
.·,:,

Software ... Tecinni;calBull~tin
F'f}ruary 1988•

. SoftW(ll;e lllf ormat[on Services

. Part.Number 812-&801·02
Issue 1988 ~ 02
February 1988

: _,.._

0
, : '

0

0

0

Software Technical Bulletin
February 1988

Software Information Services

Part Number 812-8801-02
Issue 1988 - 02
February 1988

Software Technical Bulletins are distributed to customers with software/hardware or software only support
contracts. Send comments or corrections to 'Software Technical Bulletins' at Sun Microsystems, Inc.,
2550 Garcia Ave., M/S 2-312, Mountain View, CA 94043 orby electronic mail to sun!stb-editor. U.S customers 0
who have technical questions about topics in the Bulletin should call the Sun Customer Software Services
AnswerLine at 800 USA-4-SUN. Other customers should call the numbers listed in World Hotlines appearing in
Section 1.

UNIX, UNIX/32V, UNIX System III, and UNIX System V are trademarlcs of AT&T Bell Laboratories.
DEC, DNA, VAX, VMS, VT!OO, WPS-PLUS, and Ultrix are registered trademarlcs of Digital Equipment Cor­
poration.
Courier 2400 is a trademarlc. of U.S. Robotics, Inc.
Hayes is a trademarlc. of Hayes Microcomputer Products, Inc.
Multibus is a trademark of Intel Corporation.
PostScript and TranScript are trademarlcs of Adobe Systems, Inc. Q

I

Ven-Telis a trademark of Ven-Tel, Inc.
Sun-2, Sun-2/xxx, Sun-3, Deskside, SunStation, Sun Workstation, SunCore, DVMA, Sun Windows,
NeWS, NFS, SunUNIFY™, Sun View™, SunGKS, SunCGI, SunGuide, SunSimplify, SunLink, Sun
Microsystems, and the Sun logo are trademarlcs of Sun Microsystems, Inc.
UNIFY™ is a trademark of Unify Corporation.
ENTER, PAINT, ACCELL, and RPT are trademarlcs of Unify Corporation.
SQL™ is a trademarlc. of International Business Machines Corporation.
Applix® is a registered trademarlc. of Applix, Inc.
SunAlis™ is a trademark of Sun Microsystems, Inc. and is derived from Alis, a product marlc.eted by
Applix, Inc.
SunlNGRES™ is a trademarlc. of Sun Microsystems, Inc. and is derived from lNGRES, a product
marketed by Relational Technology, Inc.

Copyright© 1988 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this pub­
lication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any
form, or by any means manual, electric, electronic, electro-magnetic, mechanical, chemical, optical,
or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0

Contents

Section 1 NOTES & COMMENTS .. 193

Editor's Notes .. 193

Software Release Levels .. 195

World Hotlines .. 198

STB Duplication ... 199

Section 2 ARTICLES ... 203

Enhanced SCSI Adapters ... 203

FORTRAN Release 1.05 ... 204

SysOS 4-3.2 Announcement.. 205

Creating Aliases .. 209

Cross Compilers .. 214

Section 3 STB SHORT SUBJECTS-... 219

Setting MAXUSERS ... 219

Domain Definitions ... 221

Section 4 IN DEPrH ... 225

Graphics Standards .. 225

Section 5 QUESTIONS, ANSWERS, HINTS, AND TIPS 255

Q&A, an<I Tip of the Month ... ;@?%

Section 6 THE HACKERS' CORNER .. ,9

Backup Copy Daemon .. ,,,ff"'
Section 7 CUMULATIVE INDEX: 1988 ,+

-iii-

255

261

0

0

0
1

fr :M Mi Hi MMHM& @ mn@ ~ rr . irnffiiii!Mlifil

NOTES & COMMENTS

NOTES & COMMENTS ... 193

Editor's Notes .. 193

Software Release Levels .. 195

World Hotlines .. 198

STB Duplication ... 199

0

0

0

0

0

0

0

Editor's Notes

Editor's Notes

Expanded Current Sun Software
Products and Release Level
Tables

World Hotlines

STB Duplication Permission

The 1988 Cumulative Index

The Hackers' Corner

1
NOTES & COMMENTS

The February 1988 Software Technical Bulletin (STB) editor's notes include
notes on the monthly software product release tables, world hotlines for use by
customers outside the U.S., STB duplication permission, the cumulative index,
and the Hackers' Corner.

The five tables showing current Sun software product release levels appear
monthly. These tables show release levels for operating systems,
communications products, unbundled languages, and unbundled applications.

For Sun customers served by your local service groups, use the customer service
telephone numbers listed in this monthly item. Also, look to this section during
the upcoming year for details on your local support call policies and procedures.

This notice is published monthly, giving customers useful information regarding
ordering and duplicating additional STB copies.

Note that beginning with last month's January 1988 STB issue, the cumulative
pagination was reset to page one. This February issue and subsequent 1988
issues will continue cumulative pagination throughout the new year.

,.
This month's Hackers' Corner includes code that allows system administrators
to conveniently make backup copies of filesystems using the cp or rep
commands.

Again, please note that such applications, scripts, or code are not offered as
released Sun products, but as items of interest to enthusiasts wanting to try out
something for themselves. They may not not worlc in all cases, and may not be
compatible with future SunOS releases. Please consult your local shell script or
programming expert regarding any application, script, or code problems.

193 February 1988

194 Software Teclmical Bulletin issue 1988-02

Thanks.
The STB Editor C

0

0
February 1988

--,

Q Software Release Levels

0

As of December 18, 1987

Operating Systems

Product Name

SunOS (Sun-2 and Sun-3 Operating System)
Sys4 (Sun-4 Operating System)

Communications Products

Product Name

SunLink BSC3270
SunLink BSCRJE
SunLink Local 3270
SunLink SNA3270
SunLink Peer-to-Peer
SunLinkIR
SunLinkDDN
SunLinkDNI
SunLinkOSI
SunLinkMCP
SunLink TElOO
SunLink X.25

Section I -Notes & Comments 195

Current Release

3.4
3.2

Current Release

3.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0

February 1988

196 Software Technical Bulletin issue 1988-02

Unbundled Languages

Product Name Current Release

Sun FORTRAN* (for Sun-2 and Sun-3 systems) 1.0
Sun FORTRAN* (for Sun-4 systems) 1.05

SunPro 2.0

NeWS 1.0
Sun Common Lisp-D 2.1

Sun Common Lisp-E 1.1

Modula-2 1.0

Cross Compilers 2.0

* Sun FORTRAN Note The f7 7 compiler is automatically included with SunOS release 3, which
includes SunOS releases 3.2, 3.4, and 3.5. Sun FORTRAN release 1.0 (for Sun-2
and Sun-3 systems) and Sun FORTRAN Release 1.05 (for Sun-4 systems) are
value-added products that support VMS extensions to the f77 compiler, and
must be purchased separately from the operating system.

Unbundled Graphics

I SunGKS

Product Name Current Release

2.1

Unbundled Applications

Product Name Current Release

SunAlis 2.1

SunINGRES 5.0

SunSimplify 1.0

SunUNIFY 2.0

Transcript 2.0

SunIPC 1.1

PC-NFS 2.0

SunTrac (for Sun-2 and Sun-3 systems) 1.0

SunTrac (for Sun-4 systems) 1.0/3.2

February 1988

0

0

0

0

Current Sun Software
Products and Release Levels

Section 1 - Notes & Comments 197

The preceding iables contain lists of current Sun software products and their
respective current release levels.

You will note that the Software Technical Bulletin (STB) contains articles from
time to time that detail technical changes in a given software product's next
available release.

Please contact your sales representative if you decide that you would like to
update the release level of a Sun software product you already use, or wish to
purchase another product. Use the tables to determine whether your release is the
current release level.

These tables appear monthly in the STB for your convenience.

February 1988

198 Software Technical Bulletin issue 1988-02

World Hotlines 0

World Hotlines Sun Customers throughout the world have service hotlines available for both
software and hardware support questions. The service hotlines are shown below.
If your country is not shown in the table, please phone your local Sun sales
office.

Australia Sun Australia (011-61-2) 957-2522
Lionel Singer Group (011-61-2) 957-2655

Canada Montreal Branch (514) 879-1914
Ottawa (613) 748-9617
Vancouver Branch (604) 641-1296
Western Branch (403) 295-0150

France Paris (33) 1 4630 2324
Sun Microsystems France SA

Germany Munich (49) 89/95094-321 0 Sun Microsystems GmbH

Japan C. Itoh Data Systems (011-81-3) 497-4676
NihonSun (011-81-3) 221-7021

The Netherlands Soest (31) 2155 24888
Sun Microsystems Nederland BV

Switzerland Zurich (41) 1 828 9555
Sun Microsystems Schweiz AG

United Kingdom Camberley (44) 276 62111
Sun Microsystems UK Ltd

United States All, 1-800-USA-4-SUN
including Puerto Rico

lntercon All countries outside the (415) 691-6775
USA, Europe, and northern Africa

0
February 1988

Q STB Duplication

Duplicating the STB

Direct STB Purchase

0
Further Questions

Section 1 -Notes & Comments 199

Your company's software support contract includes a monthly issue of the STB,
which contains a quarterly, updated Customer Distributed BugsList (CDB).
Each month, the copy of your STB is mailed to your company's primary contact
person or department. Sites with more than one contract may receive more than
one STB copy, depending on how the contracts are set up.

Your primary contact person or department may duplicate this 'master' STB
copy for all Sun workstation end-users. So long as you duplicate copies and
route them only internally, there are no copyright infringement problems.

This limited permission for duplication is for your convenience only, however,
and does not include any duplication for resale, for distribution outside your
company, or for distribution to employees of companies not having a Sun
software support contract.

The STB is sent to the primary contact person named in all software support
contracts. Sun is looking into methods by which customers holding these
contracts may purchase extra copies directly.

Look to this column for an announcement regarding the purchase of extra STB
copies.

If you have any questions, comments, or articles regarding the STB or COB,
please send your ideas and questions to sun!stb-editor.

February 1988

0

I

01

C ---

0
2

@WMHi& %111@\Miil!M !RMM!rn!MMi\i I rntd®ii@@d

ARTICLES

ARTICLES .. 203

Enhanced SCSI Adapters ... 203

FORTRAN Release 1.05 ... 204

SysOS 4-3.2 Announcement.. 205

Creating Aliases .. 209

Cross Compilers .. 214

0

0

0

O,

0

C - ~-

0

0

0

Enhanced SCSI Adapters

Enhanced SCSI Host
Adapters

Software Compatibility

Hardware Compatibility

Enhanced SCSI Adapter Part
Numbers

2
ARTICLES

SCSI mass storage options for VME systems now include an enhanced version of
the Sun SCSI-to-VME host adapter. The enhanced SCSI host-adapter now
supports the two features listed below.

a Disconnect/reconnect capability

a 32-bit data transfer over the VME bus

The enhanced SCSI-to-VME host adapter is supported under SunOS release 3.4
with the installation of a patch tape, part number 700-1656-01, and the document
Read This First, part number 800-2190-01, shipped with each SCSI board.

Carrera boards, part number 501-1164-08 and below, and the Prism boards, part
number 501-1134-05 and below, will not support 32-bit DMAoverthe VME bus
and are therefore not compatible with the enhanced version of the SCSI host­
adapter.

All systems using the Sun enhanced SCSI-to-VME host adapter must have the
up-graded Carrera board , part number 501-1164-09 and above, and the Prism
boards, part number 501-1134-06 and above.

Use the part numbers shown below in the case that you wish to order an
enhanced SCSI-to-VME host adapter.

a 501-1236-XX, the SCSI-3

a 501-1217-02, the 3X2 Adapter with the SCSI-3 (desk top systems)

a 501-1170-05, the 3X2 Adapter with the SCSI-3 (desk side systems)

203 February 1988

204 Software Technical Bulletin issue 1988-02

FORTRAN Release 1.05

Sun FORTRAN 1.05
Announcement

Introduction

This article is a brief overview of VMS-compatible Sun FORTRAN release 1.05,
which has been developed specifically for use with Sun-4 series Scalable
Processor Architecture (SP ARC) workSiation systems, and supported only by the
Sun Sys4-3.2 operating system.

Sun FORTRAN release 1.05 is an enhanced ANSI FORTRAN 77 development
system. It is Government Services Administration (GSA)-certified with
VAXNMS FORTRAN 4.0 extensions, and thus provides a development system
for a significantly expanded body of FORTRAN source code. Most existing
VMS FORTRAN applications can be ported to the Sun-4 workSiation
environment.

The Sun FORTRAN release 1.05 package consists of three components listed
below.

CJ extensions to the f 7 7 compiler to support most of the VMS
FORTRAN features

CJ extensions to the debugger to support most of these same VMS
FORTRAN features

CJ the f 7 7 cvt Source-Code Converter program, used to convert most of
the remaining extensions into statements that the Sun FORTRAN
compiler will accept

When used together, the compiler and converter provide almost total
compatibility with VMS FORTRAN.

Sun FORTRAN release 1.05 is essentially the same as Sun FORTRAN release
1.0, which was developed for Sun-2 and Sun-3 systems running Sun Operating
System (SunOS) releases 3.2, 3.4, and 3.5. Please refer to the article FORTRAN
1.0 Announcement on page 707 of the October 1987 STB issue for further
information.

Sun FORTRAN release 1.05 has been developed specifically for use with the
Sun-4 worl<:station series. Therefore, this release corrects the data alignment
problem that appeared in the beta version of f7 7 in the Sun Sys4-3.2 operating
system.

February 1988

- - --,

I

I

01
I
'
I

I

I

0

0

0 SysOS 4-3.2 Announcement

0

0

Sys4-3.2 Announcement

Introduction

Sun-4 SPARC/RISC
Architecture

Section 2 - Articles 205

This article is a brief overview of Sys4-3.2, the first Sun Operating System
(SunOS) release which is being shipped with all Sun-4/200 series Scalable
Processor Architecture (SP ARC) worlcstation systems.

Sys4-3.2 for Sun-4/200 worlcstations includes all the functions and features
supported in SunOS release 3.2 for Sun-2 and Sun-3 series worlcstations,
including the C compiler, SunView, SunPro, SunCGI, SunCore, and
Pixrects/Pixwin. The C compiler has been upgraded to generate optimized code,
using the same optimization techniques employed by the Sun FORTRAN
compiler.

In addition, Sys4-3.2 includes all SunView enhancements provided by SunOS
release 3.4 (for Sun-2 and Sun-3 worlcstations), as well as special release 3.4 bug
fixes as documented in the Sys4-3 .2 Release Manual.

Sys4-3.2 incorporates the features listed below.

o Sun-4 SPARC/RISC architecture

o New hardware support

o Remote tape software installation

o Binary compatibility with SunOS 3.2L

o Support for Sun FORTRAN release 1.05

o Additional key unbundled software support

Each of these is discussed in the following paragraphs.

Sun-4 SP ARC, an acronym for Scalable Processor Architecture, is a Reduced
Instruction Set (RISC) architecture implementation that emphasizes simplicity
and efficiency through the following listed provisions.

o 32-bit wide instructions with word-aligned memory. Op-codes and
addresses always appear in the same place to simplify hardware decod­
ing.

February 1988

206 Software Technical Bulletin issue 1988-02

New Hardware Support

o Register-intensive architecture: Instructions operate on two registers, or
a register and constant; the result is placed in a third register. Memory is
accessed through load and store instructions only.

o Large register windows: The processor has access to a large number of
registers, which are configured into overlapping sets. This allows com­
pilers to automatically cache values and pass parameters in registers.

o Delayed control transfer: The processor fetches the next instruction fol­
lowing a control transfer before it completes the transfer. Compilers can
re-arrange code to place useful instructions after delayed control
transfer, thus maximizing throughput.

o All instructions except loads, stores, and floating-point operations can be
executed in a single machine cycle.

Sun-4 SP ARC/RISC architecture is designed to support the following items.

o The C language and the UNIX Operating System

o Sun View on Sun Windows

o Numerical applications, using FORTRAN

o Artificial intelligence applications, using Lisp and Prolog

o Programs written in Sun Pascal

The Sun-4/200 series worlcstation and Sys4-3.2 support the following new
hardware.

32 MB memory boards: The Sun-4/200 series features the new 32 MB memory
boards.

ALM-2 asynchronous multiplexer: The Sun-4/200 series features support for
the new ALM-2 asynchronous multiplexer, a 16-channel asynchronous
multiplexer board (full-sized, 9U VME) with an additional connection to
Centronics-compatible parallel printers. The ALM-2 allows up to sixteen
terminals or other serial devices to connect to Sun-3 or Sun-4 workstations that
have at least one slot available.

In addition, the Sun-4/200 series workstation supports the following peripherals.

o 575MB Disk

o 280MB Disk

o 6250/1600 bpi XY472 Tape

February 1988

0

0

0

0

0

0

Software Installation

Binary Compatibility with
SunOS 3.2L

Section 2 - Articles 207

o 1/4-inch SCSI Tape

a GP+ and GB Graphics Boards

o ALM asynchronous multiplexer

Note that Sys4-3.2 does not support the following controller and tape drive.

o CPC Tapemaster 1600 bpi controller

o CDC 92181 Keystone 40 MB 9-track reel

Thus, upgrades from Sun-3 systems containing this controller or tape drive will
not work.

Sys4-3.2 supports software installation for the following configurations listed
below.

a Sun-4 standalone systems

a Sun-4 servers with Sun-4 clients

A Sun-4 server can support both Sun-3 and Sun-4 clients. This configuration
requires SunOS release 3.5 for Sun-3 client installation, in addition to Sys4-3.2
for the Sun-4 server and client installation.

Due to networlc disk (nd) limitations, Sys4-3.2 does not support Sun-2 clients, or
Sun-3 servers with Sun-4 clients.

Sys4-3.2 supports remote software installation on a standalone worlcstation, or on
a file server which does not have a resident tape drive. Remote installation is
performed by using the tape drive on another, fully installed machine, which can
be either a standalone system or a Sun-4 server. This machine becomes the tape
server, or remote host. Installation is thus performed from the Sun-4 client, or
target machine, across the Ethernet network. Sun-3 target machine clients can
also be remotely installed, using SunOS release 3.5 on the remote host.

Programs which have been developed under SunOS release 3.2L are binary
compatible, and will run under Sys4-3.2 without recompilation. This binary
compatibility is designed to facilitate the transition between operating system
releases. Thus, developers can begin application development for the Sun-4
system now and smoothly migrate to future SunOS releases.

Code developed on other Sun systems will require recompilation under Sys4-3.2
to enable execution on the Sun-4 system. Well-written, portable code should
recompile without any source modification. Any data alignment dependencies,
as well as any dependent compiler-specific implementations of unspecified
functions (such as the order of C parameter evaluation) may require changes to
source code. Most problems can be detected by using lint -ch, where the

February 1988

208 Software Technical Bulletin issue 1988-02

r'\
- c detects unportable casts, and the - h flag performs heuristic checking. ~

Support for Sun FORTRAN
Release 1.05

Support for Key Unbundled
Software

For complete information on porting applications to the Sun-4 system, refer to
Porting Software to SP ARC Systems, part number 800-1596.

Sys4-3.2 supports Sun FORTRAN release 1.05, Sun's new VMS-compatible
version of FORTRAN. Sun FORTRAN release 1.05 has been developed
specifically for use with the Sun-4 worlcstation series. Therefore, this release
corrects the data alignment problem that appeared in the beta version of f 7 7 in
the Sun Sys4-3.2 Operating System.

Refer to the article entitled FORTRAN 1.05 Announcement in this issue of the
STB for further information.

In addition to SunFORTRAN release 1.05, Sys4-3.2 supports the following listed
unbundled software.

o NeWS (Netwolk Windowing System), release 1.1

o SunTrac Project Management System, release 1.0

For complete information on SunTrac release 1.0, refer to the December, 1987
issue of the Software Technical Bulletin.

February 1988

0

Q Creating Aliases

0

0

Using /usr/lib/aliases

The /usr/lib/aliases
File

Section 2 -Articles 209

Sun workstation users having system accounts can establish their own personal
aliases in the /usr/lib/aliases file, provided he or she has root access
(via the su command). Personal aliases provide a convenient means to
communicate with other users, as you can combine many individual aliases under
one alias name.

Personal aliases can be established to perform the following functions:

o Establish distribution lists that can be used to send and receive mail among
those included on the list, where the list is a part of the
/usr/lib/aliases file

o Establish distribution lists to send mail messages to the same group of
individuals, where the list is in a file separate from the
/usr/lib/aliases file

o Receive your mail messages under several different aliases

A/usr/lib/aliases file exists for each workstation user. A copy of this
file in its default form appears as shown on the next page.

February 1988

210 Software Technical Bulletin issue 1988-02

Aliases can have any mix of upper and lower case on the left-hand side,
but the right-hand side should be proper case (usually lower)

>>>>>>>>>>
>>NOTE>>
>>>>>>>>>>

The program "newaliases" will need to be run after
this file is updated for any changes to
show through to sendmail.

@(#)aliases 1.1 86/07/08 SMI

Following alias is required by the mail protocol, RFC 822
Set it to the address of a HUMAN who deals with this system's mail problems.
Postmaster: root

Alias for mailer daemon; returned messages from our MAILER-DAEMON
should be routed to our local Postmaster.
MAILER-DAEMON: postmaster

Aliases to handle mail to programs or files, eg news or vacation
decode: "1/usr/bin/uudecode"
nobody: /dev/null

Sample aliases:

Alias for distribution list, members specified here:
#staff:wnj,mosher,sam,ecc,mckusick,sklower,olson,rwh@ernie

Alias for distribution list, members specified elsewhere:
#keyboards: :include:/usr/jfarrell/keyboards.list

Alias for a person, so they can receive mail by several names:
#epa:eric

#######################
Local aliases below#
#######################

Creating a Distribution List
within /usr/ lib/ aliases

This type of alias distribution list is particularly suitable for establishing a list of
aliases that are short (such as a small group of individuals) or stable (such as
group that doesn't change too often.)

To create a distribution list alias within the /usr /lib/aliases file, perform
the following steps.

1. At the prompt, enter su to change to root status and display the# prompt.

2. At the# prompt, open the /usr /lib/aliases file, using your favorite
editor (such as vi).

February 1988

0

0

0

0

0

0

Section 2 - Articles 211

3. Open a new line at the bottom of the file, then add the distribution list alias
name and the associated user aliases, using the following format:

<list_alias_name>: <userl@hostname>, <user2@hostname>, <user3@hostname> ...

You can include up to 1,000 characters (in the form of user aliases) in each
distribution list

Example: The following users (including yourself) will be included in a
distribution list alias called info:

annette(g)thebeach
gidget@hawaiian
frankie@avalon
yourself@yournost

To establish this list, the entry at the end of /usr/ li'b/aliases appears
as follows:

info: annette@thebeach, gidget@hawaiian, frankie@avalon, yourself@yourhost

Creating an External
Distribution List Alias

4. When you have added all user aliases, write the changes to the file, and
return to the # prompt.

5. At the # prompt, enter newaliases to rebuild the random access data
base for the /usr / lib/aliases file.

6. At the # prompt, enter exit to exit root status and return to normal user
status.

Note: Step 5 must be performed each time the distribution list is modified.

As the size of the /usr/lib/aliases file increases, newaliases takes
longer to rebuild the random access data base. Therefore, use the procedure
described in "Creating an External Distribution List Alias," below, for creating
larger distribution lists.

This type of alias distribution list is suitable for establishing a list of many aliases
(such as an entire department) or that change frequently.

To create a distribution list alias that refers to an external file, perform the
following steps.

1. At the prompt, open a new file to contain the distribution list, using your
favorite editor (such as vi).

2. Enter each user's alias to be included in the distribution list, using one line
per alias.

February 1988

212 Software Technical Bulletin issue 1988-02

3. When you have added all user aliases, write the changes to the file, and 0
return to the prompt.

4. At the prompt, enter su to change to root status and display the# prompt.

5. Atthe#prompt,openthe /usr/lib/aliases file to edit it.

6. Open a new line at the bottom of the file, then add the list alias name and the
pathname of the external file containing the user aliases, using the following
format:

<list_alias_name>: :include:/<pathname>/<filename>

Example: To establish an alias called grouptalk for users included in the
file grouptalkJisting in /usr/myhost/janice/listings, the line
appears as follows:

grouptalk: :include:/usr/myhost/janice/listings/grouptalk.listing

Creating an Alias to Receive
Mail

7. Write the changes to the file, and return to the# prompt.

8. At the # prompt, enter newaliases to rebuild the random access data
baseforthe /usr/lib/aliases file.

9. At the # prompt, enter exit to exit root status and return to normal user Q.
status.

Note: Step 8 does not have to be run each time the external distribution list is
modified. This is a major advantage for users who maintain large distribution
lists that change frequently.

Delivery of messages to aliases included in an external distribution list is slightly
longer than to aliases included in a distribution list contained within the
/usr/lib/aliases file.

To create an alias so you can receive mail by different names, perform the
following steps.

1. At the prompt, enter su to change to root status and display the #prompt.

2. At the # prompt, use your favorite editor to open the
/usr/lib/aliases file.

3. Open a new line at the bottom of the file, then add the following text.

a) The name you wish to receive mail by, followed by your regular alias
b) The owner- specification, followed by your regular alias

(This line directs error messages resulting from the receive o
mail alias to your regular alias address)

February 1988

0

Additional Inf01mation

0

0

Section 2 -Articles 213

Example: To establish gene as an alias for gene@themovies, the
/usr /lib/aliases entries appear as shown below.

gene: gene@themovies
owner-gene: gene@themovies

4. Write the changes and return to the# prompt

5. At the # prompt, enter newaliases to rebuild the random access data
base for the /usr/ lib/ aliases file.

6. At the # prompt, enter exit to exit root status and return to normal user
status.

Note: The owner- specification can also be used to direct any alias inquiries to
the person responsible for maintaining the list

Additional information can be found under aliases(5) and newaliases(8) in the
UNIX Inte,face Reference Manual, part number 800-1303.

February 1988

214 Software Technical Bulletin issue 1988-02

Cross Compilers

Sun Cross-Compilers 2.0
Announcement
Introduction

Applications

Supported Languages/Release
Levels

This article is a brief overview of Sun Cross-Compilers release 2.0.

Cross-Compilers provide developers with the ability to produce execuJable
binaries for Sun-2, Sun-3, and Sun-4 series system architectures from a single
machine. Thus, Cross-Compliers release 2.0 supports cross-development
between host systems (the systems used for application development) and target
systems (the systems for which code is being developed), as shown below.

HOST SYSTEM TARGET SYSTEM
Sun-2 (68010-based) Sun-3 (68020-based)
Sun-2 (68010-based) Sun-4 (SPARC-based)

Sun-3 (68020-based) Sun-2 (68010-based)

Sun-3 (68020-based) Sun-4 (SPARC-based)

Sun-4 (SPARC-based) Sun-2 (68010-based)

Sun-4 (SPARC-based) Sun-3 (68020-based)

0

The cross-compilation tools are complete in that they consist of all compiler Q:
passes, libraries, and include files needed for each combination of host and Jarget
architectures.

There are two major applications for Cross-Compilers, as follows.

First, in situations in which access to a Jarget system of a specific architecture is
linlited, Cross-Compilers allow binaries for the target system to be conveniently
produced on another system architecture. The binaries can then be tested on the
Jarget system when it becomes available. For example, Cross-Compilers were
used by third-party software developers porting their software to the new Sun-4
architecture prior to field availability of Sun-4 systems.

Second, the productivity of the software developer can be increased by using
Cross-Compilers on high-performance 'compute servers' on the networlc, instead
of using native compilation tools on local worlcsJations. For example, diskless
Sun-3 systems would see a significant decrease in compilation time by using a
Sun-4 on a networlc for Sun-3 binary production, using Sun-4 to Sun-3 Cross­
Compilers.

Supported languages and release levels include Fortran (f77), Pascal (pc), and
C (cc), as shown in the table below.

February 1988

0

0

Usage

0

0

Section2-Articles 215

HOST TARGET-1 TARGET-2
Sun-2

Sun-3

Sun-4

Sun-3: Sun-4
£77 from SunOS 3.4 £77 from SunOS 3.2L
pc from SunOS 3.2L pc from SunOS 3.2L
cc from SunOS 3.4 cc from SunOS 3.2L
Sun-2 Sun-4
£77 from SunOS 3.4 £77 from SunOS 3.2L
pc from SunOS 3.2L pc from SunOS 3.2L
cc from SunOS 3.4 cc from SunOS 3.2L
Sun-2 Sun-3
£77 from SunOS 3.4 f7 7 from SunOS 3.4
pc from SunOS 3.2L pc from SunOS 3.2L
cc from SunOS 3.4 cc from SunOS 3.4

NOTE: The Pascal compiler is compiled from SunOS 3.4-compatible code from
the Motorola 680XO version of SunOS 3.2L (the beta version of Sys4-3.2).

Once Cross-Compilers are installed, usage is simple. An additional option,
-target (-sun2, -sun3, or -sun4), becomes available on the host system for
the following commands:

D CC

D pc

D f77

For example, the following is an example of a Sun-3 native compilation
command.

%cc a.b b.c -o c.out
%

Tiris command on a Sun-3 host becomes a cross-compilation for a Sun-4 target
by adding the - sun 4 option, as follows.

%cc -sun4 a.c b.c -o c.out
%

As another example, the following command on a Sun-4 host can be used to
produce Sun-3 binaries, using Sun-4-to-Sun-3 Cross-Compilers.

%make CC="cc -sun3"
%

February 1988

216 Software Technical Bulletin issue 1988-02

Executable Image Compatibility When running Cross-Compilers on a host machine under a specific SunOS 0
version, note that the executable images that are produced are only compatible

Disk Space Requirements

Configuration

with that same SunOS version on the target machine. For example, Cross­
Compilers running on a Sun-3 host under SunOS 3.x will produce only Sun-3
Release 3.x binaries, and Sun-4 Release 3.x binaries.

Cross-Compilers release 2.0 requires the following space to suppon each host
and target, as shown below.

Hosts Targets Host/Target Disk Space
Supported Supported Combinations Required

Cross-Compiler Server 1 2 2 25MB

Cross-Compiler Server 3 3 6 37MB

Cross-Compiler Client 1 2 2 12KB

Server configuration installations of this product may require more space than is
available on a standalone system with a single small (71 MB) SCSI disk.

To ensure maximum disk space efficiency, users may want to plan their use of
Cross-Compilers release 2.0 to share common files among multiple languages,
host architectures, and target architectures (the three host/target server
installations shown above).

01

0
February 1988

I

I

0
3

iMEi - illMilt!il\!!iimt ;;;

STB SHORT SUBJECTS

STB SHORT SUBJECTS .. 219

Setting MAXUSERS ... 219

Domain Definitions ... 221

0

0

0

0

0

Setting MAXUSERS

The MAXUSERS Setting

0

/usr/sys/conf/GENERIC

/usr/sys/conf/param.c

0

3
: : id\1111 · j \!:i: lillll!Jirn@@¥ 1M

STB SHORT SUBJECTS

This shon subject contains details on the kernel table sizes that result, in pan,
from the MAXUSERS setting you specify during the kernel configuration ponion
of installing SunOS on your workstation. This information is applicable for
SunOS releases 2.x and 3.x.

This setting is key to allowing your kernel to have properly-sized internal tables.
Before kernel configuration, MAXUSERS is set to 4. It is a good idea to change
this setting to 8 or more when using a bitmap or suntools. See the anicle
'Hints and Tips #9' appearing on page 1024 of the December 1987 STB issue,
pan number 812-8701-11, for more information.

Another good rule of thumb is to set MAXUSERS to the average number of
windows you usually run in suntools.

The MAXUSERS setting is tunable in your customized kernel configuration file
you made from your copy of the default file /usr/sys/conf/GENERIC.
This setting is then used to calculate UNIX internal tables described in the
following paragraph. Note that MAXUSERS does not specify the maximum
number of users who can login to the machine.

The equations shown below appear in the file /usr/sys/conf/param.c
and use MAXUSERS as one factor to set up the UNIX internal tables.

Note that modifications to this file are no longer in force when your run
config. Any changes you make to this file must be redone whenever you
modify the kernel configuration file.

It is possible to modify the equations in this file directly, if desired. However,
this level of tuning is rarely necessary. Moreover, it can result in problems since
your modifications are hidden in this file rather than in the more visible kernel
configuration file.

219 February 1988

220 Software Technical Bulletin issue 1988-02

Summary

Thus, we do not recommend that you modify this file, and if you do, we strongly Q
recommend that you document what you have done.

o nproc = (10 + 16 * MAXUSERS)

This sets the size of the process table to determine the maximum number
of processes you can run at one time.

o ntext = 24 + MAXUSERS

This sets the size of the text table to determine how many different
binaries you can run at one time.

o ninode = (NPROC + 16 + MAXUSERS) + 64

This sets the maximum number of inodes. Note that MAXUSERS is
used twice in computing ninode since it is also used to calculate
NPROC.

o nfile = 16 * (NPROC + 16 + MAXUSERS) / 5 + 64

This sets the maximum number of open files you can use on a system
not using the Sun View window system.

Or,

nfile = 16 * (NPROC + 16 + MAXUSERS) / 10 + 64

for systems using the Sun View window system.

o ndquot = (MAXUSERS * NMOUNT) / 4 + NPROC

This sets the maximum number of quotas. Again, note that MAXUSERS
enters this equation twice since it is also used in setting NPROC.

System administrators should keep the importance of the MAXUSERS setting in
mind when configuring the customized kernel. Use of the standard SunOS
configuration file /usr/ sys/ conf /GENERIC without increasing
MAXUSERS may cause problems, especially when using sun tools.

February 1988

0

0

0 Domain Definitions

Domain: Multiple Definitions

Addressing Domain

0

Domain-Based Addressing

0

Section 3 - STB Short Subjects 221

The tenn domain is used in several contexts and may have a different meaning in
each. This short subject details the three most frequently used definitions of the
tenn.

Please note that his short subject describes the use of the tenn domain per se, and
does not attempt to describe details of the examples used. Also, note that the
examples themselves overlap each other, even when the tenn domain is used in
different contexts.

An addressing domain is a group of users or processes that agree on a particular -
address fonnat. That address fonnat must be used within its domain, to the
exclusion of all others. Further, users and processes cannot freely mix addressing
fonnats across domains, even when the addressing domains partially overlap.

Three common examples illustrate this point. The phone company, the postal
service, and the United Parcel Service (UPS, in the United States) are examples
of addressing domains. Telephone numbers (including area codes) are within the
addressing domain of the telephone company. Street addresses (including ZIP
codes) and post office box numbers are contained within the addressing domain
of the postal service. Finally, street addresses (but not post office box numbers)
are found within the UPS address domain.

Addressing domains may partially overlap as in the case of the postal service and
UPS use of street addresses, but not the use of post office box numbers. Another
partial overlap is the case of street addresses appearing in the phone book.
However, addresses cannot be intennixed nonetheless. You may use the area
code when calling, but must not use the street address number, even if it appears
in the phone directory.

Here the tenn domain describes an area or context in which a particular address
is used. Such areas or contexts may be arranged in a vertical hierarchy. The
requirement is that within each area, context, or layer within a hierarchy, the
names or addresses are unique and not duplicated within that area.

Unique addresses are then distributed within each domain or subdomain within a
greater domain. This layering of domains results in a large address that can be
broken into pieces or subcodes, each subcode being unique within its subdomain.

Telephone numbers serve as the best example of domain-based addressing. Each
area code must be unique. However, two different area codes may each contain
identical exchange numbers. Finally, within a particular exchange, each line
number must be unique. However, the same line number may be used in any
other exchange of the same or any other area code.

February 1988

222 Software Technical Bulletin issue 1988-02

Address-Family Domain In networlc addressing, the address-family domain is defined by the socket 0
location. You specify the address-family associated with that socket. The
address-family name is then passed down to lower layers. This allows
networldng requests to be passed to the appropriate seivers, and the like.

For example, educational institutions and commercial corporations each have a
different address-family domain, .edu and .com, respectively. Then within the
commercial domain, each corporation has another unique address-family domain.
This is typically the name of the corporation, as in sun.com for one example.

Finally, a particular network user or alias has a unique name within the company.
stb-editor!sun.com indicates three layers of address-family domains, the STB
editor within Sun Microsystems within the commercial domain.

February 1988

0

0

0
4

twfd&f@J 11mm r MM& M@tt Wt

IN DEPTH

IN DEPlH ... 225

Graphics Standards .. 225

0

0

0

-,

0

0

0

Graphics Standards

Graphics Standards

The History Of Graphics
Standards

4
IN DEPTH

Porting graphics applications has often been a difficult problem for companies
supporting more than one graphics computer. Each vendor's computer usually
runs a proprietary graphics interface that is not only unique to the vendor, but
often times unique to the particular machine.

Sun Microsystems has helped to ease the difficulty of porting graphics code by
offering numerous graphics standards for Sun workstations. By programming to
the standards, a Sun customer is guaranteed compatibility across all Sun
products, as well as with other vendor's machines which support the standard.

In order to ensure portability across different graphics machines, a graphics
standard establishes one agreed-upon set of graphics commands. These
commands provide a common interface to different graphics machines. Thus,
programmers can use the standards knowing that their graphics program will run
on a variety of machines.

The history of high-level graphics standards is the history of two rival families of
standards, Core and OKS, each trying to become the graphics standard. See
figure 1 for a summary of the history of graphics standards.

The seeds for Core were sewn in 1974 at a workshop held by the National Bureau
of Standards (NBS). From this workshop emerged the Graphics Standards
Planning Committee (GSPC), which operated within the Association of
Computing Machinery's Special Interest Group on Graphics (ACM/Siggraph).
In 1977 the GSPC presented the Core system, a device-independent graphics
application interface, to the graphics industry. Two years later, using Core as a
starting point, the American National Standards Institute (ANSD established a
committee for computer graphics programming languages, X3H3, to work on a
graphics standard.

225 February 1988

226 Software Technical Bulletin issue 1988-02

Br1ish.Standard -GINO-F nsutute ,

r:::l_ GKS -iISOl-­
~ ~

PMIG

1s

National Bureau
of Standards

GSPC/ ACM-SIGG RAP,

CORE

* GKS-1 ANSI
1 X3H3

Expanded

l
PHIGS

Figure 1: Graphics Standards History 1974-1986

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

Meanwhile, the efforts which would eventually result in GKS were under way. In
1975, the International Standards Organization (ISO) accepted the British
Standards Institute's proposal on graphics standards, GINO-F. While GINO-F
itself is not important, it prompted the ISO to create a worldng group, WG2, to
develop a graphics standard. In 1979, two years after Core was proposed, the
Deustches Institut fur Nonnung, the West Gennan standards body, proposed the
Graphics Kernel System (GKS) to WG2 for consideration as a graphics standard.
Since OKS was submitted after Core, it included many of the strengths of Core
while eliminating many of its weaknesses.

February 1988

0

0

0

0

SunCGI, SunGKS, SunCore,
and FIGARO

Section 4 - In Depth 227

In an effort to unify the standards, GKS was presented in 1979 to the the ANSI
committee, X3H3, which was using Core as its model for a graphics standard.
X3H3 turned GKS down, preferring instead to expand Core. By 1980, X3H2 had
split into two camps. One, represented by the personal computer manufacturers,
wanted a small, simple graphics standard. This group devised a standard known
as the Programmer's Minimal Interface to Graphics (PMIG).

The other group, represented by manufacturers with heavier graphics demands,
preferred a more encompassing graphics standard. This group's efforts went into
a standard known as the Programmer's Hierarchical Interactive Graphics
Standard (PHIGS). Finally, in 1982, X3H3 decided that GKS, which had become
popular in Europe, should serve as the group's standard. Additionally, the
committee merged PMIG and GKS, making PMIG a subset of GKS. Thus, by
1985, there were three widely-accepted, high-level graphics standards: Core,
GKS, and PHIGS.

While Core, GKS, and PHIGS provide standard graphics interface with a high
level of functionality, there is also a need for a standard interface at a low level,
much closer to the graphics hardware. With such a low-level interface, one
standard set of device drivers can be written which would support a wide range
of graphics devices.

In 1980, ANSI began a standards effort to establish VDI and VDM standards. It
formed the Task Group X3H33. Work on the two standards proceeded in
parallel, but in May 1982, X3H33 suspended the VDI effort to permit the VDM
specification completion. One reason for pushing forward on the metafile was
that it was easier to standardize. It is easier to understand, and it achieves a
common transport mechanism among diverse graphics devices. More important,
it makes no judgement on how the device interprets the data it reads from the
metafile.

In 1982, ANSI submitted its VSM standards effort to ISO TC97 SC5 which in
tum formed the Working Group 2 Metafiles Subgroup. By the end of 1985, the
VDM and VDI had become both ISO and ANSI standards. In the process, their
names had been changed. VDM had become Computer Graphics Metafile
(CGM) and VDIO had become the Computer Graphics Interface (CGI). CGI is
the answer to the many computer-graphics peripherals manufacturers who want
one common interface that will enable their equipment to quickly attach to a
computer system.

Since each type of application requires its own level of graphics functionality,
numerous graphics standards have emerged, ranging from a simple device
interface to a complex three-dimensional imaging model.

At the lowest level, the Computer Graphics Interface (CGI) serves as a general
interface to specific graphics devices. Moving up a step from the hardware, the
Graphics Kernel System (GKS) provides the ability to group two-dimensional
graphics primitives together into segments, route graphics output to different
display surfaces, and read and write graphics to files of a standard format. The

February 1988

228 Software Technical Bulletin issue 1988-02

Performance and Windows

SunCGI

Imaging Model

ACM/Siggraph Core provides a slightly higher level of functionality by adding
3D as well as 2D graphics.

And finally, PRIGS has the most sophisticated standard imaging model to date.
On top of the two- and three-dimensional graphics primitives, PRIGS offers a
hierarchical display list to aid in managing graphics data. Sun supports CGI,
OKS, and Core directly with the SunCGI, SunGKS, and SunCore packages; a
PRIGS package honed to Sun's hardware, FIGARO, is available at present from
Template.3

See figure 2 for an illustration of the Sun implementation of the CGI, OKS, Core,
and PRIGS imaging models.

Since performance is critical to the success of standards, and windows are vital to
the ease of graphics applications use, Sun has tightly coupled the standards to its
its hardware accelerators and has fully integrated the standards into the Sun
windowing environment. Sun has implemented the standards so that there is a
minimal path leading from the standard's software interface to Sun's graphics
hardware.

To ensure convenient integration of graphics applications into Sun's windowing
environment, Sun has augmented the standards to embrace a multi-tasking and
multiple-window graphics display. Within Sun standards, integration into a

0

windowing environment is transparent to the applications. ~.

SunCGI provides a two-dimensional graphics interface to low-level graphics
routines. SunCGI has neither the restrictions nor the ovemead of higher level
standards like OKS or Core; nor does it have many of their features. SunCGI
delivers the efficiency and freedom of a device driver to the application
programmer at the expense of high level functions.

The most notable functions absent from CGI are explicit transformations, three­
dimensional functions, and segmentation. If these features are required by an
application, the programmer must use either another standard or write the
procedures.

The imaging model for standard CGI is based upon the concept 'virtual device'.
The virtual device is conceptually a generic graphics device to which standard
CGI serves as an interface. This virtual device serves as a common model for
devices ranging from pen plotters to CRTs. Standard CGI provides the
programmer with the input and output primitives needed to control the virtual
device.

SunCGI extends the standard CGI concept of the virtual device by allowing one
program to open numerous view surfaces on one device. Since SunCGI is
integrated with Sun's windowing environment, this extension allows an

"""'

3 Template is a registered trademark of Megatek Corporation, 9645 Scranton Road, San Diego, CA 92121 Q

February 1988

0

0

0

View Surfaces

Device
Independent

Device
Dependent

Section 4 - In Depth 229

application to draw to a number of windows which act as view surfaces. These
view surfaces can be manipulated as normal Sun windows; the application or a
user can position them, change their size, and close them into icons.

Conceptual Design Sun's Implementation

CGI GKS CORE PHIG

CGI

Device Drivers un Wi dowing nviron nt

Device Sun Graphics Hardware

Figure 2: Sun Implementation of Graphics Models

SunCGI allows a single process to open, close, activate, and de-activate multiple
view surfaces as shown in figure 3. Opening a view surface initializes the surface
to a default state. Activating a view surface ensures that subsequent SunCGI
calls will affect that surface; nothing can be drawn on a surface that has not been
activated.

When a view surface is created, it has its own color map (except when the view
surface is on a monochrome display) and name.

February 1988

230 Software Technical Bulletin issue 1988-02

Input Model

SunCGI Process

Display Device

Figure 3: SunCGI Processes and Multiple View Surfaces

An input device consists of a trigger and a measure. A trigger is a device used to
mark a point in time. For example, a trigger is the button on the mouse. A
measure is the current value of the input device. The measure of a mouse would
be the x and y coordinate cursor locations on the screen. When a device is
triggered, the device causes an input event. An input event is the combination of
a measure from an input device, coupled with the identification of the input
device. In the mouse example, the input event consists of the x and y mouse
locations, and the identification of the mouse button that triggered the event.

There are five classes of input devices: locators, strokes, valuators, choices, and
strings. A locator picks an (x,y) point in Virtual Device Coordinate (VDC)

February 1988

0

0

0

0

0 Coordinate System

Clipping and Transfonnations

0

Section4-1nDepth 231

space; a stroke returns an array of (x,y) points in VDC space; a valuator returns a
nonnalized x position; a choice returns a number representing a selection from a
number of choices; and, finally, a string returns a character string. SunCGI uses
the mouse as a locator, stroke, valuator, and choice input device. The keyboard
serves as a string input device.

SunCGI supports synchronous and asynchronous input. For synchronous input,
the input device is set to the RESPOND_ EVENT mode. In this mode, when an
application requests a measure from an input device, the application waits until
the input device returns a value. To get asynchronous input, the input device can
be set to either REQUEST_EVENT or QUEUE_EVENT.

When the input device is set to REQUEST_ EVENT, the application can initiate
asynchronous communication between it and the process handling the input.
Each time a new event is created by the input device, it is placed in the request
register where the event can be polled by the application. If a device is set to
QUEUE_ EVENT, each new event associated with the input device is placed into
an event queue.

The event queue is a First In First Out (FIFO) buffer shared by all input devices.
As input events are created they are placed on the queue where the application
can search the buffer for the last event or events from a specific input device.

The coordinate system the application uses in SunCGI is called Virtual Device
Coordinates (VDC). In conventional computer graphics tenns, VDC space
corresponds to World Coordinate (WC) space. These integer coordinates can be
set by the application and can range from -32762 to 32767. Primitives drawn in
VDC are mapped to the physical devices coordinates by SunCGI. See figure 4
for an illustration of SunCGI mapping from VDC to screen space.

The mapping from VDC space to the physical screen space is isotropic; the
aspect ratio of the image in VDC detennines the aspect ratio of the image on the
physical device.

By manipulating the extent of the virtual device coordinates, an application can
translate (move) or scale (zoom in or zoom out) an image. No rotation functions
are provided by SunCGI, so they must be supplied by the application program.

There are no user-defined transfonnations in SunCGI. Zooming and panning can
be achieved by manipulating the VDC extent. The clipping bounds can be turned
off or defined by the application. Turning off the clipping speeds up drawing
graphics primitives at the risk of drawing them outside the view surface window.
An arbitrary clipping rectangle can be set in VDC by the application.

February 1988

232 Software Technical Bulletin issue 1988-02

Raster Functions

.......

Virtual Device Coordinate Space
(VDC Space) Screen Space

Figure 4: SunCGI Mapping from Virtual Device Coordinate to Screen Space

Raster primitives include text, cell arrays, pixel arrays, and bit block transfers
(bitblts). The text primitives allow the application to choose a font, scale the
characters, set the spacing between letters, and set the orientation of the text. A
cell array draws a scaled and skewed pixel array on the screen; a cell array can be
drawn into a parallelogram. A pixel array draws a rectangle of pixels onto the
screen. Finally, bitblts copy an array of pixels from one area on the screen to
another. In addition to merely writing raster primitives, it is also possible to
repeat a raster pattern to fill an area on the screen. Since many raster objects are
dependent on the screen resolution, a number of raster operations must be defined
in screen space, not VDC.

February 1988

,~-

0

0

0

0

Geometric Primitives

0

0

Section 4 -In Depth 233

In SunCGI, it is possible to perfonn logical operations on raster primitives as
they are drawn to the screen by combining the source pixels and the destination
pixels with logical operators. SunCGI allows rasters to be considered
'transparent' as they are written; to be anded, ored, notted, xored, or
drawn nonnally as they are written to the screen (i.e., to be notted before they
are combined on the screen).

These logical raster operations give the application several capabilities used to
manipulate text and areas of pixels quickly and effectively. SunCGI extends this
concept beyond the standard CGI by allowing all graphics primitives to be
written to the screen with logical operations.

In addition to raster primitives, SunCGI includes many geometric primitives:
arcs, circles, ellipses, polylines, rectangles, polygons, markers, polymarkers, and
text. Each is described in the following paragraphs.

D Arcs

There are two broad types of arcs, circular and elliptical. For both types,
SunCGI allows the application to create closed arcs, that is arcs that
define an area. A closed arc can be filled in either PIE or CHORD
mode as shown in figure 5. In PIE mode, lines are drawn from the
end-points of the arc to the center of the circle or ellipse. The result
looks like a piece of pie or a section of a pie chart. In CHORD mode,
the end-points of the arc are joined by a line. The resulting regions are
filled according to the current solid object attributes.

0
PIE mode CHORD mode

Figure 5: The PIE and CHORD Methods Used to Close Arcs

Circular arcs can be defined by two methods. One is by specifying the
center of the circle, its radius, and the two arc end-points. The other

February 1988

234 Software Technical Bulletin issue 1988-02

method defines a circle by specifying three points through which the Q
circle must pass.

Open arcs are drawn according to the current line attributes.

o Circles

Circles are drawn by specifying a point and a radius. The interior and
perimeter of the circle are controlled by the current solid object
attributes.

o Ellipses

Ellipses are drawn by specifying a center and the major and minor axes.
The interior and perimeter of the ellipse is controlled by the current solid
object attributes.

o Polylines

The polyline function draws a list of connected lines. The last point is
not automatically connected to first point. To generate a closed polyline,
the last point on the list must have the same coordinates as the first. The
disjoint polyline function draws a list of disjoint polygons; both end­
points of each line need to be specified. The line appearance is
controlled by the current line attributes.

o Rectangles

A special function is available to draw a rectangle by defining its lower,
right corner and its upper, left corner. The interior and perimeter of a
rectangle are defined by the current solid object attributes.

o Polygons

A polygon can be drawn by specifying a list of points. Polygons can be
self-intersecting and can have holes in them. The interior and perimeter
of the polygon are controlled by the current solid object attributes.

o Text

SunCGI provides a full set of text functions. Text can be generated in
one of three modes. If the 'text precision' is set to be STRING, the
firmware character set is used. In this case, the characters can be neither
rotated nor scaled. In this mode, individual characters are not clipped;
either a whole character is written within the clipping bounds or it is not
written at all.

0

If the text precision is set to CHARACTER, characters are generated in
software. In this mode, clipping is similar to the clipping in STRING
mode. And finally, when the text precision is set to STROKE, the Q

February 1988

0

Attributes

0

0

Section 4 - In Depth 235

CHARACTER text precision attributes are used and individual characters
can be clipped in parts.

SunCGI offers a variety of fonts including Roman, Greek, Script, Olde
English, stick, and symbols. In addition, SunCGI allows the application
to set the spacing between characters, the character height, and the text
color. The text skew and direction can be determined as well as the
character path (right, left, up, or down). To give further flexibility,
SunCGI allows the application to determine the point within the
character that is used to define the character's position.

Sun has extended the CGI text facilities by adding a feature to set
characters to be either fixed- or variable-width. If the characters are
fixed, all the characters are of uniform size; if the characters are variable,
the characters are spaced according to their respective sizes.

o Polymarkers

Polymarker draws a tick mark at a list of points. The marker can be a
dot, a plus sign, an asterisk, a circle, or an 'X'. Additionally, the
marker's size and color can be set via the polymarker attributes.

The following paragraphs describe SunCGI attributes including line, solid object,
and bundled attributes.

o Line Attributes

Line attributes are a set of global variables which affect the appearance
of polylines and arcs. Once they are set, they define the appearance of
subsequent polylines and arcs. They do not affect the outlines of solid
objects since the perimeter attributes perform this function.

The line attributes and options are summarized in figure 6. The
available line attributes are line type (solid, dotted, dashed, dashed­
dotted, dash-dot-dotted, and long dashed), line end-style, line width, and
line color. Line end-style is a Sun extension to CGI which allows the
application to determine how gracefully to process the end-points of a
textured (non-solid) line.

o Solid Object Attributes

Solid object attributes determine how circles, closed arcs, ellipses,
rectangles, and polygons are filled. There are three general classes of
solid object attributes: fill attributes which determine how the object
should be filled, hatch and pattern attributes which determine the type of
pattern that is used for a pattern fill, and perimeter attributes which
determine the appearance of the boundary of the solid object

Solid objects can be hollow (not filled), or filled with a solid color, a
pattern, or a hatch. A pattern is different than a hatch in that it can be

February 1988

236 Software Technical Bulletin issue 1988-02

scaled and translated; a hatch simply fills a solid object with an arrays of 0
pixels.

Attribute Type

Line Attributes

Perimeter Attributes

Polymarker Attributes

Options

Line Type
Line Endstyle
Line Width
Line Color

Perimeter Type
Perimeter Width
Perimeter Color

Marker Type
Marker Size
Marker Color

Figure 6: SunCGI Line Attributes and Options

If an object is solid and not hollow, its interior color can be set. If an
object is filled with a pattern, the pattern size in VDC can be set.
SunCGI also allows patterns and hatches to be stored in a table so that
the current pattern or hatch can be changed by altering an index.

Sun has extended the pattern and hatch attributes to allow a pattern to be
applied transparently over an object filled with a solid color. Using this
feature, it is possible to define 'holes', or transparent areas, where the
object's underlying solid color is visible.

Finally, the perimeter of the object can be defined using the perimeter
attributes. The available perimeter attributes are perimeter type (solid,
dotted, dashed, dashed-dotted, dash-dot-dotted, and long dashed),
perimeter width, and perimeter color.

0

o Bundled Attributes

A group of output primitives frequently share the same set of attributes.
Each time one of these primitives is drawn, each individual attribute has
to be set. To make this process more efficient, SunCGI allows the
application to bundle attributes into one package. This way, when a set
of attributes must be set, they can be accessed through one primitive.

February 1988

0

Q Colors

SunGKS

0
Imaging Model

0

Section 4 - In Depth 237

In SunCGI, colors are defined by integer indices into a color table. This color
table defines the set of colors that can be seen on the screen at the same time.
SunCGI allows the application to define the color table.

The Graphics Kernel System (GKS) is a device independent, two-dimensional
graphics interface which lies between an application and a device driver. See
figure 7. Since GKS serves as an interface to an application, its focus is to make
writing applications more convenient GKS incorporates abstractions which are
common to a wide variety of graphics applications, but specific to none. Here
GKS differs from the Computer Graphics Interface (CGI). While GKS is looking
upward to the applications for its model, CGI looks downward towards the
device for its model. GKS is thus more convenient to use for applications.

Because of its focus on applications, GKS offers features which are not present in
CGI such as metafiles (standard input and output files), segments,
transformations, floating point coordinates, and well-developed control over
multiple worksurfaces. GKS is a convenient interface for writing two­
dimensional, interactive graphics applications. The price for this convenience is
that SunGKS programs are larger and run less quickly than SunCGI programs.

If an application requires three-dimensional graphics primitives, SunGKS is not
the standard to use; both SunCore and PRIGS process three-dimensional
graphics. For two-dimensional applications, however, SunGKS provides a
convenient and portable 2c graphics interface, providing GKS functionality for
both input and output. The 2c graphics interface input and output levels are
shown in figure 8.

The imaging model behind GKS is broken into two distinct sections: one to
create graphical objects and specify their characteristics, and the other to
determine how these objects will be rendered on a specific physical device.
Another way of viewing this distinction is that one part of the imaging model
provides graphics application programmers with a convenient interface, the other
part ensuring that an application will run on a variety of devices.

To aid the application in creating and manipulating graphical objects, GKS
provides an imaging model based on segments. Segments are groups of
graphical primitives (lines, polygons, and so forth) and their attributes which
create a coherent object. Segments allow an application programmer to
manipulate a complex graphical object without worrying about its constituent
primitives. Since segments are central to the imaging model, much GKS
programming reduces to creating, manipulating, describing, and deleting
segments.

Since graphics devices vary widely, from plotters to graphics terminals to
graphics workstations, GKS uses a workstation to serve as a generic input and
output device.4 By defining a generic workstation, GKS shields the application

4 A workstation in OKS is one graphics process. A workstation corresponds to one window or device on a
Sun computer.

February 1988

238 Software Technical Bulletin issue 1988-02

Worksurfaces

from the peculiarities of specific devices. All of the idiosyncrasies of a particular O 1
1

device are introduced in the translation from the workstation to the physical
device.

Applications

t
Convenience

Portability

i

C Devices J

Figure 7: The SunGKS Graphics Interface

Since SunGKS is closely integrated with the Sun windowing environment,
managing wmkstations is closely related to managing Sun windows. With this
relationship in mind, there are five different types of workstations that a GKS
program can write to: Worlcstation Independent Segment Storage (WISS),
Metafile Input (MI), Metafile Output (MO) ASCII format, Sun View 'window',
and a Sun View 'canvas'. GKS allows you to write efficiently to different
windows. You can set the size and locate the GKS workstation on the screen.

February 1988

0

0

Q Input Model

Coordinate System

0

Clipping and Transformations

0

Section 4 - In Depth 239

SunGKS uses the same input model as CGI and includes more functions for
inquiring the state of items relating to interface negotiation and input capabilities.
Refer to sections 2.4 and 2.5 of the SunCGI Reference Manual, part number
800-1256, for details.

The application defines the World Coordinates (:WC). A transformation to a
Normalized Device Coordinate (NDC) window is implicitly defined by setting
the window in WC and the viewport in NDC. See figure 9 for an illustration of
SunGKS transformations from WC to NDC to screen coordinates.

Input Level Output Level

a) No input functions allowed 0 Minimal input; one settable
normalization; one workstation

b) Only Request input allowed 1 More than one output workstation,
setments, and multiple normalizations

c) Request, Sample, and Event 2 Workstation independent storage
allowed

Figure 8: The SunGKS 2c Support Level

The SunGKS workstation transformation is affected both by standard GKS
functions, and implicitly by operator changes to the window size. The
workstation transformation maps an area in the NDC space within the range
[0.0,1.0] x [0.0,1.0] (the wmkstation window) onto a specified area of the device
coordinate space (the worlcstation viewport). Segments are stored in NDC space.

The device coordinates used to address the window are fixed at [0,4095] x
[0,4095] and are independent of the size or shape of the window, and are
independent of the physical device on which the window appears.

Clipping can be turned on and off. There are two sets of clipping. The first set is
to the workstation window and cannot be turned off. The second set is to the
normalization transformation viewport. This second set can be turned on and off.

The programmer can also attach a rotation, scaling, and translation matrix to a
segment. This has the effect of moving, scaling, or rotating the image generated
by the segment. SunGKS maintains an array of normalization transformations.
The application program can select and recompute these normalization

February 1988

240 Software Technical Bulletin issue 1988-02

transformations. The current normalization transformation is used for all 0
worutations. This allows the programmer to switch between worutations by
changing the normalization matrix.

The segment transformation function uses a 2 x 3 transformation matrix that
determines the rotation, scaling, and translation of a segment. GKS provides two
utility functions for generating a transformation matrix from various components
and for generating the Accumulate Transformation Matrix for altering an existing
transformation.

World Coordinates

Segment
Transformation

NDC

Workstation
Transformation

Screen Coordinates

Figure 9: SunGKS Transformations from World to Screen Coordinates

February 1988

0

0

0

Segments

0

Raster Functions

Metafile

0

Section 4 - In Depth 241

The parameters used in transfonnations are listed below.

fixed point indicates the origin for the segment coordinate system

shift how much to shift in the x and y directions

angle angle of rotation for the segment coordinate system

scale how much the segment coordinate system is expanded or
contracted

coordinates whether the fixed point and shift vector parameters are in
WC space or NDC

A segment is a static data structure for storing groups of output primitives and
attributes. A OKS application describes a graphical object by creating a
segment, calling output primitive functions and attribute functions (the results of
which are placed in the segment), and then by closing the segment Segments
have names (integer identifiers) so that a OKS application can selectively modify
parts of a complex model by deleting and recreating segments (which effectively
replaces them).

SunOKS uses the current attribute list at segment creation time. Attribute
functions included in the segment have their nonnal effect. However, once the
segment is closed, the primitive attributes used in in its creation cannot be
changed.

Segments have five segment attributes as listed below.

o transfonn ation

D visibility

D highlighting

D priority

D detectability

These attributes allow the programmer to recreate, delete segment from a
worl<:station, insert segment, set segment priority, and the like.

Raster functions allow the programmer to inquire pixel values on the screen,
either singly or as an array of values. Also, cell array facilities are available.

If a OKS workstation is of type Metafile Output (MO), all objects written to it are
stored in a special OKSM fonnat disk file. A Metafile Input (Ml) OKS
workstation can read this metafile. Metafiles can be copied around the networl<:,
over internetworl<: routers to other networks, accessed by other OKS graphics

February 1988

242 Software Technical Bulletin issue 1988-02

Geometric Primitives

Color

Fill

application software, or used as a standard storage format for drawings. The 0
metafile is in clear text, an ASCII file.

Hardcopy support is added to GKS by a special wolkstation whose connection is
output-only. An alternative method is to provide a program that reads a metafile
and generates hardcopy. To obtain a hardcopy, use the screendump program
or the pixrect rasterfile 1/0 routines.

Geometric primitives include polylines, text, and polymarkers. These are shown
below along with their attributes.

D polylines

line width
line type
polyline index
linetype
linewidth scale factor
polyline color index
linetype aspect source flag
linewidth scale factor aspect source flag
polyline color index aspect source flag

D text
alignment
color index
font and precision
index
path
representation
expansion factor
height
spacing
up vector

D polymarkers
color
index
representation

Color is represented by an index into a color table. This color table can be set by
the application.

Areas are filled explicitly by a fill command. The fill type is determined by
the current fill attribute. The programmer can set the items shown below.

color
interior style (hollow, solid, pattern, hatch)
pattern

-- ---- I -

February 1988

0

0

'

I

I

0
SunCore

0 Imaging Model

0

Section4-In0epth 243

pattern size
pattern reference point (starting point of the pattern)

Core is the grandfather of graphics standards. Developed in the mid-1970s by an
ACM/Siggraph committee, Core was the first attempt at an industry-wide
graphics standard. Since Core was developed as computer graphics was coming
of age, much of Core is aimed at the functionality of three-dimensional vector
displays. In 1979, however, Core was extended to include raster functions. Sun
has extended Core even further to include z-buffer hidden surface removal,
lighting models, and Oouraud and Phong shading.

Core differs in scope from COi and OKS in that it focuses on three-dimensional
applications. As a result, much of the Core standard centers around specifying a
three-dimensional view. Core is similar to OKS in that it provides segments to
group geometric primitives. As is the case with OKS, Core conveniently uses
floating point coordinates.

SunCore supports the ACM Core output level 3c (dynamic output including
two-dimensional (2D) and three-dimensional (3D) translation, scaling, and
rotation). Additionally, SunCore supports the ACM Core input level 2
(synchronous input, including the PICK logical device). And, finally, SunCore
supports dimension level 2 (3D operations). The SunCore output levels, input
levels, and dimension levels supported are shown in figure 10.

Since SunCore is a 3D graphics standard, most of its imaging model centers on
defining the position of graphical objects, the camera view from which the
objects are seen, and finally how the view will be projected into two dimensions.

The three-dimensional position of an object and the camera view from which it is
seen are determined by two different types of matrices. The modeling
transformations determine an object's position in three dimensions. Since each
object has a unique position, Core assigns a modeling transformation to each
graphical object. The viewing transformation determines a viewpoint and the
characteristics of the camera.

As shown in figure 11, a number of parameters must be defined in order to
specify a view. The first parameter is the eye point, or sometimes known as the
view point or center of projection. In conjunction with the eye point, a viewing
plane must be specified. The viewing plane is the plane onto which the 3D
graphical objects will be projected.

February 1988

244 Software Technical Bulletin issue 1988-02

Output Level

1) Basic Output

2) Buffered Ouput

3) Dynamic Output

3 a) 2D translation
3 b) 2D Scale, rotation,

and translation

3 c) 3D scale, rotation,
and translation

Input Level

1) No Input

2) Synchronous
Input

3) Complete
Input

Dimension Level

1) 2D

2) 3D

Figure 10: SunCore Output, Input, and Dimensions Supported

The viewing plane is conceptually similar to the plane in a camera where the film
rests. The viewing plane is defined by the view plane normal, which is the
vector normal to the viewing plane which passes through the view reference
point. Since the viewing plane has infinite boundaries, the next step is to define a
rectangular clipping boundary on the view plane. This boundary, the window,
defines the field of view.

The term 'window' in SunCore is not the same as the term 'window' when it is
used in the context of a windowing environment. The orientation of the window
is set by the view up vector. The window has a local coordinate system with the
axes u, v, and the view plane normal. The comers of the window are specified in
uv coordinates.

The front clipping plane and the back clipping plane are defined by the front
distance and the back distance. The front clipping plane is sometimes called the
'hither' plane, and the back clipping plane is sometimes called the 'yon' plane.
Objects closer to the eye point than the front clipping plane and objects farther
from the eye point than the back clipping plane are not shown in the final picture.

February 1988

0

0

0

0

0

0

Eye Point
"Center of Projection11

Front Clipping
Plane View Plane

View Up
Vector

\

', ---
•

View
Reference

Point

Section4-In0epth 245

Back Clipping

View Plane
Normal

)
,,

Plane

Front
Distance Back Distance

Figure 11: SunCore View Points

And finally, the last parameter need to specify fully the view is the projection
flag. SunCore supports perspective projection and parallel projection. SunCore
provides defaults for each of these viewing parameters, but all of them can be set
by the application.

After the view has been set, the transformation from the window to the device
must be defined. The area on the device where the final picture is shown is called
the viewport. The viewport is specified in Normalized Device Coordinates
(NDC). Since SunCore is well-integrated into the Sun windowing environment,
a SunCore device corresponds to one Sun window in the windowing system. The
viewport is a region within a Sun window. The final viewing transform is
created by packing all of viewing parameters, along with the viewport
specification, into one matrix. See figure 12 for an illustration of mapping the
viewing window to the viewport within a Sun window.

February 1988

246 Software Technical Bulletin issue 1988-02

Worksurfaces

Coordinate Systems

Viewing
Transform

u

Window ,..._,

3D
World Coordinates

Image
Transform

NDC

Sun
'Windo

Screen
Coordinates

Figure 12: SunCore Mapping of View Windows to Viewports

In summary, the SunCore imaging model is similar to taldng a picture with a
camera. First, the objects are put into place by the modeling transformations.
The properties of the camera are selected. Then, with the objects in place and the
camera defined and pointed, the viewing transformations project the image of the
30 objects onto the 20 viewing plane. The image in the viewing plane is then
shown on the display device.

Since SunCore is a 30 package, the concept 'worksurface' is removed from the
surface of the 20 display device. SunCore's worksurface is the window within
the viewing plane.

0

0

Application programs which draw pictures using SunCore communicate in
World Coordinates (WCs). World coordinates are a device-independent, 20 or
3D, Cartesian coordinate system for describing objects. Output primitives are
given to SunCore routines in WCs. However, if the world coordinate matrix is
used, SunCore concatenates this matrix with the view transform so that output O

February 1988

0

Input Model

0
Segments

0

Section4-InDepth 247

primitives are first transformed by this matrix from 'model' or 'object'
coordinates to world coordinates. This means that the user can supply primitives
in 'model' coordinates, each model or object being moved into world coordinates
according to the current world coordinate matrix.

In 3D, the user may choose to use right-handed or left-handed world coordinates.

The composite viewing transform is formed from the world coordinate matrix
and the viewing parameters. SunCore routines transform the output primitives
from world (or model) coordinates to NDC, which is a left-handed coordinate
system bounded such that: O.O<<x,y,z<<l.0.

Since current Sun view surfaces have three-to-four aspect ratios, the default NDC
space has they extent bounded to O.O<y<<.75. Primitives are stored in a display
list in NDC space. The user-specified window in world coordinates is mapped,
and optionally clipped, to the user-specified viewport within NDC space. The
entire NDC space is then mapped to the selected physical view surfaces.

The input model uses synchronous input That is, when the program expects
input, it halts until either it times out or input is received. Echoing facilities are
provided that allow you to attach a particular echo to a particular input device.

Refer to the input capabilities table in the 'Introduction', chapter 1 in the
SunCore Reference Manual, part number 800-1257, for further information.

ACM/Core provides 3D graphics package capabilities. SunCore is level 3c ,
(dynamic output with 3D scaling, rotation, and translation) for output primitives,
and is level 2 (complete synchronous input) for input primitives. The extensions
to Core are textured polygon fill algorithms, raster primitives, RasterOp
attributes, shaded surface polygon rendering, and hidden surface elimination.

Segments are a group of primitives that are treated as a whole. Typically, a
segment might correspond to one specific part of a greater whole, like a tire of a
car. In SunCore, there are two types of segments: retained segments and
temporary segments. Retained segments are named and are kept throughout the
duration of the Core application. Temporary segments are only drawn once; they
cannot be modified dynamically.

When a retained segment is created, it can be one of five types. The most flexible
is the transformable, 3D type of segments. This segment contains 3D data that
can scaled, rotated, and translated. The next type of segment is a 3D translatable
segment. This type can be only translated in space, neither rotated nor scaled.
Next is the 2D transformable segment. This type of segment can be scaled,
rotated, and translated in two dimensions. The 2D translatable segment can be
only translated in 2D. Finally, there is the fixed segment which cannot be
transformed.

Every retained segment has four dynamic attributes: visibility, highlighting,
detectability, and an image transformation. Visibility determines whether the

February 1988

248 Software Technical Bulletin issue 1988-02

Raster Functions

Geometric Primitives

image should be visible or not. Highlighting specifies whether the segment's Q
image should be highlighted. In SunCore, highlighting is done by blinking the
object. Detectability indicates whether a picking input device can detect the
segment. And finally, the image transformation indicates how the image of a
retained segment is scaled rotated or translated.

You can manipulate retained segments as listed below.

open segment (only one segment can be opened at a time)
close segment
name
rename
delete
save on disk
restore from disk

You can put a raster which draws a rectangular 1 bit- or 8 bits-deep raster, and
enters it into the current segment. A raster primitive may, however, be picked or
dragged if it is entered in a translatable segments. You can either store a 1 bit- or
an 8 bit-per-pixel raster. Also, you can read a raster area from the screen The
raster-to-file capability allows you to copy a raster file to disk.

You can also read a raster from a raster file and can inquire how large a raster is, O··

given the NOC coordinates and the output device. RasterOps xor and or are
available.

The following geometric primitives are available.

o lines

linestyle
linewidth
absolute and relative positioning

o polygons

D text

polygon edge style
interior style
absolute and relative positioning

character size
spacing (additional space between strings)
chara up (slanting, mirror imaging of characters), 20 and 30
charpath (which direction the characters go), 20 and 30
character precision.

February 1988

0

0

0

0

Colors

Special 30 Operations

o current position

move in absolute coordinates
move in relative coordinates

o markers

marker symbol

Section 4 - In Depth 249

marker in absolute and relative coordinates in both 20 and 30
polymarkers in absolute and relative coordinates in both 20 and 30

A user-settable color table is used for colors. You can set the color to be used to
fill areas, lines, and can set the color used for text and markers. You do this as a
global function, not when the function is called.

z-buffer hidden surface, flat, Gouraud, and Phong style shading is supported. The
Phong lighting model is implemented, as shown in the equation below.

pixelshade = arnnbitnet+diffuse(L*N) + specular(H*N)**bump - (flood*z)

The Programmers
Hierarchical Interactive
Graphics Standard

You can set the direction of the light source. Also, you can set the vertex
normals for Phong shading, and the colors in Gouraud shading.

The Programmers Hierarchical Interactive Graphics Standard (PHIGS), has the
broadest functionality of any of the current industry standards. In addition to
providing a common interface for describing and drawing geometric primitives,
PHIGS provides a standard for managing a hierarchical graphical database.
Core, COi, and OKS all revolve around drawing something on the screen.
PHIGS standardizes the database. PHIGS defines a graphics support system for
the creation, modification and display of graphical objects. In PHIGS, structures
relate to each other in a hierarchical network. Structures can reference, or
execute, other structures.

PHIGS main contribution is the standardization of graphics data. Hierarchy,
modeling and editing capabilities are supported. Specifically it manages the
storage and display of 20 and 30 graphical data. PHI GS creates and maintains a
hierarchical database, relieving the application program of a great deal of
unnecessary overhead. PHIGS defines a graphics support system for the creation,
modification, and display of graphical objects. An object is defined by a
sequence of elements, including output pnmlttves, attributes, and
transformations. These elements are grouped into one or more entities called
structures.

A structure consists of a set of structure elements. Each element represents a
unique unit of graphical information. Output primitives, attributes, modeling
transformations, view selections, pick identifier, labels, name sets, structure
invocations, application data, and escape functions are supported. Non-retained
structures are not maintained in a database since they are rendered direct! y.
Retained structures are stored for further modification by PHIGS.

February 1988

250 Software Technical Bulletin issue 1988-02

PHIGS and GKS Differences

Summary

PHIGS allows the dynamic modification of graphical images. Specifically, an 0
application can edit structure contents, perform database operations on a
structure, and modify attribute values in workstation state lists. These powerful
operations give applications control over the generation of possible real-time
display images and flexibility over the management of database structures and
their contents.

You open the structure to edit it and close the structure after editing. You can
insert elements, delete elements, and copy structures. You can also traverse
through the structures which are stored in a tree-type arrangement. Finally, you
can empty a structure by deleting all of its elements, delete it outtight, or rename
it.

Structure coordinates use modeling coordinates, the same as object space, which
are transformed to world coordinate space coordinates. The structure inherits the
attributes of its ancestors unless another value is defined within the current
structure.

Primitives include the polyline, polymarlcer, text, fill area, cell array, and
generalized drawing primitive. Input includes the locator, stroke, valuator,
choice, pick, and stting. Operating modes include request and sample event
Finally, picking is supported which allows the application to know which part of
the hierarchy has been selected. PHIGS returns the whole picking path to
distinguish different instances of the same object

Structures and the centralized, hierarchical graphics database are processed
differently. An important and powerful capability of PHIGs, lacking in GKS is
the ability to edit structures by inserting and deleting structure elements. This
allows simple changes to a graphic image as well as complex changes to its
hierarchical description.

GKS requires the application program to supply hierarchical modeling
capabilities and limits dynamic operations to groups of primitives stored after the
view operation. GKS groups primitives into entities called segments which
reside in a decentralized, mono-level database. Data descriptions are not
hierarchical; segments cannot invoke other segments. GKS segments can be
neither extended nor edited.

PHIGS supports traversal-time binding, and permits inheritance and dynamic
modification of primitive attributes through structure editing. The application
program can therefore change the enhancements without changing the data
structures. In GKS, primitives are assigned attributes at definition time.
Enhancements cannot be applied without changing the data structures.

See figure 13 on the next page for a summary of SunCGI, SunGKS, and SunCore
comparisons.

February 1988

,-------

0

0

0

.~
l J
~

0

Input

Dimension of
Data

Coordinates

Clipping

Transformations

Raster Functions

Segments

Geometric
Primitives

SunCGI

Synchronous
Asynchronous

2D

VD!
[-32767,32767]

Integer

Define
Clipping
Rectangle

none

BitBlt, scalable
cell array

no

circle
ellipse
arcs
lines
polylines
rolygons
text
markers
polymarkers

SunGKS

Synchronous
Asynchronous

2D

World Coordinates,
NDC,DC

Floating Point

Define
Clipping
Rectangle

2D
Transformations

yes

lines
polylines
polygons
text
markers
polymarkers

Section 4 - In Depth

SunCore

Synchronous

2D, 3D

World Coordinates,
NDC,DC

Floating Point

Define
Clipping
Rectangle

2D, 3D
Transformations

RasterOps,
raster to file

get raster

yes

lines
poly lines
polygons
text
markers
polymarkers
current position

251

Figure 13: SunCGI, SunGKS, and SunCore Comparison Summary

February 1988

0

0

~r---·

0

0

5
. II@ I! 1 : 1oorrtmm u@tt@@

QUESTIONS, ANSWERS, HINTS,
AND TIPS

QUESTIONS, ANSWERS, HINTS, AND TIPS ... 255

Q&A, and Tip of the Month .. 255

0

0

0

I -- -

0

Q&A, and Tip of the Month

Hints & Tips #10

0

UUCP and Your USERFILE

0

5
QUESTIONS, ANSWERS, HINTS,

AND TIPS

This is the tenth in a continuing series of this column which I have created for
two purposes.5 First, some questions are asked regularly on the AnswerLine. I
feel everyone can benefit from distributing discussions of these problems as
widely as possible. Second, a large and constantly growing body of information,
hints, and tips are not documented anywhere.

I will collect and distribute these information nuggets in this continuing column
so that we can all learn from them. I will cover unusual topics, but this column
should not be used as an alternative to contacting your suppon center or using the
AnswerLine.

If you have a question that you would like answered in this column, please mail
your question to 'Software Technical Bulletins' at Sun Microsystems, Inc., 2550
Garcia Avenue, MIS 2-312, Mountain View, CA 94043. You can also send in
your question by electronic mail to sun!stb-editor. U. S. customers can call Sun
Customer Software Services AnswerLine at 800 USA-4-SUN for technical
questions on this column or any other article in this bulletin I look forward to
hearing from you!

When setting up a UUCP connection, the most common place for errors seems to
be the USERFILE. The USERFILE is the protection system for UUCP that
sets up the local and remote site restrictions in copying files in and out of the
system.

The most frequent problem seen with the USERFILE is that the administrator
forgets to modify it for their system. As it comes off the distribution tape, the
USERFILE looks appears as shown below.

s This oontinuing colwnn is submitted by Chuq Von Rospach, Cusr.omer Software Services.

255 February 1988

256 Software Technical Bulletin issue 1988-02

uucp Bug in SunOS Releases
3.x

The Worlcaround

Tip of the Month

,sun /
, /usr/spool/uucppublic

This allows the system named sun to copy anywhere in the directory tree, but all
other sites can only copy in and out of the publicly accessible directory
/usr/spool/uucppublic. The first line needs to be changed so that the
hostname sun is changed to the local machine hostname. If you do not do this,
you will run into pennission problems and the system will not worlc properly.

Another common problem with the USERFILE occurs when the administrator
tries to relax the pennission restrictions. There is a bug in uucp versions 3.x
where it turns off all pennissions to everyone if there is only a single line in
USERFILE.

You would expect that the line shown below would allow anyone to copy
anything. In fact, it will not allow anything to happen. Avoid the line shown
below.

' I

The worlcaround to this is simple, fortunately; just duplicate the line as shown
below.

' I
' I

For the real security conscious, be aware that there is an upper limit to the
number of lines you can put in the USERFILE. The internal structures that are
used to process the USERFILE can support only 20 lines in the file. If you do
exceed this limit, UUCP will start failing with a 'BAD USERFILE' error
message.

A very common request to Customer Service Division is how to set up the mail
system to share a common /usr/spool/mail file via NFS. If you have
several machines where a user is likely to use any of the machines (as in a
laboratory setting, for example), it would be nice if they could get their mail
without having to rlogin to a specific host. Currently, SunOS releases 3.x do
not support this feature, but it is easy to implement if you are careful.

The key to making a central NFS-mounted /usr / spool/mail file worlc is to
make sure that sendmail never goes over the wire, since it is setuid to
root. Instead, you want to make sendmail use the SMTP delivery protocols
to transfer the mail to the sendmail process on the machine that has the local
disk, thereby avoiding the root-over-NFS problem.

0

0

To do this, you need to make sure that all mail is sent to the host with
/usr / spool/mail on the local disk. This can be done using the mail aliases
file to cause all mail to be forwarded to the central host. For every user in the Q

February 1988

0

Other Notes and Caveats

0

0

Section 5 - Q&A, Hints and Tips 257

/etc/passwd file, add an alias into the file /usr/lib/aliases as shown
below.

user: user@mailserver

In this example, mailserver is the name of the machine with the local disk. For
simplicity and performance, it is usually a good idea to make this machine the
mailhost.

Once this is set up, each system can use NFS to mount the central mail directory,
using the command shown below.

% mount mailserver:/usr/spool/mail /private/usr/spool/mail
%

Or, in the / etc/ fstab file, you can add the line shown below.

mailserver:/usr/spool/mail /private/usr/spool/mail nfs rw,soft

Once this is done, users should be able to read and delete mail from the central
repository.

A few notes and caveats on this. First, the biff command and the comsat
daemon do not work with an NFS-mounted mail directory, so users will not get
notified when mail arrives. Setting the mail variable in the csh should work,
and can be used as an alternative.

Also, if you start seeing mailboxes in /usr / spool/mail owned by
'nobody', there is a problem with the aliases. Either some machine is ignoring
them and writing directly over the network, or an alias is missing or set up
incorrectly.

February 1988

O·

o.

0
6

THE HACKERS' CORNER

THE HACKERS' CORNER ... 261

Backup Copy Daemon.. 261

0

0

01

'
0:

I

0

0

0

0

Backup Copy Daemon

An Automatic Backup Copy
Daemon

The Automatic Backup Copy
Daemon

The ABCD README

The ABCD Archive

6
mm · HMMMiM ti ii:lli@

THE HACKERS' CORNER

Tilis month's Hackers' Corner contains a shell archive for an Automatic
Backup Copy Daemon (ABCD).

Please consult your local shell script or programming expert regarding any script
or code problems. The example programs are not offered as a supported Sun
product, but as items of interest to enthusiasts wanting to try out something for
themselves. Note that Hackers' Corner code may not work in all cases, and
may not be compatible with future SunOS releases.

Tilis Automatic Backup Copy Daemon (ABCD) continually copies modified files
from one filestore area to another using either cp or rep. Note the second
filestore area may be on another machine if the file system is NFS-mounted.

The backup area should therefore have an identical copy of the filestore being
monitored.

See the README text contained in first and second pages of the archive for
details on the following subjects.

o Backup area filestores

o Notes on ABCD processing

o Available ABCD switches

The ABCD archive appears on the following pages, including details on ABCD
usage appearing in the README file.

261 February 1988

262 Software Technical Bulletin issue 1988-02

#! /bin/sh

This is a shell archive.

1. Save this archive text in a file.
2. Execute the file with '/bin/sh' to create the following files:

ii

README
Makefile
abcd.c
abcd.h

export PATH; PATH=/bin:$PATH

if [-f README]
then
echo shar: will not over-write existing file README
else
echo shar: extracting 'README',
cat> README <<'Fuhky_Stuff'

ABCD

2333 characters

This is an Automatic Backup Copy Daemon, which copies files from one
filestore area to another using either 'cp' or 'rep'. Note the second
filestore area may be on another machine if the file system is NFS-mounted.

The backup machine should have an identical copy of the filestore being
monitored.

NOTES

(1) A start directory for monitoring is given. All of the files including
sub-directories and their files are monitored. When any file is
changed, ABCD automatically copies it to another machine as specified
by the initial parameters to the program.

(2) If ABCD finds a new directory, it will make that new directory
in the backup area on the other machine if not already present.

(3) If you delete a sub-directory, then ABCD removes that directory from
the list of monitored directories. If you remove the original start
directory, then the program terminates since there is nothing left
to monitor.

(4) If you have made no changes during one complete pass of all monitored
directories, then ABCD sleeps for 5 minutes.

(5) There is a restart facility whereby if the machine has crashed, it
is possible to tell. ABCD not to copy anything for the first pass,

---,--

0

0

0
February 1988

0

0

0

Section 6 -The Hackers' Comer 263

but to start copying changed files from the second and subsequent passes.

(6) ABCD uses the 'system' system call to do its copying, so as to prevent
spawning of child processes.

SWITCHES

-fdirectory Directory to start copying from. Defaults to '/usr'.

-tdirectory Directory to start copying to. Defaults to '/usr2'.

-rhostname This is an alternative form of backup. It uses 'rep'
and copies to the supplied hostname.

-sseconds Specifies the sleep period in seconds when ABCD puts
itself to sleep.

-c Causes ABCD to not copy during the first pass.

Funky_Stuff
len= 'we -c < README'
if [$!en != 2333 J ; then
echo error: README was $!en bytes long, should have been
fi
fi # end of overwriting check
if [-f Makefile l
then
echo shar: will not over-write existing file Makefile
else
echo shar: extracting 'Makefile', 842 characters
cat> Makefile <<'Funky_Stuff'

Makefile for ABCD, an Automatic Backup Copy Daemon.

BINARIES abed
BINDIR
CFLAGS -g
LDFLAGS -g
OBJS abcd.o
SRCS abcd.c
HORS abcd.h
LIBS

all: $(BINARIES)

release: $ (BINARIES)
strip $(BINARIES)
mv $(BINARIES) $(BINDIR)

2333

February 1988

264 Software Technical Bulletin issue 1988-02

backup:

clean:

lint:

abed:

cp abcd.c abcd.c
cp abcd.h abcd.h

rm -f abed *.o *.c core

lint $(SRCS) $(LIBS)

$ (OBJS)
cc $(LDFLAGS) -o abed $(0BJS) $(LIBS)

abcd.o: abcd.c $ (HDRS)
Funky_Stuff
len='wc -c < Makefile'
if [$len != 842 J ; then
echo error: Makefile was $len bytes long, should have been 842
fi
fit end of overwriting check
if [-f abcd.c J
then
echo shar: will not over-write existing file abcd.c
else
echo shar: extracting 'abcd.c',
cat> abcd.c <<'Funky_Stuff'

/* abcd.c

*

12888 characters

* This is an Automatic Backup Copy Daemon, which copies files from one
* filestore area to another using either 'cp' or 'rep'. Note the second
* filestore area may be on another machine if the file system is NFS-mounted.

*
*
*
*
*

The backup disk should have an identical copy of the filestore being
monitored.

* SWITCHES

*
* -fdirectory Directory to start ·copying from. Defaults to '/usr' .

*
* -tdirectory Directory to start copying to. Defaults to '/usr2'.

*
* -rhostname

*
*
* -sseconds

*
*
* -c
*
*/

This is an alternative form of backup. It uses 'rep'
and copies to the supplied hostname.

Specifies the sleep period in seconds when ABCD puts
itself to sleep.

If given, causes ABCD to not copy during the first pass.

February 1988

-,

0

0

0

0

0

0

#include <stdio.h>
#include <strings.h>
#include <errno.h>
#include <signal.h>
#include <sys/file.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/dir.h>
#include "abcd.h"

char *malloc(), *sprintf()

struct finfo *cfile ;

struct finfo *files NULL
struct dinfo *cdir ;
struct dinfo *dirs =
struct stat cstat ;

struct direct *cur

extern int errno;

char cname[MAXLINE]
char coff[MAXLINE] ;
char curdir[MAXLINE]
char dbuf[DIRBLKSIZ]
char fdir[MAXLINE] ;

NULL ;

;

char flist[MAXFILES] [MAXLINE]
char fname[MAXLINE] ;
char pdir[MAXLINE] ;
char rhost[MAXLINE] ;
char tdir[MAXLINE] ;

int copy_ found 0 ;
int del.ay = 300
int docopy = 1
int fd = 0 ;

int loc = 0 ;

int fcnt = 0 ;
int no_dirs = 1 ;
int size ;
int usercp = 0 ;

get_options(argc,argv)
int argc;
char *argv [] ;

char *arg
char *p;

STRCPY(fdir,"/usr")
STRCPY(tdir, "/usr2") ;

Section 6 - The Hackers' Comer 265

/* Information on current file. */
/* Files being monitored. */
/* Pointer to current directory. */
/* Directories being monitored. */
/* For statistics on current file. */
/* Pointer to current directory record. */

/* Standard error reply. */

/* Copy program to use. */
/* Name offset from initial start directory. */
/* Current directory being monitored. */
/* Buffer for directory information. */
/* Directory to start copying from. */
/* Array of filenames to copy. */
/*Full.pathname of current file. */
/* Current directory for copy request. */
/* Name of remote host for use by rep. */
/* Directory to start copying to. */

/* Whether copy done on this pass. */
/* Sl.eep time for abed in seconds. */
/* 'rep' files right from the beginning. */
/* File id of the directory being monitored. */
/* Current location in the directory block. */
/* Number of files to copy in current request. */
/* Number of directories being monitored. */
/* Size of current directory block in bytes. */
/* Backup method, 'cp' or 'rep'. */

/* Get ABCD options from command line. */

/* Pointer to string following argument flag. */

/* Default directory to monitor. */
/* Default directory to copy to. */

February 1988

266 Software Technical Bulletin issue 1988-02

STRCPY(rhost,"") /* Default is no remote host. */

while (argc > 1 && (arg = argv [1]) [0] '-')
{

p = arg + 2
switch (arg[l])

{

case 'c' docopy
break

= 0 ; /*
;

Do not copy files the first time. */

case 'f' STRCPY(fdir,p) I* Directory to start monitoring from.

case 'r'

case 's'

case 't'

default

argc-­
argv++

setup()

break ;

STRCPY(rhost,p) ; /* Name of remote host. */
usercp = 1 ;

break
delay = atoi (p) ; /* Sleep period in seconds. */
break ;

STRCPY(tdir,p) /* Directory to start copying to. */
break ;
FPRINTF(stderr,"USAGE: abed [-cl [-ffromdir] [-rhostname]")
FPRINTF (stderr," [-ssleep] [-ttodir] \n") ;
exit (1) ;

dirs = (struct dinfo *) malloc(sizeof(struct dinfo))

0

*/

0

STRCPY(dirs->d_name,"")
STRCPY(pdir,fdir) ;
STRCPY(coff, "") ;

/* Start directory for current 'cp' request. *
/* Name offset from start directory. */

if (usercp) STRCPY(cname,"/usr/ucb/rcp")
else STRCPY(cname,"/bin/cp")
dirs->next = dirs;
cdir = dirs ;

/* Used by the output routine. */

get_next_dir () /* Get next directory name to monitor. */

struct dinfo *temp;
int dirfound;

dirfound = 0
if (fd)

{

CLOSE(fd) ;
if (!strlen(cdir->next->d_name)) /* Complete pass done?*/

February 1988

0

0

0

0

Section 6 -The Hackers' Comer 267

docopy = 1; /* Always copy after first pass. */
if (! copy_found)

sleep((unsigned int) delay)
else copy_found = 0 ;

/* Nothing happening, go to sleep. */

do
{

if (strcmp(curdir,cdir->next->d_name) != 0)
if (font) output("",REGULAR) ;

STRCPY(curdir,fdir) ;
if (strlen(cdir->next->d_name))

{

STRCAT (curdir, "/") ;
STRCAT(curdir,cdir->next->d_name)

STRCPY(coff,cdir->next->d_name) ;
if ((fd = open(curdir,0)) == -1)

{

if (EQUAL(curdir,fdir)) exit(O) ; /* Nothing left to monitor. */
else

temp= cdir->next;
if (cdir->next == dirs) dirs = cdir
cdir->next = cdir->next->next
free ((char *) temp) ; /* Lose this directory record. */
no dirs--;

else dirfound

while (!dirfound) ;
cdir = cdir->next;
loc = 0 ;

1 ; /* Directory found. */

/* Point to current directory. */
/* Reset directory buffer pointer. */

make_dir_entry() /* If not there already, create a new directory record. */

int i ;
char tempdir[MAXLINE]
struct dinfo *temp;

temp= cdir;
for (i O; i < no_dirs; i++)

temp= temp->next
STRCPY(tempdir,fdir)
if (strlen(temp->d_name))

{

STRCAT (tempdir, "/") ;

/* Temporary directory name. */

/* Is the directory already being monitored?*/

February 1988

268 Software Technical Bulletin issue 1988-02

STRCAT(tempdir,temp->d_name) ;

if (EQUAL(tempdir,fname)) return(O)

temp= (struct dinfo *) malloc(sizeof(struct dinfo)) ;
temp->next = dirs->next
dirs->next = temp
dirs =temp;

STRCPY(dirs->d_name,"")
if (strlen (coff))

{

STRCAT{dirs->d_name,coff) ;
STRCAT(dirs->d_name,"/") ;

STRCAT(dirs->d_name,cur->d_name)
no_dirs++
return(!) ;

get_next_entry(fd)
int fd ;

int tfd ;

for (;;)

if (! loc)

/* Get next directory filename entry. */

/* Temporary file descriptor for file entry. */

if ((size= read(fd,dbuf,DIRBLKSIZ)) <= 0) return(O) ;
if (loc >= size)

{

loc = 0 ;
continue;

cur = (struct direct *) (dbuf+loc) ;
if (cur->d_fileno == 0) return(O) ;
SPRINTF(fname,"%s/%s",curdir,cur->d_name)
if ((tfd = open(fname,O)) == -1)

{

else
{

loc += cur->d_reclen;
continue

CLOSE(tfd) ;
cur= (struct direct*) malloc(sizeof(struct direct)) ;
bcopy(dbuf+loc, (char*) cur, (int) DIRSIZ((struct direct*) (dbuf+loc))) ;
loc += cur->d_reclen
STAT(fname,&cstat) ;
return (1) ;

February 1988

0

0

0

0

0

0

Section 6 -The Hackers' Comer 269

no_ record() /* Check is this file is already being monitored. */

if (files== NULL) return(l)
cfile =files;
do

if (cfile->direct->d_fileno == cur->d_fileno) return(O) ;
while ((cfile = cfile->next) != NULL) ;
return(l) ;

make_file_entry() /* Make a record for this new file. */

struct finfo *temp

if ((cstat.st_mode & S_IFMT) == REGULAR)
{

temp= (struct finfo *) malloc(sizeof(struct finfo)) ;
temp->next = files
files= temp;

files->direct = (struct direct*) malloc(sizeof(struct direct))
files->direct =cur;
files->rntime = cstat.st_mtime

file_modified () /* Check if this file has been changed. */

if (cfile->mtime == cstat.st_mtime) return(O)
cfile->mtime = cstat.st mtime
return (1) ;

copy(filetype)
int filetype;

char name[MAXLINE]

/* Copy file to another directory. */

if (docopy)
{

/* Are we copying this time around. */

copy_found = 1

February 1988

270 Software Technical Bulletin issue 1988-02

STRCPY(name, 11
")

if (strlen(coff))
{

STRCAT(name,coff)
STRCAT (name,"/") ;

STRCAT(name,cur->d_name) ;
if (strcmp(curdir,pdir) != 0)

{

if (fcnt) output(name,REGULAR)
STRCPY(pdir,curdir) ;

if (filetype == DIRECTORY)
{

if (fcnt) output(name,REGULAR) ;
output(name,DIRECTORY)

else if (fcnt >= MAXFILES)
{

output(name,REGULAR)
STRCPY(flist[fcnt++],name)

else STRCPY(flist[fcnt++J,name) ;

output(name,filetype)
char name[MAXLINE]
int filetype;

/* Current dir. different from 'cp' dir.? */

/* Room in file list for this filename?*/

/* Save filename in file list. */

char command[MAXLINE*7],rdirname[MAXLINE] ;
int i ;

switch (filetype)
{

case DIRECTORY if (usercp)

0

0

SPRINTF(command,"%s -r %s/%s %s:%s",cname,fdir,name,rhost,curdir)
else

case REGULAR

STRCPY(rdirname,tdir) ;
STRCAT (rdirname, "/") ;
STRCAT(rdirname,name) ;
if ((fd = open(rdirname,O)) == -1)

SPRINTF(command,"mkdir %s",rdirname)
else return ;

break ;
if (usercp) SPRINTF(rdirname,"%s:%s",rhost,curdir)
else

STRCPY(rdirname,tdir) ; 0
February 1988

0

0

0

Section 6 -The Hackers' Comer 271

if (system(command))

if (strlen(coff))
{

STRCAT (rdirname, "/") ;
STRCAT(rdirname,coff) ;

STRCPY(command,cname)
for (i = 0; i < fcnt; i++)

STRCAT (command," ") ;
STRCAT(command,fdir) ;
STRCAT (command,"/") ;
STRCAT(command,flist[i])

STRCAT (command," ") ;
STRCAT(command,rdirname) ;

FPRINTF(stderr,"abcd failed: %s\n",command) ;
else FPRINTF(stderr,"abcd succeeded: %s\n",command) ;
FPRINTF(stderr,"\n\n\n") ;

fcnt = a ;

main(argc,argv)
int argc;
char *argv[] ;

get_options(argc,argv) ;
setup() ;

/* Get command line options. */
/* Initialize parameters. */

while (MACHINE_WORKING)
{

I* Do it until the machine crashes. */

get~next_dir() ;
while (get_next_entry(fd))

{

if (!DOTS (cur->d_name))
{

if (no_record())
{

/* Is there another directory?*/
/* Is there another file in dir? */

/* Is it the or .. entry?*/

/* Is this file already monitored?*/

if ((cstat.st_mode & S_IFMT) == DIRECTORY)
{

/*Directory?*/

if (make_dir_entry()) copy(DIRECTORY) ;

else

make_file_entry()
copy (REGULAR) ;

/* Make a file entry. */
/* Copy it to backup machine. */

else if (file_modified()) copy(REGULAR) /* File been modified?*/

February 1988

272 Software Teclmical Bulletin issue 1988-02

else free((char *) cur)

Funky_Stuff
len='wc -c < abcd.c'
if [$len != 12888 J ; then
echo error: abcd.c was $len bytes long, should have been
fi
fi # end of overwriting check
if [-f abcd.h J
then
echo shar: will not over-write existing file abcd.h
else
echo shar: extracting 'abcd.h',
cat> abcd.h <<'Funky_Stuff'

/* abcd.h

*

1651 characters

12888

* Definitions used by ABCD, the Automatic Backup Copy Daemon.

*
*/

#define
#define
#define
#define
#define
#define
#define

CLOSE
FPRINTF
SPRINTF
SIGNAL
STAT
STRCAT
STRCPY

(void) close
(void) fprintf
(void) sprintf
(void) signal
(void) stat
(void) strcat
(void) strcpy

/* To satisfy lint. */

#define
#define

DIRECTORY
REGULAR

S_IFDIR
S_IFREG

/* Type of files being monitored. */

#define
#define
#define
#define
#define
#define

DIRBLKSIZ
DOTS (A)
EQUAL(a,b)
MACHINE_WORKING
MAXFILES
MAXLINE

512
(A[OJ == '.'
! strcmp (a,b)
1
5
MAXNAMLEN+l

/* Block size for directory read. */
&& (A[l] -- 0 11 (A[l] == ' ' && A[2] 0)))

/* Test for string equality. */
/* Forever and a day */
/* Max no of files to copy in one go. */
/* Maximum length of path names. */

struct dinfo
{

/* Information record for directories being monitored. */

struct dinfo *next;
char d_name[MAXLINEJ ;

struct finfo
{

/* Information record for monitored files. */

struct £info *next;
struct direct *direct

February 1988

-, -

0

0

0

0

0

0

time t mtime
) ;

Funky_Stuff
len='wc -c < abcd.h'
if [$len != 1651] ; then
echo error: abcd.h was $1en bytes long, should have been
fi
fi # end of overwriting check

Section 6 -The Hackers' Comer 273

1651

February 1988

01

0

0

0
7

CUMULATIVE INDEX: 1988

CUMULATIVE INDEX: 1988 ... 277

0

0

0

0

! o·

0
7

CUMULATIVE INDEX: 1988

0

0
277 February 1988

o:

0:

0

0

Index

I buffers, continued
1-800..USA-4-SUN frame, 37

device driver calls, 51 bug

8
reporting, 13

bulletin board
800 USA-4-SUN Sun Education, 26

use of, 12
C

A canvas
address colonnaps, 146

device drivers, 48 carrier sense, 114
address mask, 67 checksum
addresses Ethernet, 96

classes of, 107 client
Internet, 107 sample programs, 130

0 alias stream socket, 130
used with history, 78 collisions

aliases detection of, 115
creating your own, 209 color, 139
distribution lists, 210 maps, 140
mail,155 oolonnaps, 36
receiving mail, 212 configurstions

AnswerLine, 9, 155, 255 oontrollera, 59
device driver calls, 51 disks, 59

architecture Sun-2, 62
Prism, 151 Sun-3, 60

ARP, 109 CONSULT-HSPEED

B
high-speed disciplines, 52

CONSULT-PLOCK
back-to-back packets, 79 lock process text. 52
backup copy daemon consulting

Hackers' Comer, 261 device drivers, 51
bind specials, 51

port numbers, 75 controller
boot Ethernet, 79

from PROM monitor, 73 controllers
booting combinations with disks,

specific kernel, 76 disk configurations, 59
Bridge box, 81 SunOS installation, 63
broadcasting conversion

subnets, 107 color to monochrome, 37
brouchure copy

Sun Education, 26 backup daemon, 261
buffer couraes

0
Ethernet, 79 device driven;, 56

buffers Sun Education, 26
color frame, 140 cross compilem

-279-

Index - ConJinued

cross compilers, continued
2.0 announcement, 214
applicatioru, 214
compatibility, 216
disk requirements, 216

CSD Consulting
device drivers, 51
specials, 51

Customer Software Services, 9
customer-training@sun.com

Sun Education, 26

D
daemon

backup copy, 261
DARPA, 66
datagrams

fragmentation of, 109
reassembly of, 109

daylight savings time
kernel, 30

demultiplexing
TCP/IP,93

device drivers
Consulting Services, 47
courses, 56
device addresses, 48
phone support, 51
references, 57
third party, 53

device names
SunOS installation, 63

devices

disk
ones present, 163

combinations with controllers, 61, 62
determining configurations, 59
enlarging procedure, 39
enlarging SunlPC, 39

dispatching
pmcedures, 15

DMA,47
DoD,66
domain system

Internet, 103
drivers

courses, 56
references, 57
third party, 53

DST,30
Australia, 30
Europe. 30
rules table, 31

DVMA,47

E
education

courses, 26
SunOS courses, 65

Educational Services
courses, 26

email
Sun Education, 26

Ethernet, 96
back-to-back packets, 79
buffer, 79
controller, 79
header, 96
throughput, 80, 81

experiment
devices present, 163

F
files

after power failures, 77
fragmentation

datagrams, 109
frame buffers

with screendurnp, 37
ftime,30
FfP, 86

G
gateway, 66

. gateways, 106
gettimeofday, 30
GMT,30

-280-

H
Hackers' Comer

devices present, 163
Sun View, 261

hardware
color frame buffers, 140

headers
IP, 95
octets, 91
overview, 93

history
use of, 78

hotline
procedures, 15
use of, 11

hotline@sun.COM
reporting bugs, 13

hotlines
world, 7, 198

I
J/0

sockets, 126
ICMP,102
images

converting to monochrome, 37
installation

SunOS, 63
Intercon

hotline, 7, 198
Internet

addresses, 107
domain system, 103
protocols, 85

0

0

0

-~

Index - Continued

0 IP, 85 port number
headers, 95 assignment of, 75

K
power failures

diskless workstations, 77
kernel printing

bootingspecific,76 images, 36
daylight savings time, 30 Prism
time zones, 29 windows, 151

L procedure

labels
enlarging SunIPC disk, 39

pedestal, 59
hotline, 15

products
layering release levels, 6, 197

mail,91 PROM monitor
level 1 using boot, 73

network hardware, 123 proprietary manuals, 50
level 2

network hardware, 123 R
local time, 31 Read This First

M
purpose, 18

mail,87
reassembly

aliases, 155
datagrams, 109

formats, 157
references

layering, 91
device drivers, 57

pitfalls, 157
release level

routing, 105
SunOS, 17

manuals
releases

proprietary, 50 software products, 6, 197

0
maps reporting bugs, 13

color, 140 routing

YP,34 mail, 105

mask RTF

address, 67 purpose, 18

monitors Rutgers University, 85

high-resolution, 37 s MS-DOS,39
s creendump, 36

N color windows, 152

networks screenload, 37

carrier sense, 114 server

collision detection, 115 stream socket, 127

Ethernet theory, 114 shoebox
hardware problems, 122 disk labels, 60
performance of, 118 SIGIO, 126
Q&A, 124 SIGPIPE
thin Ethernet, 122 server, 127

NFS, 88 SIGQUIT
server, 127

0 SIGURG, 126
octets SMTP

TCP/IP headers, 91 application example, 100
out--0f-band data sockets

sockets, 126 example programs, 127
out-of-band data, 126, 133

p progranuning examples, 126
packets, 96 servers, 127

back-to-back, 79 well-known, 97

pedestal SPARC

0 information, 59 with Sys4-3.2, 205

Personal AnswerLine, 9 specials
CSD Consulting, 51

-281-

Index - Continued

specials, continued
device drivers, 51

specific kernel
booting, 76

STB
duplication of, 8, 199

subnets
address mask, 67
broadcasting, 107
definition, 66
enabling, 69
Exterior Gateway Protocoi 66
limitations, 68

subnetting, 66
Sun Education

device driver course, 56
SunOS courses, 65

sun/hotline
reporting bugs, 13
use of, 11

sun!stb-editor, 8, 155, 199, 255
sun!sunbugs

reporting bugs, 13
suncustomer.training

Sun Education, 26
sunbugs@sun.COM

reporting bugs, 13
SunCGI, 144
SunCore, 146

printing images, 36
SunlPC

enlarging disk, 39
Sun0S

determining release of, 17
installation, 63

suntools
frame buffers, 141

SunView
color frame buffers, 142
Hackers' Comer, 261
under Sys4-3.2, 205

switcher (1)
colormaps, 151

Sys4-3.2
announcement, 205
binary compatibility, 207
hardware support, 206
software configurations, 207

T
tables

software release levels, 6, 197
tape drives

SunOS installation, 63
TCP, 85

sockets, 130
TCP/IP

demultiplexing, 93
references, 110

TELNET,86
thin Ethernet

thin Ethernet, continued
specification, 122

throughput
Ethernet, 80, 81

timezones
TZ,29
uucico, 30

training
Sun Education, 26

TZ,29
DST rules table, 31

u
UDP, 102
update, 77
USA-4-SUN

-282-

use of, 12, 15
USAC

feedback, 10
utilities

yellow pages, 34
uucico

time zones, 30

w
well-known sockets, 97
windows, 140

color frame buffers, 141
Prism, 151

world hotlines, 7, 198

y
yellow pages, 32

installation, 33
mail aliases, 155
utilities list, 34

YP,32
clients, 32
domains, 33
installation, 33
maps,34
master server, 32
rpc,34
server maps, 32
slave servers, 32
utilities list, 34

ypbind,32
ypserv,32

0

0

0

0

Revision History

· Revision Date Comments

FINAL February 1988 Second issue of the 1988 Software
Technical Bulletin, developed by Software
Infonnation Setvices (SIS), Customer
Setvices Division (CSD).

0

0

O'

oi

I
O ! :

'

O
····.

. .

.. .

0

. -.-, _._,. . ·:,-_ - -, '

, Corp.orate Headq1iarters
S_t.in·Mic.r0Syste~S(Iri~,,. ::.
isso~oarcia Avenu~ ··. · '
:Mol.lntain Yiew1 cA 94043'

. ··415 960-1300
' Tti(287815 . ·, ' - ,, .

. f'.<ir uJ;; Side's Office
Ioc:~tions;·call: · ~
800821'4643 .• ··, .. · ·

·· In.CAcS00821;'!5,!2

E~~Pe~h:H~~qmide~s '_.---:.,::
:' Su.n -Micr()s)'StemS EuroP.e.~ f1,1r;,:
--~S!lllHOllse- ·-· •' .. ;- · . .. / .
. :-"_3J ;f1 ·PetnbrOke Brda_d.way~ <c~m~_er1ey : · -· · -· · · ·
. Surr~yGUf53XQ.
':.Eng!a.nd .. ·· · ... • ·; ·

027662111'
· TLX.8590\7 · .

; .

. Bul1\fla,tf ;
· :U;S: Pqstage. · · ·

'PAID

·-AtiStraiia:.61~2~436-4699 -, > it~t~P~;).1-.~ldie E..8~t::_~~'ci"Africa~-·.
;. •'<::anaifa:416477-6745 ·. · • ·. call European Headquarters· . .
· -Fr~nce:.(1)'4631i2;i211. '. ·· '027661tii · · · · · •·

. _ Ger)li?.D)': (089).95D?.4~0 -:· ·. E_ls_ e_w_ .. h_er_ . e. i~i:_t __ he_ .-~.o.r_ld __ ·,- (£a_11 ··: .
.···:Japa'n:'{03) 221~_7021- .. ; :., : _ .. .- _ _-:- · '.C~rporit(Head'qllaft,erS:,
··::J'he:N.etherlanilii: Q2155 ,:!4888 . ;·· 415 960'.1300 ·:·, ,. . ·

UK:Q:!76 .62UI InteiconiinJntalSales

. - .-,.

. ;_;- '· .. ,-. ..

