, and vme2 4
devices; respectively.

o Is there significant overllead in calling the kernel support routine
mbsetup ()?

No. mbsetup () sets up the memory map for a single, main-bus DVMA
transfer. A common misconception is that two data transfers take place
during DVMA: first, from the user address space to the kernel address space;
and second, from the kernel address space to the device. This is not the case.
mbset up() performs the mapping between the user address space, the
kernel address space, and the physical device. Only one transfer takes place o.·
at DVMA time. mbset up () itself does not transfer any data.

January 1988

0

0

0

Section 2 -Articles 49

a What happens if the flags argument to the kernel support routine
mbsetup {) is 0, and there is no DVMA space?

The requesting process will sleep until the resource becomes available.

a Is there a functional difference between the MDR_BIODMA and MDR_DMA
flags of the mdr_flags field element within the mb_driver structure?

No. The autoconfiguration software does not distinguish between the two
flags as of SunOS release 3.2.

a What is the last argument {off) to the mma p { 2) system call?

a

a

The last argument to mmap is the 'offset' into the device you have mapped.
This is usually the physical address jumpered on the board. This is also the
address which would be specified in the kernel configuration file as the
cs r, if a kernel device driver were being written for the device.

What if the device can only be addressed for a hardwired, pre-determined
value?

This addressing limitation may cause difficulty since your board might
conflict with other Sun devices. For example, if your board is a vme 2 4
device whose physical address is hardwired for Ox200000 (hex), there will
be a conflict with the Small Computer Systems Interface (SCSI) controller.
If your board is a vme32 device which can only be addressed at Ox400
(hex), there will be a conflict with the DVMA area. On the other hand, you
can have a vme 16 device at physical address Ox400 (hex), but it can not do
DVMA.

Chapter 2 of Writing Device Drivers for the Sun Workstation, part number
800-1304, for SunOS release 3.2, lists the physical address ranges for each
type of multibus and VMEbus device. This information can also be obtained
from the /usr / sys/ conf /GENERIC kernel configuration file, as well as
from the Sun Microsystems, Inc. Configuration Guide, Sun-3 Product
Family, October 1986, no part number.

What about devices which use two address spaces? For example, how do
you handle a device which has its memory in vme 2 4 dl 6 space and a
register in vme 16dl 6 space?

A detailed explanation on dual-address space drivers under SunOS release
3.2 is found on page 125 of Writing Device Drivers for the Sun Workstation,
part number 800-1304.

January 1988

50 Software Technical Bulletin issue 1988-01

D What are the hardware addresses of the MMU tables and registers, the 0
segment map, and the context register?

You should not need this information to develop a device driver for the Sun
workstation. However, if you feel that you need this information, it appears
in a proprietary architectnre manual. Under special circumstances, your
sales representative may arrange for you to obtain proprietary manuals on a
case-by-case basis. To obtain such manuals, you would need to sign a non­
disclosure agreement, which would also be signed by a Sun Microsystems,
Inc. Vice President.

o How do you perform an interruptible sleep in a device drivel'?

For SunOS release 3.2 and beyond, include the code shown below to set up
an interruptible sleep.

if (sleep(addr, prioritylPCATCH))
tell hardware to abort any I/0

return(EINTR);

This code requires that priority is greater than P ZERO (2 5) . If you
do this, ensure that the 1/0 in progress when you caused the interrupt will
not eventually complete and unexpectedly start the interrupt routine of your
driver.

January 1988

0

0

Q Device Driver Calls

0

0

Device Driver Calls:
Customer Preparation

Your Initial Call: 1-800-USA-
4-SUN

Device Driver Questions

Section 2 -Articles 51

Those Sun customers wishing to write a device driver may find infonnation in
this article helpful in getting the job done. Your first approach includes reading
the manual Writing Device Drivers for the Sun Workstation, part number 800-
1304.

After reading the manual, you may find that additional articles or manuals are
needed. Many of those relating to device drivers used most often by the
Customer Service Division (CSD) in both the United States Answer Center
(USAC) and CSD Consulting, are listed at the end of this article.

You may also find that some or all of your device-driver questions may be
answered by calling the USAC at 1-800-USA-4-SUN. The USAC customer
service engineer returning your call may be able to answer your questions, or will
be able to refer you to CSD Consulting. Details of both the USAC and CSD
Consulting support services follow.

In both cases, please have the infonnation described in this article ready when
you call. You will then have the needed answers to questions you will be asked
by the USAC customer service engineer. This infonnation will reduce the time
needed to define the issues to be solved, and to identify the available solutions.

Your first step is to call the Customer Service AnswerLine at 1-800-USA-4-SUN.
Sun customers outside the United States should contact their local support group
and follow the local procedures.

Your call is then logged and dispatched to one of the USAC support groups.
Please see the article 'Using 800-USA-4-SUN' on page 567 of the September
1987 STB issue for details on how your call is processed and forwarded.

If your call is about writing a device driver, you can expect to be asked the
questions described in these paragraphs. You may find that the USAC can
answer your questions, or you may be referred to CSD Consulting to purchase an
existing CSD Consulting Special or to explore purchasing a new, customized
Special. This referral is in the case that your question is beyond the scope of
USAC phone support. The CSD Specials are provided on a Time and Materials
(T&M) basis.

1. What type of device driver is it?

This question is asked to detennine if the device driver is for an unsup­
ported Special, or for some other unsupported configuration. Unsup­
ported Specials and configurations that may be referred to CSD Consult­
ing on a T &M basis include are listed below.

January 1988

52 Software Technical Bulletin issue 1988-01

o drivers requiring knowledge of and access to source code

o block or structured drivers for devices upon which file systems can
be mounted

o sophisticated pixrect drivers

o network interface drivers (e.g. Ethernet or X.25)

o coprocessor drivers tightly coupled with the CPU and integrated
below the kernel driver level

o serial communications multiplexors

o disk and tape drivers

o SCSI drivers

o low-level window system kernel code

o hardware architecture issues (e.g. hardware addresses of Memory
Management Unit (MMU) tables and registers, segment map issues,
and context register issues)

2. Do you want to use undocumented kernel support routines?

You will be referred to CSD Consulting in this case since the area of
interest is beyond Sun's released and documented products.

3. Do you expect Sun0S to be a real-time system?

SunOS is a time-sharing system. Refer to the Dennis Ritchie article
entitled 'UNIX Time-Sharing System: A Retrospective'. Also, look to
an upcoming STB issue for a discussion of differences between SunOS
time-sharing processing and real-time processing.

4. Do you need to lock the process text or data pages into physical
memory?

A CSD Consulting Special is available to lock the pages into physical
memory. Ask for CONSULT-PLOCK.

5. Do you need high-speed disciplines?

Another CSD Consulting Special is available. Ask for CONSULT­
HSPEED.

January 1988

0

0

0

0

0

0

Section 2 -Articles 53

6. Is your question about a device driver you purchased from Sun
Consulting?

You will be referred to CSD Consulting since a Special is not a released
product and is therefore not supported by the USAC. Specials are
unique, case-by-case solutions to customer problems. Unless arranged
and included at the time of purchase, Specials do not include USAC
phone support or automatic fixes of reported bugs. CSD Consulting
provides enhancement and modification services to Specials on a T &M
basis.

7. Do you have a driver written by a third party?

You will be referred to the third party in the case that your questions are
about a third party driver.

8. What model Sun workstation are your using?

This includes the exact model number within a product line, for example
a Sun 3/50. Please see the Tip of the Month in this month's STB
Questions and Answers section. This month's tip covers use of the
hostid(1) command to determine your exact model and product line
numbers.

9. What SunOS release level are you using?

The SunOS release level could be very important in determining the
nature of the problem you are having.

Please see the short subject on page 205 of the June 1987 STB issue for
details on how to determine the SunOS release level you are using.

10. What other devices are on your system? In which cardcage slots?

The answer to this question includes both Sun products as well as those
from third parties. The hardware configuration including cardcage slot
locations is needed to help define the problem.

11. What type of device is it?

The complete answer to this question includes the type of bus on your
system (Multibus, VMEbus, SCSI). In the case of a VMEbus device,
how many address bits and data bits does the device use? (vme24dl6,
vme16d16, vme32d16, vme32dl6, and so forth).

January 1988

54 Software Teclmical Bulletin issue 1988-01

12. In which slot is the device for the device driver located?

In the case of a Sun-3 workstation, you should check the Configuration
Guide Sun-3 Product Family for supported configurations if you are in
doubt.

13. Does this device do Direct Memory Access (DMA)? If so, does it do
DMA between the device memory and the kernel address space?
Between the device memory and user address space? Both?

Direct Virtual Memory Access (DVMA) is Sun's term for DMA.
DVMA processing goes through the hardware Memory Management
Units (MMUs). At least 20 bits are required to perform Multibus
DVMA, and 24 bits to perform VMEbus DVMA.

14. Have you verified that the device works by probing it with the PROM
Monitor?

Tirls procedure is described in Appendix A, Writing Device Drivers for
the Sun Workstation, part number 800-1304.

15. Are you writing a kernel device driver or a memory-mapped user
process?

0

A quick way to get a device up and running is to write a user program 0
first, a memory-mapped device driver. However, this is not possible for
the device in the cases listed below.

o interrupt-driven

o doesDMA

o responds only to supervisor function codes as generated by the CPU

o requires special processing such as done by ioctl

16. What is the device entry in your /usr/sys/conf/<filename>
kernel configuration file?

The term '<filename>' signifies the name you used for your kernel
configuration file.

January 1988

0

0

0

0

Section 2 -Articles 55

17. ff the device is a VME bus device, what is the address modifier?

Jumpers are set either on the board or by the driver when it writes the
address modifier to a device register. The most commonly used address
modifiers are listed in the VMEbus Specification and in the User's Guide
to the SunJ/ 100 VMEbus, part number 800-1487.

Use the address modifiers shown below when writing kernel device
drivers (supervisor data space).

Ox0D vme32
Ox2D vmel6
Ox3D vme24

Use the address modifiers shown below when writing memory-mapped
device drivers (user processes and user data space).

Ox09 vme32
Ox29 vmel6
Ox39 vme24

18. What is the interrupt level set on the board?

19. What is the interrupt vector?

20. What is the bus grant level?

All Sun VMEbus devices should have the bus grant level set at 3,
usually using jumpers on the board.

21. What is the hardware address of the device on the bus?

This depends on the device type, Multibus or vme24, 32 or 16. The
addresses are listed in tables in the manual Writing Device Drivers for
the Sun Workstation, part number 800-1304.

22. Have you checked the backplane jumpering?

Refer to the hardware installation manual shipped with your system.

23. Are you designing your own board?

Refer to the User's Guide to the Sun-3/ 100 VMEbus, part number 800-
1487. Sun products are compatible with the Motorola VMEbus
Specification, Revision B. Portions of revision C are incompatible with
Sun products. For example, in the area of unaligned data under revision
C, the 68020 processor allows 32-bit transfers at odd addresses. The
Sun architecture does not.

January 1988

56 Software Technical Bulletin issue 1988-01

Additional Device Driver
Resources

24. Are you fluent in the C programming language? UNIX internals? Sun Q
hardware? Sun software? Have you ever written a device driver for a
UNIX system?

Unless you answer yes to all of these, you may be referred to CSD
Consulting for expertise and support in these subjects.

25. What is the EXACT error message that you are receiving, including case
and punctuation?

26. Are you saving kernel core dumps?

Kernel core dumps are needed to analyze the conditions at the time the
error occurred. A dump may be requested from you by the USAC and
may be needed in determining the actual problem.

Refer to the procedure in the Periodic Maintenance chapter in the System
Administration for the Sun Workstation, part number 800-1323.

Additional resources available to Sun customers include the following three-day
course available through Customer Service Division (CSD) Education.

o Writing Device Drivers for the Sun Wortcstation

Objective

Prerequisites

Agenda

This course prepares system programmers to write Q
device drivers for Sun wortcstations.

This course requires a strong knowledge of the C
programming language, particularly structures,
pointers, and typecasting; and familiarity with
UNIX and kernel services including system calls
and system library functions. Previous experience
with device drivers is helpful.

The course agenda includes the UNIX 1/0 system,
UNIX device drivers, 1/0 devices (memory­
mapped, DMA/DVMA, and programmed 1/0), dev­
ice driver services, and adding device drivers.

Additional resources also include calling your USAC AnswerLine as your first
step to obtain information on purchasing a customized device driver.

o CSD Consulting Specials

USAC AnswerUne Please call using the USAC AnswerLine at 1-800-
USA-4-SUN, for proper dispatching of your call to
the United States Answer Center (USAC). The
USAC personnel will then forward your inquiry to Q

1

CSD Consulting if needed, and contact you at a

January 1988

0

0

0

References for Further
Infonnation

Outside the USA

Section 2 -Articles 57

later time with infonnation on when a consultant
will call. USAC may again follow up on your
inquiry or service needs at a later time, as part of
their suppon activity.

For those Sun customers outside the USA, please
contact your local suppon group and follow the
local procedures.

Please refer to the publications listed below for further, detailed infonnation on
device drivers, the SunOS, and the UNIX system.

o Writing Device Drivers for the Sun Workstation, pan number 800-1304

o Configuration Guide Sun-3 Product Family, no part number

o User's Guide to the Sun-3/100 VMEbus, pan number 800-1487

o Cardcage Slot Assignments and Backplane Configuration Procedures,
pan number 813-2004

o UNIX lnte,face Reference Manual, part number 800-1303, Section 2, for
details on system calls used in writing memory-mapped user programs

o Software Technical Bulletin, June 1987, part number 812-8701-05

o Sun-3 Architecture: A Sun Technical Report, no pan number

o The UNIX System: A Sun Technical Report, no part number

o Motorola VMEbus Specification, Revision B, VMEbus Manufacturers
Group, August 1982; for hardware engineers and designers

o Pixrect Reference Manual, part number 800-1254, Appendix A, 'Writ­
ing a Pixrect Driver'

o Operating Systems: the Xinu Approach, Doug Comer, Bell Labs,
Prentice-Hall, 1984

o The Design of the UNIX Operating System, Maurice J. Bach, AT&T,
Prentice Hall, 1986

January 1988

58 Software Technical Bulletin issue 1988-01

o The Bell System Technical Journal, Volume 57, Number 6, July-August 0
1978

- UNIX Time-Sharing System: A Retrospective, article,
D. M. Ritchie

- UNIX Time-Sharing System: UNIX Implementation, article,
K. Thompson

January 1988

0

0

Q Disks and Controllers

0

0

Identifying Controller and
Disk Configurations

Deskside Pedestal Label
Information

Section 2 -Articles 59

It is often necessary for users to determine the controller/disk configuration of
their Sun hardware. Use the following guidelines to determine the existing
hardware configuration on different systems.

Deskside pedestals have the following information included on a label located on
the front cover of the pedestal. This label is visible after removing the gray
faceplate.

DISK DRIVE CONFIGURATION

DRIVE 0
FUTITSU D
VERTEX D
MICROPOLIS D
OTHER D

OTHER

1
D
D
D
D

The appropriate disk(s) contained in the pedestal will be marked on this label.

The pedestal label does not specify the disk information listed below.

o Disk interface type -- Small Computer System Interface (SCSI), or
Storage Module Disk (SMD)

o Disk capacity

o Disk model designation

The disk interface type can be ascertained as shown below.

o Disks contained within the CPU pedestal are SCSI-type disks.

o Disks within expansion pedestals are SMD-type disks.

The disk capacity and model designation or both can be usually ascertained from
the following information.

January 1988

60 Software Technical Bulletin issue 1988-01

Sun-3 'Shoebox' Disk
Subsystem Label Infonnation

Newer Sun-3 disk subsystems (commonly referred to as 'shoeboxes') have a 0
small label affixed to the rear. For 71MB disk subsystems, the label appears as
shown below.

DISK DRIVE CONFIGURATION

FUJITSU D MICROPOLIS 1325 D

For 141MB disk subsystems, the label appears as shown below.

DISKCONFIG

D MICROPOLIS 1355
D TOSHIBA MK156FA

All Sun-3 disk subsystems utilize the SCSI interface.

0

0
January 1988

0

0

0

Section 2 -Articles 61

Sun-3 System Controller and
Disk Combinations

The following lists the controller and disk combinations used in Sun-3 systems.

Sun-3 'Shoebox' Disk Subsystems:

71MB Adaptec controller. Disks are primarily Micropolis 1325 and
Fujitsu M2243AS.

141MB Emulex controller. Disks are Micropolis 1355 and
Toshiba MK156F.

Sun-3/160 with SCSI Disk(s) in the CPU Pedestal

71MB Adaptec controller. Disks are primarily Micropolis 1325
and Fujitsu M2243AS.

141MB Emulex controller. Disks are Micropolis 1355 and
Toshiba MK156F.

Sun-3/160 and 3/260 with SMD Disks in an Expansion Pedestal:

280MB Xylogics 451 controller. Disk is the Fujitsu M2333.

Rack-mount SMD Disks:

575MB Xylogics 451 controller. Disk is the Fujitsu M2361 Eagle XT
(also known as the 'Super Eagle').

January 1988

62 Software Technical Bulletin issue 1988-01

Sun-2 System Controller and
Disk Combinations

Toe following lists the controller and disk combinations used in Sun-2 systems.

Sun-2 'Shoebox' Disk Subsystems:

71MB Adaptec controller. Disks are primarily Micropolis 1325 and
Fujitsu M2243AS.

lOOU with SMD Disk(s):

'84MB' Xylogics 450 controller. Fujitsu M2312K disk.
This combination is also referred to as a 'FAT' box, for
Fujitsu-disk and Archive Tape.

Sun-2/120 with SCSI Disk(s) in the CPU Pedestal:
42MB Adaptec controller. Disks are Micropolis 1325

and Maxtor XT-1050.

71MB Adaptec controller. Disks are primarily Micropolis 1325
and Fujitsu M2243AS.

Sun-2/130 and Sun-2/160 with SCSI Disk(s) in the CPU Pedestal:

71MB Adaptec controller. Disks are primarily Micropolis 1325
and Fujitsu M2243AS.

Sun-2/120, Sun-2/130 and Sun-2/160 with SMD Disk(s) in an Expansion Pedestal:

130MB Xylogics 450 controller. Disk is the Fujitsu M2322.

Rack-Mount SMD Disks:

'169MB' Xylogics 450 controller. Disk is the Fujitsu M2284.
This is only found in 150U and Sun-2/170 systems.

380MB Xylogics 450 controller. Disk is the Fujitsu M2351 Eagle.

January 1988

0

0

0

0

0

0

Sun0S Installation Aid

System and Sun0S
Installation Aids

Section 2 -Articles 63

You may find the table shown below useful during system and UNIX installation.
It summarizes controller and tape drive information needed when booting from
the PROM monitor and then when using diag. The first four controllers are
used for disk drives, and the last three controllers are used for cartridge and reel­
to-reel tape drives.

This information appears in different tables in the references listed at the end of
this article. For your convenience, use the single table below which brings
together much of the information you will need to boot and to answer the
prompts you will see when running diag. Please note that this table includes
only those products currently available and does not include controllers or
devices that are no longer available.

The controllers are described by model and by UNIX device name. Use the
UNIX device name appropriate for your hardware to boot the general bootstrap
program from the SunOS tape.

diag then prompts you for hardware information by asking what controller(s)
and drive(s) your are installing on your system. Use the hexadecimal addresses
shown to allow diag to configure itself to your hardware.

January 1988

64 Software Technical Bulletin issue 1988-01

Controller
and

UNIX
Device Name

Adaptec

sd

EmulexMD21
sd

Xylogics 450

xy

Xylogics 451
xv

Sysgen
st

TapeMaster
mt

Xylogics 472
xt

References for Further
Information

Machine
T"""'
3/50

Multibus
VMEbus

3/50
Multibus
VMEbus

all

all

NA

NA

NA

Available Controllers and Drives
Address (Hex)

First Second
Drives Remarks

Controller Controller

140000 NA Fujitsu 2243 71Mb, 5-1/4", SCSI

80000 84000 Micropolis 1304 42Mb, 5-1/4", SCSI

200000 NA Micropolis 1325 71Mb, 5-1/4", SCSI
Vertex V185 71Mb, 5-1/4", SCSI

140000 NA Micropolis 1355 140Mb, 5-1/4", SCSI

80000 84000 Toshiba MK156F 140Mb, 5-1/4", SCSI

200000 NA
ee40 ee48 CDC9720 280Mb, 10-1/2", SMD

Fujitsu 2322 130Mb, 8", SMD
Fujitsu 2333 280Mb, 10-1/2", SMD
Fujitsu 2351 374Mb, 10-1/2", SMD,

Eagle

ee40 ee48 Fujitsu 2361 694Mb, 10-1/2", SMD,
SunerEa,,.le

NA NA Archive 20Mb, 1/4" cartridge
Cypher 20Mb, 1/4" cartridge
Wangtech 45Mb, 1/4" cartridge

NA NA CDC 30Mb, 1600bpi,
1/2" reel, 2400 feet

NA NA Fujitsu 110Mb, 6250bpi,
1/2" reel, 2400 feet

Refer to the publications or courses listed below for details and further
information on installing UNIX on your worlcstation using diag and setup,
disk labeling and formatting, and kernel configuration.

o Installing UNIX on the Sun Workstation, part number 800-1521

o Sun Installation and Networking, Training Manual; Sun Microsystems,
Inc.; 1987. Available with the installation and networldng course shown
below.

o System Administration and Installation, 3 .2 Version; Sun Microsystems,
Inc.; 1986. Available with the system administration course shown
below.

January 1988

0

0

0

0 Sun Educational Services

0

0

Section 2 -Articles 65

Two courses are available through Sun Educational Services that offer lectures,
laboratory exercises, and the training manuals shown above.

o Sun Workstation Installation and Networking, 5 days, covering the

D

topics listed below.

- product overview and system configurations
- hardware installation
- introducing the Sun operating system
- disk initialization and partitioning
- UNIX installation
- kernel configuration
- networking requirements
- remote tape installation
- gateway installation

System Administration, 5 days, covering the topics listed below.

- product line overview
- system structure and configuration
- understanding disk drives
- partitioning disks
- system diagnostic utilities
- installing UNIX
- setting up and maintaining the netwolk
- ND (Netwolk Disk) fileserver/client relationships
- NFS (Netwolk File System)
- YP (Yellow Pages)
- UNIX filesystem
- dumps and file restoration
- installing the mail system
- adding peripheral devices

January 1988

66 Software Technical Bulletin issue 1988-01

Subnetting

SunOS Release 3.3,
Subnetting, and Restrictions

Subnetting: Basic Questions
and Answers

SunOS release 3.3 contains network subnetting. This article is intended to
familiarize you with what subnetting is, in a general sense, and to introduce you
to how it will be handled, with certain restrictions, in SunOS release 3.3.

The infmmation presented in this in-depth article is taken from the Defense
Advanced Research Projects Agency (DARPA) Internet Standard Subnetting
Procedures specification and SunOS 3.3 release notes.

Before getting into the details, we can look at subnetting by answering
commonly asked questions.

o What are subnets?

Subnets are logically visible, sub-sections of a single Internet network.
Many customers have chosen to divide one Internet network into several
subnets for administrative or technical reasons.

o Why would I want to use a subnet?

Many customers find that they need more network addresses than otherwise
can be provided. They then divide the net address into subnet addresses and
fit many more nodes into the same network address as originally provided by
ARP A or the Department of Defense (DoD).

Another reason to use a subnet is to reduce routing of redundant information.
Many Internet sites have a large group of Internet Protocol (IP) networks and
a direct connection to the ARP Anet or MILnet backbone. The gateway host
has to export all internal network numbers to the Internet, usually using the
Exterior Gateway Protocol (EGP). This is needed so that hosts on the
internal net can route IP datagrams to other sites on the backbone via the
gateway. However, this routing turns out to be useless information since
internal networks must be reached from the backbone via the gateway
machine anyway.

Using subnets allows the gateway machine in this example to export a single
IP network to the rest of the Internet, making itself the route by which other
sites access that network. When the incoming IP datagram arrives at the
gateway host, it is then treated as a subnet address and routed normally
through the internal network.

January 1988

0

0

0

0

The Address Mask Approach:
Class A and Class B

0

0

Section 2 - Articles 67

o What addressing and subnetting scheme could I use?

Many customers choose Internet addresses from ARP A/DoD, instead of just
choosing addresses randomly. The subnetting scheme that the ARPA
community and Sun has chosen is the 'address mask' approach.

o What security advantages does subnetting provide?

There is no security difference. Toe main advantage is that you get more
hosts online with fewer net addresses.

o Will subnetting function like running with the routed -q option on a
network gateway system? Will users be forced to r login to the gateway
system to get to machines 'on the other side' of the gateway?

No. You should be able to r login to any machine, just like running
routed normally. No multiple rlogins are required.

Two address classes are used in the address mask approach to subnetting. Class
A and B addresses are described below.

Class A

Class B

Compare the normal, non-subnetted class A address with the subnet­
ted class A address shown below.

36.0.0.62 (Ox24.00.00.3e)Non-Subnetted
36.40.0.62 (Ox24.28.00.3e)Subnetted

The address mask for the address field portion constituting the net­
work address for the subnet case is shown below.

255.255.0.0 (OxFF FF 00 00)

This means that the net part of the number and host number are each
16-bits wide.

Compare the normal, non-subnetted class B address with the subnet­
ted class B address shown below.

128.99.0.123 (Ox80.63.00.7b)Non-Subnetted
128.99.4.123 (Ox80.63.04.7b)Subnetted

The address mask for the address field portion constituting the net­
work address for the subnet case is shown below.

255.255.252.0 (or OxFF FF FC 00)

January 1988

68 Software Technical Bulletin issue 1988-01

SunOS Release 3.3 Subnetting
Limitations

This means that the net part of the number is 22-bits wide and that 0
the host part of the number is 10-bits wide.

The subnet mask must be the same on all subnets having the same IP network
number. Take, for example, the IP network number x80.9b.O.O or 128.155.0.0 as
it is usually given in decimal. The default class B network mask would be
255.255.0.0, but with subnets the mask would be something like 255.255.255.0.
Thus 128.155.24.x and 128.155.25.y are two different subnets of the same
network.

Compare this example to those of 128.32.1.1 and 128.32.2.1 (Berkeley's
numbers) given in the SunOS release 3.3 manual. This is supported in SunOS
release 3.3, since it is only one non-standard network mask, 128.155 with
255.255.255.0. You can also have interfaces to any number of other non­
subnetted (i.e. default netmask) networks.

One case not allowed in release 3.3 is two different subnetted networks
interfaced to the same machine. That is, 128.32.1.2 and 128.155.24.1 on the
same machine will not work in release 3.3.

You cannot, however, always know if an address is subnetted by simple
inspection of the middle bytes. You can have subnet addresses containing
middle bytes of zero (36.0.0.62, subnetted). You can also have non-subnetted
addresses containing non-zero middle bytes (36.40.0.62, non-subnetted). Note o
that a zero subnet number is outside the DARPA Internet specification, but most
implementations do not check for this. You can tell if a net is subnetted for sure
only by inspecting the mask since subnetting is transparent outside of that
network.

The default address masks are shown below. Note that net masks m•Jst only be
explicitly specified when they are "wider" (that is, have more one-bits) than the
default values.

OxFFOOOOOO (255.0.0.0) Oass A
OxFFFFOOOO (255.255.0.0) Oass B
OxFFFFFFOO (255.255.255.0) Oass C

It is important to note that all interfaces with non-default subnet masks must be
on the same IP network. They may, however, be on different subnets. In other
words, there cannot be more than one subnetted network interfaced to any
machine. Usually, a workstation will be on only one subnet; a server will be a
gateway between subnets of the same net, and possibly other non-subnetted
networks. For instance, Sun0S release 3.3 will gateway between two or more
subnets of the same network, and will gateway between any number of subnets of
the same network, as well as between any number of non-subnetted networks.

January 1988

0

0

0

Enabling Subnets

0

Section 2 -Articles 69

The only case not supported in SunOS release 3.3 is when you have more than
one non-standard network mask, which would mean interfaces to subnets of two
different IP networks. Interfaces to different subnets of the same network, or
non-subnetted networks, may be freely intermixed in release 3.3.

Examples for class A and B netwmks are shown below.

128.32.0.0 class B network (subnetted)
netmask 255.255.255.0

36.0.0.0 class A network (subnetted)
netmask 255.255.0.0

10.0.0.0 class A network (non-subnetted)
netmask 255.0.0.0

128.32.1.1 and 128.32.2.1 and 10.0.0.78
are legal for SunOS Release 3.3
(two subnets of same net
+ non-subnetted network)

36.8.0.8 and 36.10.0.1 and 10.0.0.11
are legal for SunOS Release 3.3
(two subnets of same net
+ non-subnetted network)

128.32.1.1 and 128.32.2.1 and 36.8.0.8
are NOT legal for SunOS Release 3.3
(two subnets of same net
+ another subnetted network)

SunOS release 3.3 also fixes the broadcast problem. Some IP implementations
send broadcasts with a normal, or subnet, network field. They send a host field
for all-ones, however. This is correct and within the IP specification. It may,
however, cause early Sun software to essentially bring the net down by
broadcasting ARP requests for host 255.

Note that all-one host numbers, x.y.z.255 for class C nets for one example, work
in previous SunOS releases, even though they are outside the IP specification.
All-one host numbers are treated properly, as broadcast, starting with SunOS
release 3.3.

In summary, do not use all-ones in the host portion of any host addresses. For
example, host 255 is illegal in a class C network.

The kernel modules required to support subnets have been changed in SunOS
release 3.3. / etc/ ifconfig and /etc/in. routed have also changed.
/etc/in. routed now manages the new routing tables. / etc/ ifconfig
now has a new option to set the network mask.

January 1988

70 Software Technical Bulletin issue 1988-01

For example, let us say you have a class B network 128.32 that has an eight-bit 0
wide subnet field, therefore an eight-bit wide host field, and a server that is both
host 1 on subnet 37 and host 100 on subnet 3. The lines appearing in your
/etc/re .boot would then be as shown below.

/etc/ifconfig ieO 128.32.37. l nettnask 255.255.255.0 -trailers up
/etc/ifconfig iel 128.32.3.100 nettnask 255.255.255.0 -trailers up

Note that symbolic names defined in / etc/hosts can be used in lieu of the
128 numbers shown above.

January 1988

0

0

0
3

WA@ £ M'.i l liirilltlirNWMti HM ·MMM

STB SHORT SUBJECTS

STB SHORT SUBJECTS .. 73

Using boot ... 73

Port Numbers 75

Booting Kernels .. 76

Power Interrupts .. 77

Using history ... 78

Packet Overload .. 79

Q Bridge Box Limits... 81

0

0

0

Q1

0

0

0

Using boot

Using the boot Command
from the PROM Monitor
Prompt

3
STB SHORT SUBJECTS

Use the boot command to list the contents of the root directory when in the
PROM monitor. This is particularly useful when / vrnunix is corrupted or
missing and you are looking for a backup version of the kernel.

An example of using boot from the PROM monitor prompt is shown below.

>b *

This will list all of the contents of the root partition. The sample result shown
below is a typical listing for a Sun-3 server.

>b *
bin
·boot
dev
etc
kadb
lib
lost+found
mnt
private
private.MC68020
pub
pub.MC68020
stand
sys
tftpboot
tmp
usr
usr.MC68020
vmunix
vmunix.gen

73 January 1988

74 Software Technical Bulletin issue 1988-01

In this example, the backup version of the kernel is vmunix _ gen. 0

0

0
January 1988

Q Port Numbers

0

0

How Port Numbers are
Assigned

Section 3 -STB Short Subjects 75

Every machine has one or more internet addresses in the form xx . xx. xx. xx.
One internet address exists for each networlc interface. This serves to identify the
source/destination interface, but does not identify the source/destination
application on the machine owning the interface. The port number performs this
role. The port number can therefore be thought of as the application's address on
the given machine.

When a socket is created, the means are established to send or receive messages
(data) via that socket. The bind is used to establish the port number to the
socket. 1n some cases, a 'transient' port number is automatically assigned to the
socket.

Standard port numbers are assigned to generic services, such as ftp, telnet,
rlogin, and so on. These port numbers are the values included in the
/etc/services file. Transient port numbers may also be assigned at random
for a given instance of an application. RP C does this, transparent to the user.
Portmap itself has a well-known standard port number, 111, but all other
services are assigned transient port numbers. Portmap keeps track of the
dynamic mappings between RPC program numbers and port numbers. The
output of rpcinf o -p shows the port numbers.

January 1988

76 Software Technical Bulletin issue 1988-01

Booting Kernels

Booting a Specific,
Customized Kernel

Some customer installations find that only a few clients of a particular server
have different kernel requirements than the other clients. Instead of forcing the
other clients into using a kernel containing features they do not need, or that
might conflict with their operation, clients with different kernel requirements can
boot their own 'private', customized kernel. The remaining clients can continue
booting a common kernel. This short subject describes how to use this facility.

In the normal case, a client links to either ndboot. sun2. pubO or
ndboot. sun3. publ in the server's /tftpboot directory, depending on
whether the client machine is a Sun2 or Sun3 and from which pub partition this
client is booting.

The Sun3 diskless client booting process uses this '/tftpboot link' on its
server for identifying whether to boot from pub 0, publ, or the client's private
nd (networl<: disk) partition. Currently, only booting a Sun3 diskless client uses
this feature.

0

For example, a Sun3 client machine with an internet number of 192.9.4.S would
have the link in /tftpboot on its server as shown below. O

C0090405 -> ndboot_sun3_publ

The 'C0090405' link name is the client's Internet number in hexadecimal
notation. Note that publ is the default Sun3 public partition. This client boots
the kernel /pub .MC68020/vmunix from its server.

In the case that you want the client to boot a specific kernel, change the link as
shown below.

C0090405 -> ndboot.sun3.private

This can be done by either removing the existing link or renaming it. Next make
the new link using In(1). For example, the command for the client in the above
discussion is shown below.

ln -s ndboot.sun3.private C0090405

Now place the customized kernel into the client's root file system (its nd
partition). This can be done from the server after halting this client and then
mounting the client's root partition, or on the client machine itself. The next
time this client boots, it will be using the new, private kernel.

January 1988

0

Q Power Interrupts

0

0

Diskless Workstations, Power
Failures, and Open Files

Section 3 - STB Short Subjects 77

Some customers have uninterruptable power supplies to power their servers to
ensure continuous operation. The question then arises 'what can get lost' from
the diskless workstations when the power goes down.

Of importance to users worldng as the power goes down is the fate of open files.
Some disk caching is done by the diskless clients. Of interest, then, is how much
work can be lost in this case.

The / etc/update standard daemon syncs the file system every 30 seconds.
When a sync command is issued on a diskless client, the contents of open files
in the buffer cache are forced out to the file server.

The open-file contents are forced to the server's disk immediately upon arrival
from the diskless client since no write caching is done by either ND or NFS
servers.

However, if you are using the standard 1/0 library, you will lose any data still in
the standard I/0 buffers. Seejlush(3).

January 1988

78 Software Technical Bulletin issue 1988-01

Using history

Convenient history
Command Usage

Using a history Alias

You may find a large value for $history helpful to have many of your
recently-entered commands available for viewing. However, seeing several
screenfuls of commands may be inconvenient at other times. Use the tip in this
short subject to display either a large or a small list of recently-entered
commands, depending on your needs at the time.

The csh allows up to two arguments to the history command via the -h
switch. In your . cshrc file, find the line that sets the number of recently­
entered commands to be displayed when you use the history command.
Then insert a new line as shown in the example below.

set history= 60
alias his "history\!* 20"

The first line causes the last 60 recently-used commands to be displayed when
you enter 'history' on your command line and then press <return>.

0

The second line causes only the last 20 recently-used commands to be displayed
when you enter 'his' and then press <return>. Finally, if you enter 'his <n>' o
only the last n number of commands will be printed, since the second option (20)
to your alias is ignored in this case.

Please note that 'his -h <file>' does not work, since there are now three
arguments given to the history command.

January 1988

0

0 Packet Overload

0

0

Back-to-Back Ethernet
Packets

Section 3 - STB Short Subjects 79

'Back-to-back' Ethernet packets are sent over the network to minimize dead-air
time on the cable. TI!is packet processing does not involve any actual
negotiation, except in the case of a collision Ignoring input issues, the logic
involved is shown below.

1 Is an output packet command available?

Ifno,
goto 1.

2 Is an ether available, no incoming packet in progress?

Ifno,
go to 2.

3 Start packet transmission and listen for a collision-detect.

4 Is a collision detected?

If yes,
jam the Ethernet to force a collision-detect on all nodes,
run the back off timer,
goto 2.

S Goto 1.

Software can queue several packet transmit commands to the controller chip. The
packets so transmitted in steps 1 - 3 above are within the Ethernet specification.
The time interval between packets can be as little as a few hundred nanoseconds
at a typical 10 MHz chip clock rate.

Back-to-back packet transmission, though within the Ethernet specification on
the transmit-side, can cause problems on the receive-side when the hardware
buffer size is too small or controller processing speed too slow. For example, a
typical Network File System (NFS) response is frequently a file system block, 8
Kb plus protocol, which becomes six Ethernet packets. TI!is can make back-to­
back packet processing common on Sun networlcs. Such packets may originate
from the same or from two different nodes, all transparent to network users.

January 1988

80 Software Technical Bulletin issue 1988-01

Problems arise on the receive-side when Ethernet controller implementations 0
cannot process back-to-back packets without eventually dropping one. This
occasionally occurs due to a slow controller. More often it is due to inadequate
buffer size to store the next packet When a packet is dropped, a protocol layer
then has to timeout and retransmit

For example, an Ethernet controller could have buffer space sufficient for two
incoming packets only. A third packet is then dropped if it arrives before the first
buffer has been emptied and released. In the case of NFS servers transmitting six
consecutive packets and recovery occurring at the NFS level, all six packets have
to be resent. This has resulted in new mount options to reduce the transmission
rate in both directions.

Sun hardware includes sufficient buffer space to make this problem unlikely.
Bridge vendors, however, can increase the chances of running into this problem
if either buffer memory or processing power for the retransmission are
inadequate. For example, 'throughput' rates of 4-6 Mbits/second across the
bridge are typical. However, groups of six back-to-back, mostly-full packets
represent a peak data rate approaching 10 Mbits/second.

January 1988

0

0

Q Bridge Box Limits

Bridge Box Processing Power

The Workaround

0

0

Section 3 - STB Short Subjects 81

Some customers have observed problems between two machines connected to
each other through a Bridge box. With one machine mounted to the second
machine's file system and all fstab entries correct, the error message shown
below may result This occurs with large files or during an attempt to run an
executable. It does not occur when working with small files.

NFS Read Error for Server B
RPC timeout

Many Ethernet Bridge boxes do not have the processing power necessary to keep
up with a busy Ethernet, especially Sun worlcstations sending back-to-back
packets on the net. It is possible to tune the NFS using parameters to the mount
command to avoid placing too much processing demand on the Bridge box.

Use the parameters shown below for use over Sun lnternetworlc Routers.

rsize=512, wsize=512, timeo=lOO

These should cause the amount of back-to-back traffic to remain within the
power of the Bridge box, at the price of reduced NFS throughput.

Refer to the preceding short subject Packet Overload for additional details on
Bridge box processing problems associated with sending large files across busy
networlcs.

January 1988

0

0

0

0
4

IN DEPTH

IN DEPTII ... 85

Internet Protocols ... 85

Networlc Transfers ... 114

Sockets ... 126

Color Maps .. 139

0

0

0

Qi
'

0

0

0

0

Internet Protocols

Introduction to the Internet
Protocols

1: What is TCP/IP?

4
dWMMdtk WU: · ti:ii®iiMM Rt'. IW::::iiWli1i&MWi:\b · M&

IN DEPTH

This is an introduction to the Internet networking protocols (TCP/IP). It includes
a summary of the facilities available and brief descriptions of the major protocols
in the family. 10

This document is an introduction to the transmission control protocol (TCP) and
the Internet protocol (IP), followed by advice on what to read for more
information. This is not intended to be a complete description. It can give you a
reasonable idea of the capabilities of the protocols. Throughout the text, you will
find references to the standards, in the form of request for comment (RFC) or
JEN numbers. These are document numbers. The final section of this document
tells you how to get copies of those standards.

TCP/IP is a set of protocols developed to allow cooperating computers to share
resources across a network. It was developed by a community of researchers
centered around the ARP Anet. Cenainly the ARP Anet is the best-known TCP/IP
network. However as of June 1987, at least 130 different vendors had products
that suppon TCP/IP, and thousands of networks of all kinds use it.

First some basic definitions. The most accurate name for the set of protocols we
are describing is the Internet protocol suite. TCP and IP are two of the protocols
in this suite. Because TCP and IP are the best known of the protocols, it has
become common to use the term TCP/IP or IP/fCP to refer to the whole family.
However this can lead to some oddities. For example, one can talk about NFS as
being based on TCP/IP, even though it does not use TCP at all. It does use IP.
But it uses an alternative protocol, UDP, instead of TCP.

1° Copyright (C) 1987, Charles L Hedrick. Anyone may reproduce this document, in whole or in part.
provided that: (1) any copy or republication of the entire document must show Rutgers University as the source,
and must include this notice; and (2) any other use of this material must reference this manual and Rutgers
University, and the fact that the material is copyrighted by Charles Hedrick and is used by pennission.

85 January 1988

86 Software Technical Bulletin issue 1988-01

The Internet is a collection of networks, including the ARP Anet, NSFnet, 0
regional netwmks such as NY sernet, local networlcs at a number of university
and research institutions, and a number of military networlcs. The term Internet
applies to this entire set of networks. The subset of them that is managed by the
Department of Defense is referred to as the Defense Data Netwolk (DDN). This
includes some research-oriented networlcs, such as the ARP Anet, as well as more
strictly military ones. Because much of the funding for Internet protocol
developments is done via the DDN organization, the terms Internet and DDN can
sometimes seem equivalent.

All of these netwolks are connected to each other. Users can send messages from
any of them to any other, except where there are security or other policy
restrictions on access. Officially speaking, the Internet protocol documents are
simply standards adopted by the Internet community for its own use. More
recently, the Department of Defense issued a MILSPEC definition of TCP/IP.
This was intended to be a more formal definition, appropriate for use in
purchasing specifications. However, most of the TCP/IP community continues to
use the Internet standards. The MILSPEC version is intended to be consistent
with it.

Thus, TCP/IP is a family of protocols. A few provide 'low-level' functions
needed for many applications. These include IP, TCP, and the user datagram
protocol (UDP). Others are protocols for doing specific tasks, e.g. transferring
files between computers, sending mail, or finding out who is logged in on another o
computer. Initially TCP/IP was used mostly between minicomputers or
mainframes. These machines had their own disks, and generally were self­
contained. Thus the most important 'traditional' TCP/IP services are described
below.

File Transfer
The file transfer protocol (FI'P) allows a user on any computer to get
files from another computer, or to send files to another computer.
Security concerns require the user to specify a user name and password
for the other computer. Provisions are made for processing file
transfers between machines with different character sets, end-of-line
conventions, and the like. This is not quite the same thing as more
recent network file system or netBIOS protocols, which will be
described below. Rather, FTP is a utility that you run any time you
want to access a file on another system. You use it to copy the file to
your own system. You then wolk with the local copy. See RFC 959
for specifications for FTP.

Remote Login
The netwolk terminal protocol (TELNET) allows a user to log in on
any other computer on the network. You start a remote session by
specifying a computer to connect to. From that time until you finish
the session, anything you type is sent.to the other computer. Note that
you are really still talking to your own computer. But the telnet 0
program effectively makes your computer invisible while it is running.

January 1988

0

0

0

Section 4 - In Depth 87

Every character you type is sent directly to the other system.
Generally, the connection to the remote computer behaves much like a
dialup connection. That is, the remote system will ask you to log in
and give a password, in whatever manner it would normally ask a user
who had just dialed it up. When you log off of the other computer, the
telnet program exits, and you will find yourself talking to your own
computer. Microcomputer implementations of telnet generally
include a terminal emulator for some common types of terminals. See
RFCs 854 and 855 for specifications for telnet. Note that the
telnet protocol should not be confused with Telenet, a vendor of
commercial network services.

Computer Mail
This allows you to send messages to users on other computers.
Originally, people tended to use only one or two specific computers.
They would maintain mail files on those machines. The computer mail
system is simply a way for you to add a message to another user's mail
file. There are some problems with this in an environment where
microcomputers are used. The most serious is that a microcomputer is
not well suited to receive computer mail.

When you send mail, the mail software expects to be able to open a
connection to the addressee's computer, in order to send the mail. If
this is a microcomputer, it may be turned off, or it may be running an
application other than the mail system. For this reason, mail is
normally processed by a larger system, where it is practical to have a
mail server running all the time. Microcomputer mail software then
becomes a user interface that retrieves mail from the mail server.

See RFCs 821 and 822 for specifications for computer mail. See RFC
937 for a protocol designed for microcomputers to use in reading mail
from a mail server.

These services should be present in any implementation of TCP/IP,
except that micro-oriented implementations may not support computer
mail. These traditional applications still play a very important role in
TCP/IP-based networks. However, more recently, the way in which
networks are used has been changing. The older model of a number of
large, self-sufficient computers is beginning to change. Now many
installations have several kinds of computers, including
microcomputers, worlcstations, minicomputers, and mainframes.
These computers are likely to be configured to perform specialized
tasks. Although people are still likely to work with one specific
computer, that computer will call on other systems on the net for
specialized services.

This has led to the server/client model of network services. A server is
a system that provides a specific service for the rest of the network. A
client is another system that uses that service. Note that the server and

January 1988

88 Software Technical Bulletin issue 1988-01

client need not be on different computers. They could be different 0
programs running on the same computer.

The kinds of servers typically present in a modern computer se!Up are described
below. Note that these computer services can all be provided within the
frameworlc of TCP/IP.

Networlc File Systems
This allows a system to access files on another computer in a
somewhat more closely integrated fashion than FTP. A networlc file
system provides the illusion that disks or other devices from one
system are directly connected to other systems. There is no need to
use a special networlc utility to access a file on another system. Your
computer simply thinks it has some extra disk drives. These extra
'vir!Ual' drives refer to the other systems' disks. This capability is
useful for several different purposes. It lets you put large disks on a
few computers, but still give others access to the disk space.

Aside from the obvious economic benefits, this allows people working
on several computers to share common files. It makes system
maintenance and backup easier, because you do not have to worry
about updating and backing-up copies many different machines. A
number of vendors now offer high-performance, diskless computers.
These computers have no disk drives at all. They are entirely
dependent upon disks attached to common file servers.

See RFCs 1001 and 1002 for a description of PC-oriented NetBIOS
over TCP. In the worlcstation and minicomputer area, Sun
Microsystem's Network File System (NFS) is more likely to be used.
Protocol specifications for it are available from Sun Microsystems, Inc.

Remote Printing
This allows you to access printers on other computers as if they were
directly attached to yours. The most commonly used protocol is the
remote lineprinter protocol from Berlceley UNIX. Unforiunately, there
is no protocol document for this. However, the C code is easily
obtained from Berlceley, so implementations are common.

Remote Execution
This allows you to request that a particular program be run on a
different computer. This is useful when you can do most of your work
on a small computer, but a few tasks require the resources of a larger
system. There are a number of different kinds of remote execution.
Some operate on a command-by-command basis. That is, you request
that a specific command or set of commands should run on some
specific computer. More sophisticated versions will choose a system

0

that happens to be free. However, there are also remote procedure call
systems that allow a program to call a subroutine that will run on 0
another computer.

January 1988

0

0

0

Section4-JnDepth 89

There are many protocols of this sort. Berlceley UNIX contains two
seivers to execute commands remotely: rsh and rexec. The man
pages describe the protocols that they use. The user-contributed
software with Berlceley 4.3 contains a distributed shell that distributes
tasks among a set of systems, depending upon load. Remote procedure
call mechanisms have been a topic for research for a number of years,
so many organizations have implementations of such facilities. The
most widespread, commercially-supported remote procedure call
protocols (RPCs) seem to be Xerox's Courier and Sun Microsystem's
RPC. Protocol documents are available from Xerox and Sun
Microsystems. There is a public implementation of Courier over TCP
as part of the user-contributed software with Berlceley 4.3. An
implementation of RPC was posted to Usenet by Sun Microsystems,
and also appears as part of the user-contributed software with Berkeley
4.3.

N arne Seivers
In large installations, there are a number of different collections of
names that have to be managed. This includes users and their
passwords, names and networlc addresses for computers, and accounts.
It becomes tedious to keep this data up-to-date on all of the computers.
Thus the databases are kept on a small number of systems. Other
systems access the data over the networlc.

RFCs 822 and 823 describe the name seiver protocol used to keep
track of host names and Internet addresses on the Internet. This is now
a required part of any TCP/IP implementation. IEN 116 describes an
older name seiver protocol that is used by a few terminal servers and
other products to look up host names. Sun Microsystem 's Yell ow
Pages system is designed as a general mechanism to process user
names, file sharing groups, and other databases commonly used by
UNIX systems. It is widely available commercially. Its protocol
definition is available from Sun Microsystems.

Terminal Seivers
Many installations no longer connect terminals directly to computers.
Instead they connect them to terminal seivers. A terminal seiver is
simply a small computer that only knows how to run telnet or
some other protocol to do remote login. If your terminal is connected
to one of these, you simply type the name of a computer, and you are
connected to it. Generally it is possible to have active connections to
more than one computer at the same time. The terminal seiver will
have provisions to switch between connections rapidly, and to notify
you when output is waiting for another connection. Terminal seivers
use the telnet protocol, already mentioned. However, any real
terminal seiver will also have to support name seivice and a number of
other protocols.

January 1988

90 Software Technical Bulletin issue 1988-01

2: General Description of the
TCP/IP Protocols

Network-Oriented Window Systems
Until recently, high-performance graphics programs had to execute on
a computer that had a bit-mapped graphics screen directly attached to
it. Network window systems allow a program to use a display on a
different computer. Full-scale network window systems provide an
interface that lets you distribute tasks to the systems that are best
suited to process them, but still give you a single graphically-based
user interface. The most widely-implemented window system is X. A
protocol description is available from MIT's Project Athena. A
reference implementation is publically available from MIT. A number
of vendors are also supporting NeWS, a window system defined by
Sun Microsystems. Both of these systems are designed to use TCP/IP.

Note that some of the protocols described above were designed by
Berkeley, Sun Microsystems, or other organizations. Thus they are not
officially part of the Internet protocol suite. However, they are
implemented using TCP/IP, just as normal TCP/IP application
protocols are. Since the protocol definitions are not considered
proprietary, and since commercially-support implementations are
widely available, it is reasonable to think of these protocols as being
effectively part of the Internet suite. Note that the list above is simply
a sample of the sort of services available through TCP/IP. However, it
does contain the majority of the 'major' applications. The other
commonly-used protocols tend to be specialized facilities for getting
information of various kinds, such as who is logged in, the time of day,
and so forth. However, if you need a facility that is not listed here,
look through the current edition of 'Internet Protocols', currently RFC
lOll. It lists all of the available protocols, and also to look at some of
the major TCP/IP implementations to see what various vendors have
added.

TCP/IP is a layered set of protocols. In order to understand what this means, it is
useful to look at an example. A typical situation is sending mail. First, there is a
protocol for mail. This defines a set of commands which one machine sends to
another, e.g. commands to specify who the sender of the message is, who it is
being sent to, and then the text of the message. However, this protocol assumes
that there is a way to communicate reliably between the two computers. mail,
like other application protocols, simply defines a set of commands and messages
to be sent. It is designed to be used together with TCP and IP.

TCP is responsible for making sure that the commands get through to the other
end. It keeps track of what is sent, and retransmits anything that did not get
through. If any message is too large for one datagram, e.g. the text of the mail,

0

0

TCP will split it up into several datagrams, and make sure that they all arrive
correctly. Since these functions are needed for many applications, they are put
together into a separate protocol, rather than being part of the specifications for
sending mail. You can think of TCP as forming a library of routines that
applications can use when they need reliable network communications with 0
another computer. Similarly, TCP calls on the services of IP.

January 1988

0

0

0

Section 4 - In Depth 91

Although the services that TCP supplies are needed by many applications, there
are still some kinds of applications that do not need them. However, there are
some services that every application needs. So these services are put together
into IP. As with TCP, you can think of IP as a library of routines that TCP calls
on, but which is also available to applications that do not use TCP. This strategy
of building several levels of protocol is called layering. We think of the
applications programs such as mail, TCP, and IP, as being separate layers, each
of which calls on the services of the layer below it. Generally, TCP/IP
applications use the four layers described below.

o an application protocol such as mail

o a protocol such as TCP that provides services needed by many
applications

o IP, which provides the basic service of getting datagrams to their
destinations

o the protocols needed to manage a specific physical medium, such as
Ethernet or a point-to-point line

TCP/IP is based on the catenet model. This is described in more detail in IEN
48. This model assumes that there are a large number of independent networks
connected together by gateways. The user should be able to access computers or
other resources on any of these networlcs. Datagrams will often pass through a
dozen different networlcs before getting to their final destinations. The routing
needed to accomplish this should be completely invisible to the user.

As far as the user is concerned, all she or he needs to know in order to access
another system is an Internet address. This is an address that looks like
128.6.4.194. It is actually a 32-bit number. However, it is normally written as
four decimal numbers, each representing eight bits of the address.

The term octet is used by Internet documentation for such 8-bit sections. The
term 'byte' is not used, because TCP/IP is supported by some computers that
have byte sizes other than eight bits. Generally, the structure of the address gives
you some information about how to get to the system. For example, 128.6 is a
network number assigned by a central authority to Rutgers University. Rutgers
uses the next octet to indicate which of the campus Ethernets is involved.
128.6.4 is an Ethernet used by the Computer Science Department. The last octet
allows for up to 254 systems on each Ethernet. It is 254 because O and 255 are
not allowed, for reasons that will be discussed later. Note that 128.6.4.194 and
128.6.5.194 would be different systems. The structure of an Internet address is
described in more detail later.

January 1988

92 Software Technical Bulletin issue 1988-01

2.1: The TCP Level

People nonnally refer to systems by name, rather than by their Internet addresses. 0
When we specify a name, the networlc software looks it up in a database, and
finds the corresponding Internet address. Most of the networlc software deals
strictly in tenns of the address. RFC 882 describes the name server technology
used to process this lookup.

TCP/IP is built on connectionless technology. Infonnation is transferred as a
sequence of datagrams. A datagram is a collection of data that is sent as a single
message. Each of these datagrams is sent through the networlc individually.
There are provisions to open connections, i.e. to start a conversation that will
continue for some time. However, at some level, infonnation from those
connections is broken-up into datagrams, and those datagrams are treated by the
networlc as completely separate.

For example, suppose you want to transfer a 15,000-octet file. Most networks
can not process a 15,000-octet datagram. So the protocols will break this up into
something like 30 separate, 500-octet datagrams. Each of these datagrams will
be sent to the other end. At that point, they will be put back together into the
15,000-octet file. However, while those datagrams are in transit, the networlc
does not know that there is any connection between them. It is possible that
datagram 14 will actually arrive before datagram 13. It is also possible that
somewhere in the network, an error will occur, and some datagram will not get
through at all. In that case, that datagram has to be sent again.

Note that the tenns datagram and packet often seem to be nearly
interchangeable. Technically, datagram is correct to use when describing
TCP/IP. A datagram is a unit of data, which is what the protocols process. A
packet is a physical object, appearing on an Ethernet or some wire. In most cases
a packet simply contains a datagram, so there is very little difference. However,
they can differ. When TCP/IP is used on top ofX.25, the X.25 interface breaks­
up the datagrams into 128-byte packets. This is transparent to IP, because the
packets are put back together into a single datagram at the other end before being
processed by TCP/IP. So in this case, one IP datagram would be carried by
several packets. However, with most media, there are efficiency advantages to
sending one datagram per packet, and so the distinction tends to vanish.

Two separate protocols are involved in processing TCP/IP datagrams. TCP is
responsible for breaking-up the message into datagrams, reassembling them at
the other end, resending anything that gets lost, and putting things back in the
right order. IP is responsible for routing individual datagrams. It may seem like
TCP is doing all the work. And in small networlcs that is true. However, in the
Internet, simply getting a datagram to its destination can be a complex task.

0

For example, connection may require the datagram to go through several
networlcs at Rutgers, a serial line to the John von Neuman Supercomputer Center,
a couple of Ethernets there, a series of 56 Kbaud phone lines to another NSFnet
site, and more Ethernets on another campus. Keeping track of the routes to all of
the destinations and processing incompatibilities among different transport media 0
turns out to be a complex task. Note that the interface between TCP and IP is

January 1988

0

Header Overview

0

0

Section 4 - In Depth 93

fairly simple. TCP simply hands IP a datagram with a destination. IP does not
know how this datagram relates to any datagram before it or after it.

Clearly it is not enough to get a datagram to the right destination. TCP has to
know which connection this datagram is part of. This task is referred to as
demultiplexing. In fact, there are several levels of demultiplexing found in
TCP/IP.

The information needed to do this demultiplexing is contained in a series of
headers. A header is a few extra octets added to the beginning of a datagram by
some protocol in order to keep track of it. It is a lot like putting a letter into an
envelope and putting an address on the outside of the envelope. Except with
modem networlcs it happens several times. It is like you put the letter into a little
envelope, your administrator puts that into a somewhat bigger envelope, the
campus mail center puts that envelope into a still bigger one, and so forth.

An overview of the headers that get added to a message that passes through a
typical TCP/IP networlc follows. We start with a single data stream, say a file
you are trying to send to some other computer as shown below.

TCP breaks it up into manageable units. In order to do this, TCP has to know
how large a datagram your networlc can process. Actually, the TCPs at each end
say how large a datagram they can process, and then they pick the smallest size.

TCP puts a header at the front of each datagram. This header contains at least 20
octets, but the most important ones are a source and destination port number and
a sequence number. The port numbers are used to keep track of different
conversations. Suppose three different people are transferring files. Your TCP
might allocate port numbers 1000, 1001. and 1002 to these transfers. When you
are sending a datagram, this becomes the 'source' port number, since you are the
source of the datagram. Of course, the TCP at the other end has assigned a port
number of its own for the conversation.

Your TCP has to know the port number used by the other end as well. It finds
out when the connection starts, as we will explain below. It puts this in the
'destination' port field. Of course, if the other end sends a datagram back to you,
the source and destination port numbers will be reversed, since then it will be the
source and you will be the destination.

Each datagram has a sequence number. This is used so that the other end can
make sure that it gets the datagrams in the right order, and that it has not missed
any. See the TCP specification for details. TCP does not number the datagrams,
but the octets. So if there are 500 octets of data in each datagram, the first
datagram might be numbered 0, the second 500, the next 1000, the next 1500,
and so forth.

January 1988

94 Software Technical Bulletin issue 1988--01

Checksum is a number that is computed by adding up all the octets in the Q
datagram. See the TCP specification for details. The result is put in the header.
TCP at the other end computes the checksum again. If they disagree, then
something bad happened to the datagram in transmission, and it is discarded.
The datagram now appears as shown below.

+-+
Source Port Destination Port

+-+
Sequence Number

+-+
I Acknowledgment Number I
+-+

Data I IUIAIPIRISIFI
I Offsetl Reserved IRICISISIYIII Window
I I IGIK[HITIN[NI
+-+

Checksum Urgent Pointer
+-+

your data ... next 500 octets

If we abbreviate the TCP header as 'T', then the whole file now looks as shown 0
below.

T •••• T •••• T •••• T ••.. T •••• T .••• T ••••

Note that there are items in the header not described above. They are generally
involved with managing the connection. In order to make sure the datagram has
arrived at its destination, the recipient has to send back an acknuwledgement.
1bis is a datagram whose 'acknowledgement number' field is filled in.

For example, sending a packet with an acknowledgement of 1500 indicates that
you have received all the data up to octet number 1500. If the sender does not
get an acknowledgement within a reasonable amount of time, it sends the data
again. The window is used to control how much data can be in transit at any one
time. It is not practical to wait for each datagram to be acknowledged before
sending the next one. That would slow processing too much. On the other hand,
you can not just keep sending, or a fast computer might overrun the capacity of a
slow one to absorb data. Thus each end indicates how much new data it is
currently prepared to absorb by putting the number of octets in its window
field.

As the computer receives data, the amount of space left in its window decreases.
When it goes to zero, the sender has to stop. As the receiver processes the data, it
increases its window, indicating that it is ready to accept more data. Often the
same datagram can be used to acknowledge receipt of a set of data and to give
permission for additional new data, by an updated window. The urgent field

January 1988

0

0

2.2: The IP Level

0

0

Section 4-In Depth 95

allows one end to tell the other to skip ahead in its processing to a particular
octet. This is often useful for handling asynchronous events, for example when
you type a control character or other command that interrupts output. The other
fields are beyond the scope of this document.

TCP sends each of these datagrams to IP. Of course, it has to tell IP the Internet
address of the computer at the other end. Note that this is the only IP concern. It
does not care about what is in the datagram, or even in the TCP header. The IP
task is to find a route for the datagram and get it to the other end. In order to
allow gateways or other intermediate systems to forward the datagram, it adds its
own header.

The main items in this header are the source and destination Internet address
(32-bit addresses, like 128.6.4.194), the protocol number, and another checksum.
The source Internet address is the address of your machine. This is necessary so
the other end knows where the datagram came from. The destination Internet
address is the address of the other machine. This is necessary so any gateways in
the middle know where you want the datagram to go.

The protocol number tells the IP at the other end to send the datagram to TCP.
Although most IP traffic uses TCP, there are other protocols that can use IP, so
you have to tell IP which protocol to send the datagram to. Finally, the
checksum allows IP at the other end to verify that the header was not damaged in
transit. Note that TCP and IP have separate checksums. IP needs to be able to
verify that the header did not get damaged in transit, or it could send a message
to the wrong place. For reasons beyond the scope of this document, it is both
more efficient and safer to have TCP compute a separate checksum for the TCP
header and data. Once IP has added its header, the message appears as shown
below.

+-+
[Version[IHL [Type of Service[Total Length
+-+
I Identification [Flags[Fragment Offset
+-+
I Time to Live I Protocol Header Checksum
+-+
I Source Address
+-+
I Destination Address
+-+
I TCP header, then your data
I

If we represent the IP header by an 'I', your file now appears as shown below.

IT IT IT IT IT IT IT

Again, the header contains some additional fields that have not been discussed.

January 1988

96 Software Technical Bulletin issue 1988-01

I

2.3: The Ethernet Level

Most of them are beyond the scope of this document The flags and fragment
offset are used to keep track of the pieces when a datagram has to be split up.
This can happen when datagrams are forwarded through a network for which
they are too large. The time-to-live is a number that is decremented when the
datagram passes through a system. When it goes to zero, the datagram is
discarded. This is done in case a loop develops in the system. Of course, this
should be impossible, but well-designed networlcs are built to cope with
'impossible' conditions.

At this point, it is possible that no more headers are needed. If your computer
happens to have a direct phone line connecting it to the destination computer, or
to a gateway, it may simply send the datagrams out on the line. However, it is
more likely that a synchronous protocol such as HDLC would be used, and it
would add at least a few octets at the beginning and end.

Most networks use Ethernet. Ethernet has its own headers and addresses. The
Ethernet designers wanted to make sure that no two machines would have the
same Ethernet address. Furthermore, they did not want the user to be concerned
with assigning addresses. So each Ethernet controller comes with an address
built-in from the factory.

Qi

In order to make sure that they would never have to reuse addresses, the Ethernet
designers allocated 48 bits for the Ethernet address. Ethernet equipment
manufacturers have to register with a central authority, to make sure that the o
numbers they assign do not overlap any other manufacturer. Ethernet is a
'broadcast medium'. That is, it is in effect shared usage, like an old 'party line'
telephone. When you send a packet out on the Ethernet, every machine on the
netwmk sees the packet. So something is needed to make sure that the right
machine gets it.

This involves the Ethernet header. Every Ethernet packet has a 14-octet header
that includes the source and destination Ethernet address, and a type code. Each
machine is supposed to pay attention only to packets with its own Ethernet
address in the destination field. It is possible to cheat, which is one reason that
Ethernet communications are not secure.

Note that there is no connection between the Ethernet address and the Internet
address. Each machine has to have a table of which Ethernet address
corresponds to which Internet address. In addition to the addresses, the header
contains a type code. The type code is to allow for several different protocol
families to be used on the same network. So you can use TCP/IP, DECnet,
Xerox NS, and so forth, at the same time. Each of them will put a different
value in the type field.

Finally, there is a checksum. The Ethernet controller computes a checksum of
the entire packet. When the other end receives the packet, it recomputes the
checksum, and throws the packet away if the answer disagrees with the original.

0 The checksum is put on the end of the packet, not in the header. The final result
is such that your message appears as shown below.

January 1988

0

0

0

Section 4 -In Depth 97

+-+
Ethernet destination address (first 32 bits) I

+-+
I Ethernet dest (last 16 bits) !Ethernet source (first 16 bits) I
+-+~+-+-+~+

Ethernet source address (last 32 bits) I
+-+
I Type code I
+-+

IP header, then TCP header, then your data I
I

end of your data
+-+

Ethernet Checksum
+-+

3: Well-Known Sockets and
the Applications Layer

If we represent the Ethernet header with 'E', and the Ethernet checksum with
'C', your file now is as shown below.

EIT C EIT C EIT C EIT C EIT C

When these packets are received by the other end, the headers are removed. The
Ethernet interface removes the Ethernet header and the checksum. It looks at the
type code. Since the type code is the one assigned to IP, the Ethernet device
driver passes the datagram up to IP. IP removes the IP header. It looks at the IP
protocol field. Since the protocol type is TCP, it passes the datagram up to TCP.
TCP now looks at the sequence number. It uses the sequence numbers and other
information to combine all the datagrams into the original file.

For detailed descriptions of the items discussed here, see RFC 793 for TCP, RFC
791 for IP, and RFCs 894 and 826 for sending IP over Ethernet.

There needs to be a way for you to open a connection to a specified computer,
log into it, tell it what file you want, and control the transmission of the file. If
you have a different application in mind, e.g. computer mail, some analogous
protocol is needed. This is done by application protocols. The application
protocols run 'on top of' TCP/IP. That is, when they want to send a message,
they give the message to TCP. TCP makes sure it gets delivered to the other end.
Because TCP and IP take care of all the networking details, the applications
protocols can treat a network connection as if it were a simple byte stream, like a
terminal or phone line.

January 1988

98 Software Technical Bulletin issue 1988-01

Finding an application is a complex process. Suppose you want to send a file to 0
a computer whose Internet address is 128.6.4.7. To start the process, you need
more than just the Internet address. You have to connect to the FTP server at the
other end. In general, network programs are specialized for a specific set of
tasks. Most systems have separate programs to process file transfers, remote
terminal logins, mail, and the like.

When you connect to 128.6.4.7, you have to specify that you want to talk to the
FTP server. This is done by having well-known sockets for each server. Recall
that TCP uses port numbers to keep track of individual conversations. User
programs normally use random port numbers. However, specific port numbers
are assigned to the programs that sit waiting for requests.

For example, if you want to send a file, you will start a program called ftp. It
will open a connection using some random number, for example, 1234, for the
port number on its end. However it will specify port number 21 for the other
end. This is the official port number for the FTP server. Note that there are two
different programs involved. You run ftp on your side. This is a program
designed to accept commands from your terminal and pass them on to the other
end. The program that you talk to on the other machine is the FTP server. It is
designed to accept commands from the network connection, rather than from an
interactive terminal. There is no need for your program to use a well-known
socket number for itself. Nobody is trying to find it. However, the servers have
to have well-known numbers, so that people can open connections to them and o
start sending them commands. The official port numbers for each program are
given in 'Assigned Numbers', currently RFC 1010.

Note that a connection is actually described by a set of four numbers, the Internet
address and the TCP port number at each end. Every datagram has all four of
these numbers in it. The Internet addresses are in the IP header, and the TCP
port numbers are in the TCP header.

No two connections can have the same set of numbers. However, it is enough for
any one number to be different. For example, it is possible for two different
users on a machine to be sending files to the same other machine. This could
result in connections with parameters as shown below.

Internet addresses

connection 1 128.6.4.194, 128.6.4.7
connection 2 128.6.4.194, 128_6.4.7

TCP ports

1234, 21
1235, 21

Since the same machines are involved, the Internet addresses are the same. Since
they are both doing file transfers, one end of the connection involves the well­
known port number for FTP. The only item that differs is the port number for the
program that the users are running. That single difference is sufficient.
Generally, at least one end of the connection asks the network software to assign
it a port number that is guaranteed to be unique. Normally, it is the user's end, Q
since the server has to use a well-known number. •

January 1988

0

0

0

Section 4 - In Depth 99

Once TCP has opened a connection, we have something that could be a simple
wire. All the complex processing is perfmmed by TCP and IP. However we still
need some agreement regarding what we send over this connection. In effect,
this is an agreement on what set of commands the application will understand,
and the format in which they are to be sent.

Generally, what is sent is a combination of commands and data. They use
context to differentiate. For example, the mail protocol worlcs as follows.
ma i 1 opens a connection to the mail server at the other end. Your program
gives it your machine's name, the sender of the message, and the recipients you
want it sent to. It then sends a command saying that it is starting the message.
At this point, the other end stops treating what it sees as commands, and starts
accepting the message. Your end then starts sending the text of the message. At
the end of the message, a special marlc is sent (a dot in the first column). After
that, both ends understand that your program is. again sending commands. This
is the simplest method, and the one that most applications use.

File transfer is somewhat more complex. The file transfer protocol involves two
different connections. It begins like mail. The user's program sends
commands like 'log me in as this user', 'here is my password', and 'send me the
file with this name'. However once the command to send data is sent, a second
connection is opened for the data itself. It would be possible to send the data on
the same connection, as mail does. However file transfers often take a long
time. The designers of the file transfer protocol wanted to allow the user to
continue issuing commands while the transfer being processed. For example,
the user might make an inquiry, or she or he might abort the transfer. Thus the
designers used a separate connection for the data and leave the original
connection for commands. It is also possible to open command connections to
two different computers, and tell them to send a file from one to the other. In
that case, the data could not go over the command connection.

Remote terminal connections use a different mechanism. For remote logins,
there is only one connection. It normally sends data. When it is necessary to
send a command (for examples, to set the terminal type or to change a mode), a
special character is used to indicate that the next character is a command. If the
user happens to type that special character as data, two of them are sent.

A detailed description of the application protocols is beyond the scope of this
document. Two common conventions used by applications are described here.
First is the common network representation. TCP /IP is intended to be usable on
any computer. Unfortunately, not all computers agree on how data is
represented. There are differences in character codes (ASCII vs. EBCDIC), in
end-of-line conventions (carriage return, line feed, or a representation using
counts), and in whether terminals expect characters to be sent individually or a
line-at-a-time. In order to allow computers of different kinds to communicate,
each applications protocol defines a standard representation.

Note that TCP and IP do not care about the representation. TCP simply sends
octets. However the programs at both ends have to agree on how the octets are to

January 1988

100 Software Technical Bulletin issue 1988-01

3.1: An SMTP Application
Example

be interpreted. The RFC for each application specifies the standard 0
representation for that application. Nonnally it is 'net ASCII'. This uses ASCII
characters, with end-of-line denoted by a carriage return followed by a line feed.

Second is the convention defining a 'standard tenninal' for remote login. This is
a half-duplex tenninal with echoing happening on the local machine. Most
applications also make provisions for the two computers to agree on other
representations that they may find more convenient. For example, PDP-lOs have
36-bit words. There is a way that two PDP-lOs can agree to send a 36-bit binary
file. Similarly, two systems that prefer full-duplex terminal conversations can
agree on that. However, each application has a standard representation, which
every machine must support.

An example of a simple mail transfer protocol (SMTP) follows. This is the mail
protocol. Assume that a computer named TOPAZ.RUTGERS.EDU wants to
send the following message.

Date: Sat, 27 Jun 87 13:26:31 EDT
From: hedrick@topaz.rutgers.edu
To: levy@red.rutgers.edu
Subject: meeting

Let's get together Monday at 1pm.

The fonnat of the message itself is described by an Internet standard, RFC 822. 0
The standard specifies that the message must be transmitted as net ASCII, i.e. it
must be ASCII, with carriage return/linefeed to delimit lines. It also describes
the general structure, as a group of header lines, then a blank line, and then the
body of the message. Finally, it describes the syntax of the header lines in detail.
Generally they consist of a keyword and then a value.

The addressee is indicated as 'LEVY@RED.RUTGERS.EDU'. Initially,
addresses were simply 'person @ machine'. However, recent standards are more
flexible. There are now provisions for systems to process other systems' mail.
This allows automatic forwarding on behalf of computers not connected to the
Internet. It can be used to direct mail for a number of systems to one central mail
server. There is no requirement that an actual computer by the name of
RED.RUTGERS.EDU even exist.

The name servers could be set up so that you mail to department names, and each
department's mail is routed automatically to an appropriate computer. It is also
possible that the part before the '@' is something other than a user name. It is
possible for programs to be set up to process mail. There are also provisions to
process mailing lists, and generic names such as 'postmaster' or 'operator'.

January 1988

0

0

RED
TOPAZ
RED
TOPAZ
RED
TOPAZ
RED
TOPAZ
RED
TOPAZ
TOPAZ

0
TOPAZ
TOPAZ
TOPAZ
TOPAZ
TOPAZ
RED
TOPAZ
RED

0

Section 4 - In Depth 101

The way the message is to be sent to another system is described by RFCs 821
and 974. The program that is going to be doing the sending asks the name seiver
several queries to determine where to route the message. The first query is to
find out which machines process mail for the name RED.RUTGERS.EDU. In
this case, the seiver replies that RED.RUTGERS.EDU processes its own mail.

The program then asks for the address of RED.RUTGERS.EDU, which is
128.6.4.2. Then the mail program opens a TCP connection to port 25 on
128.6.4.2. Port 25 is the well-known socket used for receiving mail. Once this
connection is established, the mail program starts sending commands. A typical
conversation appears below. Each line is labeled whether it is from TOP AZ or
RED. Note that TOP AZ initiates the connection.

220 RED.RUTGERS.EDU SMTP Service at 29 Jun 87 05:17:18 EDT
HELO topaz.rutgers.edu
250 RED.RUTGERS.EDU - Hello, TOPAZ.RUTGERS.EDU
MAIL From:<hedrick@topaz.rutgers.edu>
250 MAIL accepted
RCPT To:<levy@red.rutgers.edu>
250 Recipient accepted
DATA
354 Start mail input; end with <CRLF>.<CRLF>
Date: Sat, 27 Jun 87 13:26:31 EDT
From: hedrick@topaz.rutgers.edu
To: levy@red.rutgers.edu
Subject: meeting

Let's get together Monday at 1pm.

250 OK
QUIT

221 RED.RUTGERS.EDU Service closing transmission channel

First, note that the commands all use normal text. This is typical of the Internet
standards. Many protocols use standard ASCII commands. This makes it simple
to monitor and to diagnose problems. For example, the mail program keeps a
log of each conversation. If something goes wrong, the log file can be mailed to
the postmaster. Since it is normal text, she or he can determine what has
occurred. It also allows a human to interact directly with the mail seiver, for
testing.

Some newer protocols are complex enough that this is not practical. The
commands would need a syntax requiring a significant parser. Thus there is a
tendency for newer protocols to use binary formats. Generally they are
structured like C or Pascal record structures.

Second, note that the responses all begin with numbers. This is also typical of
Internet protocols. The allowable responses are defined in the protocol. The
numbers allow the user program to respond unambiguously. The rest of the
response is text, which is normally for use by any human who may be watching

January 1988

102 Software Technical Bulletin issue 1988-01

4: UDP and ICMP Protocols

or looking at a log. It has no effect on the operation of the programs. Note, 0
however, there is one point at which the protocol uses part of the text of the
response.

The commands themselves allow the mail program on one end to tell the mail
seiver the information it needs to know in order to deliver the message. In this
case, the mail seiver could get the information by looking at the message itself.
But for more complex cases, that would not be safe. Every session must begin
with a HELO, which gives the name of the system that initiated the connection.
Then the sender and recipients are specified. There can be more than one RCPT
command, if there are several recipients.

Finally, the data itself is sent. Note that the text of the message is terminated by
a line containing a period. If such a line appears in the message, the period is
doubled. After the message is accepted, the sender can send another message, or
terminate the session as in the example above.

Generally, there is a pattern to the response numbers. The protocol defines the
specific set of responses that can be sent as answers to any given command.
However programs that do not want to analyze them in detail can look at the first
digit only. Typically, responses that begin with a '2' indicate success. Those
that begin with '3' indicate further action is needed, as shown above. Responses
of '4' and '5' indicate errors. A '4' is a 'temporary' error, such as a disk filling.
The message should be saved, and tried again later. A '5' is a permanent error,
such as a non-existent recipient. The message should be returned to the sender
with an error message.

For more details about the protocols mentioned in this section, see RFCs 821 and
822 for mail, RFC 959 for file transfer, and RFCs 854 and 855 for remote
logins. For the well-known port numbers, see the current edition of Assigned
Numbers, and possibly RFC 814.

The discussion has included only connections that use TCP thus far. TCP is
responsible for breaking-up messages into datagrams, and reassembling them
properly. However, in many applications messages will fit into a single
datagram. An example is name lookup. When a user attempts to make a
connection to another system, she or he will generally specify the system by
name, rather than by Internet address. The user's system has to translate that
name to an address before it can do anything.

0

Generally, only a few systems have the database used to translate names to
addresses. So the user's system will want to send a query to one of the systems
that has the database. This query is going to be very short. It will certainly fit
into one datagram, as will the answer. Thus it is not necessary to use TCP. Of
course, TCP does more than just break messages up into datagrams. It also
makes sure that the data arrives, resending datagrams where necessary. But for a
question that fits in a single datagram, we do not need all the complexity of TCP
to do this. If we do not get an answer after a few seconds, we can just ask again. Q
For applications like this, there are alternatives to TCP.

January 1988

0

0

0

S: The Domain System:
Keeping Track of Names and
Information

Section 4 - In Depth 103

The most common alternative is the user datagram protocol (UDP). UDP is
designed for applications where you do not need to put sequences of datagrams
together. It fits into the system much like TCP. There is a UDP header. The
network software puts the UDP header on the front of your data, just as it would
put a TCP header on the front of your data. Then UDP sends the data to IP,
which adds the IP header, putting the UDP protocol number in the protocol field
instead of the TCP protocol number.

However UDP does not do as much as TCP does. It does not split data into
multiple datagrams. It does not keep track of what it has sent so it can resend if
necessary. UDP provides port numbers, so that several programs can use UDP at
once. UDP port numbers are used just like TCP port numbers. There are well­
known port numbers for servers that use UDP. Note that the UDP header is
shorter than a TCP header. It still has source and destination port numbers, and
a checksum. No sequence number is present, since it is not needed. UDP is used
by the protocols that process name lookups and a number of similar protocols.
See IEN 116, RFC 882, and RFC 883.

Another alternative protocol is the Internet control message protocol (ICMP).
ICMP is used for error messages, and other messages intended for the TCP/IP
software itself, rather than by any particular user program. For example, if you
attempt to connect to a host, your system may get back an ICMP message saying
host unreachable. ICMP can also be used to find information about the network.
See RFC 792 for details of ICMP. ICMP is similar to UDP in that it processes
messages that fit in one datagram. However, it is even simpler than UDP. It
does not have port numbers in its header. Since all ICMP messages are
interpreted by the network software itself, no port numbers are needed to say
where a ICMP message is supposed to go.

The network software generally needs a 32-bit Internet address to open a
connection or to send a datagram. However, users prefer use computer names
rather than numbers. Thus, there is a database that allows the software to look up
a name and find the corresponding number.

When the Internet was small, this was easy. Each system had a file that listed all
of the other systems, giving both their name and number. There are now too
many computers for this approach to be practical. Thus these files have been
replaced by a set of name servers that keep track of host names and the
corresponding Internet addresses. These servers are somewhat more general, this
being just one kind of information stored in the domain system.

January 1988

104 Software Technical Bulletin issue 1988-01

Note that a set of interlocking servers is used, rather than a single central one. 0
There are now so many institutions connected to the Internet that it would be
impractical for them to notify a central authority whenever they installed or
moved a computer. Thus naming authority is delegated to individual institutions.
The name servers form a tree, corresponding to institutional structure. The
names themselves follow a similar structure. A typical example is the name
'BORAX.LCS.MIT.EDU'. This is a computer at the Laboratory for Computer
Science (LCS) at MIT. To find its Internet address, you might have to consult
four servers.

First, you would ask a central server, called the root, where the EDU server is.
EDU is a server that keeps track of educational institutions. The root server
would give you the names and Internet addresses of several servers for EDU.
There are several servers at each level, to allow for the possibly that one might
be down. You would then ask EDU where the server for MIT is. Again, it
would give you names and Internet addresses of several servers for MIT.
Generally, not all of those servers would be at MIT, to allow for the possibility of
a general power failure at MIT.

Then you would ask MIT where the server for LCS is, and finally you would ask
one of the LCS servers about BORAX. The final result would be the Internet
address for BORAX.LCS.MIT.EDU. Each of these levels is referred to as a
domain. The entire name, BORAX.LCS.MIT.EDU, is called a domain name. So
are the names of the higher-level domains, such as LCS.MIT.EDU, MIT.EDU, o
and EDU.

You do not have to go do this most of the time. First, the root name servers also
are the name servers for the top-level domains such as EDU. Thus, a single
query to a root server will get you to MIT. Second, software generally
remembers answers that it got before. So once we look up a name at
LCS.MIT.EDU, our software remembers where to find servers for
LCS.MIT.EDU, MIT.EDU, and EDU. It also remembers the translation of
BORAX.LCS.MIT.EDU.

Each of these pieces of information has a time-to-live associated with it.
Typically this is a few days. After that, the information expires and has to be
looked up again. This allows institutions to make changes.

The domain system is not limited to finding Internet addresses. Each domain
name is a node in a database. The node can have records that define a number of
properties. Examples are Internet address, computer type, and a list of services
provided by a computer. A program can ask for a specific piece of information,
or all information about a given name. It is possible for a node in the database to
be martced as an alias or nickname for another node. It is also possible to use the
domain system to store information about users, mailing lists, or other objects.

There is an Internet standard defining the operation of these databases, as well as
the protocols used to make queries of them. Every network utility has to be able 0
to make such queries, since this is now the official way to evaluate host names.

January 1988

0

6: Routing

0

0

Section 4 - In Depth 105

Generally, utilities will talk to a server on their own system. Tilis server will
take care of contacting the other servers for them. Tilis reduces the amount of
code that has to be in each application program.

The domain system is particularly important for processing computer mail.
There are entry types to define what computer processes mail for a given name,
to specify where an individual is to receive mail, and to define mailing lists.

See RFCs 882, 883, and 973 for specifications of the domain system. RFC 974
defines the use of the domain system in sending mail.

The IP implementation is responsible for getting datagrams to the destination
indicated by the destination address. The task of finding how to get a datagram
to its destination is referred to as routing. In fact, many of the details depend on
the particular implementation. However, some general statements may be made.

First, it is necessary to understand the model on which IP is based. IP assumes
that a system is attached to some local network. We assume that the system can
send datagrams to any other system on its own network. In the case of Ethernet,
it simply finds the Ethernet address of the destination system, and puts the
datagram out on the Ethernet. The problem comes when a system is asked to
send a datagram to a system on a different network. Tilis problem is processed
by gateways.

A gateway is a system that connects a network with one or more other networks.
Gateways are often normal computers that happen to have more than one
network interface. For example, we have a UNIX machine that has two different
Ethernet interfaces. Thus, it is connected to networks 128.6.4 and 128.6.3. Tilis
machine can act as a gateway between those two networks. The software on that
machine must be set up so that it will forward datagrams from one network to the
other.

If a machine on network 128.6.4 sends a datagram to the gateway, and the
datagram is addressed to a machine on network 128.6.3, the gateway will
forward the datagram to the destination. Major communications centers often
have gateways that connect a number of different networks. In many cases,
special-purpose gateway systems provide better performance or reliability than
general-purpose systems acting as gateways. A number of vendors sell such
systems.

Routing in IP is based upon the network number of the destination address. Each
computer has a table of network numbers. For each network number, a gateway
is listed. Tilis is the gateway to use to get to that network. Note that the gateway
does not have to connect directly to the network. It just has to be the best place
to go to get there.

For example, at Rutgers our interface to NSFnet is at the John von Neuman
Supercomputer Center (JvNC). Our connection to JvNC is via a high-speed,
serial line connected to a gateway whose address is 128.6.3.12. Systems on net

January 1988

106 Software Teclmical Bulletin issue 1988-01

128.6.3 will list 128.6.3.12 as the gateway for many off-campus ne!Worlcs. 0
However, systems on net 128.6.4 will list 128.6.4.1 as the gateway to those same
off-campus ne!Worlcs. Address 128.6.4.1 is the gateway be!Ween ne!Works ·
128.6.4 and 128.6.3, so it is the first step in getting to JvNC.

When a computer wants to send a datagram, it first checks to see if the
destination address is on the system's own local ne!Work. If so, the datagram can
be sent directly. Otherwise, the system expects to find an entry for the ne!Woxk
that the destination address is on. The datagram is sent to the gateway listed in
that entry. This table can get quite long. For example, the Internet now includes
several hundred individual networlcs. Thus, various strategies have been
developed to reduce the size of the routing table. One strategy is to depend upon
default routes. Often, there is only one gateway out of a ne!Work.

This single gateway might connect a local Ethernet to a campus-wide backbone
netwoxk. In that case, we do not need to have a separate entry for every ne!Woxk
in the world. We simply define that gateway as a default. When no specific
route is found for a datagram, the datagram is sent to the default gateway. A
default gateway can be used when there are several gateways on a netwoxk.
There are provisions for gateways to send a message saying 'I am not the best
gateway -- use this one instead'. The message is sent via ICMP. See RFC 792.

Most ne!Work software is designed to use these messages to add entries to their
routing tables. Suppose neiwork 128.6.4 has !Wo gateways, 128.6.4.59 and o
128.6.4.1. Address 128.6.4.59 leads to several other internal Rutgers ne!Worlcs.
Address 128.6.4.1 leads indirectly to the NSFnet. Suppose we set 128.6.4.59 as a
default gateway, and have no other routing table entries. Now what happens
when we need to send a datagram to MIT?

MIT is netwoxk 18. Since we have no entry fornetwoxk 18, the datagram will be
sent to the default, 128.6.4.59. As it happens, this gateway is the wrong one. So
it will forward the datagram to 128.6.4.1. But it will also send back an error
saying in effect that 'To get to netwoxk 18, use 128.6.4.1.' Our software will
then add an entry to the routing table. Any future datagrams to MIT will then go
directly to 128.6.4.1. The error message is sent using the ICMP protocol. The
message type is called ICMP redirect.

Most IP experts recommend that individual computers should not try to keep
track of the entire netwoxk. Instead, they should start with default gateways, and
let the gateways tell them the routes. However, this does not say how the
gateways should find out about the routes. The gateways can not depend on this
strategy. They require fairly complete routing tables. For this, a routing protocol
is needed.

A routing protocol is a technique for the gateways to find each other, and to keep
up-to-date about the best way to get to every ne!Work. RFC 1009 contains a
review of gateway design and routing. rip. doc is an introduction to the
subject. It contains some tutorial material, and a detailed description of the most 0
commonly-used routing protocol.

January 1988

0

0

0

7: Subnets and Broadcasting
-- Internet Address Details

Section 4 - In Depth 107

Internet addresses are 32-bit numbers, nonnally written as four octets (in
decimal), e.g. 128.6.4. 7. There are actually three types of address. The address
has to indicate both the networlc and the host within the networlc. It was felt that
eventually there would be numerous networlcs. Many of them would be small,
but probably 24 bits would be needed to represent all IP networlcs. It was also
felt that some very large networlcs might need 24 bits to represent all of their
hosts. 111is would seem to lead to 48- bit addresses. But the designers wanted to
use 32-bit addresses.

They adopted a compromise. The assumption is that most of the networks will
be small. So they set up three ranges of address. Addresses beginning with one
to 126 use only the first octet for the networlc number. The other three octets are
available for the host number. Thus 24 bits are available for hosts. These
numbers are used for large networlcs. But there can only be 126 of these very
large networlcs. The ARP Anet is one, and there are a few large commercial
networlcs.

Few nonnal organizations get one of these 'class A' addresses. For nonnal large
organizations, 'class B' addresses are used. Class B addresses use the first two
octets for the networlc number. Thus, networlc numbers are 128.1 through
191.254. We avoid zero and 255, for reasons described below. We also avoid
addresses beginning with 127, because that is used by some systems for special
purposes. The last two octets are available for host addresses, giving 16 bits of
host address. This allows for 64,516 computers, which should be enough for
most organizations. It is possible to get more than one class B address, if
necessary.

Finally, class C addresses use three octets, in the range 192.1.1 to 223.254.254.
These allow only 254 hosts on each networlc, but there can be many of these
networlcs. Addresses above 223 are reserved for future use, as class D and E,
which are currently not defined.

Many large organizations find it convenient to divide their networlc number into
subnets. For example, Rutgers has been assigned a class B address, 128.6. We
find it convenient to use the third octet of the address to indicate which Ethernet
a host is on. 111is division has no significance outside of Rutgers. A computer at
another institution would treat all datagrams addressed to 128.6 the same way.
They would not look at the third octet of the address.

Thus, computers outside Rutgers would not have different routes for 128.6.4 or
128.6.5. But inside Rutgers, we treat 128.6.4 and 128.6.5 as separate networks.
In effect, gateways inside Rutgers have separate entries for each Rutgers subnet,
whereas gateways outside Rutgers have but one entry for 128.6. Note that we
could do the same by using a separate class C address for each Ethernet. As far
as Rutgers is concerned, it would be just as convenient for us to have a number of
class C addresses. However using class C addresses would be inconvenient for
the rest of the world.

January 1988

108 Software Technical Bulletin issue 1988-01

Every institution that wanted to talk to us would have to have a separate enlry for Q
each one of our networlcs. If every institution did this, there would be far too
many networlcs for any reasonable gateway to monitor. By subdividing a class B
netwmk, we hide our internal structure from everyone else, and save them the
trouble. This subnet strategy requires special provisions in the network software.
It is described in RFC 950.

Z.ero and 255 have special meanings. Z.ero is reserved for machines that do not
know their address. In certain circumstances, it is possible for a machine not to
know the number of the network it is on, or even its own host address. For
example, 0.0.0.23 would be a machine that knew it was host number 23, but did
not know on what network.

Address 255 is used for broadcast. A broadcast is a message that you want every
system on the network to see. Broadcasts are used in some situations where you
do not know who to talk to. For example, suppose you need to look up a host
name and get its Internet address. Sometimes you do not know the address of the
nearest name server. In that case, you might send the request as a broadcast.
There are also cases where a number of systems are interested in infonnation. It
is then less expensive to send a single broadcast than to send datagrams
individually to each host that is interested in the infonnation.

In order to send a broadcast, you use an address that is made by using your
network address, with all ones (l's) in the part of the address used for the host o
number. For example, if you are on network 128.6.4, you would use 128.6.4.255
for broadcasts. How this is actually implemented depends upon the medium. It
is not possible to send broadcasts on the ARPAnet, or on point-to-point lines.
However, it is possible on an Ethernet. If you use an Ethernet address with all
ones (1 's), every machine on the Ethernet is supposed to look at that datagram.

Although the official broadcast address for network 128.6.4 is now 128.6.4.255,
there are some other addresses that may be treated as broadcasts by certain
implementations. For convenience, the standard also allows 255.255.255.255 to
be used. This refers to all hosts on the local network. It is often simpler to use
255.255.255.255 instead of finding the network number for the local network and
fonning a broadcast address such as 128.6.4.255. In addition, certain older
implementations may use zero instead of 255 to fonn the broadcast address.
Such implementations would use 128.6.4.0 instead of 128.6.4.255 as the
broadcast address on network 128.6.4.

Finally, certain older implementations may not understand about subnets. Thus,
they consider the network number to be 128.6. In that case, they will assume a
broadcast address of 128.6.255.255 or 128.6.0.0. Until support for broadcasts is
implemented properly, it can be a somewhat dangerous feature to use.

Because zero and 255 are used for unknown and broadcast addresses, nonnal
hosts should never be given addresses containing zero or 255. Addresses should
never begin with zero, 127, or any number above 223. O

January 1988

0

0

0

8: Datagram Fragmentation
and Reassembly

9: ARP ·· Ethernet
Encapsulation

Section 4 - In Depth 109

TCP/IP is designed for use with many kinds of netwmks. Unfortunately,
networlc designers do not agree on how large packets can be. Ethernet packets
can be 1,500 octets long. ARPAnet packets have a maximum of approximately
1,000 octets. Some very fast networlcs have much larger packet sizes.

IP cannot simply settle on the smallest possible size. This would cause serious
perfollllance problems. When transferring large files, large packets are far more
efficient than small ones. So we want to be able to use the largest packet size
possible. But we also want to be able to communicate with networks using small
packet limits.

There are two provisions for this. First, TCP has the ability to 'negotiate'
datagram size. When a TCP connection first opens, both ends can send the
maximum datagram size they process. The smaller of these limits is used for the
rest of the connection. This allows two implementations that can process large
datagrams to use them, but also lets them talk to implementations that cannot
process them. However, this does not completely solve the problem. The most
serious problem is that the two ends do not necessarily know about all of the
steps in between.

For example, when sending data between Rutgers and Berlceley, it is likely that
both computers will be on Ethernets. Thus they will both be prepared to process
1,500-octet datagrams. However the connection will at some point end up going
over the ARP Anet. It can not process packets of that size. For this reason, there
are provisions to split datagrams up into pieces. This process is referred to as
fragmentation.

The IP header contains fields indicating that a datagram has been split, and
enough infolllJ.ation to let the pieces be put back together. If a gateway connects
an Ethernet to the ARP Anet, it must be prepared to take 1,500-octet Ethernet
packets and split them into pieces that will fit on the ARP Anet. Furthellllore,
every host implementation of TCP/IP must be prepared to accept pieces and put
them back together. This is referred to as reassembly.

TCP/IP implementations differ in the approach they take to deciding on datagram
size. It is fairly common for implementations to use 576-byte datagrams
whenever they can not verify that the entire path is able to process larger packets.
This rather conseivative strategy is used because of the number of
implementations with bugs in the code to reassemble fragments. Implementors
often try to avoid ever having fragmentation occur. Different implementors take
different approaches to deciding when it is safe to use large datagrams. Some
use them only for the local network. Others will use them for any networlc on the
same campus. A 'safe' size is 576 bytes, which every implementation must
support

This discussion details how to detelllline which Ethernet address to use when you
want to talk to a given Internet address. In fact, there is a separate protocol for
this, called the address resolution protocol (ARP).

January 1988

110 Software Technical Bulletin issue 1988-01

10: Getting More
Information

ARP is not an IP protocol. That is, the ARP datagrams do not have IP headers. 0
Suppose you are on system 128.6.4.194 and you want to connect to system
128.6.4.7. Your system will first verify that 128.6.4.7 is on the same networlc, so
it can talk directly via Ethernet. Then it will look up 128.6.4.7 in its ARP table,
to see if it already knows the Ethernet address. If so, it will add an Ethernet
header, and send the packet.

But suppose this system is not in the ARP table. There is no way to send the
packet, because you need the Ethernet address. So it uses the ARP protocol to
send an ARP request. Essentially an ARP request says 'I need the Ethernet
address for 128.6.4.7.' Every system listens to ARP requests. When a system
sees an ARP request for itself, it is required to respond. So 128.6.4.7 will see the ·
request, and will respond with an ARP reply saying in effect '128.6.4. 7 is
8:0:20:1:56:34.'

Recall that Ethernet addresses are 48 bits. This is six octets. Ethernet addresses
are conventionally shown in hex, using the punctuation shown. Your system will
save this information in its ARP table, so future packets will go directly. Most
systems treat the ARP table as a cache, and clear entries in it if they have not
been used in a certain period of time.

Note that ARP requests must be sent as broadcasts. There is no way that an ARP
request can be sent directly to the right system. After all, the whole reason for
sending an ARP request is that you do not know the Ethernet address. So an o
Ethernet address of all ones (1 's) is used, i.e. ff:ff:ff:ff:ff:ff. By convention,
every machine on the Ethernet is required to pay attention to packets with this as
an address. So every system sees every ARP requests. They all look to see
whether the request is for their own address. If so, they respond. If not, they
could just ignore it. Some hosts will use ARP requests to update their knowledge
about other hosts on the network, even if the request is not for them. Note that
packets whose IP address indicates broadcast (e.g. 255.255.255.255 or
128.6.4.255) are also sent with an Ethernet address that is all ones (1 's).

The references for more information contained in the following paragraphs
include some of the many documents describing the major protocols. Internet
standards are called request for comments (RFCs). A proposed standard is
initially issued as a proposal, and given an RFC number. When it is finally
accepted, it is added to 'Official Internet Protocols', but it is still referred to by
the RFC number.

We have also included two IENs, which used to be a separate classification for
more informal documents. This classification no longer exists. RFCs are now
used for all official Internet documents, and a mailing list is used for more
informal reports. The convention is that whenever an RFC is revised, the revised
version gets a new number. This is fine for most purposes, but it causes
problems with two documents, Assigned Numbers and Official Internet
Protocols. These documents are being revised all the time, so the RFC number

0 keeps changing. You will have to look in rfc-index-txt to find the
number of the latest edition. See RFC 791 which describes IP.

January 1988

0

0

0

10.1: Helpful General
Documents

Section 4 - In Depth 111

RFC 1009 is also useful. It is a specification for gateways to be used by NSFnet.
As such, it contains an overview of a lot of the TCP/IP technology. Read the
description of at least one of the application protocols. mail is a good one,
RFCs 821 and 822. TCP 793 is of course a very basic specification. However,
the specification is fairly complex.

A number of helpful documents are described below.

rfc-index

rfc1012

rfclOll

rfclOlO

rfc1009

rfclOOl/2

rfc973

rfc959

rfc950

rfc937

rfc894

rfc882/3

rfc854/5

rfc826

rfc821/2

rfc814

list of all RFCs

somewhat fuller list of all RFCs

Official Protocols. It is useful to scan this to see which
tasks for which the protocols have been built. This defines
which RFCs are actual standards and which are requests
for comments.

Assigned Numbers. If you are working with TCP/IP, you
will probably want a hardcopy of this as a reference. It
lists all the officially defined well-known ports and other
topics.

NSFnet gateway specifications. A good overview of IP
routing and gateway technology.

netBIOS: networking for PCs

update on domains

FfP (file transfer)

subnets

POP2: protocol for reading mail on PCs

how IP is to be put on Ethernet. See also rfc825.

domains, the database used to go from hostnames to
Internet address and back, also used to process UUCP.
See also rfc973.

telnet, a protocol for remote logins

ARP, a protocol for finding Ethernet addresses

mail

names and ports, general concepts behind well-known
ports

January 1988

112 Software Technical Bulletin issue 1988-01

10.2: Helpful Specialized
Documents

rfc793

rfc792

rfc791

rfc768

rip-doc

ien-116

ien-48

TCP

ICMP

IP

UDP

details of the most commonly-used routing protocol

old name server, needed by several kinds of systems

the Catenet model, general description of the philosophy
behind TCP/IP

The following documents are somewhat more specialized.

rfc813

rfc815

rfc816

rfc817

rfc879

window and acknowledgement strategies in TCP

datagram reassembly techniques

rfc896

fault isolation and resolution techniques

modularity and efficiency in implementation

the maximum segment size option in TCP

congestion control

rfc827,888,904,975,985
EGP and related issues

The most important RFCs have been collected into a three-volume set, the DDN
Protocol Handbook. It is available from the DDN Network Information Center,
SRI International, 333 Ravenswood A venue, Menlo Park, California 94025,
telephone (800) 235-3155. You should be able to get them via anonymous PIP
from sri-nic.arpa. File names are shown below.

RFCs:

IENs:

rfc:rfc-index.txt
rfc:rfcxxx.txt

ien:ien-index.txt
ien:ien-xxx.txt

rip. doc is available by anonymous PIP from topaz.rutgers.edu, as
/pub/tcp-ip-docs/rip.doc.

January 1988

0

0

0

0

0

0

Section 4 - In Depth 113

Sites with access to UUCP but not FI'P may be able to retrieve them via UUCP
from UUCP host rutgers. The file names would be as shown below.

RFCs:

IENs:

/topaz/pub/pub/tcp-ip-docs/rfc-index.txt
/topaz/pub/pub/tcp-ip-docs/rfcxxx.txt

/topaz/pub/pub/tcp-ip-docs/ien-index,txt
/topaz/pub/pub/tcp-ip-docs/ien-xxx.txt
/topaz/pub/pub/tcp-ip-docs/rip.doc

Note that SRI-NIC has the entire set of RFCs and IENs, but rutgers and
topaz have only those specifically mentioned above.

January 1988

114 Software Technical Bulletin issue 1988-01

Network Transfers

Networking: Transfer of
Information

Ethernet Theory of Operation

CSMA/CD Definition

Ether Use

This article contains an oveiview of several network-related topics. Most of the
topics are software aspects of networking, with some hardware topics describing
the physical network layout

The major topics in this article are listed below.

D Ethernet theory of operation

D Network analysis and troubleshooting hints

D Network performance

D Subnet addressing

D A voiding physical network problems

D Thin Ethernet (Cheapemet) specifications

D Level I and Level 2 equipment differences

D Frequently asked questions and answers

Ethernet theory of operation includes a definition of CSMA/CD and a description
of how the single network channel (Ether) is used.

Ethernet activity is Carrier Sense Multiple Access with Collision Detection
(CSMA/CD). CSMA/CD technology allows many devices access to the same
network, in the absence of any central controller that manages channel access.
Further, there are neither pre-allocated time slots as in token ring technology, nor
fixed sharing of frequency bands.

Any device wanting to transmit onto the shared channel contends for channel
(Ether) use until the channel is acquired. The device then transmits a packet
onto the acquired channel. In this process, each device senses the channel carrier
level and looks for collisions on the network.

Each device wanting to transmit a packet of information onto the Ether first
senses whether or not a carrier signal level is present on the Ether. One of two
voltages is sensed, depending on whether another device on the network is
transmitting a message at that moment in time. This is Carrier Sense (CS) and
your device considers the net busy if a carrier is sensed.

January 1988

0

0

0

0

0

0
Network Analysis and
Troubleshooting Hints

Section 4 -In Depth 115

Your device defers transmitting your message until it senses that the Ether is
quiet. This is when no carrier voltage level is sensed and the net is then
considered not busy. Once a quiet net is detected, the deferring device
immediately begins transmitting the packet containing your message. This is
Multiple Access (MA) since each device connected to the Ether shares the
channel in real time, in some ways similar to a 'party-line' telephone service.

Your device listens for a collision during the time it takes to transmit the packet
containing your message. This is the Collision Detection (CD) that lets each
device know that its messages have been transmitted without any other device
trying to 'break into' your 'conversation'. A collision is defined as any two
devices transmitting to the same network at the same time. Unlike the old­
fashioned, 'party line' telephone line, all messages are retransmitted if a collision
is detected.

All devices look for collisions when transmitting since there is a short time
interval just after a transmission begins when another device on the Ether might
also begin to transmit its message. This occurs since the second device may not
have sensed the carrier voltage that the first device places on the channel to
transmit the packet containing the message.

This time interval is called the collision window or collision interval, after which
all devices on the network will detect your carrier and defer their transmissions
until yours is completed. This interval is a result of the end-to-end propagation
delay on the net.

Your device continues to transmit the packet if no collision is detected during the
collision window. However, each device continues to look for any collisions
during the entire transmission process, in the case that a malfunctioning device is
connected to the network. For example, a machine can lose the ability to detect a
carrier on the network and therefore cannot sense collisions. This is known as
babble mode.

If your station detects a collision, the current transmission is aborted. The
network is briefly jammed by any connected station what detects a collision by
invoking a collision consensus enforcement procedure. Basically, a given packet
is fully transmitted only when no device on the net senses a collision, either
during or after the collision window.

Each machine involved in the collisions then schedules its packet for
retransmission at a later time. The two stations sharing the collision use a
random delay period so that they each retransmit at a different time. This delay
reduces the possibility that each station will retransmit at the same time and
cause a second collision.

This discussion of network analysis and troubleshooting includes running the
proper SunOS release level with a proper netmask and diagnosing network
routing problems.

January 1988

116 Software Teclmil"U Bulletin issue 1988-01

SunOS Releases 3.3 and 3.4;
and Subnetting

Routing Problem
Troubleshooting

Most customer calls on networldng result from trying to use subnets on SunOS 0
release that do not support subnetting. You need to run SunOS release 3.3 or
subsequent releases for subnetting. Further, you need to use the proper netmask.
Subnet addressing and netmasks are discussed later in this article.

Several commands may be issued from your command line to diagnose network
routing problems. Commands discussed in this topic are shown below. Please
note that the following examples are provided for illustrative purposes only and
do not represent actual netwmks.

a Using netstat -r

a Using ifconfig

a Using /etc/networks

Using netstat -r

When ping or rlogin report Network Unreachable, you will need to
look at the network routing tables. This allows you to see what gateway the
machines think they should use to access other netwm:ks. An example of
output from the network command using the -r option is shown below.

machine# netstat -r 0
Routing tables
Destination
sunpie-ptp
dish-ptp
backbone
gsd-localnet
supnet
loopback

machine#

Gateway Flags ·Refcnt Use Interface
sunsnow UGH 0 0 leO
sunsnow UGH 0 0 leO
sunsnow UG 1 249 leO
sunsnow UG 0 0 leO
machine u 9 16631 leO
localhost u 2 1363 loO

Your device and your internal, loopback network are designated as being UP
in the 'Flags' column by u. G denotes a machine that is a gateway to the
network named in the 'Destination' column. H signifies the network host,
the gateway to be used to gain access to the named network.

Using the -r option gives similar information with networks identified by
the Internet subnet addresses. An example is shown below.

January 1988

0

0

0

0

machine# netstat

Routing tables
Destination
192.9.22.1
192.9.21.1
192.9.3
192.9.133
192.9.9
127.0.1

machine#

Section 4 - In Depth 117

-n -r

Gateway Flags Refcnt Use Interface
192.8.5.44 UGH 0 0 leO
192.8.5.44 UGH 0 0 leO
192.8.5.44 UG 1 249 leO
192.8.5.44 UG 0 0 leO
192.9.2.14 u 8 16949 leO
127.0.0.1 u 3 1396 loO

Using ifconfig

When ping or rlogin report Connection Timed Out, you will need to
determine whether the Internet address has changed, or whether the gateway
between the machines is down. The problem can also be lack of physical
connection between machines.

Use the ifconfig command to determine the status of a network
interface, its hosthame, and network address.

machine# ifconfig leO

leO: 192.9.1.14 flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

machinef ifconfig leO netmask OxffffffOO
machine# ifconfig leO

leO: 192.9.1.14 netmask 255.255.255.0 flags=63<UP,BROADCAST,NOTRAILERS,RUNNING>

Note that ifconfig reports the netmask only if it has been set. If it has
not been set, the appropriate default netmask shown below is in use.

Network Address Default Netmask Default Netmask
Class (Hexadecimal) (Decimal)

Class A Oxff 00 00 00 255 00 00 00
Class B Oxff ff 00 00 255 255 00 00
Class C Oxff ff ff 00 255 255 255 00

Using /etc/networks

The networks file is located in either the / etc or yp domain_narne

January 1988

118 Software Technical Bulletin issue 1988-01

Network Performance

directory. This file is needed for correct propagation of routing tables. This 0
file allows you to more conveniently refer to networlcs by name rather than
by Internet number. A sample networks file is shown below.

machine# more /etc/networks

f Sun customer networks

loopback
sun-ether

127
192.8.193

Internet networks

arpanet

10 arpa

Local networks

ptp-net 192.2.300
gymnet 128.8.3
solnet 192.8.21
nflsubnet 192.8.14.145
lasernet 192.8.54

Internetwork Routers

spdinr7 192.8.13
spdinr8 192.8.14
spdinr9 192.8.15

sunether ethernet localnet

my-net her-net
Home Ee subnet
Solidarity Lab Network

NFL Subnet
Laser lab net

Rond Road
Rond Road
Calistoga

Use the netstat and nfsstat commands to determine whether your
network error, collisions, and nfs and nd statistics are within acceptable limits.

January 1988

0

0

0

0

0

Using netstat

Section 4 - In Depth 119

Calculate your collision rate by first dividing the amount shown under 'Collis' by
the amount shown under 'Opkts' and then multiplying the quotient by 100;
(Collis/Opkts)*lOO=collision rate. Collision rate acceptability is great for a 1-
2% range, fair for 3-5%, and poor for over 5%. Note that errors are never
acceptable.

An example of netstat output using the -i option is shown below. This
example shows a bad collision rate of 9.3%. This was calculated as 16477 /
177024 x 100 = 9.3%, a very bad collision rate.

rnachinet netstat -i

Name
leO
loO

Mtu
1500
1536

Net/Dest
supnet
loopback

Address
snowflake
localhost

Ipkts
832513
1961

!errs Opkts
0 177024
0 1961

Oerrs
1
0

Collis
16477
0

Queue
0
0

A second use of net stat using the -i and 5 options is shown below. This
shows the packets and errors for the input, output, and total input and output, for
the time since the machine was booted, and every five seconds.

rnachinef netstat -i 5

input (leO) output input (Total) output
packets errs packets errs cells packets errs packets errs cells
832857 0 177306 1 16486 834838 0 179287 1 16486
16 0 65 0 0 16 0 65 0 0
13 0 0 0 0 13 0 0 0 0
7 0 0 0 0 7 0 0 0 0

The final example shows netstat using the -m option. This option reports
the buffers allocated to network processes.

machinef netstat -m

302/448 mbufs in use:
65 mbufs allocated to socket structures
83 mbufs allocated to protocol control blocks

154 mbufs allocated to routing table entries
0/16 mapped pages in use
184 Kbytes allocated to network (20% in use)
0 requests for memory denied

Using nfsstat Use the nf sstat command for checking nfs and nd statistics, particularly
retransmission figures. These figures give you an idea of how good the network
connection is. Look for timeouts and any entry labeled bad.... A sample usage
of nfsstat is shown below.

January 1988

120 Software Technical Bulletin issue 1988-01

machine# /usr/etc/nfsstat

Network Disk:
snd 161467 retrans 66 (0.04%)

noumatch 107 nobuf O lbusy O operrs 0
wseq O badreq O stimo O utimo O iseq 0

rev 188971
notuser 0
rseq 41

Server
calls
0

Server
calls
0
null

rpc:
badcalls
0

0 0%
wrcache
0 0%
mkdir

nfs:
badcalls
0
getattr
0 0%
write
0 0%
rmdir
0 0% 0 0%

Client
calls
13048

Client
calls
13048
null

rpc:
badcalls
0

0 0%
wrcache
0 0%
mkdir

nfs:
badcalls
0
getattr
4346 33%
write
93 0%
rmdir
0 0% 0 0%

nullrecv
0

setattr
0 0%
create
0 0%
readdir
0 0%

retrans
3

nclget
13048
setattr
10 0%
create
52 0%
readdir
532 4%

badlen
0

root
0 0%
remove
0 0%
fsstat
0 0%

badxid
1

nclsleep
0
root
0 0%
remove
1 0%
fsstat
6 0%

xdrcall
0

lookup
0 0%
rename
0 0%

timeout
3

lookup
2021 15%
rename
6 0%

readlink
0 0%
link
0 0%

wait
0

readlink
4656 35%
link
0 0%

read
0 0%
symlink
0 0%

newcred
0

read
1325 10%
symlink
0 0%

January 1988

0

0

0

Section 4 - In Depth 121

Q Subnet Addressing You cannot detennine the meaning of a class B subnet address by inspection.
The host address and net address share the address digits in one of several ways.
See the following figure for one non-subnetted class B example, and three
subnetted class B address examples.

0

0

teelHlilEEt oo oo
~l;Jli1illalB1;llll host

. -.. :-::-;::----:-;

[decimal]

netmask

Subnet Addressing

non-subnetted Class B
net= 130.5

subnetted Class B
net = 130.5, subnet = 42

if i~SJi o.
7

subnetted Class B

~- S ll fl January 1988 Y m•rooystemo

122 Software Technical Bulletin issue 1988-01

Avoiding Physical Network
Problems

Thin Ethernet (Cheapernet)
Specifications

You can avoid problems with the network hardware by obseiving the following 0
points.

o Avoid flourescent lights and power conduits when running network
coaxial cables through the ceiling.

o Ground an Ethernet segment in a single place only. Multiple grounding
points cause ground loops which may be misinterpreted by machines
connected to the network as transmission carriers.

o Have 100 or fewer nodes on the net, not up to 1024 as indicated in the
network specification.

o Place nodes only every 2.5m on the thick Ethernet coax. Any other
placement causes standing waves on the cable which may be misinter­
preted by machines. High error and collision rates may result.

o Place only one or two Ethernet repeaters between any two nodes.

o Place only one or two thick-to-thin Ethernet converters on a network.

o Have only a single network number on any one physical network. Multi­
casting is not supported in SunOS releases 3.x.

o Ensure that the bore is cleaned out using a swab when installing a
vampire-type transceiver.

o Define only a single Ethernet address for a gateway machine. A gate­
way has only one Ethernet address, but two Internet addresses, and two
hostnames. The Ethernet address originates from the CPU HostID chip.
Note that an Ethernet address needs to be unique for any one network
only. The same Ethernet address may be used on different networks.

The trunk cable (thin enet cable) is of constant impedance, coaxial construction.
It is terminated at each of the two ends by a terminator of 50 ohms, plus or minus
1 %, measured from O - 20 MHz. The terminator power rating shall be 0.5 watts
or greater.11

The cable parameters are normally met by cable types RG58 AIU or RG 58 C/U.
The center conductor shall be stranded, tinned copper with an overall diameter of
0.89mm, plus or minus 0.05mm. Devices attached to the trunk require a BNC
'T' connector of 50-ohm impedance. Note that this connector must be connected
directly to the device, without any additional connecting cable.

11 The infonnation contained in this discussion is taken from IEEE Draft Standard 802.3, Section 10,
"Medium Attachment Unit and Baseband Medium Specifications•. Type 10BASE2. dated March 1985.

January 1988

0

0

0

0

0

Level 1 and Level 2
Equipment Differences

Section 4 -In Depth 123

The attenuation of a cable of the maximum 600 foot (185m) length shall not
exceed 8.SdB measured at 10MHz, or 6.0dB measured at 5MHz. Also, the
maximum length of a segment is 600 feet, with a maximum of 30 devices or
Medium Attachment Units (MA Us) connected to the segment.

The maximum end-to-end propagation delay for a coaxial segment is 950ns.

The maximum transmission path permitted between any two MA Us is limited by
the maximum of four repeater sets that can be connected in series. 1bis shall
consist of no more than three tapped coaxial segments; the remainder shall be
link segments.

The minimum distance between any two nodes is 1.6 feet (0.5m). No more than
30 nodes shall be on a single networlc segment. No cables are allowed between
the BNC T-connector and the device! Finally, the network may neither loop nor
branch.

Ethernet hardware equipment is available in two versions or levels. These two
versions are also known as DIX 1 and DIX 2 (DEC, Intel, Xerox). The two
levels are compatible on the coaxial cable. However, a level 1 Ethernet board
should be connected to a level 1 transceiver, and similarly for level 2 boards and
transceivers. There are usually no problems communicating between level 1 and
2 systems across the coaxial cable, unless the network has grown extremely
large.

Two features distinguish level 2 transceivers from level 1 equipment. The first
feature is jabber which allows the transceiver to watch the packet data stream
during transmission. If the data stream is longer than the maximum legal packet
size, the level 2 transceiver shuts down. Note that this feature is not universally
available on all level 2 transceivers. The jabber feature prevents a
malfunctioning CPU from rendering the network unusable.

The second unique, level 2 feature is heartbeat which is a signal that occurs each
time the transceiver receives a transmission from the attached device. The
heartbeat signal is transmitted back to the device using a specific line in the
transceiver cable.

The IEEE 802.3 standard is an Ethernet-like protocol, and is hardware­
compatible with level 2 Ethernet equipment. However, the packet structure
differs such that the two protocols do not work together on the software level.
From the hardware perspective, IEEE 802.2 packets, IEEE 802.3 packets, and
Ethernet packets can coexist on the same physical networlc. The Ethernet
controllers read all three types of packets.

The driver software, however, must treat some of the packet fields differently.
Therefore, IEEE 802.3 and Ethernet machines can talk to like-machines only on
the same physical networlc, with unlike-machines being transparent.

January 1988

124 Software Technical Bulletin issue 1988-01

Frequently Asked Questions
and Answers

Ethernet level 1 and level 2 differences are found in Ethernet controller and 0
transceiver interaction only. Toe differences effect neither the electrical interface
nor packets sent between transceivers on the coaxial cable. Note that the Sun
Ethernet board can be configured as either level 1 or level 2.

1. What is the longest length of Ethernet cable in a network?

Toe longest length possible is 1640.5 feet (500m). This length can be
composed of one full, continuous piece of cable. It can also be composed of
segments of 23.4m, 70.2m, or 117m lengths.

If odd-length cable sections must be used, choose the length so that the
resulting reflected signals on the cable are not out of phase with the actual
signal. This is usually accomplished by using lengths which are odd
multiples of the half-wave length at SMhz. This length corresponds to the
recommended segment lengths of 23.4m 70.2m, and 117m.

Transceiver drop cables have a maximum length of 164 feet (SOm).

2. What is the maximum time between recognition of the collision and
repeating of the collision?

Toe maximum time interval between collision recognition and a repeat
collision excluding the carrier sense random retiming delays is 200ns.

3. Should I ground the device or system?

Yes! Toe sheath conductor of the transceiver shall be connected to an earth
ground or chassis, but at one and only one point per segment. Any second or
additional ground points will only introduce degenerative ground loops,
which are seen as a higher voltage level on the coaxial cable. This can be
misinterpreted and sensed as a transmission carrier signal voltage.

4. What are the proper lengths for adding transceivers to the network cable?

Transceivers may be added at a minimum of 2.Sm from each other, or at
multiples of 2.Sm. Proper intervals are printed on the outside plastic sheath
of the Ethernet coaxial cable.

5. How many transceivers may be placed on the network?

A maximum of 100 nodes may be placed on the network.

6. What are the timing constraints between a detected collision and carrier
sense?

0

Toe channel logic must assert the collision-detect signal within 200ns
following the collision. Toe channel must then deassert the collision-detect
signal within 160ns after the loss of the collision-occurring signal. Toe Q•
carrier-sense is asserted when two stations are transmitting at the same time

January 1988

0

0

0

Section4-JnDepth 125

must be asserted within 200ns. The channel then as 160ns to deassert
carrier-sense after a carrier is no longer present on the network.

7. What do I need to know about repeaters?

A repeater is a device used to extend the cable length beyond the single
coaxial segment length of 500m. Repeaters require a transceiver at each of
the segments for which it is repeating signals. A maximum of two repeaters
may be in the signal path between any two transceivers.

The repeater implements the carrier-sense and the collision-detect/repeat
function for each cable segment it connects.. All signals are retimed and
amplified to allow for propagation to the other connected cable segment.
With carrier-detect, the propagation delay through the repeater cannot
exceed 800ns. With collision-detect and retransmission, the delay cannot
exceed 200ns.

The repeater ensures that the signal retransmitted from one cable segment to
the other has the same amplification as it would when leaving a station's
transceiver and entering the Ethernet coaxial cable.

8. How do I know that a packet preamble is correct?

The preamble should appear as shown below. This 64-bit preamble may be
viewed with proper software or a waveform analyzer. The preamble will
appear on an oscilloscope as a periodic waveform of 5Mhz frequency.

10101010 10101010 10101010 10101010 10101010 10101010 10101010 10101011

January 1988

126 Software Teclmical Bulletin issue 1988-01

Sockets

Socket Programming
Explanations and Examples

Sockets: Asynchronous J/0
and Out-of-Band Data

This article hopefully will clarify using SIGIO and SIGURG with sockets and
provides a couple of socket programming examples. Sun Software Infonnation
Services has been getting a lot of customer calls on this topic. Therefore, we will
provide ongoing STB articles relating to sockets, dealing with one or two topics
at a time. We will cover two topics in this article -- Sockets: Asynchronous 1/0
and Out-of-Band Data, and Asynchronous 1/0 and Internet Domain Stream
Sockets.

The tenn asynchronous I/0 used in connection with a socket refers to notifying
the process or the process group associated with the socket when 1/0 is ready.
This is done asynchronously and via a SIGIO signal. This facility is useful
when you do not want to poll for pending 1/0. An example is when the process
wants to perform other functions while waiting for 1/0 ready.

There are several ways to request asynchronous notification of 1/0 on a socket
descriptor by using ioctl (2) or fcntl (2) or both.

0

First, either the process or the process group associated with the socket must be

0 set to receive the SIGIO signal. Use one of the system calls shown below to set
the process group to receive the SIGIO signal. Note that the process group can
be set to receive s I GURG signals using the same system calls.

int pid;

pid - -getpid();
if (fcntl(sock, F_SETOWN, pid) < 0)

perror("fcntl: F_SETOWN");
if (ioctl(sock, FIOSETOWN, (char *)&pid) < 0)

perror("ioctl: FIOSETOWN");
if (ioctl(sock, SIOCSPGRP, (char *)&pid) < 0)

perror("ioctl: SIOCSPGRP");

Second, you need to set up the socket to receive asynchronous notification by
using one of the system calls shown below.

January 1988

0

0

0

0

Example Server and Client
Programs

Section 4 - In Depth 127

int val;

if (fcntl(sock, F_SETFL, FASYNC) < 0)
perror("fcntl: F_SETFL FASYNC");

val= 1;
if (ioctl(sock, FIOASYNC, (char *)&val) < 0)

perror("ioctl: FIOASYNC");

The following server and client programs illustrate using asynchronous
notification of J/0 under the Internet domain stream socket abstraction. The
server first creates an Internet domain stream socket. The system selects TCP as
an appropriate protocol. The server binds a name to the created socket, lets the
system select a port number, and then obtains the port number.

The server listens in its main loop for a client to connect to the named socket. A
new socket is created upon accepting a connection. The server then writes a
message to the client on the new socket at two-second intervals. When the server
receives a SIGPIPE signal it knows that the client has disconnected. This
signal results from writing on the socket without a client to read it. The server
then begins listening again for another client connection. This procedure is then
repeated.

The server is te111linated by a SIGQUIT signal, at which time the full-duplex
connections on the two sockets are shut down and the socket descriptors are
closed.

January 1988

128 Software Technical Bulletin issue 1988-01

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/signal.h>
#include <netinet/in.h>

int Sig = O;

char Buf[] = "Eat some chocolate!\n";
int Sock = 0;
int Msgsock = 0;

/* The Server*/
main()
{

int length;
struct sockaddr_in server;
int sigpipe(), sigquit();

/* Create Internet domain stream socket,
* letting the system select an appropriate protocol
*/

if ((Sock= socket(AF_INET, SOCK_STREAM, 0)) < 0) {
perror("creating Internet domain stream socket");
exit(2);

/* Assign name to socket, letting system pick port*/

server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_~Y;
server.sin_port = 0;
if (bind(Sock, &server, sizeof(server)))

perror("binding Internet stream socket");
close(Sock);
exit(2);

/* Get assigned port number*/

length= sizeof(server);
if (getsockname(Sock, &server, &length)) {

perror ("getting socket name");
close (Sock) ;
exit(2);

printf("Socket has port #%d\n", ntohs(server.sin_port));

/* Handle writing to a non-existent client*/

signal(SIGPIPE, sigpipe);

0

0

0
january 1988

0

0

0

/* Terminate server on a SIGQUIT signal*/

signal(SIGQUIT, sigquit);

/* Continue to listen for connections*/

for (;;) {
if (listen(Sock, 5)) {

perror("listen");
close(Sock);
exit (2);

if ((Msgsock = accept(Sock, 0, 0)) < 0)
perror("accept");

do

close(Sock);
exit(2);

if (write(Msgsock, Buf, strlen(Buf)) != strlen(Buf))
perror("writing stream message");

sleep(2);
while (! Sig) ;

close(Msgsock);
Msgsock = 0;
Sig= 0;

/* We'll receive a SIGPIPE signal if the client is killed.
* Handle it so we can accept future connections from new clients.
*/

sigpipe (s, code, scp)
int s, code;
struct sigcontext *scp;
{

print£ ("received SIGPIPE\n");
Sig++;

sigquit (s, code, scp)
int s, code;
struct sigcontext *scp;

if (shutdown(Sock, 2))
perror ("shutdown Sock");

close(Sock);
if (Msgsock)

if (shutdown(Msgsock, 2))
perror("shutdown Msgsock");

close(Msgsock);

exit (0);

Section4-In Depth 129

January 1988

130 Software Technical Bulletin issue 1988-01

Asynchronous JJO and
Internet Domain Stream
Sockets

More Example Programs

The client creates an Internet domain stream socket and the system selects TCP 0
as an appropriate protocol. The client then initiates a connection by supplying
the destination host name and port number obtained by the server. The client
then sets up the process group associated with the socket to receive asynchronous
notification of input on the socket Upon receipt of a SIGIO signal, the client
prints the server message. Finally, the client is terminated by a SIGQUIT
signal, at which time the full-duplex connection on the socket is shut down and
the socket descriptor closed.

See the following pages for additional example programs.

January 1988

0

0

0

0

0

Section 4 - In Depth 131

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <netdb.h>

#define BUFSIZE 512

int Sock;
int Sigio = O;
int nSigio = 0;

/* The Client*/
main (argc, argv)
int argc;
char **argv;
{

struct sockaddr_in server;
struct hostent *hp, *gethostbyname();
int sigio (), sigquit () ;
int n, val, pid;
char buf[BUFSIZE];

if (argc != 3)
{

printf("Usage: %s hostname portnumber\n", argv[O]);
exit(2);

/* Create Internet domain stream socket,
* letting the system select an appropriate protocol
*/

Sock= socket(AF_INET, SOCK_STREAM, 0);
if (Sock < 0)

perror("creating Internet domain stream socket");
exit(2);

/* Connect socket using host, port specified on command line. */

server.sin_family = AF_INET;
hp= gethostbyname(argv[l]);
bcopy(hp->h_addr, &(server.sin_addr.s addr), hp->h_length);
server.sin_port = htons(atoi(argv[2]));

if (connect(Sock, &server, sizeof(server)) < 0)
close(Sock);
perror("connecting stream socket 11

);

exit (2);

January 1988

132 Software Technical Bulletin issue 1988-01

); (:)
/* Set process group to receive SIGIO signals
* when there is input on socket Sock
*/

val= 1;
if (ioctl(Sock, FIOASYNC, (char *)&val) < 0)

perror("ioctl: FIOASYNC");

pid = -getpid();
if (ioctl(Sock, SIOCSPGRP, (char *)&pid) < 0)

perror("ioctl: SIOCSPGRP");

signal(SIGIO, sigio);
signal(SIGQUIT, sigquit);

for (;;)
I

sigio ()
{

/* Wait for a SIGIO signal indicating input pending*/
/* (Actually client would be doing some useful work here
* rather than waiting)

*I
sigpause(SIGIO);
if (Sigio) {

if ((n = recv(Sock, buf, BUFSIZE, 0)) > 0) {
buf[n] = '\0';
printf("%s", buf);

Sigio = 0;

Sigio++;
nSigio++;

sigquit ()
I

printf("Quitting, %d SIGIOs\n", nSigio);
if (shutdown(Sock, 2))

perror("shutdown");
close(Sock);
exit(O);

An easy way to run this example is to execute the server and client in two
separate windows. Start up the server first in one window and the server in
another window. Supply the host name and port number printed by the server as

January 1988

0

0

0

0

0

Section4-InDepth 133

arguments to the client To stop the client, type control-\, or kill it with
kill -3.

Under the Internet domain stream socket abstraction, a process group can be set
to send or receive out-of-band data on the same pair of connected stream socket
descriptors as normal data. Out-of-band data transmission is limited under
Release 3.2 to one character.

Both normal and out-of-band data are received via the same descriptor if the
process is set up to receive asynchronous notification of 1/0 on a socket
descriptor. SIGIO signals will be received on the OOB data as well as
s I GURG signals.

In the following examples, the server sends the client both normal and out-of­
band data. These programs can be executed in the same manner as the s I GI o
example above.

January 1988

134 Software Technical Bulletin issue 1988-01

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/signal.h>
#include <netinet/in.h>

int Sig= O;

char Buf [] = "Eat some chocolate! \n11
;

int Sock = O;
int Msgsock = O;

/* The Server*/
main()
{

int length;
char oobmsg;
struct sockaddr_in server;
int sigpipe(), sigquit();

/* Create Internet domain stream socket,
* letting the system select an appropriate protocol
*/

if ((Sock= socket(AF_INET, SOCK_STREAM, 0)) < 0)
perror("creating Internet domain stream socket");
exit(2);

/* Assign name to socket, letting system pick port*/

server.sin_family = AF_INET;
server.sin_addr.s_addr = INADDR_ANY;
server.sin_port = O;
if (bind(Sock, &server, sizeof(server)))

perror ("binding Internet stream socket") ;
close(Sock);
exit (2);

/* Get assigned port number*/

length= sizeof(server);
if (getsockname(Sock, &server, &length))

perror("getting socket name");
close(Sock);
exit(2);

printf ("Socket has port #%d\n", ntohs (server. sin_port));

/* Handle writing to a non-existent client*/

0

0

0
January 1988

0

0

0

signal(SIGPIPE, sigpipe);

/* Terminate server on a SIGQUIT signal*/

signal(SIGQUIT, sigquit);

/* Continue to listen for connections*/

for (; ;) {
int i = O;

if (listen (Sock, 5)) {
perror("listen");
close(Sock);
exit(2);

if ((Msgsock = accept(Sock, O, 0)) < 0) {
perror("accept");

do

close(Sock);
exit(2);

/* write normal data to client*/

if (write(Msgsock, Buf, strlen(Buf)) != strlen(Buf))
perror ("writing stream message");

sleep(3);

/* send Out-of-Band data to client*/

oobmsg = ('a' + i) &0177;
printf("sending OOBMSG %c\n", oobmsg);
if ((send(Msgsock, &oobmsg, 1, MSG_OOB)) < 0)

perror("sending OOB data");
i++;
sleep(3);

while (! Sig) ;
close (Msgsock);
Msgsock = O;
Sig= 0;

/* We'll receive a SIGPIPE signal if the client is killed.
* Handle it so we can accept future connections from new clients.
*I

sigpipe (s, code, scp)
int s, code;
struct sigcontext *scp;
{

printf ("received SIGPIPE\n");
Sig++;

Section4-InDepth 135

January 1988

136 Software Technical Bulletin issue 1988-01

sigquit (s, code, scp)
int s, code;
struct sigcontext *sop;

if (shutdown(Sock, 2))
perror("shutdown Sock");

close(Sock);
if (Msgsock) {

if (shutdown(Msgsock, 2))
perror("shutdown Msgsock");

close(Msgsock);

exit(O);

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
!include <signal.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <netdb.h>

#define BUFSIZE 512

int Sock;
int Sigurg = 0;
int nSigurg = O;

/* The Client*/
main (argc, argv)
int argc;
char **argv;
{

struct sockadJr in server;
struct hostent *hp, *gethostbyname();
int oobdata(), sigquit();
int n, pid;
char buf[BUFSIZE];

if (argc != 3)

printf("Usage: %s hostname portnumber\n", argv[OJ);
exit(2);

/* Create Internet domain stream socket,
* letting the system select an appropriate protocol
*/

Sock= socket(AF_INET, SOCK_STREAM, O);
if (Sock < 0) (

perror ("creating Internet domain stream socket") ;
exit(2);

0

0

0
January 1988

0

0

0

Section4-InDepth 137

/* Connect socket using host, port specified on command line. */

server.sin_family = AF_INET;
hp= gethostbyname(argv[l]);
bcopy(hp->h_addr, &(server.sin_addr.s addr), hp->h_length);
server.sin_port = htons(atoi(argv[2]));

if (connect(Sock, &server, sizeof(server)) < 0) {
close(Sock);

I ;

perror("connecting stream socket");
exit(2);

/* Set process group to receive SIGURG signals
* when there is Out-of-Band data on socket Sock
*I

pid = -getpid();
if (ioctl(Sock, SIOCSPGRP, (char *)&pid) < 0)

perror("ioctl: SIOCSPGRP");

signal(SIGURG, oobdata);
signal(SIGQUIT, sigquit);

for (;;)

char mark;

/* read normal data*/
if ((n = recv(Sock, buf, BUFSIZE, 0)) > 0) {

buf[n] = '\0';
printf("%s", buf);

if (Sigurg) {

oobdata ()
{

/* receive Out-of-Band data*/
recv(Sock, &mark, 1, MSG_OOB);
printf ("urgent message %c\n", mark);
Sigurg = 0;

Sigurg++;
nSigurg++;

sigquit ()
{

printf("Quitting, %d sigurgs\n", nSigurg);

January 1988

13 8 Software Technical Bulletin issue 1988-01

if (shutdown(Sock, 2))
perror("shutdown");

close(Sock);
exit(O);

See also the following topics found in the UNIX Interface Reference Manual,
Inter-Process Communication Primer, and Tutorial Examples of Interprocess
Communication in Berkeley UNIX 4.2 BSD by Stuart Sechrest, Computer
Science Research Group, Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley.

accept(2)
bind(2)
close(2)
connect(2)
fcntl(2)
intro(2)
ioct1(2)
listen(2)
recv(2)
shutdown(2)
socket(2)
write(2)
signal(3)
intro(4)
inet(4F)
tcp(4P)
fcntl(5)
protocols(5)

January 1988

0

0

0

0\
Color Maps

Sun Color Applications

An Overview to Color

0

0

Section 4 - In Depth 139

In this in-depth article, we discuss the use of color on the Sun Workstation.

a Overview to Color

a Hardware Frame Buffers

a Using suntools

a SunView

a SunCGI

a SunCore

a Prism System - Sun Model 3/110

The Sun windows and graphics packages support the use of colors. The two Sun
windows packages are suntools and SunView. Two Sun graphics packages
are SunCGI and SunCore. The graphics packages may use colors whether they
are running inside or outside the window system.

Customer applications may each create their own colonnap, or share a colonnap
created by a previous application. The colonnap is created by defining red,
green, and blue color arrays. A user sets the intensity of the color in each array
as desired. The colonnap index is defined as the index into the red, green, and
blue color arrays. For example, colonnap color index 3 displays the color
defined by the combined contents of red[3], green[3], and blue[3]. The user
application changes the colonnaps on the screen, by changing the contents of the
red, green, and blue color arrays; not by changing the index.

A total of 256 (2
8

) colors may be chosen from a palette containing 16
million (256

3
) colors. This limitation is imposed by the color frame

buffer hardware. The memory allocated for the color frame buffer has as
many colormaps loaded as possible, not to exceed the 256 total colors
restriction. If the user applications that are running exceed 256 colors,
some colormaps will be swapped out. The system determines which
colormaps are loaded, by the user placement of the mouse.

If you run a combination of applications whose colonnaps cannot all be held in
the frame buffer at the same time, the colormap for the window containing the
mouse is placed in the frame buffer so that it fits into a contiguous number of
positions. The other windows on your screen may then be displayed in spurious
colors, or may be black.

January 1988

140 Software Technical Bulletin issue 1988-01

Hardware Color Frame Buffers

Viewing Surfaces

The color frame buffers that Sun supports are described below.

/dev/cgoneO
for Sun 2 color, multibus syslems

/dev/cgtwoO
for Sun 2 sys!ems with the VME bus, and Sun 3 systems

/dev/cgfourO
the Prism frame buffer for Sun model 3/110 systems

/dev/gpone
the graphics processor, used with /dev/cgtwoO on the Sun
model 3/160C and 3/260C systems when !his optional hardware
board is installed.

The Sun graphics packages distinguish between the inside and outside of the
window syslem. While running under suntools, the graphics packages use
different window devices as the view surfaces.

0

The color view surfaces for the window syslem are the 'color graphics pixwins,'
called 'cgpixwindds.' The graphics packages while running inside the window
syslem use 'cgpixwindds' or 'gppixwindds.' While running outside the window
syslem, the graphics packages use the raw frame buffer. These devices are o
known as cgldd, cg2dd, cg4dd, and gpldd. These devices are described
below.

CG1DD

CG2DD

the Sun 1 color frame buffer device; and for Sun 2
multibus systems when running outside suntools, in
'console mode'

the Sun 2 and Sun 3 color frame buffer device when
running outside suntools, in 'console mode'

CG4DD the Sun 3/110 color frame buffer device when running
outside suntools, in 'console mode'

CGPIXWINDD a color window, when running the application in a
suntools window; or in a Sun View canvas subwindow

GP 1DD the graphics processor when running the application
outside suntools, in 'console mode' (SunCore only)

GP lP IXWINDD the graphics processor when running the application in a
suntools window, or in a Sun View canvas subwindow
(SunCore only)

See the SunCore Reference Manual, part number 800-1257; and the SunCGI Q
Reference Manual, part number 800-1256, for further information. The 'cg'

January 1988

0

Sharing Colormaps

0

suntools

0

Section4-InDepth 141

devices run on the Sun 2 and 3 frame buffers. Toe 'gp' devices run on the
graphics processor in conjunction with the color frame buffer.

Toe graphics processor is Sun's hardware graphics accelerator. This is a single­
board option. An additional graphics buffer board option may also be added at a
later time.

The Unix kernel manages the window system and its colormaps. It gives a name
to and then stores a colormap when defined. Any particular colormap may be
shared among applications by using the same colormap name. This is true across
Sun products such as Sun View, SunCore, and SunCGI.

Applications may share colormaps by calling pw _ set ems name () with the
arguments being the pixwin for that window, the colormap name already
defined, followed by pw _putcolormap () . pw_putcolormap () sets the
colormap size and points to the colormap's red, green, and blue arrays. When
sharing colormaps, the application which defines the colormap must be running
before the windows for other applications may attach to that colormap.

Toe colors of a window may be changed 'on the fly' by modifying the red, green,
and blue color arrays; and then by calling pw_putcolormap () to recolor the
window. The pw _putcolormap () call changes the values in the colormap
table. Toe CRT then redisplays the same pixel values. The color index is the
same; however, a different color is projected on the screen. Toe pixels on the
screen contain the index number into the colormap. The color which the index
represents may be changed by modifying what the colormap represents. This is
done by changing the contents of the red, green, and blue arrays. It is faster to
change the colormap than to redisplay the screen.

The sun windowing system which is invoked by calling the command
suntools with the -f and -b options, sets the default frame buffer colors.
These colors are inherited by tools and other applications running inside the
window system unless otherwise specified. Without these options, all
applications receive the default colormap name 'monochrome' which defines
white (red = 255, green = 255, blue = 255) as the background color, and black
(red= 0, green= 0, blue = 0) as the foreground color.

Toe user may invoke tools such as shell tool, textedit, cmdtool, and
gfxtool, with different foreground and background colors by specifying the
-Wf and -wb options. For example, the following shell tool is displayed
with a red border and blue namestripe. The inside of the tool remains black and
white.

shelltool -Wf O O 255 -Wb 255 0 0

Following the -Wf and -Wb options are the red, green, and blue color
intensities. For example, the following tool has the foreground color purple and
a light blue background, for not only the frame border and namestripe, but also
for the window inside the tool. This is accomplished by adding the -Wg option
as the example below shows.

January 1988

142 Software Technical Bulletin issue 1988-01

SunView

shelltool -Wf 185 000 184 -Wb 102 250 247 -Wg

Sun View applications may define their own colormaps or share colormaps up to
the maximum 256 frame buffer colors. First, define the colormap size for each
application. Second, set up the red, green, and blue arrays. Color number O is
the color defined by red[OJ, green[OJ, and blue[OJ; color number 1 is the color
defined by red[l], green[l], and blue[l]; and so forth. The size of each colormap
must be a power of 2, i.e. (2,4,8,16,32,64,128, or 256).

A minimum value of O is used for no intensity of that color. A maximum value
of 255 is used for full intensity of that color. For example, red[15] = 200, sets
the 16th element of the red array with a very strong red. Blue[lOJ = 15, sets the
11th element of the blue array with a light intensity of blue. The intensity
determines how intensely the monitor Cathode Ray Tube (CRT) displays the
color.

For a given pixwin, use pw _ set ems name (} to set the colormap name. The
arguments are the pixwin for the window, and a character string. To bind the
colormap to the pixwin, use pw_putcolormap (}. The arguments are the
pixwin for the window; the starting entry into the colormap; the number of
colors; and the red, green, and blue color arrays. Again, the number of colors
must be a power of 2.

A Sun View example follows.

January 1988

0

0

0

0

0

0

I*
* SunView color example
* Draws color lines in a canvas
*/

iinclude <suntool/sunview.h>
iinclude <suntool/canvas.h>

idefine NCOLORS

Frame
Canvas
Pixwin

main()
{

int i;

4

frame;
canvas;
*pw;

u_char red[NCOLORS], green[NCOLORS], blue[NCOLORS];

frame= window_create(NULL, FRAME,
0) ;

canvas
0) ;

/*

window_create(frame, CANVAS,

* Set up the red[], green[], and blue[] arrays.
*I

red[O]
red[l]
red[2]
red[3]

I*

255;
O;
0;
208;

green[O]
green [1]
green [2]
green[3]

O;
255;
0;
173;

blue[Ol
blue[l]
blue[2]
blue[3]

0; /*red */
0; /*green*/
255; /*blue*/
203; /*pink*/

*
*
*I

Get the canvas pixwin, initialize the colormap,
and put the colormap into the canvas window.

pw = canvas_pixwin(canvas);
pw_setcmsname(pw, "Four Colors"); /*kernel now has this name*/
pw_putcolormap(pw, 0, NCOLORS, red, green, blue);

/*
* Draw lines in the canvas.
*/

for (i=l; i < NCOLORS; i++)

Section 4 - In Depth 14 3

January 1988

144 Software Technical Bulletin issue 1988-01

I*
*
*/

The PIX_SRCIPIX_COLOR raster op adds the color index
to the source pixel value for display.

pw_rop(pw, 10, i*20, 300, i*20, PIX_SRCIPIX_COLOR(i),0);

window_main_loop(frame);

SunCGI SunCGI must define its own colormap by creating a new colormap or using a
shared colormap whether the SunCGI application is running inside or outside the
window system.

The SunCGI color intensity scheme is the same as SunView, ranging from Oto
255.

In SunCGI, first set the dd element of the view surface structure to be the frame
buffer type (CG1DD, CG2DD, CG4DD, GP1DD, or CGPIXWINDD}. In
the window environment, the graphics processor is accessed through
CGPIXWINDD. If the graphics processor is available, the CGPIXWINDD uses
that device for transformation calculations. Within the view surface structure, set
the crnapsize element to the colormap size, and the crnapnarne element to
the string that names the colormap. When the view surface is opened, and the
red, green, and blue color arrays are initialized; the colormap array of type
Cc entry points to the red, green, and blue color arrays.

A SunCGI example follows.

January 1988

0

0

0

0

0

0

I*
* A SunCGI "C" program
* Draws colored lines
* Run in a gfxtool
*I

#include <cgidefs.h>
#include <stdio.h>

#define NCOLORS 64
#define MIN
#define MAX

0
10000

static Ccoor
static Ccoor

vpll
vpur

MIN, MIN}; /* lower left corner*/
MAX, MAX}; /* upper right corner*/

main()
{

int name;
Cvwsurf device;
Ccoorlist line;
Ccoor points[2];
int
Ccentry
u_char
u char
u char

i;
clist;
red[NCOLORS];
green[NCOLORS];
blue[NCOLORS];

/* view surface name*/
/* view surface device*/
/* line coordinate list*/
/* point list*/
/* position counter*/
/* color map list*/
/* red color map*/
/* green color map*/
/* blue color map*/

/* start cgi */
device.dd = CGPIXWINDD;
open_cgi ();
open_vws(&name,&device);
vdc_extent(&vpll,&vpur};

I* select output device
I* initilize cgi *I
I* open view
/* reset

/* set the line attributes*/
line_width_specification_mode(ABSOLUTE);
line_width(l.0);

/* set up the color map*/
red[O] 255; green [OJ 000; blue[O]
red[l] 000; green[l] 255; blue[l]
red[2] 000; green [2] 000; blue [2]

vdc

000;
000;
255;

surface *I
space *I

I* red
/* green
I* blue

*I

red[3] 255; green[3] 255; blue [3] 000; I* yellow
red [4] 255; green[4]
red [5] 150; green [5]
red [6] 120; green [6]
red[?] 000; green [7]

clist.n = NCOLORS;
clist. ra red;
clist.ga = green;

000;
150;
090;
000;

blue [4] 255; I* purple
blue [5] 150; I* gray
blue[6] 000; I* brown
blue[?] 000; I* black

Section4-InDepth 145

*I
*/
*/
*I
*I
*/
*I
*I

January 1988

146 Software Teclmical Bulletin issue 1988-01

SunCore

clist.ba = blue;
color_table(O,&clist);

/* draw colored lines*/
line.n = 2;
line.ptlist points;

for (i = 0; i < NCOLORS; i++)
line_color(i);
points[OJ.y MIN;
points [OJ .x = (i*lOOO);
points[ll .y = MAX;
points[l] .x = (i*lOOO);
polyline(&line);

sleep(S);

/* end cgi */
close_vws(name);
close_cgi () ;

SunCore applications running on the console window, in a gfxtool, a
shell tool, or in a Sun View canvas window must define their own colormaps.
SunCore color devices are CG1DD, CG2DD, CG4DD, CGPIXWINDD,
GP1DD, and GPlPIXWINDD.

SunCore colors do not range from O to 255. Instead they range as 256 possible
values between O and 0.99. Most users familiar with the SunView model may
assign their colors as shown in the example below.

float red[256];

for (i=O; i<256; i++)
red [i] = (float) i * ((float) 1 / (float) 256) ;
)

In SunCore, the view surface cmapsize must be set to the size of the color
table, and cmapname must be set to the colormap name. These must be set
before the initialize_view_surface () call. After the viewport and
window are set up, you may define the color indices for text, line, and fill
operations using the define_color_indices (} call.

A SunCore C-language program example follows.

January 1988

0

0

0

0

0

0

/*
* SunCore example written in "C"
* Writes a string in color
* Run this in a gfxtool
*/

#include <usercore.h>

#define NCOLORS 8

int cgpixwindd () ;
struct vwsurf vwsurf = DEFAULT_VWSURF(cgpixwindd);

main()
{

float
float
int

red[NCOLORSJ, green[NCOLORSJ, blue[NCOLORSJ;
x, y;
i;

vwsurf.crnapsize = NCOLORS;
strcpy (vwsurf.cmapname, "Colormap");

red [OJ
green [OJ
blue [OJ

= 0.99;
0. 99;
0.99;

for (i=l; i < NCOLORS; i++) {
red [iJ (float)i * (1.0 / (float)NCOLORS);
green[iJ (float)i * (1.0 / (float)NCOLORS);
blue [iJ (float)i * (1.0 / (float)NCOLORS);

if (initialize_core(BASIC,NOINPUT,TWOD))
exit(l);

if (initialize_view_surface(&vwsurf,FALSE))
exit(2);

if (select_view_surface(&vwsurf))
exit(3);

set_viewport_2 (0.0,1.0,0.0, .75);
set_window (-100.o,100.0,-100.0,100.o);

/*
* SunCore - You pass NCOLORS-1 since SunCore wants to
* to know where the last value is, not the colormap size.
*I

define_color_indices(&vwsurf,0,NCOLORS-1,red,green,blue);
create_temporary_segment();

X = -100.Q;
y = 90.0;

Section4-In Depth 147

January 1988

148 Software Teclmical Bulletin issue 1988-01

for (i = 1; i < NCOLORS; i++)

I*
* Set line index
*I

set_line_index(i);
move_abs_2(x, y);
y = y - 20. 0;
line_abs_2(x, y);
X = X + 20.0;

color index.

sleep (5);
close_temporary_segment();
deselect_view_surface(&vwsurf);
terminate_core();

When writing SunCore programs in FORTRAN, the programmer must set up the
view surface structure array elements as shown in the example that follows. The
rest of the code is similar to the C-language example above; in setting up the red,
green, and blue arrays; assigning colors with intensities from O to 0.99; and

0

applying the colors to lines, text, and fill operations. Q
A SunCore FORTRAN program example follows.

0
January 1988

0

0

0

C

c SunCore program in FORTRAN
c Draws two lines
c Run in a gfxtool
C

C

C

C

C

include '/usr/include/f77/usercore77.h'

integer vsurf(VWSURFSIZE)

Initialization of view surface structure.

character *20 screenname, windowname,
integer cmapsize
equivalence (vsurf(l), screenname)
equivalence (vsurf(6),
equivalence (vsurf(14),
equivalence (vsurf(15),

windowname)
cmapsize)
cmapname)

cmapname

c Declarations of all color devices.
C

C

C

C

C

C

C

C

C

C

C

C

integer cgldd, cg2dd, cgpixwindd
external cgldd, cg2dd, cgpixwindd

Create color arrays.

real red(4), green(4), blue(4)

integer InitializeCore, InitializeVwsurf, Selectvwsurf

data vsurf /VWSURFSIZE*O/

vsurf(DDINDEX) = loc(cgpixwindd)
if (InitializeCore(BASIC, NOINPUT, TWOD) .ne. 0) call exit(l)

Display current vsurf information.

print*, 'initializecore:'

Initialize colormap.

cmapsize

red(l)
green (1)
blue(l)

red (2)
green(2)
blue(2)

4

0.0
0.5
0.0

1.0
0.5
0.0

Section4-1nDeplh 149

January 1988

150 Software Technical Bulletin issue 1988-01

red(3)
green(3)
blue(3)

red(4)
green(4)
blue (4)

0.0
1.0

= 0.5

1.0
0.0
0.5

print *, 'red:
print*, 'green: '
print *, 'blue:

red(l),
green(l),
blue (0),

red(2),
green(2),

blue(!),

red(3), red(4)

C

C

C

Initialize view surface and window.

green(3),
blue (2),

if (InitializeVwsurf(vsurf, FALSE) .ne. 0) call exit(2)
if (SelectVwsurf(vsurf) .ne. 0) call exit{3)

C

C

C

C

call SetViewPort2(0.125, 0.875, 0.125, 0.75)
call SetWindow (0. O, 10. 0, 0. 0, 1. 0)
print*, 'initialization done'

First line is drawn on screen after setting colors.

call DefColorindices{vsurf, 1, 4, red, green, blue)
call CreateTempSeg()
print*, 'temporary segment created'
print *, ' '
print*, 'You will not see the first line'
print*, 'because its color is the same'
print*, 'as the background color.'

do 200 i = 1, cmapsize
reali = i
call SetLineindex{i)
call MoveAbs2{reali, 0.0)
call LineAbs2(reali, 9.0)
print *,'line', i,'created'

200 continue

call sleep (5)

c Close down SunCore.
C

call CloseTempSeg{)
call sleep(5)
call DeselectVwsurf{vsurf)
call TerminateCore()
end

Prism System - Sun Model
3/110

green (4)
blue (4)

January 1988

0

0

0

0

0

0

Section4-Jn Depth 151

The model Sun 3/110 systems, known as 'Prism' systems, have frame buffer
architecture that is unique among Sun workstations. Such systems have a IO-bit
frame buffer that emulates both a 'monochrome' and a color frame buffer. This
frame buffer is called / dev / cgfourO.

The architecture for the IO-bit deep frame buffer is shown below.

- enable plane 1 plane
1 plane
8 planes

- overlay plane group, monochrome, (/dev/bwtwoO)
- color plane group, color, (/dev/cgfourO)

where the enable plane bit at a pixel location is set to
0 = color, 1 = monochrome. This is the plane group visible at
that pixel location.

The overlay plane group is the black and white plane, the other plane group for
color. On the Sun model 3/110 as on all other Sun 2 and 3 color machines, a
maximum of 256 colors are visible.

When suntools is invoked with no options, all monochrome tools or
applications appear from the overlay plane. All color tools or applications
appear from the color planes. Tools that are invoked with color options appear
from the color plane, and the other tools appear from the overlay plane.

The most common usage of suntools on Sun model 3/110 systems is to then
run different applications in the different planes. This allows the user to use the
model 3/110 as if there were two monitors, like adjacentscreens allows.
The user invokes suntools in the color planes first. Then, from a
shelltool, invoke a separate suntools in the overlay plane. When
suntools is invoked this way, a shell tool with no -Wf or -Wb options
is running in the overlay or monochrome planes belonging to the suntools
from which it was invoked. From both the color and overlay planes,
switcher is run, so that you may toggle between the color and the overlay
planes.

An example follows, taken from the switcher(1) man page.

January 1988

152 Software Technical Bulletin issue 1988-01

>From the console.
"suntools -Sbit_color_only -toggle_enable"

>You are now in the color planes. From a shelltool.
"suntools -d /dev/bwtwoO -toggle_enable -n &"
<suntools has been started in the overlay plane>

"switcher -d /dev/bwtwoO -s i &"
<a switcher icon should appear to allow you to switch to the overlay

plane>

>Click on the switcher icon, you are now in the overlay plane.
>From a shelltool.

"switcher-so&"
<a switcher icon should appear to allow you to switch to the color
planes>

On Sun model 3/110 systems, the default frame buffer, / dev / fb, refers to the
color portion of the frame buffer. Applications such as screendump(I) and
screenload(I) access / dev / fb by default. Thus screendump is equivalent
to screendump -f /dev/fb, which is equivalent to screendump -f
/dev/cgfourO.

For more infonnation on Sun model 3/110 systems, see the Release 3.2 Manual,
part number 800-1364.

January 1988

0

0

0

0

0

0

5
irn I mit!! iii MM k& t@ilWMlliNN@foid&i&itn\Mi

QUESTIONS, ANSWERS, HINTS,
AND TIPS

QUESTIONS, ANSWERS, IDNTS, AND TIPS ... 155

Q&A, and Tip of the Month .. 155

0

0

0

0

Q&A, and Tip of the Month

Hints & Tips #4

0

Yellow Pages and Mail Aliases

Mail Aliasing

0

5
QUESTIONS, ANSWERS, HINTS,

AND TIPS

This is the fourth in a continuing series of this column which I have created for
two puiposes.12 First, some questions are asked regularly on the AnswerLine. I
feel everyone can benefit from distributing discussions of these problems as
widely as possible. Second, a large and constantly growing body of information,
hints, and tips are not documented anywhere.

I will collect and distribute these information nuggets in this continuing column
so that we can all learn from them. I will cover unusual topics, but this column
should not be used as an alternative to contacting your support center or using the
AnswerLine.

If you have a question that you would like answered in this column, please mail
your question to 'Software Technical Bulletins' at Sun Microsystems, Inc., 2550
Garcia Avenue, M/S 2-34, Mountain View, CA 94043. You can also send in
your question by electronic mail to sun!stb-editor. U. S. customers can call Sun
Customer Software Services AnswerLine at 800 USA-4-SUN for technical
questions on this column or any other article in this bulletin. I look forward to
hearing from you!

This month we are going to look at the Yellow Pages and how they relate to mail
aliases on your system, and then look at the rest of the . cshrc aliases I
promised last month.

When you send electronic mail, the system uses a set of alias files to allow
people to set up mailing lists and make sure that mail gets to the right person.
The three places where aliases can be set up are listed below.

12 This continuing column is submitted by Chug Von Rospach, Customer Software Services.

155 January 1988

156 Software Technical Bulletin issue 1988-01

user/.mailrc ~
This file is read by the /usr/ucb/Mail program, and ·
allows a user to set up private aliases or mailing lists
without administration intervention.

/usr/lib/aliases

mail.aliases

This file is read by sendmail, and can be used to set up
mailing lists or aliases global to the entire machine.

This is a yellow pages map found in SunOS releases 3.0
and subsequent releases. This allows an administrator to
set up aliases in one location . The aliases are then
accessible to all machines within the domain.

Two processes need to be clearly understood: when these files are accessed, and
in what order. When you send a piece of mail, the mail system processes it as
described below.

Every address is checked against your list of aliases in your . mai lr c file. If
there is a match, the alias is replaced with the list of entries in the .mailrc
file. One example is shown below.

alias friend chuq rx [.rnailrc file]

% mail friend

This becomes translated to the entry that follows.

% mail chuq rx

In this example, the aliasing is quite limited, simply a straightforward string
substitution that is space delimited.

The message is then sent to sendmail, which inspects it and checks each
mailing address in the order shown below.

local aliases
yellow page aliases

Note that a match on the local alias does not keep the system from trying to
rematch on the global alias. If the local alias file changes 'rx' to 'rx@suntoo'
then the global alias file will not change it again to 'rx@ray.' However, if you
alias something locally that matches something in the yellow page alias, it will
get aliased again.

January 1988

0

0

0

Pitfalls to A void

0
Tip of the Month (TOM)

0

Section 5 -Q&A, Hints and Tips 157

After this aliasing, the mail is sent to the machine that does local delivery. On
the local machine, a check is made for a . forward file. If it exists, the current
mail address is replaced with the address in the . forward file. sendmail
then aliases the address again. This process applies for multiple mail addresses
as well. The . mailrc is not checked after the first round, though. When both
rounds of aliasing are completed, sendmail drops the mail in your mailbox
and all is done.

There are a few points to remember to ensure proper mail processing. First, it is
possible to set up degenerative alias loops using the mail. alias file. The
most common problem is to set up your aliases using the 'bang' format (as in
machine/user) instead of using the 'at' format (as in user@machine). The 'bang'
format worked prior to Sun OS release 3.0. However, with the implementation
the yellow pages map, mail then transfers between a client and mailhost until it
fails due to too many transfers. 'Bang' addressing should be used only for
machines that are outside the local network, and then only when using UUCP for
communication.

Second, it is possible to set up forwarding loops with a . forward file that will
cause mail to be destroyed. In general, you should avoid using the . forward
file and put your aliases into the yellow pages map instead.

This month completes the lengthy . cshrc. This file includes a lot of
miscellaneous aliases, shorthand command names, and other things to make
working with Unix a little easier, nicer, and hopefully give you some ideas on
customizing your environment so it works best for you. If you have some
favorite aliases you want added to the next generation of the monster , cshrc,
mail them to sun!stb-editor.

The script appears on the following pages.

January 1988

158 Software Technical Bulletin issue 1988-01

#! /bin/csh
Monster cshrc -- everything you might ever want to do when you
use csh.

If we are running a script, do not source .cshrc for speed.
Prompt is set if we are interactive.
term is set if we have a tty attached (needed for at)
if (! $?prompt) exit
if (! $?term) exit

Note that echo is built in and therefore much faster than
calling pwd as a normal program. This does not work correctly
across symlinks.
alias pwd 'echo $cwd'

#setup general variables
set history=99 # nice round number

These aliases let you bring a job to the foreground simply by
typing the job number. Very convenient.
alias 1 %1
alias 2 %2
alias 3 %3
alias 4 %4
alias 5 %5
alias 6 %6
alias 7 %7
alias 8 %8
alias 9 %9

Quick pushd/popd -- pushd should really be+,
but that requires shift.
is shorthand for pushd $HOME, which tends to happen often.
alias - popd
alias pushd
alias pushd

#Backup the directory tree quickly.
alias .. "cd .. "

Quick sunview compiling.
alias ccsv "cc\!* -lsuntool -lsunwindow -lpixrect"
alias ccsvg "cc\!* -g -lsuntool -lsunwindow -lpixrect"

lint alias. Lets you look at the libc lint library and check
a call's parameters. For example, 'check read.'
alias check "grep \!* /usr/lib/lint/llib-lc"

Convenient shorthands.
alias pe printenv
alias h history

0

0

0
January 1988

0

0

0

Section5-Q&A, Hints and Tips 159

alias rn more
alias clean 'rm *.o core a.out'
alias psa "ps axu sort -f +O +ln I more"

Safety hatches.
alias cp cp -i
alias mv mv -i
alias rm rm -i

fg brings job into foreground, bg brings job into background,
and v restarts a stopped vi.
j lists jobs
k kills jobs; 'k 1' kills job 1, 'k' kills the most recent job,
shown with a '+' in the jobs list.
alias v %vi
alias j jobs -1
alias k 'kill%\!*'

History editor.
Dump the history into a file, edit it, and then source it back.
Useful if you have a long, tedious command you do not want
to retype.
set $hed /tmp/hed$$
alias hed history -h \!* > $hed; vi+ $hed; source -h $hed

January 1988

0

0

0 '

I

0
6

m; mmn 1 mn Ml 1@!fai@:A:Wt t. , rhtdkffi!M.

THE HACKERS' CORNER

THE HACKERS' CORNER... 163

Devices Present ... 163

0

0

0

0

0

0

Devices Present

The Hackers' Corner:
Determining Devices Present

0
Professional Interest

Program 0

0

6
THE HACKERS' CORNER

There are times when it might be helpful to know what devices are present and
connected to your system. Again, you might not want to have to intelligently
parse through a file to reinvent the wheel.

This article contains two programs, written by different programmers. Each
approaches the effort to determine a machine's configuration differently. Use
these programs carefully since investigating what the kernel knows is more of an
arcane art than some kind of supported interface. UNIX systems export few, if
any, internal kernel interfaces or data structures.

The script or code contained in this article may be of interest to professinals,
enthusiasts, or anyone having the time to key the script or code onto their system.
If you email the STB editor a request for the script or code at sun!stb-editor, we
will mail you an online copy. Please include the article name with your request.

Also, please consult your local shell script or programming expert regarding any
script or code problems. The script or code is not offered as a supported Sun
product, but as an item of interest to enthusiasts wanting to try out something for
themselves.

This is the first of two programs that determine what devices are present on your
system. This program appears on the following pages.

163 January 1988

164 Software Technical Bulletin issue 1988-01

#ifndef lint
static char *sccsid
#endif

"%Z%%M% %I% %E% SMI";

I*
* Print system hardware configuration
*/

#include <stdio.h>
#include <sys/param.h>
#include <sys/fcntl.h>
#include <nlist.h>

#include <sys/buf.h>
#include <sundev/mbvar.h>
#include <sun/autoconf.h>
#include <machine/mmu.h>
#include <machine/cpu.h>

static char *kmemf = "/dev/kmem";
static char *nlistf = "/vrnunix";
static int kvm_des;

static struct nlist
#define X_MBDINIT

{ "_mbdinit" },
#define X_CPUTYPE

nl[J =
0

1
{ "_cpu" },

#define X_PHYSMEM 2
{ "_physmem" },
{ '"' }

} ;

static int allflg;
static void usage();
static void printconf () ;
static int kvmread(};

extern long lseek();

int
main(argc, argv}

int argc;
char *_*argv;

register char *argp;

argc--, argv++;
while (argc > 0 && **argv

argp = *argv++;
argp++;

I _I)

0

0

0
January 1988

0

0

Q

Section 6 - The Hackers' Comer 165

argc--;
while (*argp++)
switch (argp[-1])

case 'a' :
allflg++;
break;

default:
usage();
exit (1);

if (argc > 1) {
nlistf = argv[l];
argv++;
argc--;

if (argc > 1)
krnemf = argv[l];
argv++;
argc--;

if ((kvm_des = open(krnemf, O_RDONLY)) < 0) {
(void) fprintf(stderr, "showconfig: Can't open");
perror (krnemf);
exit(l);

if (nlist (nlistf, nl) < 0) {
(void) fprintf(stderr, \

"showconfig: Can't get at kernel nameliSt\n");
/* XXX - need better error message*/

exit (1);

printconf();
return (O);

static void
usage()
{

(void) fprintf(stderr, "usage: showconfig -a [system] [core]\n");
exit (1);

static void
printconf ()
{

unsigned long mbdptr;
unsigned long drvaddr = 0;
unsigned long ctlraddr = 0;
struct mb driver driver;

/* address of mb_device tbl */
/* address of mb_driver */
/* address of mb_ctlr */

January 1988

166 Software Teclmical Bulletin issue 1988-01

struct mb_ctlr ctlr;
struct mb_device device;
int cpu;
int physmem;
char dname[12];
char cname [12);
char *space;
caddr_t addr;
int intpri;
unsigned long intvec;
struct vec vecs[2);
register int i;
register char *c;

if (kvmread(kvm_des, (unsigned long) nl[X_CPUTYPE) .n_value,
(char *)&cpu, sizeof cpu) < 0) {
perror("showconfig: Can't read cpu type");
exit(l);

/* 12345678901234567890123456789012345678901234567890 */
switch (cpu) {

#if defined(SUN2_ARCH)
case CPU SUN2 120: - -

(void) printf("Multibus Sun-2\n");
break;

case CPU SUN2_50:
(void) printf ("VMEbus Sun-2 or Sun-2/50\n");

break;

default:

#endif

(void) printf("Sun-2, unknown type %#4.4x\n", cpu);
break;

#if defined(SUN3_ARCH)
case CPU_SUN3_160:

(void) printf("Sun-3/75, Sun-3/160, or Sun-3/180\n");
break;

case CPU SUN3 50:
(void) printf("Sun-3/50 or Sun-3/52\n");

break;

case CPU SUN3 260:
(void) printf("Sun-3/260 or Sun-3/280\n");
break;

case CPU SUN3 110:
(void) printf("Sun-3/110\n");
break;

default:

0

0

0
January 1988

0

0

0

Section 6 -The Hackers' Comer 167

#endif
)

(void) printf("Sun-3, unknown type %#4.4x\n", cpu);
break;

if (kvmread(kvm_des, (unsigned long) nl[X_PHYSMEM).n_value,
(char *)&physmem, sizeof physmem) < 0) {
perror{"showconfig: Can't read amount of physical memoryh);
exit(l);

(void) printf("Physical memory= %dK\n", ctob(physmem)/1024);

mbdptr = nl[X_MBDINIT) .n_value;
(void) printf(
" DEVICE SPACE HEX ADDRESS RANGE CTRLR SLV PRI
while (1) {

/*
/* a 'for' would be a mess here*/

* get the next mb_device entry
*I

if (kvmread(kvm_des, mbdptr, \
(char *)&device, sizeof device) < 0)
perror("showconfig: Can't read device entry");
exit (1) ;

if (device.md_driver == 0)
break;

/* end of table*/

mbdptr += sizeof device;
/*
* get the rnb ctlr and rnb_driver, if not current
*/

if (drvaddr != (unsigned long) device.md_driver)
drvaddr = (unsigned long) device.md_driver;
if (kvmread(kvm_des, drvaddr, (char *)&driver,

sizeof driver) < 0) {
perror("showconfig: Can't read driver entry");
exit (1);

if (kvmread(kvm_des, (unsigned long)driver.mdr_dname,
(char *)dname, sizeof dname) < 0) {
perror("showconfig: Can't read device name");
exit(l);

if (device.md_mc != 0)
if (kvmread(kvm_des, \
(unsigned long)driver.mdr_cname,

(char *)cname, sizeof cname) < 0)
perror("showconfig: \
Can't read controller name");
exit (1);

VEC\n");

January 1988

168 Software Teclmical Bulletin issue 1988-01

if (device.md_mc != 0 && ctlraddr != \
(unsigned long)device-md_mc) {

ctlraddr = (unsigned long)device.md_mc;
if (kvmread(kvm_des, ctlraddr, (char *)&ctlr,

sizeof ctlr) < 0) {
perror("showconfig: \
Can't read controller entry") ;
exit (1);

if (!allflg && !device.md_alive)
continue; /* unconfigured device*/

/*
* Consistency checking

*/
if (device.md_mc != 0)

if (device.md_ctlr -- -1)
(void) printf(

"%s%-2d - Bad controller number: md ctlr: -1\n",
dname, device.md_unit);

if (device.md_slave == -1)
(void) printf(

11 %s%-2d - Bad slave number: md_slave: -1\n",
dname, device.md_unit);

if (device.md_alive && (device.md_mc 0))
if (device.md_ctlr != -1) {

(void) printf(
"%s%-2d - Controller number for unspecified controller: md ctlr: %d\n",

dname, device.md_unit,
device.md_ctlr);

if (device.md_slave != -1)
(void) printf (

"%s%-2d - Slave number for unspecified controller: md slave: %d\n",
dname, device.md_unit,
device.md_slave);

if (device.md_mc != 0) {
if (device.md_driver != ctlr.mc_driver)

(void) printf (
"%s%-2d - Driver pointer mismatch: md_driver: %x me driver: %x\n",

dname, device.md_unit,
device.md_driver, ctlr.mc_driver);

if (device.md_ctlr != ctlr.mc_ctlr)

0

0

0
January 1988

0

0

0

Section 6 - The Hackers' Comer 169

(void) printf (
"%s%-2d - Controller number mismatch: md_ctlr: %d mc_ctlr: %d\n",

dname, device.md_unit,
device.md_ctlr, ctlr.mc_ctlr);

if (device.md_mc != 0 && device.md_alive && !ctlr.mc_alive)
(void) printf (

"%s%-2d - Controller not marked alive: %s%-2d\n",
dname, device.md_unit,
cname, device.md_ctlr);

I*
* Figure out the address space in which the device is mapped
* Also, get the interrupt priority and vector
*/

if (device.md_mc != 0)
i = SP BUSMASK & ctlr.mc_space;
c = "me_";
addr ·= ctlr.mc_addr;
intpri ctlr.mc_intpri;
intvec = (unsigned long)ctlr.mc_intr;

else I
i = SP BUSMASK & device.md_space;
C = "md_";
addr = device.md_addr;
intpri device.md_intpri;
intvec = (unsigned long)device.md_intr;

/* Read the first two vectors in*/
if (intvec != 0)

I*

if (kvmread(kvm_des, intvec, (char *)vecs,
sizeof vecs) < 0) {
perror("showconfig: \
Can't read interrupt vectors 11

) ;

exit (1);

* More consistency checking
*I

if (intpri < 0 I I intpri >= 7)
(void) printf (

"%s%-2d - Illegal priority: %sintpri: %d\n",
dname, device.md_unit, c, intpri);

if (intvec != 0 && vecs[OJ.v_func == NULL)
(void) printf (

"%s%-2d - Null interrupt handler: %sintr\n",

January 1988

170 Software Technical Bulletin issue 1988-01

dname, device.md_unit, c);

switch (i)
case SP_VIRTUAL:

space= "virtual";
break;

case SP OBMEM:
space= "obmem";
break;

case SP OBIO:
space= "obio";
break;

case SP MBMEM:
space= "mbmem";
break;

case SP_MBIO:
space= "mbio";
break;

case SP_VME16D16:
#if defined(SUN2_ARCH)

space "vmel 6";
#else

space "vmel 6dl 611
;

#endif
break;

case SP VME24D16:
#if defined(SUN2_ARCH)

#else

#endif

space "vme24";

space "vrne24d16";

break;
case SP VME32D16:

space = "vme32d16";
break;

case SP VME16D32:
space= "vme16d32";
break;

case SP VME24D32:
space= "vme24d32";
break;

case SP VME32D32:
space= "vme32d32";
break;

default:
(void) printf (

case 0:

"%s%-2d - Unknown address space: %sspace: %d\n 11
,

dname, device.md_unit, c, i);

space="????";

0

0

0
January 1988

0

0

0

/*
* Now {finally) print out the information
*/

(void) printf ("%s", (device .md_alive ? " " : "*"));
(void) printf("%8.8s%-2d ", dname, device.md_unit);
(void) printf("%8.8s ", space);
if (addr != 0) {

(void) pz:intf ("%08x-%08x ",
addr, (addr + driver.mdr_size - 1));

else

Section 6 ___: The Hackers' Comer 171

(void) printf(" size:%f-6x ", driver.mdr_size);
if (device.md_mc != 0)

(void) printf("%8.8s%-2d 13d ",
cname, device.md_ctlr, device.md_slave);

else
(void) printf (" ");

if (intpri != 0)
(void) printf("%3d ", intpri);

else
(void) printf (" ");

if (intvec != 0 && vecs[OJ.v_func != NULL) {
for (c = 1111

; ;) {

else

(void) printf("%s %#x", c, vecs[O].v_vec);
if (vecs[l].v_func == NULL)

break;
intvec + = sizeof (struct vec);
if (kvmread(kvm_des, intvec, (char *)vecs,

sizeof vecs) < 0) {
perror("showconfig: \

C

Can't read interrupt vectors");
exit (1);

" " . ' '

(void) printf (11
") ;

(void) printf("\n");

January 1988

172 Software Technical Bulletin issue 1988-01

static int
kvmread(fd, addr, value_ptr, value_size)

int fd;
unsigned long addr;
char *value_ptr;
int value_size;

if (lseek(fd, (long) addr, 0) == -lL
1 I read(fd, value_ptr, value_size) != value_size)
return (-1);

return (O);

0

0

0
January 1988

Q Program 1

0

0

Section 6 - The Hackers' Comer 173

A second program named probe. c looks into the kernel to detennine what
devices are present. It produces an output similar to that shown below.

astra% probe
siO at obio Oxl40000 pri 2
stO at siO slave 0
stO at siO slave 32
zsO at obio Ox20000 pri 3
zsl at obio OxO pri 3
leO at obio Oxl20000 pri 3
bwtwoO at obmem OxlOOOOO pri 4
desO at obio OxlcOOOO not attached
astra%

Again, use this program on an experimental basis. Consult your local experts to
see what they have to say Good luck!

January 1988

174 Software Technical Bulletin issue 1988-01

/*
* lists all devices defined for a configuration
* and indicates if a device has not been attached

*
* usage: probe [vmunix]

*
* mark opperman
* sun europe
* 20 aug 86
*/

#include <stdio.h>
#include <ctype.h>
#include <nlist-h>
#include <sys/param-h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/vmmac.h>
#include <sys/dkbad-h>
#include <machine/param.h>
#include <machine/pte.h>
#include <sun/dklabel.h>
#include <sun/dkio.h>
#include <sundev/mbvar.h>
#include <sundev/screg.h>
#include <sundev/sireg_h>
#include <sundev/scsi.h>

struct nlist nl[] =
{ "_Sysmap", O, O, 0, 0 } ,

#define NL_SYSMAP 0
{ "_mbcinit", O, 0, 0, 0 },

#define NL_MBCINIT 1
{ "_mbdinit", 0, O, 0, 0 } ,

#define NL_MBDINIT 2
{ "_scdriver", 0, 0, O, 0 },

#define NL_SCDRIVER 3
{ "_scsi_ntype", O, O, O, 0 } ,

#define NL_SCSINTYPE 4
{ "_scsi_unit_subr", O, O, O, 0 } ,

#define NL_SCSIUNITSUBR 5
{ "" },

#define NL_LAST 6
} ;

#define physaddr(addr} (addr - KERNELBASE)

#define MAX SCSI DEV NAME LENGTH 3 - - - -
int mem;

0

0

0
January 1988

0

0

0

struct pte *Sysmap;
struct mb_ctlr *mbcinit;
struct mb device *mbdinit;
struct mb_driver *scdriver;
int scsi_ntype;
struct scsi_unit_subr *scsi_unit_subr;
char *vmunix = "/vmunix";

struct pte getpte();
extern char *malloc();
extern char *calloc();

main(argc, argv)
int argc;
char **argv;

if Cargo> 2)
fprintf (stderr, "usage: %s [vmunix] \n", argv [OJ);
exit(l);

if (argc == 2)
vmunix =.argv[l];

if ((mem = open(" /dev/mem", O_RDONLY)) < 0)
perror("can't open /dev/mem");
exit (1);

getkvars();

process();

getkvars ()
{

register char *devname;
register i;

nlist(vmunix, nl);

Section 6-The Hackers' Comer 175

if (nl [NL_SYSMAP] .n_type == 0 11 nl [NL_MBCINIT] .n_type O I I
nl[NL_MBDINIT] .n_type == 0) {

fprintf(stderr, "no namelist\n");
exit(l);

for (i=O; i<NL_LAST; i++)
if (i == NL_SCDRIVER)

continue;
/* need virtual address*/

if (nl[i] .n_value >= KERNELBASE)
nl[i].n_value = physaddr(nl[i].n_value);

January 1988

176 Software Technical Bulletin issue 1988-01

Sysmap = (struct pte *) nl[NL_SYSMAP] .n_value;
if (scdriver = (struct mb_driver *) nl[NL_SCDRIVER]_n_value)

kread(mem, nl[NL_SCSINTYPE].n_value, &scsi_ntype,
sizeof(scsi_ntype));

scsi_unit_subr = (struct scsi_unit_subr *)
calloc(scsi_ntype, sizeof(struct scsi_unit_subr));

kread(mem, nl[NL_SCSIUNITSUBR] .n_value, scsi_unit_subr,
scsi_ntype * sizeof(struct scsi_unit_subr)};

for (i=O; i<scsi_ntype; i++) {
devname = malloc(MAX_SCSI_DEV_NAME_LENGTH);
kread(mem, scsi_unit_subr[i].ss_devname, devname,

MAX_SCSI_DEV_NAME_LENGTH);
scsi_unit_subr[i] .ss_devname = devname;

process()
(

struct mb_ctlr mb_ctlr;
struct mb_device mb_device;
u_int addr;
int n;

for (addr = nl[NL_MBCINIT]_n_value, n=O;
kread(mem, addr, (caddr_t) &mb_ctlr,

sizeof(struct mb_ctlr));
if (!mb_ctlr-mc_driver)

break;
addr += sizeof(struct mb_ctlr);

/*

n++)

* Allocate one more controller than really exists and
* mark its driver as zero to indicate the end
* of the controllers.

*I
mbcinit = (struct mb_ctlr *) calloc(n+l, sizeof(struct mb_ctlr));
kread(mem, nl[NL_MBCINIT] .n_value, (caddr_t) mbcinit,

n * sizeof(struct mb_ctlr));
mbcinit[n] .mc_driver = (struct mb_driver *) O;

for (addr = nl[NL_MBDINIT] .n_value, n=O; ;n++)
kread(mem, addr, (caddr_t) &mb_device,

sizeof(struct mb_device));
if (!mb_device .md_driver)

break;
addr += sizeof(struct mb_device);

)

I*
* Allocate one more device than really exists and
* mark its driver as zero to indicate the end
* of the devices.

0

0

0
January 1988

0

0

0

Section 6 - The Hackers' Comer 177

*/
mbdinit = (struct mb_device *) calloc(n+l, sizeof(struct mb_device));
kread(mem, nl[NL_MBDINIT).n_value, (caddr_t) mbdinit,

n * sizeof(struct mb_device));
mbdinit[n).md_driver = (struct mb_driver *) 0;

init_ctlr_drivers();
init_device_drivers();
display();

I*
* Emulate mapping in this process' address space.
*I

update_drivers(old, new)
register struct mb_driver *old;
register struct mb_driver *new;
{

register struct mb_ctlr *me;
register struct mb_device *md;

if (scdriver old)
scdriver = new;

for (mc=mbcinit; mc->mc_driver; me++)
if (mc->mc_driver == old)

mc->mc driver= new;

for (md=mbdinit; md->md_driver; md++)
if (md->md_driver == old)

md->md driver= new;

I*
* Read in structures referenced by the mb ctlr struct
* and change pointers.
*/

init_ctlr_drivers()
{

struct mb_ctlr *me;
struct mb_driver *mdr;
struct vec *vec;
char buf[l6];

for (mc=mbcinit; mdr=mc->mc_driver; me++)
if (mdr < (struct mb_driver *) KERNELBASE)

goto intr;

mdr - (struct mb_driver *) malloc(sizeof(struct mb_driver));
kread(mem, mc->mc_driver, mdr, sizeof(struct mb_driver));

January 1988

178 Software Technical Bulletin issue 1988-01

update_drivers(mc->mc_driver, mdr);
if (mdr->mdr_dname) (

kread(mem, mdr->mdr_dname, buf, sizeof(buf));
mdr->mdr_dname = malloc(strlen(buf)+l);
strcpy(mdr->mdr_dname, buf);

if (mdr->mdr_cname) (
kread(mem, mdr->mdr_cname, buf, sizeof(buf));
mdr->mdr_cname = malloc(strlen(buf)+l);
strcpy(mdr->mdr_cname, buf);

intr:

/*

if (mc->mc_intr)
vec = (struct vec *) malloc (sizeof (struct vec));
kread(mem, mc->mc_intr, vec, sizeof(struct vec));
mc->mc intr = vec;

* Read in structures referenced by the mb device struct
* and change pointers-
*/

init_device_drivers()
(

struct mb_device *rod;
struct mb_driver *mdr;
struct vec *vec;
char buf[16];

for (md=mbdinit; mdr=md->md driver; md++)

intr:

if (mdr < (struct mb driver*) KERNELBASE)
goto intr;

mdr = (struct mb_driver *) malloc(sizeof(struct mb_driver));
kread(mem, md->md_driver, mdr, sizeof(struct mb_driver));
update_drivers(md->md_driver, mdr);
if (mdr->mdr_dname) (

kread(mem, mdr->mdr_dname, buf, sizeof(buf));
mdr->mdr_dname = malloc(strlen(buf)+l);
strcpy(mdr->mdr_dname, buf);

if (mdr->mdr_cname)
kread(mem, mdr->mdr_cname, buf, sizeof(buf));
mdr->mdr_cname = malloc(strlen(buf)+l);
strcpy(mdr->mdr_cname, buf);

if (md->md_intr)
vec = (struct vec *) malloc (sizeof (struc·: vec));
kread(mem, md->md_intr, vec, sizeof (stru :t vec));

0

0

0
January 1988

0

0

0

Section 6 - The Hackers' Comer 179

md->md_intr vec;

/*
* Display all controllers/devices alive or not on the system.
* Uses info in mbcinit and mbdinit.
*/

display()
{

register struct mb_ctlr *me;
register struct mb_device *md;
register struct mb_driver *mdr;
register char *name;

for (mc=mbcinit; mdr=mc->mc_driver; me++)
doprobe(mc->mc_addr, mc->mc_space, mdr->mdr_cname,

mc->mc_ctlr, mc->mc_alive, mc->mc_intpri,
mc->mc_intr);

I*
* Now look for devices attached to this controller
* (even if it's not attached).
*I

for (md=mbdinit; md->md_driver; md++) {
if (md->md_driver != mdr I I

/*

md->md_driver == (struct mb_driver *) -1 I I
md->md_ctlr != mc->mc_ctlr)
continue;

* SCSI devices kludge ...
*I

if (md->md_driver == scdriver)
md->md_driver->mdr_dname =
scsi_unit_subr[TYPE(md->md_flags)].ss_devname;

printf("%s%d at %s%d slave %ct",
mdr->mdr_dname, md->md_unit,
mdr->mdr_cname, mc->mc_ctlr, md->md_slave);

if (!md->md_alive)
printf("not attached");

putchar('\n');
/*
* -1 indicates that info has already been displayed
* so not redisplayed below.
*/

md->md~driver = (struct mb driver*) -1;

for (md=mbdinit; mdr=md->md_driver; md++)

January 1988

180 Software Teclmical Bulletin issue 1988-01

if (mdr == (struct rob driver*) -1)
continue;

doprobe(md->md_addr, md->md_space, mdr->mdr_dname,
md->md_unit, md->md_alive, md->md_intpri,
md->md_intr) ;

doprobe (addr, space, name, ·num, alive, intpri, intr)
caddr _ t addr;
u_int space;
char *name;
short num;
short alive;
int intpri;
struct vec *intr;

char *addrspace;
struct pte pte;

if (alive)
pte = getpte(addr);
addr = (caddr_t) ((u_int) ptob(pte.pg_pfnum)

((u_int) addr & PGOFSET));

#define SP BUSMASK
#define SP VIRTUAL
#define SP OBMEM
#define SP OBIO
#define SP VME16D16
#define SP_VME24D16
#define SP VME32Dl6
#define SP VME16D32
#define SP VME24D32
#define SP VME32D32

switch (space &

case SP_VIRTUAL:
addrspace =
break;

case SP OBMEM:

OxOOOOFFFF
OxOOOOOOOl
Ox00000002
Ox00000004
Ox00000100
Ox00000200
Ox00000400
OxOOOOlOOO
Ox00002000
Ox00004000

SP_BUSMASK)

"virtual";

addrspace "obmem";
break;

case SP_OBIO:
addrspace = "obio";
break;

case SP VME16D16:
addrspace = "vmel6dl6";
if (alive)

/* mask for bus type*/

addr = (caddr_t) ((int) addr & OxffffOOOO);

0

0

0
January 1988

0

0

0

break;
case SP VME24D16:

addrspace = "vme24d16";
if (alive)

addr = (caddr_t) ((int) addr & OxffOOOOOO);
break;

case SP VME32D16:
addrspace = "vme32d16";
break;

case SP VME16D32:
addrspace = "vme16d32";
if (alive)

addr = (caddr_t) ((int) addr & OxffffOOOO);
break;

case SP VME24D32:
addrspace = "vme24d32";
if (alive)

addr = (caddr_t) ((int) addr & OxffOOOOOO);
break;

case SP VME32D32:
addrspace = "vme32d32";
break;

default:
addrspace
break;

"unknown";

printf("%s%d at %s Ox%x 11
, name, num, addrspace, addr);

if (alive) {
if (intpri)

else {

if (intr == (struct vec *) 0)
printf ("pri %d 11

, intpri);
else

printf("vec Ox%x ", intr->v_vec);

printf("not attached");

putchar (' \n');

kread(fd, off, into, size)
int fd;
long off;
caddr_t into;
u_int size;

if (off>= KERNELBASE)
off= physaddr(off);

Section 6 - The Hackers' Comer 181

January 1988

182 Software Technical Bulletin issue 1988-01

lseek (fd, off, 0);
if (read(fd, into, size) != size)

perror("kread: read failed");
exit (1);

struct pte
getpte(a)
u int a;

u_int v;
struct pte pte;

v = btop(physaddr(a));
kread (mem, (long) (Sysmap + v), &pte, sizeof (struct pte)) ;
return (pte) ;

0

0

0
January 1988

0
7

CUMULATIVE INDEX: 1988

CUMULATIVE INDEX: 1988 ... 185

0

'··

0

0

0 !

0

0
7

IMtHJUMt &W&ii&dii!M J i ! :JlJJi&bJ11M:tM diM&k&iil

CUMULATIVE INDEX: 1988

0

0
185 January 1988

0

0

0

0

0

& !IBM

Index

1
1-800-USA-4-SUN

rn

device driver calls, 51

8
800 USA-4-SUN

useof, 12

A
address

device drivers, 48
address mask, 67
addresses

classes of, 107
Internet, 107

alias
used with history, 78

aliases
mail, 155

AnswerLine, 9, 155
device driver calls, S 1

architecture
Prism, 151

ARP, 109

B
back-to-back packets, 79
bind

pon numbers, 75
boot

from PROM monitor, 73
booting

specific kernel, 76
Bridge box, 81
broadcasting

subnets, 107
brouchure

Sun Education, 26
buffer

Etheme, 79
buffers

color frame, 140
frame, 37

O
bug

reporting, 13
bulletin board

-187-

bulletin board, continued
Sun Education, 26

C
canvas

colormaps, 146
carrier sense, 114
checksum

Etherne4 96
client

sample programs, 130
stream socket, 130

collisions
detection of, 115

color, 139
maps, 140

colormaps, 36
configurations

controllers, 59
disks, 59
Sun-2, 62
Sun-3, 60

CONSULT-HSPEED
high-speed disciplines, 52

CONSULT-PLOCK
lock process tex4 52

consulting
device drivers, 51
specials, 51

controller
Etheme4 79

controllers
combinations with disks, 61, 62
disk confignrations, 59
SunOS installation, 63

conversion
color to monochrome,

courses
device drivers, 56
Sun Education, 26

CSD Consulting
device drivers, 51
specials, 51

Customer Software Services, 9
customer-training@sun.com

Sun Education, 26

Index - Cominued

D
DARPA,66
datagrams

fragmentation ot 109
reassembly of, 109

daylight savings time
kemel,30

demultiplexing
TCP/IP, 93

device drivers
Consulting Services, 47
courses. 56
device addresses, 48
phone support, 51
references, 57
third party, 53

device names
SunOS installation, 63

devices

disk
ones present, 163

combinations with controllers, 61, 62
determining configurations, 59
enlarging procedure, 39
enlarging SunIPC, 39

dispatching
procedures, 15

DMA,47
DoD,66
domain system

Internet, 103
drivers

courses, 56
references, 57
third party, 53

DST,30
Australia, 30
Europe, 30
rules table, 31

DVMA,47

E
education

courses, 26
SunOS courses, 65

Educational Services
courses, 26

email
Sun Education, 26

Ethernet, 96
back-to-back packets, 79
buffer, 79
controller, 79
header, 96
throughput, 80, 81

experiment
devices present, 163

F
files

after power failures, 77
fragmentation

-188-

fragmentation. continued
datagrams, 109

frame buffers
with screendump, 37

ftime,30
FfP, 86

G
gateway, 66
gateways, 106
gettimeofday, 30
GMT,30

H
Hackers' Comer

devices present, 163
hardware

color frame buffers, 140
headers

IP, 95
octets, 91
overview. 93

history
useot 78

hotline
procedures, 15
use of, 11

hotline@sun.COM
reporting bugs, 13

hotlines
world, 7

I
1/0

sockets, 126
ICMP, 102
images

converting to monochrome, 37
installation

SunOS,63
Intercon

hotline, 7
Internet

addresses, 107
domain system, 103
protocols, 85

IP, 85
headers, 95

K
kernel

booting specific, 76
daylight savings time, 30
time zones, 29

L
labels

pedestal, 59
layering

mail, 91
level 1

0

0

0

0 level l, continued
network hardware, 123

level 2
networlc hardware, 123

local time, 31

M
mail, 87

aliases, 155
formats, 157
layering, 91
pitfalls, 157
routing, 105

manuals
proprietary, 50

maps
color, 140
YP,34

mask
address, 67

monitors
high-resolution, 37

MS-DOS,39

N
networks

carrier sense, 114
collision detection, 115

0
Ethernet theory, 114
hardware problems, 122
performance of, 118
Q&A, 124
thin Ethernet, 122

NFS, 88

0
octets

TCP/IP headers, 91
out-of-band data

sockets, 126

p
packets, 96

back-to-back, 79
pedestal

information, 59
Personal AnswerLine, 9
port number

assignment of, 75
power failures

diskless workstations, 77
printing

images, 36
Prism

windows, 151
procedure

enlarging Sun!PC disk, 39
hotline, 15

0 products
release levels, 6

PROM monitor

-189-

PROM monitor, continued
using boot, 73

proprietary manuals, 50

R
Read This First

purpose, 18
reassembly

datagrams, 109
references

device drivers, 57
release level

SunOS, 17
releases

software products, 6
reporting bugs, 13
routing

mail, 105
RTF

purpose, 18
Rutgers University, 85

s
screendump, 36

color windows, 152
screenload, 37
server

stream socket, 127
shoebox

disk labels, 60
SIGIO, 126
SIGPIPE

server, 127
SIGQUIT

server, 127
SIGURG, 126
SMTP

application example, 100
sockets

example programs, 127
out-of-band data, 126, 133
programming examples, 126
servers, 127
well-known, 97

specials
CSD Consulting, 51
device drivers, 51

specific kernel
booting, 76

STB
duplication of, 8

subnets
address mask, 67
broadcasting, 107
definition, 66
enabling, 69
Exterior Gateway Protocol, 66
limitations, 68

subnetting, 66
Sun Education

device driver course, 56

Index - Continued

Index - Continued

Sun Education, continued
SunOS collil!es, 65

sun! hotline
reporting bugs, 13
use of, 11

sun!stb-editor, 8, 155
sun! sunbugs

reporting bugs, 13
sun.customer-training

Sun Education. 26
sunbugs@sun.COM

reporting bugs, 13
SunCGI, 144
SunCore, 146

printing images, 36
SunIPC

enlarging disk, 39
SunOS

determining release of, 17
installation. 63

suntools
frame buffers, 141

SunView
color frame buffers, 142

switcher (1)
colonnaps, 151

T
tables

software release levels, 6
tape drives

SunOS installation. 63
TCP, 85

sockets, 130
TCP/IP

demultiplexing, 93
references, 110

TELNET,86
thin Ethernet

specification. 122
throughput

Ethernet, 80, 81
time zones

TZ,29
uucico,30

training
Sun Education. 26

TZ,29
DST rules table, 31

u
UDP, 102
update, 77
USA-4-SUN

use of, 12, 15
USAC

feedback, 10
utilities

yellow pages, 34
uucico

· time zones, 30

-190-

w
well-known sockets, 97
windows, 140

color frame buffers, 141
Prism, 151

world hotlines, 7

y
yellow pages, 32

installation, 33
mail aliases, 155
utilities list, 34

YP,32
clients, 32
domains, 33
installation, 33
maps,34
master server, 32
rpc,34
server maps, 32
slave servers, 32
utilities list, 34

ypbind,32
ypserv, 32

0

0

0

0

Revision History

Revision Date Comments

FINAL January 1988 First issue of the 1988 Software Technical
Bulletin, developed by Software Information
Services (SIS), Customer Services Division
(CSD).

0

0

0

0

O,

'! .'..

·o····· ..

\iorp~t~_,e·H~~~-~a~.~~~-:-'.: ·
:;~so:n fyliCf:osy~feni:s~JB~; :- :
· 2;55AQ.ai\:h~;AVe[!lie,/~:.:.- _ _.
,fyJptintain:N.ieW, ·CA9.4043 ·.:
415·960-1300 :>, ' •, >'
'r1;:j, 2s1il1s ,. , .•

: .. Fori/ .S0Sales()ffic~
• 010c3tion:s-;· Call:·;::
-soo.siF464f ' .

· dntA:8Q0,82Hii42

•• ·>,,

.;;.-

,· -E~r.OP~?tfQe·a~cibiir.ieri': . .- .. -- . .. Ai,_~_~tJlia·_:~6:i~z;;p6-.~~99;" .­
.sun,Micr~syste.fil:S._gurop_e,:Inc;..·. · '. Canadii:.416:477~6715, ..
Su~ljouse .··. • .. · · \. · °France:(1)4630232f
31c4]Penib;oke,Broadway . :,· ,Gernfany:(089);95094'.0

..)cam~erley, .. ·.:· ' ·: ::. · Jiipan,{03)22,'7021"< ·
Surrey GU15.'3XD : · · . TheNetherlartHs: 02155 24888
Engla~,r ·.)JJ{;.02'16 6~JA .. .

· '.0276 621)1
'.TLX859017,

. ·):Ur9p~~Mi~:dli_E~~4'and't\fricti;.·::
~t3U E~~Oi>t8:n H(!itdqUa"r~~rs:- . ·--._;>· ~ ·
:Op7662J11. . ' •. ii ,

-.. _.:: El_~-~-Wbel'ein1h.~_jvbT(d,.~.a1(\ } .: '
· .. --.· ~OrpOrate f:l~adqu3t.te_r~;:: -- · .'

•

0

4fi960''l3D0 , ./ ::', ·,
:-.1iiter2ontinetlta:i·S~i~t:.

