Pazt Nmber 80&1(}9%&01
Revmon C of:1: Ne:vesgiser 1t
For* Sua Syatem elem l.ﬂ

e

@] ;.

Acknowledgemen

A prellmlnary 1mplementa.tion -of ‘the -Sun ‘Window Syst,e'ml

Inc. in December 1982 and. January 1983. It incorporated a
data, mcludmg raster operatlons and font.s, provlded by

sxblhty, and rehablllty

. . elondr.
i e coempnsid st T Yo {ous® e osb o usafw:;vrff
P . {‘g‘-.{f;'?m{“.“'ﬁ’?" HER BANE YT
; P DLVBEEED This 6Tl 30
a e et e eaecseea TG
e e Deafde b oeadpl bl
P SF SR o S
Uit argd, o0 gIone et
; . v e i LT R0 eFnd T
! plagil’s i
. . e g st nd animie o
: O O coe i Fag o
. E A ‘ IRUUIUTY, 70"
3 S -~ Copyﬂght © 1982, 1983 by Sun’ erosyst'éms“;‘ e P

This: pubhcatlon ‘is protect,ed by Federal Cbpyright Law;"
this. publication .may- be. reproduced, stored in -a- retrievak:

trapsmitted, in -any form, or by any means.manual,..ele

mechanical, chemical, optical, or otherwnse thhout pnor ex
Mlcrosystems.

. - e T mi. kA LT owtanet TuaeSEaRs b e dul s vTRYD ne 4
we B N T L E . .

with all rig

P

1ts

: . o Camimae e
Cr PR A R R EAE rowy

-}(- § o Imieiy

Anmalt. £34 SR {.“’E

1990 o
ey w0l 2siaiha

BISTE Y

M mEREE T cu s Bue

e v:wr* ,,Jf(&f‘:ﬁ

2 d
i o8

eirotzi® no oo oyeTl”

Cavar M

"

was written-at Sin Mlcrosystems,
nubiber’ 8 loWslevel ‘operdtions and
Tom Duff of.Lucasfilm, Inc.

nentation, aimed; at; ﬁen@rallty, exten-

The

ts reserveﬂ\ > ‘No part of
sﬁsw Oﬁgﬂsla%as ‘tranScribed, or

tric, -electrofic;” electrro-magnetlc
plicit: meiten spermission from Sun

i
i
}
i
i

» -

-,

- 2.3.1.

Table of Contents

| T T GRS S P Y .
1. INTRODUCTION B

l l ’D”e&s“ ; "!U nu-u'.,' t?..erwuﬁ}ﬁ«,?n"v,q&"..,p...\pg;rn.@t},‘..lw. ?Mo?;vofi‘ﬂfiﬁompy‘ﬁ

1.2, .. }aaxqgs OQINqumeaMLm oot
1.2.1. : Pixpects:.L. 5. Jued. el ad
1.2.2. -« Sunwindow§is, .00 {
1.2.3. Suntoolscoeeinneiinninreiinnennnns vearorsinanes crreesanianes SR, e
1.3. Intended Audience and Scope of This Manual ceetesessentessanasconnnranas rereessesseses

1.4. Concepts and Terminology veessastesesasisesstanassatessiniesaase reeesneesanessasereassensaes

2. PIXEL DATA AND OPERATIONS tsesesesssanssressnsesssesssansasans veeeenrees
2.1. Pixrects ceeresonns ceveeseneee censressserescsnesene eerereessnresseessssnaneseinaesas seveetnessnressssananes v
2.1.1. Pixel Interpretationc.cccceeceeeevenccracenncnnecensccrcnneans terereereeenstenneresasataesenassanasnsan
2.1.2. Geometry Structs
2.1.3. The Pixrect Struct cosesnssssnssesssrasessans haeessesssnsesasases
2.14. Primary and Secondary Pixrectscecceeeeeeveerennennne
2.2 Pixrectops . . ceasesssensessasesasane cevebernssnnns
2.2.1. Create/Open e . ceeseasesisandsinassnnises
2.2.2. Destroy /Close _ ,
2.2.3. Raster Op teeeeseeeuamesnnsassessnannnssrnssenrnesaeeeaenenansaaressesnnasonen
2.2.4. Batch Raster Op ‘ eiissersesensansesressesaeratssresaseesmsaseatens
2.2.5. Constructing Op Arguments for Rop and Batchrop
2.2.5.1. Constants for Constructing Raster Ops ressessssasessesane
2.2.5.2. Controlling Clipping in the Raster Opccccvveicviviimnnneiisiineesioveenseesrnnsessanes
2.2.5.3. Provision for Inverted Video PiXrectsccccccoecrececvemrivrenreesnncennreernerensaaens
2.2.6. Get . tesessesressestnsasaessnsansesenesnteseseassesssaren
2.2.7. Put ... , . teerasnessesnssnnssenesesentensarar
2.2.8. Vector

%
el
%

© © 0000 N J RO YO e b N

4

e
o O

p— b et
0D e e

—
[

[
(-]

essesccscss sssoncass

2.2.9. Reglon» “"""'cm'!"vw'x'n;”‘""tf‘.}‘gi‘,"?}f"&“,‘i‘"&?“?"f xg;;:..f..‘,‘,;}.m.g,_.‘,g.,.&;;............................. 12

o g

23. Indepe:gdent Procedure?w..::.,.a.&.. ity ety s gasgensd ,,L.,g.s sg 3

E ot -,
< a

Rephca;m,g ,the ,Sow}{;xj;g:cg n.,,.,;.....*...s..,...q.s,b. e trie e

2.4.
2.4.1 The Mem_pps»Stmtrmiu, v
2.4.2. The Mpr_data Struct .
2.4.3. Static Memory Pixrects seesssesssnssscssssensaonesssensasasenesses | 14
2.5. Text Facilities for Pixrects eenvaeesrenaeen cevsncercassearesssnnenes 15
25.1. . Pixfonts f ‘ . eossssresssnraseses 18
2.5.2. Operations on Pixfonts vitenesnsneesans cressitsassaneassonnnesan .18
2.5.3. PE_BEXU coorieeeeeicreereeeecreteeeenrssesrensesesssseestessonsinsssessessssaens cesbasisressseirstinsaenesesane ees 18

3. OVERLAPPED WINDOWS: IMAGING FACILITIES ...
3.1. ... Window Issues: Controlled Display Generation : N S
3.1.1,.Clipping and Locking ‘ : S LTI FTPTE ORI TR A
3.1.2... . Damage Repair and Fixups. : sopanilaasolaniio. ;
3.1.3.... ...Retained Windows., IR R
3.1.4. Process Structure _ . Aol

3.1.5.Imaging with Windows. aanai _ Lt B0l

3,1.6, ..Libraries and Heade.x:,Elles - ot i S gl g

3.2, . Data Structures ... enon , b AT T

3.2.1. . Rects ..cocemriennencs samansunse _ _ ' eidans VAL

AL

3.22. . Pixwins ..o arassasemasmnsaassensar i St R

3.2.3. .. Pixwin_clipdataomsosssens e oo binih iR o e e o bbb S 5 o abrnip i
3.24. Pixwin_clipops. .cccseseresreesasaenseessatasonns eirsnnnanssanesdbioiaies doeidiidon,

3.3. _ Pixwin Creation and Destruction,eisessessasens Podir(hi s e domban et i

3.4. Locking and CHPPIRG ..c.eresecssnsersmesssnsonssasossssassassssprossares Eftasbattiontinbsissinet fudsedansnsancone
3.4.1. Lockmg

3.4.2. Chpplng oregeent

35 Accessmg a Pxxwms Pxxels .
35.1. 7~ "Write Routines

jils ANt et s A

38
38
39
39
39

o n IRRSEOAIOII ISR €11 VAN HEr T A ad
353, "Read and Copy Routmes OSSO . ; j
3.6/. Damage resemmasectesstnpdenssoopesssrassecasssiies
3.0.1. Handllng SIGWINCH e T T N T T
4. WINDOW MANIPULATION ..oooseressssvesisbaiiebissireieigniains
4.1. ' Window Data . rederspeserpesiia iRt iiad@saensse
42. Window Creatlon, Destructxon, and Reference PN I PPN 2 ST e
421, A New Window : sssesissnnssasrssasnsessaseassssansssdassaeeisy :t'g‘_;J LT AL AT
4 2 2 . An E’“s"mg Window seeneress sssssassssensressesfirisur Biepnpiiusiootbieid fhooiatbos
4. 2 3 References tO Windows -,,.,\a..ee,‘,..y.‘,.;,;,,“ esesesdecnsssess Fid4s dagsniol ?_‘j S ”
4 3 Win.dow Geomet’ry eesssneasessnnesissereneiececiasantsssarnasedussessoneiibiof TS es e e s e e
4 4 . The ‘Window errarchy $3885nssennnansseesusennIsoneesssses, : gé*‘..?t“ﬁ;“ bordde
441, Setting Window Links .pereummemmrsesbossos s ssimsoiiosidie
4 4 2, Actwatmg "he Window rreerertis s ey e e s phh e o B p e wean ity e e i -
4 4 3¥ ‘M‘o’dxfymg Window Rela.tmnshnps RSO |- TPV ST PSSP S NP
4 5 User Data X eesssetsassaseasesnansnsestentapee fiistiaiiumnapaseiis®
4 6 . Mxmmal Repalnt Support esenannsseesntenansasnasiee e OFAIRE o B dReernsssdosensiniaiBiteast v
47. " Relations to Physical SCTeenswssmm-gaisanseifeinn Feuniiiin
48. Cursor and Mouse Manipulations, .ewssmsseeriis i aiionFon
4.'8'1'.. ._Cm,r.éors , o YR WA
- 4.8.2." 7 "Mouse Position ... ssees sessasgpastoseasarpssassssspersasssscass

49, 'Providing for Naive Prograims ... sapteial nehy WODL ECTH AT 1
4'9.1., Wﬁiéhwﬁla,owf“ta.vée T T N RETTRLAAR” . e .
4'.9‘.2?"“’”“Tilﬁihk"O‘i&riﬁ“Eiiiﬂinﬁ“WﬁJiﬁv“”'”""""""”" xmbmvz:cifzc muq !

W dow JSUIRORON B wobae N el i
49.3. 7" " Covering an Existing Win U Rt .f'.é..%}:,.3..2.{.,.}, S

. 4.10° " Error Handlmg reveeseenees e e e e gy KD iy 1B g e e ey

Prtew Bw ot ws ke amed %oe . M i h e 3 smwstemRARET

5... . INPUT. connos LIRS ST TR TS S T A T R i O e e
5.1. ...
S.1l.... ..
5.1.2. ...
5.1.2.1.. .
§5.1.2.2.ouene.
5.1.2.3..

5.1.3.
5.1.4.
5.2
5.3.

8.3.1... .
5.3.2.. -

5.4.

6. SUNTOOL: TOOLS AND S‘UBWTNDO”W’ S

6.1.
6.1.1.
6.1.2.
6.2.
6.2.1.
6.2.2.
6.2.3.
6.2.4.

6.2.5.
6.2.6.
6.2.7.

6.2.8.

6.2.9.. ...

6.3.

6.3.1.
6.3.2.
6.3.3.
6.34.
6.3.5.
6.3.8.
6.3.7.

e sy Y e,y
o BERTSOOAT Db

The Virtual Input Device . LS I T TR ALI A O

Uniform. Input. Events TR N30 e | E AR NOE R LRS!

) B B O 4
.. Event Codes.. TR T SR S A o

.ASCII Events. . _ Tor] (R A SR I AN
..Function. Eveats.. PR AT A A I T IRTER

.. Psendo.Events - piS anbinet] Bive womgve |

. Event Flags.. , o wamywgl T

.Shift.Codes. ... , R e

Reading Input. Events O ONURNINE CoPh . - S0k

- Input Serialization and Distribution -c.cicsiunessrsesisn 1L LLHD

Input.Masks.. TN gt T TR b A
. $eizing All IDPULS w.iccemvuessovssamivansinisinemsbioabiibr St b A 0 '

. .Event Codes .Defined. SNV S 15 SIS T ST

“Tools Design’ Ph!l‘OSophy S S ‘.3%*}?:-;»_
. Non‘-Preemptlon s e o B o A T

Toolcreatio‘nm. e I 4 1 V9 0

""" Passing Parameters to the Tool .. ettt e et aentesrsasatessserses =

- Forking the Tool ..o i SR L e

PRI TUGT g T
. C.yeat,]ng.t,he..'[:ool Window.,,.,. IEUTTUTUI St 6 S A TRRR L SN e L
...... The Tool Struct.-- 3hetanhanethertatenh it besbabnnitinennenniin it ennin te oW ’

. Subwindow--Creation .. iuisiin S par euiorstesl sanes oo
. Subwindow,.hayoutw.m. e nma ey o miran o remsounrrinewr s nn WDORE O W

it . = ‘

-Subwindow: Initialization w..c..ccnanniaia WG e oo e

T'00} InStalation. «wu e i oo oo E¥ OLEIA 0f panoo T 5
00l DeStruction -vi. i eeeseen (1S 8021

i w4

Iool Processing: .. e e annrennrnionees oo RETIETH wahn wf
A b W nEy gt g

‘A,‘_"l:oohousgmture” B P P s RN Powobnidte woided

--File Descriptor- and«fPimeout~Notiﬁcations ST T sl wni e
- Window.-Change Notifications - 201250041 ’”if""f;—'i‘-’?“f ALY

qhild,Proquain,tai.nenee.,...M“ Cdsrasenaars paievia A, Lwwsc

Changing the Tool's Image i iississosituisiziimnion jeo !

Terminating Tool Processing - .:osivisissisesa L5010 0.18

Replacing Toolio OQperations -::...:::0:: o8 B b

7. SUNTOOL: SUBWINDOW PACKAGES ...l

7.1
7.2.
7.3.
7.3.1.

73.2.
7.4

~~Message-Subwindow >/ 2

DHIGRGTY BROOR,

Minimum Standard Subwindow Tnterface
Empty Subwindow ~ OO

bt Chot s ronvesetees
L EMETSTT SVImY vl giliDivorly

a8 2
evmeseianassrapareas emeantannanes SP G 2Y C S IR R

Pt A
FODLIVE wasie s d oo %

Graphi¢s Subwindow

"'Ii'l"a Tool Window o ‘
A7 T R EER S BT R

“Taking Over an Existing" W'ndow - A

............ L TR T P PP T PR T PY P PRP Py

ALY LI IR P Y T R R TRy S R A R IR X T T RN 2L

42
43
43
43
44
44
45
45
46
46
46
47
49

" 50

52
53
53
53
53
54

a1

55
56
57
58
58
59
59
59

61
61
61
62
62
62

63
64
65
66
67

.68

- iv -

7.5. Option Subwindow eeesseneasesasssssssasesssasaenersestssansasasas 69
7.5.1. Option Subwindow Standard Procedures ceerreesasesrresens 10
752 Option Itemsccceveerecreceesncsresanssesuenssneneracsen . S 71
© 7.5.2.17 " “~*Bodlean Ttems ' - RA RN IRE A 71
17522,Command Itemsccoeecesios 79
7.5.2.3. Enumerated Items .. 72
7.5.24. ~ Label Items . 72

< 77.5:25, - - Text ltems = e e emen b 72
7.5.3. Item Layout and Relocation (SIGWINCH Handlmg) 73
7.54. Client Notification Procedures 75
7.5.5. Explicit Client Reading and Writing of Item Values . 75
7.5.6. Miscellany ceessserererenrasas 75
7.6. Terminal Emulator Subwindowcccccciniecininninivicnsniccnnossisssenannes eessresertesuesnenannres 76
7.6.1. TTY-Based Programs in TTY SubwWindowsccccuveecoencinnenniececiereneenee. 77
8. SUNTOOL: USER INTERFACE UTILITIEScccornriinecnnnecscsnneesconsseseansens 79
8.1. Full Screen Access teeensesresseessresatearetasassesnres etaneesasasatesesaennsassressarsasere 79
8.2, JCOMS ciciiciiineiinntienncisssentnisnnsnstnsssasastossssseeesssassssnsiossosssssssessssssesesssssassrssesssssassanaanaes 80
8.3, POP-UP MEDUS .viirirnmeccssssnnisisnenssossessssessansosssssscssasaessssssssssssossssssssonsasessassonsassassasasants 81
8.3.1. PIOIMIPUS ceuverieireniireeensscinninntecsisnecssssscsasencsnsnssssssnssssssssssssssessssnsosasassssssssassssossssssnss 83
8.4. Selection Managementcceeriniicntiincsersioisssessanssisssiassssrsscssosssssssasssssonssansorassnnasnes 83
8.5. Window Managementc.ceeveeerinisinnsnenssecsencsincssnesssssssstssnsassasissssnssssssssasasanseses 85
9. APPENDIX A: RECTS & RECTLISTS teereserestasessanasstsassansesaneeraees 88
9.1. Rects eeereseesresrestessaeseaenneaens g8
9.1.1. Macros 0N RECES c.cvenieinniricniviisisniastiocissnsisssnneecsseteesesssssessssesasssssssssessanessasssssnnns 88
9.1.2. Procedures and Extern DaLa coorreiiiceennieinnretreensieresseeeressreesrssnessssssensasssasessnas eeeeee 89
9.2, Rectlists icrane ; sisesase 90
9.2.1. Macros and Consténts Defined on Rectlistsccceeeevrerenrecinrenereenseneserreneeesnennes 01
9.2.2. Procedures and Extern Data .. eeresssssssissisessesstsstesentesessssttatsetrasanese 91
10. APPENDIX B: SAMPLE TOOLS . ceeeessnnntsenneraaeennne 94
10.1. gfxtool.c Code eeveereenerersbesasssaas st aesaenas 94
10.2.. panetool.c Code ; v evessrsensnseanenstsnessensrssassasnasesasnsnsnsassnssasesteseresreerass 98
11. APPENDIX C: SAMPLE GRAPHICS PROGRAMSeeereeierenreseennen 103
11.1. bouncedemo.c Code cesteassesesinantensssesnisissssransasanseasersrnay ersessesanens 103
11.2. framedemo.c Code . eriessssssuessnsnuessssnensiseratssnssanaaiens 107
1 APPENDIX D: PROGRAMMING NOTEScoocoreermerreenresreesnsesssesssessesosssece 112
12.1. What Is Supported?cccoeeccnmcicicsacinnseseesanssisnesssssessiesiossssnssssssesssessmsensosesssessenns 112
12.2. Program By EXampleccccocreremcincnisinnscnnienneenrssescsresasssssossssseossssnssssessassssessssssens 112
12.3. Header Files Neededccourmeiinviinieniiencinennnnenenessciesbensenssnssesassassassassesesssssessens 112

12.4. Lint Libraries ceeeese s e e aeas st e e e s e besseaes 113
12.5. Library Loading Order

... 113
12.8. Shared Text resnesenesiatset e ts ettt re s s e sessasbaaannesesnsanessttssanasastastesassreens 113
12.7. EITOr Message DeCOINEecvuerssesessossscsssansereresesssesossssossssseessssessenssssasasasssssossssescasas 113

R U PTUDURRNRSURORR 125 V1475
2.8 Debuggmg Hmts e |

12.9.

13. INDEX

Sufficient User Memory. ..

I NPT X - o

gt »

P

RSt 2
LR

5 P
Saw e s e et P Y Swsa v ame. S.evica Gevrrrvee s e.iweu N i
chresnae s iwiios, 115
DN PRRSPPOEN RIS O P PRCO T IS A ARt Skt - 2R T
e
Lo e
o Lo PP e e s me e o seus . ’
savee e s TN 2 £ 141 U e I
SETTTTLERTTY i
. o v s G ewesas vrew Ten& b & Enis g e
3
&
Lo v ea . Cea e o aent s bawr kb etiea e w weria e :
L.
PR N I AR
- area r nh e an wms e ore @ “er ik emsvan drheaEiwr Seans EE) e D00 sk s a
N R T P
T 4
A v BIETETOS N
i awatt o awries.zers asimes s P P r N ww
R N S A 5 g 7N
e e et e et e aen s e SN AR IR
e . *
Ay . e : FI I
he e e e e ane s ima Lk emfiaiaeas evs Sear s saReaGaeNESImmdnbaul AvE sy J T < 2.5 75 £ ,i.ﬁ" AN
N L 3 S
Aty H PR ¥ ¥
TR ST PTRTUURPRRITPTUPPIPVEP PRSPPI . 3 ¢ [08 S 6 S50 5 L 4 NN

Caremiaraes o ’f&u-’f)ﬁ!
¢ Y e . oy
. VRO UPOUNSENIOUUIIIE S ST S B 5 4 1 £27 d0- 41 IS . i b
RO AR Y rry *xrxc.:n ey
IUURPUPVORRI - A A WA A48T e od
i e SRR AY S Ly
o ama e a mme i ewemr el e s vEa. afL s sesesntipanasreras e ny s ‘f""f\"é’", {”‘ Foo 300V K
ey e it st rrasn e o s ves *'}!Q"‘.L‘s;\ .
ey
e i awerae i bireramstiesie @ TAeavURmREIeRLETeTAEI.Y miseve cwmeuie [EARS S
- .
{
e iver v weraevs emameunereieses wtvssnmeaneyeven n 3TN PRITO-NY]
gy
3 von b

P T I T ER R R L

fraweseuie

Plevalie

o

: ‘

Shks

armnate &

b B A BTN i oV BRSNS R BN e 0 et A 3 A A

Revision History

Rev

Date

Qw»

15 July 1983
15 September 1983
1 November 1983

=Tw

Comments

Preliminary draft release of this Programmer’s Reference Manual.
0.9 release of this Programmer’s Reference Manual.
Additions to pixrect creation, input handling, and tool facilities.

s

!
J

-

1. INTRODUCTION

The Sun Microsystems Workstation provides hardware and software support for the construc-
tion of high-quality user interfaces. Hardware features include the following: <

e Provision of a processor for each user is a prerequnsnte for powerful, responsxve, cost-
effective systems. .

e The bit-mapped display in the Sun allows arbitrary fonts and graphics to be used
freely to make applications programs easier to learn and use.

e In addition, Sun's RasterOp hardware supports fast and convenient manipulation of
image data.

e The mouse pointing device can be used to select operations from menus or to point at
text, graphics and icons. Similarly, objects to be operated on can be speclﬁed directly
and conveniently.

e The up-down encoded keyboard supports sophisticated function-key interfaces, at
once simpler and more effective than most command languages.

Sun software is similarly structured to support high-quality interactions. The software features
are as follows:

e A uniform interface is provided to varied pixel-oriented devices, which allows con-
venient incorporation of new devices into the system, and clean access to all these
devices by applications programs.

e Device independence is extended on input to user-interface features such as function
keys and locators.

¢ A window management facility keeps track of multiple overlapping windows, allowing
their creation and rearrangement at will. It arbitrates screen access, detects destruc-
tive interactions, such as overlapping, and initiates repairs. It also serializes and dis-
tributes user inputs to the multiple windows, allowing full type-ahead and mouse-

ahead.

e Built on all these facilities, an executive and application environment provides a sys-
tem for running existing UNIX programs and new applications, taking advantage of
icons, menus, prompts, mouse-driven selections, interprocess data exchange, a forms—
oriented interface and useful cursor manipulations.

1.1. Design Goals)

The Sun Window System is a tool boz and parts kit, rather than a closed, finished, end product.
Its design emphasizes extensibility, accessibility at multiple layers, and provision of appropriate

_parts and development tools. Specific applications are provided both as examples and because

they are valuable for further development. The system is designed to be expanded by clients.

The system is explicitly layered, with interfaces at several levels for client programs. There is
open access to lower levels, and also convenient and powerful facilities for common requirements
at higher levels. For instance, it is always possible for a client to write directly to the screen,
although in most circumstances it is preferable to employ higher-level routines.

P VI

TR T Layeu of Implementatlon

There aré three broad divisions of the wxndow system, reﬂected in the the structure of this
L ~manu’al Thesc layers may be identified by the libraries which conta.ln thenr implementations:

The pszrect level provides a devncebmdependent mterface to pixel operations.

.y_‘iThe aunwmdow level implements a. manager for overlapping windows, including imag-
.ing control, creation and manipulation of windows, and distribution of user inputs.

The suntools level implements a multi-window executive and” application environ-
ment. In its user interface, it includes a number of relatively independent packages,
supporting, for instance, menus and selections.

" 1.2.1. Pixrects S
~ Chapter 2. describes the pizrect layer of the system. This:level generalizes the RasterOP
- features of the hardware to arbitrary rectangles. of plxels.k Peculiarities of specific pixel-oriented
- devnces, such as dunensnons, addressing schemes, and pixel size and interpretation, are encapsu-
lated in device drivers; these all present.the same uniform interface to clients.

The concept of a pixrect is quite general; it is convenient for referring to a whole display, as well
as to the image of a smgle character ina font It may also be used to describe the image which
tracks the mouse. .- G e

Careful attention is paid to the balance between functlonallty and efficiency. All pixrects sup-
port the same set of operations on their contents. ‘These include general raster operations on
rectangular areas, vectors, batch operations to handle-common. applications like text, and com-
pact manipulation of constant or regularly-patterned data. ‘Where hardware support exists, it is

taken advantage of, without sacnﬁcmg generahty N

All pixrects will clip operations that extend. beyond their- boundarleS' since thls may require sub-
stantial overhead, clients which can guarantee.to stay within bounds may disable this feature.

NRELE

1.2.2. Sunwxndows

Chapters 3 through 5 mtroduce wmdows and operatlons on them A window is a rectangular
display area, along with the process or processes responsxble for its contents. This layer of the
system maintains a database of windows which may overlap in both time and space. These win-
dows may be nested, providing for distinct subwindows within an application’s screen space.

Windows existing concurrently may all access the display; the window system provides locking
primitives to guarantee that these accesses do not conflict.

Arbitration between windows is also provided in the allocatxon of display space. Where one
window limits the space available to another, it is necessary to provide clipping, so that one win-
dow does. not interfere with another's image. One such conflict handled by sunwindow
(although not the only one) arises when wmdows share the same coordinates on the display:
one over{aps the other. : :

When one window impacts another window’s image without any action on the second window's

" part, -Sun’s window system informs the affected window of the damage it has suffered, and the

-areas that ought to-be repaired. Windows may either recompute their contents for redisplay, or

- they:may elect to have a full backup of: thelr xmage in main memory, and merely copy the
backup to the display when required. S

Windows may be created, destroyed, moved, stretched or shrunk, set at different levels in the
overlapping structure, and otherwise manipulated. The sunwindow level of the system provides

6'3'

facilities for performing all these operations. It also allows definition of .the image which tracks
the mouse while it is in the wmdow and inquiry and control over the mouse posmon

User inputs are unified into a smgle stream at this level, so that actions, wtth the mouse -and
keyboard can be coordinated. This unified stream is then distributed to dnﬂ’erent wmdows
according to user or programmatic indications. Windows may be selective about which mput,
events they will process, and rejected “events will be offered to other windows for processing.
This enables old-fashioned terminal-based programs to run wnthm windows whxch will handle
mouse interactions for them. R : L

1.2.3. Suntools

Chapters 6 through 8 of this manual describe the suntools level of the system whxch provndes
an actual user interface.

We refer to an application program which is a'client of this level of the window system as a
tool. This term covers the one or more programs and processes which do the actual application
processing. It also refers to the ¢ollection of (typlcally) several windows through which the tool
interacts with the user, oftén’including a special icon, which is a small form the tool may take
to be unobtrusive but still identifiable. Simple examples of tools include a calculator, a bitmap
editor, and a terminal emulator.. Sun provides a few tools ready-built (several are illustrated in
Appendix B), and more will be provided as time passes; customers are expected to provide more
to suit their needs.

Some common components of tools are prov:ded by the window system:

e An executive framework which supplies the usual “main loop” of a program, and
serves to coordinate the activities of the various subwindows;

e A standard tool window, which frames the active windows of the tool, identifying it
with a name stripe at the top and borders around the subwindows. Each tool win-
dow has a facility for manipulating:itself in the overlapped window environment,
encompassing adjustment of its size and position (including layering), and inter-
subwindow boundary movement;

e Several commonly-used subwindow types, which can be instantiated in the tool;
e A standard scheme for laying out those subwmdows, and

e A facility which provndes a default icon for the tool. :

The suntools program initializes the window environment. It provides for: -

e Automatic startup of a specified collection of tools; |

e Dynamic invocation of standard tools; - -

e Management of the default w1ndow (called the root window) which underlies all the
tools; :

e The user interface for leavmg the wmdow system

Users who wish some other form of environment management can replace this program, whnle
retaining the tools and supporting utilities. :

The facilities provided in the suntool library are relatively independent; they can be used with
other window contexts than suntools. The scons facility mentioned above falls in this category,
as do the window manipulation facilities of suntools. There is also a package for presenting
menus to the user and interpreting the response. S NI S

-4-

1.3. Intended Audience and Scope of This Manual

This document is intended for programmers of applications which use window system facilities.
It is not intended as a user guide, nor as documentation of the internals of the window system.
The user documentation is provided in manual pages for the window system, and for the partic-
ular application programs.

This document is primarily a reference manual. However, since no standard references are yet
available on window systems, some tutorial information is included. The material in the manual
is presented in a roughly bottom-up fashion, with primitive concepts and facilities presented
first. This approach minimizes forward references, at the possible cost of leaving what many
readers may consider the most interesting material to the end. The manual is not intended to
be read linearly fromt-to-back; an early look at the chapters on tools may serve to motivate
much of the rest. Where early sections descend into uninteresting detail, readers are encouraged
to skip ahead, and to return only as the need becomes 'a;"ipai‘eﬁt.y :

1.4. Concepts and Terminology

A few terms are used in this manual with special meanings distinct from their common usage, or
to introduce concepts which are specific to this window system. We discuss the most important
here.

We use the word client to indicate a program which uses facilities of the window system. This
is in contrast to user, which generally refers to a human.

Terms referring to display hardware, such as framebuffer, pizel, and rasterop, are used in well-
established senses; novices who are confused should consult one of the standard texts (e.g. Foley
and Van Dam, Fundamentals of Interactive Computer Graphics).

The position of the mouse is indicated by a cursor on the screen; this is any small image which
is moved about the screen in response to mouse motions. (The term ‘*‘cursor” is used elsewhere
to indicate the location at which type-in will be inserted, or other editor functions performed;
often the two concepts are not distinguished. We wish to keep these concepts distinct; if we
need to refer to the type-in location, we will use the term caret.)

A menu is a list of related choice items displayed on the screen in response to a user mouse-
action, and in which the user chooses one item by pointing at it with the cursor. Such menus
are called transient or pop-up; they are displayed only while a mouse button is depressed, and
are typically used for invoking parameterless operations.

Up-down encoded keyboards are devices from which it is possible to receive two distinct signals
when a key is pressed and then released.

An icon is a small form of a window, which typically displays some identifying image rather
. than a portion of its contents; it is frequently used for dormant application programs.

<,

2. PIXEL DATA AND OPERATIONS

This section discusses pixel data and operations in the lowest-level output facilities of the Syn
window system. These facilities will frequently be accessed indirectly, through higher-level
abstractions described in chapters 3 through 8. However, some client implementors will deal at
this level, for instance to include new display devices in'the window system. The header file
Jusr/include/ pizrect/ pizrect_hs.h includes most of the header files that you need to work at thls
level of the window system.

2.1. Pixrects

The fundamental object of pixel manipulation in the window system is the pszrect.- Pixrects are
designed along the model of objects in an object-oriented programming system such as Smalltalk
or CLU. They combine both data and operations, presenting their clients with a simple inter-
face in which a well-defined set of operations produce desired results, and details of representa-
tion and implementation are hidden inside the object.

5

The pixrect presents only its dimensions, a pointer to its operations, and a pointer to private
data which those operations may use in performing their tasks. Further, the set of operations is
the same across all pixrects, though of course their implementations must differ. This object-
oriented style allows similar things which differ in small details to be gathered into a unified
framework; it allows clients t¢ use the same approach to all of them, and ailows implementors
to add new members or improve old ones without disturbing clients.

A pixrect encapsulates a rectangular array of pixels along with the operations which are defined
on that data. The pixrect facility is designed to satisfy two broad objectives:

A uniform interface to a variety of devices provides independence from device characteris-
tics where they are irrelevant. Such characteristics include the acinal device (pixrects may
exist in memory and on printers as well as on dispiays), the dimensions and addressing
schemes of the device, and the definition of the pixels (how many bits in each, how they
are aligned, and how interpreted).

A proper balance of functionality and efficiency allows provision of a full range of pixel
operations with performance close to that achieved by direci access to the hardware. Pix-
rect operations include generalized rasterops, vectors, text and other batch operations,
compact manipulation of uniform and regularly-patterned data, as well as single-pixel
reads and writes. - All provide for clipping to the bounds of the rectangle if desired; this
facility may be bypassed by clients which can perform it more efficiently themselves.
Where specialized hardware exists and can be used for a particular operation, it is; but the
generality of operations available is not sacrificed to peculiarities of the hardware.

2.1.1. Pixel Interpretation

A pixrect is characterized by a depth; this is the number of bits required to hold one pixel. A
large class of displays use a single bit, to select black or white (or green, or orange, depending
on the display technology). On such devices (and in memory pixrects 1 bit deep), a 1 indicates

* foreground, a 0 background. No further interpretation is- applied to memory. The default

interpretation on Sun displays is that the background is white and the foreground is black.

Otl.xer"displays use several bits to identify a color or gray level. Typically, (though not neces-
sz.mly), the.plxel value is used as an index into a color map, where colors may be defined with
higher precision than in the pixel. A common arrangement is to use an 8-bit pixel to choose one

-6-

of 256 colors, each of which is defined in 24 bits, 8 each of red, green and blue. A pixrect may
be any depth up to 32 bits; it need only specify a large enough color map to cover all possible
values (2++*n entries for an n-bit pixel).

2.1.2. Geometry Structs

Pixels in a pixrect. are addressed in two dimensions, with the origin in the upper left corner, and
z and y increasing to the right and down.

As a preliminary to the discussion of pixrects, it is convenient to define a few structs which col-
lect useful geometric information: '

struct pr_pos {
int X, ¥;
b -

defines a position (x and y coordinates).

struct pr_size {
int X, Y;
%

defines the dimensions (width and height) of an area. Thus, the coordinates of a pixel in a pix-
rect are integers between 0 and the pixrect’s width (or height) - 1.

Leaving a pixrect undefined for the moment,
struct pr_prpos {
struct pixrect *pr;
struct pr_pos pos;
% .
defines a point within a pixrect: it contains a pointer to the pixrect, and a position within it.

struct pr_subregion {

struct pixrect *pr;
struct pr_pos pos;

struct pr_size size;
JE . -

defines a sub-area within a pixrect: it contains a pointer to the pixrect, an origin for the area,
and its width and height.

2.1.3. The Pixrect Struct

The pixrect struct implements a rectangular array of pixels, along with the operations ‘defined
on it:

struct pixrect {

struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;

caddr_t pr_data;

-

-7-

The width and height of the rectangle are given in pr_size, and the number of bits in each pixel
in pr_depth. For programmers more comfortable referring to ‘“‘width” and ‘height”, there are
also two convenient macros:

#define pr_width(pr) ((pr)->pr_size.x)
#define pr_height(pr) ((pr)->pr_size.y)

All other information about the pixrect is data private to it, accessed through the operations
addressed in the pr_ops struct. In particular, the locations, values, and interpretations of pixels,
if stored at all, are reached through pr_data. '

Memory pixrects have their pixels stored in memory, in a public format. This gives them a
privileged position: they are the common representation to and from which all other pixrects
may be converted. Thus pixrects of any two kinds may be interconverted by passing through
an intermediate memory representation. Memory pixrects are described in section 2.4.

2.1.4. Primary and Secondary Pixrects

More than one pixrect may refer to the same pixels. One pixrect is considered to ‘‘manage’ the
pixels, and is referred to as the primary pixrect. For devices that share a resource with many
processes, such as the framebuffer, a primary pixrect might be responsible for mapping the
shared resource into a process address space. For device that don’t share a resource with other
processes, such as a memory pixrect, a primary pixrect might be responsible for allocating the
single resource. This includes other objects in the same process.

A secondary pixrect is formed from a subregion of either a primary or another secondary pix-
rect. It provides finer clipping control when writing than is possible with a primary pixrect. It
also indicates a limited source of pixels when reading.

-

2.2. Pixrectops

A pixrectops struct is a collection of pointers to procedures, one for each of the operations
defined on all pixrects:

struct pixrectops {

int (*pro_rop));

int (*pro_batchrop));
struct pixrect *(*pro_create));
int (*pro_destroy));

int (*pro_get)();

int (*pro_put));

int (*pro_vector)();

struct pixrect *(*pro_region)();

b

With the exception of the create and region operations, each procedure returns an int; by con-
vention, a return value of -1 indicates an error. (Create and region return NULL in case of
error.)

Every pixrect is expected to provide each of these operations. Of course the implementations
will vary from device to device, but in describing the individual operations, we are interested in
their external behavior, which should be the same across the various instantiations. Therefore,
in the following sections, we will describe a model procedure, which differs in at least name

-8- . R

from every implementation. This bears repeating: The pszrect-op described at the top of each q
succeeding subsection is a convenient fiction; there is no single procedure with that name.

These routines will be used in fairly standard fashions, so macros are defined for more con-
venient invocation in the expected forms. These macros are described in the same section as the
routine they apply to. _

In many of the macros which expand to subroutine calls, the argument(s) which point to a pix-
rect are used several times int he macro expansion. Thus it will be cheaper to use register vari-

ables as these arguments. Even though it only appears once in your source, it may get used
four or five times in the generated code.

2.2.1. Create/Open

The properties of a non-memory pixrect are described by a UNIX device. Thus, when creating
the first pixrect for a device you need to open it by a call to:

struct pixrect *pr_open(devicename)
char *devicename;

The only devicename currently supported is /dev/bw0. The returned pixrect covers the entire
surface of the device.

Memory pixrects are special and have their own create routine. |

struct pixrect *mem_create(w, h, d)

int w, h, d; . @

Create routines for a pixrect may also be found in an existing pixrect of the desired type. Mac-
ros are defined to invoke Create given an existing pixrect; these will make a new instance of an
existing pixrect type.

struct pixrect *pr_create(pr, w, h)
struct pixrect *pr;
int ' w, b

extracts the create procedure from pr’s pixrectops, and applies it to the list of arguments;

struct pixrect *prs_create(pr, size)
struct pixrect *pr;
struct pr_size size;

does the same, expanding its pr_size argument in the process.

2.2.2. Destroy/Close

pr_destroy{pr)
struct pixrect *pr;

destroys the pixrect pointed to by pr, freeing any storage allocated for it. The procedure may

be applied to either primary or secondary pixrects. If a primary pixrect is destroyed before

secondary pixrects which refer to its pixels, those secondary pixrects are invalidated; attempting é
any operation but destroy on them is an error.

ftdefine prs_destroy(pr)
struct pixrect *pr;

pr_close(pr)
struct pixrect *pr;

does the same. (These are both defined so that either set of names may be used consistently
across all operations.)

2.2.3. Raster Op

pr_rop(dpr, dxy dy, dw) dh: op, spr, sX, SY)
struct pixrect *dpr, *spr;
int dx, dy, dw, dh, op, sx, sy;
Rop performs the indicated raster operation from coordinates (sz, sy) in the source pixrect spr,
into the rectangle whose origin is (dz, dy) and whose dimensions are dw and dh in the destina-
tion pixrect dpr.
The interpretation of the op argument is discussed in section 2.2.5, below.
If the source pointer is NULL, it is taken to indicate an infinite source of pixels all 0.
#define prs_rop(dstregion, op, srcprpos)
struct pr_subregion;
int op;
struct pr_prpos;

expands its pr_subregion and pr_prpos arguments in the process.

2.2.4. Batch Raster Op

Some applications (e.g. displaying text) perform the same operation on a number of pixrects, in
a fashion that is amenable to global optimization. The batchrop procedure is provided for
these: -

pr_batchrop(dpr, dx, dy, op, items, n)

struct pixrect *dpr;
int dx, dy, op, n;
struct batchitem items(];

struct batchitem {
struct pixrect *bi_pr;
struct’ pr_pos bi_pos;

b

Batchrop takes an array of items addressed by the argument stems, each consisting of a pointer
to a source pixrect, and a destination x- and y-offset; the size of the array is indicated by the
argument n. It performs the raster operation indicated by op on each source pixrect, carrying it
into a destination pixrect addressed by dpr. The whole of each source pixrect is used (unless it
needs to be clipped to fit the destination pixrect).

-10-

The destination position is initialized to the position given by dz and dy; then, for each batchi-
tem, the offsets given in bi_pos are added to the previous destination position before that bs_pr
is operated on. That is, a destination position is updated for each item in the batch, and these
adjustments are cumulative. (A batchitem is not simply a pr_prpos to emphasize the fact that
the position is not in the indicated pizrect.)

The interpretation of the op argument is discussed in section 2.2.5, below.

#tdefine prs_batchrop(dstpos, op, items, n)
struct pr_prpos dstpos;
int op,n;
struct batchitem items | |;

expands its destination pr_prpos argument.

2.2.5. Constructing Op Arguments for Rop and Batchrop

The rop and batchrop procedures in the pixrectops vector perform raster operations on their
source and destination pixrects, with the particular operation specified in the op argument to
the procedure. A raster operation is one in which each destination pixel is computed as the
result of a function of its previous value and of the value of a corresponding source pixel.

For a depth-1 pixrect, such as a black and white display, there are only 18 such functions logi-
cally possible, so the operation may be encoded in four bits of the op argument. (See the SUN
Programmer’s Manual for a fuller discussion of raster ops.) The four bits used leave one more
bit at the low-order end of the value for the clipping flag discussed in Controlling Clipping in the
Raster Op; thus raster ops are encoded by even values 0 through 30.

This encoding is generalized to pixels of arbitrary depth by specifying that the function is
applied to corresponding bits of the pixels in parallel. This emphasizes that the pixrects must
be of the same depth.

2.2.5.1. Constants for Constructing Raster Ops :
The encoding of the operation into 4 bits is supported by the following defined constants:

#tdefine PIX_SRC 0x18
ftdefine PIX_DST 0x14
#define PIX_NOT(op) (0x1E & ("op))

These allow the functions to be specified by performing the desired logical operation on the
appropriate constant. The explicit definition of PIX_NOT is required since other bits of the
operation should not be inverted. When PIX_NOT is used, the full op must be specified before
setting the PIX_DONTCLIP flag described in Controlling Clipping in the Raster Op.

&

-11-

Op with Value - Result
PIX_SRC Same as source argument (write)
PIX_DST Same as destination argument (no-op)
PIX_SRC | PIX_DST ‘OR of source and destination (paint)
PIX_SRC & PIX_DST AND of source and destination (mask)
PIX_NOT(PIX_SRC) & PIX_DST AND of negation of source with destination (erase)
PIX_SRC " PIX_DST XOR of source and destination (invert)

A particular application of these logical operations allows definition of set and clear operations:
#tdefine PIX_SET (PIX_SRC | PIX_NOT(PIX_SRC))

is always true, and hence sets the result; while

#define PIX_CLR (PIX_SRC & PIX_NOT(PIX_SRC))

is always false, and hence clears the result.

2.2.5.2. Controlling Clipping in the Raster Op

Clipping pixrects in transmission can be very expensive, and often can be done more efficiently
by the client at a higher level. If the client can guarantee that only pixels which ought to be
visible will be written, it may advise rop and batchrop procedures to bypass clipping checks,
thus considerably speeding their operation. This is done by setting the flag

ftdefine PIX_DONTCLIP 0xl
in the op argument.

2.2.5.3. Provision for Inverted Video Pixrects

Two arrays of opcodes provide translation for environments where either the source or the desti-
nation data may be inverted:

char pr_reversedst[32],
pr_reversesrc[32];

Indexing the array by an integer less than 32 (op plus clipping flag) yields the corresponding op
and an unchanged clipping flag for the inverted pixrect. The translation is transitive; that is,
one may write ‘

pr_reversesrc[PIX_SRC]
to copy pixels from an inverted source, and __
pr_reversedst[pr_reversesrc[PIX_SRC & PIX_DST]]

to apply a mask from an inverted source to an inverted destination.

-12-

2.2.8. Get
pr_get(pr, X, ¥)
struct pixrect *pr;
int X, ¥;

returns the pixel value at coordinates (x, y) in pixrect pr as a 32-bit unsigned result.

#define prs_get(srcprpos)
struct pr_prpos srcprpos;

expands its srcprpos argument.

2.2.7. Put
pr_put(pr, x, y, val)
struct pixrect *pr;
int X, ¥y, val;

stores the indicated pixel value at coordinates (x, y) in pr.

##define prs_put(dstprpos, val)
struct pr_prpos dstprpos;
int val;

expands its dstprpos argument.

2.2.8. Vector
pr_vector(pr, x0, y0, x1, y1, op, color)
struct pixrect *pr;
int x0, y0, x1, y1, op, color;

draws a vector of unit width between two points in the indicated pixrect, using the indicated
operation, and color as a constant source; portions of the vector lying outside the pixrect are

clipped.

##define prs_vector(pr, pos0, posl, op, color)
struct pixrect *pr;
struct pr_pos pos0, posl;

int op, color;

expands its pos0 and posl arguments in the process.

2.2.9. Region

struct pixrect pr_sregion(pr, x, y, w, h)
struct pixrect *pr;
int X,y, W, h;

creates a new (secondary) pixrect which refers to an area within an existing one. The: pixrect

=

-13-

which is to serve as the source is addressed by pr; the rectangle to be include in the new pixrect
is described by z, y, w and h, with its upper left pixel at coordinates (0, 0), as with all pixrects.

#define prs_region(subreg)
struct pr_subregion subreg;

expands its subreg argument in the process.

2.3. Independent Procedures

2.3.1. Replicating the Source Pixrect

Often the source for a raster operation consists of a pattern which is used repeatedly, even a
single value which fills the whole destination. In these cases, it is easier (and usually faster) to
specify the source programmatically than to create a special source pixrect of the exact size to
fill the destination. This is done with the pr_replrop procedure, declared in pszrect.h. This pro-
cedure is the same for all pixrects, and is referenced directly, rather than through the pixrectops
vector:

pr_replrop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, *spr;
-int dx, dy, dw, dh, op, sx, sy;

Dpr indicates the destination pixrect, and the area affected is- described by the rectangle (dz,
dy, dw, dh). The source pixrect is indicated by spr, and an origin within it by sz, sy.

For instance, to write a solid color in a rectangular region, it suffices to give a single pixel of
source, which is replicated throughout the destination. (For monochrome pixrects, this will be
equivalent to either PIX_SET or PIX_CLR in the op argument to rop.) Similarly, a standard
gray pattern may be painted across a portion of the screen by constructing a pixrect that con-
tains exactly one tile of the pattern, and using it as the source pixrect.

The alignment of the pattern on the destination is the same as though the source were a pixrect
containing an infinite number of copies of the actual source, both across and down, in which the
actual source origin is taken at the position indicated in spr. So, if sz and sy are both 0, the
pattern will be aligned with the destination pixrect position. If, on the other hand, what is
desired is alignment to some global framework (e.g. to keep a gray pattern aligned across all of
a screen), the destination’s origin may be copied into the source positions to maintain that
alignment.

2.4, Memory Pixrects

Pixrects in memory hold a special position: their format is public, as are the standard opera-
tions on them. Thus, a client may construct a memory pixrect using non-pixrect operations,
and has access to the memory pixrect operations at all times.

In memory, the pixel stored at the lowest address is the upper-left corner; it is followed by the
remaining pixels in the top row, left-to-right. Pixels are stored in successive bits, without pad-
ding or alignment. (For pixels more than 1 bit deep, it is possible for a pixel to cross a byte
boundary). However, rows are rounded up to 16-bit boundaries. After any padding for the top
row, pixels for the row below that are stored, and so through the whole rectangle.

-14-

The declarations required for dealing with memory pixrects are found in the file memvar.h.

2.4.1. The Mem_ops Struct

The procedures pointed to by a memory pixrect’s pr_ops vector are available in a struct named
predictably:

struct pixrectops mem_ops == £
mem_rop,
mem_batchrop,
mem_create,
mem_destroy,
mem_get,
mem_put,
mem_vector,
mem_region

|5

The procedure declarations are completely consistent with the models described above.

2.4.2. The Mpr_data Struct
The pr_data element of a memory pixrect points to an mpr_data struct:

struct mpr_data {

int md_linebytes;
short *md_jmage;
struct pr_pos md_offset;
int md_primary;

}

Lincbytes is the number of bytes stored in a row of the primary pixrect. This is the difference
in the addresses between two pixels at the same x-coordinate, one row apart. {(Because multiple
pixrects may include subregions of the same pixels, this quantity cannot be computed from the
width of the pixrect — see Region.) Md_smage is the address of the first pixel in the underlying
array; it is guaranteed to lie at the beginning of a short word (16 bits). Md_pos_offset is the
position of the first pixel of this pixrect within the array of pixels addressed by md_smage.
Md_primary is 1 if the pixrect is primary and had its image allocated by calloc. In this case,
md_smage will point to an area not referenced by any other primary pixrect. This flag is inter-
rogated by the destroy routine: if it is 1 when that routine is called, the pixrect’s memory will
be freed. '

2.4.3. Static Memory Pixrects
A memory pixrect may be created at compile time by using the mpr_static macro:

#tdefine mpr_static(name, w, h, d, image)

where name is a token to be used in identifying the generated data objects; w, A, and d are the

e

-15-

width and height in pixels, and depth in bits, of the pixrect; and smage is the address of an
(even-byte aligned) data object which contains the pixel values in the correct format.

The macro generates two static structs:

struct mpr_data name_data ;

struct pixrect name ;

The mpr_data is initialized to point to all of the image data passed in; the pixrect then refers to
mem_ops and to name_data. ’

2.5. Text Facilities for Pixrects

Displaying text is an important task in many applications, so pixrect-level facilities are provided
to address it directly. These facilities fall into two main categories: a standard display format
for fonts, with routines for processing them; and routines which take a string of text and a font,
and handle various parts of painting that string in a pixrect.

2.5.1. Pixfonts
The file /usr/include/pizrect/pizfont.h defines the following two structs:

struct pixchar {
struct pixrect *pc_pr;
struct pr_pos pc_home;
struct pr_pos pc_adyv;
|
struct pixfont A
struct pr_size pi_defaultsize;
struct pixchar pf_char[256];

b

The pizchar defines the format of a single character in a font. The actual image of the charac-
ter is stored in a pixrect (a separate pixrect for each character) addressed by pe_pr. Characters
that have no displayable image will have NULL 'in their entry in pr_char. Pc_home is the ori-
gin of that image (its upper left corner) relative to the character origin. (Characters are nor-
mally placed relative to a baseline, which is the lowest point on characters without descenders.
The leftmost point on a character is normally its origin, but kerning or mandatory letter spac-
ing may move the origin right or left of that point.) Pc_adv is the amount the character origin is
changed by this character; that is, the amounts in pc_adv added to the current origin will give
the origin for the next character. While normal text only advances horizontally, rotated fonts
may have a vertical advance. Both are provided for in the font.

A pixfont consists of a size used for fonts whose characters are all the same size, and an array of
pixchars, indexed by the character code.

-16 -

|
2.5.2. Operations on Pixfonts Q\ ‘
Before a process may use a font, it must ensure that it has been loaded into virtual memory; |
this is done with the pf open procedure:
struct pixfont +pf_open(name)
char *name;
opens the file with the given name, which should be a font file as described in vfont(5). The file

is converted to pixfont format, allocating memory for its associated structs and reading in the
data for it from disk. A null is returned if the font cannot be opened.

struct pixfont *pf_default()

performs the same functlon for the system default font, a fixed-pitch, 16-point sans serif font
with upper-case letters 12 pixels high.

When a process is finished with a font, it should call pf_close, to free the memory associated
with it. If the environment parameter DEFAULT_FONT is set, it overrides the font file opened

by #pf_default.

pf_close(pf)
struct pixfont *pf; jf

Note: The external font format is expected to change soon.

2.5.3. Pf_text C\
Characters are written into a pixrect with the pf_tezt procedure: :

pf_text(where, op, font, text)
struct pr_prpos where;

int op;
struct pixfont *font;
char stext;

Where is the destination for the start of the text (baseline, nominal left edge); op is the raster
operation to be used in writing the text, as described in Constructing Op Arguments for Rop
and Batchrop; font is a pointer to the font in which the text is to be displayed, and tezt is the
actual string to be displayed.

Auxiliary procedures used with pf tezt include
struct pr_size pf_textbatch(where, lengthp, font, text) ‘ |

struct batchitem *where; : |
int *lengthp;
struct pixfont sfont;
char *text; |

struct pr_: size pf_textwidth(len, font, text)

int len;
struct pixfont #font;

char *text; e

Pf_textbatch fills in the array of batchitems and its length, as required by batchrop (see 2.2.4).

_ To do this, it requires a string and a font in which to find source pixrects for the characters.

-17-

Pf_textwidth returns a pr_size which contains the total dimension of the string of the first len
characters in text, when formatted in the indicated font.

-18 -

3. OVERLAPPED WINDOWS: IMAGING FACILITIES

This chapter and the following two deal with the next layer of the window system, which pro-
vides facilities for managing windows with overlapping and concurrency. This chapter is
specifically concerned with generating images in such an environment. Chapter 4 deals with
control of the windows, manipulating their size, location, and other structural characteristics.
Chapter 5 describes the facilities for serializing multiple input streams and distributing them
appropriately to multiple windows. This layer of the window system is referred to as the
sunwindow level, from the name of the library which contains its implementation.

At this level of the system, a window is treated as a device: it is named by an entry in the /dev
directory; it is accessed by the open(2) system call; and the usual handle on the window is the
file descriptor (or fd) returned from that call.

For this chapter, however, a window may be considered as simply a rectangular area with con-
tents maintained by some process. Multiple w‘ndows, maintained by independent processes,
may coexist on the same screen; the Sun window system allows them to overlap, sharing the
same (z, y) coordinates, and proceeding concurrently, while maintaining their separate identities.

Window system facilities may also be used to construct a non-overlapped environment. Most of
the window system facilities are useful in this case as well.

3.1. Window Issues: Controlled Display Generation

Windows that overlap introduce two new issues, which may be broadly characterized as
preventing the window from painting where or when it shouldn’t, and ensuring that it does
paint whenever and wherever it should. The first includes clipping and locking; the latter covers
damage repasr and fizups.

3.1.1. Clipping and Locking

Clipping constrains a window to draw only within the boundaries of its portion of the screen.
This area is subject to changes beyond the control of a window’s process — another window
may be opened on top of the first, covering part of its contents, or a window may be shrunk to
make room for another alongside it. Thus, it is convenient for the window system to maintain
up-to-date information on which portions of the screen belong to which windows, and for the
windows to consult that information whenever they are about to draw on the screen.

L ocking prevents window processes from interfering with each other in several ways:

e The raster hardware typically requires several operations to complete a change to the
display; one process’ use of the hardware should be protected from interference by
others during this critical interval.

e Changes to the arrangement of windows must be prevented while a process is paint-
ing, lest an area be removed from a window as it is being painted.

o Finally, a software cursor which is not controlled by the window process (the kernel is
usually responsible for the cursor) may have to be removed so that it does not inter-
fere with the window’s image.

-

C

-19-

3.1.2. Damage Repair and Fixups

A window whose image does not all appear as it should on the screen is said to be damaged. A
common cause of damage is being first overlaid, and then uncovered, by another window. When
a window is damaged, a portion of the window’s image must be repasred. Note that the require-
ment for repairing damage may arise at any time; it is completely outside the window’s control.

When a process performs some operation which includes reading a portion of its window (e.g.
copying a part of the image from one region to another to implement scrolling), it may find the
source pixels obscured. This necessitates a fizup, in which that portion of the image is regen-
erated, similar to repairing damage. Fixups are provoked only in response to an action of the
window's process, however.

3.1.3. Retained Windows

Either form of regeneration may be done by recomputing the image; this approach is reasonable
for applications like text where there is some underlying representation from which the display .
can be recomputed easily. For images which required considerable computation, Sun's window
system provides a retained window, whose image is maintained in memory as well as on the
display; such a window may have its image recopied to the display as needed to repair damage.
The mechanism for making a window retained is described in Pizwins.

3.1.4. Process Structure

In Sun’s window system, access to the screen is performed in the user process. This raises the
possibility of a user process running amok and damaging not only its own data, but (at least the

display of) other application processes as well. Several compensating factors justify this
approach:

e [t is consistent with the philosophy espoused in Chapter 1, of providing an open sys-
tem which clients may access at whichever level is most convenient. Clients who
require the ultimate efficiency of direct screen access need not sacrifice the window
management functions of the window system.

e Leaving processing in user processes promotes efficiency in both implementation and
execution: making and testing extensions and modifications is much easier in user
code than in the kernel.

o The vast majority of clients will use window system library routines which provide
protection.

3.1.5. Imaging with Windows

We proceed now to a detailed discussion of imaging with windows. We begin with a description
of the basic data structures which are used in this level of the Sun window system: a primitive
geometric facility (the rect) for describing rectangles, and the basic structure which is used to
describe a window on the screen (the pizwin), with its associated state and operation vectors.

Creating and destroying pszwins is a simple process, which gets a brief discussion.

That is followed by a detailed description of the approach to locking and clipping, which leads
naturally into a discussion of library routines which access a pizwin’s pixels. Detecting and

-90-
repairing damage is treated next.

3.1.8. Libraries and Header Files

The procedures described in this chapter are provided in the sunwindow library
(/ usr/ lib/ libsunwindow.a). The header file /usr/include/ sunwindow/window_hs.h contains all the
includes that are required by a program using the facilities described in this chapter.

3.2. Data Structures

3.2.1. Rects

Throughout the window system, images are dealt with in rectangular chunks; where complex
shapes are required, they are built up out of groups of rectangles. The basic description of a
rectangle is the rect struct, defined in the header file [usr/include/sunwindow/rect.h. The same
file contains definitions of several useful macros and procedures for dealing with rects.

Where a window is partially obscured, its visible portion generally cannot be described by a sim-
ple rectangle; instead a list of non-overlapping rectangular fragments which together cover the
visible area is used. This rectliat is declared, along with its associated macros and procedures, in
the file /usr/include/ sunwindow/rectlist.h.

At this point we only discuss the rect struct and its most useful macros; a full description of
both rects and rectlists may be found in Appendix A.

#tdefine coord short

struct rect {
coord r_left;
coord r_top;
short r_width,
short r_height;

b

In the context of a window, the rectangle lies in a coordinate system whose origin is in the
upper left-hand corner, and whose dimensions are given in pixels. Two macros determine an
edge not given explicitly in the rect: ’

#fdefine rect_right(rp)
#define rect_bottom(rp)
struct rect *rp;

These return the coordinate of the last pixel within the rectangle on the right or bottom, respec-
tively.

<21 -

3.2.2. Pixwins

Pizwins are the basic imaging elements of the overlapped window system. A client of the win-
dow system has a rectangular window in which it displays information for the user. Because of
overlapping, however, it is not always possible to display information in all parts of a client’s
window; and parts of an image may have to be displayed at some point long after they were
generated, as a portion of the window is uncovered. The clipping and repainting necessary to
preserve the identity of the rectangular image across interference with other objects on the
screen is handled by manipulations on pszwins.

The pizwin struct is defined in /usr/include/ mnw‘indow/ pizwin.h:

struct pixwin {

struct pixrectops *pw_ops;

caddr_t pw_opshandle;

int PW_OpSX;

int PW_opsy;

struct rectlist pw_fixup;

struct pixrect *pw_pixrect;

struct pixrect *pw_prretained;
struct pixwin_clipops *pw_clipops;
struct pixwin_clipdata spw_clipdata;

};

The pizwin refers to a portion of some device (typically a display); the device is identified by
pw_pszrect.

If the image displayed in the pizwin required a large effort to compute, it will be worth saving a
backup copy of the whole image (making the window a retained window). This is done by
creating an appropriate memory pizrect (as described in Memory Pizrects), and storing a pointer
to it in pw_prretained.

Portions of the image which could not be accessed ‘by an operation which attempted to read
pixels from the pizwin are indicated by pw_fizup.

Pw_ops is a pointer to a vector of operations in screen access macros to call either the pizwin
software level or (as an optimization) the pizrect software directly. The structure pizrectops was
discussed in Pizrectops. The pw_opshandle is the data handle passed to the operations of
pw_ops. Pw_opsz and pw_opsy are additional offset information used by screen access macros.
These three fields are dynamically altered based on locking and clipping status.

Puw_clipdata is a collection of information of special interest to locking and clipping. Pw_clipops
points to a vector of operations which are used in locking and clipping. The declarations of
these last two structs are given here, and then discussed more fully in subsequent sections.

3.2.3. Pixwin_clipdata

-29.

struct pixwin_clipdata {

int pwed_window{d;
short pwed_state;

struct rectlist pwed_clipping;
int pwed_clipid;

int pwcd_damagedid;

int pwed_lockcount;
struct pixrect *pwed_prmulti;
struct pixrect *pwcd_prsingle;

struct pixwin_prlist *pwed_prl;
struct rectlist pwed_clippingsortedRECTS_SORTS];
}i

#define PWCD_NULL 0
#define PWCD_MULTIRECTS 1
#define PWCD_SINGLERECT 2
##define PWCD_USERDEFINE 3

struct pixwin_prlist {

struct pixwin_prlist *prl_next;
struct pixrect *prl_pixrect;
int prl_x, prl_y;

};

Pwed_windowfd is a file descriptor for the window being accessed; within the owning process, it
is the standard handle on a window. (The interplay between windows and pizwins is a continu-
ing story, which picks up again in section 3.3.) The portions of the window's area accessible
through the pszwin is described by the pwed_clipping rectlist. Pwed_clipid and pwed_damagedid
identify the most recent rectlists retrieved for a window. Puwcd_lockcount is a reference count
used for nested locking, as described in section 3.4.1 below. Copies of this pwed_clipping, sorted
in directions convenient for copy operations, are stored in pwcd_clippingsorted.

Pwed_state can be one of PWCD_NULL (no part of window visible), PWCD_MULTIRECTS
(must clip to multiple rectangles), PWCD_SINGLERECT (need clip to only one rectangle) or
PWCD_USERDEFINE (the client program will be responsible for setting up the clipping).
Pwcd_prmults is the pizrect that is used for drawing when there are multiple rectangles involved
in the clipping. Pwcd_praingle is the pizrect that is used for clipping when there is only one rec-
tangle visible.

Pwcd_prl is a list of pizrects that may be used for clipping when there are multiple rectangles
involved. For vector drawing, these clippers must be used in order to maintain stepping
integrity across abutting rectangle boundaries. The pri_z and prl_y fields in the pizwin_priist
structure are offsets from the window origin for the associated pri_pszrect.

3.2.4. Pixwin_clipops

-93.

struct pixwin_clipops {

int (*pweo_lock)(),

int (*pweo_unlock)(),

int (3pwco_reset)(),

int (*pweo_getclipping)();

b

The pizwsn_ops struct is a vector of pointers to system-provided procedures which implement
correct screen access. These are accessed through macros described in the section entitled Lock-
ing and Clipping.

3.3. Pixwin Creation and Destruction

In order to create a pizwin the window to which it will refer must already be created. This task
is accomplished with procedures like win_getnewwindow and win_setrect, described in the next
chapter, or, at a higher level, tool_create and tool_createsubwindow, described in Suntool: Tools
and Subwindows. The pizwin is then created for that window by a call to pw_open:

struct pixwin *pw_open(fd)
int fd;

Pw_open takes a file descriptor for the window on which the pizwin is to write. A pointer to a
pizwin struct is returned. At this point the pszwin describes the exposed area of the window. If
the client wants a retained pizwin, pw_prretained should be set to point to an appropriately-
sized memory pszrect after pw_open returns.

When a client is finished with a window, it should be released by a call to

pw_close(pw)
struct pixwin *pw;

Pw_close frees any dynamic storage associated with the pizwin, including its pw_prretasned piz-
rect if any. If the pszwin has a lock on the screen, it is released.

3.4. Locking and Clipping

Before a window process writes to the screen, it must satisfy several conditions:
e it should obtain exclusive use of the display hardware;
e the position of windows on the screen should be frozen;

e the window’s description of what portions of its window are visible should be up-to-
date; and

. the window should confine its activities to those visible areas.

The first three of these requirements are met by locking; the last amounts to clipping the image
the window will write to the bounds of its ezposed area. All are handled implicitly by the access
routines described in section 3.5. Some clients will use those routines, but, for efficiency’s sake,
lock explicitly around a body of screen access operations.

-24 -

3.4.1. Locking

pw_lock(pw, r)
struct pixwin *pw;
struct rect 3r;

is a2 macro which uses the lock routine pointed to by the window’s pw_clipops to acquire a lock
for the user process that made this call. Pw addresses the pizwin to be used for the ouput; r is
the rectangle (in the window’s coordinate system) which bounds the area to be affected.
Pw_lock blocks if the lock is unavailable (e.g. if another process currently has the display
locked).

Lock operations for a single pizwin may be nested; inner lock operations merely increment a
count of locks outstanding (pwed_lockcount in the window’s pw_clipdata struct). Their affected
rectangles must lie within the original lock’s.

pw_unlock(pw)
struct pixwin *pw;

is a similar macro, which decrements the lock count; if this brings it to 0, the lock is actually
released.

Since locks may be nested, it is possible for a client procedure to find itsell (especially in error
handling) with a lock which may require an indefinite number of unlocks. To handle this sltua-
tion cleanly, another routine is provided:

pw_reset(pw)
struct pPixwin *pw;

is a macro which unlocks pw until its lockcount has gone to 0. Like pw_lock and pw_unlock, it
calls a routine addressed in the pizwin’s pszwin_clipops struct, in this case the one addressed by
pweco_reset.

Acquisition of a lock has the following effects:

e If the cursor is in conflict with the affected rectangle it is removed from the screen.
While the screen is locked, the cursor will not be moved in such a way as to disrupt
any screen accessing.

e Access to the display is restricted to the process acquiring the lock.

e Modification of the database that describes the positions of all the windows on the
screen is prevented.

e The id of the most recent clipping information for the window is retrieved, and com-
pared with that stored in pwed_clipid in the window's pw_clipdata. If they differ, the
routine addressed by pwco_getclipping is invoked, to make all the fields in pw__ clapdata
accurately describe the area which may be written into.

e Once the correct clipping is in hand, the pwcd_state variable’s value determines how

to set pw_ops, pw_opshandle, pw_opsz and pw_opsy. This is done in anticipation of
further screen access operations being done before a subsequent unlock. These values
can often be set to bypass the pizwin software by going directly to the pizrect level.

Locking is both a) moderately expensive (it involves two system calls), and b) capable of

impacting other processes. Clients with a recognizable group of screen updates to do can gain
noticeably by surrounding the group with lock - unlock brackets; then the locking overhead will
only be incurred once. An example of such a group might be a line of text, or a series of vectors
which have all been computed.

o

- 95.

While it has the screen locked, a process should not:
e do any significant computation unrelated to displaying its image; and

e invoke any system calls (including other 1/0O), which might cause it to block.
In any case, the lock should not be held longer than about a quarter of a second, even fol-
lowing all these guidelines.

As a deadlock resolution approach, when a display lock is held for more than 10 seconds, the
lock is broken, bowever the offending process is not notified via signal. The idea is that a pro-
cess shouldn’t be aborted for this infraction. However, the display may look bad after this
action.

3.4.2. Clipping

Output to a window is clipped to the window's pwed_clipping rectlist; this is a series of rectan-
gles which, taken together, cover the area it is valid for this window to write to. There are two
routines which set the pizwin’s clipping:

pw_exposed(pw)
struct pixwin *pw;

pw_damaged(pw)
struct pixwin *pw;

Pw_damaged is discussed in section 3.6 below. Pw_ezposed is the normal routine for discovering
what portion of a window is visible. It retrieves the rectlist describing that area into the
pizwin’s pwed_clipping, and stores the id identifying it in pwed_clipsd. It also stores its own
address in the pszwin’s pwco_getclipping, so that subsequent lock operations will get the correct
area description.

Clipping, even more than locking, should normally be left to the library output routines. For
the intrepid, the strategy these routines follow is briefly sketched here; the rectlist data struc-
tures and procedures in Appendix A are required reading.

Some procedure will set the pizwin’s pwcd_clipping so that it contains a rectlist describing the
region which may be painted. (This is done by a lock operation which makes a call through
*pweo_getclipping, or an explicit call to one of pw_open, pw_donedamaged, pw_ezposed or
pw_damaged.) This rectliat is essentially a list of rectangular fragments which together cover the
area of interest. As an image is generated, portions of it which lie outside the rectangle list
must be masked off, and the remainder written to the window through a pizrect.

The clipping aid pwed_prmults is set up to be a pizrect which clips for the entire rectangular
area of the window. Any clipping using this pizrect must utilize the information in
pwed_clipping to do the actual clipping to multiple rectangles.

Pwed_prl is set up to parallel each of the rectangles in pwed_clipping. Thus, if one draws to
each of the pszrects in this data structure the image will be correctly clipped. Pwcd_state is set

- by examining the makeup of the pwed_clipping. If pwcd_state is PWCD_SINGLERECT then a

pizrect is set up in pwed_praingle also. When this case exists, after pw_lock and before
pw_unlock, most screen accesses will directly access the pizrect level of software. Thus, modulo
locking, in this common case screen access is as fast in the window system as it is on the raw
pizrect software outside of the window system. Also, pwcd_praingle is set up with a zero height
and width pizrect when pwed_state is PWCD_NULL.

-206 - % *

As an escape, none of the pizrect set up described above takes place when pwcd_state is i }
PWCD_USERDEFINE. This means that clipping is the responsibility of higher level software.

A client may write to the display with an operation which specifies no clipping (op |
PIX_DONTCLIP). This means that it is doing the clipping at a higher level. Note that clip-
ping data is only valid during the time the client may write to the screen, that is when the
window's owner process holds a lock on the screen. If the clipping is done wrong, it is possible
to clobber another window’s image.

3.5. Accessing a Pixwin’s Pixels

Procedures described in this section provide all the normal facilities for output to a window, and
should be used unless there are special circumstances. Each contains a call to the standard lock
procedure, described in section 3.4.1; each takes care of clipping to the rectlist in pw_clipping.
(Since the routines are used both for painting new material in a window and for repairing dam-
age, they make no assumption about what clipping information should be gotten. Thus, there
should be some previous call to either pw_open, pw_donedamaged, pw_ezposed or pw_damaged, to
initialize pwo_getclipping correctly.)

The procedures described in this section will maintain the memory pizrect for a retained pizwin.
That is, they check the window’s pw_prretained, and if it is not null, perform their operation on
that data in memory, as well on the screen.

3.5.1. Write Routines é

pw_write(pw, xd, yd, width, height, op, pr, xs, ys)
struct pixwin *pw;
int op, xd, yd, width, height, xs, ys;
struct pixrect *pr;

pw_writebackground(pw, xd, yd, width, height, op)

Pixels are written to the pizwin pw, in the rectangle defined by zd, yd, width, and height, using
rasterop function op (as defined in section 2.2.5); they are taken from the rectangle with its ori-
gin at zs, ys in the source pizrect pointed to by pr. Pw_writebackground snmply supplies a. null
pr which indicates that an infinite source of pixels, all of which are set to zero, is used.

pw_put(pw, x, y, value)
struct pixwin *pw;
int X, y, value;

draws a pixel of value at (x, y) in the addressed pizwin.

pw_vector(pw, x0, y0, x1, y1, op, value)
struct pixwin *pw;
int op, x0, y0, x1, yl, value;

draws a vector of pixel value from (x0, y0) to (x1, yl1) in the addressed pizrect, using rasterop

op. | | . -

C

.97.

piv_replrop(pw, xd, yd, width, height, op, pr, xs, ys)

struct pixwin *pw;

int op, xd, yd, width, height;
struct pixrect *pr;

int XS, ¥S;

This procedure uses the indicated raster op function to replicate a pattern (found in the source
pizrect) into a destination in a pizwin. (For a full discussion of the semantics of this procedure,
refer to the description of the equivalent procedure pr_replrop in Pizel Data and Operations.)

pw_text(pw, X, y, op, font, s)

struct pixwin *pw;
int X, ¥, Op;
struct pixfont *font;
char *8;

pw_char(pw, x, y, op, font, c)

struct pixwin *pw;
int X, ¥, Op;
struct pixfont *font;
char c;

These two routines write a string of characters, and a single character, respectively, to a pizwin,
using rasterop op as above. Pw_tezt and pw_char are distinguished by their own coordinate sys-
tem: the destination is given as the left edge and baseline of the (first) character. The left edge
does not take into account any kerning, so it is possible for a character to have some pixels to
the left of the x-coordinate; and the baseline is the y-coordinate of the lowest pixel of characters

without descenders (e.g. 'L’, 'o'), so pixels will frequently occur both above and below the base-
line in a string. " :

A font to be used in pw_tezt is required to have the same pc_home.y and character height for all
characters in the font.

3.5.2. Read and Copy Routines

The following routines use the window as a source of pixels. They may find themselves
thwarted by trying to read from a portion of the pszwin which is hidden, and therefore has no
pixels. When this happens, pw_fizup in the pizwin structure will be filled in by the system with
the description of the source areas which could not be accessed. The client must then regen-
erate this part of the image into the destination. Retained pszwin’s will always return ri_null in
pw_fizup because the image is refreshed from pw_prretasned.

pw;get(pw, X, ¥, value)
struct pixwin *pw;
int X, y, value;

returns the value of the pixel at (x, y) in the addressed pixrect.

- 98-

pw_read(pr, xd, yd, width, height, op, pw, xs, ys)

struct pixwin *pw;
int op, xd, yd, width, height, xs, ys;
struct pixrect *pr;

Pixels are read from the pizwin pointed to by pw, in the rectangle defined by zs, ys, width,
height, using rasterop function op; they are stored in the rectangle with its origin at zd, yd in the
pizrect pointed to by pr. i

pw_copy(dpw, xd, yd, width, height, op, xs, ys)
struct pixwin *dpw;
int op, xd, yd, width, height, xs, ys;

Copy is used when both source and destination are in the same pszwin.

3.8. Damage

When a portion of a client’s window becomes visible after having been hidden, it is damaged.
This may arise from several causes; for instance, an overlaying window may have been removed,
or the client’s window may have been stretched to give it more area. The client is notified that
such a region exists by the signal SIGWINCH; this simply indicates that something about the
window has changed in a fashion that probably requires repainting. (It is possible that the win-
dow shrank, and no repainting of the image is required at all, but this is a degenerate case). It
is then the client's responsibility to repair the damage by painting the appropriate pixels into
that area. The following section covers the proper approach to that task.

3.8.1. Handling SIGWINCH
There are several stages to handling a SIGWINCH:

First, the procedure which catches the signal almost always should not immediately try to repair
the damage indicated by the signal. Since the signal is a software interrupt, it may easily arrive
at an inconvenient time, e.g. halfway through a window’s repaint for some normal cause. Con-
sequently, the appropriate action in the signal handler is usually to simply set a flag which will
be tested somewhere else. Conveniently, a SIGWINCH (like any other signal) will break a pro-
cess out of a select system call, so it is possible for a client which was blocked to be awakened,
and, by dint of a little investigation, discover the cause. (See the select(2) system call and refer
to the tool_select mechanism in T'ool Processing for an example of this approach.)

Once a process has discovered that a SIGWINCH has occurred and arrived at a state where it's
. safe to do something about it, it must determine what exactly has changed, and respond
appropriately. There are two general possibilities: the window may have changed size, and/or
a portion of it may have been uncovered.

Win_getsize (described in the mext chapter) can be used to inquire the current dimensions of a
window. The previous size must have been remembered, e.g. from when the window was
created, or last adjusted. These two sizes are compared to see if the size changed. Upon notic-
ing that its size has changed, a window containing other windows may wish to rearranged the
- enclosed windows, for example, by expanding one or more windows to fill a newly opened space.

Whether a size change occurred or not, the actual images on the screen must be fixed up. It is
possible to simply repaint the whole window at this point — that will certainly repair any dam-
aged areas — but this is often a bad idea because it typically does much more work than

o

-929.

necessary. .
Therefore, the window should retrieve the description of the damaged area, repair that damage,

and inform the system that it has done so:

pw_damaged(pw)
struct pixwin *pw;

pw_damaged is a procedure much like pw_ezposed. It fills in pwed_clipping with a rectlist
describing the area of interest, stores the id of that rectlist in the pizwin’s opsdata (in
pwecd_damagedid as well), and also stores its own address in pwco_getclipping, so that a subse-
quent lock will check the correct rectlist. All the clippers are set up too.

Now is the time for the client to repaint its window — or at. least those portions covered by the
damaged rectlist; if the regeneration is relatively expensive (if the window is large, or its con-
tents complicated), it may be worth restricting the amount of repainting before the clipping that
the rectlist will enforce. This means stepping through the rectangles of the rectlist, determining
for each what data contributed to its portion of the image, and reconstructing only that por-
tion. See Appendix A for details about rectisats.

When the image is repaired, the client should inform the window system with a call to

pw_donedamaged(pw)
struct pixwin *pw;

which allows the system to discard the rectlist describing this damage. It is possitle that more
damage will have accumulated by this time, and even that some areas will be repainted more
than once, but that will be rare.
After calling pw_donedamaged, the pizwin describes the entire visible area of the window.
A process which owns more than one window can receive a SIGWINCH for any of them, with
no indication of which generated it. The only solution is to fix up all windows. Fortunately,
that should not be overly expensive, since the damaged areas are comletely and exactly specified
by the returned value for pw_damaged.

4. WINDOW MANIPULATION

This chapter describes the sunwindow facilities for creating, positioning, and controlling win-
dows. It continues the discussion begun in Overlapped Windows: Imaging Facilities, on this
sunwindow level of the window system, that allows displaying images on windows which may be
overlapped. ‘

The pizwin struct was the basic element of discussion in Chapter 3, encapsulating the informa-
tion necessary for displaying an image on a window, including clipping and damage repair.
Another structure underlies the operations described in this chapter; but, since it is maintained
within the window system, and is accessible to the client only through system calls (and their
procedural envelopes), it will not be described here. The window is presented to the client as a
device; it is represented, like other devices, by a file descriptor returned by open; and it is mani-
pulated by other ifo calls, such as select, read, foctl, and close. (Write to a window is not
defined, since all the facilities of Chapter 3 are required to display output on a window.)

Most of the window manipulations described in this chapter are performed by soct! system calls.
However, client programs should use the procedures described in this chapter because they are
the supported interface. The header file [usr/include/sunwindow/window_hs.h includes the
header files needed to work at this level of the window system.

4.1. Window Data
The information about a window maintained by the window system includes:

e two rectangles which refer to alternative sizes and posstions for the window on the
screen;

e a series of links which describe the window’s position in a hierarchical database,
which determines its overlapping relationships to other windows;

e clipping information used in the processing described in chapter 3;
o the image used to track the mouse when it is in the window;

e the id of the process which should receive SIGWINCH signals for the window (this is
the owner process);

e a mask which indicates what user input actions the window should be notified of;
e another window, which is given any input events not used by this window; and
e 32 bits of data private to the window client.

4.2. Window Creation, Destruction, and Reference

As mentioned above, windows are devices; as such, they are special files in the /dev directory
(with names of the form *‘/dev/winn”, where n is a decimal number). A window is created by
opening one of these devices, and the window name is simply the filename of the opened device.

4.2.1. A New Window

The first process to open a window becomes its owner. A process can obtain a window it is
" guaranteed to by calling

=3

-31-

int win_getnewwindow()

This finds the first unopened window, opens it, and returns a file descriptor which refers to it.
If none can be found, it returns -1. A file descriptor, often called the windowfd, is the usual
handle for a window within the process that opened it.

When a process is finished with a window, it may close it. (This is the standard close system
call, with the window’s file descriptor as argument.) As with other file descriptors, a window
left open when its owning process terminates will be closed automatically by the operating sys-
tem.

Another procedure is most appropriately described at this point, although in fact clients will
have little use for it: to find the next available window, win_getnewwindow uses

int win_nextfree(fd)
int fd;

passing it a file descriptor it got by opening /dev/win0. The return value is a window number,
as described in 4.2.3 below; a return value of WIN_NULLLINK indicates there is no available
unopened window.

4.2.2. An Existing Window

It is possible for more than one process to have a window open at the same time; section 4.9
presents one plausible scenario for using this capability. The window will remain open until all
processes which opened it have closed it. The coordination required when several processes have
the same window open is non-trivial; see the discussion in section 4.9.

4.2.3. References to Windows

Within the process which created a window, the usual handle on that window is the file descrip-
tor returned by open (and win_getnewwindow). Outside that process, the file descriptor is not
valid; one of two other forms must be used. We introduced the window name above; the other
form is the window number, which corresponds to the numeric component of the window name.
Both of these references are valid across process boundaries. The window number will appear in
several contexts below.

Procedures are supplied for converting the various window identifiers back and forth:

win_numbertoname(winnumber, name)
int winnumber;
char *name;

stores the filename for the window whose number is winnumber into the buffer addressed by
name, which should be WIN_NAMESIZE long (as should all the name buffers in this section).

int win_nametonumber(name)
char *name;

- returns the window number of the window whose name is passed in name.

win_fdtoname(windowfd, name)
int windowfd;
char *name;

given a window file descriptor, stores the corresponding device name into the buffer addressed

-32-

by name.

int win_fdtonumber(windowf{d)
int windowf{d;

returns the window number for the window whose file descriptor is windowfd.

4.3. Window Geometry

Once a window has been opened, its size and position may be set. The same routines that are
used for this purpose are also helpful for adjusting the screen positions of a window at other
times, e.g. when user-interface actions indicate that it is to be moved or stretched. The basic

procedures are

win_getrect(window{d, rect)
int windowfd;
struct rect #rect;

win_getsize(windowfd, rect)
int windowf{d;
struct rect *rect;

short win_getheight(window{d)
int windowf_‘d;

short win_getwidth(windowfd)
int window{d;

Win_getrect stores the rectangle of the window whose file descriptor is the first argument into
the rect addressed by the second argument; the origin is relative to that window’s parent. (Sec-

tion 4.4.1 explains what is meant by a window’s “‘parent.”)

Win_getsize is similar, but the rectangle is self-relative — that is, the origin is (0,0).
Win_getheight and wsn_getwsdth return the single requested dimension for the indicated window.
win_setrect{windowfd, rect)

int window{d;
struct rect #*rect;

copies the rect argument’s data into the rect of the indicated window; this changes its size
and/or position on the screen. The coordinates are in the coordinate system of the window’s

_ parent.

win_getsavedrect(window{d, rect)
int windowf{d;
struct rect #rect;

win_getsavedrect(window{d, rect)
int window{d;
struct rect *rect;

A window may have an alternate size and location; this facility is useful for, e.g. scons (see sec-
tion 8.1). The alternate rectangle may be read with win_getsavedrect, and written with

.33-

win_setsavedrect. As with win_getrect and win_setrect, the coordinates are relative to the
window’s parent.

4.4. The Window Hierarchy

Position in the window database determines the nesting relationships of windows, and therefore
their overlapping and obscuring rélationships. The third step in creating a window is to define
its relationship to the other windows in the system. This is done by setting links to its neigh-
bors, and inserting it into the window database.

4.4.1. Setting Window Links

The window database is a strict hierarchy. Every window (except the root) has a parent; it also
has 0 or more siblings and children. In the terminology of a family tree, age corresponds to
depth in the layering of windows on the screen: parents underlie their offspring, and older win-
dows underlie younger siblings which intersect them on the display. Parents also enclose their
children, which means that any portion of a child’s image that is not within its parent’s rectan-
gle is clipped. Depth determines overlapping behavior: the uppermost image for any point on
the screen is the one that gets displayed. Every window has links to its parent, its older and
younger siblings, and to its oldest and youngest children.

Windows may exist outside the structure which is being displayed on a screen; they are in this
state as they are being set up, for instance.

The links from a window to its neighbors are identified by link selectors; the value of a link is a
window number. (An appropriate analogy is to consider the link selector as an array index, and
the associated window number as the value of the indexed element.) To accommodate different
viewpoints onthe structure there are two sets of equivalent selectors defined for the links:

WL_PARENT WL_ENCLOSING
WL_OLDERSIB WL_COVERED
WL_YOUNGERSIB WL_COVERING
WL_OLDESTCHILD WL_BOTTOMCHILD
WL_YOUNGEST WL_TOPCHILD

A link which has no corresponding window (a child link of a “leaf”” window, for instance) has
the value WIN_NULLLINK.

When a window is first created, all its links are null. Before it can be used for anything, at least
the parent link must be set. If the window is to be attached to any siblings, those links should
be set in the window as well. The individual links of a window may be inspected and changed
by the following procedures:

haah
(N

int win_getlink(windowfd, link_selector)
int windowfd, link_selector;

returns a window number, which is the value of the selected link for the window associated with
windowfd.

win_setlink(windowfd, link_selector, value)
int window{d, link_selector, value;

-34-

sets the selected link in the indicated window to be value (which should be another window
number). The actual window number to be supplied may come from one of several sources: If
the window is one of a related group, file descriptors will be available for the other windows,
and their window numbers may derived from the file descriptors via win_fdtonumber. The win-
dow number for the parent of a new window (or group of windows) is not immediately obvious,
however. The solution is a convention that the WINDOW_PARENT environment parameter
will be set to the filename of the parent. (See the section entitled Passing Parameters to a Tool
in the chapter on tools for an example of this environment parameter’s usage).

4.4.2. Activating the Window

Once a window’s links have all been defined, it is inserted into the tree of windows (and
attached to its neighbors) by a call to

win_insert(windowf{d)
int windowf{d;

This call causes the window to be inserted into the tree, and all its neighbors to be modified to
point to it. This is the point at which the window becomes available for display on the screen.

Every window should be inserted after its rectangle(s) and link structure have been set, but the
insertion need not be immediate: if a subtree of windows is being defined, it is appropriate to
create the window at the root of this subtree, create and insert all of its descendants, and then,
when the subtree is fully defined, insert its root window. This activates the whole subtree in a
single action, which typically will result in a cleaner display interaction.

Once a window has been inserted in the window database, it is available for input and output.
At this point, it is appropriate to call pw_open and access the screen.

4.4.3. Modifying Window Relationships

Windows may be rearranged in the tree; this will change their overlapping relationships. For
instance, to bring a window to the top of the heap, it should be moved to the ‘‘youngest” posi-
tion among its siblings. (And to guarantee that it is at the top of the display heap, each of its
ancestors must likewise be the youngest child of its parent).

To accomplish such a modification, the window should first be removed:

win_remove(windowfd)
int window{d;

After the window has been removed from the tree, it is safe to modify its links, and then re-
insert it.
A process doing multiple window tree modifications should lock the window tree before it

begins. This prevents any other process from performing a conflicting modification. This is
done with a call to

win_lockdata{windowfd)
int windowfd;

After all the modifications have been made and the windows reinserted, the lock is released with
a call to

«35 -

win_unlockdata(window{d)
int windowf{d;

Most routines described in this chapter, including the four above, will block temporarily, if
another process either has the database locked, or is writing to the screen and the window
adjustment has the possibility of conflicting with the window that is being written.

As a method of deadlock resolution, SIGXCPU is sent to a process which spends more that 10
seconds of real time inside a window data lock and the lock is broken.

4.5. User Data

Each window has associated with it 32 bits of uninterpreted client data. This is not touched by
the basic window system; typically it will be used by the client to store flags. Higher levels of
the system may implement minimal inter-window status sharing through this facility. This
data is manipulated with the following procedures:

win_getuserflags(windowfd)
int windowf{d;

- win_setuserflags{windowfd, flags)

int windowf{d;

int flags;
win_setuserflag(windowfd, flag, value)

int windowfd;

int flag;

int value;

Win_getuserflags returns the user data; win_setuserflags stores its flags argument into the win-
dow struct, and win_setuserflag uses flag as a mask to select one or more flags in the data word,
and sets the selected flags on or off as value is TRUE or FALSE. '

4.86. Minimal Repaint Support

[This section has strong connections to the preceding chapter and the appendix on rects and
rectlists; readers should expect to refer to both from here.]

Moving windows about on the screen may involve repainting large portions of their image in
new places. Often, the existing image can be copied to the new location, saving the cost of .
regenerating it. Two procedures are provided to support this function:

win_computeclipping(windowfd)
int windowfd;

causes the window system to recompute the ezposed and damaged rectlists for the windows on
the screen while withholding the SIGWINCH that will tell each owner to repair damage.

- 36 -

win_partialrepair(windowf{d, r)
int windowf{d;
struct rect *r;

tells the window system to remove an area (the rectangle r) from the damaged area for the win-
dow identified by windowfd. This operation is a no-op if windowfd has damage accumulated
from a previous window database change that it hasn't told the window system that it has fixed
up. ‘
These facilities can be used by any window manager according to the following strategy:
e The window database is locked and manipulated to accomplish the rearrangement.
(win_lockdata, win_remove, win_setlink, win_setrect, win_insert ...)
e The old exposed areas for the affected windows are gotten and cached. (pw_ezposed)
¢ The new area is computed, retrieved, and intersected with the old.
(win_computeclipping, pw_ezposed, rl_intersection) _
e Pixels in the intersection are copied, and those areas are removed from the subject
window’s damaged area. (pw_lock, pr_copy, win_partialrepair)

e The window database is unlocked, and any windows still damaged get their signals
informing them of the (reduced) damage which must be repaired.

4.7. Relations to Physical Screens

Note: The design calls for multiple concurrent screen support. Currently, only one screen is sup-
ported at a time. Also, this entire interface descrsbing the screen is tenative and likely to change.

Multiple displays may be attached to a processor at the same time, and clients may want win-
dows on all of them. Therefore, the window database is a grove, with one tree of windows for
each display. (Thus, there is no overlapping of window trees which belong to different screens.)
The physical arrangement of the displays can be passed to the window system, and the mouse
cursor will pass from one screen to the next as though they were continuous.

struct screen {
char scr_name[SCR_NAMESIZE];

int scr_type,

int SCr_reverse;
struct rect scr_rect;
int scr_pixeldepth,
int scr_pixelsperinch,
int scr_colormapsize;

B

#idefine SCR_NAMESIZE 20
#define SCR_SUNIBW 1

Ser_name is the device name of the screen (e.g. . “‘/dev/bw(’). Secr_type is the device type;
currently defined types are FBTYPE-SUNIBW and FBTYPE-SUN2BW found in
“[usr[includefsun/foi0.h”. Scr_rect is the size of the screen.

The following fields are defined but the window system is ignoring them. Ser_reverse is TRUE
if the screen is inverted from Sun’s default. (More easily remembered, it holds the value which

- 37 -

will appear white.) Scr_pszeldepth, Scr_pizelsperinch, and Scr_colormapsize describe physical
display characteristics, where pizeldepth is in bits, pszelsperinch assumes the display pixels are
square, and colormapssze is the number of entries in the color lookup table (2 for black-and-
white displays, with or without colormaps).

win_screennew(windowfd, screen)
int window{d;
struct screen *screen;

is used to associate a window with a screen. Windowfd is a file descriptor for an existing win-
dow; screen addresses a screen struct in which the scr_name, scr_type, and scr_reverse entries
have been set. A new desktop (screen / window-tree combination) is set up, with the indicated
window as the root window.

win_screenget(windowfd, screen)
int windowfd;
struct screen *screem;

fills in the struct addressed screen with information for the screen with which the window indi-
cated by windowfd is associated. (That can be any window in the tree; the root window is
found by the procedure.)

win_screendestroy(windowfd)
int windowfd;

completely destroys the desktop of which windowfd’s window is the root: it destroys the root
window and all windows descended from it, terminating their owner processes (using
SIGTERM), and breaks the association set up by win_screennew.

win_screenpositions(windowfd, neighbors)
int window{d, neighbors[SCR_POSITIONS];

#define SCR_NORTH 0
#define SCR_EAST 1
#tdefine SCR_SOUTH 2
#define SCR_WEST 3

#define SCR_POSITIONS 4

is used to inform the window system of the physical layout of multiple screens, to enable the
cursor to cross to the appropriate one. Windowfd's window is the root for its desktop; the four
slots in nesghbors should be filled in with the window numbers of the root windows for the
screens in the corresponding positions. No diagonal neighbors are defined, since they are not
strictly neighbors. Win_screenpositions, as stated above is not currently implemented.

4.8. Cursor and Mouse Manipulations

- 38 -

4.8.1. Cursors
The cursor is the image which tracks the mouse on the screen.

struct cursor {

short cur_xhot, cur_yhot;
int cur_function;
struct pixrect *cur_shape;

};
#define CUR_MAXIMAGEWORDS 16

Cur_shape points to a memory pixrect which holds the actual image for the cursor. The win-
dow system supports a cur_shape.pr_data->md_smage up to CUR_MAXIMAGEWORDS words.

The “‘hot spot” defined by (cur_zhot, cur_yhot) is used to associate the cursor image, which has
height and width, with the mouse position, which is a single point on the screen. The hot spot
gives the mouse position an offset from the upper-left corner of the cursor image.

Most cursors have a hot spot whose position is dictated by the image shape: the tip of an arrow,
the center of a bullseye, the center of a cross-hair. Cursors can also be used as a status feed-
back mechanism, e.g., an hourglass to indicate that some processing is occurring. This type of
cursor should have the hot spot located in the middle of its image so that the user can still use
it for pointing without having to guess where the hot spot is.

The function indicated by cur_function is a rasterop (as described in section 2.2.5), which will be
used to paint the cursor. (PIX_SRC | PIX_DST is generally effective on light backgrounds, e.g.
‘in text, but invisible over solid black; PIX_SRC * PIX_DST is a reasonable compromise over
many different backgrounds, although it does poorly over a gray pattern).

win_getcursor(windowfd, cursor)
int windowfd;
struct CUrsor *cursor;

stores into the buffer addressed by cursor a copy of the cursor which is currently being used on
the screen. -

win_setcursor{windowfd, cursor)
int window{d;
struct cursor *cursor;

sets the cursor and function that will be used whenever the mouse position is within the indi-
cated window.

If a window process does not want a cursor displayed, the appropriate mechanism is to set the
cursor to one whose dimensions are both 0.

4.8.2, Mouse Position

Determining the mouse's current position is treated under Input in the following chapter. We
note here that the standard procedure for a process to track the mouse is to arrange to receive
an input event every time the mouse moves; and in fact, the mouse position is passed with every
user input a window receives.

The mouse position can be reset under program control; that is, the cursor can be moved on the
screen, and the position which is given for the mouse in input events can be reset, without the
mouse on the table top being physically moved:

-39-

win_setmouseposition(windowfd, x, y)
int windowfd, x, y;

puts the mouse position at (x, y) in the coordinate system of the window indicated by windowfd.
The effect is of a jump from the previous position to the new one, without touching any points
between: input events occasioned by the move (window entry and exit, cursor changes) will be
generated. This facility should be used with restraint; users are likely to lose a cursor that
moves independently of their control.

Occasionally it is necessary to discover which window underlies the cursor, usually because a
window is handling input for all its children. The procedure used for this purpose is

int win_findintersect(windowfd, x, y)
int windowfd, x, y;

where windowfd is the calling window's fd, and (z, y) defines a screen position in that window’s
coordinate space (it need not actually lie within the window), and the returned value is a win-
dow number. X and y may lie outside the bonds of the window.

4.9. Providing for Naive Programs

There are a large class of applications which are relatively unsophisticated about the window
system but want to run in windows anyway. For example, a simple-minded graphics program
may want a window in which to run, but doesn't want to know about all the details of creating
and positioning it. This section describes two ways of supplying for these applications.

4.9.1. Which Window to Use

An environment parameter defined by the window. system is of interest here. By convention,
WINDOW_GFX is set to a string which is the device name of a window in which graphics pro-
grams should be run. Routines exist to read and write this parameter:

int we_getgfxwindow(name)
char *name

we_setgfxwindow(name)
char *name

we_getgfzwindow returns a non-zero value if it cannot find a value.

4.9.2. Taking Over an Existing Window

Ezperience has shown that the following method 18 not as good as the second approach described in
the nezt section. However, this approach is documented because higher level utilities (emptysw
and gfzsw) use this approach and haven’t yet been changed to the better one. When these utilities
are converted it should be invisible to their clients because the interfaces shouldn’t change.

Windows may be opened more than once. This fact can be used to allow a process to tem-
porarily ‘‘take over” a window from another. Several issues must be addressed in this sharing
of windows:

- 40 -

e The original owner (call it the executive) must inform the newcomer (call it the demo)
what window it's getting. This is normally passed via the environment parameter
WINDOW_GFX described above.

e The demo, having opened the window for its own use, should make itself the
window's owner, so that it will be given relevant SIGWINCHes. See win_getowner
and win_setowner below. It should then proceed to set up the window as it would a
newly-created one saving any window parameters that is changes.

o It is possible for either process to attempt to read from the window, or display on it
at the same time; this should normally be avoided, since the results are unpredictable.
The most common arrangement is for the executive to leave the window alone until
the demo is finished.

e Finally, the trickiest issue is to ensure that the executive gets back full control when
the demo is finished. The demo can reset the owner before exiting; or the executive
can be catching SIGCHLD, and make itself owner again when the demo goes away.
Other properties of the window should be reset upon returning control to the original
owner, including the cursor, input mask and input redirection window. If the execu-
tive has another window that it has not given up, it may accept user inputs in that
window which instruct it to destroy a wayward demo, and recover the window.

SIGWINCH signals are directed to the process which owns the window. Normally the owner is
the process which created it; this may be read and written by the following procedures:

int win_getowner(windowfd)
int windowfd;

win_setowner(windowfd, pid)
int windowfd, pid;

Win_getowner returns the process id of the owner of the indicated window. If the owner doesn’t
exist then zero is returned. Win_setowner makes the process identified by pid be the owner of
the window indicated by windowfd. Win_setowner causes an SIGWINCH to be sent to the new
owner. ‘

4.9.3. Covering an Existing Window
Another (and probably better) approach is to create a new window that becomes attached to,
and covers, an existing window:

e The invoking process (call it the executive) must inform the newcomer (call it the
demo) what window (call it the gfx window) to attach itself to. This would be passed
via the environment parameter WINDOW_GFX described above.

¢ The demo, having created a window, would make itself the same size as the gfx win-
dow and install itself as the gfx window’s top child.

o The executive’s only Job would be to change its top child window’s size whenever the
gfx window changes size.

e When the demo finished, the demo wmdow would be destroyed thus leaving the gfx
window uncovered.

The main advantage of this scheme is that the problems of restoring the gfx window'’s state (see
previous section) are avoided.

-

- 41 -

4.10. Error Handling

Except as explicitly noted, the procedures described in this section do not return error codes.
The standard error reporting mechanism used inside the sunwsndow library is to call a procedure
which prints a message (typically identifying the foctl call which detected the error), after which
the calling process resumes execution.

This default error handling routine may be replaced by calling:

int (*win_errorhandler(win_error))()
int (*win_error)();

That is, win_errorhandler is a procedure which takes the address of one procedure (the new
error handler) as an argument, and returns the address of another procedure (the old error
handler) as a result. Any error handler procedure should be a function which returns an int.

win_error(errnum, winopnum)
int errnum, winopnum;

Errnum will be -1 indicating that the actual error number is found in the global errno. Winop-
num is the ioctl number that defines the window operation that generated the error. (See the
section entitled Error Message Decoding in the appendix about Programming Notes).

-49.

5. INPUT

In this third chapter devoted to the sunwindow level of the Sun window system, we discuss how
user input is made available to application programs. The structures and procedures discussed
in this section (unless otherwise noted) are found in the header file
[usr/include/ sunwindow/ win_snput.h.

The window system provides facilities which meet two distinct needs regarding input to an
application program:

A uniform interface to multiple input devices allows programs to deal with varying key-
boards and positioning devices, ignoring complexities due to facilities which the programs
do not use.

- - Several different keyboards are available with Sun systems; they differ in the number
and arrangement of keys. At a minimum, some clients will require ASCII characters,
one per keystroke. More sophisticated clients will assign special values to non-
standard keys (e.g. “META" characters in the range 0x80 and above). Some clients
will assign functions to particular keys on the keyboard, and will distinguish key-
down from key-up events.

- The standard positioning device on a Sun is the mouse, which reports a location and
the state of three buttons. Alternatively, some clients may use a tablet and stylus, or
in place of the stylus, a “puck” with as many as 10 buttons on it.

- In some client systems, the time between input events is signiﬁcant for example,
when smoothing a user’s stylus trace, or assigning special meamng to multiple clicks
of a button within a short period.

The window system allows clients with only the simplest requirements to ignore all the
complications, while providing more sophisticated clients the facilities they require. The
mechanism for accomplishing this is the Virtual Input Device with its input events,
described in the first section of this chapter.

The second major section of this chapter describes how user inputs are collected from mul-

tiple sources, serialized, and distributed among multiple consumers. Multiple clients are
able to accept inputs concurrently, and a slow consumer does not affect other clients’ abil-
ity to receive their inputs. (Type-ahead and mouse-ahead are fully supported.)

- Client programs operate under the illusion that they have the user's full attention,
leaving the window system to handle the multiplexing. Therefore, a client sees pre-
cisely those input events that the user has directed to that application.

- Conversely, the client may require inputs from multiple devices, where the exact
sequences across all those devices is significant. The order of mouse and function key
events is likely to be significant, for instance. This is provided for via a single unified
input stream, rather than requiring polling of multiple streams, which would be unac-
ceptable in a multi-processed environment.

- The distribution of input events take# into acccunt the window's indication of what
events it is prepared to handle; other events are redirected, allowing a division of
labor among the various components of a system.

- 45 -

function keys. The mapping to physical keys on various keyboards is defined in
[usr/include/ sun/kbd.h and discussed in kbd(5).

5.1.2.3. Pseudo Events

#define VKEY_FIRSTPSEUDO
#define VKEY_LASTPSEUDO

Event codes in the pseudo class are events that involve locator movement instead of physical
button striking. The physical locator constantly provides an (x, y) coordinate position in pixels;
this position is transformed by the Virtual Input Device to the coordinate system of the window
receiving an event. In order to watch actual locator movement (or lack thereof), the client must
be enabled for the events with codes.

ftdefine LOC_MOVE
#define LOC_MOVEWHILEBUTDOWN
#tdefine LOC_STILL

A LOC_MOVE is reported only when the locator actually moves. Since fast motions may yield
non-adjacent locations in consecutive events, the locator tracking mechanism reports the current
position at a set sampling rate (currently 40 times per second).

LOC_MOVEWHILEBUTDOWN is like LOC_MOVE but happens only when a button on the
locator is down.

A single LOC_STILL event is reported when the locator has been still for a moment (currently
1/5 of a second).

Clients can be notified when the locator has entered (or exited) a window via the event codes:

#define LOC_WINENTER
#define LOC_WINEXIT

5.1.3. Event Flags
Only one event flag is currently defined:

#define IE_NEGEVENT

indicates the event was “negative’”. Positive events include depression of any button: (including
buttons on the locator), motion of the locator device (while it is available to this client), and
entry of the cursor into a window. The only neglative event is the release of a depressed button.
Stopping of the locator and locator exit from the window are positive events, distinct from loca-
tor motion and window entry. This asymmetry allows a client to be informed of these events
without the performance penalty associated with receiving all negative events and then discard-
ing all but these two.

Caveat: The only negative events currently reported are locator buttons going up.
Two macros are defined to inquire about the state of this flag:
#define win_inputnegevent(ie)

##define win_inputposevent(ie)
struct inputevent *ie;

- 46 -

These are TRUE if the IE_NEGEVENT bit is 1 or 0 respectively in the input event pointed to
by te. ,

5.1.4. Shift Codes

le_shiftmask contains a set of bit flags which indicate an interesting state when an input event
occurrs. The most obvious example is the state of the Shift or Control keys when some other
key is pressed. Eventually, clients will be able to declare any Virtual Input switch as an

“interesting’’ shift switch. For now, only the following bits are reported: CAPSMASK

SHIFTMASK CTRLMASK UPMASK These are defined in
[usr/include/ sun/kbd.h, and described in cons(4).

5.2. Reading Input Events
A library routine exists for reading the next input event for a window:

int input_readevent(fd, ie)
int fd;
struct input_event *ie;

This fills in the indicated struct, and returns O if all went well. In case of error, it sets the glo-
bal variable errno, and returns -1; the client should check for this case.

A window can be set to do blocking or non-blocking reads via a standard fentl system call, as
described in fetn(2) and fentd5). A window is defaulted to blocking reads. The blocking status
of a window can be determined by the fentl system call.

The recommended normal style for handling input uses blocking I/O and the selec{2) system
call to await both input events and signals such as SIGWINCH. This allows a signal handler to
merely set a flag, and leave substantial processing to be performed synchronously when the
select returns. The tool_select mechanism described in chapter 7 illustrates this approach.
Using blocking 1/O and read2) without a prior select forces the client to process SIGWINCHes
entirely in the asynchronous interrupt handler. This necessitates extra care to avoid race condi-
tions and other asynchronous errors.

Non-blocking 1/O may be useful in a few circumstances. For example, when tracking the mouse
with an image which requires significant computation, it may be desirable to ignore all but the
last in a queued sequence of motion events. This is done by reading the events, but not process-
ing them until a non-motion event is found, or until all events are read. Then the most recent
mouse location is displayed, but not all the points covered since the last display. When all
events have been read and the window is doing non-blocking 1/O, snput_readevent returns -1
and the global variable errno is set to EWOULDBLOCK.

5.3. Input Serialization and Distribution

With the exception of some of the pseudo-event codes, the Virtual Input Device described in
preceding sections is not logically tied to the Sun window system; the scheme could be used by
any system desiring that form of unification. This next section is more specific to the window
system, since it discusses how events are selected and distributed among the various windows
which might use them.

- 47 -

Each user input event formatted into an snputevent, which is then assigned to some recipient.
There are three ways a process gets to receive an input event:

‘e Most commonly, it reads the window which lies under the cursor, and that window
has an ¢nput mask which matches the event. (Input masks are described in the next
section.) If several windows are layered under the cursor, the event is tested first
against the input mask of the topmost window.

e If the event does not match the input mask of one window, other windows will be
given a chance at it, as described below.

e Much less frequently, a window will be made the recipient of all input events; this is
discussed under win_grabso, in section 5.3.2 below.

Each window designates another window to be offered events which the first will not accept. By
default this is the window's parent; another backstop may be designated in a call to
win_setinputmask, described in the next section. If an event is offered unsuccessfully to the root
window, it is discarded. Windows which are not in the chain of designated recipients never
have a chance to accept the event.

If a recipient is found, the locator coordinates are adjusted to the coordinate system of the reci-
pient, and the event is appended to the recipient’s input stream. Thus, every window sees a
single stream of input events, in the order in which the events happened (and time-stamped, so
that the intervals between events can also be computed), and including only the events that
window has declared to be of interest.

5.3.1. Input Masks
The input masks facilitate two things:

e Events can be accepted or rejected by classes; for instance, a process may want only
ASCII characters. :

e The times when events are accepted can be controlled, minimizing the processing
required to accept and ignore uninteresting events. For instance, a process may track
the mouse only when it is inside one of its windows, or when one of the mouse but-
tons is down. ' ’

Clients specify which input events they are prepared to process by setting the input mask for
each window being read.

‘struct inputmask {
short im_flags;
char im_inputcode{IM_CODEARRAYSIZE];
short im_shifts;
short im_shiftcodes[IM_SHIFTARRAYSIZE};
)i

#define IM_CODEARRAYSIZE (VKEY_CODE/((sizeof char)*BITSPERBYTE))
#define IM_SHIFTARRAYSIZE ((sizeof short)*BITSPERBYTE)

Im_flags specifies the handling of related groups of input events.
#define IM_UNENCODED

indicates that no translation of physical device events should be performed (that is, that the
Virtual Input Device not intervene between the window and the user input). In this case, the
most significant byte of the code is the id number of the device that generated the event, and

- 48 -

the least significant byte contains the physical keystation number of the keystation that the
user struck. The current device ids are those assigned to the supported keyboards and the id
assigned to the mouse (127). For mouse input, locator motion and locator button events place in

the 12ast significant byte of the code the event code used in the corresponding unencoded case

minus 512. Note that the pseudo-events are associated with the physical locator; that is, a
button-push on a tablet puck will generate a different code from a corresponding button-push
on a mouse.

#define IM_ASCII
indicates that the Virtual Input Device translation should occur.
ftdefine IM_ANSI

indicates that the process wants keystrokes to be interpreted as ANSI characters and escape

~ sequences: normal ASCII characters are represented by their ASCII code in se_code; function

keys with a standard interpretation (e.g., cursor control keys) are represented by a sequence of
input events, whose se_codes are ASCII characters starting with ESC. (See [kbd5) for further
details.)

#define IM_POSASCII

indicates that the client only wants to be notified of positive events for ASCII class events, even
though IM_NEGEVENT is enabled.

Caveat: The current implementation automatically enables both IM__ANSI and IM_POSASCII
when IM_A CSII 15 specified.

Requesting a particular function event in addition turns off any ANSI escape-coding for that
function event. -

ftdefine IM_META

indicates that META-translation should occur. This means ASCII events that occur while the

META key is depressed are reported with codes in the META range. Note that IM_META does
not make sense unless IM_ASCII is enabled.

#define IM_NEGEVENT

indicates that the client wants to be notified of negative events as well as positive ones. (See
5.1.3 above for a discussion of positive and negative events.)

Im_inputcode is an array of bit flags indexed by biased event codes. A 1 in the sth position of
the bit array indicates that the event with code VKEY_FIRST+ ¢ should be reported. This
filter applies in both IM_UNENCODED and IM_ASCII modes.

There are two routines which are of interest here.

win_setinputmask(windowfd, acceptmask, flushmask, designee)

int window{d;
struct inputmask *acceptmask, *flushmask;
int designee;

sets the input mask for the window identified by windowfd. Acceptmask addresses the new
mask — events it passes will be reported to this window after the call to win_setinputmask.

Flushmask specifies a set of events which should be flushed from this window’s input queue.
These are events which were accepted by the previous mask, and have already been generated,
but not read, by this window. This is a dangerous facility; type-ahead and mouse-ahead will

o

- 49 -

often be lost if it is used. The most obvious application is for confirmations, but these can be
better implemented by requiring the confirmation within a short time-out.

Caveat: If flushmask is non-NULL, the current implementation flushes all events from the queue,
not just those specified in flushmask.
Designee is the window number, which specifies the next potential recipient for events rejected
by this window. If it is set to WIN_NULLLINK (defined in
[usr/include/ sunwindow/ win_struct.h), it is interpreted as designating the window’s parent.

Caveat: Changing masks in response to some input should be done with caution. There will be a
lapse of time between the cvent which persuades the client it wants a new mask and the time the
system interprets the resulting call to win_setinputmask. Events which occur in this interval will
be passed or discarded according to the old input mask. Thus, it is probably not appropriate to
wast for a button down before requesting the corresponding button-up; the button-up may arrive
and be discarded before the mask ss changed. It’s less dangerous to wast until a button goes down
to start tracking the mouse, since the client will be caught up as soon as the first motion event
arrives. DBetter still, though, is to ask for the LOC_MOVEWHILEBUTDOWN event, and never
change the mask.

The input mask for a window is read with

win_getinputmask(windowfd, im, designee)

int window{d;
struct inputmask *im;
int *designee;

The input mask for the window identified by windowfd is copied into the buffer addressed by
im. The number of the window that is the next possible recipient of input is copied into the int
addressed by designee.

We return to win_snput.h for three routines useful for manipulating input masks. The first two
are macros:

#define win_setinputcodebit(im,code)
struct inputmask *im; :
char code;

sets the bit indexed by code in the input mask addressed by sm to 1;

#fdefine win_inputcodebit(im, code)
struct inputmask #im;
char code;

returns true or false as the bit indexed by code in the input mask addressed by im is 1 or not.

input_imnull(mask)
struct inputmask +mask;

is a procedure which initializes an input mask to all zeros. It is critical to initialize the input
mask explicitly when the mask is defined as a local procedure variable.

5.3.2. Seising All Inputs

Normally, input events are directed to the window which underlies the cursor at the time the
event occurs. Two procedures modify that behavior. A window may temporarily seize all
inputs by calling:

win_grabio(windowfd)
int window{d;

-50-

The caller’s input mask still applies, but it receives input events from the whole screen; no win-
dow other than the one identified by windowfd will be offered an input event (or allowed to

write on the screen) after this call.

win_releaseio(window{d)
int windowf{d;

undoes the effect of a win_grabso, restoring the previous state.

5.4. Event Codes Defined

The actual names of codes which appear in the ie_code field of an inputevent are:

#define ASCII_FIRST (0)

#define ASCII_LAST (127)
##define META_FIRST (128)
##define META_LAST (255)

#define VKEY_CODES
#define VKEY_FIRST

#define VKEY_FIRSTPSEUDO
#tdefine LOC_MOVE

#define LOC_STILL

#define LOC_WINENTER
#define LOC_WINEXIT

#define LOC_MOVEWHILEBUTDOWN

#define VKEY_LASTPSEUDO
#define VKEY_FIRSTFUNC

#define BUT_FIRST
#define BUT(i)
ftdefine BUT_LAST

#define KEY_LEFTFIRST
#define KEY_LEFT(i)
#define KEY_LEFTLAST -

#define KEY_RIGHTFIRST
#define KEY_RIGHT(i)
#define KEY_RIGHTLAST

#define KEY_TOPFIRST
#tdefine KEY_TOP(i)
ftdefine KEY_TOPLAST

(128)

(512)
(VKEY_FIRST) @
(VKEY_FIRSTPSEUDO+ 0) /+ No neg event #/
(VKEY_FIRSTPSEUDO+ 1) /* No neg event */
(VKEY_FIRSTPSEUDO+ 2) /# No neg event */
(VKEY_FIRSTPSEUDO+ 3) /+ No neg event */
(VKEY_FIRSTPSEUDO+ 4) [+ No neg ev§
(VKEY_FIRSTPSEUDO+ 15)

(VKEY_LASTSHIFT+ 1)

(VKEY_FIRSTFUNC)
((BUT_FIRST)+ (i}1)
(BUT_FIRST+9)

((BUT_LAST)+1) -
((KEY_LEFTFIRST)+ (i)-1)
((KEY_LEFTFIRST)+ 15)

((KEY_LEFTLAST)+ 1)
((KEY_RIGHTFIRST)+ (i)}1)
((KEY_RIGHTFIRST)+ 15)

((KEY_RIGHTLAST)+ 1)
((KEY_TOPFIRST)+ (i)-1)
((KEY_TOPFIRST)+ 15)

- 51 -
. #tdefine KEY_BOTTOMLEFT ((KEY_TOPLAST)+ 1)
#define KEY_BOTTOMRIGHT ((KEY_BOTTOMLEFT)+ 1)
#define VKEY_LASTFUNC (VKEY_FIRSTFUNC+ 101)

#define VKEY_LAST VKEY_FIRST+ VKEY_CODES-1

There are 3 synonyms for the common case of a 3-button mouse:

#define MS_LEFT BUT(1)
#define MS_MIDDLE BUT(2)
#define MS_RIGHT BUT(3)

"

8. SUNTOOL: TOOLS AND SUBWINDOWS

This chapter introduces the third and highest level of the Sun window system. It is at this level
that facilities of the lower levels are actually used to build user interfaces. We describe a model
for building applications, a number of components which implement commonly-needed portions
of such applications, an executive and operating environment which supports that model, and
some general-purpose utilities which can be used in this and similar environments.

We refer to an application progam which is a client of this level of the window system as a tool.
This term covers the one or more processes which do the actual application work. Tool also
refers to the collection of (typically) several winJows through which the tool interacts with the
user. Simple tools might include a calculator, a bitmap editor, and a terminal emulator. Sun
provides a few tools ready-built (several are illustrated in Appendix B), and more will be pro-
vided as time passes; customers are expected to provide more to suit their particular needs.

Common components of tools that the window system provides include:

e An executive framework which supplies the usual “main loop” of a program, and
which serves to coordinate the activities of the various subwindows;

e A standard tool window, which frames the active windows of the tool, identifying it
with a name stripe at the top and borders around the subwindows. Each tool win-
dow has facilities for adjusting its size and position (including layering), and subwin-

" dow boundary movement.

e several standard subwindows, which can be instantiated in the tool;
a standard scheme for laying out those subwindows; and

e a facility which provides a default scon, which is a small form the tool may take to be
unobtrusive but still identifiable.

The suntools program initializes and oversees the window environment. It provides for:
e automatic startup of a specified collection of tools;
e dynamic invocation of standard tools;

e management of the default window (called the root window) which underlies all the
tools;

e the user interface for leaving the window system.

Users desiring another interface to these functions can replace this program, while retaining
specific tools.

This chapter discusses how to write a tool: it covers creation and destruction of a tool and its
subwindows, the strategy for dividing up work among them, and the use of routines provided to
accomplish that work.

Chapter 7 is a discussion of subwindows, as building blocks in the construction of a tool. It cov-

_ers the subwindows currently existing, and also discusses the approach to be followed in creat-
ing new kinds of subwindows. We expect the library of available subwindow types to grow,
with contributions from both Sun and our customers.

Chapter 8 covers user interface utilities. These are relatively independent packages which can
be used with the suntools environment, or a similar replacement. They include the actual win-
dow manipulation routines used by tool windows, the icon facility, the selection manager (useful
for inter-process data exchange), the fullscreen access mechanism, and menus and prompts.

The procedures which support all these facilities are found in the suntool library (that is,
[usr/lib/libsuntool.a). They and their data structures are declared in a number of distinct
header files, all of which can be included in /usr/include/ suntool/tool_hs.h.

-53.-

Appendices B and C are an annotated collection of some simple tools, to be used both as illus-
trations and as templates for client programmers.

Appendix D is a collection of progamming notes and advice.

68.1. Tools Design Philosophy

A typical tool is built as a fairly light-weight tool window, and contained within that, a set of
subwindows, which incorporate most of the user interface to the tool's facilities. Each subwin-
dow is a “window” in the sense of chapter 4; the subwindows form a tree rooted at the tool
window, and the various tool windows are all children of the root window associated with the
screen.

8.1.1. Non-Preemption

In general, tools should be designed in a non-preemptive style: they should waii without consum-
ing resources until given something to do, perform the task expeditiously, and return control to
the user promptly. If some task requires extensive processing, a separate process should be
forked to run it without blocking the user interface.

This non-preemptive style implies that the tool is built as a set of independent procedures,
which are invoked as appropriate by a standardized control structure. The basic advice to
client programs is, ‘‘Wait right there; we’'ll let you know as soon as we have something for you
to do.” From a programming point of view, the main function that the tool mechanism provides
is the provision of the control structure to implement this non-preemptive programming style.
The tool window and its subwindows all have the same interface to this control mechanism.

8.1.2. Division of Labor

The tool window performs a few functions directly. These are the user interface functions,
which are common to all tools (outlined at the beginning of this chapter).

Subwindows are the workhorses of the suntool environment, but most of the work they do is
specific to their own tasks, and so of little interest here. It is important to understand that a
subwindow corresponds to a data type: there will be many instantiations of particular subwin-
dows, quite possibly several in a single tool.

Various types of subwindows are developed as separate packages that can be assembled at a
high level. In addition to programmer convenience, this approach promotes a consistent user
interface across applications.

The remainder of this chapter divides a tool’s existence into two large areas: creation and des-
truction, and tool-specific aspects of processing.

8.2. Tool Creation
All of the following processing must be done as a tool is started:

e Parameters for this invocation of the tool must be passed to it. Every tool must be
given the name of its parent window; other parameters that may be given to the tool
include a position for it on the screen, whether it should be open or iconic,
specification of data files (e.g. fonts) to be used in this invocation, and initializations

- 54-

to be performed.

e The tool should be given its own process and process group. In contrast to the usual
procedure when a program is invoked under the shell, the parent process should gen-
erally be allowed to go on its way.

e The tool window should be created, with space allocated for it and its various options
defined; similarly, its subwindows should be created and positioned in the tool win-
dow.

e The UNIX signal system should be initialized to pass appropriate signals to the tool.
e The tool's window should be installed into the display structure.
e Finally, the tool may start its normal processing.

6.2.1. Passing Parameters to the Tool

There are at least three ways parameters may bepassed to a tool that is starting up:
e It may have command-line arguments.
e Relatively stable options may be stored in a file (like a user profile).

e [Environment parameters may be used for well-established values. They have the
valuable property that they can communicate information across several layers of
processes, not all of which have to be involved.

The first two parameters passing mechanisms need no special attention here, since they are used
just as in non-window UNIX programs. However, the Sun window system itself uses a few
environment variables for tool startup. WINDOW_PARENT is set to a string which is the dev-
ice name of a window's parent; for a tool, this will usually be the name of the root window of
the window system. WINDOW_INITIALDATA is set to the coordinates of two rectangles plus
one flag; these are the regions for the window while open and closed, and a boolean which is
non-zero if the tool should start out iconic.

we_setparentwindow(windevname)
char *windevname;

sets WINDOW_PARENT to the name of the parent’s window.

int we_getparentwindow(windevname)
char *windevname;

gets the value of WINDOW_PARENT into windevname. The length of this string should be at
least WIN_NAMESIZE (a constant found in [usr/include/sunwindow/win_struct.h) characters

long. A non-zero return value means that the WINDOW_PARENT parameter couldn’t be
found.

The process that is starting the tool should set WINDOW_INITIALDATA before it forks
(wmgr_forktool does this; see Suntools: User Interface Utilities). After the fork, the newborn tool

may interrogate these variables. The routines to do this are in the library
[usr/lib]libsunwindow.a.

we_setinitdata(rnormal, riconic, iflag)
struct rect *rnormal, *riconic;
int iflag;

sets the environment variable in the parent process, and

- 855 -

we_getinitdata(rnormal, riconic, iflag)
struct rect *rnormal, *riconic;
int *iflag;

reads those values' in the child process. A non-zero return value means that the
WINDOW_INITIALDATA parameter couldn't be found.

For tools which are going to be providing windows to other processes to run in, a procedure is
provided for unsetting the variable, lest a wayward child process be confused by it:

we_clearinitdata()

68.2.2. Forking the Tool

A tool will normally have its own process. The creation of that process does not differ
significantly from the normal paradigm. If it is to be started by a menu command or some
other procedural interface, it is appropriate for the creating process to do the fork and return
from the procedure call. When the child process dies, the parent process should catch the
SIGCHLD signal and clean up (see the wait3 system call).

. 8.2.3. Creating the Tool Window

The pair of procedures tool_create and tool_createsubwindow carry out the main work of creat-
ing a tool with its subwindows. These take a series of parameters which define the object to be
created, and return a pointer to an object which encapsulates the interesting information about
the tool or its subwindow, as the case may be. That pointer is then passed to a number of
other routines which manipulate the object; the client is usually not concerned with the exact
definition of the structure.

These create routines include a large part of the processing described in the earlier parts of this
manual, so that client programmers need not necessarily concern themselves much with the
details of pizrects and pszwins.

A tool is created by a call to

struct tool *tool_create(name, flags, normalrect, icon)

char *name;

short flags;

struct rect *normalrect;
struct icon *icon;

#define TOOL_NAMESTRIPE 0x01
#define TOOL_BOUNDARYMGR 0x02

where

name is the name of the tool (this is what will be displayed in the tool’s name stripe if
TOOL_NAMESTRIPE is set in the flags argument; it also appears on the default icon);
flags has the flags TOOL_NAMESTRIPE and/or TOOL_BOUNDARYMGR set as those

properties are desired (TOOL_BOUNDARYMGR enables boundaries that the user can
move between subwindows);

- 56 -

Normalrect describes the inital position and size in which the tool in it normal (open) state
is to be displayed, in the coordinate system of the tool’s parent (typically, the window for
the screen); and

tcon is a pointer to an fcon struct, if the client wants a special icon.

Normalrect and the scon may be defaulted by passing NULL for their arguments. The default
icon is described, along with considerations on making custom icons, in chapter 8; the choice is
strictly a matter of convenience vs. ambition. A tool’s starting position should almost always be
left NULL; it is better to communicate it via the environment parameter-passing mechanisms
described above.

Creating the tool does not cause it to appear on the screen; a separate step is used for that pur-
pose after the full tool structure is constructed, as described in Tool Installatson below. Most
tool programmers can skim down to Subwindow Initialization below and ignore the details of the
tool and toolsw data structures without missing anything of direct interest.

6.2.4. The Tool Struct
The tool struct is defined in /usr/include/ suntool/tool.h:

struct tool {
short tl_flags;

int tl_windowfd;
char +tl_name;

struct icon *tl_icon;
struct toolio tl_jo;
struct toolsw *tl_sw;
struct pixwin *tl_pixwin;
struct rect tl_rectcache;

}

Tl _flags holds state information; currently, 6 flags are defined:

#define TOOL_NAMESTRIPE 0x01
#define TOOL_BOUNDARYMGR 0x02
#tdefine TOOL_ICONIC 0x04
#define TOOL_SIGCHLD 0x08
#define TOOL_SIGWINCHPENDING 0x10
#define TOOL_DONE 0x20

TOOL_NAMESTRIPE indicates that the tool is to be displayed with a black stripe holding its
name at the top of its window. TOOL_BOUNDARYMGR indicates that the option to allow
the user to move inter-subwindow boundaries is to be enabled. TOOL_ICONIC indicates the
“current state of the tool: 1 = small (iconic); 0 = normal (open).

TOOL_SIGCHLD and TOOL_SIGWINCHPENDING mean that the tool has received the indi-
cated signal and has not yet performed the processing to deal with it. TOOL_DONE indicates
the tool should exit the tool_select notification loop. These three flags are used during
tool_select processing (see below) and should be considered private to the tool implementation.

T!_windowfd holds the file descriptor for a tool's window. This is used for both input and out-
put; it also identifies the window for manipulations on the window database, such as modifiying
its position or shape. The uses of windowfds are discussed in chapters 3 through 5 of this
manual. '

- 87 =

Tl_name addresses the string which can be displayed in the tool's namestripe and default icon.
Tl_rectcache holds a rectangle which indicates the size of the tool’s window. (Because the rec-
tangle is in the tool’s coordinate system, the origin will always be (0, 0).) This information is
cached so that the tool can tell when its size has changed by comparing the cached rect with the
current rect.

T!_scon holds a pointer to the icon struct for this tool.

Tl_pizwsn addresses the window’s pixwin, which is the structure through which the tool accesses
the display.

Tl_sw points to the first (oldest) of the tool's subwindows. These structs are discussed in the
following section.

Tl s0 is used by the tool to control notification of input and window change events to itself.
This structure type is discussed in detail in Toolio Structure. During tool creation, the fields of
this structure are set up with values to do default tool processing.

8.2.5. Subwindow Creation

struct toolsw *tool_createsubwindow(tool, name, width, height)
struct tool *tool;
char *pname;
short width, height;

#define TOOL_SWEXTENDTOEDGE -1

makes a new subwindow, adds it to the list of subwindows for the indicated tool, and returns a
pointer to the new toolsw struct. The width and hesght parameters are hints to the layout
mechanism as to what size the windows should be if there is enough room to accommodate
them. There are no guarantees about maintaining subwindow size because changing window
sizes can ruin any scheme. TOOL_SWEXTENDTOEDGE may be passed for width and/or
height; it allows the subwindow to stretch with its parent in either or both directions. Details of
subwindow layout are discussed in section 6.2.6 below. The name is currently unused; it may
eventually support the capability to refer to subwindows by name.

The remainding subwindow initialization requires reference to the data structure:

struct toolsw {

struct toolsw *ts_next;
int ts_windowfd;
char *ts_name;

short ts_width;
short ts_height;

struct toolio ts_io;
int (*ts_destroyX);
caddr_t ts_data;

b

The subwindows of a tool are chained on a list, with ¢s_nezt in one subwindow pointing to the
next in line, until the list is terminated with a null pointer.
Like the tool window, each subwindow must have an associated open window device; the file
descriptor is stored in ts_windowfd by tool_createsubwindow.

- 58 -

Ts_name, ts_width and ts_height are exactly as in' the call to tool_createsubwindow.

The tool uses Ta_to to control notification of input and window change events to the subwin-
dow. Upon subwindow creation, this structure has null values in it that need to be set; this is
normally doen by the create routine for a standard subwindow type. This structure is discussed
in detail in Toolio Structure.

Ts_destroy gets called when the tool is being destroyed (tool_destroy) so that the subwindow
may terminate cleanly. '

Ts_datae provides 32 bits of uninterpreted data private to the subwindow implementation. Typ-
ically, it will be a pointer to information for this instance of the subwindow. That is, all
subwindows of the same type will share common interrupt handlers and layout characteristics;
window contents and other information specific to one particular window will all be accessed
through this pointer. (This is discussed at more length in Regquirements for Subwindows in
Chapter 7.)

8.2.6. Subwindow Layout

By default, subwindows are laid out in their tool’s area in a simple left-to-right, top-to-bottom
fashion, in the order they are created: a subwindow is placed as high as it can be, and in that
space, as far to the left as it can be.

Subwindows that should be arranged in a more controlled fashion may be rearranged after they
have all been created, using the rectangle manipulation facilities described in Window Geometry.
Three functions return numbers useful to tools doing their own subwindow layout explicitly:

short tool_stripeheight(tool)
struct tool *tool;

returns the height in pixels of the tool’s name stripe.

short tool_borderwidth(tool)
struct tool *tool;

returns the width (in pixels) of the tool’s outside border

short tool_subwindowspacing(tool) i3
struct tool *tool;

returns the number of pixels that should be left as a margin between subwindows of a tool
(currently the same as the outside border of the tool).

8.2.7. Subwindow Initialization

By the time tool_createsubwindow has returned, the subwindow is already inserted in the tree
growing out of the tool window; however, the subwindow will not perform any interesting func-
tion until ¢s_so and ts_data have been initialized. Normally, tool_createsubwindow is not directly
called. Instead, the tool subwindow creation procedure for a subwindow type is called. This
will call tool_createsubwindow and then initialize ts_so and ¢s_data.

- 59 -

8.2.8. Tool Installation

Once the tool is created and its subwindows have been created and installed, the software inter-
rupt system should be turned on via a call to signal as described in 6.3.3. At least SIGWINCH
should be caught; if there are inferior processes in any of the subwindows, SIGCHLD should be
added, with any others as appropriate. Finally, the tool is installed into the display window
tree by a call to:

tool_install(tool)
struct tool *tool;

At this point, the tool is operating; in fact, it will probably shortly receive a SIGWINCH (asyn-
chronously) to paint its window(s) for the first time.

8.2.9. Tool Destruction

Explicitly destroying a tool as it reaches the end of its processing allows the system to reclaim
resources and remove the windows gracefully. The procedure to invoke this cleanup is

tool_destroy(tool)
struct tool *tool;

Tool_destroy will destroy every subwindow of the indicated tool as part of its processing, so the
subwindows need not be destroyed explicitly. Each subwindow’s ts_destroy procedure gets
called, so they can clean up gracefully. Care should be taken that the pointer passed to
tool_destroy is never dereferenced after that call, since it is no longer valid.

A single subwindow can be destroyed by an explicit call to
tool_destroysubwindow(tool, subwindow)

struct tool *tool;
struct toolsw *subwindow;

A tool may use this procedure to change its subwindows, while continuing to run.

8.3. Tool Processing
The main loop of a normal tool is encapsulated inside a call to

tool_select(tool, waitprocessesdie)
struct tool *tool;
int waitprocessesdie;

This procedure is the notification distributer used for event-driven program control flow. When
some input event, timeout or signal interrupt is detected inside tool select, a call to a
notification handler is made, passing in the toolio structures of the tool and its subwindows.
When the handler returns, tool select awaits another event.

8.3.1. Toolio Structure

The toolio data structure holds what is needed for a window to wait for something to happen in
the select system call. It is defined in uar/include/ suntoolftool.h.

struct toolio {

int tio_inputmask,

int tio_outputmask,

int tio_exceptmask;

struct timeval *tio_timer;

int (*tio_handlesigwinch) ();
int (*tio_selected) (); -

3
Tio_inputmask, tio_outputmask, tio_ezceptmask and tio_timer fields are exactly analogous to the
last four arguments to the select system call. Tso_snputmask has the bit “1< <f" set for each
file descriptor f on which a window wants to wait for input. Similary, tso_outputmask and
tio_ezceptmask indicate an interest in f being ready for writing and having an exceptional condi-
tion pending, respectively. There are currently no ‘‘exceptional conditions” implemented; this
field provides compatability with the select system call.

If tio_timer is a non-zero pointer, it specifies a maximum interval to wait for one of the file
descriptors in the masks to require attention. If tio_timer is a zero pointer, an infinite timeout
is assumed. To effect a poll, the tio_timer argument should be non_zero, pointing to a zero
valued timeval structure,

Toolio also contains pointers to the procedures that are called when some notification has been
received by the tool. Tio_handlesigwinch addresses the procedure which responds to the
SIGWINCH signal. This procedure handles repaint requests and window size changes. The
general form for such a procedure is:

sigwinch_handler(data)
caddr_t data;

Such procedures take a single argument data whose type is context-dependent. For the tool this
data is a pointer to the tool. For a subwindow this data is the ts_data value.

Tio_selected addresses the procedure which responds to notifications from the select system call.
Its general form is:

io_handler{data, ibits, obits, ebits, timer)

caddr_t data;
int +ibits,
int © #obits,
int +ebits,
struct timeval ##timer;

In such procedures, the data argument is like that of the sigwinch handlers described above.
The three integer pointers indicate which file descriptors are ready for reads (#bits), writes
(*obits), or exception-handling (#ebsts). If timer is NULL, this window was not waiting on any
timeout. If timer points to a valid struct timeval then this window is waiting for a timeout. If
both the (#timer)->tv_sec and (#timer)-> ty_usec are zero then the timeout has just happened
for this window and should be serviced. The data in the file descriptor masks is not defined if a
timeout has occured.

Before returning from a procedure of this type, the masks and timer must be reset by storing
through the pointers passed in the arguments; the values should be comsistent with the

< 61 -

discussion of the masks and timer pointer above. You may not want to reset the timer lf you
are using it as a countdown timer, and it still has time remaining on it.

8.3.2. File Descriptor and Timeout Notifications

Tool_select generates three composite masks from the three toolio masks from each of the toolio
structures in the tool. The input mask is special in that if all the masks in a particular toolio
structure are zero, then an entry in the composite input mask is made for the associated win-
dow anyway. Tool_select also determines the shortest timeout that any of the windows is wait-
ing on. The composite masks and shortest timeout are passed to the select system call.

When the select system call returns normally, windows that have a match between their masks
and the mask of ready file descriptors, that have timed out, are notified via their tfo_selected
procedure. The tio_selected procedures are called with the complete ready masks, not just the
intersection of its own masks and the ready masks. However, a tso_selected procedure is called
with its own window’s timer value.

It should be noted that timers in this implementation are only approximate. When the select
system call returns and a timeout hasn’t occured, the duration of the select is assumed to have
been instantaneous. Also, the time taken up with handling notifications is not deducted from
the timers.

6.3.3. Window Change Notifications

Clients of the tool interface must catch the SIGWINCH signal. A signal catcher is set up via
the signal system call. That catcher is then responsible for notifying the tool package that the
signal has arrived. This is done by calling:

tool_sigwinch(tool)
struct tool *tool;

This procedure simply sets the TOOL_SIGWINCHPENDING flag in tool. The receipt of any
signal has the side effect of causing the select system call in tool select to return abnormally.
The TOOL_SIGWINCHPENDING flag is noticed and the tool’s tio_handlesigwinch procedure is
called. The default tio_handlessigwinch procedure does some processing (which may include
changing the subwindow layout) and eventually calls all its subwindows’ tio_kandlessgwsnch pro-
cedures.

8.3.4. Child Process Maintainence

Tool_select also gathers up dead children processes of the tool. The wastprocessesdie argument
to tool_select is provided for tools which have separate processes behind some of their subwin-
dows. Such tools must explicitly catch SIGCHLD (the signal that indicates to a parent process
that a child process has changed state); then the signal handler (parallel to a SIGWINCH
catcher and tool_sigwinch) should call

tool_sigchld(tool)
struct tool *tool;

This causes tool_select to try to gather up a dead child process (via a wait3 system call). When
as many child processes have been gathered up as indicated by the waitprocessesdie argument to
tool_select, tool_select returns. s

-62-

6.3.5. Changing the Tool’s Image
During processing, a call to ‘

tool_display(tool)
struct tool *tool;

redisplays the entire tool. This is useful if some change has been made to the image of the tool
itselfl — its name or its icon’s image have been changed, for instance. Normal repaints in
response to size changes or damage should not use this procedure; they will be taken care of by
SIGWINCH events and their handlers.

8.3.8. Terminating Tool Processing
During the time that tool_select is acting as the main loop of the program, a call to
tool_done(tool)
struct tool *tool;

causes the flag TOOL_DONE to be set in tool. Tool_select notices this flag, and then returns
gracefully.

8.3.7. Replacing Toolio Operations

Since the toolso structure contains procedure pointers in variables, it is possnble to customize the
behavior of a window by replacing the default values.

Icons that resond to user inputs, or that update their image in response to timer or other
events, may be implemented by replacing the tool’s tool_selected procedure. A different subwin-
dow layout scheme may be implemented in a replacement procedure for tio_handle ssgwinch.
Note that these modifications do not require changes to existing libraries; the address of the
substitute routine is simply stored in the appropriate slot at run-time.

- 63 -

7. SUNTOOL: SUBWINDOW PACKAGES

This chapter describes subwindow packages, the building blocks used to comstruct a tool It
presents a guide for constructing new subwindow packages of general utility, and describes the
available standard subwindow packages for use with suntools. (Refer to the preceding chapter
for a description of the overall structure of tools and the general notion of a subwindow.)

Subwindows, as presented here, are designed to be independent of the particular framework in
which they are used. That is, a subwindow is a merger of window handling and application
processing which should be valid in frameworks other than the tool structure and suntool
environment described in the preceding chapter; the design avoids any dependence on those con-
structs. Thus, a subwindow package can be used in another user interface system written on
top of the sunwindow basic window system. However, subwindow packages all provide a utility
for creating a subwindow in the tool context.

7.1. Minimum Standard Subwindow Interface

This section describes the minimum programming interface one should define when writing a
new subwindow package. A subwindow implementation should provide all the facilities
described in this section. This section presents the arguments to the following standard pro-
cedures. Each subwindow package need only document any additional arguments passed to its
create/init procedures. There is a set of naming conventions that provides additional con-
sistency between subwindow package interfaces.

For the purpose of example, we use foo as the prefix. Other prefixes used in existing subwin-
dow packages include tty, gfz and mag.

Each subwindow package has a structure definition that contains all the data required by a sin-
gle instance of the subwindow.

struct foosubwindow {
int fsw_windowfd;
struct pixwin *fsw_pixwin;

b
The structure definition typically has a pizwin (for screen access) and a window handle (for
identification) as part of this data. The information that the subwindow’s procedures need
should be stored in this data structure; this may entail redundantly storing some data that is
contained in the associated containing data structure, such as the toolsw struct. Having an

object per subwindow allows multiple instantiations of a subwindow package in a single-user
process.

struct foosubwindow *foosw_init(windowfd, ...)
int window({d;

creates new instances of a foo subwindow. Windowfd is to be a foo subwindow. The “...” indi-
cates that many subwindow packages will require additional set-up arguments. This routine
typically opens a pizwin, sets its input mask as described in Chapter 5, and dynamically allo-
cates and fills the subwindow’s data object.

foosw_done(foosw)
struct foosubwindow *foosw;

destroys subwindow instance data. Once this procedure is called, the foosw pointer should no

-84 -

longer be referenced.

foosw_handlesigwinch(foosw)
struct foosubwindow *foosw;

This procedure handles repaint requests and must also detect and deal with changes in the win-
dow size. It is called as a result of some other procedure catching a SIGWINCH.

foosw_selected(foosw, ibits, obits, ebits, timer)

struct foosubwindow *foosw;
int *ibits,

int *obits,

int +ebits,

struct timeval **timer;

handles event notifications. Subwindow packages that don't accept input may not have a pro-
cedure of this type. The semantics of this procedure are fully described in the preceding
chapter in the section entitled Toolio Structure.

struct toolsw *foosw_createtoolsubwindow(tool, name, width, height, ...)
struct tool *tool;
char +name;
short width, height;

creates a struct foolsw that is a foo subwindow., Foosw_createtoolsubwindow is only applicable
in the tool context. It is often the only call thatian application program need make to set up a
subwindow of a given type. Toolis the handle on the tool that has already been created. Name
is the name that you want associated with the subwindow. Width and hkeight are the dimensions
of the subwindow as wanted by the tool_createsubwindow call. The *...” indicates that many
subwindow packages will require additional arguments. These additional arguments should
parallel those in foosw_snit.

Foosw_createtoolsubwindow takes the window file descriptor it gets from tool_createsubwindow,
passes it to foosw_init, and stores the resulting pointer in the tool subwindow's ts_data slot.
The addresses of foosw_handlesigwinch and foosw_selected are stored in the appropriate slots of
the toolio structure for the tool subwindow, and the address of foosw_done is stored in the tool
subwindow’s ts_destroy procedure slot.

Of course, most subwindow packages define functions that perform application-specific process--

ing; the ones described here are merely the permissible minimum.

7.2. Empty Subwindow

. The emply subwindow package simply serves as a place holder. It does nothing but paint itself
gray. It expects the window it is tending to be taken over by another process (see Graphics
Subwindow). When the other process is done with the empty subwindow package, the caretaker
process resumes control.

A private data definition that contains instance-specific data defined in
[usr/includef suntoolf emptysw.h is: :

- 65 -

struct emptysubwindow {
int em_windowfd;
struct pixwin *em_pixwin;
b
Em_windowfd is the file descriptor of the window that is tended by the empty subwindow.
Em_pizwin is the structure for accessing the screen.

_struct toolsw *

esw_createtoolsubwindow(tool, name, width, height)
struct tool *tool; :
char *name;
short width, height;

sets up an empty subwindow in a tool window. Since esw_createtoolsubwindow takes care of set
up of the empty subwindow, the reader may not be interested in the remainder of this section.

struct emptysubwindow *esw_init(window{d)
int window{d;

creates a new instance of an empty subwindow. Windowfd is the window to be tended.

esw_handlesigwinch(esw)
struct emptysubwindow *esw;

handles SIGWINCH signals. If the process invoking this procedure is the current owner of
esw->em_windowfd, gray is painted in the window. If it is not the current owner, it checks to
see if the current owner is still alive. If the current owner is dead, this process takes over the
windows again and paints gray in the window.

esw_done(esw)
struct emptysubwindow *esw;

destroys the subwindow’s instance data.

Processes that take over windows should follow guidelines discussed in Chapter 3 concerning the
use of the win_getowner and win_setowner procedures. Preferably, the graphics subwindow
interface (described below) should be used for this activity.

7.3. Graphics Subwindow -

The graphics subwindow package is for programs that simply need a display area in which to
run. Using this subwindow package insulates programmers of this type of program from much
of the complexity of the window system. This subwindow package is unique among subwindow
packages in that it doesn’t generate the bits for its image. Instead, it provides a mechanism
that programs can use to manage their own display area.

The graphics subwindow can also manage a retained window for the programmer. The pro-
grammer need not worry about the fact that he is in an overlapping window situation. A
backup copy of the bits on the screen is maintained from which to service any repaint requests.

The graphics subwindow can be used in tool building like any of the other subwindow packages
described in this chapter. However, the ability for a program to take over an existing window
from another process is also provided by the graphics subwindow.

- 66 -

The data definition for the instance-specific data defined in [usr/include/suntool/ gfzsw.h is:

struct gfxsubwindow {

int gfx_windowfd;
int gfx_flags;
int gfx_reps;
struct pixwin *gfx_pixwin;
struct rect gfx_rect;
caddr_t gfx_takeoverdata;
y o
#define GFX_RESTART 0x01
#define GFX_DAMAGED 0x02

Gfz_windowfd is the file descriptor of the winciow that is being accessed. Gfz_reps are the
number of repetitions that cyclic continuously runnlng programs are to execute. Gfz_pizwin is
the structure for accessing the screen. Gfz_rect is a cached copy of the window’s current self
relative dimensions. Gfz_takoverdata is described in the following section.

Gfz_flags contains bits that the client program interprets. The GFX_DAMAGED bit is set by
the graphics subwindow package whenever a SIGWINCH has been received. In addition the
GFX_RESTART bit is set if the size of the window has changed or the window is not retained.
The client program examines these flags at the times described below.

GFX_DAMAGED means that gfzsw_hkandlesigwinch should be called. This ﬂag should be exam-
ined and acted upon before looking at GFX_RESTART. GFX_RESTART is often interpreted
by a graphics program to mean that the image should be scaled to a new window size and that
the image should be redrawn. Many continuous programs (e.g., graphics demos) will redraw
from the beginning of a cycle. Other event driven programs (e.g., graphics editors, status win-
dows) will redraw from their underlying data descriptions. The GFX_RESTART bit needs to
be reset to 0 by the client program before actually doing any resetting.

7.3.1. In a Tool Window

A graphics subwindow in a tool context is only applicable for event driven programs that use
the tool_select mechanism. Any subwindow in a tool must ‘use this notification mechanism so
that all the windows are able to cooperate in the same process.

struct toolsw *
gfxsw_createtoolsubwindow(tool, name, width, height, argv)

struct tool *tool;
char *name;
short width, height;
char **argyv;

sets up a graphics subwindow in a tool window. If argvis not zero then this array of character
pointers is processed like a command line in a standard way to determine whether the window
should be made retained ‘-t and/or what value should be placed in gfz_reps “—n ####".
Toolsw-> ts_to.tio_selected is set up with the client’s own routine.

Toolsw->>ts_so.tio_handlestgwinch is replaced with the client’s own routine. This is so that the
client is notified when something about his window changes. The client tio_handlesigwinch will
call gfzsw_snterpretsigwinch (which is described below).

.- 67 -

gfxsw_getretained(gfxsw);
struct gfxsubwindow *gfxsw;

can be called to make a graphics subwindow retained if you choose not to do the standard com-
mand line parsing provided by gfzsw_createtoolsubwindow. It should be called immediately after
the graphics subwindow is created. Destroying gfzsw->>gfz_prretained has the effect of making
the window no longer retained.

gfxsw_interpretsigwinch(gfxsw)
struct gfxsubwindow *gfxsw;

is a procedure that is called from the client tio_kandlesigwinch to give the graphics subwindow
package a chance to set the bits in gfzsw-> gfz_flags. The code in the client tio_handlesigwinch
then checks the flags and responds appropriately, perhaps by calling:

gfxsw_handlesigwinch(gfxsw)
struct gfxsubwindow *gfxsw;

This procedure handles SIGWINCH signals. If the window is retained and the window has not
changed size, this routine fixes up any part of the image that has been damaged. If the window
is retained and the window has changed size then this routine will free the old retained pixrect
and allocate one of the new size. If the window is not retained the damaged list associated with
the window is thrown away. GFX_DAMAGED flag is reset to zero in this routine.

gfxsw_done(gfxsw)
struct gfxsubwindow *gfxsw;

destroys the subwindow’s instance data.

7.3.2. Taking Over an Existing Window

The ability for a program to take over an existing window from another process is provided by
the graphics subwindow. The empty subwindow (described above) is designed to be taken over.

. struct gfxsubwindow *gfxsw_init(windowfd, argv)
int window{d;
char **argv;

This procedure creates a new instance of a graphics subwindow in something other than the tool
context. Windowfd should be zero; the assumption is that there is some indication in the
environment as to which window should be taken over. (See we_getgfzwindow in Chapter 4.)
Argvis like argv in gfzsw_createtoolsubwindow.

Gfz_takoverdata in the returned gfzsubwindow data structure is not zero in this case. The struc-
ture of the data that this pointer refers to is private to the implementation of the graphics
subwindow. Part of this, however, is cached data from of the original owner window: input
mask, cursor image, input redirection window and original owner process identifier.

gfxsw_catchsigwinch()

. When a graphics subwindow has taken over a window from another process, this procedure is

set up as the signal catcher of SIGWINCH. It, in turn, calls gfzsw_snterpretesigwinch.
gfxsw_cleanup() -

Also, when a graphics subwindow has taken over a window from another process, gfzsw_cleanup
is the signal catching routine used to catch SIGINT and SIGHUP. This routine resets the

-68-

original owner window's state from the graphics subwindow’s cached private data.

Continuous programs that never use a select mechanism should examine gfzsw->gfz flags in
their main loop. Other programs that would like to use a select mechanism should call

gfxsw_select(gfxsw, selected, ibits, obits, e!bits, timer)

struct gfxsubwindow *gfxsw;
int (#selected)(), ibits, obits, ebits;
struct timeval *timer;

as a substitute for the tool select. Selected is the routine that is called when some input or
timeout is noticed. Its calling sequence is exactly like foosw_selected described at the beginning
of this chapter. The only difference in the semantics of this routine and foosw_selected is that
the gfzsw->>gfz_flags should be examined and acted upon in selected.

Ibits, obsts, ebits and timer (as well as gfzsw and selected) can be thought of as initializing an
internal toolio structure, which is then fed to the tool select mechanism.

gfxsw_selectdone(gfxsw)
struct gfxsubwindow *gfxsw;

is a substitute for the tool_done. gfzsw_selectdone is called from within the selected procedure
passed to gfzsw_select.

7.4. Message Subwindow
This subwindow package displays simple ASCII strings.

A private data definition that contains instance-specific data defined in

[usr/include/ suntool/ magsw.h is:
¥

struct msgsubwindow {

int msg_windowfd;
char *msg_string;

struct pixfont *msg_font;
struct rect msg_rectcache;
struct pixwin *msg_pixwin;

b
Msg_windowfd is the file descriptor of the window that is the message subwindow. Masg_string is
the string being displayed using msg_font. Only printable characters and blanks are currently

. properly dealt with; please no carriage returns, line feeds or tabs (yet). The implementation

uses Mag_rectcache to help determine if the size of the subwindow has changed. Msg_pizwin is

the structure that accesses the screen.

struct toolsw *
msgsw_createtoolsubwindow(tool, name, width, height, string, font)

struct tool #tool;
char *name; ,
short width, height;
char *string;
struct pixfont *font;

is the call that sets up a message subwindow in a tool window. String is the string being
displayed using font. Since msgsw_createtoolsubwindow takes care of the set-up of the message

A

-

- 69 -

subwindow, the reader may not be interested in the remainder of this section, except for
magsw_setstring.

struct messagesubwindow *msgsw_init(windowfd, string, font)

int windowf{d;
char *string;
struct pixfont *font;

creates a new instance of a message subwindow. Windowfd identifies the window to be used.
String is the string being displayed using font.

msgsw_setstring(msgsw, string)
struct messagesubwindow *msgsw;
char *string;

changes the existing hugaw—> mag_string to string and redisplays the window.

msgsw_display(msgsw)
struct messagesubwindow *msgsw;

redisplays the window.

msgsw_handlesigwinch(msgsw)
struct messagesubwindow *msgsw;

is called to handle SIGWINCH signals. It repairs the damage to the window if the window
hasn’t changed size. If the window has changed size, the string is reformatted into the new size.

msgsw_done(msgsw)
struct messagesubwindow *msgsw;

destroys the subwindow’s instance data.

7.56. Option Subwindow

An option subwindow (optionsw) presents a mouse-and-display-oriented user interface for set-
ting parameters and invoking commands in an application program. It is the window system
analog to entering command-line arguments and typing mnemonic commands to an application.

An option subwindow contains a number of items of various types, each of which corresponds to
one parameter. Existing item types include labels, booleans, enumerated choices, text parame-
ters, and command buttons. New item types and extensions to these existing types are both
contemplated.

The program optiontool is provided as a simple example of the features discussed here. Fami-
- liarity with the behavior of the program, and with its source file /usr/suntoolfsrc/optiontool.c,
is helpful in reading this section.

The declarations for the optionsw package are found in the header file
[usr/include/ sunwtool optionsw.h. [usr/includef suntoolf/tool.h can be included to provide the
support header files for optionsw.h. Optionsw.h includes declarations of all the public pro-
cedures, as well as the following structures and their associated defined constants:

-70 -

typedef struct typed_pair {
u_int type;
caddr_t value; |

} typed_pair;

#define IM_UNKNOWN
#define IM_GRAPHIC
#tdefine IM_TEXT
#define IM_TEXTVEC

oo

typedef struct opt_item {
struct opt_item *oi_next;
u_int oi_flags;
struct rect oi_rect;
caddr_t oi_ops;
caddr_t oi_data;

} opt_item;

#define LAY_XFIXED 0x80
ftdefine LAY_YFIXED 0x40
#define LAY _WFIXED 0x20
ftdefine LAY_HFIXED 0x10

For a typed_pair, type indicates what kind of object value points to. ‘The current choices are:

Type Value should be '
IM-GRAPHIC (struct pixrect*)
IM_TEXT (char #)
IM_TEXTVEC (char %)

In the TEXTVEC case, value points to the first element of an array of string pointers; the¥ast
element of the array should be a NULL pointer. These are currently used only in enumerated
items (described below).

The four layout flags indicate an aspect of an option item’s layout which should not be adjested
(left edge, top edge, width, height). Their use is discussed under ltem Layout and Relocdtion
below.

7.5.1. Option Subwindow Standard Procedures

This section describes the routines needed to conform to subwindow package norms. These mu-
tines follow the general procedures provided in section 7.1.

struct toolsw *optsw_createtoolsubwindow(tool, name, width, height)
struct tool *tool;
char *name;
short width, height;

creates a option subwindow within a tool The handle toolsw->>ts_data is used for the optsw
argument in calls to other procedures of the optionsw package to identify the aflected window
and its private data. The remainder of this section is of interest only to clients outside the tool
system.

-71-

In contexts other than a tool, optsw_inst must be called explicitly. Similarly, provisions must be
made for using the rest of the routines in this section.

caddr_t optsw_init(fd)
int fd;

Optsw_snit takes an fd which identifies the window to be used for the optionsw, and returns an
opaque pointer, which identifies the created optionsw in future calls to the package.

optsw_handlesigwinch(optsw)
caddr_t optsw;

is called to handle SIGWINCH signals. It repairs the damage to the window, and if the window
has changed size, reformats the options as described below.

optsw_selected(optsw, ibits, obits, ebits, timer)
caddr_t optsw;
int +ibits, *obits, *ebits;
struct timevalue **timer;

is called to handle user inputs.

optsw_done(optsw)
caddr_t optsw;

is the cleanup routine for an optionsw. It frees all storage allocated for the subwindow and its
items. Of course, the client should not attempt to use any pointer associated with the optionsw
or its items after a call to this routine.

7.5.2. Option Items

Once an optionsw is created, it may be populated with option items. Each item is created by a

call to the create routine for the desired type; this creates the item, adds it to the items for the
optionsw, and returns a pointer to the opt_stem which describes it.

In some general aspects, all items in the optionsw exhibit the same behavior. The left or middle
mouse button indicates an item to be manipulated; the right button is left to the menu func-
tion. Pressing one of the two buttons gets the optionsw’s attention, and releasing it actually
completes a user-input event to which some item may respond. While the button is held down,
the cursor may be slid around over the window, and each item it passes over will indicate its
readiness to respond (typically by inverting); but any such indication may be cancelled simply
by moving the cursor off the item before letting up on the button.

7.5.2.1. Boolean Items

opt_item *optsw_bool(optsw, label, init, notify)

caddr_t optsw;

struct typed_pair *label;

int init;

int (*notifyX);
creates an item which maintains a boolean (TRUE or FALSE) value. Its label contains a
pointer to a string (type is IM_TEXT) or to a pixrect (type is IM_GRAPHIC); this is what is
displayed in the window for the item. The label is displayed in reverse video whenever the item
is TRUE. The value of the item is initially set to inét, and is changed whenever the user selects

-72-

the item. Whenever the value of the item is changed by user action, the procedure notify is
called with the new value, as described in section 7.5.4.

7.5.2.2. Command Items

opt_item *optsw_command({optsw, label, notify)
caddr_t optsw;
struct typed_pair *label;
int (*notify X);

creates an item which invokes the client procedure notify when selected by the user; the item
has no value. Labelis as described for a boolean item above.

7.5.2.3. Enumerated Items

struct opt_item *optsw_enum(optsw, label, count, init, choices, notify)
caddr_t optsw;
struct typed_pair *label;
struct typed_pair *choices;

int count;
int init;
int (*notify X);

creates an item in which exactly one of a set of choices is in effect at any time. The value is
interpreted as an index (0-based) into the choices for the selection. Optsw, label, and notify are
ass above. Choices is a vector of images to be displayed for the choices; for now, they must be
strings (type is ITEM_VEC). Init is the initial value of the item; it should be at most the size
of the choices array - 2 (to avoid the null pointer which terminates the array) Flags will even-
tua.lly indicate layout options, but for now shonld be 0.

7.5.2.4. Label Items

struct opt_item *optsw_label(optsw, label)
caddr_t optsw;
struct typed_pair *label;

creates an item which does nothing but paint itself. Optsw and label are as above. This item
type may be used for including labelling information in the option subwindow.

7.5 .2.5. Text Items

struct opt_item *optsw_label(optsw, label, default_value, flags)
caddr_t optsw;
struct typed_pair *label;
char +default_value; int flags;

#define OPT_TEXTMASKED

creates an item which holds a text value. Optsw and label are as above. Default_value is the

initial value of the string. Flags specify attributes of the created item; currently, only the
masked attribute is supported. If the OPT_TEXTMASKED flag is set in the call, each

-

-73-

character of the text item will be displayed as an asterisk. This feature is useful for text
parameters which should not be displayed,such as passwords. The true value of the item is
returned by optsw_getvalue, described below. '

There may be multiple text items in an option subwindow. At any time, one of them is active;
any keystrokes directed to the option subwindow will be appended to the current active text
item. Only displayable characters will be accepted in the item (ASCII codes 040-0176 inclusive).
Other characters will be discarded. This is initially the first item created in the option subwin-
dow; the user may select another item to receive keystrokes by clicking either the left or middle
mouse button while the cursor is pointing at the new item's label.

The user’s erase (character delete) and kill (line delete) characters are available for editing exist-
ing text in a text item. The first will delete the last character of the text; the latter will delete
the whole string.

Text items do NOT notify their client when their value changes; this would imply calling the
client on every keystroke as the user enters data. Rather, clients should use optsw_getvalue to
interrogate a text item when the value is needed.

Text items will expand to fit the remainder of their option subwindow’s width. This may be
more polymorphism than clients desire; see the discussion under Item Layout below.

Caveat: This is a preliminary release of text items. The user interface will become noticeably
less awkward in future releases. For now, the following restrictions apply:

Currently, the only way of changing which item is active is by selecting the label of
the new “active item.” There is no feedback to indicate which item is current.

Values of text parameters are restricted to a single line of text, less than 1000 charac-
ters long. Characters which extend beyond the item’s right edge will not be
displayed, although they are entered and edited the same as visible characters.

Text items may be edited only at their ends; the available operations are: add a
character to the end, delete a character from the end, and delete the whole value.

While significant extension to the functionality of text items are planned, the actual interface
(external procedure definitions and data structures) are designed to accommodate those exten-
sions without change.

7.5.3. Item Layout and Relocation (SIGWINCH Handling)

As each item is created, its width and height are determined and stored in the ot_rect element
of the item's opt_stem struct. No left and top positions are assigned at this time.
LAY_WFIXED and LAY_HFIXED are set in the item’s oi_flags, to indicate that the width and
height have been set to a value that should not be changed in the layout process. Later, when-
ever a signal is received which indicates that the size of the subwindow has changed (in particu-
lar, when the tool is first displayed, and the size grows from 0 to the inital window), a layout
procedure determines positions for all the items in the window.

At any time after an item has been created and before it is destroyed, the client may set any
elements of the item’s rectangle by a call to:

-74- o .

optsw_setplace(optsw, ip, rp, reformat)
caddr_t optsw;
opt_item *ip;
struct rect *rp;
bool reformat;

Optsw is the handle returned by optsw_snst. Ip is the pointer to an opt_stem struct returned by
" the item's create routine. Rp is a pointer to a rect struct which specifies the modifications to be
performed. Any value other than -1 is copied into the corresponding element of the item’s
oi_rect and the corresponding LAY _!FIXED flag is set in the item'’s oi_flags to prevent its being
changed by the layout routine. A value of -1 indicates the existing value and flag are to be left
. unchanged. If reformat is TRUE, the whole window will be re-laid-out, taking the changed item
into account; this is appropriate if the window is already displayed. On a batch of changes, it
is appropriate to reformat only after the last change.

The rectangle is expressed in standard window-system fashion: pixel coordinates, with (0, 0) the
first pixel in the upper left corner. For convenience in laying out string items, two functions
convert character columns and lines to the appropriate pixel coordinate:

int optsw_coltox(optsw, col)
caddr_t optsw;
int col;

int optsw_linetoy(optsw, line)
caddr_t optsw;
int line;
The dimensions used in calculating these coordinates are the width of the character 'n’ in the

optionsw's default font, and the nominal height of that font (that is, the distance between base-
lines of successive unleaded lines of text). Both columns and rows start at 0.

The default layout procedure starts in the upper-left corner of the subwindow and places items
in successive positions to the right, and then in successive rows down the window. This pro-
cedure does not set the LAY_XFIXED or LAY_YFIXED flags for the item; this allows the item
to be repositioned if the window is later laid out again with a different size.

If an item is encountered with either of its top or left edges fixed, that specification is accepted
without further consideration — it is possible to lay one item down on top of a previously posi-
tioned item, or to position it out of sight to the right or below the subwindow boundary.

Positioning of subsequent items after an item with a fixed position may be affected in three
ways:
the top of the row in which the item appears may move down (but not up) for the rest of
the items in the row;

subsequent items in the same row will not be positioned to the left of the item’s right edge;
and -

items in subsequent rows will not be positioned above the bottom of the fixed item.

If an item is encountered which does not have fixed width (currently, only a text item), an
attempt will be made to expand the item to fill the remaining width in the option subwin-
dow. This is done through a rather simple-minded negotiation between the general layout
procedure and the flexible item. If both the position and width of the item are flexible, the
result of this negotiation may not be very satisfactory to observers; in most cases, the posi-

tion or the width (or both) should be fixed.

-75-

7.5.4. Client Notification Procedures

Most item types provide a mechanism for notifying clients that the value of an item has been
changed by the user. The same general mechanism is used for specifying the procedure to be
invoked in response to selection of a command button.

In any case, a pointer to a procedure is passed to the item-creation routine, and stored with the
item. This procedure pointer may be zero, in which case there is no client notification. When
appropriate, this notification procedure is invoked by optionsw code, with arguments to identify
the affected subwindow and item, and the new value assigned to the item. The general form for
these procedures is

notify(optsw, item, value)
caddr_t optsw;
opt_item *item;
int value;
{ ... item has just changed to value; do what you want with it.

}

Procedures to be invoked in response to a command button-push have the same form, except
there is no value parameter.

Note the notification procedure is provided by the client, and invoked by the optionsw package.

7.5.5. Explicit Client Reading and Writing of Item Values

int optsw_getvalue(ip, dest)
struct opt_item *ip;
caddr_t dest;

Ip is the item pointer returned by the item’s create routine. Dest is the address where the value
should be stored; it will be cast to the proper type by the specific routine for the item.
Optsw_getvalue also returns an integer value. For all but text items, this is the same as the
value stored in *dest; for text, it is the length of the value stored. Items which do not have a
meaningful value (labels and commands) store and return -1.

optsw_setvalue(optsw, ip, value)

- caddr_t optsw;
struct opt_item #ip;
caddr_t value;

Optsw is the opaque handle on the option subwindow; it enables repainting of the modified item.
Ip indicates the item to be modified, and value (appropriately cast) the new value to be assigned
to the item.

7.5.8. Miscellany

optsw_setfont(optsw, font)
caddr_t optsw;
struct pixfont *font;

resets the font used to paint text labels and values in the option subwindow. Fonts for these
objects are determined at the time the item is created, so to be effective, this routine should be

-76 -

called after creation of the option subwindow and before creation of the items to be affected.
Different items may use different fonts.

The two procedures remaining in the optionsw interface are of secondary interest. For assis-
tance in implementing applications which use option subwindows, two routines are provided
which print a formatted display of the optionsw and/or its items, on an fd of the client’s choice:

optsw_dumpsw(fd, optsw, verbose)

int fd;
caddr_t optsw;
bool verbose;

optsw_dumpitem(fd, ip)
int fd;
opt_item *ip;

For each procedure, the client says where to write the dump with the Jd argument, and
identifies the object to be dumped with the optsw or sp argument. If verbose is true,
optsw_dumpsw will dump all the items of the optionsw.

7.8. Terminal Emulator Subwindow
This is the subwindow package that provides a Sun Terminal emulator.

The private data definition that contains instance-specific data defined in
[usr/include] suntool/ ttysw.h is:

struct ttysubwindow {
int ttysw_placeholder;
b

(Note: Only one TTY subwindow per process.)

struct toolsw * ttysw_createtoolsubwindow(tool, name, width, height)
struct tool *tool;
char *name;
short width, height;

is the call that sets up a terminal emulator subwindow in a tool window.
Ttysw_createtoolsubwindow takes care of all of the set up of the terminal emulator subwindow
except for the forking of the program. Thus, clients of this routine may want to ignore the
-remainder of this section except for the discussion of ttysw_fork and perhaps
ttysw_becomeconsole. ‘

struct ttysubwindow *ttysw_init(windowfd)
int windowfd;

creates a new instance of a tty subwindow. Windowfd is the window that is to be used.

ttysw_becomeconsole(ttysw)
struct ttysubwindow *ttysw;

sets up the terminal emulator to receive any output directed to the comsole. This should be
called after calling ttysw_snst. '

©

-77-

ttysw_handlesigwinch(ttysw)
struct ttysubwindow *ttysw;

is called to handle SIGWINCH signals. On a size change, the terminal emulator’s display space
is reformatted. Also, its process group is notified via SIGWINCH that the size available to it is
different (See the following section). If there is display damage to be fixed up the terminal emu-
lator redisplays the image by using character information from its screen description.

ttysw_selected(ttysw, ibits, obits, ebits, timer)

struct ttysubwindow *ttysw;
int *jbits, *obits, *ebits;
struct timeval **timer;

reads input and writes output for the terminal emulator. #/bits, *obsts and #*tsimer are modified
by ttysw_selected. See the general discussion of tio_selected type procedures in section 7.1.

int ttysw_fork(ttysw, argv, inputmask, outputmask, exceptmask)
struct ttysubwindow *ttysw;
char *43rgv;
int *inputmask, *outputmask, *exceptmask;

forks the program indicated by *argv. There are the following possibilities:

e If *argv is NULL, the user SHELL environment value is used. If this environment param-
eter is not available, /bin/sh is run.

e If sargv is “—”, this flag and argv[l] are passed to a shell as arguments. The shell then
runs argv{l]. (The arg list for this case becomes shell/-c/*(argv+ +)/0). If *argv is not
NULL, the program named by argv[0] is run with the arguments given in the rest of argv.

ttysw_done(ttysw)
struct ttysubwindow *ttysw;

destroys the subwindow’s instance data.

7.6.1. TTY-Based Programs in TTY Subwindows

TTY-based programs, such as csh, sh, and vi, which use the termcap to determine the size of
their screen need not know about windows in order to run reasonably under the terminal emula-
tor. The termcap library will return the current number of lines and columns of the terminal
emulator. However, if the user changes his window’s size while one of these programs is run-
ning, the terminal emulator and the program may disagree about what the terminal size is.

In the case of a size change, the terminal emulator sends a SIGWINCH signal to its process
group. If a child process doesn't catch the signal then there is no harm done because the
default action for SIGWINCH is that it be ignored. A child process can catch the signal, and
then requery the termcap library for the correct terminal size. Unfortunately, no TTY-based
programs do this now.

The terminal emulator and a termcap library communicate size information through soctl sys-
tem calls on the pseudo-tty shared by both. The terminal emulator makes a TIOCSSIZE ioctl
call to set the size of the pseudo-tty. The termcap library (or some other TTY-based program)
makes a TIOCGSIZE soct! call to get the size of the pseudo-tty. These constants and the data
that they pass in the ioctl call are further defined in /usr/include/sys/soctl.h.

.78 -

int we_getmywindow(windowname)
char *windowname;

can be called by programs running under a window system pseudo-tty to find out the terminal
emulator’s window name. This information is passed from the terminal emulator process to a
child process through the environment variable WINDOW_ME, which is set to be the
subwindow’s device name (e.g. /dev/win5). We_getmywindow reads WINDOW_ME's value into
windowname; a return value of 0 indicates success. This information could be the handle needed
for a program to perform some sort of special window management function not provided by
the default window manager.

&

©

- 79 -

8. SUNTOOL: USER INTERFACE UTILITIES

A variety of separate packages implement the user interface of suntool. These utilities are not
tied to the notions of tool and subwindow described in a previous chapter. Thus, these packages
could be used, as is, in another user interface system written on top of the sunwindow basic win-
dow system. For convenience, these utilities are associated directly with the suntool software
layer. This chapter describes the programming interface to these packages.

8.1. Full Screen Access

To provide certain kinds of feedback to the user, it may be necessary to violate window boun-
daries. Pop-up menus, prompts and window management are examples of the kind of opera-
tions that do this. The fullscreen interface provides a mechanism for gaining access to the
entire screen in a safe way. The package provides a convenient interface to underlying sunwin-
dow primitives. The following structure is defined in [usr/includefsuntool/fullscreen.h:

struct fullscreen {

int fs_windowfd;

struct. rect fs_screenrect;
struct pixwin *fs_pixwin;
struct cursor fs_cachedcursor;
struct inputmask fs_cachedim;
int fs_cachedinputnext;

)

Fs_windowfd is the window that created the fullscreen object. Fs_screenrect describes the entire
screen’s dimensions. Fs_pizwin is used to access the screen via the pixwin interface. The coor-
dinate space of fullscreen access is the same as fs_windowfd's. Thus, pixwin accesses are not
necessarily done in the screen’s coordinate space. Also, fs_screenrect is in the window's coordi-
nate space. If, for example, the screen is 1024 pixels wide and 800 pixels high, fs_windowfd has
its left edge at 300 and its right edge at 200 (both relative to the screen’s upper left-hand
corner), then fs_screenrect is {-300, -200, 1024, 800}.

The original cursor, fs_cachedcursor, input mask, fs_cachedim, and the window number of the
input redirection window, fs_cachedinputnest, are cached and later restored when the fullscreen
access object is destroyed.

struct fullscreen *fullscreen_init(windowfd)
int window{d;

gains full screen access for windowfd and caches window state that is likely to be changed during
the lifetime of the fullscreen object. Windowfd is set to do blocking I/O. A pointer to this
object is returned. although a global pointer named Sunwindow will keep multiple processes
from gaining fullscreen access at the same time.

During the time that the full screen is being accessed, no other processes can access the screen,
and all user input is directed to fs-> fs_windowfd. Because of this, use fullscreen access infre-
quently and for only short periods of time.

fullscreen_destroy(fs)
struct fullscreen #fs;

restores fs's cached data, releases the right to access the full screen and destroys the fullscreen
data object. Fs->fs_windowfd’s input blocking status is returned to its original state.

- 80 -

8.2. Icons

This section describes an icon display facility. The icon structure is simply a stylized descrip-
tion of an useful class of images. Icons normally serve more to. identify an object than display
its contents. A typical use of an icon would be to identify a currently unused but available tool.
Another use might be to graphically depict an object (document, database element, resource)
that a user might want to point at with his mouse. The icon structure is declared in the file
[usr/include/suntool/icon.h:

struct icon {
short ic_width;
short ic_height;

struct pixrect *ic_background;

struct rect ic_gfxrect;

struct pixrect *ic_mpr;

struct rect ic_textrect;

char sic_text;

struct pixfont *ic_font;

int ic_flags;
}s |
##define ICON_BKGRDPAT 0x02
#define ICON_BKGRDGRY 0x04
#define ICON_BKGRDCLR 0x08
#define ICON_BKGRDSET 0x10

Ic_width and sc_height describe the full size of the icon. Ic_background is an optional pattern
with which to prepare the image background. Ic_gfzrect and ¢c_teztrect describe two subareas
of the icon (icon relative), which may overlap. Ic_mpr addresses a memory pixrect (as described
in section 2.4) which has the graphic portion of the icon; fc_tezt points to a string, and sc_font a
font in which to display it. The bits of ic_flags are defined above and indicate different ways to
prepare the background of the image before adding sc_mpr and the text:

ICON_BKGRDPAT use sc_background,

ICON_BKGRDGRY use a standard gray pattern used by the background window, (this
background is the memory pixrect tool_bkgrd defined in /usr/include/ auntool/ tool.h).

ICON_BKGRDCLR clear (white out) the image, or
ICON_BKGRDSET set (solid black) the image.

icon_display(icon, pixwin, x, y)

struct icon *icon;
struct pixwin *pixwin;
int X,¥;

is used to display scon offset (z, y) from the origin of pszwin. The background is prepared
according to fcon->ic_flags. The graphic portion of the icon is displayed next, followed by the
text; thus, if they overlap, the text will come out on top.

There are no strict restrictions on the size of an icon. However, the facility becomes relatively
pointless if the icon is too large; and non-uniform icons have esthetic and placement defects.
Therefore a set of standard dimensions should be provided for any particular class of icons.
Here are the standards used by clients of tools (defined in /usr/include/suntoolf tool.h):

-81-

#define TOOL_ICONWIDTH 64
#define TOOL_ICONHEIGHT 64
#define TOOL_ICONMARGIN 2

#define TOOL_ICONIMAGEWIDTH
#define TOOL_ICONIMAGEHEIGHT
#define TOOL_ICONIMAGELEFT
#define TOOL_ICONIMAGETOP

#define TOOL_ICONTEXTWIDTH
#define TOOL_ICONTEXTHEIGHT
#define TOOL_ICONTEXTLEFT
#define TOOL_ICONTEXTTOP

These constants put the icon in a 64-pixel square, including a 2-pixel margin all around. The
graphics and text regions are defined relative to the size of the icon and its margin; the graphics
area covers the whole icon inside the margin, and the text overlies the bottom 3/4 of that

region.

8.3. Pop-up Menus

A pop-up menu is a collection of items that a user can choose among by pointing the cursor at
the desired item. It is quickly displayed (in response to a button push), remains visible as long
as the user holds the button down, and disappears as soon as the button is released.

Several menus can be presented at once; they appear to the user as a stack of images, with the

header of each menu visible, along with the items of the top menu in a vertical list. The user
can bring other menus to the top by the same mechanism as choosing an item in the top menu.

A single menu is described by the following structure (defined in /usr/include/ suntool/ menu.h):

struct menu {

int m_imagetype;
caddr_t m_imagedata;
int m_itemcount;
struct menuitem *m_items;
struct menu *m_pext;
caddr_t m_data;
|5
#define MENU_IMAGESTRING 0x0

M_smagetype describes the data type of m_smagedata. M_smagedata is a pointer to the data
displayed in the header of the menu. MENU_IMAGESTRING is the only currently defined
image data type and is a character pointer. M_nezt addresses the next menu in a stack; it is
NULL if this menu is the last or only one in the stack. M_data is private data utilized by the
menu package while displaying menus. M_stems is an array of menuitems whose length is
m_stemcount. '

-82-

struct menuitem {

int mi_imagetype;
caddr_t mi_imagedata;
caddr_t mi_data;

b

A menuitem consists of a display token/data pair. Mi_imagetype describes the data type of
mi_imagedata. Ms_tmagedata is a pointer to the data displayed in this item.
MENU_IMAGESTRING is the only currently defined image data type and is a character
pointer. Mi_data is private to the creator of the item. Typically, it is an identifier that
differentiates this item from others.

A client of the menu package constructs a stack of menus (or several, for different situations).
This is done by allocating menu structures and menuitem arrays and initializing all the fields in
them. This involves hooking up all the data structures by setting the various pointers. (An
example of a menu set is found in Sample Tools in the panetool program.) Then when a user
action initiates menu processing (button-down on the right mouse button is the standard invo-
cation), the client calls

struct menuitem *menu_display(menuptr, event, iowindowfd)

struct menu **menuptr;
struct inputevent *event;
int iowindowfd;

Menuptr is the address of a menu pointer that points to the first (top) menu structure in a
menu stack. This indirection allows the menu package to leave the new top of the stack (if the
user causes the stack order to be rearranged) in #*menuptr upon returning from menu_display.
The stack’s m_neazt values are shuffled by the menu package to rearrange the stack order. This
enables the menu stack to be redisplayed in the ol’rder it was left in the last invocation.

Event is the inputevent which provoked the menu; the location information (event->ie_locz,
event->1e_locy) in the event controls where the menus will be displayed. Event->ie_code is the
event that is treated as the ““‘menu button;” that is, the menu is displayed until this button goes
up. (The right menu button is the usual menu button. The left mouse button is always used
as the accelerator to bring rear menus forwards). If it wasn’t an explicit user action that pro-
voked the call to menu_display these three event fields must be loaded with the desired values
beforehand. : .

Towindowfd is the file descriptor for the window that is displaying the menu. It is also the win-
dow that is read for user input. The event location values are relative to this window.

Menu_display currently uses the mechanism described in Full Screen Access. Menu_display tem-
porarily modifies sowindowfd’s input mask to allow mouse motion and buttons to be placed on
this window's input queue. All the menus in the stack are displayed and there can only be one
stack on the screen at a time. The font used for strings is that returned from pw_pfsysopen.

Menu_dsisplay returns the menustem which was under the cursor when the user released the
mouse button, or NULL if the cursor was not over an item.

-83-

8.3.1. Prompts

A prompt facility is sometimes used with menus to tell the user to proceed from his current
state. Prompting can also be done without menus. The definitions for the prompt facility are
found in [usr/include/suntool/ menu.h.

struct prompt {

struct rect pri_rect;
struct pixfont *prt_font;
char *prt_text;
B
#define PROMPT_FLEXIBLE -1

Prt_rect is the rectangle in which the text addressed by prt_test will be displayed using prt_font.
Only printable characters and blanks are currently properly dealt with, no carriage returns, line
feeds or tabs (yet) please. If any of prt_rect's fields are PROMPT_FLEXIBLE that dimension is
automatically chosen by the prompt mechanism to accommodate the number of characters that
fix using the given font.

menu_prompt(prompt, event, iowindowfd)

struct prompt *prompt,
struct inputevent *event;
int iowindowfd;

Menu_prompt displays the indicated prompt (prompt->prt_rect is sowindowfd relative), and
then waits for any input event other than mouse motion. It then removes the prompt, and
returns the event which ended the prompt’s existence in event. lowindowfd is the window from
which input is taken while the prompt is up. The fullscreen access method is used during
prompt display.

8.4. Selection Management

A common style of operation/operand command specification is a non-modal one in which the
operand is specified first. In the window system, the operand is called the selection since it usu-
ally requires that the user select something with the pointing device. A selection is highlighted
in some way and persists until an operation removes it programmatically or the user does some
action which causes the selection to be removed.

This section describes an interface to a selection manager that is used to coordinate access to a
single data entity called the current selection. The current selection is globally accessible by any
process, thus providing an inter-tool data exchange mechanism.

The header file /usr/include/suntool/selection.h contains the definition necessary for using selec-
tions:

-84-

struct selection {

int sel_type,

int sel_items,

int sel_itembytes,

int sel_pubflags;

caddr_t sel_privdata;
|5
ftdefine SELTYPE_NULL 0
#define SELTYPE_CHAR 1

is the object that describes a selection. Sel_type indicates the type of the selection. Currently,
SELTYPE_NULL (no selection) and SELTYPE_CHAR (ASCII characters) are the only selec-
tion types defined. Sel_stems is the number of items in the selection data. Sel_stembytes is the
number of bytes each item occupies in the selection data. Sel pubflags is used to contain pub-
licly understood flags that further describe the selection. Sel _privdata is used to contain
privately understood data (32 bits worth) that is only understood between implementations of a
particular selection type.

The selection structure is not to be confused with actual selection data itself, e.g. the characters
in a SELTYPE_CHAR selection.

selection_set(sel, sel_write, sel_clear, windowfd)

struct selection *sel
int (+sel_write)();
int (#sel_clear)X);
int window{d;

sel_write(sel, file)

struct selection #*sel;
FILE file;
sel_clear(sel, windowfd)
struct selection *sel;
int window{d;

Selection_set is used to change the current selection. Sel describes the selection. Sel_write is a
procedure that is called to store information into the selection. (Currently, only selection_set
calls sel_write, but in the future sel_write might be called at any time). The sel_write procedure
takes as arguments sel, the selection description handed to selection_set, and file, an stdio FILE
pointer. The stdio library is used to write the selection data to file. Windowfd is the window
that is making the selection.

Sel_clear is a procedure that the selection manager would call when it wanted the selection
currently being set to be dehighlighted. This could happen when another selection had been
made. (This clear feature is not currently implemented. When implemented this call could come
at any time after returning from selection_set). '

selection_clear(windowfd)
int windowfd;

is called when windowfd wants to clear the current selection. Ideally, there is only one selection
on the screen at a time so that the user doesn’t become confused about which operand will be
affected by his next command. (Since the sel_clear feature is not currently implemented [see

C

- 85-

above], it ia the selection maker’s decision as to when to dehslight his selection feedback. The only
ezisting use of the selection mechanism waits for the user to move his cursor out of the window
that made the selection before dehilighting it).

selection_get(sel_read, window{d)
int (*sel_read)();
int windowfd;

sel_read(sel, file)
struct selection #*sel;
FILE +file;

Selection_get is used to find out the current selection. Sel_read is a procedure that selection_get
calls to enable the client to retrieve the selection. Windowfd is the window that wants to find
out about the selection.

The sel_read procedure takes as arguments sel, the selection description of the current selection,
and file, a standard io FILE pointer. The standard io library is used to read the selection data
from file. Sel_read should check the type of the selection and make sure that it is a type with
which it can deal. :

8.5. Window Management

The following procedures implement common functions for adjusting window relationships.
They may be used to provide 2 window management user interface different from that provided
by tools. If a. series of calls are to be made to these procedures, the whole sequence should be
bracketed by win_lockdata / win_unlockdata, as described in section 4.4.

bool wmgr_changelevelonly{windowfd, parentfd, top)
int window{d, parentfd;
bool top;

moves a window to the top or bottom of the heap of windows that are descendants of its
parent. Windowfd identifies the window to be moved; parentfd is the file descriptor of that
window’s parent, and top controls whether the window goes to the top (TRUE) or bottom
(FALSE).

wmgr_completechangerect(
windowfd, rectnew, rectoriginal, parentprleft, parentprtop)

int window{d;
struct rect *rectnew, *rectoriginal;
int parentprleft, parentprtop;

does the work involved with changing the position or size of a window’s rect. This involves sav-
ing as many bits as possible (by copying them on the screen) so they don’t have to be recom-
puted. Windowfd is the window being changed. Rectnew is the window's new rectangle. Rec-
toriginal is the window's original rectangle. Parentprieft and parentprtop are the parent of
windowfd's upper-left screen coordinates of the

wmgr_changelevel(windowfd, parentfd, top)
int window{d, parentfd;
bool top;

- 86 - *

is like wmgr_changelevelonly, except that no optimization is performed to reduce the amount of
repainting. This is used in conjunction with other window rearrangements, which make repaint-
ing unlikely. For example, when the tool window manager makes a tool iconic, it puts it at the
bottom of the tool window stack after changing its state. '

wmgr_refreshwindow(windowfd)
int windowfd;

causes windowfd and all its descendant windows to repaint.

wimgr_changestate(windowfd, rootfd, closé)

int window({d;
int rootfd;
bool close;
#define WMGR_SETPOS -1
#define WMGR_ICONIC WUF_WMGRI1

changes the window identified by windowfd to be closed (iconic) or open, depending on whether
close is TRUE or FALSE. The user data of windowfd reflects the state of the window via the
WMGR_ICONIC flag (WUF_WMGRI1 is defined in [usr/include/sunwindow/win_soctl.h and
WMGR_ICONIC is defined in [usr/include/ suntool/ wmgr.h).

The following procedures are used to resolve position/size undefined situations for the window’s
new rectangle:

wmgr_figuretoolrect{rootfd, rect)

int rootfd;

struct rect *rect;
wmgr_figureiconrect(rootfd, rect)

int rootfd;

struct rect *rect;

The rootfd window maintains a "next slot” position for both normal tool windows and icon win-
dows. This allows windows to be assigned initial positions that don’t pile up on top of one
another. These procedures assign the next slot to the rect if rect->r_left or rect->r_top is
equal to WMGR_SETPOS. A new slot is chosen and is then available for the next window with
an undefined position. These procedures also assign a default width and height if
WMGR_SETPOS is given, again for both tool windows and icon windows.

Wmgr_figuretoolrect currently assigns tool window slots that march from near the top middle of
the screen towards the bottom left of the screen. It assigns a window size correct for an 80-
column by 34-row terminal emulator window. Wmgr_figuresconrect currently assigns icon slots
that march from the left bottom towards the right of the screen. It assigns icon sizes that are
64 by 64 pixels.

wmgr_forktool(programname, otherargs, rectnormal, recticon, iconic)

char +programname, *otherargs;
~struct rect *rectnormal, *recticon;
int icomic;

is used to fork a new tool that has its normal rectangle set to rectnormal and its icon rectangle
set to recticon (both of which may have undefined fields). If iconsc is not zero then the tool is
created normal size. Programname is the name of the file that is to be run (a path search is
done to locate the file) and otherargs is the command line that you -want to pass to the tool.

-

. 87-

Args that have embedded white space should be enclosed by double quotes.

wmgr_iswindowopen(windowfd)
int windowfd;

tests the WMGR_ICONIC flag (see above) and returns TRUE or FALSE as the window is open
or closed.

wmgr_winandchildrenexposed(pixwin, rl)
struct pixwin *pixwin;
struct rectlist *rl;

can be used with your own window management routines to compute the visible portion of
pizwin-> pw_clipdata.pwed_windowfd and its descendants and store it in rl. "

-88-

9. APPENDIX A: RECTS & RECTLISTS é\

This appendix describes the geometric structures used with sunwindow and a full description of
the operations on these structures. Throughout the sunwindow, images are dealt with in rec-
tangular chunks; where complex shapes are required, they are built up out of groups of rectan-
gles. A rect is a structure that defines a rectangle. A rectlist is a structure that defines a list of

rects.

The header files rect.h and rectlist.h are found in /usr/include/ sunwindow/. The library that
provides the implmentation of the functions of these data types are part of
Jusr/lib/ libsunwindow.a.

Although these structures are presented in terms of sunwindow usage with pixel units, they are
really separate and can be thought of as a rectangle algebra package. Any application that
needs such a facility should consider using rects and rectlists. .

8.1. Rects
The rect is the basic description of a rectangle, and there are macros and proceduress to per-
form common manipulations on a rect.

#define coord short;

struct rect { ,
coord r_left; o
coord r_top; @
short r_width; ;
short r_height;
&
The rectangle lies in a coordinate system whose origin is in the upper left-hand corner, and
whose dimensions are given in pixels.

9.1.1. Macros on Rects
The same header file defines some interesting macros on rectangles. To determine an edge not
given explicitly in the rect:

##define rect_right(rp)

#define rect_bottom(rp)
struct rect *rp;

return the coordinate of the last pixel within the rectangle on the right or bottom, respectively.

C

C

-89 -

Useful predicates (returning TRUE or FALSE) are:

#define bool unsigned;
#define TRUE 1
#define FALSE 0

rect_isnull(r) r's width or height is 0

rect_includespoint(r,x,y) (x,y) lies in r

rect_equal(rl, r2) r1 and r2 coincide exactly

rect_includesrect(r1, r2) every point in r2 lies in r1

rect_intersectsrect(rl, r2) at least one point lies in both rf and r2
struct rect *r, srl, *r2;

coord X, Y;

Macros which manipulate dimensions of rectangles:

rect_construct(r, x, y, w, h)
struct rect *r;

fills in r with the indicated origin and dimensions.

rect_marginadjust(r, m)
struct rect *r;

adds a margin of m pixels on each side of r; that is, r becomes 2+m larger in each dimension.

rect_passtoparent(x, Y, r)

rect_passtochild(x, y, r)
coord X, ¥;
struct rect *r;

sets the origin of the indicated rect to transform it to the coordinate system of a parent or child
rectangle, so that its points are now located relative to the parent or child’s origin. X and y are
the origin of the parent or child rectangle within sts parent; these values are added to (resp.
subtracted from) the origin of the rectangle pointed to by r, thus transforming the rectangle to
the new coordinate system.

9.1.2. Procedures and Extern Data
A null rectangle (one whose origin and dimensions are all 0) is defined for convenience:

extern struct rect rect_null;

| The following procedures are also defined in rect.h:

struct rect rect_bounding(rl, r2).
struct rect *rl, *r2; .

returns the minimal rect which encloses the union of r1 and r2. The returned value is a struct,
not a pointer.

rect_intersection(rl, r2, rd)
struct rect #rl, *r2, *rd;

-90 -

computes the intersection of the r1 and r2, and stores that rect into rd.

bool rect_clipvector(r, x0, y0, x1, y1)
struct rect *r;
coord *x0, *y0, *x1, *yl;

modifies the vector endpoints so they lie entirely within the rect, and returns FALSE if that
excludes the whole vector, else TRUE. Note: This procedure shouldn’t be used to clip a vector
to multiple abutting rectangles; it may not cross the boundaries smoothly.

bool rect_order(rl, r2, sortorder)
struct rect *rl, *r2;
int sortorder;

returns TRUE if r1 precedes or equals 2 in the indicated ordering:

#define RECTS_TOPTOBOTTOM 0

#define RECTS_BOTTOMTOTOP 1

#tdefine RECTS_LEFTTORIGHT 2

#define RECTS_RIGHTTOLEFT 3
Two related defined constants are:

#define RECTS_UNSORTED 4
indicating a ‘‘don’t-care” order, and

##define RECTS_SORTS 4

giving the number of sort orders available, for use in allocating arrays, ete.

9.2. Rectlists

A number of rectangles may be collected into a list which defines an interesting portion of a
larger rectangle. An equivalent way of looking at it is that a large rectangle may be fragmented
into a number of smaller rectangles, which together comprise all the larger rectangle’s interest-
ing portions. A typical application of such a list is to define the portions of one rectangle
remaining visible when it is partially obscured by others.

struct rectlist {

coord rl_x, rl_y;

struct rectnode *rl_head;
struct rectnode *ri_tail,
struct rect rl_bound;

b

struct rectnode {
struct rectnode *rn_next;
struct rect ro_rect;

b

Each node in the rectlist contains a rectangle which covers one part of the visible whole, along
with a pointer to the next node. RI_bound is the minimal bounding rectangle of the union of all

the rectangles in the node list. All rectangles in the rectlist are described in the same coordinate

@

-91-

system, which may be translated efficiently by modifying rl{_z and rl_y.

The routines that manipulate rectlists do their own memory management on rectnodes, creating
and freeing them as necessary to adjust the area described by the rectlist.

9.2.1. Macros and Constants Defined on Rectlists
Macros to perform common coordinate transformations are provided:
rl_rectoffset(rl, rs, rd)

struct rectlist #rl;
struct rect *rs, *rd;

copies ra into rd, and then adjusts rd's origin bj adding the offsets from rl.

rl_coordoffset(rl, x, y)
struct rectlist *rl;
coord X, ¥;

offsets z and y by the offsets in rl; e.g., it converts a point in one of the rects in the rectnode hst
of a rectlist to the coordinate system of the rectlist’s parent.

Parallel to the macros on rect’s, we have
rl_passtoparent(x, y, rl) and
rl_passtochild(x, y, ri)

coord X, Y;
struct rectlist *rl;

which add (subtract) the given coordinates from the rectlist’s rl_z and rl_y to convert the 5l into
its parent’s (child’s) coordinate system.

9.2.2. Procedures and Extern Data

An empty rectlist is defined, which should be used to initialize any rectlist before it is operated
on: _

extern struct rectlist rl_null;

Procedures are provided for useful predicates and manipulations. The following declaratnons
apply uniformly in the descriptions below:

struct rectlist *rl, *rll, *rl2,%ld;
struct rect *r;
coord X,Y;

Predicates return TRUE or FALSE. Refer to the following table for specifics.

-92-

Macro

Returns TRUE if

rl_empty(rl)
rl_equal(ril, ri2)

rl_includespoint(rl,x,y)
rl_equalrect(r, rl)

rl_boundintersectsrect(r, ri)

contains only null rects

the two rectlists describe the
same space identically — same
fragments in the same order

(2, y) lies within some rect of rl
rl has exactly one rect, which is
the same as r

some point lies both in r and in
rP's bounding rect

Manipulation procedures operate through side-effects, rather than returning a value. Note that
it is legitimate to use a rectlist as both a source and destination in one of these procedures (the

source node list will be freed and reallocated appropriately for the result).

-03.

Refer to the following table for speciﬁcs.}

Procedure

Effect

rl_intersection(rl1, ri2, rld)

rl_union(rll, ri2, rid)

_ rl_difference(rll, rl2, rid)

rl_coalesce(rl)

rl_sort(rl, rid, sort)
int sort;

rl_rectintersection(r, rl, rid)

rl_rectunion(r, rl, rid)

rl_rectdifference(r, rl, rld)

rl_initwithrect{r, rl)

rl_copy(rl, rid)
rl_free(rl)
rl_normalize(rl)

stores into rld a rectlist which
covers the intersection of rli
and rl2.

stores into rld a rectlist which
covers the union of rif and r{2.
stores into rld a rectlist which
covers the area of rlf not
covered by ri2

An attempt is made to shorten
rl by coalescing some of its
fragments. An r! whose bound-
ing rect is completely covered
by the union of its node rects
will be collapsed to a single
node; other simple reductions
will be found; but the general
solution to the problem is not
attempted.

rl is copied into rld, with the
node rects arranged in sort
order.

rld is filled w‘ith a rectlist that
covers the intersection of r and
rl.

rid is filled with a rectlist that
covers the union of r and rl

rld is filled with a rectlist that
covers the portion of r{ which is
not in r.

fills in sl so that it covers the
rect r

fills in rld with a copy of rl.
frees the storage allocated to rl
resets rl's offsets (rl_z, rl_y) to
be 0 after adjusting the origins
of all rects in rl accordingly.

- 94 - » *

10. APPENDIX B: SAMPLE TOOLS @\

These are sample tools that can be used as starting points for tools of your own. The source
files for these and other tools are found on [usr/suntoolfsrc/ *tool.c.

10.1. gfxtool.c Code

-95.

#ifndef lint
static char sccsid[] = " @(#)gfxtool.c 1.6 83/10/18 Sun Micro”;
#endif

/ *

*+ Sun Microsystems, Inc.

+/

/ *

* Overview: Graphics Window: A shell subwindow and an empty
* subwindow inwhich graphics programs can run.

+f

#include <sys/typesh>

#include <signal.h>

#include " pixrect/pixrect.h”
#include " pixrect/pixfont.h”
#include " pixrect/pr_util.h”
#include " pixrect/memvar.h”
#include "sunwindow /rect.h”
#include "sunwindow /rectlist.h”
#include "sunwindow /pixwin.h”
#include "sunwindow /win_struct.h”
#include "sunwindow /win_environ.h”
#include ”suntool/icon.h”

#include "suntool/tool.h”

#include "suntool/emptysw.h”
#include "suntool /ttysw.h”

static short ic_image[256]={
ftinclude " gfxtool.icon”
b

mpr_static(gfxic_mpr, 64, 64, 1, ic_image);

static struct icon icon = {64, 84, (struct pixrect *)0, 0, 0, 64, 64,
&gfxic_mpr, 0, 0, 0, 0, (char *)0, (struct pixfont *)0,
ICON_BKGRDGRY};

static int sigwinchcatcher(), sigchldcatcher();
static struct tool *tool;
gfxtool_main(arge, argv)

int argc;

char **argv;

char *toolname = " Graphics Tool 1.07;

struct toolsw *ttysw, *emptysw;
char name[WIN_NAMESIZE};

}

static

/ *
* Create tool window
+/
tool = tool_create(toolname, TOOL_NAMESTRIPE|TOOL_BOUNDARYMGR,
(struct rect)0, &icon);
/*

+ Create subwindows
+/
ttysw = ttysw_createtoolsubwindow(tool, "ttysw”,
TOOL_SWEXTENDTOEDGE, 200);
emptysw == esw__createtoolsubwin&ow(tool, "emptysw”,
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE);
/+ |

* Setup gfx window environment value.
+/
win_fdtoname({emptysw- >ts_windowfd, name);
we_setgfxwindow(name);
/ *
* Install tool in tree of windows
s/
signal(SIGWINCH, sigwinchcatcher);
signal(SIGCHLD, sigchldcatcher);
tool_instali(tool);
/ *
* Start tty process
of
if (ttysw_fork(ttysw->ts_data, + + argv, &ttysw->ts_jo.tio_inputmask,
&ttysw->ts_jo.tio_outputmask, &ttysw- >ts_jo.tio_exceptmask) == -1) {
perror(” gfxtool");
exit(1);

/t

* Handle input

o

tool_select(tool, 1 /+ means wait for child process to die+/);
&5
* Cleanup
*
tool_destroy(tool);
exit({0});

zi'gchklcatchet()

static

tool_sigchld(tool);

sigwinchcatcher()

tool_sigwinch(tool);

- 97 -

10.2. panetool.c Code

- 98 -

ftifndef lint
static char scesid[] = " @(#)panetool.c 1.8 83/10/18 Sun Micro”;
#endif

[+
+ Sun Microsystems, Inc.

¢/

/*

* Overview: Pane Tool: Sample program to illustrate multlple
* subwindows.

+/

#include <sys/types.h>

#include <sys/time.h>

#include <signal.h>

#tinclude " pixrect/pixrect.h”
#include " pixrect/pixfont.h”
#include "sunwindow [rect.h”
#include "sunwindow [rectlist.h”
#include "sunwindow /pixwin.h”
#include "sunwindow /win_input.h”
#include "sunwindow /win_struct.h”
#include "suntool/icon.h”

#include "suntool/tool.h”

#include "suntool/msgsw.h”
#include "suntool/menu.h”

static int sigwinchcatcher();
static struct tool *tool;
static char charbuf[4];

struct menuitem m3_jtems[] = { MENU_IMAGESTRING, "Menu Item” , 0};
struct menu m3_menubody = {
MENU_IMAGESTRING, "M3", slzeof(m3_Jtems) | sizeof(struct menmtem), m3_jtes)
struct menuitem m2_jtems[] = { MENU_IMAGESTRING, "Menu Item”, 0};
struct menu m2_menubody = {
MENU_IMAGESTRING, "M2”, sizeof(m2 _;tems) [sizeof(struct menuitem),
m2_jtems, £m3_menubody, 0};
struct menuitem m1_jtems]] = { MENU_IMAGESTRING, "Menu Item”, 0};
struct menu ml_menubody = {
MENU_IMAGESTRING, "M1”, sizeof(m1 xtems) / sizeof(struct menuitem),
mi_items, &m2 menubody, 0};
struct menu *stacklmenutop = &ml_menubody;

struct menuitem m4_items[] = { MENU_IMAGESTRING, "Menu Item”, 0};
struct menu m4_menubody = {
MENU_IMAGESTRING, "M4”, sizeof(m4_items) / slzeof(struct menuitem),

struct
struct

struct
struct

struct
int

- 100 -

m4_items, 0, 0 }; @
menuitem m5_items[] = { MENU_IMAGESTRING, "Menu Item”, 0}; S
menu m5_menubody = {

MENU_IMAGESTRING, "M5”, sizeof(m5_items) / sizeof(struct menuitem),

m5_jtems, &m4_menubody, 0};
menuitem m6_jtems[] = { MENU_IMAGESTRING, "Menu Item” ,0};
menu m6_menubody = {

MENU_IMAGESTRING, "M8", sizeof(m6_items) / sizeof(struct menuitem),

m6_items, £m5_menubody, 0};
menu *stack2menutop = &m6_menubody;
menutoggle;

main(arge, argv)

int argc;
char **argv;

char *toolname = "Pane Tool 1.0 (A sample tool)”;
struct toolsw *paneNW, *paneNE, *paneSW, *paneSE;
extern struct pixfont *pf_sys;

/*

+ Create tool window

J) .
tool = tool_create(toolname, TOOL_NAMESTRIPE|TOOL_BOUNDARYMGR, ey

(struct rect *) 0, (struct icon #) 0); @

/* ‘

+ Create msg subwindows

+/

paneNW = msgsw_createtoolsubwindow(tool, " paneNW”,
100, 100, "Raw keyboard input”, pf_sys);
paneNE = msgsw_createtoolsubwindow(tool, " paneNE",
TOOL_SWEXTENDTOEDGE, 100,
"Key input here redirected to NW subwindow”, pf_sys);
paneSW = msgsw_createtoolsubwindow(tool, " paneSW”,
100, TOOL_SWEXTENDTOEDGE, "Display alternating menu stacks”,pf_sys);
paneSE = msgsw_createtoolsubwindow(tool, ” paneSE”,
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE,
”Try moving subwindow boundaries”, pf_sys);
/*
+ Raw input and flushing
+/
{

struct inputmask im;

int paneNW_selected();

input_imnull(&im);

im.im_flags |= IM_UNENCODED; -
win_setinputmask(paneNW->ts_windowfd, &im, &im, WIN_NULLLINK); ;
paneNW->ts_jo.tio_selected = paneNW_selected; @

}

- 101 -

/*

*+ Input redirection
+/

{

struct inputmask im;

win_getinputmask(paneNE- >ts_windowfd, &im, 0);
win_setinputmask(paneNE- >ts_windowfd, &im, (struct inputmask +) 0,
win_fdtonumber(paneNW->ts_windowfd));

/*

*+ Multi menu stacks

+/

{ .

struct inputmask im;

int paneSW_selected();

input_imnull(&im);

win_setinputcodebit(&im, MENU_BUT);
win_setinputmask(paneSW->ts_windowfd, &im, &im, WIN_NULLLINK);
paneSW->ts_jo.tio_selected = paneSW_selected;

}
/ *
* Install tool in tree of windows
+/
signal(SIGWINCH, sigwinchcatcher);
tool_install(tool);
*

+ Handle input
+/
tool_select(tool, 0);
/ *
* Cleanup
+/
tool_destroy(tool);
exit(0);

}

paneNW _selected(msgsw, ibits, obits, ebits, timer)
struct msgsubwindow *msgsw;
int *ibits, *obits, *ebits;
struct timeval *+timer;

struct inputevent event;
int error;

error = input_readevent(msgsw- >msg_windowfd, &event);
if (error < 0) { ‘
perror(” panetool”);
return;

}

- 102 -

charbuf[0] = 'c’; .

charbufl] = ":;

charbuf[2] = (char) event.ie_code&0X7f;
charbuff3] ="' B
msgsw_setstring(msgsw, charbuf);

*ibits = *obits + #*ebits + 0;

paneSW_selected(msgsw, ibits, obits, ebits, timer)

}

static

struct msgsubwindow *msgsw;
int *ibits, *obits, *ebits;
struct timeval **timer;

struct inputevent event;
int error;
extern struct menuitem *menu_display();

error = input_readevent(msgsw- >msg_window{d, &event);
if (error < 0) {
perror(” panetool”);
return;
)
(void) menu_display((menutoggle)? &stacklmenutop: &stack2menutop,
&event, msgsw->msg_windowfd);
menutoggle = !menutoggle;
*ibits = *obits + #*ebits + 0;

sigwinchcatcher()

tool_sigwinch(tool);

- 103 -

11. APPENDIX C: SAMPLE GRAPHICS PROGRAMS

These are sample graphics programs that can be used as starting points for graphics programs
of your own. The source files for these and other graphics demos are found on
[usr/suntoolf src/ +demo.c.

11.1. bouncedemo.c Code

- 104 -

#ifndef lint
static char sccsid[] = " G(#)bouncedemo.c 1.5 83/08/26 Sun Micro”;

#endif

/* /

+ Sun Microsystems, Inc.

+/
/ *

* Overview: Bouncing ball demo in window

*/

#include <sys/types.h>
#include " pixrect/pixrect.h”
#include "sunwindow /rect.h”
#include "sunwindow /rectlist.h”
#include "sunwindow /pixwin.h”
#include "suntool /gfxsw.h”

main(arge, argv)
int arge;
char *+argv;

short x, y, vx, vy, z, ylastcount, ylast;

short Xmax, Ymax, size;

struct rect rect;

struct gfxsubwindow *gfx = gfxsw_init(0, argv);

Restart:
win_getsize{gfx->gfx_windowfd, &rect);
Xmax = rect_right(&rect);
Ymax == rect_bottom(&rect);
if (Xmax < Ymax)
size = Xmax/29+ I;
else : '
size = Ymax/29+ 1;
x=rect.r_left;
y=rect.r_top;
vx==4;
vy==0;
ylast=0;
ylastcount=0;
pw_writebackground(gfx- > gfx_pixwin, 0, 0, rect.r_width, rect.r_height,
PIX_SRC);
while (gfx->gfx_reps) {
if (gfx->gfx_flags& GFX_DAMAGED)
gfxsw_handlesigwinch(gfx);
if (gfx->gfx_flags& GFX_RESTART) {
gfx->gfx_flags &= "GFX_RESTART;
goto Restart;

Reset:

- 105 -

if (y==ylast) {

if (ylastcount+ + > 5)

goto Reset;

} else {

ylast =y;

ylastcount = 0;
} :
pw_writebackground(gfx->gfx_pixwin, x, y, size, size,

PIX_NOT(PIX_DST));
x=x+ vX;
if (x>(Xmax-size)) {
&

*+ Bounce off the right edge
+/
x=2#(Xmax-size)-x;
VX= -VX;
} else if (x <rect.r_Jeft) {
/*

*+ bounce off the left edge
+/
X== -X;
vX==-vX;
}
vy=vy+1l;
y=y-+ vy;
if (y>=(Ymax-size)) {
/*

*+ bounce off the bottom edge
s/ »
y=Ymax-size;
if (vy <size)
vy=l-vy;
else
vy=vy [size - vy;
if (vy==0)
goto Reset;
} .
for (2==0; 2<=1000; z+ +);
continue;

if (—gfx->gfx_reps <= 0)
break;

x==rect.r_left;

Y=rect.r_top;

vx==4;

ylast=0;
ylastcount=0;

gfxsw_done(gfx);

- 106 -

- 107 -

11.2. framedemo.c Code

©

- 108 -

#ifndef lint
static char sccsid[] = "@(#)framedemo.c 1.7 83/09/30 Sun Micro”;

#endif

*

/* Sun Microsystems, Inc.

+/
/*

* Overview: Frame displayer in windows. Reads in all the
files of form "frame.xxx” in working directory &
displays them like a movie.

* See constants below for limits.

+/

#include <stdio.h>

* ffinclude <sys/types.h>

#include <sys/fileh>

#include <sys/time.h>

#tinclude " pixrect/pixrect.h”
#include " pixrect/pr_util.h”
#include " pixrect/bwlvar.h”
#include " pixrect/memvar.h”
#include "sunwindow /rect.h”
#include "sunwindow [rectlist.h”
#include "sunwindow /pixwin.h”
#include "sunwindow /win_input.h”
#include "sunwindow /win_struct.h”
#include "suntool/gfxsw.h”

#define MAXFRAMES 1000
#tdefine FRAMEWIDTH 256
##define FRAMEHEIGHT 256
##define USEC_INC 50000
#fdefine SEC_INC 1

static struct pixrect *mpr{MAXFRAMES];

static struct timeval timeout = {SEC_INC,USEC_INC}, timeleft;
static char s[] = "frame.xxx”;

static struct gfxsubwindow #gfx;

static int frames, framenum, ximage, yimage;

static struct rect rect;

main(arge, argv)
int arge;
char *sargv;

int fd, framedemo_selected();
struct inputmask im;

}

-109 -

for (frames = 0; frames < MAXFRAMES; frames+ +) {
sprintf(&s[6], "%d”, frames + 1);
fd = open(s, O_RDONLY, 0);
if (fd ==-1) {
break;

}
mpr{frames] = mem_create{(FRAMEWIDTH, FRAMEHEIGHT,

read(fd, mpr_d(mpr{frames]} >md_jmage,
FRAMEWIDTH+FRAMEHEIGHT/8);
close(fd);

if (frames == 0) {
printf(” Couldn't find any 'frame.xx’ files in working directory0); -
return; .

}
/*

+ Initialize gfxsw ("take over” kind)

+/
gfx = gfxsw_init{0, argv);
/ *

* Set up input mask

+/
input_imnull(&im);
im.im_flags |= IM_ASCII;
win_setinputmask(gfx->gfx_windowfd, &£im, &im, WIN_NULLLINK);
/ *

* Main loop

+/
framedemo_nextframe(1);

timeleft = timeout;

gfxsw_select(gfx, framedemo_selected, 0, 0, 0, &timeleft);

/*

* Cleanup

s/
gfxsw_done(gfx);

framedemo_selected(gfx, ibits, obits, ebits, timer)

struct gfxsubwindow *gfx;
int +ibits, *obits, sebits;
struct timeval **timer;

if ((*timer && ((*timer)->tv_sec == 0) &£& ((+timer)} >tv_usec ==
(gfx->gfx_flags & GFX_RESTART)) {
%

* Our timer expired or restart is true so show next frame
*
if (gfx->gfx_reps)
framedemo_nextframe(0);
else

1);

oyl

-110 -

gfxsw_selectdone(gfx);

} ,
if (*ibits & (1 < < gfx->gfx_windowfd)) {
struct inputevent event;

* f
*+ Read input from window
*
if (input_readevent(gfx->gfx_windowfd, &event)) {
perror(”framedemo”);
return;

switch (event.ie_code) {
case 'f": [+ faster usec timeout */
if (timeout.tv_usec >= USEC_INC)
timeout.tv_usec -= USEC_INC;
else {
if (timeout.tv_sec >= SEC_INC) {
timeout.tv_sec -=— SEC_INC;
timeout.tv_usec = 1000000-USEC_INC;

}
break;

case 's’: [+ slower usec timeout */ ‘ @ ;
if (timeout.tv_usec < 1000000-USEC_INC)
timeout.tv_usec + = USEC_INC;
else {
timeout.tv_usec = 0;
timeout.tv_sec + == 1;
}
break;
case 'F’: [+ faster sec timeout */
if (timeout.tv_sec >= SEC_INC)
timeout.tv_sec -= SEC_INC;
break;
case 'S’: [+ slower sec timeout */
timeout.tv_sec + = SEC_INC;
break; !
case '?": [+ Help */
printf(”’s’ slower usec timeoutOf’ faster usec timeout0S’ slower sec timeotf
/*
* Don't reset timeout
+/
return;

default: {}

*ibits = *obits = #ebits = 0; ' @
timeleft = timeout;
*timer = &timeleft;

- 111 -

}

framedemo_nextframe(firsttime)
int firsttime;

int restarting = gfx->gfx_flags& GFX_RESTART;

if (firsttime || restarting) {
gfx->gfx_flags &= "GFX_RESTART;
win_getsize(gfx->gfx_windowfd, &rect);
ximage = rect.r_width/2-FRAMEWIDTH/?2;
yimage = rect.r_height/2-FRAMEHEIGHT/?2;
pw_writebackground(gfx->gfx_pixwin, 0, 0,

rect.r_width, rect.r_height, PIX_CLR);

)

if (framenum >= frames) {
framenum = 0;

. gfx->gfx_reps—;

pw_write(gfx->gfx_pixwin, ximage, yimage, FRAMEWIDTH, FRAMEHEIGHT,
PIX_SRC, mpr{framenum)], 0, 0);
if ('restarting)
framenum+ + ;

-112 -

12. APPENDIX D: PROGRAMMING NOTES

Here are useful hints for programmers that use any of the pixrect, sunwindow or suntool
libraries.

12.1. What Is Supported?

The code is the ultimate description of what programs actually do, but the documentation is
the description of what is supported. Client programmers who use facilities discovered in
header files or through the grapevine may have useful applications running much sconer than it
they operated by the book; but they do so at the risk of having their work invalidated™™

In early releases such as this, there may be significant discrepancies between the design (and the
documentation derived from it), and what is act\ially implemented. In general, we have tried to
indicate where features are only partially implemented, and in which directions future exten-
'sions may be expected.

Even in completed portions of the system, the possibility remains that even defined interfaces
will change in response to new requirements or newly-discovered constraints. Such
modifications will not be undertaken lightly, and should generally be accompanied by a descrip-
tion of the nature of the changes, and appropriate responses to them.

12.2. Program By Example

We recommend that you try to program by example whenever possible. Take an existing pro-
gram similar to what you need and modify it. Appendix B contains some sample tools and
Appendix C contains some sample graphics programs. The source for these and other sample
tools and graphics programs are available on [usr/suntoolfsrc/ .c.

12.3. Header Files Needed

It can sometimes be hard to find the header files needed to compile your program. This can be
particularly hard in the window system because of the multiple layers of software and the large
numbers of header files. Programming by example helps in some respects because a lot of

header files are included already.

To alleviate the problem a bit, certain header files exist that include most of the header files
necessary for working at a certain level. These header files are:

o [usr/include/ pizrect/pizrect_hs.h - include this header file if you are working at the
pixrect display primitives layer. 7

o [usr/include/ sunwindow/ window_hs.h - include this header file if you are working at
the sunwindow basic window facilities layer. This will include headers needed to
work at the pixrect layer as well.

e [usr/include/ suntool/tool_hs.h - include this header file if you are working with the
suntool tool building facilities. This will include headers needed to work at the more
primitive layers as well.

-

©

- 113 -

o [usr/include/ suntool gfz_hs.h - include this header file if you are working with the
suntool (standalone or "take over”) graphics subwindow facilities. This will include
headers needed to work at the more primitive layers as well.

The idea is to include only one of the above header files plus whatever extra header files you
need. In particular, you'll need to add the header file for each subwindow type that you use,
the menu header file if you use menus, the selection header file if you are going to use selections,
etc. However, you'll probably only have to add a single header file for each additional incre-
ment of high level functionality.

12.4. Lint Libraries

You can do better type-checking than the C compiler and catch argument mismatches in your
program by running lint over your program source. The Sun window system provides lint
libraries to allow you to do this. Llib-Ipszrect, lUsb-lsunwindow, and {lib-lsuntool are the source
files to make the actual binary lint libraries: Uib-Ipizrect.in, lhb-launwmdow in, and Usb-
lsuntool.ln. These files are found on [usr/lib/lint/.

12.5. Library Loading Order
When loading programs remember to load higher level libraries ﬁrst i.e. -lsuntool -lsunwindow

“-Iptzrect.

12.6. Shared Text

The tools released with suntools rely on text sharing to reduce the memory working set. This is
accomplished by placing the entire collection of tools in a single object file. This has the effect
of letting each separate process share the same object code in memory. With many windows
active at once this can achieve significant memory savings.

There are trade-offs using this approach. The main one is that the maximum number of per-
process (non-sharable) initial data pages tends to be larger. However, the paged virtual memory
tends to reduce the effect of this by only having the working set paged in.

The upshot of this discussion is that you may want to either add the tools that you create to
the released shared object file or to bundle a few tools together into their own object file.

12.7. Error Message Decoding

The default error reporting scheme described at the end of Window Manspulation prints out a
long hex number which is the soctl number associated with the error. You can turn this number
into a more meaningful operation name by:

e turning the two least significant digits into a decimal number;
e searching /usr/include/ sunwindow/ win_soctl.k for occurrences of this number; and

-114 -

e noting the ioctl operation associated with this number.

Doing this can give you a quick hmt as to what is being complained about without resorting to
a debugger.

12.8. Debugging Hints

When debugging non-terminal oriented programs in the window system there are some things
that you should know to make things easier.

First, the program being debugged breaks to adb when a signal is received. This can be annoy-
ing with window programs because SIGWINCH is used to notify windows of certain changes in
its state. Adb, however, has a way of disabling breaking to the debugger when a particular sig-
nal is received. To disable this, type " 1c:i” followed by RETURN. 1c is the hex number for 28
which is SIGWINCH's number. Re-enable sngnal breakmg by typing "1c:t” followed by return.

Another window system specific situation is that various forms of locking are done that can get
in the way of smooth debugging while working at low levels of the system. There are variables
in the sunwindow library that disable actual locking; these can be turned on from a debugger:

o int pszwindebug - When not zero will immediately release the display lock after locking
so that the debugger is not continually getting hung by being blocked on writes to
screen. Display garbage can result because of this action.

e int win_lockdatadebug - When not zero will not acquire data lock so that the debugger
is not continually getting hung by being blocked on writes to screen. Unpredictable
things can result because of this action that can’t properly be described in this con-
text. However, this is unlikely.

o int win_grabiodebug - When not zero will not actually acquire exclusive io access
rights so that the debugger wouldn't get hung by being blocked on writes to screen
and not able to receive input. The debugged process will only be able to do normal
display locking and be able to only get input in the normal way.

Change these variables only during debugging, when not changing them becomes a problem and
when you know what you're doing!

12.9. Sufficient User Memory

To use the suntool environment comfortably with the released set of tools requlres about 600K
of user memory after booting UNIX. Comfort means acceptable response from vi while make is
running a compilation in another window for example. This is achievable in the current 0.9
release on model 100U’s with 1 megabyte of memory. You have to reconfigure your own kernel,
deleting unused device drivers. The procedure is documented in the System Manager’s Manual.
For a workstation on the network with a single disk drive you will be able to reclaim about 60K
of usable memory.

The recommended amount of memory is 2 megabytes. This gives excellent performance with

room to accommodate future releases.

%
|

13. INDEX

- 115 -

The following index provides references to
programming variables, constants, types,
macros, programs, and function and pro-
cedure names used in the Sun window sys-
tem. It gives section numbers where the
best documentation of the term may be

found.

adb

ASCII_FIRST
ASCII_LAST

batchitem

bool

bouncedemo.c

BUT(i)

BUT_#

coord

cursor
CUR_MAXIMAGEWORDS
emacs

emptysubwindow

errors
esw_createtoolsubwindow
esw_done
esw_handlesigwinch
esw_init
EWOULDBLOCK
FALSE
FBTYPE_SUN1BW
FBTYPE_SUN2BW
foosubwindow
foosw_createtoolsubwindow
foosw_done
foosw_handlesigwinch
foosw_init
foosw_selected
framedemo.c

fsglobal

fullscreen
fullscreen_destroy
fullscreen_init
gfxsw_createtoolsubwindow
gfxsw_done
gfxsw_getretained
gfxsw_handlesigwinch
gfxsw_init
gfxsw_interpretesigwinch
gixsw_select

12.8.
5.1.2.1.
5.1.2.1.
2.2.4.
9.1.1.
11.1
5.1.2.2.
5.4.
9.1.
48.1.
48.1.
7.6.1.
7.2.
12.7.
7.2.
7.2.
7.2.
7.2.
5.2.
9.1.1.
47

47
7.1.
7.1.
7.1.
7.1.
7.1.
7.1.
11.2

.8.1.

8.1.

8.1.

8.1.

7.3.1.
7.3.1.
73.1.
7.3.1.
7.3.2.
73.1.
7.3.2.

gixsw_selectdone
gfxtool.c
GFX_DAMAGED
GFX_RESTART
graphicssubwindow
icon
ICON_BKGRDCLR
ICON_BKGRDGRY
ICON_BKGRDPAT
ICON_BKGRDSET
icon_display
IE_NEGEVENT
IM_ANSI

IM_ASCII
IM_CODEARRAYSIZE
IM_META
IM_NEGEVENT
IM_POSASCI
IM_SHIFTARRAYSIZE
IM_TEXT
IM_TEXTVEC
IM_UNENCODED
IM_UNKNOWN
inputevent
inputmask
input_imnull
input_readevent
KEY_»

Id

lint

LOC_ s
LOC_MOVE
LOC_STILL

.LOC_WINENTER

LOC_WINEXIT
max

memory
mem_ops

menu
menuitem
menu_display
MENU_IMAGESTRING
menu_prompt
META_FIRST
META_LAST
min

more

mpr_data
mpr_static

7.3.2.
10.1
7.3.
7.3.
7.3.
8.2.
8.2.
8.2.
8.2.
8.2.
8.2.
5.1.3.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
5.3.1.
7.5.
7.5.
5.3.1.
7.5.
5.1.1.
5.3.1.
5.3.1.
5.2.
5.4.
12.5.
12.4.
5.4.
5.1.2.3.
5.1.2.3.
5.1.2.3.
5.1.2.3.
9.1.1.
12.9.
24.1.
8.3.
83.
8.3.
8.3.
8.3.1.
5.1.2.1.
5.1.2.1.
9.1.1.
7.6.1.
2.4.2.
2.4.3.

msgsubwindow
msgsw_createtoolsubwindow
'msgsw_display
msgsw_done
msgsw_handlesigwinch
msgsw_init
msgsw_setstring
MS_LEFT
MS_MIDDLE
MS_RIGHT
optsw_bool
optsw_coltox
optsw_command
optsw_createtoolsubwindow
optsw_done
optsw_dumpitem
optsw_dumpsw
optsw_enum
optsw_getvalue
optsw_handlesigwinch
optsw_init
optsw_linetoy
optsw_selected
optsw_setplace
optsw_setvalue
opt_item

panetool.c

pf_default

pf_open

pf_text

pf_textbatch
pf_textwidth

pixchar

pixfont

pixrect

pixrectops
pixrect_hs.h

pixwin

pixwindebug
pixwin_clipdata

- pixwin_clipops
pixwin_prlist
PIX_CLR
PIX_DONTCLIP
PIX_DST

PIX_NOT

PIX_SET

PIX_SRC

prompt
PROMPT_FLEXIBLE

7.4.
74.
74.
74.
74.
7.4.
74.
5.4.
5.4.
5.4.
7.5.2.1.
7.5.3.
75.2.2.
7.5.1.
7.5.1.
7.5.6.
7.5.6.
7.5.2.3.
7.5.5.

7581

7.5.1.
7.5.3.
7.561 .
7.5.3.
7.5.5. .
7.5.
10.1
2.5.2.
2.5.2.
2.5.3.
2.53.
2.5.3.
2.5.1.
2.5.1.
2.1.3.
2.2.
12.3.
3.2.2.
12.8.
3.2.3.
3.2.4.
3.2.3.

2.2.5.1.
2.2.5.2.
2.25.1.
2.2.5.1.
2.2.5.1.
2.2.5.1.

8.3.1.
8.3.1.

-116 -

prs_batchrop
prs_close
prs_create
prs_destroy
prs_get

prs_open
prs_put
prs_region
prs_rop
pr_batchrop
pr_create
pr_destroy
pr_get

pr_height

pr_pos

pr_prpos

pr_put

pr_region
pr_replrop
pr_reversedst
pr_reversesrc
pr_rop

pr_size
pr_subregion
pr_vector
pr_vyector
pr_width
PWCD_MULTIRECTS
PWCD_NULL
PWCD_SINGLERECT
PWCD_USERDEFINE
pw_char
pw_close
pw_copy
pw_damaged
pw_donedamaged
pw_exposed
pw_lock
pw_open

pw_put

pw_read
pw_replrop
pw_reset
pw_text
pw_unlock
pw_vector
pw_write
pw_writebackground
rect

rectlist

2.2.4.
2.2.2

2.2.1.
2.2.2.
2.2.6.
221

2.2.7.
2.2.9.
2.2.3.
2.24.
2.2.1.
2.2.2.

© 2.2.8.

2.1.3.
2.1.2. -
2.1.2.
2.2.79.
2.2.9.
2.3.1.
2.2.5.3.
2.253.
2.2.3.
2.1.2.
2.1.2.
2.2.8.
2.2.8.
2.13.
3.2.3.

- 3.2.3.

3.2.3.
3.23.
3.0.1.
3.3.

3.5.2
3.8.1.
3.8.1.
3.4.2.
34.1.
3.3.

3.5.1.
3.5.2.
3.5.1.
3.4.1.
3.5.1.
3.4.1.
3.5.1.
3.5.1.
3.5.1.
9.1.

9.2.

rectnode
RECTS_BOTTOMTOTOP
RECTS_LEFTTORIGHT
RECTS_RIGHTTOLEFT
RECTS_SORTS
RECTS_TOPTOBOTTOM
RECTS_UNSORTED
rect_bottom
rect_bounding
rect_clipvector
rect_construct
rect_equal
rect_includespoint
rect_includesrect
rect_intersection
rect_intersectsrect
rect_isnull
rect_marginadjust
rect_null

rect_order
rect_passtochild
rect_passtoparent
rect_right
rl_boundintersectsrect
rl_coalesce
rl_coordoffest

rl_copy

rl_difference

rl_empty

rl_equal

rl_equalrect

rl_free
rl_includespoint
rl_initwithrect
rl_intersection
rl_normalize

rl_null

rl_passtochild
rl_passtoparent
ri_rectdifference
rl_rectintersection
rl_rectoffset
rl_rectunion

rl_sort

rl_union

screen

SCR_EAST
SCR_NAMESIZE
SCR_NORTH
SCR_POSITIONS

9.2,

9.1.2.
9.1.2.
9.1.2.
9.1.2.
9.1.2.
9.1.2.
9.1.1.
9.1.2.
9.1.2.
9.1.1.
9.1.1.
9.1.1.
9.1.1.
9.1.2.
9.1.1.
9.1.1.
9.1.1.
9.1.2.
9.1.2.
9.1.1.
9.1.1.
9.1.1.
9.2.2.
9.2.2.
9.2.1.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.2.
9.2.1.
9.2.1.
9.2.2.
9.2.2.
9.2.1.
9.2.2.
9.2.2.
9.2.2.

4.7.
4.7.
4.7.
4.7.
4.7.

- 117 -

SCR_SOUTH
SCR_SUNI1BW
SCR_WEST

selection

selection_clear
selection_get
selection_set
SELTYPE_CHAR
SELTYPE_NULL
sel_clear

sel_read

sel_write

sharedtext

SHIFT

SIGCHLD

SIGXCPU

termcap

TIOCGSIZE
TIOCSSIZE
tio_handlesigwinch
tio_selected

tool

toolio

toolsw
tool_borderwidth
TOOL_BOUNDARYMGR
tool_create
tool_createsubwindow
tool_destroy
tool_destroysubwindow
tool_display
TOOL_DONE
tool_done

tool_hs.h
TOOL_ICON+
TOOL_ICONIC
tool_install
TOOL_NAMESTRIPE
tool_select
TOOL_SIGCHLD
tool_sigchld
tool_sigwinch
TOOL_SIGWINCHPENDING
tool_stripeheight
tool_subwindowspacing
TOOL_SWEXTENDTOEDGE
TRUE

ttysubwindow
ttysw_becomeconsole
ttysw_createtoolsubwindow

4.7.
4.7.
4.7.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
8.4.
12.6.
5.4.
6.2.2.
4.4.3.
76.1.
7.6.1.
7.6.1.
6.3.1.
6.3.1.
6.2.4.
6.3.1.
6.2.5.
6.2.6.
6.2.3.
6.2.3.
6.2.5.
6.2.9.
6.2.9.
6.3.5.
6.2.4.
6.3.6.
12.3.
8.2.
6.2.4.
6.2.8.
6.2.3.
6.3.
8.2.4.
6.3.4.
6.3.3.
6.2.4.
6.2.6.
6.2.6.
6.2.5.
9.1.1.
7.6.
7.8.
7.6.

ttysw_done
ttysw_fork
ttysw_handlesigwinch
ttysw_init
ttysw_selected
typed_pair

vi

VKEY_x
VKEY_CODES
VKEY_FIRST
VKEY_FIRSTPSEUDO
VKEY_LAST
VKEY_LASTFUNC
VKEY_LASTPSEUDO
we_clearinitdata
we_getgfxwindow
we_getinitdata
we_getparentwindow
we_setgfxwindow
we_setinitdata
we_setmywindow
we_setparentwindow
WINDOW_GFX
window_hs.h
WINDOW_INITIALDATA
WINDOW_ME
WINDOW_PARENT
win_computeclipping
win_error
win_errorhandler
win_fdtoname
win_fdtonumber
win_findintersect
win_getcursor
win_getheight
win_getinputmask
win_getlink
win_getnewwindow
win_getowner
win_getrect
win_getsavedrect
win_getsize
win_getuserflags
win_getwidth
win_grabio
win_grabiodebug
win_inputcodebit
win_inputnegevent
win_inputposevent
win_insert

7.6.
7.8.
7.6.
7.6.
7.6.
7.5.
76.1.
5.4.
5.1.2.
5.1.2.
5.1.2.3.
5.1.2.
5.1.2.2.
5.1.2.3.
6.2.1.
4.9.1.
6.2.1.
6.2.1.
4.9.1.
6.2.1.
7.6.1.
6.2.1.
4.9.1.
12.3.
6.2.1.
7.8.1.
6.2.1.
4.6.
4.10.
4.10.
4.2.3.
4.2.3.
4.8.2.
4.8.1.
4.3.
5.3.1.
4.4.1.
4.2.1.
4.9.2.
4.3.
4.3.
4.3.
4.5.
4.3.
5.3.2.
12.8.
5.3.1.
5.1.3.
5.1.3.
4.4.2.

-118 -

win_lockdata
win_Jockdatadebug
WIN_NAMESIZE
win_nametonumber
win_nextfree
WIN_NULLLINK
win_numbertoname
win_partialrepair
win_releaseio
win_remove
win_screendestroy
win_screenget
win_screennew
win_screenpositions
win_setcursor
win_setinputcodebit
win_setinputmask
win_setlink
win_setmouseposition
win_setowner
win_setrect
win_setsavedrect
win_setuserflag
win_setuserflags
win_unlockdata
WL_BOTTOMCHILD
WL_COVERED
WL_COVERING
WL_ENCLOSING
WL_OLDERSIB
WL_OLDESTCHILD
WL_PARENT
WL_TOPCHILD
WL_YOUNGERSIB
WL _YOUNGERSIB
WL_YOUNGEST
wmgr_changelevel
wmgr_changelevelonly
wmgr_changestate
wmgr_completechangerect
wmgr_figureiconrect
wmgr_figuretoolrect
wmgr_forktool
WMGR _ICONIC
wmgr_iswindowopen
wmgr_refreshwindow
WMGR_SETPOS
wmgr_winandchildrenexposed
WUF_WMGRI1

4.4.3.

12.8.
4.2.3.
4.2.3.
4.2.1.
4.2.1.
4.2.3.
4.6.
5.3.2.
4.43.
4.7.

- 4.7.

47.
47.
48.1.
5.3.1.
5.3.1.
44.1.
4.8.2.
49.2.
43.
43.
4.5.
4.5.
4.43.
4.4.1.
4.4.1.
441.
44.1.
44.1.
4.4.1.
4.4.1.
44.1.
44.1.
4.4.1.
44.1.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.
8.5.

READER COMMENT SHEET

Dear Customer,

We who work here at Sun Microsystems wish to provide the best possible documentation for our
products. To this end, we solicit your comments on this manual. We would appreciate your tel-
ling us about errors in the content of the manual, and about any material which you feel should
be there but isn’t.

Typographical Errors:
Please list typographical Errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content: :
Did this guide meet your needs? If not, please indicate what you think should be added
or deleted in order to do so. Please comment on any material which you feel should be
present but is not. Is there material which is in other manuals, but would be more con-
venient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful? If not, how would you rearrange
things? Do you find the style of this manual pleasing or irritating? What would you like
to see different? .

