
TI Part #2243724-0001 

NaturalLink(TM) Technology Package 2.0 
Window Manager Update and Release Information 

This document is divided into two sections. The first 
section contains update information for users of version 1.75 of 
the NaturalLink Window Manager software. This section briefly 
describes the enhancements added to version 2.0 and any changes 
you must make before using this version. 

The second section contains release information and 
information about version 2.0 of Window Manager and its utilities 
not found in the manual. 

NaturalLink is a trademark of Texas Instruments Incorporated. 

This Document: 2243685-0001 



Update Information 

SECTION 1 

Update Information 

1.1 Compatibility Between Versions 2.0 and 1.75 

Applications written for version 1.75 of Window Manager are 
compatible with version 2.0. No source code needs to be changed. 
However, you MUST recompile your source with the new include 
files for the language you are using, because the attribute 
constant values have changed. Once your source is recompiled, 
just relink your program using the new link stream instructions 
found in the appendix for the language you are using. 

1.2 Multiple Machine Support 

Version 2.0 of Window Manager has been tested and verified 
to run on the following computers. 

Texas Instruments 

BUSINESS-PRO(TM) Computer (both modes) 
Professional Computer 
Portable Professional Computer 
PRO-LITE(TM) Computer 

IBM(R) 

IBM PC 
IBM PC/XT(TM) 
IBM Personal Computer AT(TM) 

BUSINESS-PRO and PRO-LITE are trademarks of Texas Instruments 
Incorporated. 
IBM is a registered trademark and IBM PC/XT and IBM Personal 
Computer AT are trademarks of International Business Machines 
Corporation. 

Copyright (c) 1985, TI 1-1 2243685-0001 



Update Information 

Both the utilities and the runtime object code run on all of 
the mentioned machines except the PRO-LITE without any special 
modifications. Only the runtime runs on the PRO-LITE. An 
application developed and linked on the TI machines will run on 
the IBM machines without re-linking. The NaturalLink code 
detects which machine it is being run on and automatically makes 
changes specific to the machine. 

1.3 Full MS(TM)-DOS 2.0/3.0 Support 

Window Manager now completely supports the MS-DOS 2.0/3.0 
operating system. Both the runtime and the utilities accept full 
DOS 2.0 pathnames. Version 2.0 also permits use of the DOS 
environment variable feature. You can set the environment 
variable NLXTOOLS to the directory where all the support files 
(.PIC, .NM$, and .NS$ files) for the Window Manager utilities 
reside. Using NLXTOOLS and the DOS PATH variable, you can run 
the utilities from any drive and directory on your system. 

1.4 Compiled BASIC Support 

Version 2.0 of Window Manager now provides high-level 
language support for compiled BASIC. All Window Manager function 
calls are supported, enabling you to write Window Manager 
applications in MS-BASIC, compile them using the MS-BASIC 
compiler, and then link and run them. For more information, see 
Appendix G, Compiled BASIC Interface, of the Window Manager 
manual. 

1.5 Edit Field Validation Capabilities 

A new feature has been added to Window Manager edit windows. 
Now, after an edit field has been completed, Window Manager calls 
a validation routine. This validation routine, which the 
developer must provide, checks the information entered by the 
user, issues any necessary messages, and returns to Window 
Manager with the status of the check. Window Manager then 
continues on the basis of the status. See Chapter 7, Application 
Validation Routine, for more details. 

MS is a trademark of Microsoft Corporation. 

2243685-0001 1-2 Copyright (c) 1985, TI 



Update Information 

1.6 User-Defined Windows and Messages 

For special windowing needs not provided for by Window 
Manager, you can now define and control your own windows. User­
defined windows (UDWs) provide a means of displaying data to the 
user and receiving data from the user in ways that Window Manager 
does not. Examples are the display of graphics pictures and 
selection of graphics text, icons, and items from a file. Window 
Manager will call application program routines to handle 
displaying, receiving, and deleting information in these windows. 

A feature related to user-defined windows is user-defined 
messages (UDMs) . These messages are handled much the same way as 
user-defined windows. Whenever Window Manager needs to display a 
user-defined message, an application's routine is called to 
display the message, handle user input, and delete the message. 

See Chapter 8, User-Defined Windows, for an explanation of 
both features. 

1.7 Internal Phrase Editing 

There are many places in the NaturalLink runtime code where 
windows and messages are built at runtime, such as the headings 
and footers for Help messages. Version 2.0 has added a phrase­
editing capability that allows you to modify these internal 
phrases for your specific applications. These phrase 
modifications can be link-time or run time bound. See Chapter 9, 
Internal Phrase Editing, for details. 

1.8 New Attributes 

New window attributes have been added to version 2.0 of 
Window Manager. They are listed here and described in Chapter 3, 
Window Attributes. 

* Window border color/intensity 

* Reverse video window border 

* Window border takes up space 

* Multiple line window labels 

Copyright (c) 1985, TI 1-3 2243685-0001 



Update Information 

* Allow cursor to enter window 

* Message text color/intensity 

* Message border color/intensity 

1.9 Application Input Routine 

By using the new application input routine, you can now 
provide users with an alternative to using the keyboard for input 
to Window Manager applications. This routine is called by Window 
Manager whenever input is desired. Window Manager polls both 
this routine and the keyboard for all its input. See Chapter 10, 
Window Manager Input Devices, for more details. 

1.10 New High-Level Language Calls 

Version .2.0 of the Window Manager runtime includes several 
new calls. For a full explanation of these calls, refer to 
Chapter 6, Window Manager Callable Routines, and the proper 
appendix for the language you are using. 

* DISMSG -- Display Message From Message Manager. This 
call replaces the 1.75 MSGMGR call. The MSGMGR call is 
still supported, but the new call supports any variable 
text separator that you want to use. 

* WMWCRE -- Create Window. This call allows you to create 
new windows at run time. You can add the windows to 
existing screens or create a new screen to hold the new 
window. 

* WMFLSH -- Flush NaturalLink Memory. This call clears 
out the memory space used by the NaturalLink runtime. 

2243685-0001 1-4 Copyright (c) 1985, TI 



Release Information 

SECTION 2 

Release Information 

2.1 High-Level Language Interface 

This paragraph contains information about the high-level 
lanaguage interface in version 2.0 of Window Manager. 

* For all languages that support long integers, it is 
strongly recommended that these integers NOT be used as 
parameters for any Window Manager call. If long 
integers are used, the upper 16 bits are ignored and 
remain unchanged (the same as they were before the call) 
if used as a return parameter. For example, if 
0001 0004 (hexadecimal) were passed, the value used 
would be 4, and if 5 were returned, the result would be 
0001 0005. 

* The heap variable in the files li???sh.asm has a maximum 
memory capacity of 55K bytes (where K equals 1024). The 
??? characters in the module name are determined by the 
language in which your application is written. Please 
ref er to the Memory Considerations section in the 
appropriate appendix (D, E, F, G) of the Window Manager 
manual or to Appendix c, High-Level Language Interface, 
of the Toolkit manual. 

* The calls WMIADD, WMIINS, WMIDEL, WMICRE, WMGETV, 
WMGETS, WMSETV, and WMSETS can be made on windows that 
have not been added. The screen must be loaded, 
however. 

* When using the WMWCRE call, you cannot create windows 
in (add windows to) the message screen or any 
NaturalLink interface screen (screen numbers 20 through 
30). You can add windows only to regular Window Manager 
screens that have been loaded with the WMLOAD call 
(these screens will have screen numbers of o through 
19). Passing in a number of a screen that has not been 
loaded results in the creation of a new screen. An 
alternative method for creating a new screen is to pass 
in -1 as the screen number. 

Copyright (c) 1985, TI 2-1 2243685-0001 



Release Information 

* Do not make a WMFLSH call from any application routine 
(APPDIS, APPRCV, APPVAL, etc.) called by NaturalLink. 
Doing so could lead to a system crash. 

* If you use a window to elicit the value for the Liwmpath 
string variable (wmpath in FORTRAN) and then want to 
load the internal phrase file NLXPHRAS.NM$, you must 
call the WMINIT routine again to load the phrase file. 
There are two reasons for this: first, the WMINIT 
routine must be called before any other Window Manager 
call is made, and second, this routine also loads the 
phrase file. 

* For FORTRAN users, the file WMCINI.OBJ (which must be 
included in your link stream) is shipped in source form 
only. You must compile it with the version of FORTRAN 
you are using before linking your program. 

* To create window labels and items with 80 characters of 
text on a single line, set the attributes Liwlabel 
(wlabel in FORTRAN) and Liittext (ittext in FORTRAN), 
respectively, with a WMSETS call. 

2.2 Handling of Memory Errors 

The following information applies to instances when 
NaturalLink cannot access enough memory to continue processing. 

* If a memory error occurs during a Window Manager call 
while an application routine that was called by Window 
Manager (APPDIS, APPRCV, APPVAL, etc.) is being 
executed, a code of one (1) will be returned to the 
APP??? routine. Be sure to check return codes on all 
Window Manager calls so you can tell if a memory error 
occurs. If a memory error occurs during an APP??? 
routine, do NOT flush memory with the WMFLSH call. 
Simply return immediately from the APP??? routine and 
NaturalLink will automatically flush its memory. 

* If NaturalLink runs out of memory while executing a 
WMICRE, WMIADD, WMIINS, or WMWCRE call, a return code of 
one (1) is returned immediately to the application. The 
application must issue a WMFLSH call if memory is to be 
cleared. For any other Window Manager calls, 
NaturalLink automatically flushes its memory when a 
memory error occurs. After making a WMFLSH call, any 
screens needed must be reloaded. 

2243685-0001 2-2 Copyright (c) 1985, TI 



Release Information 

2.3 Message Attributes 

Four message attributes are not mentioned in the manual. 
These four attributes allow you to set the color/intensity of the 
message window border, message heading, message text, and message 
footer. These attributes are used for all message types and will 
stay the same color until set again. 

The names to use when setting these attributes with the 
WMSETV call follow (FORTRAN users omit the leading LI). These 
names and their constant values are in the respective include 
files for the language you are using. Note that if the message 
heading and message footer color is set to o, then the heading 
and footer are displayed in the same intensity as the message 
text. Also note that when setting these attributes with the 
WMSETV call you do not need to pass in a valid screen, window, 
and item number. 

Limsglin 

Limsgtin 

Limsgf in 

Message heading/label color/intensity 
values o - 7, default O/same as message text 

Message text color/intensity 
values o - 7, default 7/white 

Message footer color/intensity 
values o - 7, default O/same as message text 

Limsgbin -- Message border color/intensity 
values o - 7, default 4/green 

2.4 Message Manager 

After Message Manager has displayed and deleted an error, 
please note, or warning message, it flags the windows covered by 
the message for repainting. The repainting is done the next time 
the application makes a receive call. If you want Message 
Manager to repaint the covered windows immediately, then you must 
set a flag telling it to do so. 

Use the WMSETV call and pass it the field Limsgrep (msgrep 
for FORTRAN users). (You do not need to pass in a valid screen, 
window, and item number when setting this flag.) A value of 1 
indicates that Message Manager should repaint immediately, and a 
value of O means that Message Manager should just flag the 
covered windows for repainting. This flag remains set until 
changed by another WMSETV call. 

Copyright (c) 1985, TI 2-3 2243685-0001 



Release Information 

You must use this flag if you intend to call Message Manager 
from within your application validation routine. Otherwise, the 
screen will not be repainted after a message is deleted. 

2.5 Message Builder/Screen Builder 

When specifying a message in Message Builder or Screen 
Builder, you cannot use line feed characters in the message text. 
Using these characters can cause a crash if you attempt to view 
the message while running the utility. 

2.6 Error Messages 

The following three error messages were left out of Appendix 
H of the manual: 

31 - Multiple window error type: ERROR 

An error or warning was received from a WMWADD, WMWSEL, 
WMWREF, WMWREL, WMWDIS, or WMWDEL call that was passing in 
a -1 for the window number (-1 indicates that the call 
should be applied to all windows in the given screen). This 
error indicates that the call had a problem with one of the 
windows it was dealing with. Either the attributes in the 
window are set wrong, or the window has not been added, or 
the operation had already been performed on that window. 

32 - NLXPHRAS.NM$ file problem type: ERROR 

The NLXPHRAS.NM$ file on your default directory or the 
WMPATH variable is damaged or invalid. Make sure 
that your file is of the correct version and undamaged, 
then restart your program. 

104 - Invalid screen for WMWCRE call type: ERROR 

An attempt was made to create a window with the WMWCRE call 
in an interface screen or the message screen. The window 
was not created. Create the window in an existing Window 
Manager screen or create a new screen. You can create a 
new screen by specifying -1 as the value for the screen 
parameter in the WMWCRE call. 

2243685-0001 2-4 Copyright (c) 1985, TI 



Release Information 

2.7 Other Introductory Information 

The Window Manager manual does not explain how the 
NaturalLink Window Manager is packaged or describe a general 
development scenario. The following paragraphs clarify both of 
these points. 

2.7.1 Packaging. The Window Manager portion of the NaturalLink 
Technology Package is packaged on four diskettes as follows: 

* Window Manager Utilities Diskette A -- This diskette 
contains two utilities: 

Screen Builder An interactive utility that 
permits you to specify a NaturalLink screen's 
appearance and behavior 

Message Builder -- An interactive utility that 
aids in constructing an error/help message file 
for use with the NaturalLink Message Manager 

* Window Manager Utilities Diskette B 
contains two utilities: 

This diskette 

Set Function Keys Utility An interactive 
utility that permits you to specify which keys 
will perform the various Window Manager functions 

Phrase Editing Utility -- An interactive utility 
that allows you to change the internal phrases 
used in the NaturalLink runtime 

* Window Manager Runtime Object Diskette This diskette 
provides you with the object for a set of high-level 
language interface routines and the object code for the 
Window Manager to link in with your application code. 

* Window Manager Demonstration Diskette -- This diskette 
contains an executable Window Manager demonstration 
program and the program's source code for the Lattice(R) 
C ,, MS-Pascal, and MS-BASIC languages. This 
demonstration program illustrates the use of several 
Window Manager features and function calls. A readme 
file included on the diskette explains the demonstration 
program. 

Lattice is a registered trademark of Lattice, Inc. 

Copyright (c) 1985, TI 2-5 2243685-0001 



Release Information 

2.7.2 Window Manager Application Development. A typical Window 
Manager development scenario is as follows: 

1. Copy all Window Manager diskettes onto the Winchester 
drive. (A Winchester disk is not a necessity, but for 
reasons of speed and storage capacity it makes running 
the utilities easier.) A suggestion is to copy the 
support files for the utilities (the .PIC, .NM$, and 
.NS$ files) into one directory and the executable files 
into the same or another directory. Then set the 
environment variable NLXTOOLS to the path of where the 
support files are and put the directory path of the 
executable files in the MS-DOS command search path. 
This allows you to run the utilities from any drive or 
directory on your system. 

2. Create the windows needed for your application using 
the Screen Builder utility (SBUILD) . You can draw your 
windows and the test general functionality of your 
windows inside the Screen Builder utility without 
having to write any code. Screen Builder is described 
in Chapter 4 of the Window Manager manual. 

3. Create the Help messages and other messages needed by 
your application using the Message Builder utility 
(MBUILD) . You can use Message Builder to view each 
message exactly as it will be displayed in your 
application. Message Builder is explained in 
Chapter 5. 

4. Once your Help messages are complete you can attach 
them to the windows and items you have created by using 
the Screen Builder utility. However, it is recommended 
that you not perform this step until you are sure your 
screens are in final form. This is because it is 
easier to attach all the Help messages for a given 
screen at the same time. 

5. Write your application, which calls Window Manager to 
display your windows and receive information from the 
user. Chapter 6 details all the Window Manager calls, 
and a separate appendix for each language supported 
details the language-specific syntax of the calls. 

6. If you want to use function keys that are different 
from the default keys, use the Set Function Keys 
utility (KBUILD) to generate a new file of function key 
assignments. Chapter 10 lists the default keys and 
explains how you can change them. 

2243685-0001 2-6 Copyright (c) 1985, TI 



Release Information 

7. If you want to change the default internal phrases used 
by the Window Manager runtime, either edit and assemble 
the source file WMSTRDEF.ASM or use the Internal Phrase 
Editing utility (PBUILD) to create a file of phrases 
that can be loaded at run time. Chapter 9 explains 
both methods of changing phrases and provides a list of 
the internal phrases. 

8. Link your application code with 
runtime object. Appendices D, 
which files apply to the language 
correct link stream order. 

NOTE 

the Window Manager 
E, F, and G explain 
you are using and the 

None of the Window Manager utilities create 
backups for you, so it is a good idea to keep 
backup copies of all your screen, message, 
key, and phrase files. For example, if you 
specify the name of a file to store a screen 
file to and a file by that name exists, it 
will be written over. 

Copyright (c) 1985, TI 2-7 2243685-0001 


