TEK RrosrAMMERS Part No. 070-4526-03

REFERENCE Product Group 18

4105

COMPUTER DISPLAY
TERMINAL

Please Check for
CHANGE INFORMATION
at the Rear of This Manual

First Printing APR 1983
Revised FEB 1986

Tektronix

COMMITTED TO EXCELLE!

J

Copyright © 1983, 1985 by Tektronix, Inc., Beaverton, Oregon.
Printed in the United States of America. All rights reserved.
Contents of this publication may not be reproduced in any form
without permission of Tektronix, Inc.

This instrument, in whole or in part, may be protected by one or
more U.S. or foreign patents or patent applications. Information
provided on request by Tektronix, Inc., PO. Box 500, Beaverton,
Oregon 97077.

TEKTRONIX is a registered trademark of Tektronix, Inc.

C C

, ,
=m == >a

D)

)

D,

-~

MANUAL REVISION STATUS

PRODUCT: 4105A Computer Display Terminal

This manual supports the following versions of this product: Firmware Version 1 and up. Current Version: 4.

REV DATE DESCRIPTION

APR 1983 Original Issue

JUN 1983 Revised: pagesiiii, 1-2, 1-3, 2-1, 2-4, 2-5, 2-6, 3-2, 3-3, 3-8, 3-10, 3-11, 4-1, 4-6 through 4-9, 4-12, 4-14, 4-19,
5-1,5-3, 5-5, 5-9, 5-10, 5-12, 5-14 through 5-17, 5-19, 5-22, 5-23, 5-24, 5-26 through 5-30, 5-32 through 5-35,
5-37 through 5-41, C-1 through C-4, D-2, D-3, D-4, and IDX-2.

SEP 1983 Rewritten to incorporate JUN 1983 revisions and add Version 2 enhancements.

APR 1985 Rewritten to support 4105A, including Version 4 enhancements.

JUN 1985 Revised to correct miscellaneous errors: pages v, 2-4, 2-14, 3-7, 3-14, 3-17, 3-22, 3-23, 3-25, 3-27, 3-28, 3-29,
3-33, 3-39, 3-41, 3-45, 3-46, 3-47, 4-12, 5-27, 5-32, 5-33, 5-44, 5-45, 5-46, 5-52, 5-62, 5-63, 5-65, 5-66, 5-72, 5-
76, 5-78, B-2, C-4, C-5, C-7, IDX-1
Appendix added, pages: G-1, G-2

SEP 1985 Revised: pages 2-8, 4-35, 5-9.

JAN 1986 Revised: pages 3-25, 3-33, 3-38, 4-5, 4-35, 5-36, 5-51, A-14.

FEB 1986 Revised: pages 4-35, B-8.

4105 PROGRAMMERS REV FEB 1986

H

J

Section 1
Section 2
Section 3
4105 PROGRAMMERS

CONTENTS

INTRODUCTION Page

Where to Look for Information................................ 1-1

TheTerminal’sFeatures ..o, 1-2

A Brief Overview of the Terminal’s Architecture 1-4
HostCommandModescoeiineiunnnnn... 1-6

COMMUNICATIONS CONCEPTS

Establishing Host Communications 2-1
Host CommunicationsCommands 2-5
Bufferingand Handshaking 2-6
Buffering and HandshakingCommands 2-8
Using Host Syntax FromtheKeyboard 29
Controlling Securityt 2-10
Using Answerback ...t 2-10
SuppressingEcho. 2-10
SecurityCommands.c.ooiii i 2-10
Reporting Terminal Statusccoo.... 2-11
RequestingReportst 2-11
ReportCommandsoo i, 2-12
Controlling Copiersand Printers.............................. 2-14
Controlling Color Copiersccovviuiineennennenn.. 2-15
Controlling Monochrome Graphics Printers 2-15
Controlling Dialog AreaCopiesc...... 2-16
Copier and PrinterCommands.c.o.... 2-16
MakingCopies ..o 2-18
CopyCommandsoovviiiiiiiiiiaininnnn.s. 2-18
Port Configuration for NonconventionalUses 219

SCREEN EDITING CONCEPTS AND COMMANDS

Screen EditingConcepts ... 3-2
The Dialog Area and the Dialog Area Buffer 3-2
The Alphanumeric Cursor.ccoviiiiiinnnn... 3-3
Scrollingthe Display.ccoviiiiiii i 3-4
Creating Fixed Regions in the Dialog Buffer 34
Controlling the Dialog Display and the Keyboard 37
Restoring the TerminaltoaKnown State 3-10

Screen EditingModes............ 3-12
ANSIMoOde. . ..o 3-12
EDITMode.o e 3-12
VTE2MOde. ... 3-14

ANSIand VT52Syntaxcoooiiiiiii i 3-15
Rules for Issuing ANSI and VT52 Commands................ 3-15
Saving Command Settings....................coiiiii... 3-15
More Information About Commands........................ 3-15
Command DescriptionFormat............................. 3-16

ANSI Command Descriptionscccovivi.n.. 3-17

VT52 Command Descriptionsccooviiu... 3-45

Section 4

GRAPHICS CONCEPTS Page
Using GraphicsCommands.c.coviiiiineinnannn. 4-2
Displaying Dialog Between a HostandaUser.................. 4-3
Display Areas.c..oiiiiiiiiii i 4-3
Controlling the Dialog Area and Dialog Area Buffer........... 4-4
Building User Prompts Into a Program: An Example............ 4-5
Emulating 4010 Series Terminals 4-6
Dialog AreaCommands.ccovviiniieannenn.... 4-6
Understanding the Graphics Display and Graphics Memory 4-7
Understanding the GraphicsDisplay 4-7
GraphicsMemory 4-9
Terminal Spacecoiiiiiii i 4-10
DisplayingColorst 4-12
UsingColorIndicesccoiiiiiiiiiiiinain... 4-12
Specifying Colors fortheColorMap 4-12
ChangingtheColorMapcoiiiiiiiiian... 4-14
ColorCommandscouiiiiiiiiiiinininaneaanan, 4-16
Creating Images With Graphics Primitives 4-17
Implicit CommandModesciviinn.. 4-17
VECHOrS ..o e 4-18
Markers.o 4-20
Displaying Text in the GraphicsArea........................ 4-21
Panels. 4-23
Creating Images With Pixel Operations........................ 4-25
4105 Pixel Dimensionscciiiiiiiiiiinnnaan 4-25
Writing Into the Pixel Viewport 4-25
Using Pixel Operations: AnExample 4-28
PixelCommands..............ooiiiiiii i 4-30
Using 4010 GIN (Graphics Input)ccooiiiin.... 4-31
UsingMacrosttt e 4-32
Volatile and NonvolatileMacros............................ 4-32
Memory RequirementsforMacros 4-32
DefiningMacros ...t 4-33
ExecutingMacros. ... 4-33
DefiningKeyMacroscoiiiiiiiiiia.. 4-33
Defining Macros From the Host: An Example 4-35
Defining Macros From the Keyboard: An Example 4-36
Defining Key Macros: AnExample 4-39
DeletingMacros ...ttt 4-40
MacroCommandsc..ccoiiiiiiiiiiieinnnnn.n.. 4-40
Putting Together a Graphics Program 4-41
How the Terminal’s MemoryWorks 4-41

C

4105 PROGRAMMERS

J

J

J

Section 5

Section 6

Appendix A

4105 PROGRAMMERS

4100-STYLE COMMANDS AND REPORTS Page
Parameter TYPeS ... ovt et 5-2
HostParameters..........c..uuiinnninie i 5-2
Setup Parameters.o 5-6
Command Conventionsoviiiiiiienenniiiiee.., 5-8
A Sample Command Description. 59
About Omitting Parameters, 5-10
SavingCommand Settingsol 5-10
More Information About Commands........................ 5-10
4100-Style Command Descriptions 5-11
RepOrtsS. ..o 5-79
ReportParameters.............oooiiiiiiniiiii .. 5-79
Complex Variations of Report Parameters................... 5-81
The EOL String . .ottt et e 5-81
ReportDescriptionst 5-81
PROGRAMMING EXAMPLES
Initialization Routine i 6-2
Command Parameter Encoding Subroutines. 6-3
Terminal Report Decoding Subroutines. 6-7
Low-Level I/O Support Subroutinesoooll 6-12
Sample Program. ... i e 6-13

CODE CHARTS AND KEYBOARD MACROS

ASCII/North American CharacterSet..........................
United Kingdom CharacterSet
FrenchCharacterSetoiiiiiiiiii i
SwedishCharacterSet
Danish/Norwegian CharacterSet.............................
GermanCharacterSet ...ttt
Supplementary CharacterSet....................cooiiin.
RulingsCharacterSet................cooiiiiiiiiii i,

iv

Appendix B

Appendix C

Appendix D
Appendix E
Appendix F

Appendix G

ERROR CODES

INtrodUCtioN B-1
Error Codes ... B-1
Severity Levels B-1

Error Codes . ..o B-2
Error Codes for 4100-Style Commands B-2
Error Codes for ANSICommands B-8

COMMAND SUMMARY TABLES

4100-Style Commands Cc-2

ANSI-StyleCommandst C-8

VT52-StyleCommands ... C-14

ENCODED INTEGER PARAMETERS

TEKTRONIX COLOR STANDARD

PREDEFINED FILL PATTERNS

THE 4104 TERMINAL

GLOSSARY

INDEX

REV, JUN 1985

C

4105 PROGRAMMERS.

D)

Figure

1-1
1-2
3-1
32
33
34
35
3-6
4-1
4-2
4-3
4-4
45
4-6
4-7
4-8
49
4-10
4-11
4-12
413
4-14
4-15
4-16
417
5-1
5-2
53
5-4

5-6
5-7
5-8

5-10
5-11

D

4105 PROGRAMMERS

ILLUSTRATIONS

Description Page
The Terminal’s ProgrammingModel 1-5
Command SyntaxModesccoii i 1-7
Dialog Area and Dialog AreaBuffer................... 3-3
Fixed Regions in the Dialog Buffer, 3-5
Cursor Movement in Origin Mode Absolute 3-6
Cursor Movement in Origin Mode Relative 3-6
Screen EditingModes i 3-13
A Typical ANSI/VT52 Command Description 3-16
The Dialog Area and the Dialog AreaBuffer 4-4
How Colors Are Displayed in the DialogArea 4-5
Magnified View of PixelsinalLineoat. 4-7
How Colors MaptotheScreen..................................... 4-8
Screen Pixels and GraphicsMemoryc.ccooiiiiiiian. 4-9
Terminal Space and the Default Window 4-10
How Windows Map Terminal SpacetotheScreen.................... 4-11
The HLS System ColorConeccoiiiiiiii ... 4-13
The Effect of Changingthe ColorMap 4-15
Two Methods for Displayingaline............................oo.... 4-18
LineStyles 4-19
Marker TYpes e 4-20
Graphtext Characteristics o i, 4-21
Examplesof Panelscoiiiiiiiii i 4-23
Writing Into the Pixel Viewport Using RASTERWRITE................ 4-28
Writing Into the Pixel Viewport Using RUNLENGTHWRITE 4-29
EncodingaMacro.......... ... 4-35
How to Encode Integer Parameters.ccoiiiiiin., 5-3
How to Encode XY-Coordinatesc.cooiiiiieninnnn. 5-5
XY-Coordinate ParameterSyntaxcoiiiiiia... 5-5
A Typical 4100-Style Command Description 5-9
Creating a Panel With Multiple Boundaries 5-12
Packing Color Indices Using Three Bits PerPixel 5-37
CharacterPath Settings. e 5-61
Graphtext Rotation Examples., 5-62
Line Styles e 5-67
Marker Types e 5-67
4014 LINeStyles 5-77

vi

vii

Table

2-1
2-2
2-3

2-5
2-6
2-7
3-1
3-2
3-3

3-5
36
37
3-8
3-9
3-10
3-11
3-12
4-1
4-2
4-3
44
4-5
4-6
4-7

5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
C-1
C-2
C-3

TABLES

Description Page

Host CommunicationsCommandsc.cccvieieenn.n... 25

Buffering and HandshakingCommands 2-8

Security Commands.oiii i 2-10
ReportCommands ...t 2-13
Copierand PrinterCommands.ccoiiiiiiiinnnnnn... 2-17
Copy CoOmMMANGS.ottt e e 2-18
RS-232-C Pin ConNeCtioNSo ittt i ie i 2-19
4100-Style Commands That Control Text Display..................... 39

ANSI Commands That Control Text Display.coouu.... 39

ANSI Commands for Restoring Terminal Settings 3-11
Commands That Control the NumericKeypad 3-14
SCS (SELECT CHARACTERSET) Values.cooviinennn.... 3-28
Digit-Only Parameters forthe SGRCommand 3-30
Prefixed Parameters forthe SGRCommand. 3-31
RM (RESET MODE) and SM (SET MODE) Command Parameters. 3-35
Cursor KeyMode Codesouviiiiiiii i, 3-35
CursorKeyMode Codesco.eviieiiiiiiiiiie i, 3-39
Numeric Keypad ProgrammingCodes...................ccovvvnnn... 3-41
Alternate Keypad ProgrammingCodes 3-46
Dialog Area Commands.coiueieii it 4-6

ColorCommandsouiiiii e 4-16
Vector Commands.t e 4-19
Marker Commands. ...t e 4-20
Graphics AreaTextCommandsc.oviiiiinninnnnn... 4-22
PanelCommandsoiiiiiiii i 4-24
PixelCommands.coiiiiiii i 4-30
MacroCommands. it e 4-40
ALUMOdES. . . 5-13
Effects of ENABLEDIALOGAREA, 5-20
Special Inquiry Codes ...t 5-39
Default Dialog Area ColorIndicescooeiiin.... 5-51
Graphtext CharacterRotation 5-62
Graphtext Sizes.ciiiii 5-63
Default Graphics Area Colorindices...............cccovviieinnnn .. 5-73
Special Inquiry Codesoiiiiiii i 5-82
Terminal Status CharacterBits..................... ..., 5-86
Implicit CommandMode Statuscooiiiinnn... 5-86
4100-Style ComMmMaNnds.cuutiit i i C-2

ANSI-StyleCommands ...t C-8

VT52-StyleCommandsouiiiiiiii i, C-14

4105 PROGRAMMERS

>

D

= =m = =m m >m

Section 1

INTRODUCTION

This manual contains the reference information needed to
develop and maintain application software for the Tektronix
4105 Computer Display Terminal.

Two other manuals have been included with the terminal:

® 4105 Computer Display Terminal Operators Manual,
which includes a tutorial that shows the operator how to
use the terminal’s features, information on how to
establish communication with a host computer and how
to connect the terminal to a copier or printer, and an
explanation of the terminal’s self-test features.

® 4105 Computer Display Terminal Reference Guide,
which contains essential programmers reference material
in a condensed form.

There is also a service manual available, which you can order
through your Tektronix Field Office (see your Operators
Manual for part numbers and ordering information).

WHERE TO LOOK FOR INFORMATION

The following brief discussion of each part of this manual
may help direct you to the specific information you need.
For an overall understanding of how to best use the
terminal’s programming capabilities, read Sections 1 and 2,
the concepts portion of Section 3, and all of Section 4.

® Section 1, Introduction, contains introductory
information about the terminal, including a discussion of
the terminal’s architecture.

e Section 2, Communications Concepts, discusses
establishing communications with a host computer, using
input and output buffering and handshaking protocols,
using host syntax from the keyboard, controlling security,
reporting terminal status, controlling copiers and
printers, and using the host port for nonconventional
purposes.

4105 PROGRAMMERS

Section 3, Screen Editing Concepts and Commands,
discusses screen editing concepts and contains detailed
command descriptions for the ANSI X3.64 and VT52
screen editing commands.

Section 4, Graphics Concepts, discusses the concepts that
you must understand to write a graphics application
program for the terminal, and covers how to use the
terminal’s numerous graphics features, how to encode
macros, and how the terminal uses memory.

Section 5, 4100-Style Commands and Reports, contains a
discussion of parameter types and encoding methods, an
alphabetically organized dictionary of all 4100-style
commands (including graphics commands,
communications commands, and macro-definition
commands), and finally, a discussion of the format and
encoding methods the terminal uses in sending reports to
the host.

Section 6, Programming Examples, contains FORTRAN
programming examples of encoding and parsing routines
— you may find these examples useful when developing
host application programs.

Appendices include:

® Code charts for each character set and keyboard
diagrams that show the macro numbers transmitted
by each key on the keyboard

® A list of error codes

e Tables that summarize the terminal’s 4100-style
commands and screen editing commands

* A table of integers already encoded for use by a host
program

® Anillustration showing how hue, lightness, and
saturation are used to specify colors in the HLS color
coordinate system

® A chart showing each of the fill patterns
® A glossary
* Anindex

INTRODUCTION

THE TERMINAL’S FEATURES

The terminal offers a wide range of features to support color
graphics and text editing applications. Briefly, these features
include:

Flicker-Free Display. The terminal incorporates a 60-Hz
noninterlaced raster-scan color display for flicker-free
viewing. The color display has 480 by 360 pixel resolution.

Full-Feature Keyboard. The terminal’s low-profile
detachable keyboard includes: uppercase and lowercase
ASCII characters, BREAK and ERASE keys, a 14-key
numeric keypad, four special function keys, eight
programmable function keys, and a Joydisk. Most keys have
N-key rollover, which permits the terminal to capture a fast
typist’s keyboard entries even when keystrokes overlap. An
autorepeat feature lets you choose whether or not the keys
repeat when they are held down for more than one-half
second.

Tektronix Joydisk. The Joydisk — part of the 4105’
keyboard — gives users an easy way to scroll text
horizontally or vertically while screen editing. During GIN
(a means of inputting graphics data), the Joydisk controls
the crosshair cursor.

Programmable Keys. You can program most keys so that a
single keystroke can invoke a sequence of characters or
commands.

Selectable Color Palette. You can select from 64 distinct
color mixtures. You can display graphics in up to eight colors
simultaneously, with an additional eight colors for text
display.

User Control of Color. The terminal’s Interactive Color
Interface provides an on-screen menu for modifying colors
from the keyboard. You can see the colors change as you
modify them; then you can keep the new colors, try others,
or return to the ones you started with.

Independent Graphics and Text Display. The whole
display screen can be used as a graphics area that displays
the graphics images you create. You can also designate all or
part of the screen as a dialog area, which is displayed in
front of the graphics. You can use the dialog area for text
editing or to display the dialog between the terminal and a
host computer.

You can choose whether the dialog area has an opaque
background (and hides the graphics behind it) or a
transparent background that lets the graphics show through
the dialog — or you can make the dialog area invisible, so
that the graphics image is all that appears on the screen.

1-2

C

4100-Style Graphics. You can create, manipulate, and
display complex graphics images through host or keyboard
commands originally developed for the powerful Tektronix
4100-Series Graphics Terminals.

With the 4100-style commands, you can create line drawings
or closed polygons, filling the polygons with solid colors or
with a variety of patterns, and then add labels in different
sizes, colors, and rotation angles. You can also create images
by manipulating individual pixels in the display.

The graphics images are created and stored in a 4096 by 4096
coordinate space, and are scaled for display on the terminal’s
480 by 360 pixel display. Because of the dimensions of its
coordinate space, the terminal can display data files used by
higher resolution Tektronix terminals.

Programs written to support a 4105 terminal are upwardly
compatible with Tektronix 4100 Series desktop terminals and
with the more powerful 4110 Series terminals.

4010-Style Graphics Input (GIN). The 4105 terminal offers
the same capability for graphics input as the Tektronix 4010
Series terminals. You can use most GIN application
programs written for 4010 Series terminals without
modification. When using GIN, the terminal operator
moves the GIN cursor about on the screen and presses a key
to transmit the cursor coordinates to the host.

Adaptable Alphanumerics. The terminal can display two
types of alphanumeric characters — alphatext and
graphtext.

® Alphatext. The terminal uses alphatext in the dialog area
either for screen editing applications or to display the
dialog between the user and the host computer.

You can display alphatext in uppercase and lowercase
characters with definable attributes, including character
color, background color, underlining, and blinking.

o Graphtext. Graphtext is a special type of text for use in
the graphics area. You can resize graphtext, rotate it, and
write it in different directions.

There are eight alternate character sets available for
displaying alphatext and graphtext. These include six
international character sets (ASCII/North American,
United Kingdom, French, Swedish, Danish/Norwegian, and
German) and two special character sets that contain rulings
characters and other useful symbols.

4105 PROGRAMMERS

J

Versatile Command Sets. The terminal has three separate
command sets:

® 4100-style command set — These commands control
Tektronix 4100-style graphics, communications settings,
4010-style graphics input (GIN), and terminal status
reporting.

o ANSI-style command set — These commands control
ANSI X3.64 screen editing, dialog display, and keyboard
characteristics. A single command configures the
terminal to run applications developed for VT100
terminals.

® VT52-style command set — These commands control
VTS52 style screen editing and permit the terminal to run
applications developed for VT52 terminals.

Commands sent from the host computer use opcodes and
encoded parameters; host syntax is used to make the best use
of the terminal’s memory and to speed communication.
Commands sent from the keyboard use Sefup syntax, which
uses easy-to-remember command names and simple
keywords or integers as parameters.

Terminal-Level Security. The terminal supports the VT100
answerback feature, which allows you to store a password-
like message in the terminal’s nonvolatile memory. The host
can verify the answerback string against a list of authorized

% users and thus control the data and programs that it lets the

terminal access.

Help and Status Facilities. The terminal’s help and status
facilities allow you to quickly and easily query the terminal
for the syntax or status of most commands or terminal
settings. You can ask for information about a single
command or terminal setting, or you can ask for
information about a group (cluster) of commands or
settings.

Storable Macros. You can define and store macros —
sequences of commands that you can call up from the
terminal with a single keystroke or from the host with a
single command. You can specify that macros are executed
locally at the terminal or that they are transmitted to the
host.

Nonvolatile Memory. You can save macros and certain
terminal settings by storing them in nonvolatile memory —
a part of the terminal’s memory that is not erased even when
the power is turned off. This means that you can configure
the terminal for a particular application and then save the
operating parameters. When you turn the power on again,
the terminal automatically remembers and uses the saved
settings.

4105 PROGRAMMERS

INTRODUCTION

Compatibility With Existing Software. The terminal can
use a variety of graphics software from Tektronix and from
other sources, and is compatible with several screen editing
programs. Some software packages that are compatible with
this terminal are:

e Tektronix Plot 10 Interactive Graphics Library
Tektronix Plot 10 Graphical Kernel System
Tektronix 4100P01 Direct Terminal Interface
SASGRAPH, from the SAS Institute, Inc.

DISSPLA, from ISSCO (Integrated Software Systems
Corporation)

e Some editing programs designed for use with VT100 or
VT52 terminals, such as EDT, VI, and EMACS

® Most existing programs written for Tektronix 4010 Series
terminals

Standard RS-232 Communications. The terminal has one
full-duplex serial RS-232-C port, which communicates with
a host computer at data rates up to 38400 baud. You can set
and save the communications settings that your terminal
needs for communicating with a specific host. Then, once
the communications settings have been saved, the terminal’s
configuration will be correct at power-up, and all you’ll need
to dois turn it on and use it.

Versatile Copy Commands. You can send a copy of the the
terminal screen to a copier or printer with a simple keystroke
or a command issued from the host or keyboard. When you
make a copy of the display, you can copy the entire display
or copy just the graphics area or dialog area. You can reverse
black and white in copies, choosing whether the black
background of a display prints or not. Host commands are
available to make copies for either screen editing or graphics
applications.

Color and Monochrome Copier Support. The terminal has
a Centronics-style hardcopy port that is compatible with a
variety of copiers and printers. You can make color or
monochrome copies of both text and graphics. The terminal
makes text or graphics color copies on the Tektronix 4691,
4692, and 4695 Color Graphics Copiers. It makes
monochrome text or graphics copies on the Tektronix 4644
Dot Matrix Printer, the Hewlett-Packard Thinkjet, and
other monochrome printers with Centronics-style interfaces
and Epson-style graphics protocol. The terminal makes text
copies on Centronics-style monochrome printers that don’t
offer graphics.

Data Logging. You can easily create a hard copy log of all
data written to the screen. The Tektronix-private parameters
added to the ANSI MEDIA COPY command turn this data
logging on and off.

INTRODUCTION

A BRIEF OVERVIEW OF THE
TERMINAL’S ARCHITECTURE

The following discussion will give you an understanding of
the terminal’s architecture. Throughout this discussion, refer

to Figure 1-1.

You can think of the terminal as two different terminals in

one box, each having its own set of commands and

controlling its own area of memory. These terminals would

be:

® A graphics display terminal that is compatible with most

Tektronix 4010 Series graphics application programs.
This terminal also controls the Interactive Color

Interface, which is used to adjust the terminal’s color map

of displayed colors from the keyboard.

® A text entry and editing terminal that is compatible with

the American National Standards Institute (ANSI)

Standard X3.64 and the International Organization for

Standardization (ISO) Standard 6429. Because the

terminal adheres to these standards, you can configure

the terminal to run most popular screen editing
programs.

When the terminal functions as a graphics terminal, it
processes commands in this sequence (use Figure 1-1 to
follow along):

1. The program sends 4100-style commands from the host.

2. The TEK Mode Interpreter interprets these commands.

3. The TEK Mode Interpreter invokes the appropriate
graphics routines that direct the Graphics Controller
Firmware.

4. The Graphics Controller Firmware determines how the
graphics images will be written to the graphics memory.

NOTE

The TEK Mode Interpreter can write text to the
dialog area in the Alphanumeric Memory, but
cannot edit or otherwise manipulate the dialog
area. This limited alphanumeric text capability is
represented by the dashed line in Figure I-1.

4105 PROGRAMMERS

C

INTRODUCTION

J

When the terminal functions as a text entry and editing
terminal, it processes commands in this sequence (use Figure
1-1 to follow along):

1. The program sends ANSI or VT52 screen editing
commands from the host.

2. The ANSI/VTS52 Mode Interpreter interprets these
commands.

3. The ANSI/VT52 Mode Interpreter invokes the

appropriate screen editing routines from the ANSI ED”

Alphanumeric Controller Firmware. VT52 MODE TEK MODE
SCREEN EDITING

GRAPHICS
4. The Alphanumeric Controller Firmware writes text to
the Alphanumeric Memory.

NOTE ; ;
j j , USER INPUT
Becquse the Alphanumeric Controller is usgd by all FROM KEYBOARD
the interpreters, commands sent by a graphics IN SETUP

program could affect stored parameters used later
in an editing program. This means that application

programs should leave parameters at their initial ANSIVT52

values upon exit. Otherwise the terminal user may MODE SETUP TEK MODE
b : | INTERPRETER INTERPRETER
e required to enter several Setup commands to INTERPRETER |
reestablish the appropriate parameters when
switching applications.
. . - GRAPHICS

Most graphics commands and many screen editing ALPHANUMERIC CONTROLLER
commands can be sent directly from the keyboard. As CONTROLLER FIRMWARE

indicated in Figure 1-1, commands entered from the FIRMWARE

keyboard are processed by a Setup command interpreter,
bypassing the ANSI/VT52 and TEK command interpreters.

ALPHANUMERIC GRAPHICS
MEMORY MEMORY PLANE

SCREEN

Figure 1-1. The Terminal’s Programming Model.

)

4105 PROGRAMMERS 1-5

INTRODUCTION

HOST COMMAND MODES

As illustrated in Figure 1-2, the terminal has four modes for
host operation: ANSI mode, EDIT mode, VT52 mode, and
TEK mode. Typically, an application program running on a
host computer selects the appropriate mode for its current
task and sends commands to the terminal. In
communicating with the host in any of these modes, the
terminal accepts only the command syntax compatible with
that mode.

Figure 1-2 shows these modes and lists the functional areas
that each mode supports.

NOTE

The terminal’s host command mode only affects
host operations. When commands are entered from
the keyboard, the terminal accepts any command
that has Setup syntax.

Screen Editing

There are three screen editing modes that you can use to
manipulate data in the terminal’s Alphanumeric Memory.

® ANSI mode. In this mode, the terminal understands the
syntax of the ANSI X3.64 commands only. Available
functions are:

e Screen editing — Includes commands to move the
cursor; insert, delete, and erase lines; and report
terminal status to the host.

¢ Terminal control — Includes commands to enable or
disable the keyboard; control the codes sent from the
numeric keypad; and control display characteristics
for the dialog area. The terminal control settings
made in ANSI mode will carry over, as appropriate,
into TEK mode and VT52 mode.

® EDIT mode. In this mode, the terminal understands the
ANSI command set, but the operating characteristics of
the terminal have been set to emulate a VT100 terminal.

EDIT mode automatically configures the terminal so that
it is compatible with most VT100 software. While
working in EDIT mode, you are actually still in ANSI
mode and can use all the ANSI commands.

® VT52 mode. In this mode, the terminal is compatible
with programs using VT52-style commands, and its
operating characteristics are configured to emulate a
VTS52 terminal.

Section 3 of this manual contains a discussion of ANSI,
EDIT, and VT52 modes, including their command syntax,
command descriptions, and syntax examples.

Graphics

In TEK mode, the terminal understands the syntax of the
4100-style graphics and terminal control commands. Some
available functions are:

e Creating and controlling graphics images, graphics input
(GIN), and graphtext

o Sending terminal status reports or GIN reports to the
host

e Setting up the display, keyboard, and communications
parameters for the terminal

o Making copies of alphanumeric and graphics data
displayed on the terminal screen or stored on the host

Some terminal settings made in TEK mode (communications
settings, for example) carry over, as appropriate, into ANSI
mode — just as some settings made in ANSI mode are also
effective in TEK mode.

Section 4 contains a discussion of graphics concepts, and

Section 5 contains detailed descriptions of the commands
available in this mode.

4105 PROGRAMMERS

C

C

INTRODUCTION
RS-232
I PORT
i
H COPIER/CENTRONICS PORT
SET UP COMMANDS
SELECTED COMMANDS
FROM ALL MODES
(Entered from
terminal keyboard)
n ANSI MODE EDIT MODE VT52 MODE TEK MODE
ANSI-STYLE ANSI-STYLE VT52 4100-STYLE
H COMMANDS COMMANDS COMMANDS COMMANDS
SCREEN SETTING SCREEN EDITING SCREEN EDITING REQUESTING CREATING SETTING UP MAKING
EDITING DIALOG DISPLAY FOR VT100 FOR VT52 TERMINAL GRAPHICS THE TERMINAL COPIES
AND KEYBOARD APPLICATIONS APPLICATIONS REPORTS
CHARACTERISTICS
(for all modes)
n ﬂ GIN STATUS SCREEN KEYBOARD COMMUNICATIONS
CHARACTERISTICS CONTROL PARAMETERS
COLOR GRAPHICS GRAPHICS
n DISPLAYS INPUT TEXT
(4893)4526-44
H Figure 1-2. Command Syntax Modes.
4105 PROGRAMMERS 1-7

p > p

ﬂ

m

Section 2

COMMUNICATIONS CONCEPTS

This section discusses basic concepts for communications
between your terminal and a host computer or a copier or
printer. The topics covered are:

Establishing Host Communications
Buffering and Handshaking

Using Host Syntax From the Keyboard
Controlling Security

Reporting Terminal Status

Controlling Copiers and Printers
Making Copies

Port Configuration for Nonconventional Uses

Each discussion concludes with a table summarizing the
commands that control the features described in that
discussion.

The terminal’s communications commands are a subset of
Tektronix 4100-style commands. Take a look at the sidebar
on this page for details about commands.

ESTABLISHING HOST
COMMUNICATIONS

The terminal can communicate with a variety of host
computers and modems through a full-duplex RS-232-C
host port. You may need to change some of the default
communications settings in order to establish
communications. The appropriate values depend on your
host computer or modem. Communications cannot take
place unless these communications settings are correct;
therefore, you’ll need to use Setup syntax to change any
settings; once communications have been established, you
can issue commands from the host.

Whether set from the host or from the keyboard, the

4100-style commands in this section control communications
in all host command modes (ANSI, EDIT, TEK, and VT52).

The host communications commands discussed in the
following paragraphs are described in detail in individual
command descriptions in Section 5. The table at the end of
this discussion summarizes these commands.

4105 PROGRAMMERS

. Aprogrameanf‘

’CQMMAND'HN G

access the terminal’s full feature se (use the SELBCT ,
CODE c;’o‘mmand; whi inall modes) ‘
e You can issue commands from a host prngram (usmg
host syntax) or from the keyboard (using Setup
syntax); the host and Semp versions of a command do
exactly the same thing. , >

® When you seiect Setup (by pressmg the Setup key), -
you can issue Setup commands from the keyboard
without regard to the host command mode. Setup
syntax uses s;mple keywords and ordmary mtegers

e When you issue 4100—sty1e c mmands from the host,
the termmal must; bei inT ~

~ Contents and the Index

2-1

COMMUNICATIONS

Baud Rate

The baud rate is the rate in bits per second that the terminal
transmits or receives data. For example, 2400 baud means
that data is transferred at the rate of 2400 bits per second.

The terminal can transmit data to the host at a variety of
internally controlled baud rates or be timed by an external
clock.

Use the SET BAUD RATES command to set an appropriate
baud rate. The appropriate value must be compatible with
both the host computer and the communications line you are
using.

You can use a single baud rate for both transmitting and
receiving data, or you can specify split rates: one rate for
transmitting and another rate for receiving.

The factory default baud rate for both transmitting and
receiving data is 2400 baud.

Transmit Rate Limits

In some circumstances, the host computer may not be able
to process information as fast as the terminal can send it.

You can use the SET TRANSMIT RATE LIMIT command
to specify a maximum speed for terminal-to-host
communications; the rate can be less than the baud rate
specified by the SET BAUD RATES command. A transmit
rate limit of 300, for instance, means that the terminal will
space characters it sends to the host so that the average data
rate is 300 bits per second.

Setting a transmit rate limit can be useful at high
terminal-to-host baud rates, where the host computer
cannot accept characters at the full data rate specified in the
SET BAUD RATES command.

The factory default transmit rate limit is 19200 baud.

Stop Bits

While communicating with the host, directly or through a
modem, the terminal sends and receives each character
serially, as a sequence of ten or eleven bits. The first bit for
each character is a start bit, always a 0. The next seven bits
determine the particular ASCII character, after which comes
a parity bit (described in the discussion which follows). The
character ends with one or two stop bits, which are always 1.
The communications line then remains in the marking
condition until the start bit for the next character is detected.
The terminal ignores the number of stop bits in characters
coming from the host.

Use the SET STOP BITS command to specify the number of
stop bits the terminal must use when it is transmitting data to
the host.

The factory default is just one stop bit.

Parity

Data communications schemes sometimes use parity bits to
indicate whether the sum of the data bits in a character is
even or odd; this provides a simple test of the integrity of the
transmitted data. The terminal’s parity setting controls how
the terminal sets the eighth bit (parity bit) in each character it
sends to the host. (The terminal ignores the parity bit in data
it receives from the host.)

Use the SET PARITY command to specify the parity scheme
your host or modem requires.

The factory default sets the parity bit to 0 and uses no parity
checking.

4105 PROGRAMMERS

C

o/

J

3

|
H
n
N
N
n
R
N
n
R
0
"
"
J
|
L

EOF String

This command defines the terminal’s end-of-file string.
When the terminal receives this string from the host during a
COPY operation, it knows that the end of a file transfer has
been reached and it terminates the COPY operation.

Use the SET EOF STRING command to set the EOF string
that the terminal expects so that it matches the string that the
host sends.

There is no factory default EOF string.

Break Time

Pressing the terminal’s Break key sends a break signal to the
host. In full-duplex communications, the break signal holds
the communications line in a “space” condition. This is one
way to interrupt host communications when the keyboard is
locked.

Use the SET BREAK TIME command if you need to change
the duration of the break signal, or to disable it altogether.
Refer to your host’s documentation to determine how the
break signal is interpreted.

For hosts that do not accept break signals, set the break time
to zero to disable the break feature.

The factory default break signal is 200 milliseconds, which is
adequate for most host computers.

4105 PROGRAMMERS

COMMUNICATIONS

Echo

The characters that appear on the screen as you type are
echoes of the typed characters. The echoes are usually
transmitted from the host but may be provided by the
terminal. If the host provides the echo, it transmits the
characters it receives back to the terminal (this is remote
echo). If the terminal is not communicating with the host or
the host does not provide an echo, the terminal can provide
its own echo (this is /ocal echo).

You can enable or disable local echo with the SET ECHO
command. If the host already provides an echo, disable local
echo, or you will see double characters, LLIIKKEE
TTHHIISS, since both the terminal and host are echoing
your entries. If the host or modem does not provide an echo,
you should enable local echo so typed characters will appear
on the screen.

The factory default is no local echo (the terminal won’t
display the characters unless the host echoes them).

2-3

COMMUNICATIONS

Bypass Mode

Sometimes it is appropriate for the terminal to ignore
characters sent from the host. For example, the terminal
should ignore echoed characters that the host returns in
response to a report; otherwise, the terminal might print the
echoed characters as alphatext — or interpret them as xy
parameters if the terminal is in Vector mode or Marker
mode. Bypass mode provides a solution to this problem.

The terminal automatically enters Bypass mode before it
sends most reports to the host. In Bypass mode, the terminal
ignores all characters from the host until it receives the
bypass cancel character. When the terminal receives this
character, it exits Bypass mode and discards the bypass
cancel character. Here’s a typical sequence:

1. The host requests a report (by issuing a REPORT
TERMINAL SETTINGS command, for example.

2. The terminal enters Bypass mode.

The terminal sends a report, terminated by the EOL
string.

4. The host echoes the report to the terminal, but the
terminal is in Bypass mode and ignores it.

The host sends the bypass cancel character).
The terminal cancels Bypass mode.
The host sends more data, which the terminal processes.

The terminal does not enter Bypass mode to send ANSI
reports or the answerback string.

To ensure that the terminal exits Bypass mode at the end of
each report, set the bypass cancel character to the last
character that the host echoes when the terminal sends a
report:

e If the host echoes CrLr when it receives a Cr, set the
bypass cancel character to L'r.

e If the host echoes only a Cr, set the bypass cancel
character to Cr.

e If your host does not echo at all, you probably don’t need
Bypass mode, so set the bypass cancel character to Nu.

2-4 REV, JUN 1985

You can specify a different bypass cancel character by
issuing the SET BYPASS CANCEL CHARACTER
command.

There may be times when you want to force Bypass mode.
For example, you might want to temporarily suppress the
echo of a user’s password during a login procedure. Issue the
ENTER BYPASS MODE command before requesting the
password, and issue a bypass cancel after it is received.

The factory default bypass cancel character is Lr (Line
Feed).

DT Filler Characters

Some host computers intersperse Pt characters (ADE 127)
among the characters they send to a terminal. The host
inserts these filler characters, and the applications program
has no control over them. Since Pr is a valid character in
integer and xy-coordinate parameters, these extra Pt
characters can cause problems with Tektronix 4100-style
commands.

The terminal includes two features that help solve this
problem. First, it accepts the two-character sequence Ec? as a
synonym for Pr. Second, the IGNORE DELETES
command causes the terminal to ignore any Pr characters
from the host. The terminal does not, however, ignore Ec?
sequences.

Thus, if your host uses Pt as a filler character, take the
following two steps:

e Change application routines that issue integer and
xy-coordinate parameters to output Ec? instead of Pr.

o Send an IGNORE DELETES command.

The factory default is for the terminal to accept Pt
characters.

4105 PROGRAMMERS

e O = e =

COMMUNICATIONS
Host Communications Commands Hint. If you access a variety of computers that use different
communications settings, you can store these
Table 2-1 summarizes the commands used for setting up host communications setups as macros. This allows you to
communications through the host port. You can find reconfigure the terminal simply by expanding the macro
detailed command descriptions in Section 5. from the host or having the user press a programmed key.

See the discussion Using Macros in Section 4.

Table 2-1
HOST COMMUNICATIONS COMMANDS

Descriptive Name Setup Name Function

IGNORE DELETES IGNOREDEL Determines whether the terminal ignores the Pr (delete) character

SET BAUD RATES BAUDRATE Sets the terminal’s transmit and receive baud rates

SET BREAK TIME BREAKTIME Sets the duration (in milliseconds) of the break signal the terminal
sends when the Break key is pressed

SET BYPASS CANCEL CHARACTER BYPASSCANCEL Specifies the character that cancels Bypass mode

SET ECHO ECHO Specifies whether the terminal echoes characters it transmits to the
host

SET EOF STRING EOFSTRING Specifies the terminal’s end-of-file string

SET PARITY PARITY Specifies the kind of parity the terminal uses when it transmits
data to the host

SET STOP BITS STOPBITS Specifies the number of stop bits appended to each character the
terminal transmits

SET TRANSMIT RATE LIMIT XMTLIMIT Paces the terminal’s data transmission so that it does not exceed

ﬂ the indicated rate

m

= 323 O N N Sl OSSN I O™TE 3 =S N ==

4105 PROGRAMMERS 2-5

COMMUNICATIONS

BUFFERING AND HANDSHAKING

Unless some provision is made for controlling
communications, data can be lost. Often the terminal
cannot process data immediately upon receiving it.
Likewise, there may be times when the host cannot process
data as fast as the terminal sends it.

For example, it takes longer to fill the inside of a polygon
with a color or fill pattern than it does to receive and
interpret the corresponding command from the host. Also,
when the user puts the terminal in Setup, the terminal does
not process information from the host until the user exits
Setup.

The terminal tries to minimize data loss by buffering (storing
transmitted data temporarily in the terminal’s memory).
Your program can help avoid data overflow in the input
queue and output queue by using one of the following
techniques:

® Baud rate control — The SET TRANSMIT RATE
LIMIT command can slow down data transmission for
selected applications, as discussed earlier in this section.

® Handshaking — Flagging schemes and Prompt mode
prevent overflow of data in the input and output queues.

The buffering and handshaking commands discussed in the
following paragraphs are described in detail in individual
command descriptions in Section 5. The table at the end of
this discussion summarizes these commands.

2-6

BUFFERING

The terminal uses its input queue and output queue to store
data so that differences in the processing speed of the
terminal and the host computer or other device do not cause
data to be lost.

The Input Queue

The terminal’s input queue is a part of program memory
that holds incoming data until the terminal can process it.
Data from the host is placed in the input queue; when the
terminal is ready for that information, it removes the data
from the queue and processes it (that is, executes commands,
displays graphics, etc.). Then additional information can be
stored in the queue.

For example, since the terminal cannot display characters
while it is erasing the screen, it stores incoming data in its
input queue until the screen is erased. Then it reads and
processes the data from the queue.

As another example, the terminal can’t process data from
the host while it’s in Setup, so it stores the data in the input
queue, and then processes it when the user ends the Setup
session.

You can set an appropriate input queue size by issuing the
SET QUEUE SIZE command — you’ll need to determine
the best queue size for each application. A large queue ties
up valuable program memory that can be better used to
store graphics. On the other hand, a very small queue may
overflow frequently, causing important data to be lost. You
can use flagging to prevent data overflow in the input queue
(flagging is discussed later in this section).

The factory default input queue size is 300 bytes.

The Output Queue

The terminal’s output queue holds any characters that are
waiting to be transmitted to the host. This includes any
characters that have been typed on the keyboard (except in
Setup or Local mode) and any reports that have been
requested by the host.

When there are keyboard entries or reports waiting in the
output queue, the terminal sends the data to the host one
line at a time. If there are no characters backed up in the
queue, then each character is sent as soon as it is typed (if the
user types characters faster than they can be sent, some
characters will be backed up in the queue).

4105 PROGRAMMERS

C

C

~

J

|
"
R
|
f
N

HANDSHAKING

At high data rates, or for complex operations, input and
output buffering may not be not enough to prevent data
loss. In this case, you should use handshaking to prevent the
input queue from overflowing. Even at slow data rates, it
may be wise to use handshaking.

You can use either one of two different handshaking
schemes:

® Flagging — Prevents data overflow at either the host or
the terminal

® Prompt mode — Prevents data overflow at the host

Flagging

Flagging is a handshaking scheme that prevents data
overflow by allowing the terminal to start and stop data
transmissions. If the host is capable of two-way
handshaking, you can use flagging to prevent data overflow
at both the terminal and the host. Two types of flagging are
available: DC1/DC3 software flagging and DTR/CTS
hardware flagging. You can use the SET FLAGGING
MODE command to select the flagging scheme appropriate
for your host.

The factory default is no flagging.

NOTE

If your computer assigns its hardware flagging
signals to non-standard pins, you may be able to
rewire the RS-232 connection to map the terminal’s
DTR/CTS signals to those required by the
computer.

4105 PROGRAMMERS

COMMUNICATIONS

DC1/DC3 Flagging. DC1/DC3 flagging uses the DC1 and
DC3 control characters (P1 and P3, ADE 17 and]9,
respectively) to enable or inhibit the transmitting device.
DCl is the start character and DC3 is the stop character.
This allows you to use flagging with devices that do not
control the RS-232-C DTR and CTS lines. You can use
DC1/DC3 flagging for input, output, or both input and
output.

DTR/CTS Flagging. In DTR/CTS flagging, the terminal
indicates that it wants to transmit data by asserting DTR
(Data Terminal Ready). If the host is ready to receive the
data, it asserts CTS (Clear To Send). The terminal can
transmit data to the host only when CTS is asserted.

If the terminal transmits characters faster than the host can
process them, the host must drop CTS to stop transmission
from the terminal. When the host is ready to receive more
characters, it asserts CTS and the terminal resumes
transmission.

When receiving characters from the host, the terminal uses
the DTR signal line in the same way that the host uses the
CTS line. If the host is sending characters faster than the
terminal can process them, the terminal drops DTR, and the
host stops transmitting to the terminal. When the terminal is
ready for more characters, it asserts DTR, and the host
resumes its transmission to the terminal.

NOTE

DTR/CTS flagging may not be practical when the
terminal is connected to the host with a telephone
line modem. In such circumstances, you should use
DC1/DC3 flagging because the host does not have
direct access to the DTR and CTS signal lines.

2-7

COMMUNICATIONS

Prompt Mode

Prompt mode, which is controlled by the PROMPT MODE
command, can prevent data overflow at the host. It allows
the host to process each line of data before the terminal
sends the next line of data.

A line of data has a specific meaning in this discussion.
When data is typed on the keyboard, a line of data means
“all the characters waiting to be transmitted, up to and
including the next EOM character the user types (or the next
EOL string the terminal sends).”

The EOM character is the character that the user types to
end a command line to the host. The terminal’s factory
default EOM character is Cr, but you can change it with the
SET EOM CHARACTERS command.

Thus, if the terminal is set as it is when shipped from the
factory, a line of data means “all characters waiting to be
transmitted, up to and including the next Cr character.”

When the terminal is sending a report, a /ine of data means
all the characters waiting to be transmitted, up to and
including the next EOL string. The EOL (End of Line) string
is explained in Reporting Terminal Status, later in this
section.

Prompt mode uses a character string called the prompt
string to manage terminal-to-host transmissions. You must
use the SET PROMPT STRING command to set the
prompt string to match the characters that a host issues
when it is ready to receive more data.

Once you have enabled Prompt mode, it works like this:

1. The terminal has data in its output queue ready to send
to the host. The data may be characters the user typed
or reports from the terminal.

Table 2-2
BUFFERING AND HANDSHAKING COMMANDS

C

2. When the host is ready to receive data, it sends the
prompt string to the terminal.

3. When the terminal receives the prompt string, it waits
for a selected period of time (the transmit delay).

During the transmit delay, the terminal does nothing,
unless it receives more characters.

e [f the host transmits characters during the transmit
delay, the terminal processes them, and waits for
another prompt string.

o If the user types characters during the transmit delay,
they are added to the output queue. If the user’s
entries fill the output queue, the terminal rings its
bell and then ignores further entries until the end of
the transmit delay.

4. After the transmit delay has elapsed, the terminal sends
one line of data from the output queue to the host.

5. The terminal repeats Steps 1, 2, 3, and 4 until Prompt
mode is disabled, or until the output queue is empty.

6. If the output queue is empty, the terminal sends
characters to the host as fast as they are typed — until
the user types the EOM character. The EOM character
means that the terminal has sent a line of data to the
host, so the terminal returns to the condition described
in Step 1.

Buffering and Handshaking Commands

Table 2-2 summarizes the buffering and handshaking
commands used to control the input queue. You can find
detailed command descriptions in Section 5.

Descriptive Name Setup Name Function

PROMPT MODE PROMPTMODE Initiates or terminates Prompt mode

SET EOL STRING EOLSTRING Specifies the terminal’s end-of-line string

SET EOM CHARACTERS EOMCHARS Specifies the terminal’s end-of-message characters

SET FLAGGING MODE FLAGGING Specifies whether the terminal uses DC1/DC3 flagging or
DTR/CTS flagging

SET PROMPT STRING PROMPTSTRING Specifies the string that initiates Prompt mode

SET QUEUE SIZE QUEUESIZE Specifies the size (in bytes) of the terminal’s input queue

SET TRANSMIT DELAY XMTDELAY Specifies the terminal’s delay (in milliseconds) between
transmitting lines of text

2-8 REV, SEP 1985 4105 PROGRAMMERS

J

D

USING HOST SYNTAX FROM THE
KEYBOARD

The terminal allows you to use host syntax to issue
commands from the terminal keyboard. This can be useful
for debugging programs or testing the effect of commands
that don’t have Setup syntax. You can either use Setup or
Local mode to issue commands.

In Setup, you can issue most 4100-style commands from the
keyboard by typing the Escape character and the command’s
opcode (the two letters that identify the command) followed
by any parameters needed for the command. You issue the
parameters in their Setup form (that is, as simple integers or
keywords), rather than using the encoded parameters
required for commands issued from the host. You can’t use
this method to issue 4100-style commands that don’t have
opcodes — use Local mode instead.

4105 PROGRAMMERS

COMMUNICATIONS

In Local mode, you can issue ANSI, VT52, or 4100-style
commands from the keyboard using host syntax (with
4100-style commands, this means that you need to encode
integer and xy-coordinate parameters). To use Local mode,
enter Setup (just press the Setup key), issue the LOCAL
command (type LOCAL YES), and press the Setup key
again to leave Setup and enter Local mode. In Local mode,
the terminal:

® Processes the commands you issue from the keyboard,
even though they are in host syntax.

e Provides a local echo, and displays as text anything the
terminal doesn’t recognize as a command.

e Stores any host input in its input queue, and processes it
when you exit Local mode.

To resume communications with the host, you must reenter
Setup and issue LOCAL NO.

In Local mode, the terminal doesn’t display commands
entered from the keyboard. To see host commands on the
terminal screen, use Snoopy mode; in Snoopy mode, the
terminal only displays the commands — it does not process
them.

COMMUNICATIONS

CONTROLLING SECURITY

The terminal allows you to protect secure data from being
displayed on the screen. The answerback feature can control
what data and programs are available to each terminal,
while the SET ECHO and ENTER BYPASS MODE
commands offer ways to temporarily suppress the display of
characters entered at the keyboard.

USING ANSWERBACK

Answerback works like this: First, you must store a
password-like message (called the answerback string) in the
terminal’s nonvolatile memory; then, when you want to
allow access to host information only to authorized users,
you can query the terminal for its answerback string. The
host can then verify the string against a list of authorized
users.

To define the terminal’s answerback string, issue the SET
ANSWERBACK STRING command, which must be issued
from the keyboard. Be sure to follow it with a SAVE
NONVOLATILE PARAMETERS command to save the
string in nonvolatile memory. There is no factory default
answerback string.

{

Suppressing the Answerback String

If the host provides the echo to the terminal screen, you may
need to prevent the answerback string from being displayed.
You can do this by entering Bypass mode just before issuing
the ENQUIRY command. In this case, the answerback
string must end with the EOL string, which takes the
terminal out of Bypass mode (for details, see the discussion
on Bypass mode earlier in this section). The next discussion,
Suppressing Echo, describes other techniques for doing this.

SUPPRESSING ECHO

By temporarily suppressing echo, you can protect private or
secure data entered from the keyboard — a login password,
for example — from being displayed on the terminal screen.
Depending on how the echo is provided, you may want to
use the SET ECHO or the ENTER BYPASS MODE
command.

e If the terminal provides the echo, use SET ECHO to
temporarily turn off local echo.

o If the host provides the echo, turn it off at the host if you
can. If you can’t control the host echo, issue ENTER
BYPASS MODE so that the terminal ignores all
characters from the host.

The host uses the ENQUIRY command to query for the ‘ W U
answerback string. The ENQUIRY command is valid in all .
host command modes. SECURITY COMMANDS
Table 2-3 summarizes the commands you can use to provide u
security in your programs. You can find detailed command
descriptions in Section 5.
Table 2-3 u
SECURITY COMMANDS
Descriptive Name Setup Name Function u
ENQUIRY (none) Queries the terminal for its answerback string
ENTER BYPASS MODE (none) Causes the terminal to ignore data (echoes or reports) transmitted
from the host u
SET ANSWERBACK STRING ANSWERBACK Assigns the terminal’s answerback string ‘
SET ECHO ECHO Specifies whether or not the terminal echoes data entered at the
keyboard u
2-10 4105 PROGRAMMERS u

= E =3

D

D

J

REPORTING TERMINAL STATUS

To control a 4105 terminal from a host, your host program
must send commands to generate reports that the program
can then parse. This discussion describes what reports are
available to you and how to obtain them.

Each report has a unique format. The elements of 4100-style
reports are encoded; the discussion Reports in Section 5
explains each report in detail and explains how to decode its
elements. Each ANSI and VT52 report is described in detail
in its own alphabetic entry in Section 3. Also take a look at
the Section 3 and Section 5 command descriptions for the
commands that generate reports.

NOTE

The host program must be written to decode
4100-style report parameters. The encoding scheme
for each type of parameter and the syntax of each
report is explained in detail in the last part of
Section 5.

The terminal ends each report with an EOL string. The
default EOL string is Cr, although you can specify other
characters with the SET EOL STRING command.

REQUESTING REPORTS

Your program must use the appropriate host command
mode to request a specific report. In general, you use
4100-style commands to request general information about
the terminal and its settings and ANSI or VT52 commands
to request information that is specific to screen editing.

There are exceptions. You must request the Error Report in
TEK mode, but it reports the most recent errors, regardless

of the mode the terminal was in when the error was detected.

You can issue the REPORT SYNTAX MODE command in
any host command mode.

The following paragraphs describe the different reports and
how they interrelate.

Reporting Terminal Status

When you use the ANSI mode DSR (DEVICE STATUS

REPORT) command to request terminal status, the terminal

sends back a Device Status Report with a parameter value of
0'to indicate that it is functioning correctly. (The DSR
command is also used for reporting the alpha cursor
position; see the discussion Reporting Cursor Position for
more details.)

4105 PROGRAMMERS

COMMUNICATIONS

Reporting the Answerback String

You can issue the ENQUIRY command from the host to
query the terminal for its answerback string. This capability
is described earlier in this section in the discussion
Controlling Security.

Reporting the Host Command Mode

Your application can issue the REPORT SYNTAX MODE
command from any host command mode to cause the
terminal to report which host command mode is currently in
effect. The Syntax Report sent in response to the REPORT
SYNTAX MODE command is just the same as the report
that you would receive if you issued the the REPORT
TERMINAL SETTINGS command asking for information
on the current setting of the SELECT CODE command.

Reporting Terminal Settings

Use the 4100-style REPORT TERMINAL SETTINGS
command to report the current settings for any 4100-style
command. If you use a special inquiry code, the REPORT
TERMINAL SETTINGS command reports on memory
availability, terminal model number, or firmware version
number:

Memory Availability. Use the special inquiry code ?M to
report the amount of memory currently available and the
largest contiguous block of memory left. (The Setup
command STATUS MEMOR YBLOCKS sends the same
information to the terminal screen.)

Terminal Model. Use the special inquiry code ?7T to report
the terminal’s model number. (The Setup command STATUS
TERMINAL sends the same information to the terminal
screen.)

Firmware Version. Use the special inquiry code 00 to report
the terminal’s firmware version number. (The Setup
command STATUS VERSION sends the same information
to the terminal screen.)

2-11

COMMUNICATIONS

Reporting Screen Editing Characteristics

The two ANSI mode commands DA (DEVICE
ATTRIBUTES) and TEKID (IDENTIFY TERMINAL)
have the same effect: they cause the terminal to report that
its screen editing characteristics are like those of a VT100
terminal with the advanced video option. The VT52
command IDENTIFY causes the terminal to report that it
has VT52 capabilities.

Reporting Errors

The terminal stores the eight most recent error codes, and
you can use the 4100-style REPORT ERRORS command to
send a report containing them to the host. Although the
REPORT ERRORS command must be issued in Tek mode,
it reports all errors, regardless of the mode the terminal was
in when the errors were detected.

Error Codes. When the terminal receives erroneous
commands, it sends error codes to the screen (in Setup) or to
the host (during host operations) to help identify the
problem so you can issue the command correctly.

The error codes the terminal issues are consistently
structured so you can interpret them easily. The first four
characters of the error code consist of a two-character
opcode, the parameter number, and an error type. In Setup,
the terminal displays each error code along with a message
that explains the error code and identifies the severity of the
error. Appendix B, Error Codes, contains more detailed
explanations of each error code the terminal issues.

2-12

Reporting Copier Status

The 4100-style REPORT 4010 STATUS command reports
whether a copier or printer is connected to the terminal and
is powered up.

Reporting Cursor Position

In Tek mode, use the REPORT 4010 STATUS command to
report the alpha cursor position (or the GIN cursor position
if 4010 GIN is enabled). The cursor position is given in 4010
xy-coordinates.

In ANSI mode, use the ANSI command DSR (DEVICE
STATUS REPORT) to ask for a Cursor Position Report.
This reports the alphanumeric cursor position in
row-and-column format.

REPORT COMMANDS

Table 2-4 lists the commands that a host program uses to
request reports, as well as what mode the terminal must be in
when you issue the command. You can find detailed
command descriptions in Section 3 (for ANSI and VT52
mode commands) and Section 5 (for TEK mode
commands).

4105 PROGRAMMERS

COMMUNICATIONS
H Table 2-4
REPORT COMMANDS
|
‘ Command Host Command Report Function
| Mode
DA (DEVICE ATTRIBUTES) ANSI Reports that the terminal is similar to a VT100 terminal with advanced
video option
DSR (DEVICE STATUS REPORT) ANSI Reports either the alpha cursor position (row and column) or that the
i terminal is ready and functioning correctly
ENQUIRY All modes Queries the terminal for its answerback string
l IDENTIFY VT52 Reports that the terminal is similar to a VT52
‘ REPORT ERRORS TEK Reports the eight most recently detected errors, their severity levels, and
how many times each error was detected
REPORT SYNTAX MODE All modes Reports the current host command mode (ANSI, EDIT, TEK, or VT52)
REPORT TERMINAL SETTINGS TEK Reports the current parameter values for a specified command, the
amount of program memory available, the model number, or the
firmware version number
REPORT 4010 STATUS TEK Reports copier status and alpha cursor position (in xy-coordinates);
: reports just GIN cursor position if 4010 GIN is enabled
TEKID (IDENTIFY TERMINAL) ANSI Reports that the terminal is similar to a VT100 terminal with advanced
l video option
H 4105 PROGRAMMERS 2-13

COMMUNICATIONS

CONTROLLING COPIERS AND
PRINTERS

The terminal can make copies of the graphics area and the
dialog area on the following copiers and printers.

For color graphics and dialog copies:

e Tektronix 4691 Color Graphics Copier

o Tektronix 4692 Color Graphics Copier

e Tektronix 4695 Color Graphics Copier

For monochrome graphics and dialog copies:

e Tektronix 4644 Dot Matrix Printer

o Hewlett-Packard ThinkJet Printer

e Printers with a Centronics-style interface and Epson-style
graphics protocol

For monochrome dialog copies:

® Printers that use a Centronics-style interface

2-14

REV, JUN 1985

The terminal needs to know which copier or printer it is
connected to so it can send the appropriate control
information and data. Use the SELECT HARDCOPY
INTERFACE command to tell the terminal the copier type
(and issue the SAVE NONVOLATILE PARAMETERS
command so the terminal will remember the copier type
from session to session).

You can control many aspects of the copying process. You
can copy data directly from the host or copy images from
your terminal screen. When you make copies from the
terminal screen, you can copy just the dialog area, just the
graphics area, or both at once (this is called a screen copy),
and you can select either standard or reduced-size copies.

Each type of copier or printer has unique capabilities. The
following paragraphs describe the 4100-style commands that
you use to invoke these special abilities.

The SELECT HARDCOPY INTERFACE command and
the copier and printer commands summarized in the
following paragraphs are described in detail in individual
command descriptions in Section 5.

4105 PROGRAMMERS

C

J

CONTROLLING COLOR COPIERS

You can make either paper copies or transparencies when
you are using a Tektronix 4691, 4692, or 4695 Color
Graphics Copier, and you can control the image by issuing
any of the following commands before you request the copy:

o Use the SET COPY SIZE command to select standard
(8%2x11") or half-size copies. On the 4695 Color Copier,
you can control the copy size of both dialog area and
graphics area copies; on a 4691 or 4692 Color Copier, you
can control the size of dialog area copies only. The
factory default is the standard size copy.

e On the 4691 and 4692 Color Copiers, use the SET
IMAGE ORIENTATION command to choose either a
horizontal or vertical orientation of the copy image. The
factory default image orientation is horizontal (with the
long axis of the image aligned with the long axis of the
paper or film).

e On the 4692 Color Copier, use the SELECT COLOR
HARDCOPY IMAGE DENSITY command to select
either high-density or low-density copies (measured in
dots per inch). High density copies are sharp and
detailed; low density copies are faster. The factory default
is high density copies.

® On the 4692 Color Copier, use the SET COLOR
ﬁ COPIER REPAINT command to set the number of times
each copy image will be overprinted (this gives a more
saturated image on color transparencies). By default,
each image is painted just once.

(

4105 PROGRAMMERS

COMMUNICATIONS

Note that these commands affect copies made with the
HARDCOPY and 4010 HARDCOPY commands and the
S Copy and D Copy keys. Copies made with the COPY
command are not affected.

You may want to use the SAVE NONVOLATILE
PARAMETERS command to save any command settings
you make; then the terminal will give you the same kinds of
copies each time without your reissuing these commands.

CONTROLLING MONOCHROME GRAPHICS
PRINTERS

The HARDCOPY command, 4010 HARDCOPY
commands, and D Copy and S Copy keys will also make
copies on monochrome graphics printers that have a
Centronics-style parallel interface and Epson-style graphics
protocol. The HARDCOPY command lets you choose
either a negative image (white copies as black and vice versa)
or a positive image. Although you cannot use the commands
discussed in Controlling Color Copiers, there are two
4100-style commands that do affect monochrome printers.

2-15

COMMUNICATIONS

Controlling Line Terminations

You can set the terminal to send either a Carriage Return or
a Carriage Return/Line Feed combination at the end of each
line it sends to your printer; however, both the printer and
the terminal must be set up to use the same line ending. If
your terminal sends the wrong line endings for the printer, it
can cause one of two problems:

e If the printer expects a Carriage Return/Line Feed
combination and the terminal sends just a Carriage
Return, all your lines of text or graphics will print on the
same line — resulting in one unreadable black line.

e If the printer expects just a Carriage Return and the
terminal sends a Carriage Return/Line Feed
combination, the copies you make will have an extra
blank line following each line of characters (that is,
single-spaced text will be double-spaced, and graphics will
have an extra blank line after each printed line).

By default, the terminal sends a Carriage Return/Line Feed
combination. If your printer does not accept the terminal’s
line endings, you can use the SET HARDCOPY
MONOCHROME ATTRIBUTES command to change the
terminal’s default.

This command affects graphics copies made on

monochrome graphics printers and dialog copies made on
other Centronics-style monochrome printers.

2-16

Mapping Colors to Black and White

Although the terminal can use up to eight colors in the
graphics area and eight more colors in the dialog area,
monochrome printers can only print in black and white.

By default, the terminal prints all colors in black except the
background (Index 0). This will present a readable image in
many cases. When you will want more control of the
monochrome image, you can use the MAP INDEX TO
PRINT command to specify which color indices print and
which will not print.

CONTROLLING DIALOG AREA COPIES

When making dialog area copies on color copiers or
monochrome printers, you can use the SET DIALOG
AREA HARDCOPY ATTRIBUTES command to control
the starting point, the number of pages, and how Form
Feeds (Fr) are interpreted.

On the 4691, 4692, and 4695 Color Copiers, you can use the
SET COPY SIZE command to select a smaller copy size.
The standard (82x11") copy size prints up to 80 characters
per line, while the small copy size prints up to 132 characters
per line without wrapping.

You can copy the dialog area in TEK mode using the
HARDCOPY or 4010 HARDCOPY command. In ANSI or
EDIT mode, you can use the MC (MEDIA COPY)
command. See the following discussion on copy commands.

COPIER AND PRINTER COMMANDS

Table 2-5 summarizes the commands that control hard copy
devices. You can find detailed command descriptions in
Section 5.

4105 PROGRAMMERS

C C

COMMUNICATIONS
l Table 2-5
COPIER AND PRINTER COMMANDS
Descriptive Name Setup Name Function
I MAP INDEX TO PRINT HCMAP Specifies which graphics color indices will print and which will not
print when sent to a monochrome graphics printer
SELECT COLOR HARDCOPY IMAGE |HCDENSITY Selects either low-density, fast copies or high-density, slow copies
I DENSITY (4692 only)
SELECT HARDCOPY INTERFACE HCINTERFACE Identifies the type of copier or printer that is connected to the
terminal
SET COLOR COPIER REPAINT HCREPAINT Specifies the number of times the copier overprints each image —
used for transparencies (4692 only)
SET COPY SIZE HCSIZE Selects a small image size for dialog or graphics copies (4695 only)
or for dialog copies only (4691 and 4692)
l SET DIALOG AREA HARDCOPY HCDAATTRIBUTES Sets attributes for a dialog area copy
ATTRIBUTES
SET HARDCOPY MONOCHROME HCMONOCHROME Specifies the line termination (Cr or Crlr) that the terminal sends
ATTRIBUTES to a monochrome printer
l SET IMAGE ORIENTATION HCORIENT Specifies whether the copy image is placed horizontally or
vertically on the paper or film
H 4105 PROGRAMMERS 2-17

COMMUNICATIONS

MAKING COPIES

There are four host commands that send data to color
copiers or monochrome printers connected to the terminal.
The 4100-style COPY and HARDCOPY commands will
send graphics data or dialog area data to a copier or printer.
The 4010 HARDCOPY command (also a 4100-style
command) will make screen copies only. The ANSI
command MC (MEDIA COPY) will make dialog area
copies only.

The 4100-style copy commands summarized in the following
paragraphs are described in detail in individual command
descriptions in Section 5. The ANSI command MC (MEDIA
COPY) is described in detail in Section 3.

The 4100-style command COPY sends data straight from
the host to the copier or printer without processing the data
(the commands for controlling color and monochrome
copies have no effect). The COPY command depends on the
host program to send appropriate data and control
information to the copier or printer.

The 4100-style command HARDCOPY, on the other hand,
copies data displayed on the terminal screen. It makes either
screen copies or dialog copies. The HARDCOPY command
lets you choose either a negative image (white copies as black
and vice versa) or a positive image.

C

The 4100-style command 4010 HARDCOPY copies the
screen (graphics area and dialog area together).

The ANSI mode MC (MEDIA COPY) command offers an
alternative way to send a simple dialog area copy — it works
just like the HARDCOPY command. This command’s
greatest advantage in this terminal is the added Tek-private
parameters that select data logging, a means of logging all
text written to the dialog area by simultaneously sending it to
a printer or copier.

One of the data logging options you can select toggles data
logging on and off. You may want to program a key on the
keyboard so that users can toggle data logging on and off
easily (see the discussion Defining a Key Macro: An
Example in Section 4).

There are a number of commands (discussed earlier in this
section) that control the appearance of copies made with the
HARDCOPY and 4010 HARDCOPY commands or with
the D Copy and S Copy keys.

Copy Commands

Table 2-6 summarizes the commands that you can use to
make copies on color copiers and monochrome printers.

Table 2-6
COPY COMMANDS
Descriptive Name Setup Name Function
COPY COPY Sends information directly from the host to a copier or printer
HARDCOPY (none — use D Copy key or | Sends a copy of the screen (or just the dialog area) to a copier or
S Copy key) printer
MC (MEDIA COPY®) AUTOPRINT Sends dialog to the printer at the same time as it is written to the
screen (can also send a simple dialog copy)
4010 HARDCOPY (none — use S Copy key) Sends a copy of the screen to a copier or printer

* This is an ANSI command, described in Section 3.

2-18

4105 PROGRAMMERS

J

ﬂ

mm)

PORT CONFIGURATION FOR
NONCONVENTIONAL USES

The following discussion is included in this manual for those
users who want to connect the RS-232-C host port to
different devices than the port was designed to accept. If you
use the host port in conventional ways, the cable supplied
with the terminal or peripheral will work without alteration.

The host port is configured to receive and transmit data
from a host computer or other RS-232-C compatible data
communications equipment (DCE), requiring only that you
cable the devices together.

If you want to use the host port for nonconventional uses, it
is important to realize that not all RS-232-C devices use the
same pin assignments, and not all devices will operate when
connected with a standard RS-232-C cable. A connection
must have not only the right pins but the right information
on the pins. To achieve the appropriate pin connections, you
may need to use a null-modem cable, which crosses the
connections to permit DCE devices to be cabled to other
DCE devices or DTE devices to other DTE devices.

RS-232-C Pin Connections

Table 2-7 shows the pins used for the host RS-232 connector.

4105 PROGRAMMERS

Table 2-7

COMMUNICATIONS

RS-232-C PIN CONNECTIONS

Pin | Function Used by Host Port?
1 FGND (Frame Ground) Yes
2 RDATA (Data Received) Yes
3 TDATA (Data Transmitted) Yes
4 RTS (Request to Send) Yes
(Set to Mark?)
) CTS (Clear to Send) Yes
(Input if DTR/CTS
handshaking)
DSR (Dataset Ready) No
SGND (Signal Ground) Yes
DCD (Data Carrier Detect) No
12 SDCD (Secondary Data Carrier | No
Detect)
15 TCLK (Transmitted Data Yes
Clock) (If external clocking
enabled by
BAUDRATE 1)
17 RCLK (Received Data Clock) Yes
(If external clocking
enabled by
BAUDRATE 1)
19 SRTS (Secondary Request to Yes
Send) (Set to Mark®)
20 DTR (Data Terminal Ready) Yes
(Output if DTR/CTS
handshaking; otherwise
set to Mark®)

® “Set to Mark” means that a + 12 volt signal is present at the indicated pin.

2-19

> > p

J

a

Section 3

SCREEN EDITING CONCEPTS AND COMMANDS

This section explains the terminal’s screen editing features
and describes three host command modes (ANSI, EDIT, and
VTS52) that give the terminal different screen editing
capabilities. Detailed command descriptions for each ANSI
and VT52 command follow the concepts discussion.

The topics covered in this section are:

® Screen Editing Concepts. Explains how the terminal’s
dialog area works and how ANSI commands control
both the dialog area display and the terminal’s keyboard
functions. The concepts discussed here apply to all three
screen editing modes.

o Screen Editing Modes. Discusses the terminal’s three
screen editing modes, how they relate to one another, and
what functions each mode performs.

® ANSI and VT52 Syntax. Describes the formatting
conventions used in this section and gives the syntax rules
for the ANSI and VTS2 commands.

® ANSI Command Descriptions. Describes each ANSI
command and report in detail.

® VT52 Command Descriptions. Describes each VT52
command in detail.

4105 PROGRAMMERS

SCREEN EDITING
CONCEPTS

SCREEN EDITING CONCEPTS

Screen editing programs allow you to view and edit a
computer file as a whole rather than just line-by-line. You
can use most screen editing programs with this terminal as
long as the program is compatible with the ANSI X3.64 and
ISO 6429 standards.

The documentation supplied with your editing program
should define any deviation the program makes from these
standards. If there are any deviations, you may not be able
to use all of your program’s features with this terminal, and
your program may not be able to use all of this terminal’s
features.

If your editing program is compatible with VT52 terminals,
use VT52 mode; if your editing program is compatible with
VT100 terminals, use EDIT mode. These host command
modes configure the terminal to run most VT52 or VT100
applications programs.

NOTE

Remember that ANSI, EDIT, and VT52 modes are
host command modes — when commands are
entered from the keyboard, the terminal accepts
any command that has Setup syntax, regardless of
the host command mode.

Many 4100-style commands control attributes that affect all
modes. Those 4100-style commands that affect screen
editing are included in the discussions in this section. They
are described in detail in Section S, 4100-Style Commands
and Reports.

If you write your own screen editing program, it must use
the commands in the ways described in this section.

C

THE DIALOG AREA AND
THE DIALOG AREA BUFFER

The dialog area is a definable area of the terminal screen
that displays information from an area of program memory
called the dialog area buffer. The dialog area can display text
for screen editing programs, or it can display the dialog
between the user and the host.

All screen editing and entry occur in the dialog area, and the
ANSI, EDIT, and VT52 commands work only in the dialog
area. Before executing any screen editing programs, you
must make the dialog area visible with the 4100-style
command SET DIALOG AREA VISIBILITY, or by
pressing the Dialog key.

Use the 4100-style command SET DIALOG AREA LINES
to set the number of lines (from 2 to 30) that are visible in the
dialog area; the default dialog area is 30 lines. The dialog
area is as wide as the screen (80 columns).

The dialog area buffer (or simply, dialog buffer) is the part
of the terminal’s program memory that is used to store
information for display in the dialog area. The number of
lines in the dialog buffer can be greater than or equal to the
number of lines in the dialog area; the maximum size of the
dialog buffer depends on the other features you are using.

The default dialog buffer is 49 lines; you can change the
number of lines with the 4100-style command SET DIALOG
AREA BUFFER SIZE.

You can choose a dialog buffer width of 132 columns instead
of the normal 80 columns — use the ANSI command SM
(SET MODE) to set Column mode. The dialog area will still
display just 80 columns at once, but the user can use the
Joydisk to scroll the text horizontally to display the
additional columns.

Note the relationship between the dialog area and the dialog
buffer in Figure 3-1. Because the dialog buffer has been
defined larger than the dialog area, only part of the dialog
buffer is visible on the screen.

C

4105 PROGRAMMERS

>

~

THE ALPHANUMERIC CURSOR

The alphanumeric cursor is an underscore displayed on the
screen. The cursor serves as a pointer that indicates where
commands should take place. For example, to delete a
character, you first move the cursor to that character, then
issue the command that deletes it.

The line of text on which the cursor is located is referred to
in this manual as the current line. The position of the cursor
on that line is referred to as the current position.

SCREEN EDITING
CONCEPTS

The terminal’s screen is fully addressable. Each character on
the screen has a unique horizontal row and vertical column
address, and you can specify exact cursor positions using
these row and column addresses.

To change the cursor color or make it blink, use the
4100-style command SET ALPHA CURSOR INDEX.

Your host program can move the cursor by issuing ANSI or
VTS52 cursor-movement commands. These cursor
commands are listed on the next tabbed divider (preceding
this section’s command descriptions).

DIALOG AREA
BUFFER
1
2
3
: SCREEN
[)
DIALOG AREA
7 LINES
—_——— e)
i
48
49
49 LINES
4893-33A
Figure 3-1. Dialog Area and Dialog Area Buffer.
4105 PROGRAMMERS 3-3

SCREEN EDITING
CONCEPTS

SCROLLING THE DISPLAY

When the dialog buffer is larger than the dialog area, you
can display the off-screen portions of the dialog buffer by
scrolling. You can scroll the dialog buffer by issuing ANSI or
VTS52 cursor commands or by issuing ANSI scrolling
commands.

Cursor Commands. ANSI and VT52 cursor commands let
you scroll the dialog buffer vertically.

When (1) there are more lines of text in the dialog buffer
than can be displayed in the dialog area, and (2) the cursor is
visible on the screen, you can move the cursor to the top or
bottom of the dialog area to scroll the undisplayed contents
of the dialog buffer into view. (When the cursor is not
displayed on the screen, cursor commands do not scroll the
dialog buffer.)

Scrolling Commands. ANSI scrolling commands let you
scroll the dialog buffer horizontally and vertically.

When you have selected a 132-column dialog buffer, you can
use the ANSI commands SL (SCROLL LEFT) and SR
(SCROLL RIGHT) to scroll the dialog area contents across
the screen to display the additional columns.

When the dialog buffer contains more lines than the dialog
area can display, you can use the ANSI commands SU
(SCROLL UP) and SD (SCROLL DOWN) to scroll the
dialog buffer contents up and down the screen to display the
additional lines.

Note that the scrolling commands may move the cursor out
of view.

The user can scroll the dialog buffer from the keyboard by
pressing the Joydisk.

CREATING FIXED REGIONS
IN THE DIALOG BUFFER

By default, the entire dialog buffer is treated as a scrolling
region: when the buffer fills up, new lines of text are written
to the bottom of the buffer, and the oldest lines of text (at
the top of the dialog buffer) disappear.

You can choose instead to create one or two fixed regions on
the screen. You might do this if your screen editing program
has a status or message line at the top or bottom of the
screen. Then you would use the scrolling region for editing
and the fixed region for the status line.

Use the TEKSTBM (SET TOP AND BOTTOM
MARGINS) command to define fixed regions. You specify
top and bottom margins for the scrolling region; the lines
between and including the top and bottom margins are in the
scrolling region, and the lines outside the scrolling region are
in the fixed regions. Although the TEKSTBM command is
an ANSI command, the fixed and scrolling regions you
create with it will remain in effect in EDIT mode and VT52
mode.

When you have defined one or more fixed regions, the
dialog buffer is limited to 30 lines — the size of the terminal
screen. When there are no fixed regions, the maximum size
of the dialog buffer depends on the amount of program
memory available (see Managing Program Memory in
Section 4 for details).

Figure 3-2 shows the relationship between fixed and scrolling
regions in the dialog buffer.

4105 PROGRAMMERS

C

SCREEN EDITING
CONCEPTS
A. WITHOUT EDIT MARGINS
DIALOG AREA
BUFFER
: 4}
3
SCREEN
r A
SCROLLING
REGION

DIALOG AREA
7 LINES

47
49

B. WITH EDIT MARGINS

DIALOG AREA SCREEN
BUFFER r p
é FIXED REGION
———— — —
5
6
EDIT . SCROLLING
MARGINS | REGION
N gg DIALOG AREA SCROLLING REGION
Pl — — — —] 7 LINES —_—— == = = — =
29 FIXED REGION ———— FIXED REGION
30 — e — — — —— — — —] —_— Y — = — —
_ y
(4893)4526-49
Figure 3-2. Fixed Regions in the Dialog Buffer.
4105 PROGRAMMERS 3-5

SCREEN EDITING
CONCEPTS

Addressing the Alphanumeric Cursor

When there are no fixed regions in the dialog buffer, cursor
addresses represent buffer addresses (an address of Row 1,
Column 1 means the first position in the buffer), and you
can move the cursor anywhere in the buffer. However, when
you have defined one or more fixed regions, you can choose
whether cursor addresses represent addresses in the dialog
buffer or addresses in the scrolling region within that buffer.

If you’ve set up fixed regions, you can use the ANSI
commands SM (SET MODE) and RM (RESET MODE) to
set Origin mode, which specifies the cursor addressing
scheme. Origin mode also controls where the cursor can
move within the fixed and scrolling regions of the dialog
buffer.

Origin mode Absolute specifies that cursor addresses
represent addresses in the dialog buffer. Origin mode
Absolute lets you move the cursor to any character position
in the dialog buffer — it is the only way you can move the
cursor into a fixed region. Use the ANSI commands

CUP (CURSOR POSITION) or HVP (HORIZONTAL
AND VERTICAL POSITION) to move from one region to
another.

Figure 3-3 shows the range of cursor movement with Origin
mode Absolute.

DIALOG AREA
BUFFER

FIXED REGION

SCROLLING REGION

THROUGH
WHOLE BUFFER

>CURSOR CAN MOVE

FIXED REGION

4893-35

Figure 3-3. Cursor Movement in Origin Mode Absolute.

Origin mode Relative specifies that cursor addresses are
based on the the first line of the scrolling region, as set by the
TEKSTBM (SET TOP AND BOTTOM MARGINS)
command. Origin mode Relative limits the cursor to the
scrolling region.

For example, let’s say you use the CUP (CURSOR
POSITION) command and specify Row 1, Column 1. If
Origin mode is Absolute, the cursor will move to Row 1,
Column 1 in the dialog buffer; if Origin mode is Relative,
the cursor will move to Row 1, Column 1 in the scrolling
region.

Figure 3-4 shows the range of cursor movement with Origin
mode Relative.

DIALOG AREA
BUFFER

FIXED REGION

CURSOR IS LIMITED TO

SCROLLING REGION SCROLLING REGION

FIXED REGION

4893-36

Figure 3-4. Cursor Movement in Origin Mode Relative.

4105 PROGRAMMERS

(

J

J

J

CONTROLLING THE DIALOG DISPLAY AND
THE KEYBOARD

Several ANSI commands control characteristics that affect
the dialog display and keyboard features in all host
command modes. These commands are:

e SCS (SELECT CHARACTER SET)

e SGR (SELECT GRAPHIC RENDITION)
e RM (RESET MODE)

e SM (SET MODE)

Although these are ANSI commands, they affect keyboard
operation and dialog area display in all host command
modes — ANSI, EDIT, TEK, and VT52 modes.

Selecting a Character Set

The characters displayed on your screen are taken from the
default character set, which the terminal selects
automatically when you plug in the keyboard. Eight
character sets are stored in your terminal’s firmware;
plugging in the keyboard determines which one is displayed.
For example, if you plug in the ASCII/North American
keyboard, the terminal selects the ASCII/North American
character set.

You may want to display characters from one of the
international character sets or from the rulings or
supplementary character sets instead. To do this, use the
SCS (SELECT CHARACTER SET) command to designate
that character set as the GO character set.

You can also use the SCS command to specify both a GO
character set and a G character set. Then you can toggle
between the two character sets — issue the 51 (SHIFT IN)
control character to invoke the GO character set and the
So (SHIFT OUT) control character to invoke the G1
character set.

If you select a character set different from the one selected
by your keyboard, the key caps will, of course, no longer
correspond to the symbols displayed. Consult the ASCII or
ISO code charts in Appendix A to find which keys on your
keyboard generate the symbols you want.

4105 PROGRAMMERS

REV, JUN 1985

SCREEN EDITING
CONCEPTS

Controlling Colors in the Dialog Area

You can control the colors available in the dialog area with
either ANSI- or 4100-style commands. These commands
control the colors assigned to the alphanumeric cursor, text
characters, character-cell background, and the dialog area
background.

The terminal uses the integers 0 through 7 as color indices to
identify the colors. You use these indices to specify colors
when you issue commands to change the colors in the dialog
area. The default color assignments are:

0 = Black/Transparent 4 = Blue

1 = White S = Cyan

2 = Red 6 = Magenta
3 = Green 7 = Yellow

When Index 0 is used for text characters, it represents an
opaque color just like Indices 1 through 7. However, when
Index 0 is used for the character-cell background or the
dialog area background, that background becomes
transparent and whatever is behind it shows through. If both
the character and dialog backgrounds are transparent, the
dialog appears to be written on a piece of glass in front of
the graphics area.

The 4100-style command SET DIALOG AREA COLOR
MAP lets you reassign color mixtures to these color indices.
(See the discussion Defining Color Mixtures in Section 4 to
see how to specify colors.)

NOTE

The terminal operator can change the color
mixtures in the dialog are color map from the
keyboard by using the Interactive Color Interface.
So if it is important to your program to have
specific colors assigned to particular indices, you
will need to reissue the SET DIALOG AREA
COLOR MAP command to ensure that you get the
colors you want.

You can control the color of the text and the dialog area
background with either the ANSI command SGR (SET
GRAPHIC RENDITION) or with the 4100-style command
SET DIALOG AREA INDEX. Both commands offer the
same control of color: you can specify the color of text
characters, the color that fills the character cells around each
character, and the color of the dialog area background.

You can use the SET ALPHA CURSOR INDICES
4100-style command to select one or two colors for the
alphanumeric cursor. If you select two colors, the alpha
cursor will alternate between them, appearing to blink.

3-7

SCREEN EDITING
CONCEPTS

Selecting Underscored or Blinking Text

You can specify underscored text or blinking text by issuing
the ANSI command SGR (SELECT GRAPHIC
RENDITION). When you turn on underscoring through the
SGR command, all subsequent characters (including
punctuation and spacing) will be underscored until you
reissue the SGR command to turn off underscoring. You can
turn blinking on and off in the same way. Once you have
specified text as underscored or blinking, that text will retain
the specified characteristic — turning off either
characteristic affects only subsequent text.

Using the RM (RESET MODE) and SM (SET
MODE) Commands

You can use the RM (RESET MODE) and SM (SET
MODE) commands from a host application to control how
the terminal writes text to the dialog area and how the
keyboard functions. All but one of the modes you control
with RM and SM can also be controlled from the keyboard
with a Setup command.

These modes control the dialog display:

® Autowrap mode (TEKAWM) — Specifies whether
characters in the rightmost column automatically wrap to
the beginning of the next line.

® Column mode (TEKCOLM) — Selects an 80- or
132-column width for the dialog buffer.

® [nsert/Replace mode (IRM) — Specifies whether
characters are inserted into an existing line or write over
existing characters.

® Linefeed/Newline mode (LNM) — Specifies whether a
Line Feed sent to the dialog area also implies a Carriage
Return.

® Origin mode (TEKOM) — Specifies whether cursor
addresses are based on Row 1, Column 1 of the scrolling
region or Row 1, Column 1 of the dialog buffer.

® Overstrike/Replace mode (TEKORM) — Controls how
the Underscore and Space characters are treated when
displaying formatted print files.

® Screen mode (TEKSCNM) — Reverses the colors on the
display.

® Send/Receive mode (SRM) — Specifies whether or not
the terminal echoes the data entered at the keyboard.

These modes control the keyboard:

® Autorepeat mode (TEKARM) — Specifies whether
keyboard keys repeat when held down.

® Cursor Key mode (TEKCKM) — Specifies whether or
not Function Keys F1 through F4 transmit ANSI cursor
commands.

® Keyboard Action mode (KAM) — Locks and unlocks the
keyboard.

Dialog Display and Keyboard Commands

Table 3-1 summarizes the 4100-style commands that control
the dialog area and dialog buffer. These commands and are
discussed in more detail in the command descriptions in
Section 5. The discussion Displaying a Dialog Between a
Host and User in Section 4, explains how to use the dialog
area in graphics applications.

Table 3-2 summarizes the ANSI commands that your host
program can issue to control the dialog area display and
keyboard functions. If these commands are issued from the
host, the terminal must be in ANSI mode. These commands
affect display in all host command modes.

4105 PROGRAMMERS

C

C

J

SCREEN EDITING
CONCEPTS

Table 3-1

4100-STYLE COMMANDS THAT CONTROL TEXT DISPLAY

Descriptive Name

Function

CLEAR DIALOG SCROLL

Erases the dialog buffer

ENABLE DIALOG AREA

Enables or disables the dialog area

SET DIALOG AREA BUFFER SIZE

Specifies the number of lines available for storing text in the dialog buffer

SET DIALOG AREA COLOR MAP

Specifies the color assigned to one or more color indices in the dialog area

SET DIALOG AREA INDEX Specifies the color index for alphatext characters, character cell background, and
dialog area background
SET DIALOG AREA LINES Specifies the number of lines of the dialog buffer that are displayed on the screen

SET DIALOG AREA VISIBILITY

Makes the dialog area visible or invisible

Table 3-2

ANSI COMMANDS THAT CONTROL TEXT DISPLAY

Descriptive Name

Function

RM (RESET MODE)

Resets display characteristics or keyboard characteristics set by the SM (SET MODE)
command

SCS (SELECT CHARACTER SET)

—, . _ " m m m _ a # a a

Selects a new character set (by designating it the GO character set), or designates two
character sets (as GO and G1 character sets) so you can toggle between them

SGR (SELECT GRAPHIC RENDITION)

Sets display attributes for the dialog area:

® Character Color

® Character Cell Color

® Dialog Area Background Color
e Character Blink

® Character Underscore

=D

SI (SHIFT IN)

Invokes the GO character set (designated by the SCS command)

SM (SET MODE)

Sets display characteristics or keyboard characteristics:

® ANSI-to-VT52 mode

® Autorepeat mode

® Autowrap mode

® Column mode

® Cursor Keys mode

® Insert/Replace mode

® Keyboard Action mode
® Linefeed/Newline mode
® Origin mode

e Overstrike/Replace mode
e Screen mode

e Send/Receive mode

SO (SHIFT OUT)

Invokes the G1 character set (designated by the the SCS command)

D)

4105 PROGRAMMERS

3-9

SCREEN EDITING
CONCEPTS

RESTORING THE TERMINAL
TO A KNOWN STATE

ANSI and 4100-style commands offer a number of
techniques to restore the terminal to a known state. These
techniques allow you to reset the terminal to a predefined
state or save current settings to be restored at a later time.
Although you can reissue a string of commands every time
you need to return to a known state, these techniques are far
simpler.

For example, when your program starts, the terminal’s
editing and display characteristics may be in an
unpredictable state because of commands issued by another
program or by a user at the keyboard. You might want to
reset the terminal to a predefined state specifically for screen
editing applications.

Another example is when your program sends a status
message to the terminal (or takes any action that interrupts
the user’s activities). You might need to save current settings
SO you can restore them when you are done.

3-10

The terminal’s ANSI commands offer two simple ways to
reset certain screen editing characteristics to a known state:

® You can use the ANSI command RIS (RESET TO
INITIAL STATE) to reset a predefined set of
characteristics to their original values. The RIS
command:

® Erasesthe screen

® Moves the cursor to home (Row 1, Column 1 of the
dialog buffer)

* Sets Insert/Replace mode to Replace
® Clears Edit Margins

¢ Turns off text display characteristics (graphic
rendition) set with the SGR (SELECT GRAPHIC
RENDITION) command

e Resets the GO and G1 character sets to the default
character set

e Shifts in the GO character set

¢ Enables or disables the dialog area (depending on the

saved setting for the 4100-style command ENABLE
DIALOG AREA)

* Makes the dialog area visible

® You can use the ANSI command TEKSC (SAVE
CURSOR) to temporarily save the cursor position, the
graphic rendition, and the character set currently in use.
Then you can alter any of these settings temporarily —
and when you want to return the terminal to its original
state, you can use the ANSI command TEKRC
(RESTORE CURSOR) to restore those saved values.

4105 PROGRAMMERS

C

J

D)

i
f
n
R
f
M
|
A
Ia)
M
f
A
M
f
N
f
N

You can use various ANSI- and 4100-style commands to test
the terminal’s current settings and then reset individual
characteristics. You can use the 4100-style command
REPORT TERMINAL SETTINGS to report the current
settings of a particular command. See the discussion on
reports in Section 2.

SCREEN EDITING
CONCEPTS

The 4100-style command FACTORY returns the terminal to
the default settings that it had when delivered from the
factory. The 4100-style RESET command returns the
terminal to its power-up settings (a combination of factory
settings and any settings that have been saved in nonvolatile
memory).

Table 3-3 summarizes the ANSI commands that the host
program can issue to test and restore terminal
characteristics.

Table 3-3
ANSI COMMANDS FOR RESTORING TERMINAL SETTINGS

Descriptive Name Function

RIS (RESET TO INITIAL STATE)

Resets selected certain terminal attributes to their power-up values

TEKRC (RESTORE CURSOR) Restores cursor position, graphics rendition, and character set previously saved with
the TEKSC (SAVE CURSOR) command

TEKSC (SAVE CURSOR) Saves cursor position, graphics rendition, character set, and Origin mode

4105 PROGRAMMERS 3-11

SCREEN EDITING
MODES

SCREEN EDITING MODES

Figure 3-5 shows the terminal’s screen editing modes, the
functions that each supports, and how they relate to one
another.

To use a screen editing program:

o The dialog area must be visible; use the 4100-style
command SET DIALOG AREA VISIBILITY.

e The terminal must be in one of the screen editing modes;
use the SELECT CODE command from any mode.

ANSI MODE

You can use ANSI commands to edit text or to set dialog
display and keyboard characteristics (which affect the dialog
display and keyboard functions in all host command
modes).

ANSI editing commands allow you to:
® Move the cursor

® Delete characters and lines

® FErase characters and lines

o Insert characters and lines

o Create and delete tab stops and move the cursor to tab
stops

® Choose double height, double width text display

The features of ANSI mode that affect the other screen
editing modes are described in the preceding discussion
Controlling the Dialog Display and the Keyboard.

You can find a complete list of ANSI commands, grouped
by function, on the divider tab at the beginning of this
section. Detailed descriptions of each ANSI command are
given later in this section; see ANSI Command Descriptions.

3-12

EDIT MODE

EDIT mode is a submode of ANSI mode, and automatically
configures the terminal so that it is compatible with most
VT100 software. While working in EDIT mode, you are
actually still in ANSI mode and can use all the ANSI
commands.

Here’s what the terminal does when it enters EDIT mode:
o Selects ANSI X3.64 syntax
o Enables the dialog area and makes it visible
o Sets the dialog buffer to 24 lines
e Defines the scrolling region to match the size of the
dialog buffer (24 lines)
® Sets two ANSI modes:
e Sets Origin mode to Absolute

® Sets Insert/Replace mode to Replace (replaces rather
than inserts characters)

e Temporarily disables the meanings associated with all
user-programmed keys.

If you want user-programmed keys in EDIT mode, you can
reenable their programmed meanings. Just switch
temporarily to TEK mode to issue the 4100-style command
ENABLE KEY EXPANSION — and then select ANSI
mode so you can continue editing without disabling key
expansion again.

If you select TEK mode from EDIT mode, the EDIT mode
settings may not be appropriate, and you may need to reset
them so your graphics program will work as expected. The

SELECT CODE command description in Section 5 covers

this transition in detail.

4105 PROGRAMMERS

C

C

SCREEN EDITING
MODES
l —
l ANSI MODE EDIT MODE VT52 MODE
ANSI-STYLE ANSI-STYLE VT52
l COMMANDS COMMANDS COMMANDS
l SCREEN SETTING DIALOG DISPLAY SCREEN EDITING SCREEN EDITING
EDITING AND KEYBOARD FOR VT100 FOR VT52
CHARACTERISTICS APPLICATIONS APPLICATIONS
H ﬂ (for all modes)
(4893)4526-56
l Figure 3-5. Screen Editing Modes.
n 4105 PROGRAMMERS 3-13

SCREEN EDITING
MODES

VT52 MODE

VT52 mode configures the terminal to run most VT52
application programs. You can use only the VT52
commands, which are listed at the end of this section. A
complete list of VT52 commands, grouped by function, is
printed on the divider tab at the beginning of this section.

VTS52 editing commands allow you to:
® Move the cursor

o FErase text

® Select host command modes

® Select VT52 modes

e Send reports

Although the ANSI commands that control the dialog
display and keyboard are not available while in VT52 mode,
you can issue them before entering VT52 mode and use the
capabilities they give you while in VT52 mode. This means
you can create fixed and scrolling regions in the dialog
buffer and use any of the modes selected by the ANSI
commands RM and SM.

VT52’ Graphics mode provides another way to invoke the
terminal’s rulings character set. Entering Graphics mode
selects the rulings characters as the GO character set; exiting
Graphics mode restores the character set to the GO character
set that was in effect prior to entering this mode.

VT52’s Alternate Keypad mode gives the numeric keypad
and Keys F5 through F8 special meanings; its effect is related
to that of two ANSI-style commands:

e Issuing the VT52 command EXIT ALTERNATE
KEYPAD MODE or the ANSI-style TEKKPNM
command makes the keypad send default codes, while
Keys F5 through F8 send special codes that are different
in ANSI and VTS52.

® Issuing the VT52 command ENTER ALTERNATE
KEYPAD MODE or the ANSI-style TEKKPAM
command makes both the keypad and Keys F5 through
F8 send alternate codes while in VT52 mode, and
application codes while in ANSI mode.

The keypad functions you select in one mode affects the
keypad function in the other mode. If you switch back and
forth between ANSI (or EDIT) mode and VT52 mode, you
need to understand how the ANSI and VT52 keypad
commands relate.

Table 3-4 shows how the commands that control ANSI and
VTS52 keypad modes interrelate. See Tables 3-11 and 3-12
later in this section for the specific values assigned to each
keypad key and function key.

Table 3-4

COMMANDS THAT CONTROL THE NUMERIC KEYPAD

Descriptive Name Mode Function

ENTER ALTERNATE KEYPAD MODE VTS2 Selects alternate codes. When you select ANSI mode, you get ANSI
application keypad codes.

EXIT ALTERNATE KEYPAD MODE VT52 Selects default codes. When you switch to ANSI mode, you get the same
keypad codes for all keys except F5 — F8.

TEKKPAM (KEYPAD APPLICATION MODE) ANSI Selects application codes. When you switch to VT52 mode, you get VT52
alternate keypad codes.

TEKKPNM (KEYPAD NUMERIC MODE) ANSI Selects default codes. When you switch to VT52 mode, you get the same
keypad codes for all keys except F5 — F8.

3-14

REV, JUN 1985

4105 PROGRAMMERS

C

3

ANSI AND VT52 SYNTAX

The ANSI and VT52 command descriptions in this section
are consistently structured, using an easy-to-read set of
syntax conventions. Figure 3-6 and the following discussion
give a summary of the overall structure of command
descriptions and of the notation used to show syntax.

- RULES FOR ISSUING ANSI AND

D

J

VT52 COMMANDS

Follow these rules when issuing ANSI and VT52 commands:

e In host syntax, issue the command as shown. An ANSI
command may include the control sequence introducer
(Ec[), one or more parameters, and a command
terminator character.

e Do not put separator spaces between parts of a
command. (In a few cases, a Space character (Sp) is a
valid part of a command.)

e In host syntax, when a command has more than one
parameter, separate them with semicolons.

® You can abbreviate the Setup name — just enter as many
letters of the name as are needed to identify it uniquely. In
the example in Figure 3-6, the Setup name CODE can be
abbreviated COD (if you tried to abbreviate this to CO,
the terminal would issue an error message since it
wouldn’t know whether you want to issue the CODE
command or the COLUMNMODE command).

e In Setup syntax, enter parameters on the same line and
separate them with a space or a comma.

® Most ANSI commands take integer values for their
parameters. The widest valid range is 0 — 32767. If you
specify a value higher than is reasonable for a particular
parameter, the parameter defaults to the highest value
that it can accept. You can omit leading zeros in ANSI
commands issued from the host or in Setup.

o A few parameters for the MC (MEDIA COPY), RM
(RESET MODE), SGR (SELECT GRAPHICS
RENDITION), and SM (SET MODE) commands are
Tektronix-private parameters. These parameters consist
of a prefix (<, =, >, or ?) followed by an integer.

® The Setup versions of a few ANSI and VT52 commands
use keyword parameters. These are simple words like yes
or insert. You can abbreviate keyword parameters — you
need to enter just enough of the keyword to make your
choice clear. In Figure 3-6, where the keywords are ANSI,
EDIT, VT52, and TEK, you could use just A, E, V,or T
as parameter values.

4105 PROGRAMMERS

SCREEN EDITING
ANSI AND VT52 SYNTAX

SAVING COMMAND SETTINGS

You can save the settings of some commands by issuing

the 4100-style command SAVE NONVOLATILE
PARAMETERS before you turn off the terminal. Then

the terminal will retain these settings in its nonvolatile
memory even when it is powered off. The commands that
you can save are identified following the command’s
statement of purpose with the phrase Can be saved in
nonvolatile memory. You can find a list of all the commands
that can be saved in nonvolatile memory in the 4105
Computer Display Terminal Programmers Reference Guide.

MORE INFORMATION ABOUT COMMANDS

This manual and the 4105 Computer Display Terminal
Reference Guide provide summary information about the
commands in several places:

o The divider tabs for this section list the ANSI and VT52
commands in functional groupings.

o Appendix C of this manual contains command summary
tables. By scanning this appendix, you can, for example,
see the parameter defaults for commands at a glance. You
can find the Setup name of a command for which you
know the descriptive name, and you can quickly find a
command’s host syntax and what its parameters are.

® The 4105 Computer Display Terminal Programmers
Reference Guide contains information from this manual,
in summary form. It also contains additional
cross-reference tables, which list commands by function
and Setup name.

3-15

SCREEN EDITING
ANSI AND VT52 SYNTAX

COMMAND DESCRIPTION FORMAT

Each command description is formatted in the following
way:

o Command names are always shown in all uppercase
characters at the beginning of the command description,
followed by the command’s function statement.

o The Host Syntax box shows the way a host application
would send this command to a terminal.

® The Setup Syntax box shows the way you would enter this
command at a terminal keyboard.

® The Report Syntax box shows the way the terminal
reports information to the host.

e Characters shown in bold type are those that you must
enter exactly as shown.

® Three periods (. . .) following a parameter name indicate
that the command accepts multiple entries of the
specified parameter.

e Default parameter values, if any, are shown at the end of
each parameter description; when there is no default, the
default value is shown as (none).

® Many commands descriptions include syntax examples
showing how to issue the command. When both host and
Setup examples are included, the two examples do the
same thing.

A Sample Command Description

Most ANSI and VT52 commands have only host syntax —
they must be issued from the host while in ANSI or VT52
mode. A few commands, like the ANSI-style SELECT
CODE command, shown in Figure 3-6, also have a Setup
syntax. The figure uses the SELECT CODE command to
illustrate this section’s command description format:

® Function Statement. The command description begins
with statement of the command’s purpose following the
command name.

® Host Syntax. This box shows how to issue this command
from the host; send the escape sequence Ec%!, followed
by the syntax parameter.

® Setup Syntax. This box shows how to issue this command
from the keyboard; type the Setup name, CODE,
followed by the syntax parameter and a carriage return.

® Parameter. There is a brief description of what the syntax
parameter does. The description shows the valid values to
use in the host version of the command and the keywords
to use in Setup.

® Default. As the figure shows, the syntax parameter
defaults to TEK mode.

o Syntax Example. Since the SELECT CODE command
has both host and Setup syntax, the figure shows a typical
command entry in each syntax.

3-16

SELECT CODE

Selects the host command mode, choosing ANSI, VT52, or
TEK host command syntax. (Can be saved in nonvolatile
memory.)

Host Syntax

Ec%! syntax

Setup Syntax

CODE syntax

syntax: specifies the host command mode that you want to
use:

Host Setup
0 TEK Selects TEK mode
1 ANSI Selects ANSI mode
2 EDIT Selects EDIT mode
3 VTS52 Selects VTS52 mode
Defaults: Factory = (none)
Omitted = TEK

This command causes the terminal to accept ANSI, EDIT,
TEK, or VT52 commands from the host computer. The
syntax of these different host command modes are not
compatible. If you are using host commands from one mode
and want to execute one or more commands from another
mode, you must issue the SELECT CODE command with
the appropriate parameter. This command is recognized in
all host command modes.

Although this command does not affect the availability of
commands entered from the keyboard in Setup, you can
issue it while in Setup to cause the terminal to recognize a
specific command syntax when it leaves Setup.

See the discussions ANSI mode, EDIT mode, and VT52
mode earlier in this Section for more information on the
effect of this command on screen editing programs.

Selecting EDIT mode resets a number of terminal
characteristics to emulate a VT100 terminal. When you
select TEK mode after using EDIT mode, these terminal
settings may not be appropriate, and you may need to reset
them so your program will work as expected. See the
command description for SELECT CODE in Section 5 for
details.

Syntax Example

Host: Ec%!2
Setup: CODE EDIT

Selects EDIT Mode.
4526-50

Figure 3-6. A Typical ANSI/VT52 Command Description.

4105 PROGRAMMERS

C

J

ANS|I COMMAND DESCRIPTIONS

This part of Section 3 contains descriptions of the terminal’s
ANSI commands. The commands are presented
alphabetically according to their descriptive names.

BEL (BELL)

Sounds the terminal’s bell.

Host Syntax

By,

BS (BACK SPACE)

Moves the cursor left one position.

Host Syntax

Bg

The Bs character moves the cursor one character position to
the left. If the cursor is already at Column 1, then Bs has no
effect.

The Back Space key on your terminal’s keyboard transmits
the Bs character.

CAN (CANCEL)

Cancels an ANSI command in progress.

Host Syntax

CN

When the terminal receives this character, it cancels any
ANSI command currently being processed and inserts a CN
character at the current cursor position in the dialog area.

4105 PROGRAMMERS

REV, JUN 1985

SCREEN EDITING — ANSI
CHT (CURSOR HORIZONTAL TAB)

CBT (CURSOR BACKWARD TAB)

Moves the cursor backwards to a preceding tab stop on the
current line.

Host Syntax

Ec[number-of-preceding-tab-stops Z

number-of-preceding-tab-stops: specifies the number of tab

positions the cursor moves to the left. A value of 1 moves the

cursor to the preceding tab stop. A value greater than 1 ()

moves the cursor to the nth preceding tab stop on the current

line.

Defaults: Factory
Omitted or 0

(none)
1

If you specify a number greater than the number of
preceding tab stops, the cursor moves to Column 1 of the
current line.

Syntax Example
Ec[3Z

Moves the cursor back three tab stops.

CHT (CURSOR HORIZONTAL TAB)

Moves the cursor forward to a following tab stop on the
current line.

Host Syntax

Ec[number-of-following-tab-stops I

number-of-following-tab-stops: specifies the number of tab
stops the cursor moves to the right. A value of 1 moves the
cursor to the next tab stop. A value greater than 1 (n) moves
the cursor forward by 7 tab stops on the current line.
Defaults: Factory = (none)

Omittedor0 = 1

If you specify a number greater than the number of
following tab stops, the cursor moves to the end of the
current line.
Syntax Example

Ec[3I
Moves the cursor forward three tab stops.

3-17

SCREEN EDITING — ANSI
CPR (CURSOR POSITION REPORT)

CPR (CURSOR POSITION REPORT)

Reports the row and column address of the current cursor
position.

Report Syntax

Ec[row ; column R

The Cursor Position Report is sent from the terminal to the
host in response to a DSR (DEVICE STATUS REPORT)
command with 6 as the parameter value.

If Origin mode is Relative (TEKOM set), the Cursor
Position Report gives the row and column address in the
scrolling region. In this case, Row 1, Column 1 is the
upper-left corner of the scrolling region.

If Origin mode is Absolute (TEKOM reset), the Cursor
Position Report gives the row and column address in the
dialog buffer. In this case Row 1, Column 1 is the upper-left
corner of the dialog buffer.

The terminal does not enter Bypass mode for the Cursor
Position Report.

Syntax Example
Ec[22;55R
Reports that the cursor is at Row 22, Column 55.

CR (CARRIAGE RETURN)
Moves the cursor to the first column in the current line.

Host Syntax

Cr

If the 4100-style command CRLF has been set so that Cr
implies L, a line feed action is also performed.

The Return key on your terminal’s keyboard transmits the
Cr character.

3-18

CUB (CURSOR BACKWARD)

Moves the cursor left one or more columns.

Host Syntax

Ec[number-of-columns D

number-of-columns: specifies the number of columns the
cursor moves toward the left side of the screen. The cursor
does not move beyond Column 1.
Defaults: Factory (none)

Omitted or 0 = 1

If Column mode is set to 132, the cursor may disappear from
the screen. This command will not scroll text horizontally to
keep the cursor in view. Use the SL (SCROLL LEFT) or
SR (SCROLL RIGHT) command or the Joydisk to scroll
horizontally.
Syntax Example

Ec[10D
Moves the cursor back ten columns.

CUD (CURSOR DOWN)

Moves the cursor down one or more lines.

Host Syntax

Ec[number-of-lines B

number of lines: specifies the number of lines the cursor
moves toward the end of the dialog buffer.
Defaults: Factory = (none)

Omitted or 0 = 1

The cursor address is based on the first line of the dialog _
buffer (Row 1, Column 1 is the first position in the buffer),
except when Origin mode is Relative and edit margins are
set, in which case the cursor address is based on the first line
of the scrolling region.

Syntax Example
Ec[5B
Moves the cursor down five lines.

4105 PROGRAMMERS

J

CUF (CURSOR FORWARD)
Moves the cursor one or more columns to the right.

Host Syntax

SCREEN EDITING — ANSI
DA (DEVICE ATTRIBUTES)

CUU (CURSOR UP)

Moves the cursor upward one or more lines.

Host Syntax

Ec[number-of-columns C

Ec[number-of-lines A

number-of-columns: specifies the number of columns the
cursor moves toward the right side of the screen. The cursor
does not move beyond the rightmost column.
Defaults: Factory = (none)

Omittedor 0 = 1

If Column mode is set to 132, the cursor may disappear from
the screen. This command will not scroll text horizontally to
keep the cursor in view. Use the SL (SCROLL LEFT) or
SR (SCROLL RIGHT) commands or the Joydisk to scroll
horizontally.
Syntax Example

Ec[5C

Moves the cursor five columns to the right.

CUP (CURSOR POSITION)

Moves the cursor to the specified row and column.

Host Syntax

Ec[row-number ; column-number H

row-number: specifies the destination row for the cursor.
Defaults: Factory = (none)
Omittedor0 = 1

column-number: specifies the destination column for the
cursor.
Defaults: Factory = (none)

Omittedor0 = 1

The cursor address is based on the first line of the dialog
buffer (Row 1, Column 1 is the first position in the buffer),
except when Origin mode is Relative and edit margins are
set, in which case the cursor address is based on the first line
of the scrolling region.

Syntax Example
Ec[5;12H
Moves the cursor to Row 5, Column 12.

4105 PROGRAMMERS

number-of-lines: specifies the number of lines the cursor
moves toward the top of the screen.
Defaults: Factory = (none)

Omittedor 0 = 1

The cursor address is based on the first line of the dialog
buffer (Row 1, Column 1 is the first position in the buffer)
except when Origin mode is Relative and edit margins are
set, in which case the cursor address is based on the first line
of the scrolling region.
Syntax Example

Ec[20A

Moves the cursor up 20 columns.

DA (DEVICE ATTRIBUTES)

Tells the terminal to report what kind of terminal it is.

Host Syntax

Ecf[0c

Report Syntax

Ec[?1;2¢

The host sends this command with a parameter of 0 to the
terminal asking it to identify what type of terminal it is. The
terminal sends back to the host the report Ec[?1;2¢, which
says that the terminal is similar to a VT 100 with Advanced
Video Option. This means that the terminal includes:

e 132 Column mode
e Bold, blink, underline, and reverse image character
attributes

If the host echoes this report back to the terminal, the
terminal ignores the echo.

3-19

SCREEN EDITING — ANSI
DCH (DELETE CHARACTER)

DCH (DELETE CHARACTER)

Deletes one or more characters beginning at the cursor
position.

Host Syntax

Ec[number-of-characters P

number-of-characters: specifies the number of characters to
delete.
Defaults: Factory

= (none)
Omittedor0 = 1

Any characters to the right of the deleted characters are
moved left by the same number of character positions; thus
the gap is filled and the remainder of the line to the right of
the last character is filled with spaces.

Only characters on the current line are affected by this
command.

Syntax Example
Ec[10P

Deletes 10 characters starting from the current cursor
position.

DL (DELETE LINE)

Deletes one or more lines starting with the current line.

Host Syntax

Ec[number-of-lines M

number-of-lines: specifies the number of lines to delete.
Defaults: Factory = (none)
Omittedor 0 = 1

All lines following the deleted lines are shifted in a block
toward the line containing the cursor. The cursor does not
change position.

If you have defined fixed and scrolling regions, this
command only affects lines in the region that contains the
cursor. For example, if the cursor is in the top fixed region,
only the lines in the top fixed region are affected.

Syntax Example
Ec[SM

Deletes five lines starting from the current cursor position —
the lines below those that were deleted will be moved up.

3-20

DMI (DISABLE MANUAL INPUT)
Disables the keyboard.

Host Syntax

Ec\

Issuing this command is equivalent to using the ANSI
command SM to set Keyboard Action Mode (KAM) or to
issuing the 4100-style LOCK KEYBOARD command with a
parameter of 1.

DSR (DEVICE STATUS REPORT)

Queries the terminal for a CPR (Cursor Position Report) or
a DSR (Device Status Report).

Host Syntax

Ec[status n

status: specifies which type of report you want. Valid values
are:

5 Reports status in a Device Status Report

6 Reports cursor position in a Cursor Position

Report
Defaults: Factory = (none)
Omitted = Error [n11

When the host sends a DSR command with a parameter of
S, the terminal responds with a Device Status Report
message with a parameter of 0 (that is, it responds Ec[0n,
indicating that there is no malfunction).

When the host sends a DSR command with a parameter of
6, the terminal responds with a Cursor Position Report; see
CPR (Cursor Position Report) for the syntax of the report.

If the terminal receives a DSR command with a parameter
value of 0 (which could be the echo of a report it has sent to
the host), the terminal ignores the command.

4105 PROGRAMMERS

ECH (ERASE CHARACTER)

Erases one or more characters, starting at the cursor
position.

Host Syntax

Ec|] number-of-characters X

number-of-characters: specifies the number of characters to

erase.

Defaults: Factory
Omitted or 0

= (none)

=1

Characters are erased, not deleted. When a character is
erased, its character cell is cleared (replaced with the current
erase color index). The cursor location remains unchanged.

The effect of the ECH command is not confined to the
current line. For example, if the cursor is in Column 41, and
an ECH command with a parameter of 45 is issued, the 45
characters at and following the cursor position are erased.
This is true even if this means erasing characters on
following lines and into the fixed region from within the
scrolling region.

Syntax Example

Ec[15X

Erases 15 characters starting from the current cursor
position.

53,.,,

4105 PROGRAMMERS

SCREEN EDITING — ANSI
EL (ERASE IN LINE)

ED (ERASE IN DISPLAY)
Erases all or part of the dialog buffer.

Host Syntax

Ec[erase-extent J

erase-extent: specifies the amount of text to erase:
0 Erases text from the cursor position to the end of
the dialog buffer
1 Erases text from the beginning of the dialog buffer
to the cursor position
2 Erases the entire dialog buffer
Defaults: Factory = (none)
Omitted = 0

The cursor does not change position.

Syntax Example
Ec[2]
Erases the entire dialog buffer.

EL (ERASE IN LINE)
Erases all or part of the current line.

Host Syntax

Ec[erase-extent K

erase-extent: specifies the amount of text to erase:
0 Erases text from the cursor position to the end of
the line
1 Erases text from the beginning of the line to the
cursor position
2 Erases the entire line
Defaults: Factory = (none)
Omitted = 0

Syntax Example
Ec[0K

Erases from the current cursor position to the end of the
line.

3-21

SCREEN EDITING — ANSI
EMI (ENABLE MANUAL INPUT)

EMI (ENABLE MANUAL INPUT)
Enables the keyboard.

Host Syntax

Ecb

Issuing this command is equivalent to using the ANSI
command RM to reset Keyboard Action Mode (KAM) or to
issuing the 4100-style LOCK KEYBOARD command with a
parameter of 0.

ENQUIRY

Queries the terminal for its answerback string.

Host Syntax

Eq

This command operates in any host command mode (ANSI,
EDIT, VT52, or TEK mode). The terminal does not respond
to this command in Local mode.

Your program can use the answerback string to identify the
terminal and determine whether the terminal is authorized
to use specific programs and data.

The terminal’s answerback string can be set by using the
setup command SET ANSWERBACK STRING, described
in Section 5.

Note that, in TEK mode, the Eq character is a command
terminator (like Ec, s, Gs, and Us).

FF (FORM FEED)

Indicates the start of a new page to a hardcopy unit.

Host Syntax

Fp

This character inserts a Fr character into the dialog area. (See
command description for the 4100-style command SET
DIALOG HARDCOPY ATTRIBUTES).

3-22

REV, JUN 1985

HT (HORIZONTAL TAB)

Advances the cursor to the next horizontal tab stop on the
current line.

Host Syntax

Hy

If there are no horizontal tab stops to the right of the cursor
position, the cursor moves to the last column of the line.

When the terminal is shipped from the factory, there are tabs
every eight columns, beginning in Column 1 (that is, in
Columns 1, 9, 17, . . .). These tab stops can be changed and
saved with the 4100-style SAVE NONVOLATILE
PARAMETERS command.

The Tab key on your terminal’s keyboard transmits the
Hy character.

HTS (HORIZONTAL TAB SET)
Sets a tab stop at the current cursor location.

Host Syntax

EcH

This ANSI command sets a tab at the current location of the
alpha cursor. You can also use the 4100-style command SET
TAB STOPS to set several tabs in a single command.

4105 PROGRAMMERS

C

J

HVP (HORIZONTAL AND VERTICAL POSITION)

Moves the cursor to a specified row and column of dialog
text.

Host Syntax

Ec[row-number ; column-number f

row-number: specifies the destination row for the cursor.
Defaults: Factory (none)
Omittedor 0 = 1

column-number: specifies the destination column for the

cursor.

Defaults: Factory
Omitted or 0

= (none)

=1

If Origin mode is Relative (TEKOM set) and edit margins
are set, the cursor address is based on the first line of the
scrolling region (Row 1, Column 1 is the first position in the
scrolling region). The cursor does not move beyond the top
and bottom of the scrolling region.

If Origin mode is Absolute (TEKOM reset), the cursor
address is based on the first line of the dialog buffer (Row 1,
Column 1 is the upper-left corner of the buffer). The cursor
may be moved beyond the top and bottom of the scrolling
region by using the cursor positioning commands CUP and
HVP.

Syntax Example
Ec[10;15f
Moves the cursor to Row 10, Column 15.

4105 PROGRAMMERS

SCREEN EDITING — ANSI
IL (INSERT LINE)

ICH (INSERT CHARACTER)

Inserts one or more Space characters at the cursor position.

Host Syntax

Ec[number-of-characters @

number-of-characters: specifies the number of Space

characters to insert.

Defaults: Factory
Omitted or 0

(none)
1

nn

The character currently at the cursor position and all other
characters to the right of the cursor are shifted # columns to
the right. Characters shifted off the end of the line are lost.
The cursor position remains unchanged.

Syntax Example
Ec[20@
Inserts 20 characters.

IL (INSERT LINE)

Inserts one or more blank lines in front of the current line.

Host Syntax

Ec[number-of-lines L

number-of-lines: specifies the number of lines to insert.
Defaults: Factory = (none)
Omitted or 0 = 1

The current line and all following lines are shifted down, and
lines scrolled below the bottom margin are lost. The cursor
position does not change.

If fixed and scrolling regions have been defined, this
command only affects lines in the region containing the
cursor (if the cursor is in the scrolling (nonfixed) region,
only the lines in the scrolling region are affected).

Syntax Example
Ec[SL
Inserts five blank lines.

REV, JUN 1985 3-23

SCREEN EDITING — ANSI
IND (INDEX)

IND (INDEX)

Moves the cursor position down one line without affecting
the cursor position on the line.

Host Syntax

C

LF (LINE FEED)

Moves the cursor down one line.

Host Syntax

EcD

Ly

If the cursor is on the last line of the scrolling region, a blank
line is added to the end of the scrolling region and a line is
removed from the beginning of the scrolling region.

IRM (INSERT/REPLACE MODE)

Specifies whether each newly entered character replaces an
existing character or is inserted at the cursor position.

Setup Syntax

INSERTREPLACE mode

mode: keyword; specifies whether characters are inserted or

replace existing characters. Valid values are: insert and

replace.

Defaults: Factory
Omitted

replace
replace

When Insert/Replace mode is replace, each character
entered overwrites the character at the cursor position.
When Insert/Replace mode is insert, each entered character
is inserted at the cursor position and characters at and to the
right of the cursor position move to the right.

The IRM command is part of the RM (RESET MODE) and
SM (SET MODE) commands. See the description of the RM
and SM commands to see how to change the settings of the
IRM command from the host.

3-24

If LNM (Linefeed/Newline mode) is reset (with the RM
command), then Lr has exactly the same effect as the IND
(INDEX) command — it advances the cursor to the same
position on the following line of text. If the cursor is on the
last line of the scrolling region, a blank line is added to the
end of the scrolling region and a line is removed from the
beginning of the scrolling region.

If LNM (Linefeed/Newline mode) is set (with the SM
command), then Lr has the same effect as Cr and IND
combination: it advances the cursor position to the first
character position on the following line.

LNM (LINEFEED/NEWLINE MODE)

Specifies whether a Lr (Line Feed) character sent to the
terminal also implies a Cr (Carriage Return). (Can be saved
in nonvolatile memory.)

Setup Syntax

LFCR mode

mode: keyword; specifies whether an Lr character sent to the
terminal also implies a Cr. Valid values are: no and yes.
Defaults: Factory = no

Omitted = yes

This command has the same effect as the 4100-style LFCR
command.

If Linefeed/Newline mode is selected, a Lr (Line Feed)
character sent to the terminal moves the cursor down one
line without changing its column position. Otherwise, a Lr
also implies a ¢r (Carriage Return) character and so moves
the cursor to the beginning of the next line.

The LNM command is part of the RM (RESET MODE) and
SM (SET MODE) commands. See the description of the RM
and SM commands to see how to change the settings of the
LNM command from the host.

4105 PROGRAMMERS

)

J

f
|
|
|
|
|
|
|
I
n~
N
L
L
n
n
i
|
f
f

MC (MEDIA COPY)

Turns data logging on or off; can also be used by the host to
make a hard copy of the dialog area.

Host Syntax

Ec[copy-option i

Setup Syntax

AUTOPRINT copy-option

copy-option: starts or stops transfer of data to a printer.
Must be one of the following:
Host Setup

0 (none) Copiesthe dialog area

73 toggle Turns data logging on or off

74 no Turns data logging off

75 yes Turns data logging on
Defaults: Factory = 0 (host), no (Setup)

Omitted = 0 (host), yes (Setup)

This command gives you two ways to copy the dialog area:

¥ the copy can be sent line-by-line as the dialog is created (this

is called data logging or autoprinting), or you can issue the
command from the host to make a simple dialog area copy.

NOTE

The data-logging feature does not work with the
4691 and 4692 Copiers (you can use the MEDIA
COPY command to make a simple dialog copy on
these copiers).

When you use the data-logging feature, the line endings sent
to the dialog area control the line endings sent to the
terminal. Lines terminated with a Line Feed (Lr) or by the
terminal’s autowrap feature will be sent to the printer
terminated with a Carriage Return (Cr) followed by a Lr.
Lines that end with a Form Feed (Fr) or Vertical Tab (Vr) will
be sent to the printer terminated with a CrFr or a CrVT,
respectively.

4105 PROGRAMMERS

REV, JAN 1986

SCREEN EDITING — ANSI
NEL (NEW LINE)

In host syntax, you can make a simple dialog copy by issuing
the MC command with a parameter value 0. This has the
same effect as pressing the D Copy key or issuing the
4100-style command HARDCOPY with a parameter value
of 3 (dialog area copy). Before making a dialog copy with
Media Copy, you can issue the 4100-style command SET
DIALOG AREA HARDCOPY ATTRIBUTES to control
the position in the dialog buffer at which printing starts, the
number of pages printed, and the way Form Feed characters
are treated.

NOTE

If the first parameter value starts with a ?, then all
subsequent parameter values are treated as if they
began with a 2. This means that if you issue the MC
command with parameter values 0 and ?5, the
parameter value 0 must be issued first.

To comply with ANSI and ISO standards it is best not to mix
standard parameter values (like 0) with Tektronix-private
parameter values (like ?3 or ?4) in the same MEDIA COPY
command. The terminal copes with MEDIA COPY
commands that include both parameter types, provided the
standard parameter value is issued first.

Syntax Example
Host: Ec[?3i
Setup: AUTOPRINT TOGGLE

Toggles data logging (turns it on if it’s off, or off if it’s on).
See Using Macros: Toggling the Data Logging Option in
Section 4 to find how to program a key to switch data
logging on and off.

NEL (NEXT LINE)

Moves the cursor to the start of the next line.

Host Syntax

EcE

The NEL (NEXT LINE) command has the same effect as a
Cr and IND combination (a Carriage Return character
followed by an IND command); that is, the cursor moves to
the first character position on the next line.

3-25

SCREEN EDITING — ANSI
REPORT SYNTAX MODE

REPORT SYNTAX MODE

Queries the terminal for a Terminal Settings Report giving
the terminal’s host command mode (ANSI, EDIT, TEK, or
VT52).

Host Syntax

Ec#10

Report Syntax

%! mode

Issuing a REPORT SYNTAX MODE command has the
same effect as issuing the 4100-style REPORT TERMINAL
SETTINGS command for the SELECT CODE command
(as if EcIQ%! was sent from the host). See the discussion
Terminal Settings Report in Section S for additional
information.

The report you get back when you issue this command is in
the format shown in the Report Syntax box. The mode
report parameter identifies the host command mode
currently in use at the terminal, and will always be one of the
following:

0 = TEK mode
= ANSI mode
EDIT mode

1
2
3 VTS2 mode

This command is recognized in all host command modes:
ANSI, EDIT, TEK, and VT52.

3-26

RI (REVERSE INDEX)

Moves the cursor position up one line without affecting the
cursor position on the line.

Host Syntax

EcM

If the cursor is on the first line of the scrolling region, a new
line is added to the beginning of the scrolling region and a
line is removed from the end of the scrolling region.

RIS (RESET TO INITIAL STATE)

Resets certain terminal attributes to power-up conditions

(a combination of factory settings and any settings that have
been saved in nonvolatile memory).

Host Syntax

Ecc

When the terminal receives this command, it:
o Erases the screen

e Positions the alpha cursor at the Home position (Row 1,
Column 1 of the dialog buffer)

e Sets Insert/Replace mode to Replace
o Clears edit margins

o Turns off the graphic rendition (text characteristics) set
with the SGR command

o Selects the default GO and G1 character set
o Shifts in the GO character set

e Enables or disables the dialog area (depending on the
saved setting for the 4100-style command ENABLE
DIALOG AREA)

® Makes the dialog area visible

4105 PROGRAMMERS

C

D

"D

R
"
R
|
R
|
i
i

ﬂ

RM (RESET MODE)

Resets one or more terminal modes set with the SM (SET
MODE) command.

Host Syntax
Ecf mode . . .1
Setup Syntax
(See Table 3-8)

mode: resets one or more of the ANSI modes listed below.
Most of these modes can be invoked by their own Setup
command, shown in Table 3-8 (under the SM command
description); you can also look each mode up separately
under its mode name. Valid values are:
2 KAM (Keyboard Action Mode)
4 IRM (Insert/Replace Mode)
12 SRM (Send/Receive Mode)
20 LNM (Linefeed/Newline Mode)
<1 TEKORM (Overstrike/Replace Mode)
?1 TEKCKM (Cursor Keys Mode)
72 TEKANM (ANSI-to-VT52 Mode)
73 TEKCOLM (Column Mode)
7?5 TEKSCNM (Screen Mode)
76 TEKOM (Origin Mode)
77 TEKAWM (Autowrap Mode)
78 TEKARM (Autorepeat Mode)
Defaults: Factory = (none)
Omitted = Error [111

The three periods (. . .) in the host syntax box indicate that
you can reset more than one mode in a single RM command
by stringing parameters together, separated by semicolons.

The RM command resets the modes you set with the SM
(SET MODE) command. See the SM command description
for details about these modes and how to issue more than
one parameter at a time.

4105 PROGRAMMERS

REV, JUN 1985

SCREEN EDITING — ANSI
RM (RESET MODE)

NOTE

When the terminal encounters a parameter
beginning with a prefix (? or >), it uses the same
prefix for all subsequent digit-only parameters.

This means that if you issue an RM command with
more than one parameter, you should issue the
digit-only parameters first, followed by any
prefixed parameters.

When you reset more than one mode and the first parameter
you specify begins with a prefix (< or ?), the terminal
interprets all subsequent digit-only parameters as also
beginning with that prefix.

If you are issuing a series of parameters that all start with the
2 prefix, you can issue the first parameter only with the 2,
and omit the ? from subsequent parameters.

For compatibility with other manufacturer’s terminals, you
should use one RM (RESET MODE) command to set any
modes with prefixed parameters and another RM command
to reset any modes whose parameters consist of digits only.

For example, do not mix digit-only parameters and prefixed
parameters like this:

Ec[?3;4;51
Issue two commands instead:

Ec[?3;51
Ec[4l

Syntax Example

Host: Ec[4;20]
Setup: INSERTREPLACE REPLACE
LFCR YES

Sets Insert/Replace mode to Replace and specifies that a
Line Feed (L) implies a Line Feed/Carriage Return
combination (LFCRr).

3-27

SCREEN EDITING — ANSI
SCS (SELECT CHARACTER SET)

SCS (SELECT CHARACTER SET)

Selects one or two character sets from the eight stored in the
terminal’s firmware and makes them available through the
keyboard.

Host Syntax (to select G0)

Ec(character-set

Host Syntax (to select G1)

Ec) character-set

Setup Syntax (to select GO0)

SELECTCHARSET GO0 character-set

Setup Syntax (to select G1)

SELECTCHARSET G1 character-set

character-set: specifies the character set you want. Valid
values are shown in Table 3-5.

Defaults: Factory = Determined by keyboard
Omitted = (none)

The terminal allows you to access two different character
sets by using the SI (SHIFT IN) and SO (SHIFT OUT)
commands to select either the currently defined GO or G1
character set.

When the terminal is turned on, the character set associated
with the particular keyboard is designated as the both the GO
character set and the G1 character set. This command allows
you to designate different GO or G1 sets.

3-28

REV, JUN 1985

This command controls the character set used to display
data transmitted from the host or typed in Local mode; it
doesn’t affect the characters displayed in Setup. If you are
using Local mode, you must enable local echo to display the
characters you type.

Table 3-5 shows the parameters needed to select a particular
character set. Appendix A contains tables that list the
contents of each character set.

Table 3-5
SCS (SELECT CHARACTER SET) VALUES
Value Character Set Designated
A United Kingdom
B ASCII/North American
G Swedish
K German
f (or R) French (see note)
! Danish/Norwegian
0 Rulings Set
3 Supplementary

NOTE

While the terminal will accept R as a parameter
value to select the French character set, the current
standard is f. So for compatibility with current and
Sfuture standards, you should use f to select the
French character set.

Syntax Example

Host: ECQ)A
Setup: SELECTCHARSET G1,A

Selects the United Kingdom character set as the G1 character
set.

4105 PROGRAMMERS

U
o

W)

-

\
i
\
U
|
U
U
|
U
f
U
\
|
U
U
i
|
U
i

J

J

l
R
"
i
n
I
f
n
N
nes
A
n
I
f
n
"
f
f
n

SD (SCROLL DOWN)

Scrolls lines down.

Host Syntax

Ec[number-of-lines T

number-of-lines: specifies the number of lines the dialog
buffer scrolls toward the bottom of the screen.
Defaults: Factory = (none)

Omittedor0 =1

The SD command shifts all lines displayed on the screen
down the specified number (n) of rows. The # lines at the
bottom margin are rolled out of sight and # lines are rolled
into view at the top margin.

Syntax Example
Ec[8T
Scrolls down eight lines.

SCREEN EDITING — ANSI
SELECT CODE

SELECT CODE

Selects the host command mode, choosing ANSI, EDIT,
VTS52, or TEK host command syntax. (Can be saved in
nonvolatile memory.)

Host Syntax

Ec! syntax

Setup Syntax

CODE syntax

syntax: specifies the host command mode that you want to
use:

Host Setup
0 TEK Selects TEK mode
1 ANSI Selects ANSI mode
2 EDIT Selects EDIT mode
3 VTS2 Selects VT52 mode
Defaults: Factory = (none)
Omitted = TEK

This command causes the terminal to accept ANSI, EDIT,
TEK, or VT52 commands from the host computer. The
syntax of these different host command modes are not
compatible. If you are using host commands from one mode
and want to execute one or more commands from another
mode, you must issue the SELECT CODE command with
the appropriate parameter. This command is recognized in
all host command modes.

Although this command does not affect the availability of
commands entered from the keyboard in Setup, you can
issue it while in Setup to cause the terminal to recognize a
specific command syntax when it leaves Setup.

See the discussions ANSI mode, EDIT mode, and VT52
mode earlier in this Section for more information on the
effect of this command on screen editing programs.

Selecting EDIT mode resets a number of terminal
characteristics to emulate a VT100 terminal. When you
select TEK mode after using EDIT mode, these terminal
settings may not be appropriate, and you may need to reset
them so your program will work as expected. See the
command description for SELECT CODE in Section 5

for details.

Syntax Example

Host: Ec%!2
Setup: CODE EDIT
Selects EDIT mode.
4105 PROGRAMMERS REV, JUN 1985 3-29

SCREEN EDITING — ANSI
SGR (SELECT GRAPHIC RENDITION)

SGR (SELECT GRAPHIC RENDITION)

Selects display attributes for text in the dialog area.

Table 3-6
DIGIT-ONLY PARAMETERS FOR THE SGR COMMAND

Display Parameter |Action
Host Syntax Characteristic u
E . . All color indices 0 Returns color indices to values set
cl graphlc-rendltlon ... by SET DIALOG AREA INDEX
command
Character 1 Simulates bold characters by
Setup Syntax emphasis displaying text in Index 2 (default
red)
TEXTRENDITION graphic-rendition . . . 4 Starts underscoring text u
5 Starts blinking text
graphic-rendition: specifies the colors and other display Reverses character and character
characteristics for text displayed in the dialog area. background indices u
Defaults: Factory = 0 24 Stops underscoring characters :
Omitted = 0 25 Stops blinking characters
The SGR command controls colors and other display 27 Returns character and character :
RO . background indices to original
characteristics in the dialog area. val
ues
The colors you can control with SGR are: Character color 30 Selects Index 0 (default black)
® Character color — the color of the characters as they are 31 Selects Index 2 (default red) u
displayed on the screen 32 Selects Index 3 (default green)
® Character background color — the color of the character 33 Selects Index 7 (default yellow) ,
cell which surrounds each character 34 Selects Index 4 (default blue) ‘) u
® Dialog Area Background color — the color of the dialog 35 Selects Index 6 (default magenta)
area background before anything is written on it 36 Selects Index 5 (default cyan)
. . C . . 37 Selects Index 1 (default white
You can emphasize characters by selecting blinking display, e (-) u
bold display, underscored display, or reverse video. 39 Selects Index 1 (default white)
Character 40 Selects Index O (default black)
When you select a color or other display characteristic, background 41 Selects Index 2 (default red) ‘
previously entered text will be unaffected, and only newly color) Selocts Index 3 (default ‘
entered text will have the new color or characteristic. elects Index 3 (default green)
43 Selects Index 7 (default yellow)
Y0<ljl l(;an control character color, character background color, 44 Selects Index 4 (default blue)
and background color by using the 4100-style command
SET DIALOG AREA INDEX. 45 Selects Index 6 (default magenta)
46 Selects Index S (default cyan)
47 Selects Index 1 (default white) u
49 Selects Index 0 (default
transparent
3-30 4105 PROGRAMMERS u

J

About SGR Parameters. There are two groups of
parameter values available for the SGR command:

® Digit-only parameters. The parameter values 0 through
49 control character color, character background color,
and other characteristics that emphasize text, such as
blinking and underscoring. These parameters cannot be
saved in nonvolatile memory. The display characteristics
selected by these parameters are listed in Table 3-6.

® Prefixed parameters. These parameter values consist of a
prefix (<, >, or =) and an index. The prefix controls
where the color will be used, and the index is an integer
that specifies which color will be used. These parameters
are not available in Setup. They can be saved in
nonvolatile memory. The display characteristics selected
by these parameters are summarized in Table 3-7.

Table 3-7
PREFIXED PARAMETERS FOR THE SGR COMMAND
Display Parameter *° | Action
Characteristic
Character color | <index Specifies the character index.
Index O selects black characters.
M Character = index Specifies the character
background background index. Index 0 means
color that the graphics area shows
through.
Dialog area > index Specifies the background index.
background Index 0 means that the graphics
color area shows through.
* These p are available in host sy only; they cannot be issued in
Setup.

® indexis a variable — you fill in a number from 0 to 7 to specify a color.

J

4105 PROGRAMMERS

f
N
f
R
H
|
j
n
M
R
!
N
n
I
|
f
|
|

SCREEN EDITING — ANSI
SGR (SELECT GRAPHIC RENDITION)

As indicated by the three dots (. . .) in the syntax boxes, you
can set more than one display attribute by entering more
than one parameter value.

NOTE

When the terminal encounters a parameter
beginning with a prefix (<, =, or>), it uses the
same prefix for all subsequent digit-only
parameters.

This means that if you issue an SGR command with
more than one parameter, you should issue the
digit-only parameters first, followed by any
prefixed parameters.

In host syntax, you should use one SGR (Select Graphic
Rendition) command to set the < index, = index, and

> index parameter values and another SGR command to
reset any modes whose parameter values consist of digits
only. You can avoid the complications of mixing the two
types of parameters in host syntax by using only parameters
0 through 49, which can set all the available graphic
rendition features, except background color, and can be
mixed freely.

Either of these methods will make your program compatible
with most ANSI terminals.

Syntax Example

In host syntax you could select red underlined characters by
issuing:

Ec[<2m (Selects Index 2, red)
Ec[4m (Selects underlining)
Or, more simply, by issuing:
Ec[4;31m (4 selects underlining; 37 selects red display)

In Setup syntax, you could select red underlining by issuing:
TEXTRENDITION 4,31

(You don’t have to worry about mixing parameter types in
Setup syntax, since only parameters 0 through 49 are valid.)

3-31

SCREEN EDITING — ANSI

SI (SHIFT IN)
SI (SHIFT IN) SL (SCROLL LEFT)
Invokes the current GO character set. Moves the visible columns of the dialog area to the left.
Host Syntax Host Syntax
St Ec[number-of-columnsSe @

The terminal allows you to access two different character
sets by using the SI (SHIFT OUT) and SO (SHIFT OUT)
commands to switch between the currently defined GO or G1
character sets.

The SI command invokes the currently defined GO character
set. This may be the 94 graphic characters from the ASCII
character set, or the corresponding 94 characters from the
United Kingdom, French, Swedish, Danish/Norwegian,
German, supplementary, or special rulings character sets.
Changing the keyboard selects the corresponding character
set automatically, but all character sets are available. You
can use the SCS (SELECT CHARACTER SET) command
to choose the character set you want no matter which
keyboard is connected. Appendix A of this manual lists
these character sets.

To select the G1 character set, use the SO (SHIFT OUT)
command.

3-32

number-of-columns: specifies the number of columns the
dialog buffer scrolls to the left.
Defaults: Factory = (none)

Omittedor0 =1
The SL command moves the entire contents of the visible
portion of the dialog area to the left by the specified number
of columns. You can scroll horizontally only when Column
mode is set to 132. Since the cursor moves with the text, the
cursor may disappear from the screen.

The terminal will not automatically scroll left or right to
keep the cursor in view. To scroll horizontally, you must give
the SL (SCROLL LEFT) or SR (SCROLL RIGHT)
command (or you can use the Joydisk).

When you make the dialog area visible, the terminal uses
scrolling to bring the cursor into view. If the cursor is in
Columns 1 through 80, the dialog area will scroll right to
bring the leftmost column into view; if the cursor is in
Columns 81 through 132, the dialog area will scroll left to
bring the rightmost column into view.

Syntax Example
Ec[125r @
Scrolls 12 columns to the left.

4105 PROGRAMMERS

J

ﬁ

SM (SET MODE)

Sets one or more terminal modes — used with the RM
(RESET MODE) command.

Host Syntax

Ec[mode. . .h

Setup Syntax

(See Table 3-8)

mode: sets one or more of the following ANSI modes. Most
of these modes can be invoked by their own Setup
command, shown in Table 3-8 (next page); you can also look
each mode up separately under its mode name. Valid values
are:
2 KAM (Keyboard Action Mode)
4 IRM (Insert/Replace Mode)
12 SRM (Send/Receive Mode)
20 LNM (Linefeed/Newline Mode)
<1 TEKORM (Overstrike/Replace Mode)
71 TEKCKM (Cursor Keys Mode)
7?3 TEKCOLM (Column Mode)
7?5 TEKSCNM (Screen Mode)
76 TEKOM (Origin Mode)
77 TEKAWM (Autowrap Mode)
78 TEKARM (Autorepeat Mode)
Defaults: Factory = (none)
Omitted = Error [h11

The SM command sets one or more modes; each mode
remains set until you reset it with an RM (RESET MODE)
command.

4105 PROGRAMMERS

REV, JAN 1986

SCREEN EDITING — ANSI
SM (SET MODE)

The three periods (. . .) in the host syntax box indicate that
you can reset more than one mode in a single RM command
by stringing parameters together, separated by semicolons.

NOTE

When the terminal encounters a parameter
beginning with a prefix (? or <), it uses the same
prefix for all subsequent digit-only parameters.

This means that if you issue an SM command with
more than one parameter, you should issue the
digit-only parameters first, followed by any
prefixed parameters.

When you set more than one mode and the first parameter
you specify begins with a prefix (< or ?), the terminal
interprets all subsequent digit-only parameters as also
beginning with that prefix.

If you are issuing a series of parameters that all start with the
2 prefix, you can issue the first parameter only with the 2,
and omit the ? from subsequent parameters.

For compatibility with other manufacturer’s terminals, you
should use one SM (SET MODE) command to set any
modes with prefixed parameters and another SM command
to reset any modes whose parameters consist of digits only.

For example, do not mix digit-only parameters and prefixed
parameters like this:

Ec[4;?3;5h
Issue two commands instead:
Ec[?3;5h
Ec[4h
(continued)
3-33

SCREEN EDITING — ANSI
SM (SET MODE)

The following paragraphs describe the modes you can
control with RM and SM; Table 3-8 summarizes this
information and gives the host and Setup syntax to set and
reset each terminal mode.

Keyboard Action Mode (KAM). SM disables the terminal
keyboard. RM returns the table to its default state by
enabling the terminal keyboard.

Insert/Replace Mode (IRM). SM causes each entered
character to be inserted at the cursor position and characters
to the right of the cursor position move to the right. RM
returns the terminal to its default state, in which each
character entered overwrites (that is, replaces) the character
at the cursor position.

Send/Receive Mode (SRM). SM enables local echo — that
is, the terminal displays characters as they are sent to the
host. RM returns the terminal to its default state by
disabling local echo (this is appropriate if the host provides
an echo).

Linefeed/Newline Mode (LNM). SM causes a Lr character to
also imply a €r (Carriage Return) character, and so moves
the cursor to the beginning of the next line. RM returns the
terminal to its default state, in which a Lr (Line Feed)
character moves the cursor down one line without changing
its column position.

Overstrike/Replace Mode (TEKORM). SM causes the
Underscore character to underline the current character and
the Space character to move the cursor forward one column
(erasing the underscore if one is present). RM returns the
terminal to its default state, in which the Space character
and the Underscore character overwrite characters at the
current position.'

Cursor Keys Mode (TEKCKM). SM causes Function Keys
F1 through F4 to transmit application program codes. RM
returns the terminal to its normal state, in which Function
Keys F1 through F4 transmit regular ANSI cursor-control
commands (in the terminal’s normal state, if these keys are
programmed and key expansions are enabled, they transmit
their programmed values). Table 3-9 shows the codes that
these keys transmit when reset and set.

ANSI-to-VT52 Mode (TEKANM). SM has no effect on
ANSI-to-VT52 mode. RM puts the terminal in VT52 mode.

1
Unless Insert/Replace mode (IRM) is set to insert.

3-34

Column Mode (TEKCOLM). SM specifies 132-column
width. RM returns the terminal to its default 80-column
width. Setting or resetting this mode erases the contents of
the dialog area and resets the edit margins to the top and
bottom lines of the dialog area; setting and resetting this
mode does not affect Origin mode, tabs, character
attributes, or any other screen attributes.

When Column mode is set to 132, the terminal displays only
80 of the 132 columns at any time. You can use the SL
(SCROLL LEFT) or SR (SCROLL RIGHT) commands or
the Joydisk to scroll horizontally to bring any of the
columns into view.

When the cursor is off the screen to the left or right, you can
use scrolling commands to bring it back; making the dialog
area visible (with the Dialog key or SET DIALOG AREA
VISIBILITY command) also scrolls the dialog buffer to
bring the cursor into view. If the cursor is in Columns 1
through 80, the dialog buffer will scroll right to bring the
leftmost column into view; if the cursor is in Columns 81
through 132, the dialog buffer will scroll left to bring the
rightmost column into view.

Screen Mode (TEKSCNM). SM reverses the colors on the
display (in terms of the HLS color coordinate system, adds
180 to the first color coordinate) and makes Index 0 in the
dialog area opaque. RM returns the terminal to its default
state, setting the colors on the display to their normal values
and making Index O in the dialog area transparent.

Origin Mode (TEKOM). SM sets Origin mode to Absolute
(the cursor moves to Row 1, Column 1 of the dialog buffer;
cursor addressing is relative to Row 1, Column 1 of the
dialog buffer; and the dialog buffer size is reduced to the
screen size). RM return the terminal to its default, Origin
mode Relative (if edit margins have been set, the cursor will
move to Row 1, Column 1 of the scrolling region instead of
to the corresponding position in the dialog buffer).

Autowrap Mode (TEKAWM). SM enables autowrap so that
characters entered in the rightmost column wrap around to
the next line (this is the default). RM disables autowrap so
that characters entered in the rightmost column write over
existing characters in that column.

Autorepeat Mode (TEKARM). SM enables autorepeat so
that keyboard keys repeat when held down (this is the
default). RM disables autorepeat so that keyboard keys do
not repeat when held down.

Syntax Example
Host: Ec[4;20h
Setup: INSERTREPLACE insert
LFCR yes

Sets Insert/Replace mode to Insert and specifies that a Line
Feed Lr also implies a Carriage Return Cr.

4105 PROGRAMMERS

C

C

)

J

J

SCREEN EDITING — ANSI

SM (SET MODE)
Table 3-8
RM (RESET MODE) AND SM (SET MODE) COMMAND PARAMETERS
Mode Name® Action Host Syntax | Setup Syntax
IRM (INSERT/REPLACE MODE) | Reset: Replace Ec[4l INSERTREPLACE replace
Set: Insert Ec[4h INSERTREPLACE insert
KAM (KEYBOARD ACTION Reset: Enables keyboard Ec[2l (none)
MODE) Set: Disables keyboard Ec[2h (none)
LNM (LINEFEED/NEWLINE Reset: Line Feed only Ec[201 LFCR no
MODE) Set: Line Feed and Carriage Return Ec[20h LFCR yes
SRM (SEND/RECEIVE MODE) Reset: Enables echo Ec[121 ECHO yes
Set: Disables echo Ec[12h ECHO no
TEKANM (ANSI-TO-VT52 MODE) | Reset: Selects VT52 mode Ec[221 CODE VT52
Set: No effect (none) (none)
TEKARM (AUTOREPEAT MODE) | Reset: Disables autorepeat Ec[?8] AUTOREPEAT no
Set: Enables autorepeat Ec[?8h AUTOREPEAT yes
TEKAWM (AUTOWRAP MODE) | Reset: Disables autowrap Ec[?T1 AUTOWRAP no
Set: Enables autowrap Ec[?7h AUTOWRAP yes
TEKCKM (CURSOR KEYS Reset: Function Keys F1 — F4 transmit normal Ec[?1] CURSORKEYMODE no
MODE) commands or programmed values
Set: Function Keys F1 — F4 transmit application | Ec[?1h CURSORKEYMODE yes
values
TEKCOLM (COLUMN MODE) Reset: Specifies 80 column dialog buffer Ec[?3] COLUMNMODE 80
Set: Specifies 132 column dialog buffer Ec[?23h COLUMNMODE 132
TEKOM (ORIGIN MODE) Reset: Cursor address Row 1, Column 1 is Ec[?6] ORIGINMODE absolute
beginning of dialog buffer
Set: Cursor address Row 1, Column 1 is beginning | Ec[?6h ORIGINMODE relative
of scrolling region
TEKORM Reset: Space and Underscore replace existing Ec[<1l DAMODE replace
(OVERSTRIKE/REPLACE characters
MODE) Set: Underscore underlines existing characters and |Ec[<1h DAMODE overstrike
Space moves the cursor forward one space
TEKSCNM (SCREEN MODE) Reset: Normal colors; Index 0 transparent Ec[?5] SCREENMODE normal
Set: Reverse colors; Index 0 opaque Ec[?5h SCREENMODE reverse
? You can also look up each of these modes under its mode name alphabetically in these d descriptions.
Table 3-9
CURSOR KEY MODE CODES
Function | Codes Sent Codes Sent When
Key When Set (SM) | Reset (RM)
Fl1 EcOA Ec[A
F2 EcOB Ec[B
F3 EcOD Ec[D
F4 EcOC Ec[C
4105 PROGRAMMERS 3-35

SCREEN EDITING — ANSI

SO (SHIFT OUT)
SO (SHIFT OUT) SR (SCROLL RIGHT)
Invokes the G1 character set. Moves the visible columns of the dialog area to the right.
Host Syntax Host Syntax
So Ec[number-of-columns Sp A

The terminal allows you to access two different character
sets by using the SI (SHIFT IN) and SO (SHIFT OUT)
commands to switch between the currently defined GO and
G1 character sets.

The SO command invokes the G1 character set. When a
keyboard is plugged into the terminal, the character set
associated with that keyboard is designated as both the GO
and the G1 set. You may use the SCS (SELECT
CHARACTER SET) command to designate a different
character set than the one associated with the current
keyboard. Appendix A lists the contents of all the available
character sets.

To select the GO character set, use the SI (SHIFT IN)
command.

3-36

number-of-columns: specifies the number of columns the
dialog buffer scrolls to the right.
Defaults: Factory = (none)

Omittedor0 =1

The SR command moves the entire contents of the visible
portion of the dialog area to the right by the specified
number of columns. Since the cursor moves with the text,
the cursor may disappear from the screen. Unlike vertical
scrolling, the terminal will not automatically scroll left or
right to keep the cursor in view. To scroll horizontally, you
must give the SL (SCROLL LEFT) or SR (SCROLL
RIGHT) command (or you can use the Joydisk).

When you make the dialog area visible, the terminal uses
scrolling to bring the cursor into view. If the cursor is in
Columns 1 through 80, the dialog area will scroll right to
bring the leftmost column into view; if the cursor is in
Columns 81 through 132, the dialog area will scroll left to
bring the rightmost column into view.

Syntax Example
Ec[12sPA
Scrolls right 12 columns.

4105 PROGRAMMERS

m_mm_

p

SRM (SEND/RECEIVE MODE)

Specifies whether the terminal provides its own echo (local
echo) of data entered at the keyboard. (Can be saved in
nonvolatile memory.)

Setup Syntax

ECHO mode

mode: keyword; specifies whether the terminal provides its
own echo. Valid values are: no and yes.
Defaults: Factory no

Omitted = yes

This command has the same effect as the 4100-style SET
ECHO command.

If Send/Receive mode is selected, the terminal displays
characters as they are sent to the host (this is local echo).
Otherwise, the terminal does not echo locally.

The SRM command is part of the RM (RESET MODE) and
SM (SET MODE) commands. See the description of the RM

and SM commands to see how to change the settings of the
SRM command from the host.

SU (SCROLL UP)

Scrolls lines up.

Host Syntax

Ec[number-of-lines S

number-of-lines: specifies the number of lines the dialog
buffer scrolls toward the top of the screen.
Defaults: Factory = (none)

Omittedor 0 = 1
The SU (SCROLL UP) command shifts all lines displayed
on the screen upward by the specified number (7) of rows.
The n lines at the top margin are rolled out of sight and n
lines are rolled into view at the bottom margin.

Syntax Example
Ec[12S
Scrolls up 12 lines.

4105 PROGRAMMERS

SCREEN EDITING — ANSI
TBC (TAB CLEAR)

SUB (SUBSTITUTE)

Cancels an ANSI command in progress.

Host Syntax

Sp

When the terminal receives this character, it cancels any
ANSI command currently being processed and inserts a Ss
character at the current cursor location in the dialog area.

TBC (TAB CLEAR)

Clears one or more tab stops.

Host Syntax

Ec[tab-clear-extent g

tab-clear-extent: specifies how many tab stops to clear:
0 Clears the horizontal tab stop at the cursor position
2 Clears all horizontal tab stops
3 Clears all horizontal tab stops
Defaults: Factory = (none)
Omitted = 0

Syntax Example
Ec[2g
Clears all horizontal tab stops.

3-37

SCREEN EDITING — ANSI
TEKANM (ANSI-TO-VT52 MODE)

TEKANM (ANSI-TO-VT52 MODE)
Selects VT52 mode.

Setup Syntax

CODE VT52

This command switches the terminal’s host command mode
from ANSI to VT52 mode — it has the same effect as the
4100-style SELECT CODE command issued with the VT52
parameter.

The TEKANM command is part of the RM (RESET
MODE) and SM (SET MODE) commands. See the
description of the RM and SM commands to see how to
change the settings of the TEKANM command from the
host.

TEKARM (AUTOREPEAT MODE)

Specifies whether keys on the terminal’s keyboard repeat
when held down. (Can be saved in nonvolatile memory.)

Setup Syntax

AUTOREPEAT mode

mode: keyword; specifies whether terminal keys repeat when

held down. Valid values are: no and yes.
Defaults: Factory = yes
Omitted = yes

When Autorepeat mode is selected, keyboard keys repeat
when held down. Otherwise, keyboard keys do not repeat
when held down.

The TEKARM command is part of the RM (RESET
MODE) and SM (SET MODE) commands. See the
description of the RM and SM commands to see how to
change the settings of the TEKARM command from the
host.

3-38 REV, JAN 1986

C

TEKAWM (AUTOWRAP MODE)

Specifies whether characters written to the rightmost column
overwrite existing characters or wrap to the next line. (Can
be saved in nonvolatile memory.)

Setup Syntax

AUTOWRAP mode

mode: keyword; specifies whether or not characters wrap to
next line. Valid values are: no and yes.
Defaults: Factory = yes

Omitted = yes

When Autowrap mode is selected, characters entered in the
rightmost column wrap around to the next line. Otherwise,
characters entered in the rightmost column write over
existing characters in that column.

The TEKAWM command is part of the RM (RESET
MODE) and SM (SET MODE) commands. See the
description of the RM and SM commands to see how to
change the settings of the TEKAWM command from the
host.

4105 PROGRAMMERS

J

J

TEKCKM (CURSOR KEYS MODE)

Specifies whether or not the F1 through F4 function keys
transmit ANSI cursor control commands.

Setup Syntax

SCREEN EDITING — ANSI
TEKCOLM (COLUMN MODE)

TEKCOLM (COLUMN MODE)

Selects 80- or 132-column width for the dialog buffer. (Can
be saved in nonvolatile memory.)

Setup Syntax

CURSORKEYMODE mode

COLUMNMODE mode

mode: keyword; specifies whether the F1 through F4

function keys transmit cursor control commands. Valid

values are: no and yes.

Defaults: Factory
Omitted

no
yes

o

When Cursor Keys mode is selected (CURSORKEYMODE
YES), Function Keys F1 through F4 transmit regular ANSI
cursor-control commands; however, if these keys are
programmed and key expansions are enabled, they transmit
their programmed values. Otherwise, Function Keys F1
through F4 transmit application program codes. Table 3-10
shows the codes that these keys transmit in either case.

The TEKCKM command is part of the RM (RESET
MODE) and SM (SET MODE) commands. See the
description of the RM and SM commands to see how to
change the settings of the TEKCKM command from the
host.

Table 3-10
CURSOR KEYS MODE CODES

Function |Codes Sent When Cursor | Codes Sent When Cursor
Key Keys Mode is Setto Yes | Keys Mode is Set to No
Fl EcOA Ec[A

F2 EcOB t¢[B

F3 tcOD Ec[D

F4 tEcOC Ec[C

4105 PROGRAMMERS

mode: keyword; specifies the width of the dialog buffer.
Valid values are: 80 and /32.
Defaults: Factory = 80

Omitted = 80

Setting and resetting this mode erases the contents of the
dialog area and resets the edit margins to the top and bottom
lines of the dialog area; setting and resetting this mode does
not affect Origin mode, tabs, character attributes, or any
other screen attributes.

When Column mode is set to 132, the terminal displays only
80 of the 132 columns at any time. When the cursor is off the
screen to the left or right, you can use scrolling commands to
bring it back; making the dialog area visible (with the Dialog
key or SET DIALOG AREA VISIBILITY command) also
scrolls the dialog buffer to bring the cursor into view. If the
cursor is in Columns 1 through 80, the dialog buffer will
scroll right to bring the leftmost column into view; if the
cursor is in Columns 81 through 132, the dialog buffer will
scroll left to bring the rightmost column into view.

The TEKCOLM command is part of the RM (RESET
MODE) and SM (SET MODE) commands. See the
description of the RM and SM commands to see how to
change the settings of the TEKCOLM command from the
host.

REV, JUN 1985 3-39

SCREEN EDITING — ANSI
TEKDHL (DOUBLE HEIGHT LINE)

TEKDHL (DOUBLE HEIGHT LINE)

Causes the line containing the cursor to become the top or
bottom half of a double-height, double-width line.

C

TEKDWL (DOUBLE WIDTH LINE)

Causes the line containing the cursor to become a
double-width, single-height line.

Host Syntax Host Syntax
Top Half Bottom Half Ec#6
Ec#3 Ec#4

Both lines that receive these commands must contain the
same characters. Since using double-width characters halves
the number of characters per line, characters to the right of
screen center are lost if the line was previously single width.

If the terminal receives the Bottom Half command without
receiving the Top Half command first, the line will be
double-width and single-height.

To make an exact hardcopy of a double-height,
double-width line, you must make a screen copy (use the
HARDCOPY command with a parameter of 0 or use the

S Copy key). Making a dialog copy (use the HARDCOPY
command with a parameter of 3 or use the D Copy key) will
copy each character of the top-half line as a regular size
character followed by a space; the bottom-half line becomes
a blank line. (See the command description for the
4100-style HARDCOPY command for additional details
about making screen and dialog copies.)

This command affects only the current line. The line will
retain this attribute until the line is deleted or until the
terminal receives another line attribute command
(TEKDHL, TEKDWL, or TEKSWL).

3-40

This command affects only the current line. The line will
retain this attribute until the line is deleted or until the
terminal receives another line attribute command
(TEKDHL, TEKDWL, or TEKSWL).

Since using double-width characters halves the number of
characters available per line, characters to the right of screen
center are lost if the line was previously single width.

To make an exact copy of a double-width line, you must
make a screen copy. Making a dialog copy will copy each
character in the line as a regular size character followed by a
space. (See the command description for the 4100-style
HARDCOPY command for additional details about making
screen and dialog copies.)

TEKID (IDENTIFY TERMINAL)

C

Tells the terminal to report what type of terminal it is.

Host Syntax

EcZ

Report Syntax

Ec[?1;2¢

This command causes the same response as the ANSI
command DA (DEVICE ATTRIBUTES) with a parameter
of 0.

NOTE

The TEKID command is provided in ANSI mode
only for compatibility with programs written for
VTI100 terminals. Avoid using this command if you
cany; its use violates ANSI and ISO standards.

4105 PROGRAMMERS

SCREEN EDITING — ANSI
u TEKKPNM (KEYPAD NUMERIC MODE)
a TEKKPAM (KEYPAD APPLICATION MODE) Table 3-11
. . NUMERIC KEYPAD PROGRAMMING CODES*
Causes the numeric keypad and Function Keys F5 through
l F8 to send special escape sequences. Numeric Keypad |Characters Sent in Characters Sent in
Key Application Mode Numeric Mode®
Host Syntax (Default)
0 £cOp 0
Ec =
l 1 EcOq 1
2 EcOr 2
Setup Syntax 3 £cOs 3
! 4 EcOt 4
KEYPADMODE APPLICATION 5 .
cOu 5
6 EcQv 6
u The TEKKPAM command causes the numeric keypad to 7 EcOw 7
send characters distinct from the numeric keys on the main 3 EcOx 8
keyboard. This means that when you press the 6 key on the 5 O 9
numeric keypad, a different code is generated than when you <y
. press the 6 key on the main keyboard. Refer to Table 3-11 - £cOm -
for an explanation of these codes. , EcOl ,
Ecf
When the terminal is turned on, it is in Keypad Numeric - <On .
mode. ENTER £cOM Cr
FS5 EcOP EcOP
) F6 £cO0Q EcOQ
H ‘ ‘ TEKKPNM (KEYPAD NUMERIC MODE) 7 FcOR ECOR
Causes the numeric keypad and Function Keys F5 through F8 £c0S £c0S
F8 to send their default values. ? Refer to the discussion V' T52 Mode, earlier in this section for an explanation of
I how VT52 mode commands affect codes sent by the keypad and function keys.
® it these keys are programmed with macros and you haven’t disabled key
Host Syntax expansion, the terminal sends the macros rather than the characters listed in this
column.
a Ec>
Setup Syntax
I KEYPADMODE NUMERIC
l This command causes the keys on the numeric keypad and
Function Keys F5 through F8 to return to their default
meanings, as shown in the righthand column of Table 3-11.
If the keys have been programmed and key expansions are
l enabled, the keys transmit their programmed meanings
instead.
When the terminal is turned on, it is in Keypad Numeric
mode (keys produce their default meanings).
n 4105 PROGRAMMERS REV, JUN 1985 3-41

SCREEN EDITING — ANSI
TEKOM (ORIGIN MODE)

TEKOM (ORIGIN MODE)

Specifies how the terminal interprets cursor addresses in
ANSI commands. (Can be saved in nonvolatile memory.)

Setup Syntax

ORIGINMODE mode

mode: keyword; specifies the way the terminal interprets
cursor addresses. Valid values are: absolute and relative.
Defaults: Factory = relative

Omitted = relative

When Origin mode Absolute is selected; the cursor moves to
Row 1, Column 1 of the dialog buffer; cursor addressing is
based on Row 1, Column 1 of the dialog buffer; and the
dialog buffer size is reduced to the screen size.

When Origin mode Relative is selected and edit margins are
set, the cursor will move to Row 1, Column 1 of the scrolling
region instead of to the corresponding position in the dialog
buffer.

The TEKOM command is part of the RM (RESET MODE)
and SM (SET MODE) commands. See the description of the
RM and SM commands to see how to change the settings of
the TEKOM command from the host.

3-42

TEKORM (OVERSTRIKE/REPLACE MODE)
Controls how the terminal displays Underscore and Space
characters sent to the terminal screen. (Can be saved in

nonvolatile memory.)

Setup Syntax

DAMODE mode

mode: keyword; specifies the way the terminal treats the
Space (Sp) and Underscore (_) characters. Valid values are:
overstrike and replace.
Defaults: Factory = replace

Omitted = replace

Use this command with screen editing programs that rely on
a printer’s overstrike capability to create underscoring.
TEKORM allows you to display underscoring in formatted
files so that it looks the same on the screen as it does on a
hard copy. Screen editing programs that turn underscoring
on and off with the ANSI command SGR (SELECT
GRAPHIC RENDITION) do not need to use the TEKORM
command to emulate underscoring on the terminal screen.

When Overstrike/Replace mode is set to replace (which is
the terminal’s factory default), the Space and Underscore
characters overwrite other characters', as they normally do.
When Overstrike/Replace mode is set to overstrike, the
terminal treats Space and Underscore in the same way as a
printer does — the Underscore character underlines the
current character and the Space character just moves the
cursor forward without erasing characters. (On the screen,
however, the Space character erases underscores.)

The TEKORM command is part of the RM (RESET
MODE) and SM (SET MODE) commands. See the
description of the RM and SM commands to see how to
change the settings of the TEKORM command from the
host. The 4100-style command SET DIALOG AREA
WRITING MODE also controls the Space and Underscore
characters in the same way as the TEKORM command.

! Unless Insert/Replace mode (IRM) is set to insert.

4105 PROGRAMMERS

C

J

d

n
n
|
n
n
H
f
I
A
N
f
i
f
A
|
I
|
|
n

TEKRC (RESTORE CURSOR)

Restores the cursor position, graphic rendition, character
set, and Origin mode previously saved using the TEKSC
(SAVE CURSOR) command.

Host Syntax

Ec8

If the TEKSC (SAVE CURSOR) command is not used first,
TEKRC (RESTORE CURSOR) returns the cursor to the
Home position (Row 1, Column 1 of the dialog buffer) and
restores the power-up graphic rendition, character set, and
Origin mode.

TEKSC (SAVE CURSOR)

Saves the cursor position, graphic rendition, character set,
and Origin mode.

Host Syntax

EcT7

The TEKSC (SAVE CURSOR) command temporarily saves
information about the cursor position, graphic rendition,
character set, and Origin mode in the terminal’s program
memory. This saved information may be restored using the
TEKRC (RESTORE CURSOR) command.

4105 PROGRAMMERS

SCREEN EDITING — ANSI
TEKSCNM (SCREEN MODE)

TEKSCNM (SCREEN MODE)

Displays colors in the dialog area in normal or reversed
values. (Can be saved in nonvolatile memory.)

Setup Syntax

SCREENMODE mode

mode: keyword; specifies the way the terminal displays color
indices in the dialog area. Valid values are: normal and
reverse.
Defaults: Factory = normal

Omitted = normal

When Screen mode is normal, colors in the dialog area have
their normal values and Index O in the dialog area is
transparent. When Screen mode is reverse, the terminal
reverses the colors in the dialog area (in terms of the HLS
color coordinate system, it adds 180 to the first color
coordinate) and makes Index 0 in the dialog area opaque.

The SGR (SELECT GRAPHICS RENDITION) ANSI
command can also be used to reverse colors. The SGR
command reverses the colors in the graphics area and in the
dialog area.

The TEKSCNM command is part of the RM (RESET
MODE) and SM (SET MODE) commands. See the
description of the RM and SM commands to see how to
change the settings of the TEKSCNM command from the
host.

3-43

SCREEN EDITING — ANSI
TEKSTBM (SET TOP & BOTTOM MARGINS)

TEKSTBM (SET TOP AND BOTTOM MARGINS)
Sets the dialog buffer’s edit margins.

Host Syntax

Ec[top-margin ; bottom-margin r

Setup Syntax

EDITMARGIN top-margin,bottom-margin

top-margin: specifies the top margin of the scrolling region.
Defaults: Factory = (none)
Omittedor 0 = 1

bottom-margin: specifies the the bottom margin of the
scrolling region.
Defaults: Factory = (none)

Omitted or 0 = last line of dialog area

The value for the top margin specifies which row of the
dialog buffer becomes the top line of the scrolling region.
Similarly, the value for the bottom margin specifies the row
of the dialog buffer for the bottom line of the scrolling
region.

The rows in the dialog buffer above the top margin and the
rows below the bottom margin become fixed regions. No
scrolling actions occur in the fixed regions.

If the dialog buffer is greater than the screen size and you set
edit margins other than the screen margins (Row 1 and Row
30), issuing the TEKSTBM command will reduce the
number of lines in the dialog buffer to match the screen size.

Syntax Example

Host: Ec[5;15r
Setup: EDITMARGINS 5,15

Sets the edit margins at Rows 5 and 15.

3-44

TEKSWL (SINGLE WIDTH LINE)

Causes the current line to become a single-width,
single-height line.

Host Syntax

Ec#5

The cursor retains its current column number. This is the
default for all new lines in the dialog area. This command
affects only the current line. The line will retain this attribute
until the line is deleted or until the terminal receives another
line attribute command (TEKDHL, TEKDWL, or
TEKSWL).

VT (VERTICAL TAB)

Moves the cursor down one line without affecting the cursor
position on the line.

Host Syntax

vt

4105 PROGRAMMERS

C

J

VT52 COMMAND DESCRIPTIONS

This part of Section 3 contains descriptions of the terminal’s
VT52 commands. The commands are presented
alphabetically according to their descriptive names.

The VT52 commands that follow can be executed only while
the terminal is in VTS2 mode. You can put the terminal in
VTS2 mode by:

e Entering CODE VT52 while in Setup

e Sending an RM command (Ec[?2l) from the host while in
ANSI mode

o Sending a SELECT CODE command (Ec%!3) from the
host while in TEK or ANSI mode

Once the terminal is in VT52 mode, it will recognize only
VT52 commands (which are explained here), and the
commands SELECT CODE, ENQUIRY, and REPORT
SYNTAX MODE, all of which work in all host command
modes.

CURSOR DOWN

Moves the cursor down one line without moving it
horizontally.

Host Syntax

EcB

The cursor address is based on the first line of the dialog
buffer (Row 1, Column 1 is the first position in the buffer),
and the cursor stops at the last row of the dialog buffer.
However, if margins are set and the cursor is within the
scrolling region, the cursor stops at the bottom margin of the
scrolling region.

CURSOR LEFT

Moves the cursor one column to the left.

Host Syntax

EcD

The cursor does not move beyond the leftmost column
(Column 1).

This command works just like the ANSI command CUB
(CURSOR BACKWARD) with a parameter of 1.

4105 PROGRAMMERS

REV, JUN 1985

SCREEN EDITING — VT52
CURSOR UP

CURSOR RIGHT

Moves the cursor one column to the right.

Host Syntax

EcC

The cursor does not move beyond the rightmost column. If
Column mode is set to 132, the cursor may disappear from
the screen. This command will not scroll horizontally to
keep the cursor in view.

This command works just like the ANSI command CUF
(CURSOR FORWARD) with a parameter of 1.

CURSOR TO HOME

Moves the cursor to the home position.

Host Syntax

EcH

The home position is Row 1, Column 1 of the dialog buffer.

CURSOR UP

Moves the cursor up one line without moving it horizontally.

Host Syntax

EcA

The cursor address is based on the first line of the dialog
buffer (Row 1, Column 1 is the first position in the buffer),
and the cursor stops at the first row of the dialog buffer.
However, if margins are set and the cursor is within the
scrolling region, the cursor stops at the top margin of the
scrolling region.

3-45

SCREEN EDITING — VT52
DIRECT CURSOR ADDRESS

DIRECT CURSOR ADDRESS

Moves the cursor to the specified line and column.

Host Syntax

EcY line column

line: specifies the destination line for the cursor. The
maximum line range is 96, even if the dialog buffer is larger.

column: specifies the destination column for the cursor. The
maximum column range is 80, even if Column mode is set
to 132.

NOTE
This command requires that you enter encoded

integers as parameter values.

The parameter values for row and column are ASCII

ENTER ALTERNATE KEYPAD MODE

Causes the numeric keypad keys and Function Keys F5
through F8 to assume their Alternate Keypad mode
meanings (shown in Table 3-12).

Host Syntax

Ec =

Any other meanings you program into these keys cannot be
used as long as the terminal is in Alternate Keypad mode.

Table 3-12 shows the characters transmitted by the numeric
keypad keys and function keys as a default and in Alternate
Keypad mode. When the terminal is turned on, these keys
take on their default meanings.

Table 3-12
ALTERNATE KEYPAD PROGRAMMING CODES*

characters that represent the row or column number plus 31. Numeric Characters Sentas | Characters Sentin
b
If a parameter is out of range, the cursor will not change KeypadKey |Default Alternate Keypad Mode
position for that parameter. However, the cursor will move 0 0 Ec?p
to the other parameter position if it is within the range. | 1 kclq
e ?
Syntax Example 2 2 *.‘ il
— 3 3 Ec?s
. . 4 4 Ec?t
Moves the cursor to Line 3, Column 1. The ASCII decimal 3 3 -~
equivalent of ” is 34 (3 + 31) and the ASCII decimal <y
equivalent of Spis 32 (1 + 31). 6 6 Ecv
7 7 Ec?w
8 8 Ec?X
ENQUIRY 5 5 oy
Queries the terminal for its answerback string. - - F<?m
’ ’ EC?]
Host Syntax . . Ecn
e ENTER Cr M
N F5 EcP EcP
F6 £cQ £cQ
The terminal’s answerback string can be set by using the F7 EcR EcR
Setup command SET ANSWERBACK STRING, described - -
. . . F8 EcS EcS
in Section 5. Your program can use the answerback string to
@ Refer to the discussion V'T52 Mode earlier in this ion for an [} ion of

identify the terminal and determine whether the terminal is
authorized to use specific programs and data.

You can issue this command from any host command mode.

The terminal does not respond to this command in Local
mode.

3-46

REV, JUN 1985

how ANSI mode commands affect the codes sent by the keypad and function keys.

° it these keys are programmed with macros and you haven’t disabled key
expansion, the terminal sends the macros rather than the characters listed in this
column.

4105 PROGRAMMERS

C

J

ENTER ANSI MODE

Places the terminal in ANSI mode.

Host Syntax

Ec<

The terminal will interpret all subsequent commands
according to ANSI Standard X3.64.

ENTER GRAPHICS MODE

Selects the rulings character set as the GO character set.

Host Syntax

EcF

The terminal will remain in Graphics mode until you issue
an EXIT GRAPHICS MODE command. If you issue the
ENTER ANSI MODE command while the terminal is still in
Graphics mode, the terminal will exit Graphics mode before
it exits VT52 mode.

ERASE TO END OF LINE

Erases all characters from the cursor to the end of the
current line.

SCREEN EDITING — VT52
EXIT GRAPHICS MODE

ERASE TO END OF SCREEN

Erases all characters from the cursor to the end of the
screen.

Host Syntax

EcJ

The cursor position does not change.

This command works like the ANSI command ED (ERASE
IN DISPLAY) with a parameter of 0. It erases text from the
cursor position to the end of the dialog buffer, so it makes
no difference if margins are set.

EXIT ALTERNATE KEYPAD MODE

Causes the numeric keypad keys and Function Keys FS
through F8 to assume their default meanings, or their
programmed meanings if they have been programmed.

Host Syntax

Ec>

Table 3-12 (under ENTER ALTERNATE KEYPAD MODE)
shows the default meanings of the keys.

EXIT GRAPHICS MODE

Host Syntax
Restores the GO character set that was in effect before the
EcK current ENTER GRAPHICS MODE command was issued.
Host Syntax
The cursor position does not change.
EcG
This command works like the ANSI command EL (ERASE
IN LINE) with a parameter of 0.
4105 PROGRAMMERS REV, JUN 1985 3-47

SCREEN EDITING VT52
IDENTIFY

IDENTIFY
Identifies the terminal to the host.

Host Syntax

EcZ

Report Syntax

Ec/Z

When the host issues this command, the terminal sends its
identifier sequence (Ec/Z) to the host.

REPORT SYNTAX MODE

Sends a Terminal Settings Report that contains the syntax
mode status to the host.

Host Syntax

Ec#!10

Report Syntax

%! mode

mode: reports the host command mode currently in use at
the terminal. Reported as one of the following:

0 TEK mode

1 ANSI mode

2 EDIT mode

3 VT52 mode

This command has the same effect as the 4100-style
REPORT TERMINAL SETTINGS command issued for
the SELECT CODE command (as if EcIQ%! were sent from
the host). See the discussion 7erminal Settings Report in
Section 5 for additional information.

This command is recognized in all host command modes:
ANSI, EDIT, TEK, and VT52.

3-48

REVERSE LINE FEED

Moves the cursor up one line without affecting the cursor
position on the line.

Host Syntax

Ecl

SELECT CODE

Causes the terminal to recognize ANSI, TEK (4100-style), or
VT52 command syntax. Also used to select EDIT mode.

Host Syntax

Ec0! syntax

Setup Syntax

CODE syntax

syntax: specifies the host command mode in which you want
to operate:
Host Setup

0 TEK Selects TEK mode

1 ANSI Selects ANSI mode

2 EDIT Selects EDIT mode

3 VT52 Selects VT52 mode
Defaults: Factory = TEK

Omitted = TEK

The syntax of TEK, ANSI, and VT52 commands are not
compatible. If you are using commands from the host in one
mode and want to execute one or more commands in
another mode, you must issue the Select Code command
with the appropriate parameter.

EDIT mode allows the terminal to be used with VT100
application programs. See the discussion of EDIT mode at
the beginning of this section.

This command is recognized in all host command modes:
ANSI, EDIT, TEK, and VT52.

4105 PROGRAMMERS

J

Section 4

GRAPHICS CONCEPTS

This section explains the concepts behind the terminal’s
graphics features and introduces the graphics commands.

Reading this section in its entirety will help you understand
how commands work together to control the display and
create graphics. Once you understand the general nature of
the commands, refer to Section 5 for detailed descriptions of
each command.

The topics in this section include:
® Using Graphics Commands
® Displaying Dialog Between a Host and a User

® Understanding the Graphics Display and Graphics
Memory

syntax) or fr
Displaying Colors . syntax), theh s
- exactly th m] ling

Creating Images With Graphics Primitives

Creating Images With Pixel Operations

Using 4010 GIN

Using Macros

Putting Together a Graphics Program

Each discussion concludes with a table summarizing the

commands that control the features described in that
discussion.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
GRAPHICS COMMANDS

USING GRAPHICS COMMANDS

The terminal’s graphics commands are a subset of Tektronix
4100-style commands. Most 4100-style commands have both
host syntax and Setup syntax:

® Host syntax typically consists of an escape sequence,
usually followed by one or more parameters. The escape
sequence consists of the escape character (Ec), followed
by two identifying characters (an opcode). Your program
must encode most parameters used in host commands.

® Setup syntax consists of an alphabetic word that
identifies the command’s purpose (like,
MACROSTATUS, which displays the contents of a
macro), usually followed by one or more parameters.
Setup commands are entered directly from the terminal
keyboard, using integer or keyword parameters.

NOTE

Before issuing TEK mode (or, 4100-style)
commands from the host, the terminal must be in
TEK mode — issue the SELECT CODE command
(Ec%!0 in host syntax — CODE TEK in Setup
syntax).

Remember that TEK mode is a host command
mode — when commands are entered from the
keyboard, the terminal accepts any command that
has Setup syntax, regardless of the host command
mode.

When you issue 4100-style commands from the host, be sure
the terminal is in TEK mode. To issue 4100-style commands
directly from the keyboard, press the Setup key. Remember
that while the terminal is in Setup, you can issue any
command that has Setup syntax from the keyboard,
regardless of the mode that the host last placed the terminal
in.

4-2

When you select TEK mode after using EDIT mode, the
terminal settings may not be appropriate. This is because
EDIT mode resets a number of terminal characteristics to
emulate a VT100 terminal. Therefore, you may need to reset
them so your program will work as expected. See the
command description for SELECT CODE in this section for
details.

You can customize your terminal by saving the settings of
many commands in nonvolatile memory. The terminal
retains these settings even when it’s turned off. Save settings
by using the SAVE NONVOLATILE PARAMETERS
command. The command descriptions in Section 5 indicate
the commands whose settings you can save in nonvolatile
memory.

NOTE

You can use host syntax from the keyboard while in
Local mode, which can be useful for debugging.
See the discussion Using Host Syntax From the
Keyboard in Section 2 and the command
description for the LOCAL command in Section 5.

Throughout this manual, command names are shown in full
uppercase letters (for example, DEFINE MACRO), and
parameter names are shown hyphenated and in italics (like
this — macro-number).

4105 PROGRAMMERS

C

DISPLAYING DIALOG BETWEEN A
HOST AND A USER

In writing a graphics program, you might want to build in
user prompts — perhaps to give next-step instructions or to
request data. This discussion provides the information you
need to do so.

DISPLAY AREAS

The terminal can display two types of information —

(1) graphics and (2) dialog between the host program and a
user. By setting up a dialog area, your program can display
host messages and user responses without interfering with
the graphics, which is always displayed in the graphics area.

You can display the graphics area and the dialog area
separately or simultaneously. Displaying them
simultaneously allows users to see host prompts while
they’re working with their graphics display. And if you make
the dialog area background transparent, it won’t obscure the
graphics behind it.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
DIALOG AREA

Alphatext

The text that the terminal uses for displaying messages in the
dialog area is called alphatext. Any characters sent from the
host that are not parts of commands are displayed as
alphatext. Alphatext is displayed in the dialog area, unless
the dialog area has been disabled (see Emulating 4010 Series
Terminals, later in this section).

Alphatext characters are 5 by 7 pixels in size, displayed
within a 6 by 12 pixel character cell.

NOTE

Be sure the terminal is in Alpha mode when
displaying messages in the dialog area — use the
ENTER ALPHA MODE command (Us).

The terminal must be in A/pha mode to display alphatext.
Alpha mode is one of three implicit command modes —
discussed later in this section under Creating Images With
Graphics Primitives. The terminal powers up in Alpha
mode. Any time your program specifies either of the other
two implicit command modes (Vector and Marker mode), be
sure you issue Us (the ENTER ALPHA MODE command)
before sending messages to the dialog area.

4-3

GRAPHICS CONCEPTS
DIALOG AREA

CONTROLLING THE DIALOG AREA AND
DIALOG AREA BUFFER

The terminal stores lines of dialog in the dialog area buffer
(or, simply dialog buffer), a part of program memory set
aside for that purpose. The dialog area is the part of the
dialog buffer that appears on the screen.

The factory default dialog area is 30 lines, and the factory
default dialog buffer size is 49 lines. The dialog area can
vary in size from two lines (at the bottom of the screen) to 30
lines (occupying the entire screen). You can make the dialog
buffer as large as program memory permits.

When lines of dialog accumulate, the lines at the top
disappear from (or, scroll off the top of) the dialog area. If
the dialog buffer is larger than the dialog area, the lines that
scroll out of the dialog area are retained in the dialog buffer,
and you can scroll the buffer (use the Joydisk) to bring parts
of it into view. Once the buffer fills up, however, the
terminal discards the oldest line for every new line.

To change the dialog area size, use the SET DIALOG AREA
LINES command; use the SET DIALOG AREA BUFFER
SIZE command to change the size of the buffer.

Figure 4-1 shows a small dialog area superimposed on the
graphics area of the terminal screen. You can see that the
dialog buffer is quite large, but the dialog area displays only
a few of those lines.

Displaying Messages in the Dialog Area

To display messages in the dialog area, it must be enabled
and visible. If the dialog area is enabled but invisible, dialog
accumulates in the dialog buffer and is not displayed until
you make the dialog area visible.

Use the ENABLE DIALOG AREA command to enable the
dialog area. To make the dialog area visible or invisible, use
either the SET DIALOG AREA VISIBILITY command or
the Dialog key on the keyboard. You can issue SET
DIALOG AREA VISIBILITY either immediately following
the ENABLE DIALOG AREA command or whenever you
want to display stored dialog.

NOTE

To emulate a Tektrogiix 4010 Series terminal (which
doesn’t have a dialog area), you can disable the
dialog area. Then, alphatext will be displayed in the
graphics area. See the discussions Emulating 4010
Series Terminals and Using Alphatext in Graphics,
later in this section.

GRAPHICS AREA DIALOG
(Behind Dialog Area DIALOG
9 Area) AREA BUFFER
SCREEN
(4526)4893-2A
Figure 4-1. The Dialog Area and the Dialog Area Buffer.
4-4 4105 PROGRAMMERS

>3

)

f
f
f
4
R
i
R
n
J
|
I
A

Using Colors in the Dialog Area

You might want to specify dialog area colors that will clearly
distinguish the dialog area from the graphics area — or you
might want to specify colors that will allow users to see
through the dialog area, keeping it from obscuring the
graphics behind it. Or, you might want to specify colors
simply to create an aesthetically pleasing display. The SET
DIALOG AREA INDEX commands allows you to assign
colors that will achieve any of these effects.

The SET DIALOG AREA INDEX command assigns three
colors:

® Character color — The color for text in the dialog area

® Character cell color — The color of the cell surrounding
each character

® Background color — The color of the dialog area before
anything is written on it

Figure 4-2 shows where these colors are displayed in the
dialog area.

BACKGROUND
COLOR

CHARACTER
COLOR

CHARACTER-CELL
COLOR

5789-1A

Figure 4-2. How Colors Are Displayed in the Dialog Area.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
DIALOG AREA

To allow users to see graphics behind the dialog area, make
both the dialog background and the character background
transparent. This makes alphatext look as though it were
written on a piece of glass in front of the graphics.

For more information on transparency, see Displaying
Colors later in this section.

You can use the ANSI command SGR (SET GRAPHICS
RENDITION) to select blinking characters in the dialog
area. See the discussion Selecting Underscored or Blinking
Text in Section 3 for a more complete discussion of the SGR
command.

BUILDING USER PROMPTS INTO A
PROGRAM: AN EXAMPLE

Here’s one way to set up your program to display user
prompts without cluttering up the graphics area. First, create
a dialog area that is six lines long. Then enable the dialog
area (so that it stores dialog in the dialog buffer), but don’t
make it visible — until you are ready to display a prompt to
the user. At any point in the program, you can now make the
dialog area visible, display a prompt, and wait for the user’s
response. Once the user responds, make the dialog area
invisible again until you are ready to display another
prompt.

To use this scheme, you need these three commands:
e SET DIALOG AREA LINES

e ENABLE DIALOG AREA
e SET DIALOG AREA VISIBILITY

REV, JAN 1986 4-5

GRAPHICS CONCEPTS
DIALOG AREA

EMULATING 4010 SERIES TERMINALS

You can emulate 4010 Series terminals, which do not have
dialog area capability, by disabling the dialog area. When
you send alphatext to a terminal whose dialog area is
disabled, the alphatext is displayed in the graphics area.

However, alphatext display is limited. You can’t rotate,
slant, or size it, as you can with graphtext. The discussion
Using Alphatext in Graphics describes the attributes you can
set for alphatext that appears in the graphics area.

NOTE

Alphatext in graphics is provided for compatibility
with older terminals. For this terminal, it’s better to
use graphtext in the graphics area and alphatext
only in the dialog area (unless you’re emulating a

C

DIALOG AREA COMMANDS

Table 4-1 summarizes the commands that control the dialog
area. Most of these commands can either be sent from the
host or entered at the keyboard through Setup.

Besides the settings made with 4100-style commands listed in
Table 4-1, there are other dialog area and keyboard
characteristics that you can set using ANSI-style commands.
These characteristics stay in effect in all modes. See the
discussion titled Controlling the Dialog Display and the
Keyboard in Section 3 for information about these
characteristics and the commands that set them.

NOTE

Besides the 4100-style commands listed in Table
4-1, there are ANSI-style commands that also set

4010 Series terminal). terminal characteristics. See Section 3 for
information about these commands.
Table 4-1
DIALOG AREA COMMANDS

Host Command Setup Command Function

CLEAR DIALOG SCROLL CLEARDIALOG Erases the dialog buffer

ENABLE DIALOG AREA DAENABLE Enables or disables the dialog area

SET ALPHA CURSOR INDICES ACURSOR Assigns color indices to the alpha cursor

SET DIALOG AREA COLOR MAP DACMAP Specifies the colors assigned to color indices in the dialog area

SET DIALOG AREA BUFFER SIZE DABUFFER Specifies the number of lines available for storing text in the
dialog buffer

SET DIALOG AREA INDEX DAINDEX Specifies the color indices for alphatext characters, character cell
background, and dialog area background

SET DIALOG AREA LINES DALINES Specifies the number of lines of the dialog area that is displayed
on the screen

SET DIALOG AREA VISIBILITY DAVISIBILITY Makes dialog area visible or invisible

SET DIALOG AREA WRITING MODE | DAMODE Changes the function of the Space and Underscore characters so
that the Underscore character underscores an existing character
and the Space character just moves the cursor to the right
without erasing the existing character

4105 PROGRAMMERS

N
n
n
R
I
i
A
f

J

UNDERSTANDING THE GRAPHICS
DISPLAY AND GRAPHICS MEMORY

This discussion explains how the terminal displays graphics
images on its screen and how it builds them in its graphics
memory. This discussion introduces terms (pixel, color
index, graphics memory, and terminal space) that are used in
subsequent discussions Displaying Color, Creating Graphics
Images With Graphics Primitives, and Creating Graphics
Images With Pixel Operations.

UNDERSTANDING THE GRAPHICS DISPLAY

The terminal uses a raster display system to display graphics,
in much the same way as a television displays a picture. In a
raster display system, an electron beam inside the terminal
(or television) illuminates points (called pixels) on the screen
to create a display.

The smallest screen element that the terminal can address is
called a pixel. The terminal draws each individual pixel as a
mixture of red, green, and blue, creating a single color.
When you look at the terminal display, your eyes blend the
pixels and give the illusion of a continuous form.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
GRAPHICS DISPLAY & MEMORY

Figure 4-3 shows how pixels are arranged to give the illusion
of a straight diagonal line.

Figure 4-3. Magnified View of Pixels in a Line.

GRAPHICS CONCEPTS
GRAPHICS DISPLAY & MEMORY

= =

The terminal stores the color for each pixel in graphics
memory as a number, which is called a color index because it
is an index into a special part of program memory called the
color map. Figure 4-4 shows how the terminal (1) reads color
indices for each pixel from graphics memory, (2) looks in the
color map for the entry corresponding to that index, and

(3) displays each pixel on the screen as part of its raster
display.

Figure 4-4. How Colors Map to the Screen.

\
|
|

4-8 4105 PROGRAMMERS

GRAPHICS CONCEPTS

GRAPHICS DISPLAY & MEMORY

GRAPHICS MEMORY You can visualize graphics memory as a three-dimensional

array of bits. The height and width of the displayed part of
Graphics memory is a special part of memory the terminal this array correspond to the dimensions of the screen in
uses to store graphics images for display on the terminal pixels. The depth of the screen in bits is the number of bit
screen (graphics memory corresponds to the bit planes planes; your terminal has three bit planes.
shown in Figures 4-4 and 4-5). The graphics memory for
your terminal is 512 by 360 pixels; it is divided into on-screen Figure 4-5 shows how screen pixels correspond to the
memory (dimensions 480 by 360 pixels) and off-screen graphics memory locations.

memory (dimensions 32 by 360 pixels).

Each location in on-screen memory is paired with a pixel on
the screen. Off-screen memory is an area of graphics
memory in which you can create and store pixel images that
you will later copy into the on-screen memory with the
PIXEL COPY command.

GREEN
BRIGHTNESS

————
ADDRESS

RED GREEN
INTENSITY | INTENSITY INTENSITY
CONTROL CONTROL CONTROL

PIXEL
BEING
SCANNED

Figure 4-5. Screen Pixels and Graphics Memory.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
GRAPHICS DISPLAY & MEMORY

TERMINAL SPACE

Terminal space is the imaginary plane defined by the
coordinate system you use when issuing graphics primitive
commands.

When you issue graphics primitive commands, you specify
locations as xy-coordinates. The maximum size for each
coordinate is determined by the terminal’s addressing limits.
The terminal’s addressable resolution is 4096 by 4096
terminal space units, thus the x- and y-coordinates can range
from 0 to 4095.

Mapping Terminal Space to the Screen

The screen can show all or part of terminal space. By
default, your terminal displays a 4096 by 3072 window into
terminal space, with the lower-left corner of the screen
corresponding to terminal space coordinates 0,0 and the
upper-right corner to terminal space coordinates 4096,3072.
The terminal-space data that falls within the window’s
boundaries makes up the image on your display screen.

Figure 4-6 illustrates the relationship between terminal space
and the default window.

0,4095 4095,4095

4095,3132

0,0 X —>

4095,0

Grey area shows factory default window.
4526-48

Figure 4-6. Terminal Space and the Default Window.

4-10

You can use the SET WINDOW command to change the
window’s size and position, thus controlling the part of
terminal space that you see.

Graphics images that lie within the bounds of the window
are mapped onto the screen. The graphics images within the
window are scaled to fill the screen, and any parts of the
image that fall outside the window are clipped (truncated).

You can distort the image in the viewport by making the
aspect ratio of the window different from that of the screen.
However, if you set either the height or the width of the
window to zero, the terminal will automatically set the
aspect ratio of the window equal to the aspect ratio of the
screen.

Figure 4-7 shows how three windows in terminal space map
to the screen. Figure 4-7a shows the default window. In
Figure 4-7b, the width of the window is specified as zero, so
the terminal has set the window width to a value that results
in an undistorted image. Figure 4-7c shows how selecting a
window with different proportions than the screen results in
a distorted image.

4105 PROGRAMMERS

C

GRAPHICS CONCEPTS
GRAPHICS DISPLAY & MEMORY
A
WINDOW
0,0 4095,3132
O L)
SCREEN
TERMINAL SPACE
B
/ \]
WINDOW B
1500,700 1500,2500 I
16)
SCREEN
C
WINDOW ~N——
750,500 3250,2000
. y,
- — SCREEN
TERMINAL SPACE 452654
Figure 4-7. How Windows Map Terminal Space to the Screen.
4105 PROGRAMMERS 4-11

GRAPHICS CONCEPTS
COLOR

DISPLAYING COLORS

This discussion explains how the color map assigns colors to
color indices and how you can change the colors in the color
map.

USING COLOR INDICES

You can specify colors for the lines, panels, and text that you
use to build a graphics image. You assign a color to part of
an image by using a number called a color index. There are
eight color indices available in the graphics area, and eight
additional indices are available for the dialog area. This
means that the terminal can display up to eight colors in the
graphics area and eight colors in the dialog area
simultaneously.

Each color index is an integer that functions as a pointer into
the color map, an area of program memory that holds the
color definition for each index.

The terminal uses the color map to translate an index
number into a color on the display. For example, the
terminal’s factory default defines Index 2 as a color mixture
that creates red. So, anything you assign to Index 2 is
displayed in red. If you then change the color mixture for
Index 2 to blue, anything displayed in Index 2 will be blue.

Even if you have assigned a color mixture to Index 0 in the
dialog area, Index 0 always means transparent when it’s used
as the character-cell or dialog background color. When it’s
used for the character color, Index 0, like other color indices,
is a particular color mixture.

The factory default colors for the graphics area are the same
as the dialog area:

0 = Black 4 = Blue

1 = White 5 = Cyan

2 = Red 6 = Magenta
3 = Green 7 = Yellow

Erase Index. You can specify the erase index (or wipe index)
for the graphics area with the SET VIEW ATTRIBUTES
command. The erase index is the color to which the graphics
area background is set when you erase it.

4-12

REV, JUN 1985

SPECIFYING COLORS FOR THE COLOR MAP

You specify colors for the terminal’s color map, by giving
numeric values for the HLS coordinates (hue, lightness, and
saturation).

You can begin to understand the HLS system by looking at
the color cone in Figure 4-8. Each color is a point within the
volume of the double-ended cone defined by three vectors:
hue (which is defined as an angle), and lightness, and
saturation (which are defined as horizontal and vertical
displacement). Appendix E shows the HLS system color
cone in color.

Hue is the basic sensation we think of as color. In the color
cone, it is the angle formed by rotating a vector around the
axis of the cone, with blue as the reference. A hue of 0° (or
360°) corresponds to blue, 120° to red, and 240° to green,
with intermediate shades corresponding to intermediate
rotations. You specify hue as an integer representing degrees
in the range -32768 to + 32767. The terminal converts
integers less than 0 or more than 359 to values in the range 0
to 359 by a modulo function.

Lightness is how bright or dull a color appears — that is,
how much light is emitted by a color. In the color cone,
lightness is determined by the position of a vector along the
axis of the cone. A lightness of 0% is black, and a lightness
of 100% is white. (At lightness 0% or 100%, saturation and
hue are irrelevant.) You specify lightness with an integer
representing percentage in the range 0 to 100.

Saturation is the intensity of a color. In the color cone, it is
the radial distance of the vector from the cone axis. A
saturated color is very intense, while a less saturated color is
one that appears grayed or muted. A saturation of 0% is
simply a shade of gray, while a saturation of 100% gives the
most intense possible color having that hue and brightness.
You specify saturation as an integer representing percentage
in the range 0 to 100.

4105 PROGRAMMERS

C

GRAPHICS CONCEPTS
COLOR

\
|
\
\
|
I
1

[}

)

]
|
1
]
|
|
]
|
|
|
]
|
|
|
|
|
|
|
]
|
|
|
|

=)
[}
e
>
<
<
(L]
('Y
(o]
(7]
w
=]
<
I
(7]

Figure 4-8. The HLS System Color Cone.

D)

4105 PROGRAMMERS 4-13

GRAPHICS CONCEPTS
COLOR

CHANGING THE COLOR MAP

You can define new color mixtures using the HLS color
coordinate system and assign them to color indices. You can
assign colors from the host or from the keyboard. For
example, you can assign colors in the graphics area with the
SET SURFACE COLOR MAP command (in Setup,
CMAP), and in the dialog area with the SET DIALOG
AREA COLOR MAP (in Setup, DACMAP).

NOTE

The user can change the color mixtures in the
dialog are color map from the keyboard by using
the Interactive Color Interface. So, if it is
important to your program to have specific colors
assigned to particular indices, you will need to
reissue the SET SURFACE COLOR MAP or SET
DIALOG AREA COLOR MAP command to
ensure that you get the colors you want.

You can also alter colors from the terminal keyboard by
using the Interactive Color Interface, which is described in
the Operators Manual for that terminal. You select the
Interactive Color Interface display by pressing the Menu key.
This displays the crosshair cursor, the index number and
surface number associated with the crosshair cursor
position, and a banner showing function key labels along
with the HLS coordinate values of the color index displayed
at the current cursor position.

You can change the hue, lightness, or saturation of the color
index (everwhere it appears on the screen) by positioning the
cursor over an area of color and pressing Function Keys F1
through F3 respectively. Or, you can hold down Function
Key F5 to display a color menu and then move the cursor to
a position on the menu to select a color by name. Pressing
the F4 key will reset the color map to its original value.

4-14

Defining Color Mixtures

The SET SURFACE COLOR MAP and SET DIALOG
AREA COLOR MAP commands define color mixtures by
sending a quadruple for each color index being defined (you
can change more than one at a time).

Each quadruple consists of an index number and the three
color coordinates that define the color mixture for that
index. For example, to define the color mixture for Index 1
in the dialog area as red instead of white (Index 1’s default
color), you could send the SET DIALOG AREA COLOR
MAP command and, using the HLS system, specify these
four values in the quadruple: 1, 120, 50, and 100 (that is,
Index 1, hue 120°, lightness 50%, and saturation 100%).

When you define color mixtures, you can select from the
terminal’s total range of 64 colors. Because the HLS color
system covers the total color spectrum, the terminal assigns a
range of HLS values to the same color. For example, at 20%
lightness and 75% saturation, the range of hues 345° to 15°
map to the same value of blue.

Figure 4-9 shows how changing color indices can affect the
appearance of a display by changing the color map.

4105 PROGRAMMERS

COLOR
4-15

GRAPHICS CONCEPTS

the Color Map

s . " " -

4-9. The Effect of Chang

igure

F

COLOR MAP

4105 PROGRAMMERS

GRAPHICS CONCEPTS
COLOR

COLOR COMMANDS

Table 4-2 summarizes the commands used for changing and

defining colors.

COLOR COMMANDS
Command Name Setup Name Function
SELECT FILL PATTERN FILLPATTERN Selects a color or predefined fill pattern to fill a panel

SET ALPHA CURSOR INDICES ACURSOR Assigns two color indices to the alpha cursor

SET DIALOG AREA COLOR MAP DACMAP Specifies the colors assigned to color indices in the dialog area

SET DIALOG AREA INDEX DAINDEX Specifies the color index for alphatext characters, character-cell
background, and dialog area background

SET LINE INDEX LINEINDEX Specifies the color index for all subsequent lines, panel
boundaries, and markers

SET SURFACE COLOR MAP CMAP Defines the color map for the graphics area

SET TEXT INDEX GTINDEX Specifies the color index for all text displayed in the graphics
area

4-16 4105 PROGRAMMERS

C

J

J

CREATING IMAGES WITH GRAPHICS
PRIMITIVES

Graphics primitives are the fundamental units of a graphics
display — that is, the basic building blocks from which the
graphics display is constructed. The terminal’s graphics
primitives are:

e Vectors (lines)

o Markers (predefined symbols)

o Text (graphtext and alphatext in the graphics area)

e Panels (closed regions)

Each graphics primitive is drawn in response to a graphics

primitive command. These commands define primitive
attributes (such as the size and position of markers and text),

the coordinates of vector endpoints, and the shape of panels.

Other commands specify color attributes: the color and line
style of vectors, the fill color or pattern for panels, and so
on.

The terminal draws graphics primitives starting from the
graphics position, which is the point in terminal space at
which the last graphics operation left off. The graphics
position becomes the starting point that the terminal uses
when executing the next graphics primitive command.

The terminal offers two methods for issuing graphics
primitive commands: explicit and implicit.

J

4105 PROGRAMMERS

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES

IMPLICIT COMMAND MODES

You can send any command explicitly as a command code
followed by the appropriate parameters. You can also send
some commands implicitly — that is, without issuing the
command code; you need only put the terminal in one of its
three implicit command modes: Alpha mode, Marker mode,
and Vector mode. The terminal must be in TEK mode (a
host command mode) to enter any of these implicit
command modes.

In these modes, the terminal implicitly interprets data sent
from the host:

e In Alpha mode, the terminal interprets incoming
characters as alphatext. (This is the only means for
displaying alphatext.)

e In Vector mode, the terminal interprets incoming
characters as encoded xy-coordinates to be executed as
MOVE and DRAW commands (the first coordinate is
interpreted as a MOVE, the rest are interpreted as
DRAW?S).

e In Marker mode, the terminal interprets incoming
characters as encoded xy-coordinates to be executed as
DRAW MARKER commands.

By freeing you of the necessity of explicitly sending the
escape sequence for these commands, Vector and Marker
modes reduce communication traffic from the host to the
terminal.

Hint. Several commands and keyboard actions will put the
terminal in Alpha mode (thus canceling Vector mode or
Marker mode), so you must keep track of how your
program uses these commands and reissue ENTER
VECTOR MODE or ENTER MARKER MODE as needed.
If you are in Vector or Marker mode, issuing the PAGE,
RESET, or ENABLE 4010 GIN command will put the
terminal in Alpha mode. If the dialog area is disabled,
pressing the G Eras key or Return key also puts the terminal
in Alpha mode.

4-17

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES

VECTORS

A vector is simply a straight line drawn between two points
in terminal space. The current graphics position defines the
starting point of the vector; the position sent as the
parameter of the DRAW command defines the vector’s
endpoint.

To display a vector, move the graphics position with a
MOVE command to the vector’s starting point, then draw
the vector with a DRAW command. As pointed out earlier,
you can explicitly send the MOVE and DRAW commands to
create vectors, or you can enter Vector mode and implicitly
send just the xy-coordinate pairs. Figure 4-10 shows both
methods for drawing and displaying a line.

You can simulate curves with a series of short vectors.

Line Attributes

Before drawing vectors, you can select the line attributes
(style and color) to control how the line will be displayed.
Line attributes remain set until you change them.

You can choose one of eight different line styles with the
SET LINE STYLE command. Figure 4-11 shows the
terminal’s predefined line styles.

You can use the SET LINE INDEX command to select the
color that the terminal uses to draw vectors and markers.

C

r —)
1500,1500 2500,1500
1000,1000 2000,1000
. J
MOVE and DRAW Method Vector Mode Method
Command After Encoding Command After Encoding
MOVE 1000,1000 EcLF "2z’ Z ENTER VECTOR MODE Gs
DRAW 1500,1500 ECLG+ w+W 1000,1000 "Nz2’Z
DRAW 2000,1000 EcLG’ ‘z/T 1500,1500 + “w+W
DRAW 2500,1500 EcLG+'w3Q 2000,1000 Nz/T
2500,1500 + 'w3Q
ENTER ALPHA MODE Us
4526-6B
Figure 4-10. Two Methods for Displaying a Line.
4-18 4105 PROGRAMMERS

n
|
n
"
i
l
f
J
l
J
J
R
R
0
A
!
A
|
|

J

Parameter Line Style

4526-19A

Figure 4-11. Line Styles.

ﬂ Using MOVE and DRAW to Draw Lines

The MOVE-and-DRAW method of creating lines uses
explicit command syntax — that is, you must issue the entire
command for each MOVE or DRAW.

The MOVE command sets the graphics position, but does
not draw a line to that position. This command’s effect is
analogous to lifting a pen from a drawing and moving it to a
new location.

The DRAW command draws a line from the graphics
position to the position specified in the DRAW command.
The position specified in the command becomes the new
graphics position.

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES

Using Vector Mode to Draw Lines

You can put the terminal in Vector mode by sending the
ENTER VECTOR MODE command (which is the control
character Gs). When in this mode, the terminal interprets all
characters in the range Se through Pr as xy-coordinates. (See
the description of xy-coordinate in Section 5 for instructions
on encoding xy-coordinates.)

In Vector mode, the first characters directly following the Gs
character are treated as an xy-coordinate and invoke an
implicit MOVE to that location. If you want the first implicit
command after the ENTER VECTOR MODE command to
be a DRAW rather than a MOVE, send the sequence GsBL.
The terminal bell will ring, and the following xy-coordinate
will be an implicit DRAW.

Subsequent coordinates are implicit DRAWS, each drawing a
line from the current graphics position to the new graphics
position specified by the coordinates. If you want to start a
line at a new position without drawing a line to that position,
just send another ENTER VECTOR MODE command. The
next line is drawn from the next position you specify.

The terminal must be in Alpha mode (which is the default
implicit command mode) to enter Vector mode. The
terminal ignores the Gs character in Marker mode.

You can exit Vector mode by entering either Alpha or
Marker mode. There are other ways to exit Vector mode; see
the hint under the discussion Implicit Command Modes
earlier in this section.

VECTOR COMMANDS

Table 4-3 summarizes the commands used for displaying
vectors.

Table 4-3
VECTOR COMMANDS
Command Name Setup Name Function
DRAW DRAW Draws a vector from the current graphics position to a new
position
ENTER VECTOR MODE (none) Puts the terminal in Vector mode
MOVE MOVE Moves the current graphics position without drawing a vector
SET 4014 LINE STYLE (none) Specifies line styles compatible with Tektronix 4014, 4016, and
4114 terminals
SET LINE INDEX LINEINDEX Specifies the color index for all subsequent lines, panel
boundaries, and markers
m SET LINE STYLE LINESTYLE Specifies the line style for subsequent lines and panel boundaries
4105 PROGRAMMERS 4-19

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES

MARKERS

A marker is a predefined symbol drawn at a given
coordinate. You can use markers anywhere that you need to
identify points on a display — perhaps to identify towns on a
map, important points on a graph, or registration points on
graphics overlays.

Before displaying a marker, you can choose any of eleven
marker types with the SET MARKER TYPE command. The
default marker is a dot. Figure 4-12 shows the terminal’s
predefined marker types.

When you issue the DRAW MARKER command to specify
where to draw the marker, the terminal displays the marker
at the indicated location, using the marker type selected in
the most recent SET MARKER TYPE command. The SET
LINE INDEX command controls the color of the marker.

A more efficient way to put markers in a drawing is to use
Marker mode, especially if you need to use a lot of markers.
Since you send only the xy-coordinates, you substantially
reduce the data communication time and expense.

The terminal draws markers with solid lines. The size of the

Marker
Parameter Type Parameter

0 . 6
1 * 7
2 8
3 9
4 0 10
5 B

Marker
Type

o

<>

4526-42A

Figure 4-12. Marker Types

MARKER COMMANDS

Table 4-4 summarizes the three commands for displaying

marker on the screen is independent of the current window. markers.
Table 4-4

MARKER COMMANDS
Command Name Setup Name Function
DRAW MARKER MARKER Draws a marker at a specified location
ENTER MARKER MODE (none) Puts the terminal in Marker mode
SET MARKER TYPE MARKERTYPE Specifies the kind of marker to be drawn
4-20 4105 PROGRAMMERS

D)

3

D

I
f
I
n
n
f
i
f
M
f
i
N
I
f
J
f
|
|

DISPLAYING TEXT IN THE GRAPHICS AREA

Graphtext is a special type of text designed for use in the
graphics area. Although you can use alphatext in the
graphics area, graphtext is more versatile — you can resize
and rotate graphtext, and you can display it in different
directions.

You can use any printable characters as graphtext, including
the ASCII characters Se through ~ (ADE 32 through 126).
The terminal detects an error for characters outside this
range.

Default graphtext characters come from the alphatext
character sets. When you use these characters as graphtext,
you can rotate and size the characters, and set their character
path; character path is the direction each character is placed
in relation to the previous character — that is, stacked on
top of or below each other, or written to the right or left of
each other.

The default character set for your terminal is determined by
the keyboard — the ASCII/North American keyboard
selects the ASCII/North American character set, for
example. Other character sets are listed in Appendix A. You
can use the ANSI command SCS (SELECT CHARACTER
SET) command, described in Section 3, to make one or two
of these character sets available to your program or to the
user. Then you can use 4100-style SET ALPHATEXT
FONT command or the ANSI commands SI (SHIFT IN)
and SO (SHIFT OUT) to invoke either of the character sets
previously selected with the SCS command.

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES

Before you send the GRAPHIC TEXT command — the
command that displays graphtext — you can specify several
attributes that determine how it is displayed (see Figure 4-13,
which illustrates how changing graphtext attributes changes
the display):

® Rotation. You can select the angle (0°, 90°, 180°, or
270°) of lines of text and the characters within each line
of text with the SET GRAPHTEXT ROTATION
command.

o Path. The SET GRAPHTEXT CHARACTER PATH
command specifies whether characters are written above,
below, to the right of, or to the left of existing characters
(the directions above, below, . . . areinrelation to the
text orientation defined in the SET GRAPHTEXT
ORIENTATION command — see Figure 4-13).

e Size. When graphtext characters are enlarged with the
SET GRAPHTEXT SIZE command, they appear in sizes
that are integral multiples of the basic character size (5 by
7 pixels). You specify the height of graphtext characters
with the SET GRAPHTEXT SIZE command; the
character width and intercharacter spacing are scaled so
that they are proportional to the height.

Characteristic Command Examplesa
Rotation SET GRAPHTEXT ROTATION O x
Path =RIGH
ath = RIGHT ABC Q ol: i D
x O
0° 90° 180° 270°
Character Path SET CHARACTER PATH Cc b
Rotation=0° A
xABC B CBA B
Q X
X C
Right Up Left Down
Character Size SET GRAPHTEXT SIZE Height { ABC
—_—
Width
2 x indicates current graphics position.
4526-8C
Figure 4-13. Graphtext Characteristics
4105 PROGRAMMERS 4-21

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES

Using Alphatext in Graphics

As mentioned before, graphtext is better than alphatext for
labels in drawings. Although you can use alphatext in the
graphics area, you can’t rotate or slant it.

However, you can use alphatext in drawings, provided you
disable the dialog area. This feature is provided for
compatibility with Tektronix 4010 Series terminals, which
don’t have graphtext. So, if you’re emulating 4010 Series
terminals, go ahead and use alphatext. Remember to put the
terminal in Alpha mode before sending characters to be
displayed (use the ENTER ALPHA MODE command).

You might want to set some attributes for alphatext
displayed in the graphics area. The attributes you can set are
the character color, the background color, and the graphics
area writing mode. The graphics area writing mode
determines whether characters overstrike or replace existing
characters. You can set these attributes with the commands:
SET TEXT INDEX, SET VIEW ATTRIBUTES (which
controls the background color), and SET GRAPHICS
AREA WRITING MODE.

GRAPHICS AREA TEXT COMMANDS

Table 4-5 summarizes the commands that affect text in the
graphics area.

Table 4-5
GRAPHICS AREA TEXT COMMANDS

Command Name Setup Name Function

ENTER ALPHA MODE (none) Puts the terminal in Alpha mode

GRAPHIC TEXT GTEXT Writes a string of graphtext, starting at the graphics position

SET ALPHATEXT FONT (none) Selects the font to be used for alphatext and graphtext

SET GRAPHICS AREA WRITING GAMODE Specifies whether the terminal overwrites or replaces characters

MODE and markers in the graphics area

SET GRAPHTEXT CHARACTER PATH |GTPATH Specifies whether each graphtext character is displayed to the
right of, to the left of, above, or below the preceding character

SET GRAPHTEXT ROTATION GTROTATION Specifies the angle (0°, 90°, 180°, or 270°) at which lines of
graphtext are displayed

SET GRAPHTEXT SIZE GTSIZE Specifies the height of graphtext characters (width and spacing
are scaled proportionally to height)

SET TEXT INDEX GTINDEX Specifies the color index for all text displayed in the graphics
area

4-22 4105 PROGRAMMERS

C

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES
PANELS 3. Define the panel’s boundary in either of two ways:
. . . ¢ Put the terminal in Vector or Marker mode and send
A panel is a polygon that is defined by one or more more the endpoint coordinates of each section of the
closed boundaries. A panel definition includes at least one boundary (Inside a panel definition, xy-coordinates
BEGIN PANEL BOUNDARY command and terminates are always treated as boundary endpoints, so Marker
with an END PANEL command. mode works like Vector mode and doesn’t display
o . . any markers).
The area inside the panel may be empty or it may be filled
with a solid color or a pattern. An area is defined as inside a * Send MOVE, DRAW, or DRAW MARKER
panel if, starting from a point distant from the panel, you Commands.(Se'e thq dlscq531on Implicit Command
cross an odd number of panel boundaries to get to the area. Modes earlier in this section).
If you cross an even number of panel boundaries or no panel You don’t need to define the last line that closes the
boundaries, the area is outside the panel. See Figure 4-14 for panel.

;
f
M
f
I
f
M
nA
f
M
I
f
f
N
f
f

examples of filled panels. 4. Send the END PANEL command. This automatically

draws a line back to the starting position and fills the

Here’s how to create a panel: panel with the pattern you specified in the SELECT

1. Send the SELECT FILL PATTERN command and FILL PATTERN command. The graphics position is
specify the fill pattern you want to use. (Appendix F now at the panel’s starting position.
shows the predefined fill patterns; also see the detailed
description of this command in Section 5.) Figure 4-14 illustrates several panels, each filled with a fill

2. Send the BEGIN PANEL BOUNDARY command. Use pattern.
this command to specify where the panel’s boundary
should start and whether that boundary should be
displayed in the finished panel.

A. Panel with one boundary B. Panel with two boundaries C. Panel whose boundary crosses itself

* BEGINPANEL 500,500,1 * BEGINPANEL 500,500,1 * BEGINPANEL 500,500,1
* DRAW 1460,500 * DRAW 1500,500 * DRAW 1040,1040
* DRAW 1460,1200 * DRAW 1000,1260 * DRAW 1400,680
* DRAW 1260,1400 * DRAW 500,500 * DRAW 1040,320
* DRAW 700,1400 * BEGINPANEL 900,700,1 * DRAW 500,860
* DRAW 500,1200 * DRAW 1100,700 * DRAW 680,1040
* ENDPANEL * DRAW 1100,860 * DRAW 1040,680
* DRAW 900,860 * DRAW 680,320
* ENDPANEL * ENDPANEL
4526-53
Figure 4-14. Examples of Panels.
4105 PROGRAMMERS 4-23

GRAPHICS CONCEPTS
GRAPHICS PRIMITIVES

About Multiple Panel Boundaries

As shown in Figure 4-14b, a panel can have more than one
boundary. To create such a panel, issue additional BEGIN

PANEL BOUNDARY commands before ending the panel.

When you issue an additional BEGIN PANEL
BOUNDARY command, the boundary being created is
closed and a new boundary is started at the specified
position. The panel is not filled until the terminal receives
the END PANEL command.

PANEL COMMANDS

Table 4-6 summarizes the commands for defining panels.
Turn to Appendix F to see the predefined fill patterns and
colors.

Table 4-6
PANEL COMMANDS
Command Name Setup Name Function
BEGIN PANEL BOUNDARY BEGINPANEL Starts the definition of a panel boundary
END PANEL ENDPANEL Ends a panel definition, drawing a line to close the polygon (if
necessary)
SELECT FILL PATTERN FILLPATTERN Specifies a color or predefined fill pattern to fill a panel
4-24 4105 PROGRAMMERS

C

C

J

CREATING IMAGES WITH PIXEL
OPERATIONS

Pixel operations offer an alternative way to create graphics
images: instead of creating images from graphics primitives
as described in the preceding discussion, you can assign
colors to individual pixels in the display. With photographic
and image processing applications, such as satellite weather
maps, using pixel operations is the fastest way to display or
modify images on the screen.

Your best choice between graphics primitives and pixel
operations as a means to create graphics images depends on
the way the image is created. Photographic images are
obvious candidates for creation through pixel operations.
Geometric images can be more readily created with graphics
primitives.

If you don’t plan to use the terminal’s pixel-writing features,
skip this discussion and move on to the next topic, Using
4010 GIN (Graphics Input).

Pixel images are stored only in graphics memory; they
cannot be stored in the terminal’s program memory.
Consequently, once you erase the screen, the pixel image is
gone; you must retransmit it to display it again.

4105 PIXEL DIMENSIONS

Be aware that the results of pixel commands differ
significantly between different Tektronix terminals,
primarily because of the different dimensions of graphics
memory. If you write a program that uses pixel commands
for the 4105 terminal, you may have to rewrite the program
to make it work with other Tektronix terminals. This is
especially true if your program uses off-screen memory.

WRITING INTO THE PIXEL VIEWPORT

Pixel commands allow you to access the individual pixels in
the terminal’s graphics memory. Three of the commands
prepare the terminal for writing pixels:

e BEGIN PIXEL OPERATIONS

e SET PIXEL VIEWPORT

e SET PIXEL BEAM POSITION

The rest of the pixel-writing commands provide varied
methods of setting color indices for pixels:

e RASTER WRITE

e RUNLENGTH WRITE

e PIXEL COPY

e RECTANGLE FILL

4105 PROGRAMMERS

GRAPHICS CONCEPTS
PIXEL OPERATIONS

The BEGIN PIXEL OPERATIONS Command

The BEGIN PIXEL OPERATIONS command makes two
settings in preparation for pixel-writing operations.

ALU mode. The ALU mode (arithmetic logic unit)
determines how the new color index information in a
pixel-writing command will affect the pixel information
currently stored in graphics memory — a pixel-writing
operation may set pixels to a particular index, replace one
image with another, or combine images. Possible values for
ALU mode are:

® A XOR B: Combines pixel values for A and B by
logically XORing the values. In this ALU mode, you can
erase a pixel image by reissuing the commands that
created it.

® B:Replaces existing image A.

® A AND B: Combines pixel values for A and B by
logically ANDing the values.

® A OR B: Combines pixel values for A and B by logically
ORing the values.

Bits per pixel. The number of bits-per-pixel is a value that is
important to the bit-packing schemes used in the RASTER
WRITE and RUNLENGTH WRITE commands. The
discussions of those commands and algorithms for encoding
them are just ahead.

The SET PIXEL VIEWPORT Command

The RASTER WRITE and RUNLENGTH WRITE
commands operate within a pixel viewport, which is a
rectangular area of the screen addressed in pixels. Issuing the
SET PIXEL VIEWPORT command defines the size and
location of the viewport.

The SET PIXEL BEAM POSITION Command

The pixel beam position is the position in the pixel viewport
at which the RASTER WRITE and RUNLENGTH WRITE
operations will begin. You control the placement of the pixel
beam with the SET PIXEL BEAM POSITION command.

The coordinates of the pixel beam position are relative to the
pixel viewport, not the overall graphics memory space. The
coordinates 0,0 will address a different pixel if the lower-left
corner of the pixel viewport is moved.

4-25

GRAPHICS CONCEPTS
PIXEL OPERATIONS

The RASTER WRITE Command

When you want to assign colors to pixels directly, you can
use the RASTER WRITE command. This command takes
two parameters: the number of pixels that you are encoding
and a string of ASCII characters into which you have
encoded the index values of the pixels.

When the terminal executes the RASTER WRITE
command, it begins at the pixel beam position, fills that
pixel, advances one pixel to the right, fills that pixel, and
repeats until it reaches the end of the string of indices. When
the terminal reaches the right edge of the pixel viewport, it
moves one pixel down and wraps to the left edge of the pixel
viewport. If the terminal reaches the bottom of the pixel
viewport, it wraps back around to the top.

If the special character ¥ (ADE 96 — left single quote) is in
the ASCII string, the terminal fills the rest of the current
pixel line with Index 0. The terminal then wraps back
around just as if it had normally filled that line.

Encoding a RASTER WRITE Command. The encoding for
the RASTER WRITE character array is called bit packing.
The algorithm at the bottom of the page shows how to send
a complete RASTER WRITE command. You can use this
algorithm with any positive number of bits per pixel;
however, you cannot use ' (ADE 96) in the algorithm.

Procedure send-raster-write: (number-of-pixels),(index-array)

global-reference: (bits-per-pixel)
send-character: (ESC)
send-character: (R)
send-character: (P)

send-packed-integer: (number-of-pixels)

(number-of-characters) = integer of ((number-of-pixels)*(bits-per-pixel) + 5)/6
send-packed-integer: (number-of-characters)

(index-pointer) = 0
(register) =0
(bits-in-register) = 0

while (index-pointer)<(number-of-pixels):

increment (index-pointer)

(index) = (index-array(index-pointer))
shift (register) left (bits-per-pixel)

increment (register) by (index) modulo 2**(bits-per-pixel)
increment (bits-in-register) by (bits-per-pixel)

while (bits-in-register) = > 6:

(char-to-send) = (shift (register) right ((bits-in-register)-6) + 32

send-character: (char-to-send)

/* Clear leftmost 6 bits from register as follows */
and (register) with (2+*((bits-in-register)-6)-1)

decrement (bits-in-register) by 6

if (bits-in-register) > 0:

shift (register) left 6-(bits-in-register)

send-character: (register) + 32

4-26

4105 PROGRAMMERS

C

3

The RUNLENGTH WRITE Command

The RUNLENGTH WRITE command is similar to the
RASTER WRITE command — use it when you want to set
most of the pixels on a line to the same index. The
RUNLENGTH WRITE command requires less characters
for specifying pixel data than does the RASTER WRITE
command.

You must specify colors in an array of runcodes. Each
runcode is a single number into which two other numbers
are packed. The runcodes are packed using this form:

Runcode = number-of-pixels x 2" + color-index

The bits-per-pixel parameter from the most recent BEGIN

GRAPHICS CONCEPTS
PIXEL OPERATIONS

The RECTANGLE FILL Command

If you want to fill a rectangular area of the screen with a
single color index, you can use the RECTANGLE FILL
command. This command does not need to be within the
pixel viewport.

The PIXEL COPY Command

The PIXEL COPY command copies pixels from one
rectangular region in graphics memory to another
rectangular region of graphics memory. Refer to the
command descriptions in the Section 5 for more information
about the PIXEL COPY commands.

PIXEL OPERATIONS command supplies the value for n,
unless that parameter is 4 or 6; then the value of n is 3.

Encoding a RUNLENGTH WRITE Command. The
algorithm at the bottom of the page shows how to encode
the RUNLENGTH WRITE runcodes.

Procedure send-runlength-write: (number-of-pixels),(index-array)
global-reference: (bits-per-pixel),(terminal-model)
local-array: (code-array)
send-character: (ESC)
send-character: (R)
send-character: (L)

(code-count) =0
{index-pointer) =1
(multiplier) = 2+ *(bits-per-pixel)
(index) = (index-array(1))
(index-count) =1
(max-index-count) = integer of 65535/(multiplier)
until (index-pointer) = (number-of-pixels)
increment (index-pointer)
if (index) > (index-array(index-pointer))
or (index-count) = (max-index-count)
increment (code-count)
if (index) > (multiplier)

(index) = (multiplier)-1
(code-array(code-count)) = (multiplier)*(index-count) + (index)
(index) = (index-array(index-pointer))
(index-count) =1

else
increment (index-count)
send-packed-integer: (code-count)
for (counter) = 1 to (code-count)
send-packed-integer: (code-array(counter))

4105 PROGRAMMERS 4-27

%
H

GRAPHICS CONCEPTS
PIXEL OPERATIONS

USING PIXEL OPERATIONS: AN EXAMPLE

Figure 4-15 shows the commands that define a pixel
viewport and write color indices into that viewport. Let’s
consider these commands, one by one.

PXBEGIN. The PXBEGIN (BEGIN PIXEL
OPERATIONS) command must be issued before any other
pixel-writing commands. In this example, no parameter
values are given, so the terminal will assume the command’s
default parameter values 11 and 6. These parameters set the
ALU mode to 11 (Replace mode) and specify that six bits per
pixel be used to transmit each color index (the 4105 will use
three bits per pixel, since that it its maximum).

PXVIEWPORT 100,100,109,109. The PXVIEWPORT
(SET PIXEL VIEWPORT) command defines a rectangular
region on the pixel-writing surface. In this example, the
lower-left and upper-right corners of the pixel viewport are
at 100,100 and 109,109, respectively. These coordinates are
in 480x360 graphics memory space.

C

PXRECTANGLE 100,100,109,109,0. The
PXRECTANGLE (RECTANGLE FILL) command sets all
pixels within a rectangular region to the same color index. In
this example, the command clears the pixel viewport by
setting all pixels in that region to Index 0.

PXPOSITION 3,4. The PXPOSITION (SET PIXEL BEAM
POSITION) command moves the current pixel position (the
point where the next pixel will be written) to coordinate
point 3,4. These coordinates are relative to the lower-left
corner of the pixel viewport.

PXRASTERWRITE 4,”4002”. The PXRASTERWRITE
(RASTER WRITE) command writes the Indices 4, 0, 0, and
2 into four successive pixels. At the end of this command,
the pixel beam position is at 7,4. These coordinates are
relative to the lower-left corner of the pixel viewport.

PXPOSITION 3,3. This command moves the current pixel
position to the location 3,3 in pixel viewport coordinates.

PXRASTERWRITE 4,74217”. This command writes the
Indices 4, 2, 1, and 7 into four successive pixels. At the end
of this operation, the pixel beam position is at 7,3 in pixel
viewport coordinates.

100,109,109,0
,"4002"
a,7a217"

O OO0 000 OO0 OO OO

(=2 — = I~ B~ I~ I~ I~ I~ I~]

O 0O 0O 00 oo oo o

0O OO0 & bOOOOO

O o0oOo0oo0o0oo0oo0ooo o

oco0oooocoooooco
o 0oo0ooo0oooooo
ocooNMNOOOOOO
o oo -~o00O0O0O0OCOO
o ooNNOOOOCO

Figure 4-15. Writing Into the Pixel Viewport Using RASTER WRITE.

4-28

EcRHE0" 5o @
cRP444217

4105 PROGRAMMERS

D)

J

|
|
|
|
n
n
N
"
"
o
I
N
N
ll
|
|
|
i
|

Recall that you can use RUNLENGTH WRITE commands
as well as RASTER WRITE commands to write in the pixel
viewport. RUNLENGTH WRITE (using runcodes) specifies
the number of pixels in a sequence, and sends the same color
index to each pixel in the sequence. The next three
paragraphs and Figure 4-16 explain how this is done.

As in Figure 4-15, Figure 4-16 uses PXBEGIN (this time
with bits-per-pixel set to 3) and PXVIEWPORT commands
to define a pixel viewport that is 10 pixels wide and 10 pixels
high. As before, a PXRECTANGLE command clears all
pixels in the pixel viewport to Index 0. This time, however,
there is no PXPOSITION command, so the current pixel
position starts at the upper-left corner of the pixel viewport.

GRAPHICS CONCEPTS
PIXEL OPERATIONS

In this example (Figure 4-16), the RUNLENGTH WRITE
command has four runcodes in its integer-array parameter.

The first code, 160, calls for 26 pixels displayed in Index 0
(20 x 2’ +0 = 160). The second code, 243, calls for 30
pixels displayed Index 3 (30 x 2°+3 = 243). The third code,
160, calls for 20 pixels displayed in Index 0; it is the same as
the first code. The fourth code, 246, calls for 30 pixels of
Index 6 (30 x 2'+ 6 = 246.)

0,100,109,109,0

O 0 N OO0 wWwWwWOoOOoO |
"o 000 WW®WOOo
o O HODO O WWwWOoOOoO |
D0 DO O W®WWOO
® O OO0 0 WWOwWOoOOoO |
oo mo00wWwwOoOo
co Mmoo wWwWwWwoo oo
OO ®DO0O0WWWOOoO

0O O O 0O O W W woo

E 160,243,160,246

Figure 4-16. Writing Into the Pixel Viewport Using RUNLENGTH WRITE.

4105 PROGRAMMERS

4-29

GRAPHICS CONCEPTS
PIXEL OPERATIONS

PIXEL COMMANDS

The commands that you use in performing pixel operations

are listed in Table 4-7.

Table 4-7
PIXEL COMMANDS
Command Name Setup Name Function
BEGIN PIXEL OPERATIONS PXBEGIN Sets up the terminal for pixel operations
PIXEL COPY PXCOPY Copies pixels from one rectangular region to another
RASTER WRITE PXRASTERWRITE Sets the color indices individually for one or more pixels in the
pixel viewport
RECTANGLE FILL PXRECTANGLE Sets all the pixels in a rectangle to the same color
RUNLENGTH WRITE PXRUNLENGTHWRITE Sets one or more pixels in the pixel viewport to the same color
SET PIXEL BEAM POSITION PXPOSITION Sets the position of the pixel beam in the pixel viewport
SET PIXEL VIEWPORT PXVIEWPORT Sets the pixel viewport’s size and position in graphics memory
4-30 4105 PROGRAMMERS

C

(

D

J

USING 4010 GIN

In many graphics applications, users must choose a menu
option from the terminal screen or designate a location on
the screen for graphics or text, and the terminal must
transmit those choices to the host program in terms of
xy-coordinates. GIN (or, Graphic Input) allows users to
indicate their choices to the host without calculating the
xy-coordinates. The 4105 terminal supports 4010-style GIN,
which makes the terminals compatible with programs
written for Tektronix 4010 Series terminals.

Programming 4010 GIN is straightforward; it works like
this:

1. Your program issues the ENABLE 4010 GIN
command, which enables the terminal for one 4010 GIN
Report and causes a crosshair cursor to be displayed on
the terminal screen.

2. The user presses the Joydisk to move the cursor to a
location on the screen. The user can press the Shift key
to slow the cursor’s movement for more accurate
control (the SET GIN CURSOR SPEED command
controls the normal and shifted speeds).

3. The user inputs the selected location by pressing any
keyboard key that generates an ASCII character; this
causes the terminal to generate a report to the host.

The terminal sends your program a 4010 GIN Report
which indicates the location of the GIN cursor and the
key the user pressed.

hd

Your program must parse the GIN report.

After sending the 4010 GIN Report, the terminal
updates its graphics position to the GIN cursor location,
and enters Alpha mode.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
4010 GIN (GRAPHICS INPUT)

Since the terminal is enabled for only one report, a host
program must issue a separate command for each GIN point
required.

If, instead of pressing a single key, the user presses several
keys in succession or presses a key that has a key macro
defined for it, the terminal still sends a 4010 GIN Report,
but the excess characters are transmitted to the host. The
first key pressed or the first character of the macro string
becomes the key-character sent in the 4010 GIN Report, and
the rest of the characters are transmitted to the host.

Communication Settings for 4010 GIN

Emulating the graphics input capability of a Tektronix 4010
Series terminal requires some specific communications
settings. While the exact settings may vary from one
computer installation to another, the settings shown for the
following commands should work for most host computers:

o SET EOM CHARACTERS — Set both EOM characters
to Ny,

e SET EOL STRING — Set the EOL string to Cr (this is its
default value).

o SET BYPASS CANCEL CHARACTER — Set the
bypass cancel character to match to the last character that
the host echoes in response to a report’s last character.
For 4010 GIN, the bypass cancel character will be-one of
these:

e Ny if the host is not echoing characters
® Lrif the host echoes Cr as CrL¥
® Crif the host echoes Cr as just Cr

4-31

GRAPHICS CONCEPTS
MACROS

USING MACROS

You can store strings of characters — either commands or
text — in the terminal’s program memory so that they can be
accessed by a single command or keystroke. These strings
are called macros, and each macro is identified by an integer,
called the macro number.

Assigning a frequently used command sequence to a single
key can make a program easier and more convenient to use
— you can see this illustrated in the examples included in this
discussion. You can also program keys right from the
keyboard, custom tailoring the terminal to meet your
individual needs. For instance, you could program a key so
that it moves the alpha cursor to the home position.

Using macros reduces data transmission time. Instead of
sending a long string of characters, the host can (1) send a
single command, EXPAND MACRO, which calls the stored
string from program memory, or (2) program a key so that
just a single keystroke executes or displays the string.

VOLATILE AND NONVOLATILE MACROS

The terminal can store a macro temporarily or permanently.
A volatile macro is stored in program memory — the macro
is not retained when the terminal is turned off or reset. A
nonvolatile macro is stored in nonvolatile memory — the
macro is retained even when the terminal is turned off or
reset.

You can store a macro in both volatile memory and
nonvolatile memory at the same time. When expanding a
macro, the terminal checks the volatile memory first. If it
does not find the macro in volatile memory, the terminal
looks for it in nonvolatile memory.

The DEFINE MACRO and LEARN commands define only
the volatile version of a macro. The DEFINE
NONVOLATILE MACRO and LEARN NONVOLATILE
commands define both the volatile and nonvolatile versions
of a macro. To actually save the nonvolatile version in
nonvolatile memory, however, you must issue a SAVE
NONVOLATILE PARAMETERS command before turning
off or resetting the terminal.

The DEFINE MACRO and DEFINE NONVOLATILE
MACRO commands work in the same way — one is for
volatile (not permanent) macros and the other is for
nonvolatile (permanent) macros. In this discussion,
wherever you read DEFINE MACRO, you could substitute
DEFINE NONVOLATILE MACRO — the information
applies to both. The same goes for LEARN and LEARN
NONVOLATILE, which are discussed under Defining Key
Macros.

4-32

MEMORY REQUIREMENTS FOR MACROS

To define a macro with the DEFINE MACRO or DEFINE
NONVOLATILE MACRO command, you need program
memory both for processing the commands and for storing
the volatile version of the macro. The DEFINE
NONVOLATILE MACRO also requires nonvolatile
memory for storing the nonvolatile version of the macro.

Each volatile or nonvolatile macro you define takes eight
bytes of volatile memory for header information, plus one
byte for each character in the definition. (Nonvolatile
macros take the same amount of nonvolatile memory
besides.) The maximum size of a macro depends on the
availability of program memory and on which command
you use to define it:

o The DEFINE MACRO command issued from the host
lets you use all the terminal’s available volatile memory
for a macro definition.

o The DEFINE MACRO command issued from Setup
limits you to a single line of entry — the macro contents
can be up to 110 characters.

o The LEARN command issued from Setup lets you use up
to one-half the terminal’s available volatile memory for a
macro definition.

e The DEFINE NONVOLATILE MACRO command and
the LEARN NONVOLATILE command limit macro size
depending on the availability of both volatile memory
and nonvolatile memory. When no macros have been
defined, there is enough nonvolatile memory for about
1500 characters of macro definition.

You can use the REPORT TERMINAL SETTINGS
command (or issue STATUS MEMORYBLOCKS from
Setup) to find out how much volatile memory is available.
You can use all the available volatile memory for one macro
definition, or you can define many shorter macros.

If there is not enough volatile memory to define a macro (or
not enough nonvolatile memory to store the nonvolatile
version of a macro), the terminal issues an error message. To
define a macro when you’ve run out of memory, you must
free some memory:

e To free volatile memory, you must delete macros or
reduce dialog buffer size or queue size. See Managing
Program Memory later in this section for an explanation
of how the dialog buffer size and queue size affect
volatile memory.

o To free nonvolatile memory, you must delete nonvolatile
macros.

4105 PROGRAMMERS

B e oD OE o oo

ot

W

J

DEFINING MACROS

From the Host. Use the DEFINE MACRO or DEFINE
NONVOLATILE MACRO command to define macros
from the host. In the command, you give the number that
you are assigning to the macro and the ASCII decimal
equivalents (ADE) of the characters that make up the
macro’s content. You must convert the ADE values of
characters to encoded integers, as explained in the first part
of Section 5; for most integers, you can simply refer to
Appendix D, which is a list of integers already converted to
their encoded version.

An example showing how to define a macro from the host is
included at the end of this discussion.

From the Keyboard. You can use either the Setup version of
the DEFINE MACRO command or the LEARN command
to define macros from the keyboard. (To define nonvolatile
macros, use the DEFINE NONVOLATILE MACRO or
LEARN NONVOLATILE command.) The following
example shows how to use the DEFINE NONVOLATILE
MACRO command.

An example showing how to define a macro from the
keyboard is included at the end of this discussion.

J

EXECUTING MACROS

From the Host. Once you’ve defined a macro, you can
invoke it from the host by issuing the EXPAND MACRO
command. The terminal calls the macro from program
memory and expands it — that is, displays the macro’s
contents if the characters are a string of text, or executes the
macro if the macro’s contents make up a command
sequence.

For example, a host program can define Macro 301 to be the
string, “Type any key to continue.” Then, in your program,
anytime you need this string displayed, just send an
EXPAND MACRO command for Macro 301. When the
terminal receives this command, it looks up Macro 301 in
program memory and displays the string.

()

4105 PROGRAMMERS

GRAPHICS CONCEPTS
MACROS

Likewise, you could define Macro 302 to execute a
frequently used sequence of commands — perhaps a
sequence that resets the dialog area to a known state.
Thereafter, you could issue the single command EXPAND
MACRO for Macro 302 — rather than repeatedly reissuing
the lengthy and time-consuming sequence — to put the
terminal in that state. As you can see, macros help you use
the terminal’s features efficiently.

From the Keyboard. To expand a macro from the keyboard,
users can enter Setup and issue the EXPAND MACRO
command in Setup syntax with the macro number. The
terminal routes the characters in the macro definition
through the terminal’s Setup command interpreter. The
terminal executes any commands in the macro and sends all
other alphanumeric data to the dialog area.

DEFINING KEY MACROS

If you define a macro using a macro number between -150
and 143, users can expand the macro just by pressing a
keyboard key or key combination. This is possible because
each number in that range (except -1, which is used for
deleting macros) has a unique association with a key or key
combination. For instance, if you define Macro -42, you
can expand it by holding down the Ctrl and Shift keys while
pressing the Back Space key (Ctrl-Shift-BackSpace).

As you might expect, macros associated with keys in this
way are called key macros. Appendix A shows the numbers
assigned to keys.

Executing Key Macros

To expand a key macro, the user simply types the
programmed key or key combination. The terminal sends
the information in the macro to the host — or uses the
information locally if the definition includes key-execute
characters. Key-execute characters are explained just ahead
under Keeping a Key Macro Local.

4-33

GRAPHICS CONCEPTS
MACROS

Disabling Key Macros

You can disable key macros to prevent users from expanding
a key macro at an inopportune time. If your program
expects a key’s default meaning, but you’ve assigned macros
to many of the keyboard keys, it would be wise to disable
key macros.

Use the ENABLE KEY EXPANSION command to disable
or enable key macros. When key expansion is disabled, users
can’t expand key macros with a keystroke, but you (or the
user) can still expand them by issuing the EXPAND
MACRO command.

Key macros are automatically disabled whenever a SELECT
CODE command puts the terminal in EDIT mode.

NOTE

Although key macros are automatically disabled
when you enter EDIT mode from TEK mode, they
are not automatically reenabled when you reenter
TEK mode — you must specifically reenable them
with the ENABLE KEY EXPANSION command
either from the host or from the keyboard.

Keeping a Key Macro Local

Normally, when you press a key that has a macro definition,
the terminal sends the macro to the host — just as if you had
typed that sequence of characters on the keyboard.
Sometimes, however, you might want a key macro to be
processed by the terminal rather than transmitted to the
host. For instance, if the macro contains text for display on
the screen or a command to change some terminal setting,
you’d want the macro executed locally, not sent to the host.

When the terminal finds a key-execute character in a macro,
it executes the subsequent characters locally — until it comes
across another key-execute character. The Pr character is the
terminal’s default key-execute character, but you can change
it with the SET KEY EXECUTE CHARACTER command.

To create a locally executed macro, send the DEFINE
MACRO command and start the definition with the
key-execute character. Following the string of characters to
be used locally, enter another key-execute character. When a
user presses the defined key, the terminal interprets the string
of characters between the two key-execute characters locally
and does not send them to the host.

4-34

C

If the string is a terminal command, the terminal executes it.
For example, you could define Function Key F4 to set the
dialog area to eight lines. Use the LEARN command to
program the key from the keyboard. The terminal will
prompt you for the key to be defined (just press the F4 key)
and for the definition. When it prompts you for the
definition, you would enter:

| Ctrl |-P | Esc |LL8{Ctrl |-P

(Ctrl-P is the key combination that you enter from the
keyboard to transmit Pr, the default key-execute character.)

Now when you press the F4 key, the terminal will assign
eight lines to the dialog area. However, since the definition
uses Host syntax, the terminal cannot be in Setup (pressing
F4 in Setup will just display the string £c LL8).

If the string between the two key-execute characters is not a
terminal command, the terminal displays the characters in
the string as if the host had sent them. For example, if you
define F5 with the string Ctri-P Hello Ctri-P and then press
FS (the terminal must not be in Setup), the terminal displays
“Hello” in the dialog area, but the characters are not sent to

the host.

When defining a macro to be used locally, be sure
to include the second key-execute character.
Otherwise, the terminal will continue to interpret
characters locally until it encounters another
key-execute character.

Key-execute characters in macros expanded by an EXPAND
MACRO command have no special meaning; they are
treated just like other characters in the macro.

Another way to keep a key macro local is to define the
macro containing the Setup version of a command instead
of the host version. If you use the LEARN command to do
this, you can simply enter the definition — you can even
include a Carriage Return at the end of the definition to
terminate the command. If you use the DEFINE MACRO
command to define the macro, however, you will need to
precede the Carriage Return with the literal edit character,
which allows you to include Carriage Return or other edit
characters in a macro definition (see the SET EDIT
CHARACTERS command).

To use the macro, enter Setup, and press the defined key. If
you included a Carriage Return in the definition, the
terminal will execute the command. If you didn’t include a
Carriage Return, the terminal will display the command but
won’t execute it until you press the Return key.

4105 PROGRAMMERS

J J

By

“

DEFINING MACROS FROM THE HOST:
AN EXAMPLE

The Scenario: Suppose that your application uses the
bottom six lines of the screen to display text, and you want a
frame around the part of the screen used to display graphics.
Rather than issuing the same commands each time you want
to redisplay the frame, you can define a macro that contains
the commands — and then expand the macro each time you
want to redraw the frame.

Figure 4-17 shows the commands that you would issue from
the host to draw the frame, and it also shows the steps that
you would take to encode these commands so you can
include them in the DEFINE MACRO command. The
commands shown program Macro 200 to draw a dotted-line
frame around the top three-fourths of the screen.

You must encode the characters that make up the commands
that you include within the macro definition.

Here’s what the command itself would look like (spaces are
included in the command for readability; they must not be
included when your program issues this command):

EcKD L8 B2 A0 A;D =E61 A = B6FOFOBOD0 B6F3FOC?E?
C8F3F?C?E? CSFOF?B0D0 B6FOFOBODO0 A0

GRAPHICS CONCEPTS
MACROS

Here’s a breakdown of the command:

EcKD
This is the escape code for the DEFINE MACRO
command.

L8
This is the encoded value of 200 (the macro number).

B2
This is the encoded value of 34, the array count (there are
34 encoded integers following).

A0
This is the encoded value of 16, the ADE of P (the first
key-execute character); it tells the terminal to process the
following characters.

(The description of the encoded form of each
xy-coordinate is included in Figure 4-17.)

A0
This is the encoded value of 16, the ADE of DL (the

second key execute character); it returns control to the
host application.

Now you can just expand Macro 200 each time you want to
draw the frame — just issue the EXPAND MACRO
command, EcKXLS.

Encoded for

Command Host Syntax?® ADE Macro Definition
LINE STYLE 1 EcMVA1 2777861 A;D=E61

ENTER VECTOR MODE Gg 29 A=

MOVE 0,768 &\ '@ 38 96 96 32 64 B6FOFOBODO

DRAW 4095,768 &c'?__ 3899 96 63 95 B6F3FOC?E?

DRAW 4095,3132 8co?__ 56991116395 C8F3F?C?E?

DRAW 0,3132 8'0%@ 56 96 111 32 64 C8FOF?B0DO0

DRAW 0,768 &\ '@ 3896 96 3264 B6FOFOBODO

: The MOVEs and DRAWSs i d in host syntax are i

and

ist of

ds. Since the first command is ENTER VECTOR MODE,

o

these commands omit the host

L 4

y i only.

4526-55

Figure 4-17. Encoding a Macro.

4105 PROGRAMMERS

REV FEB 1986

4-35

GRAPHICS CONCEPTS
MACROS

DEFINING MACROS FROM THE KEYBOARD:
AN EXAMPLE

The Scenario: Suppose you are writing an application for
users familiar with DEC VT100 terminals, and you want to
emulate the VT100 NO SCROLL key, which stops and starts
host communication.

You can program any key to use the P1 and P3 characters to
emulate the function of the NO SCROLL key. Entering a P3
character at your keyboard stops transmission from the host
(and thus stops scrolling), and entering a P1 character starts
it up again.

This example shows macro definitions that program the
Vertical Bar key (|) so that it:

1. Sends a D3 to the host, thus stopping transmission from
the host

2. Reprograms the Vertical Bar so that the next time you
press it, it will send a P1 to the host and restart data
transmission

3. Reprograms the Vertical Bar back to its original
definition — so that the next time you press it, it will
again send D3

The keystroke that resumes scrolling must put the terminal
back in ANSI mode.

NOTE

In Setup, you need to press key combinations to
generate the D1, D1, and Ps characters at the
keyboard. When you enter Ctri-B the terminal
displays PL. When you enter Ctrl-Q or Ctrl-S, the
terminal displays D1 or D3, respectively. (Remember,
the key combinations Ctrl-P and Ctrl-S mean
“press the Ctrl key and the P or S key
simultaneously,” and Ec means the Esc key.)

4-36

This example contains three levels of commands. You issue
NVDEFINE Setup commands to define Macros 124, 145,
and 146; these macros contain host-syntax commands that
issue other commands. Each level of command requires its
own level of encoding:

1. When you issue the NVDEFINE commands, you use
Setup syntax. You type the macro number and the
delimiters for the macro string; use key combinations to
generate control characters P, P1, and P3; and type the
host command.

2. When you define commands within a macro you’re
creating with NVDEFINE, you use host syntax because
the terminal will no longer be in Setup when the macros
are expanded. You press the Esc key for Ec, type the
opcode, and encode parameter values for TEK mode
commands. Macros 124, 145 and 146 use the TEK mode
commands DEFINE MACRO and EXPAND
MACRO.

3. The host syntax of the TEK mode commands (DEFINE
MACRO and EXPAND MACRO) require encoded
integer arrays. The commands defined within the
DEFINE MACRO and EXPAND MACRO commands
also use host syntax, but the entire command string
must be encoded as an integer array. You must convert
each character to its ADE value and then encode each
ADE value as an integer parameter.

4105 PROGRAMMERS

(

J

To program the Vertical Bar key, place the terminal in Setup
and type:

KEYEXPAND YES¢r

NVSAVECR

The first definition creates Macro 145, which reprograms
the Vertical Bar key so that the next time you press it, it will
send a P1 to the host and expand Macro 146.

The entries have the following meanings:

NVDEFINE
This is the Setup name of the DEFINE NONVOLATILE
MACRO command.

145
This is the macro number.

/
This slash marks the beginning of the string to be defined
as a macro.

(Cn}-p
This is the key combination you use to type the Pr
character, which is the terminal’s default key-execute
character. The key-execute character starts macro
expansion at the terminal. (In this case what is expanded
is another macro definition.)

EcKD

This is the host escape sequence for the DEFINE
MACRO command.

G<
This is the encoded value of the integer 124 — the macro
number assigned to the Vertical Bar (|).

<
This is the array count. It is the encoded value of the
integer 12, since there are 12 integers are in the array.

Al
This is the encoded value of 17, which is the ADE of P1,
the flagging character that starts transmission of data
from the host.

J

4105 PROGRAMMERS

|
N
|
|
i
|
|
f
H
e
I
N
i
i
N
I
n
R
|

GRAPHICS CONCEPTS
MACROS

NVDEFINE 145,/|Ctrl |-P EcCKDG<<A1A0A;D;ES8DIC2A ;BSB1C1A0 | Ctrl |-P /cr
NVDEFINE 146,/ | Ctrl]-P EcCKDG<<A3A0A ; BSB1C0A;D;ES8DIC1A0 | Ctrl |-P /<&
NVDEFINE 124,/ Ctrl -S| Ctrl]-P £c%!0EcKXI1 [Ctrl |-P /cx

A0
This is the encoded value of 16, which is the ADE of P,
the first key-execute character, which starts expansion of
the macro at the terminal.

A;D;ESD9IC2
This is the encoded value of the EXPAND MACRO
command EcKXI2, which expands Macro 146.

Character ADE Encoded Value

Ec 27 A;

K 75 D;

X 88 E8

I 73 D9

2 50 C2
A;B5B1C1

This is the encoded value of the SELECT CODE
command,Ec%!1, which puts the terminal in ANSI

mode.
Character ADE Encoded Value
Ec 27 A;
% 37 BS
! 33 B1
1 49 Cl
A0

This is the encoded value of 16, which is the ADE of b,
the key-execute character. The second occurrence of P
returns control to the host.

[Ctr]p
This is the key combination you use to type the P
character, which is the terminal’s default key-execute
character. The second occurrence of the key-execute
character stops macro expansion at the terminal and
returns control to the host.

This slash marks the ending of the string to be defined as
a macro.

4-37

GRAPHICS CONCEPTS
MACROS

The second definition creates Macro 146, which reprograms
the Vertical Bar back to its original definition — the next
time you press it, it will again send Ps3 to the host and expand
Macro 145.

The entries have the following meanings:

NVDEFINE
This is the Setup name of the DEFINE NONVOLATILE
MACRO command

146
This is the macro number.

/
This slash marks the beginning of the string to be defined
as a macro.

[Cul]p
This is the key combination you use to type the P
character, which is the terminal’s default key-execute
character. The key-execute character starts macro
expansion at the terminal. (In this case what is expanded
is another macro definition.)

EcKD
This is the host escape sequence for the DEFINE
MACRO command.

G<
This is the encoded value of the integer 124 — the macro
number assigned to the Vertical Bar (|).

<
This is the array count. It is the encoded value of the
integer 12, since there are 12 integers are in the array.

A3 ’

This is the encoded value of 19, which is the ADE of D3,
the flagging character that stops transmission of data
from the host.

A0
This is the encoded value of 16, which is the ADE of Di,
the key-execute character. The first key-execute character
starts expansion of the macro at the terminal.

A;B5B1C0
This is the encoded value of the SELECT CODE
command, Ec%!0 <, which puts the terminal in TEK
mode.

Character ADE Encoded Value
Ec 27 A;
% 37 BS
! 33 B1
0 48 Co
4-38

A;D;ES8DIC1
This is the encoded value of the EXPAND MACRO
command, EcKXI1, which expands macro 145 (encoded
I1).

Character ADE Encoded Value
Ec 27 A;
K 75 D;
X 88 E8
| 73 D9
1 49 Cl1
A0

This is the encoded value of 16, which is the ADE of P,
the key-execute character. The second key-execute
character returns control to the host.

[Curi]-p
This is the key combination you use to type the PL
character, which is the terminal’s default key-execute
character. The second occurrence of the key-execute
character stops macro expansion at the terminal and
returns control to the host.

This slash marks the ending of the string to be defined as
a macro.

The third definition creates a key macro for the vertical bar
key. When you press the Vertical Bar key, the terminal sends
a D3 to stop scrolling, enters TEK mode (so that macro
expansion is possible), and expands Macro 145.

The entries have the following meanings:

NVDEFINE
This is the Setup name of the DEFINE NONVOLATILE
MACRO command.

124
This is the macro number.

/
This slash marks the beginning of the string to be
executed.

[Ctrl |-S
This is the key combination you use to type the P3
character, which causes the terminal to stop scrolling.

(Ctr]-P
This is the key combination you use to type the PL
character, which is the terminal’s default key-execute
character. The first key-execute character starts macro
expansion at the terminal.

EcT!0
This is the SELECT CODE command to put the terminal
in TEK mode.

4105 PROGRAMMERS

)

J

EcKXI1
This is the command to expand Macro 145.

[Ctr}-p
This is the key combination you use to type the PL
character, which is the terminal’s default key-execute
character. The second key-execute character returns
control to the host.

If you want to program a different key as the NO SCROLL
key, just make the following changes to the sequence used in
this example:

1. Change the key specifier in the last definition from 124
to the macro number of the key you prefer (see the
keyboard charts in Appendix A).

2. Inthe first and second key definitions, replace the G<
with the encoded integer parameter for the macro
number of the key.

DEFINING KEY MACROS: AN EXAMPLE

The Scenario. Suppose that you are writing a host program
and want to make it easy for the user to create a log of text
written to the dialog area. You can select this sort of data
logging with the ANSI MC (MEDIA COPY) command.
This example shows you how to program the F8 function
key to issue the MEDIA COPY command toggle data
logging on and off. Then, when in ANSI mode, the user can
press the F8 key to switch the data logging feature on and
off.

)

NOTE

The macro contents in this example must be
encoded because your program must issue the
DEFINE MACRO command from the host with
the terminal in TEK mode. Since the macro
contents include the ANSI MC (MEDIA COPY)
command, you must encode the characters that
make up this command. Also, the example uses the
default key-execute character L.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
MACROS

To program the F8 function key to switch data logging on
and off, place the terminal in TEK mode and issue the
following from the host:

EcCKDH77A0A;E;C?3F9A0

The entries that make up this macro definition are explained
individually in the following discussion:

EcKD
This is just the escape sequence for the DEFINE
MACRO command.

H7
This is the macro-number parameter for the DEFINE
MACRO command. It is the encoded value of the
number 135, which is the macro number assigned to the
F8 function key.

This is the array count that begins the macro-contents
parameter of the DEFINE MACRO command. It is the
number of encoded integers that follow in the array. Note
that the array count itself must be an encoded integer —
in host syntax, 7is the encoded value of 7.

A0
This is the encoded value of the number 16, which is the
ADE of Pi, the default key-execute character. The first
occurrence of the key-execute character tells the terminal
not to transmit subsequent characters to the host, but to
execute them locally.

AE;C?3F9
This is how you encode Ec[?3i, which is the host syntax
for the ANSI MC (MEDIA COPY) command, with
parameter value ?3 (toggle data logging):

Character ADE Encoded Integer
Ec 27 A;
[91 E;
? 63 C?
3 3 3
i 105 F9
A0

This is the encoded value of the number 16, which is the
ADE of Py, the default key-execute character. The second
occurrence of the key-execute character tells the terminal
to quit executing the transmitted characters at the
terminal and to transmit subsequent characters to the
host.

Now, when in ANSI mode, users can simply press the F8
Key to switch data logging on and off.

4-39

GRAPHICS CONCEPTS
MACROS

DELETING MACROS

You can delete a macro by redefining it as an empty string.
Just issue DEFINE MACRO and give the macro number,
but don’t put anything in the macro’s contents (in host
syntax, issue an empty array for the macro contents). For
example, to delete Macro 500 from the keyboard, you would

just issue:

EcKD_40
DEFINE 500

Host syntax:
Setup syntax:

In the host syntax, the _4 is the encoded integer for 500, and

the 0 says that the array is empty.

If you want to delete all macros, issue DEFINE MACRO
with -7 (in host syntax) or a// (in Setup syntax) as the macro
number. In other words, to delete all macros you’d issue:

EcKD!0
DEFINE ALL

Host syntax:
Setup syntax:

The ! following the escape sequence is the encoded integer
for -1. Although you can omit the last parameter of a
command in host syntax, it’s safer not to — the 0 specifies
that the array is empty.

MACRO COMMANDS

Table 4-8 summarizes the commands for defining and
executing macros.

Table 4-8
MACRO COMMANDS

Command Name Setup Name Function

DEFINE MACRO DEFINE Creates or deletes volatile macros

DEFINE NONVOLATILE MACRO NVDEFINE Creates or deletes nonvolatile macros, which can be save in
nonvolatile memory

ENABLE KEY EXPANSION KEYEXPAND Controls whether or not key macros can be expanded by
pressing keyboard keys

EXPAND MACRO EXPAND Expands a macro

LEARN LEARN Creates or deletes volatile key macros

LEARN NONVOLATILE NVLEARN Creates or deletes nonvolatile key macros, which can be saved in
nonvolatile memory

MACRO STATUS MACROSTATUS Displays the definition of a macro

SAVE NONVOLATILE PARAMETERS NVSAVE Saves the values of those commands whose settings can be saved
in nonvolatile memory; also saves macros created with the
DEFINE NONVOLATILE MACRO and LEARN
NONVOLATILE commands

SET EDIT CHARACTERS EDITCHARS Specifies the special editing characters used in the dialog area
while in Setup

SET KEY EXECUTE CHARACTER KEYEXCHAR Specifies the character used in key macros to specify whether
subsequent characters should be processed by the host or by the
terminal

4-40

4105 PROGRAMMERS

C

|
|

D)

D

)

.

PUTTING TOGETHER A GRAPHICS
PROGRAM

The way you use the terminal’s features largely depends on
the needs of your application — we won’t try to outline an
exact sequence of commands that will meet the needs of
your application. Yet, because of the hierarchical structure
of the terminal’s features, we can give you some general
principles that apply to writing a graphics program. For
example, some commands set up conditions that affect
commands issued later — a program must select the
attributes for a graphics primitive before specifying the
primitive; that’s like deciding whether to use a pen or a pencil
before drawing a line on paper.

After you have absorbed the graphics concepts explained in
this section, you can take a larger view of how the terminal’s
features interact. We’ve put together a summary of the
graphics concepts, and listed them from top to bottom in the
order that you should follow to structure your application
program. The list doesn’t include all the features or subtle
interactions between commands — it covers just those
highlights that typically are troublesome to someone new to
graphics programming. Following the general
recommendations given here can help you avoid much trial
and error in putting together command sequences.

When designing the graphics displayed by the program,
you’ll probably want to first lay out the graphics primitives
needed for an image, and then figure out the larger context
for displaying the image. You should issue the commands to
the terminal, however, in the suggested order.

Here’s the list, starting at the top with those items that a
program should configure first:

® Set up communications — command syntax mode,
special communications settings, and report
characteristics

o Set up dialog and keyboard — dialog attributes for
messages to users, and keyboard macro definitions;
modify later as needed

® Manipulate graphics images — change attributes of
graphics images according to user input

® Restore parameters — at end of application program,
restore terminal’s parameters to initial state, allowing a
smooth transition to next program that uses terminal

To study the details of command interactions, refer to the
functionally grouped list of commands on the tab labeled
Commands (in Section 5). The list of related commands at
the end of most command descriptions will help identify the
commands that work with one another. The example
programming code in Section 6 should be helpful in showing
how you can issue actual commands to the terminal from
your program.

4105 PROGRAMMERS

GRAPHICS CONCEPTS
PUTTING TOGETHER A PROGRAM

HOW THE TERMINAL’S MEMORY WORKS

The terminal contains both read-only memory and
random-access memory. The read-only memory stores the
firmware that supports the terminal’s graphics and
screen-editing features. The random-access memory stores
graphics images, text, and other data used by the firmware
or by your program.

There are two types of random-access memory that your
program can use for specialized purposes — graphics
memory and program memory. The discussion Graphics
Memory earlier in this section, describes how your program
can use graphics memory. The rest of this discussion
describes how your program can use the terminal’s program
memory, and how the different terminal capabilities that use
program memory affect each other.

Program Memory

Program memory is the terminal’s general-purpose memory.
It is comprised of volatile memory and nonvolatile memory.

Volatile Memory. This memory holds the terminal’s input
queue and dialog area buffer. Your program can adjust the
size of the input queue and dialog area buffer and use the
rest of this memory to define panels and to define and store
macros. (The terminal uses volatile memory temporarily
during panel definition, but the memory is freed once the
definition is complete.)

Assuming that all settings are at their factory defaults, there
are about 16,000 bytes (1000 blocks 16 bytes long) of volatile
memory available to host programs, and the largest

contiguous block of available memory is about 10,000 bytes.

Information stored in volatile memory is lost when the
terminal is powered off or when the FACTORY or RESET
commands are issued.

Nonvolatile Memory. This memory stores command
settings for selected 4100-style and ANSI mode commands
and for all nonvolatile macro definitions. (The terminal
doesn’t store this information automatically, you must issue
the SAVE NONVOLATILE PARAMETERS command to
save anything in nonvolatile memory.) The commands
whose settings you can save are identified in their command
descriptions in Sections 3 and 5.

The part of nonvolatile memory available for macro
definitions can store about 1500 characters.

The contents of nonvolatile memory are saved even when
the terminal is turned off.

4-41

GRAPHICS CONCEPTS
PUTTING TOGETHER A PROGRAM

Managing Program Memory

The smallest amount of program memory that the terminal
allocates to any function is one memory block (16 bytes).
Even if a function requires only nine bytes of memory, the
terminal still uses a full memory block (16 bytes) of program
memory.

The following paragraphs describe the features that use the
most program memory and the restrictions that apply when
you use them. The maximum settings given assume that all
of the other settings are at factory default.

Dialog Area Buffer. The factory default dialog area buffer
size is 49 lines. The minimum memory allocation for the
Dialog area buffer is 49 lines in 80-Column mode and 30
lines in 132-Column mode. When you increase the dialog
area buffer size, the amount of memory used for each
additional line allocated to the dialog area buffer depends on
the column mode:

e 80-Column mode requires 22 blocks (352 bytes) for the
50th line and 11 blocks (176 bytes) for each line after that.

e 132-Column mode requires 34 blocks (544 bytes) for the
31st line and 17 blocks (272 bytes) for each line after that.

Making the buffer smaller than 49 lines in 80-Column mode
or 30 lines in 132-Column mode will not free any more
memory space; the terminal permanently allocates that
much memory for the dialog area buffer, even if it doesn’t
use it. However, if your dialog area buffer is larger than
these minimums and you need memory space for another
feature, you can retrieve some memory by making the dialog
area buffer smaller.

Input Queue. The factory default input queue size is 300
bytes; you can change the queue to be larger or smaller with
the SET QUEUE SIZE command. By setting the queue to
less than 300 bytes, you can free more memory for use by
some other feature, but settings below 108 bytes will not free
any more memory.

Macro Definitions. To define a macro with the DEFINE
MACRO or DEFINE NONVOLATILE MACRO
command, you need volatile memory for processing the
command and for storing the volatile version of the macro.
The DEFINE NONVOLATILE MACRO command also
requires nonvolatile memory for storing the nonvolatile
version of the macro.

4-42

Each macro you define takes eight bytes for header
information plus one byte for each character in its definition
(a nonvolatile macro needs this much space in both volatile
and nonvolatile memory). The maximum length of a macro
depends on the availability of memory and on which
command you use to define it. (See the discussion Volatile
and Nonvolatile Macros earlier in this section, for
information about the different commands for defining
macros.)

If there is not enough program memory to define a macro
(or not enough nonvolatile memory to store the nonvolatile
version of a macro), the terminal issues an error message.

Panels. The terminal temporarily allocates memory as
work space while it builds and fills a panel; the amount of
memory necessary depends on the number of vertices in the
panel and its orientation. Once the panel is completed, that
memory again becomes available. If there is not enough
volatile memory available to build a panel, your terminal
will send an error message.

When You Get an Out-of-Memory Error

If the terminal runs out of program memory when you are

defining a panel or a macro, the terminal sends an error

message. You must free some memory if you want to 1
continue. V

e To free volatile memory, you must delete macros or
reduce buffer size or queue size.

o To free nonvolatile memory, you must delete nonvolatile
macros.

Reporting Program Memory Availability

You can find out how much program memory is available by
sending the REPORT TERMINAL SETTINGS command
from the host (or STATUS MEMORYBLOCKS from the
keyboard) to query memory status. The terminal responds
with a report that first gives the total number of memory
blocks that remain, and then gives the number of blocks
contained in the largest contiguous block of memory.

4105 PROGRAMMERS

Section 5

J

4100-STYLE COMMANDS AND REPORTS

This section describes the terminal’s 4100-style commands
and reports and the types of parameters they require. The
section has four parts:

e The first part describes each type of parameter used in
4100-style command syntax.

® The second part explains the conventions we’ve used in
this manual to present command syntax.

o The third part is a dictionary-like (alphabetical) listing of
all the 4100-style commands; each command description
includes the command’s function, syntax, and
parameters, and any details unique to it.

e The fourth part describes the reports sent from the
terminal to the host. It covers the parameter types used in
reports, and the content of each report.

NOTE

The terminal must be in TEK mode to execute
4100-style commands sent from the host. Specify
TEK mode with the SELECT CODE command,
which can be issued from the host or from the
keyboard.

Most 4100-style commands have two forms: one used for
sending the command from the host (host syntax), and the
other used locally from the terminal (Setup syntax). Host
syntax uses an efficient method of packing data into a
stream of ASCII characters. The packing method is
described along with the explanation of parameter types.
Setup syntax uses mnemonic word-forms for commands and
parameters. The natural language style of Setup syntax
makes it easy to enter Setup commands from the keyboard.
You can enter Setup commands no matter which host
command mode the terminal is in.

4105 PROGRAMMERS 5-1

4100-STYLE COMMANDS & REPORTS
PARAMETER TYPES

PARAMETER TYPES

The terminal classifies parameters according to their data
format, much like some programming languages classify
variable types. Parameter types fall into three categories:
host parameters, Setup parameters, and report parameters.

Host parameters are those used in commands issued from
the host. Setup parameters are those used in commands
issued from the terminal keyboard. Report parameters are
those that the terminal uses when sending information to the
host; report parameters are explained in the discussion titled
Reports at the end of this section.

The following discussion explains the various types of host
parameters and Setup parameters. Some parameter types
have simple forms, but are also used as building blocks for
more complex forms such as integer arrays.

HOST PARAMETERS

Commands in host syntax use three simple parameter types:
character, integer, and xy-coordinate. The complex
variations are string and integer array.

Character Parameters

A character parameter is any standard character (except
control characters and the Pr character). You enter the
character itself.

Integer Parameters

An integer parameter is a sequence of up to three ASCII
characters that represent the value of an integer number. You
can use ASCII characters ranging from Se (ADE 32) through
Dy (ADE 127). If the value of the integer is 15 or less, you
need only one character, the Lo-I character; if the value of
the integer is greater than 15, you need one or two additional
characters, called Hi-I characters. (Coincidentally, the
ASCII characters 0 through 9 represent the encoded positive
integers 0 through 9.)

NOTE

The encoding scheme that the terminal uses for
integer parameter reports is different than the
encoding scheme that your program must use when
it issues integer parameters in 4100-style
commands. The examples included here show how
your program encodes integer parameters.

This discussion describes the encoded integer parameters
that your program must use in issuing 4100-style commands
from the host. Note that, when the terminal reports integer
values to your program, it uses integer report parameters,
which use a different encoding scheme. See the discussion
Integer Report Parameter later in this section and the
subroutine for decoding integer reports in Report Decoding
Subroutines in Section 6 to see how to decode integer
reports.

Figure 5-1 shows how an integer’s binary form is packed into
the characters that represent that integer. Notice that the
integer’s sign is included as a bit in the Lo-I character. If the
integer is negative (as in Figure 5-1), the sign bit is 0; if the
integer is positive, the sign bit is 1.

4105 PROGRAMMERS

C

i
f
|
|
|
R
|
i
R
M
|
n
"
R
i
|
i
n
|

J

You’ll probably use a routine in your program to encode
integers — Section 6 contains a sample routine written in
FORTRAN. However, you can manually convert numbers
to encoded integers — either by either by looking them up in
Appendix D (which contains a table of the encoded integers
for -1049 through 1049), or by calculating them. Here’s one
method for calculating encoded integers:

1. Divide the absolute value of the integer by 16, reserving
the quotient. Then:

e [f the integer is positive, add 48 to the remainder.
e If the integer is negative, add 32 to the remainder.

Now you’ve got the ADE of the Lo-I, which is the least
significant character of the parameter. If the quotient
just obtained is zero, the Lo-I is the only character
needed in the parameter. If the quotient is equal to or
greater than 1, go on to Step 2.

2. Divide the absolute value of the quotient (reserved in

4100-STYLE COMMANDS & REPORTS
PARAMETER TYPES

For example, here’s how you would encode the integer
+31416.

31416 + 16 = 1963 Remainder of 8
8 + 48 = 56 Use 48 for positive integer
Lol =8 56 is ADE of 8
1963 = 64 = 30 Remainder of 43
43 + 64 = 107
Hi-I =k 107 is ADE of k
3064 =0 Remainder of 30
30 + 64 =94
Hi-l = A 94 is ADE of A
Therefore, the encoded parameter for the integer 31416 is:
Ak8
Here’s how you would encode the integer -1024.
1024 + 16 = 64 Remainder of 0

Step 1) by 64, reserving the new quotient if it is equal to 0 {;ﬁ : 31)2 ;jzsffigg g:gitlve Integer
or greater than 1. Add 64 to the remainder to obtain the]
ADE of the Hi-I. If the quotient is zero, the parameter 64 + 64 =1 Remainder of 0
has a single Hi-I. 0+ 64 = 64 64 is ADE of @
3. Repeat Step 2 for the reserved quotient, if any. This is Hil = @
the second Hi-I. 1+64 =0 Remainder of 1
1 +64 =65 65is ADE of A
As you calculate each ADE value, look up its corresponding Hi-l = A
\ AI;SCII character and write it down from left to right, like Therefore, the encoded parameter for the integer 1024 is:
° this:
. . A@Se
2nd Hi-I Ist Hi-I Lo-1
(Step 3) (Step 2) (Step 1)
Decimal -2413
= binary 00010 010110 1101
ASCIH
Hi-1 Hi-l Lo-I Character ADE
Ml 1000010 = B 66
Hil 1 010110 = v 86
Lot 01 0 1101 = - 4
1
Decimal -2413 sign
Encoded form BV-
4526-35

Figure 5-1. How to Encode Integer Parameters.

D)

4105 PROGRAMMERS

5-3

4100-STYLE COMMANDS & REPORTS
PARAMETER TYPES

XY-Coordinate Parameters

An xy-coordinate parameter is a sequence of up to five
ASCII characters. This sequence represents the numerical
values of both the x- and y-coordinates used to specify
locations for graphics operations. Figure 5-2 shows the
bit-packing scheme for each character, what each character
means in the sequence (Hi-Y, Extra, etc.), and the order in
which you must send the characters (begin with Hi-Y and
end with Lo-X).

Here again, you’ll probably use a routine in your program to
encode xy-coordinates for transmission to the terminal —
see Section 6 for a FORTRAN example of such a routine.
You can, however, manually calculate the ADE of each
character in the encoded sequence; here’s a method to
follow:

1. Divide y by 128 and discard the remainder (if any). Add
32 to the integer quotient. The sum is the ADE of the
Hi-Y character.

You can omit the Hi-Y character if it is the same as the
last Hi-Y sent.

2. Find the Extra character.

a. Divide y by 4. The remainder is the first half of the
Extra.

b. Divide x by 4. The remainder is the second half of
the Extra.

c. Multiply the first half of the Extra by 4. To the
product add the second half of the Extra and 96.
This sum is the ADE of the Extra character.

3. Divide y by 4 and discard the remainder. Divide the
integer quotient by 32 and add 96 to the remainder. The
sum is the ADE of the Lo-Y character.

4. Divide x by 128 and discard the remainder (if any). Add
32 to the integer quotient. The sum is the ADE value of
the Hi-X character.

5. Divide x by 4 and discard the remainder (if any). Divide
the integer quotient by 32 and add 64 to the remainder.
The sum is the ADE of the Lo-X character.

C

Here’s how you would encode the xy-coordinate 53,1000
(See Figure 5-2).

1000 = 128 =7 Discard remainder of 104
7+ 32 =39 39is ADE of
Hi-Y = 1
1000 - 4 = 250 Remainder of 0
0*x4 =0
First Extra = 0
53 +4 =13 Remainder of 1
Second Extra = 1
0+ 1+96 =97 97 is ADE of a
Extra = a
1000 - 4 = 250 Remainder of 0
250 =32 =7 Remainder of 26
26 + 96 = 122 122is ADEofz
Lo-Y =1z
53 +128 =0 Remainder of 53
0+ 32 =32 32 is ADE of sp
Hi-X = sp
53 +4 =13 Discard remainder of 1
13+32 =0 Remainder of 13
13+64 =77 77 is ADE of M
Lo-X =M

Therefore, the encoded xy-coordinate parameter 53,100 is:
razseM

Since the Lo-X character terminates the xy-coordinate
sequence, it is the only one that must always be sent. You can
omit any or all of the other characters, but only under
certain circumstances.

Figure 5-3 shows the syntax of the xy-coordinate parameter
and indicates the circumstances under which you can omit
characters. For example:

@ You can can omit the Hi-Y character if it is the same as
the last Hi-Y character that you sent.

® You can omit Lo-Y only if you also omit Hi-X, or to put
it another way, if you send Hi-X, you must precede it with
Lo-Y.

® You can omit the Extra character if 10-bit resolution is
adequate for your purposes. If you include the Extra
character, the Lo-Y character must follow it.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
" PARAMETER TYPES
X-Coordinate = decimal 53 (53, 1000) Y-Coordinate = decimal 1000
“ = binary 00000 01101 01 = binary 00111 11010 00
Hi-X Lo-X Second Hi-Y Lo-Y First
Extra Extra
n ASCII
Character ADE
“ Hi-Y = ’ 39
' First Second
Extra Extra
H Exta 110 00 01 = a 97
Lo-Y 11010 | = z 122
M HiX = s 32
LoX 10 | 01101 | = M 77
E XY-Coordinate = “azSeM
n ﬂ 4526-36
‘ Figure 5-2. How to Encode XY-Coordinates.
- - »>| LoX >
I HIY - ﬁ| LoY l[/
Extra HiX
l (12566)4526-51
I Figure 5-3. XY-Coordinate Parameter Syntax.
M 4105 PROGRAMMERS 5-5

4100-STYLE COMMANDS & REPORTS
PARAMETER TYPES

String Parameters

A string is a group of ASCII characters sent to the terminal
as a single parameter. You must precede the characters that
make up the string by a count, an encoded integer that tells
the terminal how many characters are in the string. Encode
the integer as described earlier under Integer Parameters. If,
for example, you want to send the phrase PRESS RETURN
KEY, you would send the following sequence:

AOPRESSSPRETURNSPKEY

The A0 (the encoded integer for 16) at the beginning of the
string is the count that tells the terminal that 16 characters
(including spaces) follow.

Integer Array Parameters

An integer array consists of a sequence of integer
parameters, all encoded as described earlier. The first integer
in the sequence is the count that tells the terminal how many
integers follow, with subsequent integers forming the
individual elements of the array.

For example, to send the integers /, 5, -1, and 16 as an array
of four integers, you would send the following:

415'A0

The 4 at the beginning of the array is the count that tells the
terminal that four integers (not four characters) follow.
Each of the integers is represented by its encoded value: 4, 1,
and 5 are the encoded values of the integers 4, 1, and 5; !/ is
the encoded value for -1; and A0 is the encoded value of 16.

5-6

C

SETUP PARAMETERS

Parameters in Setup syntax are similar to those in host
syntax; their differences are explained here. Generally
speaking, Setup syntax parameter types are simpler, but
there are more of them. They are: character, integer, small
integer, xy-coordinate, keyword, and key specifier. There are
three complex variations: integer array, string, and real
parameter.

Character Parameters

A character parameter in Setup syntax is an ASCII printing
character in the range S to ~ (tilde), that is, ADE 32
through 126. The alphanumeric and symbol keys on the
keyboard fall within this range. When you specify a
character parameter in Setup syntax, you can type either the
actual character or its ADE value.

Integer Parameters

An integer parameter in Setup syntax is simply the decimal
number itself (you don’t encode it like you do in host
syntax). For example, to set both the transmit and receive
rate to 2400 using the BAUDRATE Setup command, enter:

BAUDRATE 2400,2400

Small Integer Parameters

A small integer parameter ranges from 0 through 127, which
is the ADE range of characters ¥v through 7. When you
specify a small integer parameter, you can enter either the
actual character or its ADE value.

To use an ADE value in the range 0 through 9, you must
precede the digit with 0. For example, to use the ADE value
for Hr (ADE 9), you enter 09. Otherwise, the single digits

0 through 9 specify the digit characters (ADE 48 through
ADE 57).

XY-Coordinate Parameters

An xy-coordinate parameter in Setup syntax is simply the
decimal values of x and y. For example, to issue the MOVE
command with the coordinates 500,500, you would enter:

MOVE 500,500

4105 PROGRAMMERS

J

Keyword Parameters

A keyword parameter specifies what action you want a
command to perform. You can spell out the entire keyword
or enter just as many characters as necessary to distinguish
that keyword from other keywords used for that command.
For example, to issue the SET GRAPHTEXT
CHARACTER PATH command to cause graphtext to write
from top to bottom, you could enter the Setup command:

GTPATH DOWN

Or just:
GTPATH D

Key Specifier Parameters

A key specifier parameter type is used in Setup in the
DEFINE MACRO and DEFINE NONVOLATILE
MACRO commands to specify which key will receive a
macro definition. You enter the key specifier by pressing the
key itself or by typing a label that identifies the key. See the
discussion of Key Macros in the DEFINE MACRO
command description for more details.

Integer Array Parameters

3

An integer array in Setup syntax is like the host syntax
integer array in that it consists of a sequence of integer
parameters. Unlike host syntax, however, you don’t include
a count at the beginning of the array, and you don’t encode
the integers. Rather, you simply enter the value of each item
in the array, separating each item with a space or a comma.

J

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
PARAMETER TYPES

String and Delimited String Parameters

A string parameter consists of a group of any alphanumeric
or symbol characters on the terminal keyboard. Enter the
actual characters, rather than ADE values.

Some commands require a delimited string, which simply
means you must use a special character before and after the
string to distinguish that group of characters from others in
the command. The delimiter can be any character, except a
comma, a space, or an edit character (see the SET EDIT
CHARACTERS command for an explanation of edit
characters). The opening and closing delimiters must be the
same character, but cannot be a character that is also in the
string. Thus, a delimited string consists of the opening
delimiter, a string of keyboard characters, and the closing
delimiter.

For example, in the Setup syntax for the SET EOF STRING
command, you specify up to ten characters to indicate the
end-of-file marker. So, to set the end-of-file marker to be the
characters THE END, you could enter:

EOFSTRING /THE END/

In this example, we’ve used the slash character (/) as the
delimiter.

5-7

4100-STYLE COMMANDS. & REPORTS
COMMAND CONVENTIONS

COMMAND CONVENTIONS

All 4100-style command descriptions are consistently
structured, using an easy-to-read set of syntax conventions.
Figure 5-4 and the following discussion give a summary of
the overall structure of a command description and of the
notation used to show syntax.

Here are the conventions used to represent host and Setup
syntax:

e Characters shown in bold type are those you must enter
exactly as shown.

® Most 4100-style commands have both host syntax and
Setup syntax. As you can see in Figure 5-4, the host
syntax and Setup syntax appear in separate boxes:

® The Host Syntax box shows the way a host
application would send this command to a terminal.

® The Setup Syntax box shows the way you would
enter this command at a terminal keyboard.

® Parameter names are shown on separate lines to make the
syntax easier to read. However, when entering
commands, follow these rules:

¢ In Setup syntax, enter all parts of a command on the
same line. The first character after the command
name must be a space; use one or more spaces or a
comma to separate parameters.

® In host syntax, issue the Ec character (if required),
the command’s opcode, and any parameters. Do not
use spaces between any characters (except Space
characters that are part of an encoded parameter).

® You can abbreviate the Setup name — just enter as many
letters of the name as are needed to identify it uniquely. In
the example in Figure 5-4, the Setup name DALINES can
be abbreviated DAL (if you tried to abbreviate this to
DA, the terminal would issue an error message since it
wouldn’t know whether you want to issue the DALINES
command or another command, such as DAINDEX).

® Many command descriptions include examples showing
how to use the command. When both host and Setup
examples are included, the two examples do the same
thing.

Individual descriptions of each parameter follow the syntax
boxes. A parameter description includes the parameter type,
the range of valid values, and the default values. Each
parameter has up to two types of defaults:

® Factory — The value assigned a parameter when the
terminal is shipped from Tektronix. You can issue the
FACTORY command to restore parameters to this value.

® Omitted — The value assigned a parameter if the Setup
command is used and no value is specified for the
parameter. This value is used only in Setup syntax (see
About Omitting Parameters).

Any additional explanation follows the parameter
descriptions. Parameter names always appear in italics.

Many command descriptions show a typical example of the
command in both host syntax and Setup syntax. Both the
host example and the Setup example use the same parameter
values, and thereby perform the same action.

Most of the command descriptions include a list of related
4100-style commands. For a few command descriptions, the
list of related commands includes ANSI commands; these
are described in Section 3. The commands in the list may
affect or be affected by the command described, or they may
perform a similar function. You should read the descriptions
of related commands to gain a more complete idea of how a
specific feature works.

4105 PROGRAMMERS

C

J

SET DIALOG AREA LINES
Specifies the number of lines visible in the dialog area.

Host Syntax

EcLL number-of-lines

Setup Syntax

DALINES number-of-lines

number-of-lines: integer; specifies how many lines are in the
dialog area. Must be in the range 2 through 30.
Defaults Factory = 30

Omitted = Error

If you make the dialog area larger than the dialog buffer
(assuming both are less than 30 lines), the terminal expands
the dialog buffer to be as large as the dialog area.

Syntax Example

Host: EcLL?
Setup: DALINES 15

Sets the dialog area to 15 lines (encoded ?).

J

Related Commands:

SET DIALOG AREA BUFFER SIZE
SET DIALOG AREA VISIBILITY

4526-52

Figure 5-4. A Typical 4100-Style Command Description.

J

4100-STYLE COMMANDS & REPORTS
COMMAND CONVENTIONS

A SAMPLE COMMAND DESCRIPTION

Figure 5-4 uses the SET DIALOG AREA LINES command
to illustrate this section’s command description format:

® Host Syntax. To issue this command from the host, send
the escape sequence EcLL, followed by the
number-of-lines parameter.

® Setup Syntax. To issue this command from the keyboard,
type the Setup name, DALINES, followed by the
number-of-lines parameter and a carriage return.

® Parameter. There is a brief description of what the
number-of-lines parameter does.

® Default. The number-of-lines parameter defaults to 30
lines; if you omit this parameter the terminal sends an
error message.

® Example. The example shows how to issue this command
from the host and from Setup.

® Related Commands. This lists other commands that
affect (or are affected by) the SET DIALOG AREA
LINES command.

4105 PROGRAMMERS REV, SEP 1985 5-9

4100-STYLE COMMANDS & REPORTS
COMMAND CONVENTIONS

ABOUT OMITTING PARAMETERS

As a general rule, you cannot omit parameters when issuing
commands from the host; you can omit parameters in Setup
as long as the terminal’s defaults will accomplish what you
want:

e In host syntax, all of the command’s parameters must be
included for the terminal to execute the command
properly. Because the terminal expects to receive
parameters in a specified sequence from the host, you
cannot skip one parameter and supply the next.

The terminal processes a host syntax command when it
receives any of the following command terminators:

® The Ec character, which starts a new command

® The Eq character, which instructs the terminal to send
its answerback string to the host

e ThefFs, Gs, or Us characters, which instruct the
terminal to enter one of the implicit command modes
(Marker, Vector, or Alpha modes, respectively)

When the terminal receives one of these command
terminators before it receives a complete list of parameter
values, it assigns a value of 0 to the omitted parameters.
Thus, omitting parameters is the same as assigning them a
value of 0 — and if 0 is not a valid value for the
parameters, the terminal will detect an error.

o In Setup syntax, you can omit parameters from most
commands and the terminal will supply a default value. If
the parameter is the only one in the command or is the
last of two or more parameters, you simply omit it. To
omit a parameter other than the last one, use commas to
separate the omitted parameter’s location from adjacent
parameters. For instance, to omit the first parameter of
the SET DIALOG AREA INDEX command, you enter:

DAINDEX ,2,3

To omit the second parameter you enter:
DAINDEX 1,,3

5-10

SAVING COMMAND SETTINGS

You can save the settings of some commands by issuing the
SAVE NONVOLATILE PARAMETERS command before
you turn off the terminal. Then the terminal will retain these
settings in its nonvolatile memory even when it is powered
off. The commands that you can save are identified
following the command’s statement of purpose with the
phrase Can be saved in nonvolatile memory. There is an
alphabetic listing of commands that can be saved in the 4705
Computer Display Terminal Programmers Reference Guide.
As Figure 5-4 shows, SET DIALOG AREA LINES is one of
those commands.

MORE INFORMATION ABOUT COMMANDS

This manual and the 4105 Computer Display Terminal
Reference Guide provide summary information about the
commands in several places:

e The divider tabs for this section lists the 4100-style
commands by functional groupings.

e Appendix C of this manual contains command summary
tables. By scanning this appendix, you can, for example,
see all the parameter defaults for all commands at a
glance. You can find the Setup name of a command for
which you know the descriptive name, and you can
quickly find a command’s opcode or what its parameters
are.

® The 4105 Computer Display Terminal Programmers
Reference Guide contains additional cross reference lists,
which list commands by Setup name and by escape
sequence.

4105 PROGRAMMERS

C C

J

b

4100-STYLE COMMAND
DESCRIPTIONS

This part of Section 5 contains descriptions of the terminal’s
4100-style commands. When you issue these commands
from the host, you’ll need to encode the parameters, using
encoding schemes discussed earlier in this section. The
commands are presented alphabetically according to their
descriptive names. Section 4, Graphics Concepts, describes
how these 4100-style commands work together.

BEGIN PANEL BOUNDARY

Starts the definition of a panel boundary.

Host Syntax

EcLP first-point
draw-boundary

Setup Syntax

BEGINPANEL first-point

draw-boundary

first-point: xy-coordinate; indicates the first point in a panel
boundary. The valid range of values is 0 through 4095 for
both the x- and y-coordinate.
Defaults: Factory = (none)

Omitted = 0,0

draw-boundary: integer; specifies whether the fill pattern
covers the panel boundary. Must be one of the following:
0 The fill pattern covers the panel boundary
1 The boundary is displayed around the finished
panel, using the current line style and line index
Defaults: Factory = (none)
Omitted = 0

After issuing BEGIN PANEL BOUNDARY, you can define
the boundary of the panel in either of two ways:
e Implicitly, using Vector or Marker mode.

e Explicitly, using MOVE and DRAW commands.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
BEGIN PANEL BOUNDARY

During a panel definition, the terminal interprets
xy-coordinates as the vertices of the panel’s boundary-
line. This means that you cannot draw a marker during a
panel definition, although you can define a panel when the
terminal is in Marker mode.

You don’t need to draw the panel’s last boundary line
explicitly. When the terminal receives the END PANEL
command, it closes the panel and fills it with the fill pattern
specified in the SELECT FILL PATTERN command.
Appendix F displays all of the terminal’s predefined fill
patterns.

Multiple Panel Boundaries. You can create a panel with
multiple boundaries, as shown in Figure 5-5 (next page). To
do this, send the BEGIN PANEL BOUNDARY command
to define the first panel boundary. When you want to start
the second boundary, send another BEGIN PANEL
BOUNDARY command. Don’t use the END PANEL
command to close the first boundary — the second BEGIN
PANEL BOUNDARY command closes the first boundary
and starts another boundary at the specified position. When
you issue END PANEL, the last boundary is closed and the
entire panel (as defined by the multiple boundaries) is filled.

Defining panels uses volatile memory that could be used for
other features such as the input queue or macro definitions.
See the discussion Managing Program Memory in Section 4
for an explanation of how panel definitions affect the
availability of volatile memory.

Syntax Example
Host: EcLP razSeM1
Setup: BEGINPANEL 53,1000,1

Starts a panel definition at 53,1000 (the xy-coordinate
53,1000 is encoded azSeM).

Related Commands

END PANEL

ENTER MARKER MODE
ENTER VECTOR MODE
SELECT FILL PATTERN
SET LINE INDEX

SET LINE STYLE

5-11

4100-STYLE COMMANDS & REPORTS

BEGIN PANEL BOUNDARY
1500,1851
1000,1000 2000,1000

Setup Syntax Host Syntax

BEGINPANEL 1000,1000,1 ELP’‘z"Z1

DRAW 1500,1851 EcLG. In+W

DRAW 2000,1000 ELG’ ‘'z/T

DRAW 1000,1000 EcLG’ ‘z°Z

BEGINPANEL 1333,1192,1 EcLP)aj*M1

DRAW 1500,1459 EcLG+! 1 +W

DRAW 1667, 1192 ELG)cj-@

END PANEL EcLE

4526-14C
Figure 5-5. Creating a Panel with Multiple Boundaries.

5-12 4105 PROGRAMMERS

J

)a

D)

BEGIN PIXEL OPERATIONS

Sets up the terminal for subsequent pixel operations.

Host Syntax

EcRU surface-number
ALU-mode
bits-per-pixel

Setup Syntax

PXBEGIN surface-number
ALU-mode

bits-per-pixel

surface-number: integer; specifies the surface on which
subsequent pixel commands will write (or read) data. The
values -1, 0, and 1 are valid, but since Surface 1 is the
terminal’s only surface, all valid values select Surface 1.
(Other Tektronix terminals can display more than one
surface, so the surface parameter is included here for
compatibility.)
Defaults: Factory
Omitted

1
0

ALU-mode: integer; specifies the writing mode. Valid values
are0, 7, 11, 12, or 15 — Table 5-1 describes the function that
each value selects.
Defaults: Factory
Omitted

11
0

bits-per-pixel: integer; specifies the number of bits used to
encode the color index for each pixel in subsequent
RASTER WRITE and RUNLENGTH WRITE commands.
Valid values are 0, 1, 2, 3, 4, and 6; 0 means no change.
Defaults: Factory = 6

Omitted = 0

This command sets values used in these pixel commands:

RASTER WRITE, RUNLENGTH WRITE, RECTANGLE
FILL, and PIXEL COPY.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
BEGIN PIXEL OPERATIONS

See Manipulating Pixels in Section 4 for a complete
explanation of how to work with pixels.

Syntax Example

Host: EcRU1<6
Setup: PXBEGIN 1,12,6

Begins pixel operations with ALU mode set to AND
(selected with integer 12, encoded <) and six bits per pixel.

Related Commands
PIXEL COPY
RASTER WRITE
RECTANGLE FILL
RUNLENGTH WRITE
Table 5-1
ALU MODES
ALU Function Operation
Mode
0 No change
7 AXORB Pixels being written (Index B) are
(exclusive OR) |logically XORed with pixels in
existing image (Index A) to form the
new pixels to be displayed, and the
pixel image can be erased by writing
image again
11 B Pixels being written replace pixels in
existing image (default AL U-mode)
12 A ANDB Pixels being written (Index B) are
logically ANDed with pixels in
existing image (Index A) and the
results are displayed
15 AORB Pixels being written (Index B) are
logically ORed with pixels in existing
image (Index A) and the results are
displayed

5-13

4100-STYLE COMMANDS & REPORTS
CANCEL

CANCEL

Stops terminal activity and resets several terminal settings to
their default values.

Host Syntax

EcKC

Setup Syntax

CANCEL

When you issue this command (which has the same effect as
pressing the Cancel key) it:

o Puts the terminal in Alpha mode and terminates all of the
following:

Vector mode
Marker mode
Bypass mode
Prompt mode
Snoopy mode
GIN

e Unlocks the keyboard (see the LOCK KEYBOARD
command).

e Terminates any copy or hard copy function currently in
progress; see the 4100-style commands COPY and
HARDCOPY and the ANSI command MC (MEDIA
COPY).

e Flushes input and output queues (see the SET QUEUE
SIZE command). Characters not yet sent to the host will
be discarded and ignored.

Related Commands

COPY
ENTER ALPHA MODE
ENTER BYPASS MODE
ENTER MARKER MODE
ENTER VECTOR MODE
HARDCOPY

LOCK KEYBOARD
PROMPT MODE

SET ALPHATEXT FONT
SET QUEUE SIZE

SET SNOOPY MODE

5-14

CLEARDIALOG SCROLL

Erases the dialog buffer.

Host Syntax

EcLZ

Setup Syntax

CLEARDIALOG

Issuing CLEAR DIALOG SCROLL has the same effect as

pressing the terminal’s D Eras key.

After the dialog buffer is cleared, the cursor returns to the
home position (upper-left corner of dialog area buffer).

4105 PROGRAMMERS

C

4100-STYLE COMMANDS & REPORTS
COPY

J

J

D

COPY

Sends data from the host directly to a copier or printer.

Host Syntax

EcJC source
separator
destination

Setup Syntax

COPY HO: TO destination

source: string; specifies the data source, which is always the
host. Must be the string HO: (in uppercase or lowercase).
Defaults: Factory = (none)

Omitted = Error

separator: string; separates the source and destination
parameters. It may be omitted in Setup syntax or be an
empty string in host syntax. If included, must be the string
TO (in uppercase or lowercase).
Defaults: Factory = (none)

Omitted = Error

destination: string; specifies the destination port. Must be
HC:, the COPIER port.
Defaults: Factory = (none)

Omitted = Error

NOTE

You can issue the COPY command in Setup, but it
is not recommended practice. If the data you copy
is not terminated by an EOF string, subsequent
commands and data will also be sent to the copier
instead of to the terminal. You can press the Cancel
key in this case to end the copy and return control
to the terminal.

4105 PROGRAMMERS

When you issue this command, the terminal passes all data it
receives from the host directly to a copier or printer. The
data is not processed by the terminal and is not displayed on
the terminal screen. The host program is responsible for
structuring data so that the copier or printer can use it.

The host must include an end-of-file string at the end of the
data, and the the terminal must know what end-of-file string
to expect from the host. Use the SET EOF STRING
command to set the terminal’s end-of-file string to be the
same as the one the host sends.

The copy terminates when the terminal receives an
end-of-file string from the host or when the user presses the
Cancel key.

Before sending a copy, use the SELECT HARDCOPY
INTERFACE command to specify the copy device you are
using. For graphics or dialog copies, the device can be a
Tektronix 4691, 4692, or 4695 Color Graphics Copier, a
Tektronix 4644 Dot Matrix Printer, a Hewlett-Packard
ThinkJet, or another copier that uses Epson-style graphics.
You can make dialog copies on some Centronics-style
printers that lack graphics capability.

Syntax Example

Host: EcJC3HO:2TO3HC:
Copies data from the host to a copier or printer.

Related Commands

SELECT HARDCOPY INTERFACE

SET EOF STRING

SET EOL STRING

SET HARDCOPY MONOCHROME ATTRIBUTES

5-15

4100-STYLE COMMANDS & REPORTS
CRLF

CRLF

Specifies whether a Cr character sent to the terminal also
implies a Lr character. (Can be saved in nonvolatile memory.)

DEFINE MACRO

Creates or deletes a volatile macro.

Host Syntax
Host Syntax
EcKD macro-number
EcKR crlf-mode macro-contents
Setup Syntax Setup Syntax
CRLF crif-mode DEFINE macro-number
string

crif-mode: integer (keyword in Setup); must be one of the
following:

Host Setup
0 no Cr does not imply Lr
1 yes Cr implies Lr
Defaults: Factory = 0
Omitted = 1

When Cr implies CrL¥, the terminal performs a Carriage
Return and Line Feed combination. The cursor moves to the
beginning of the next line on the display.

When €r does not imply CrL¥, a Cr moves the cursor to the
beginning of the current line, not the next line.

The Carriage Return and Line Feed combination only
affects a Cr sent to the terminal screen. That is, when you
press the Return key, the implied Lr character is not sent to
the host.

5-16

macro-number: integer (key specifier or integer in Setup);
specifies the number of the macro being defined. Valid
values range from -150 through 32767 (except -1).
Specifying -1 or the keyword all deletes all volatile macros.
Defaults: Factory = (none)

Omitted = 0

macro-contents: integer array; specifies ADEs that represent
the characters defining the macro. Each integer in the array
must be in the range 0 through 127. (Host syntax only.)
Defaults: Factory = (none)

Omitted = Empty array

string: delimited string; defines the macro. The string must
consist of characters whose ADEs are in the range 0 through
127. (Setup syntax only.)
Defaults: Factory = (none)

Omitted = Empty string

If you’re defining a macro in Setup syntax, you must
precede a Cr or any special editing characters in the macro
definition with the l/iteral character (see the SET EDIT
CHARACTERS command for further explanation).

After a macro is defined, you can expand it either from the
host with the EXPAND MACRO command (for any macro)
or from the keyboard by pressing the key that corresponds
to the macro number.

4105 PROGRAMMERS

J

,3,.

J

J
n
R
f
R
4
N
|

Volatile and Nonvolatile Macros. The discussion Volatile
and Nonvolatile Macros in Section 4 explains the difference
between these two. The DEFINE MACRO command
defines and deletes only volatile macros. To define or delete
a nonvolatile macro, use the DEFINE NONVOLATILE
MACRO command.

Deleting Macros. To delete a macro in either host or Setup
syntax, you issue the DEFINE MACRO command with the
macro’s number, but without the macro definition. In Setup
syntax, don’t include the string parameter. In host syntax,
use 0 as the array count for macro-contents. To delete all
macros, specify -1 (or the keyword a// in Setup) for
macro-number.

Key Macros. The keyboard macro charts in Appendix A
show the macro numbers assigned to the terminal’s keys.
Note that the macro number for most keys is the ADE of the
character that the key normally produces.

As shown in the keyboard macro charts, each key is
associated with up to four macro numbers: unshifted,
shifted, Ctrl, and Ctrl-shifted (in some cases, the unshifted
and shifted positions of a key generate the same macro).

Note that when you define a key in Setup you can either
enter the key’s ASCII decimal equivalent (ADE) or its key
specifier, which means that you just press the key (provided
this key normally produces an ASCII character). For the
function keys (which don’t produce ASCII characters), just
enter the label printed on the key; for the shifted versions use
the specifier S1 — S8. For example, to define a macro for
the key FS, enter the characters F and 5 for the
macro-number parameter; to define a macro for the shifted
version of F5, enter S and 5. For other non-ASCII keys,
such as the Joydisk, you must enter the key’s macro number.

Note, too, that you enter the characters in the macro’s

definition as a delimited string rather than an array of
ADE:s.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
DEFINE MACRO

When you press a key to expand a key macro, the terminal
sends the macro’s contents to the host, unless the macro
includes a special character called the key execute character,
which executes the contents locally (refer to Keeping a Key
Macro Local in Section 4).

Defining and storing macros uses program memory that
could be used for other features such as the input queue or
panel definitions. See the discussion Managing Program
Memory in Section 4 for an explanation of how macro
definitions affect the availability of program memory.

Syntax Example
Host: EcKDHO3ESE9E:
Setup: DEFINE F1,/XYZ/

Defines a macro to make the F1 key (Macro 128, encoded
HO) generate the character string XYZ. In the host example,
X has ADE 88, encoded ES; Y has ADE 89, encoded E9; Z
has ADE 90, encoded E:.

Related Commands

EXPAND MACRO

DEFINE NONVOLATILE MACRO
LEARN

LEARN NONVOLATILE

MACRO STATUS

5-17

4100-STYLE COMMANDS & REPORTS
DEFINE NONVOLATILE MACRO

DEFINE NONVOLATILE MACRO

Creates or deletes both the volatile and nonvolatile versions
of a macro. (Can be saved in nonvolatile memory.)

Host Syntax

EcKO macro-number
macro-contents

Setup Syntax

NVDEFINE macro-number
string

macro-number: integer (key specifier or integer in Setup);
specifies the number of the macro being defined. Valid
values range from -150 through 32767 (except -1).
Specifying -1 or the keyword all deletes all nonvolatile
macros.

Defaults: Factory

(none)
Omitted = 0

macro-contents: integer array; specifies ADEs that represent
the characters defining the macro. Each integer in the array
must be in the range 0 through 127. (Host syntax only.)
Defaults: Factory = (none)

Omitted = Empty array

string: delimited string; defines the macro. The string must
consist of characters whose ADEs are in the range 0 through
127. (Setup syntax only.)
Defaults: Factory = (none)

Omitted = Empty string

5-18

C

This command works just like the DEFINE MACRO
command; the only distinction between these two
commands is that you can save a macro defined with the
DEFINE NONVOLATILE MACRO command in the
terminal’s nonvolatile memory.

NOTE

To actually save or delete a macro in nonvolatile
memory, you must issue the SAVE
NONVOLATILE PARAMETERS command
before the terminal is reset or turned off.

Syntax Example

Host: EcKOHO3ESE9E:
EcKU

Setup: NVDEFINE F1,/XYZ/
NVSAVE

Defines and saves a macro that programs the F1 key (Macro
128, encoded HO) to generate the character string XYZ. In
the host example, 3 is the array count, X is ADE 88, encoded
ES8; Yis ADE 89, encoded E9; Z is ADE 90, encoded E:.

Related Commands

DEFINE MACRO

EXPAND MACRO

LEARN

LEARN NONVOLATILE

MACRO STATUS

SAVE NONVOLATILE PARAMETERS

4105 PROGRAMMERS

J

D

DRAW

Draws a vector from the current graphics position to a new
position.

Host Syntax

EcLG position

Setup Syntax

DRAW position

position: xy-coordinate; indicates the point to draw to. The
valid range of values is 0 through 4095 for both the x- and
y-coordinates.
Defaults: Factory = (none)

Omitted = 0,0

When you issue this command, the terminal draws a vector
in the line style and line index set by the SET LINE STYLE
and the SET LINE INDEX commands.

The DRAW command has the same effect as sending the
terminal an xy-coordinate when the terminal is in Vector
mode.

If the terminal is in Alpha, Vector, or Marker mode when it
receives the DRAW command, it stays in that mode.

See Creating Images with Graphics Primitives in Section 4
for more information about creating and using lines.

Syntax Example

Host: EcLG 'azSeM
Setup: DRAW 53,1000

Draws a vector from the current graphics position to 53,1000
(the xy-coordinate 53,1000 is encoded ! azSpM).

Related Commands

ENTER VECTOR MODE
MOVE

SET LINE INDEX

SET LINE STYLE

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
DRAW MARKER

DRAW MARKER

Draws a marker at a specified location.

Host Syntax

EcLH position

Setup Syntax

MARKER position

marker-position: xy-coordinate; specifies where you want
the marker drawn. Valid range of values is 0 through 4095
for both the x- and y-coordinate.
Defaults: Factory = (none)

Omitted = 0,0

When you issue this command, the terminal draws a marker
at the specified location in the style and color index specified
by the SET MARKER TYPE and SET LINE INDEX
commands.

The DRAW MARKER command has the same effect as
sending the terminal an xy-coordinate when the terminal is
in Marker mode.

If the terminal is in Vector, Alpha, or Marker mode when it
receives the DRAW MARKER command, it stays in that
mode.

The ALU mode specified by the SET GRAPHICS AREA
WRITING MODE command affects the way the terminal
draws markers on the screen. See the SET GRAPHICS
AREA WRITING MODE command for details about how
the ALU modes operate.

Syntax Example

Host: EcLH!azSeM
Setup: MARKER 53,1000

Draws a marker at 53,1000 (the xy-coordinate 53,1000 is
encoded !azSpM).

Related Commands

DRAW

ENTER MARKER MODE
ENTER VECTOR MODE
SET LINE INDEX

SET MARKER TYPE

5-19

4100-STYLE COMMANDS & REPORTS
ENABLE DIALOG AREA

ENABLE DIALOG AREA

Enables or disables the dialog area. (Can be saved in
nonvolatile memory.)

Host Syntax

EcKA mode

Table 5-2 summarizes the effects of enabling and disabling
the dialog area.

Related Commands

ENABLE 4010 GIN
ENTER ALPHA MODE

Setup Syntax

DAENABLE mode

mode: integer (keyword in Setup); specifies whether the
dialog area is enabled. Must be one of the following:

Host Setup
0 no Disables the dialog area
1 yes Enables the dialog area
Defaults: Factory =
Omitted = 1

When the dialog area is enabled and the terminal is in TEK
mode, all alphatext is directed to the dialog buffer (for the
text to be seen, the dialog area must also be visible; see the
SET DIALOG AREA VISIBILITY command).

When the dialog area is disabled and the terminal is in TEK
mode, the terminal displays alphatext at the current graphics
position in the graphics area. This is how to emulate
Tektronix 4010 Series terminals, which do not have a dialog
area.

In ANSI, EDIT, or VT52 modes, the terminal automatically
directs text to the dialog area, regardless of whether the
dialog area is enabled.

While the terminal is in Setup, all text entered from the
keyboard is displayed in the dialog area.

5-20

PAGE

SET DIALOG AREA VISIBILITY
SET LINE STYLE

Table 5-2

EFFECTS OF ENABLE DIALOG AREA

Feature Dialog Area Disabled |Dialog Area Enabled
Alphatext Sent to the current Sent to the current
graphics position in the |alpha cursor position
graphics area in dialog area
G Eras Key Erases the graphics Erases the graphics
S Eras Key area of the screen area (S Eras also
PAGE Command (S Eras also erases the erases the dialog area)
dialog area)
Takes the terminal out
of GIN
Resets the terminal to
Line Style 0

Sets current position to
the home position
(0,3071)

Puts terminal in Alpha
mode
Cr Character Puts terminal in Alpha | If the terminal is in
mode Alpha mode,
Performs a carriage performs a carriage
return action g return in the dialog
area
Ef;:tg tﬂ}: :zr{)n inal No action if the
y terminal is in Vector
Takes the terminal out | or Marker mode
of GIN
4105 PROGRAMMERS

C

)

J

ENABLE KEY EXPANSION

Enables or disables key macros.

4100-STYLE COMMANDS & REPORTS
ENABLE 4040 GIN

ENABLE 4010 GIN

Enables the terminal for one 4010 GIN Report.

Host Syntax Host Syntax
EcKW mode EcSg
Setup Syntax When the terminal receives the ENABLE 4010 GIN
command, it displays the GIN cursor, which the user
KEYEXPAND mode positions on the screen by using the Joydisk. Once the cursor
is at the desired location, the user reports the location to the

mode: integer; (keyword in Setup); specifies whether key
expansion is enabled. Must be one of the following:
Host Setup

0 no Disables key expansion

1 yes Enables key expansion
Defaults: Factory = 1
Omitted = 1

The ENABLE KEY EXPANSION command enables or
disables all key macros.

When key expansion is enabled, the user can expand a key’s
macro by simply pressing the key. When key expansion is
disabled, all keys temporarily revert to their default values.

This command does not delete macros. All key macros
remain in program memory and you can reenable them at
any time.

This command does not affect how the host uses macros.
Even when key expansion is disabled, the host can still issue
the EXPAND MACRO command to expand any macro,
including those associated with keys.

NOTE

While key expansion is disabled, all programmed
key macros revert to their default values.

Related Commands

EXPAND MACRO

DEFINE NONVOLATILE MACRO
LEARN

LEARN NONVOLATILE

MACRO STATUS

SAVE NONVOLATILE PARAMETERS

4105 PROGRAMMERS

host by pressing a key on the keyboard. The terminal then
sends the key name and cursor location in a 4010 GIN
Report (described in detail in the Reports discussion at the
end of this section).

After sending the 4010 GIN Report, the terminal updates its
graphics position to the GIN cursor location, and enters
Alpha mode. This makes the terminal compatible with
programs written for Tektronix 4010 Series terminals.

Since the terminal is enabled for only one report, a host
program must issue a separate command for each GIN point
required.

Emulating the graphics input capability of a Tektronix 4010
Series terminal requires some specific communications
settings. While the exact settings may vary from one
computer installation to another, the settings shown for the
following commands should work for most host computers:

e SET EOM CHARACTERS — Set both EOM characters
to Nu.

o SET EOL STRING — Set the EOL string to Cr.

e SET BYPASS CANCEL CHARACTER — Set the
bypass cancel character to match to the last character that
the host echoes in response to a report’s last character.
For 4010 GIN, the bypass cancel character will be one of
these:

¢ Ny if the host is not echoing characters
® Lyif the host echoes Cr as CRLF

® Crif the host echoes Cr as just Cr

Related Commands

SET BYPASS CANCEL CHARACTER
SET EOL STRING
SET EOM CHARACTERS

5-21

4100-STYLE COMMANDS & REPORTS
END PANEL

END PANEL

Concludes a panel definition.

C

ENQUIRY

Queries the terminal for its answerback string.

Host Syntax Host Syntax
ECLE o
Setup Syntax The ENQUIRY command invokes the answerback string in
all host command modes (ANSI, EDIT, VT52, or TEK
ENDPANEL mode). The terminal does not respond to this command in
Local mode.

When you issue this command, the terminal closes the panel
boundary, fills the panel with the current fill pattern, and
sets the graphics position to the panel boundary’s starting
point.

See the chart in Appendix E which shows all of the
terminal’s predefined fill patterns.

Related Commands

BEGIN PANEL BOUNDARY
SELECT FILL PATTERN

5-22

Your program can use the answerback string to identify the
terminal and determine whether the terminal is authorized
to use specific programs and data.

NOTE

The terminal does not enter Bypass mode when it
sends the answerback string. If (1) your host echoes
characters and (2) you do not want the terminal to
echo the answerback string, then you must issue the
ENTER BYPASS MODE command before you
issue the ENQUIRY command.

If the host provides an echo, it will echo the answerback
string. If you don’t want the answerback string displayed on
the terminal, issue the ENTER BYPASS MODE command
before you issue the ENQUIRY command.

The terminal’s answerback string can be set by using the
Setup command SET ANSWERBACK STRING.

Note that, in TEK mode, the Eq character is a command
terminator (like Ec, Fs, Gs, and Us).

Related Commands
SET ANSWERBACK STRING

4105 PROGRAMMERS

ENTER ALPHA MODE

Puts the terminal in Alpha mode.

Host Syntax

4100-STYLE COMMANDS & REPORTS
ENTER BYPASS MODE

ENTER BYPASS MODE

Puts the terminal in Bypass mode.

Host Syntax

Us

EcCN

The default implicit command mode at power-up is Alpha
mode; there are two other implicit command modes: Vector
mode and Marker mode.

When the terminal is in Alpha mode, it interprets and
displays ASCII characters as alphatext. Alphatext is sent to
the dialog buffer if the dialog area is enabled, or to the
graphics area if the dialog area is disabled.

If the dialog area is enabled and visible, alphatext is
displayed in the dialog area as it is received from the host.

The terminal exits Alpha mode when it receives an ENTER

Related Commands

ENABLE DIALOG AREA

ENTER MARKER MODE
ﬂ ENTER VECTOR MODE

LFCR

PAGE

SET ALPHATEXT SIZE

SET ALPHATEXT FONT

SET 4014 ALPHATEXT SIZE

~

4105 PROGRAMMERS

B

VECTOR MODE or ENTER MARKER MODE command.

Bypass mode is one of the communications modes — the
other communications modes are Prompt mode and Local
mode.

When the terminal is in Bypass mode, it ignores all
characters from the host until it receives the bypass cancel
character. When the terminal receives this character, it
terminates Bypass mode and discards the bypass cancel
character.

The terminal automatically enters Bypass mode when it
sends the first character of a report to the host. The bypass
cancel character is usually the character that the host sends
the terminal after it reads a report from the terminal. Here’s
a typical sequence:

1. The host requests a report (by issuing a REPORT
TERMINAL SETTINGS command).

2. The terminal enters Bypass mode.

3. The terminal sends a report, terminated by the EOL
string.

4. The host echoes the report to the terminal, but the
terminal ignores it.

5. The host sends the bypass cancel character.
The terminal cancels Bypass mode.

The host sends more data, which the terminal processes.

The terminal does not enter Bypass mode to send reports
about ANSI mode or to issue the answerback string. If you
want to suppress the echo of the answerback string, you
should send the terminal an ENTER BYPASS MODE
command before you issue the ENQUIRY command.

If the current bypass cancel character is set to Nu, Bypass
mode is disabled; in this case, the ENTER BYPASS MODE
command has no effect.

See the discussion on Bypass mode in Section 2 for more
information. Also see the SET BYPASS CANCEL
CHARACTER command later in this section.

Related Command
SET BYPASS CANCEL CHARACTER

5-23

4100-STYLE COMMANDS & REPORTS

ENTER MARKER MODE
ENTER MARKER MODE ENTER VECTOR MODE
Puts the terminal in Marker mode. Puts the terminal in Vector mode.
Host Syntax Host Syntax

FS GS

Marker mode is one of the three implicit command modes;
the other two are Alpha mode and Vector mode.

When the terminal is in Marker mode, it interprets ASCII
characters as xy-coordinates and draws markers at the
locations specified by the coordinates. (The SET MARKER
TYPE command specifies the kind of marker the terminal
draws.)

The terminal cannot go directly from Marker mode to
Vector mode; it must first be placed in Alpha mode, then in
Vector mode.

The discussions Implicit Command Modes and Markers,
both in Section 4, explain how to use Marker mode. Also see
the discussion of xy-coordinates under Host Parameters (at
the beginning of this section) for details on how to encode
and send xy-coordinate parameters.

Related Commands

BEGIN PANEL BOUNDARY
DRAW

DRAW MARKER

ENTER ALPHA MODE
ENTER VECTOR MODE
MOVE

SET MARKER TYPE

5-24

Vector mode is one of the three implicit command modes;
the other two are Alpha mode and Marker mode.

When the terminal is in Vector mode, it interprets ASCII
characters as xy-coordinates. The terminal moves the
graphics position to the first xy-coordinate, and draws
vectors to the subsequent xy-coordinates.

To DRAW rather than MOVE when specifying the first
coordinate after entering Vector mode, include the BL
character (ADE 7) immediately after the Gs character.

The discussions Implicit Command Modes and Vectors,
both in Section 4, explain how to use Vector mode. Also see
the discussion of xy-coordinates under Host Parameters (at
the beginning of this section) for details on how to encode
and send xy-coordinate parameters.

Related Commands

DRAW

ENTER ALPHA MODE
ENTER MARKER MODE
MOVE

SET LINE INDEX

SET LINE STYLE

SET 4014 LINE STYLE

4105 PROGRAMMERS

C C

>

ﬁ

N
n
|
i
L
n
f
|
|
N
|

EXPAND MACRO

Expands a macro.

Host Syntax

EcKX macro-number

Setup Syntax

EXPAND macro-number

macro-number: integer; indicates the macro to expand.
Valid values range from -150 through 32767 (except -1).
Defaults: Factory = (none)

Omitted = 0

The EXPAND MACRO command causes the terminal to
send the contents of a stored macro definition to the TEK
Mode Interpreter (see the discussion on terminal architecture
in Section 1). If the contents of the macro make a valid
command, the terminal executes it; if the characters are not
a valid command, the terminal displays them in the dialog
area as alphatext (or in the graphics area if the dialog area is
disabled — see the ENABLE DIALOG AREA command).

The macro definition being expanded may contain other
EXPAND MACRO commands. You can nest commands to
anesting depth of at least five.

Macros numbered from -150 through 143 may also be
expanded by typing the corresponding key on the keyboard.

NOTE

An important difference in expanding a macro
from the keyboard is that instead of sending the
macro contents to its command interpreter; the
terminal sends the macro to the host unless the
macro contains key-execute characters. Refer to
Keeping a Key Macro Local in Section 4 for details
about the key execute-character and how it works.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
FACTORY

Syntax Example

Host: EcCKXHO
Setup: EXPAND 128

Expands Macro 128 (128 is encoded H0). You could also
expand this macro by pressing Function Key F1, which
corresponds to Macro Code 128.

Related Commands

DEFINE MACRO

DEFINE NONVOLATILE MACRO
LEARN

LEARN NONVOLATILE

SET KEY EXECUTE CHARACTER

FACTORY

Sets all parameters to their factory default values and takes
the terminal out of Setup.

Setup Syntax

FACTORY

This command restores the terminal to its factory default
condition. It erases the contents of the terminal’s program
memory, including all changes in parameter settings and all
macro definitions.

Hint. If you’ve saved settings in nonvolatile memory and
want to return all settings to their factory default, issue the
SAVE NONVOLATILE PARAMETERS command
(NVSAVE in Setup) after you issue the FACTORY
command.

Related Commands

RESET
SAVE NONVOLATILE PARAMETERS

5-25

4100-STYLE COMMANDS & REPORTS
GRAPHIC TEXT

GRAPHIC TEXT

Writes a string of graphtext, starting at the current graphics
position.

Host Syntax

EcLT text

Setup Syntax

GTEXT text

text: string (delimited string in Setup); indicates the
characters to be displayed. Each character must be in the
range ADE 32 through ADE 126 (Se through ~).
Defaults: Factory = (none)

Omitted = Empty string

The terminal draws the text string in the direction
determined by the SET GRAPHTEXT CHARACTER
PATH command. After the string is drawn, the graphics
position is updated to a point also determined by the SET
GRAPHTEXT CHARACTER PATH command (see the
SET GRAPHTEXT CHARACTER PATH command for
details).

If the string is too long to fit in terminal space, the terminal

clips the characters at the edge of terminal space and sets the
current graphics position to the edge of terminal space where

the overflow occurred.

5-26

You cannot include graphtext in a panel; if you attempt to
use the GRAPHIC TEXT command while defining a panel,
the terminal detects an error.

The terminal displays graphtext as if it were alphatext,
except that it does not wrap at the right edge of the display.
The appearance of graphtext is governed by the SET TEXT
INDEX, SET GRAPHTEXT SIZE, SET GRAPHTEXT
ROTATION, SET ALPHATEXT FONT, and ANSI mode
SCS (SELECT CHARACTER SET) commands.

Refer to the discussion Displaying Text in the Graphics Area
in Section 4.

Syntax Example

Host: EcLTTUNICORN
Setup: GTEXT /UNICORN/

Writes the string UNICORN starting at the current graphics
position.

Related Commands

SET ALPHATEXT FONT

SET GRAPHTEXT ROTATION
SET GRAPHTEXT SIZE

SET TEXT INDEX

4105 PROGRAMMERS

C

5

b

n
f
n
R
|
N
f
n
n
NS
f
f
I
n
4
i
N
N
i

HARDCOPY

Copies the contents of the terminal’s screen (or just the
dialog area) to a copier or printer.

Host Syntax

EcKH hardcopy-code

hardcopy-code: integer; selects the portion of the display
that is copied. Must be one of the following:

Oor1 Copies the entire screen
2 Copies the entire screen, reversing black and
white
3 Copies only the dialog area
Defaults: Factory = (none)
Omitted = 0

The values 0, 1, and 3 create a negative image of the display
(white areas copy black, black areas copy white), which is
the way a copy normally appears. If you prefer a positive
image, use hardcopy-code 2 in the command.

Using this command has the same effect as pressing the
S Copy, Ctrl with S-Copy, or D Copy keys (hardcopy-codes
Oor 1, 2, and 3, respectively).

To copy only the graphics area, first make the dialog area
invisible (from the host use the SET DIALOG AREA
VISIBILITY command, from the keyboard use the Dialog
key). Then you can make the screen copy (from the host use
the HARDCOPY command with a parameter of O or 1,
from the keyboard press the S Copy key). After the copy
starts, you can make the dialog area visible again and
continue working in the dialog area. However, you cannot
work in the graphics area until the copy is complete.

4105 PROGRAMMERS

REV, JUN 1985

4100-STYLE COMMANDS & REPORTS
HARDCOPY

On the Tektronix 4691 and 4692 Color Graphics Copiers,
dialog copies are always in vertical orientation (the long axis
of the image is on the short axis of the paper), and the SET
IMAGE ORIENTATION command determines the
orientation and size of screen copies.

On the Tektronix 4695 Color Graphics Copier and all
monochrome graphics copiers, both screen and dialog copies
are in vertical orientation (the long axis of the image is on
the short axis of the paper).

On monochrome graphics printers, screen copies will
represent the color image in black and white; as a default, all
color indices except Index O print as black. You can use the
MAP INDEX TO PRINT command to control which colors
print and which do not print. You can reverse the black and
white values by issuing the HARDCOPY command with the
hardcopy-code parameter set to 2.

If you have selected a monochrome text-only printer with
the SELECT HARDCOPY INTERFACE command,
requesting a screen hardcopy (S Copy) will generate an error.

Syntax Example
Host: EcKH3
Sends a copy of the dialog area (hardcopy-code 3).

Related Commands

COPY

MAP INDEX TO PRINT

SELECT COLOR HARDCOPY IMAGE DENSITY
SELECT HARDCOPY INTERFACE

SET COLOR COPIER REPAINT

SET COPY SIZE

SET DIALOG AREA HARDCOPY ATTRIBUTES
SET HARDCOPY MONOCHROME ATTRIBUTES
SET IMAGE ORIENTATION

4010 HARDCOPY

5-27

4100-STYLE COMMANDS & REPORTS
HELP

HELP

Displays information about a command or cluster of
commands.

Setup Syntax

IGNORE DELETES

Determines whether the terminal ignores the Pt (Delete)
character. (Can be saved in nonvolatile memory.)

Host Syntax

HELP name

EcKI ignore-deletes-mode

name: string; specifies the command or the name of a cluster
of commands for which you want information.
Defaults: Factory = (none)

Omitted = All commands

When you issue this command, the terminal displays (as
applicable) the host escape sequence, Setup name, and
parameter types (including keywords) for one or more
commands.

You can request information on a specific command by
issuing either the command’s Setup name or its host escape
sequence. For example, you can request information on the
SET DIALOG AREA LINES command either by typing
HELP DALINES (the Setup name) or HELP EcLL (the
escape sequence).

If you enter just a single letter for the mode parameter, the
terminal displays help information about all commands
whose Setup names begin with that letter. If you enter two
letters, the terminal displays all commands that begin with
those letters. Likewise with three letters, four letters, and so
on.

If you enter a cluster name, the terminal displays help
information about all commands in that category. The
cluster names are ANSI, Communications, Dialog, General,
Graphics, Hardcopy, Keyboard, and Pixels.

Syntax Example
Setup: HELP dialog

Queries the terminal to find out what dialog area attributes
have been set.

Related Commands
STATUS

5-28

Setup Syntax

IGNOREDEL ignore-deletes-mode

ignore-deletes-mode: integer (keyword in Setup); specifies
whether the terminal ignores Pt characters. Must be one of
the following:

Host Setup
0 no Doesn’t ignore Pt characters

1 yes Ignores Pt characters
Defaults: Factory = 0
Omitted = 1

Some computers use Pt characters (Delete or Rubout —
ADE 127) as filler characters, sprinkling them throughout
the data stream sent to the terminal. These, in effect, slow
down the communications rate and give the terminal time to
react to information from the host without losing data or
having to reset the baud rate.

Since Pr is a valid character in integer and xy-coordinate
parameters, there are times when the terminal should
process Pr characters as data, and other times when it should
treat the character as a filler character and ignore it. This
command tells the terminal which way to treat the Pr
character.

See Pr Filler Characters in Section 2 for details on how to use
this command.

4105 PROGRAMMERS

J

LEARN

Programs a key from the keyboard.

Setup Syntax

LEARN

A key programmed with the LEARN command remains
programmed only until the terminal is turned off or reset.
To save a key macro, you must use the LEARN
NONVOLATILE command.

To program a key, first enter Setup, then type:
LEARN

The terminal will respond with the message:
Press the key to be defined:

The key you press can be any key on the keyboard (except
Caps Lock, Ctrl, and Shift) including function keys, the
Break key, a shifted space bar, etc. If you press an
alphanumeric key, the terminal echoes the corresponding
ASCII character on the screen. If you press a function key or
a key combination, such as pressing Shift and Return
simultaneously, the terminal echoes the decimal macro
number.

Now simply type in the definition (you don’t need
delimiters). If you make a mistake, use F2 to delete
characters. The terminal adds the ASCII character for each
key you press to the definition. When you press F1 the
terminal ends the definition and puts you back into Setup. If
you press any key (except F1 and F2) that lacks an ASCII
definition while typing the definition, the terminal ignores
that keystroke and rings its bell.

You can cancel the definition before ending it by pressing the
Cancel key.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
LEARN

If there is not enough program memory available to store a
definition when you issue the LEARN command, the
terminal returns to Setup after displaying this message:

Error: Not enough memory available.

If, however, program memory fills up while you are writing
the definition, the terminal rings its bell and ignores any
other keys you press except the F1 key or the Cancel key.
Pressing the F1 function key will unlock the keyboard,
terminate the definition, and program the key with as much
of the definition as you have completed. Pressing the Cancel
key will unlock the keyboard, but the definition you have
entered will be lost.

Programming keys uses program memory that could be used
for other features such as the input queue or panel
definitions. See the discussion Managing Program Memory
in Section 4 for an explanation of how programmed keys
affect the availability of program memory.

Related Commands

DEFINE MACRO
EXPAND MACRO
LEARN NONVOLATILE

5-29

4100-STYLE COMMANDS & REPORTS
LEARN NONVOLATILE

LEARN NONVOLATILE

Programs a key from the keyboard so that the definition can
be saved in nonvolatile memory.

C

LFCR

Specifies whether a Lr character sent to the terminal also
implies a Cr. (Can be saved in nonvolatile memory.)

Setup Syntax Host Syntax
NVLEARN EcKF lfcr-mode

A key programmed with the LEARN NONVOLATILE Setup Syntax

command and saved with the SAVE NONVOLATILE

PARAMETERS command remains programmed until you LFCR Ifcr-mode

reprogram it, even if the terminal is turned off.

NOTE

Key definitions programmed with the LEARN
NONVOLATILE command are saved in
nonvolatile memory only if you issue a SAVE
NONVOLATILE PARAMETERS command
before you reset or turn off the terminal or issue the
FACTORY or RESET command.

To program a key, first enter Setup, then type:
NVLEARN

The rest of the key programming procedure is exactly the
same as for the LEARN command. Refer to the LEARN
command description for details.

Related Commands

DEFINE NONVOLATILE MACRO
EXPAND MACRO
LEARN

5-30

Ifcr-mode: integer (keyword in Setup); must be one of the
following:

Host Setup
0 no Lr does not imply Cr
1 yes Ly implies Cr
Defaults: Factory = 0
Omitted = 1

When Lr does not imply Cr, the Lr character is displayed as a
Line Feed only, not as a Line Feed and Carriage Return
combination.

| oo

When Lr implies Cr, a Lr character is displayed as a Line Feed w ;
and Carriage Return combination.

This setting affects only a Lr sent to the terminal screen.
When you press the Line Feed key, for example, the implied
Cr character is not sent to the host.

The ANSI commands SM (SET MODE) and RM (RESET
MODE) can perform the same action as the LFCR
command by setting and resetting Linefeed/Newline mode
(LNM).

Related Commands

CRLF
LNM (LINEFEED/NEWLINE MODE)'

! This is an ANSI command, described in Section 3.

4105 PROGRAMMERS

J J

ﬂ),. |

LOCAL

Specifies whether the terminal processes commands from
the host or is controlled from its own keyboard.

Setup Syntax

LOCAL local-mode

local-mode: keyword: specifies whether to enter or exit
Local mode. Must be one of the following:
yes Initiates Local mode
no Cancels Local mode
Defaults: Factory = no
Omitted = yes

When the terminal is in Local mode, it responds to
command escape-sequences typed on the keyboard as
though they came from the host. Other characters typed on
the keyboard are displayed on the screen.

In Local mode, the terminal does not respond to characters
sent from the host. Instead, the terminal stores them in its
communications input queue.

Once you issue this command, you must press the Setup key
to leave Setup in order to actually enter Local mode.

The terminal does not respond to the ENQUIRY command
in Local mode.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
LOCK KEYBOARD

LOCK KEYBOARD

Locks or unlocks the keyboard.

Host Syntax

EcKL locking-mode

locking-mode: integer; specifies whether the keyboard is
locked or unlocked. Must be one of the following:
0 Unlocks the keyboard
1 Locks the keyboard
Defaults: Factory = 0
Omitted = 0

The LOCK KEYBOARD command lets the host computer
disable the keyboard keys — this is useful at times when a
host computer program cannot tolerate input from the user.
When the keyboard is locked, the Joydisk and all the keys
except Cancel and Break are inoperative. Pressing any key
on the keyboard or manipulating the Joydisk will ring the
bell.

The user can tell if the keyboard is locked by pressing the
Shift key. If the keyboard is locked, the bell will ring. If it is
unlocked, no character will be transmitted and the terminal
will not sound its bell.

Other ways to unlock the keyboard (besides issuing this
command) are pressing the Cancel or Break key, or issuing a
CANCEL command.

Related Commands

CANCEL
EMI (ENABLE MANUAL INPUT)'
DMI (DISABLE MANUAL INPUT)'

! These are ANSI commands, described in Section 3.

5-31

4100-STYLE COMMANDS & REPORTS
MACRO STATUS

MACRO STATUS

Displays a macro definition.

Setup Syntax

MACROSTATUS macro-number

macro-number: integer; specifies which macro definition
you want displayed. Must be in the range -150 through

32767. Specifying -1 or the keyword a/l displays all macros.

Default: Factory = (none)

Omitted = 0

When you issue this command, the terminal displays the
macro’s number and definition. (Refer to Appendix A for
the macro numbers associated with keys.)

Related Commands

DEFINE MACRO

DEFINE NONVOLATILE MACRO
EXPAND MACRO

LEARN

5-32

REV, JUN 1985

MAP INDEX TO PRINT

Specifies which graphics color indices print and which do
not print on monochrome printers. (Can be saved in
nonvolatile memory.)

Host Syntax

EcQI monochrome-values

Setup Syntax

HCMAP monochrome-values

monochrome-values: integer array; each pair of integers
specifies an index number (-1 — 7) and a print value (Index
-1 specifies all indices). Valid print values are:

1 Print

0 Don’t print
Defaults: Factory = 0 (no print) for Index 0

1 (print) for Indices 1—7
Omitted = Error

Some graphics images created in color won’t be readable in
monochrome, since all indices will print black (except Index
0). This command allows you to select which indices print
black and which don’t print at all. By using this command,
you can make monochrome copies that offer all the
information you intended.

Use the MAP INDEX TO PRINT command to tell the
terminal which graphics color indices to print. Since the
default is to print all indices except the background index
(Index 0), you will most often use this command to suppress
printing of some indices.

4105 PROGRAMMERS

(

C

J

J

f
i
n
R
n
A
i
N
A
|
i
f
i
f
i
N
f
4

Dialog area indices are not affected by this command. Text
displayed in the dialog area will print, unless you make the
dialog area invisible by pressing the Dialog key.

Each pair in the monochrome-values array consists of an
index number and a print value:

e The index number must be a value between -1 and 7. If
you specify -1 here, you can define a single print value
for all graphics color indices.

e The print value specifies which color indices will print in
monochrome copies. A color index assigned a print value
of 1 will print black; an index with a print value of 0 will
not print.

Syntax Example
Host: EcQI42040
Setup: HCMAP 2,0,4,0

Suppresses printing of Indices 2 and 4, allowing all other
indices (except Index 0) to print. In the host example, the 4
following the opcode is an array count indicating that there
are four integers in the array.

Related Commands

COPY
HARDCOPY

4105 PROGRAMMERS

REV, JUN 1985

4100-STYLE COMMANDS & REPORTS
MOVE

MOVE

Moves the graphics position without drawing a vector.

Host Syntax

EcLF position

Setup Syntax

MOVE position

position: xy-coordinate; specifies the new graphics position.
Valid range of values is 0 through 4095 for both the x- and
y-coordinate.
Defaults: Factory
Omitted

= (none)

= 0,0

The MOVE command’s operation is analogous to lifting a
pen from the paper in a drawing and moving it to a new
location. Unless you are defining a panel boundary, this
command does not draw anything visible; it simply moves
the graphics position to a new starting point for other
graphics commands, such as DRAW and GRAPHIC TEXT.

The discussion titled Vectors in Section 4 gives examples of
how to use this command with the DRAW command to
create lines.

Syntax Example

Host: EcLF‘azseM
Setup: MOVE 53,1000

Moves the current graphics position to location 53,1000
without drawing a vector (the xy-coordinate 53,1000 is
encoded ' az5rM).

Related Commands

BEGIN PANEL

DRAW

ENTER VECTOR MODE
GRAPHIC TEXT

SET LINE STYLE

SET 4014 LINE STYLE

5-33

4100-STYLE COMMANDS & REPORTS

PAGE
PAGE PIXEL COPY
Erases the graphics area. Copies pixels from one rectangular region to another.
Host Syntax Host Syntax
EcFy EcRX destination-surface

This command has the same effect as pressing the terminal’s
G Eras key.

If the dialog area is enabled, the terminal erases the graphics
area.

If the dialog area is not enabled, the terminal does the
following:

e FErases the graphics area

@ Resets the current line style to 0 (solid lines)

o Terminates 4010 GIN mode (if it was enabled)

® Sets the current graphics position to the home position
o Enters Alpha mode

Related Commands
ENABLE DIALOG AREA

5-34

destination-lower-left-corner
first-source-corner
second-source-corner

Setup Syntax

PXCOPY destination-surface
destination-lower-left-corner
first-source-corner
second-source-corner

destination-surface: integer; names the surface to which
pixels are to be copied. The values -1, 0, and 1 are valid, but
since Surface 1 is the terminal’s only surface, all valid values
select Surface 1. (Other Tektronix terminals can display
more than one surface, so the surface parameter is included
here for compatibility.)
Defaults: Factory = (none)

Omitted = 0

destination-lower-left-corner: xy-coordinate; specifies the
lower-left corner of the rectangular region that will receive
the copy. Valid range of values for x is 0 through 479; for y, 0

through 359.
Defaults: Factory = (none)
Omitted = 0,0

Sfirst-source-corner: xy-coordinate; specifies any corner of
the rectangular region that you want to copy. Valid range of
values for x is 0 through 479; for y, 0 through 359.
Defaults: Factory = (none)

Omitted = 0,0

second-source-corner: xy-coordinate; specifies the corner
opposite the first-source-corner. Valid range of values for x
is 0 through 479; for y, 0 through 359.
Defaults: Factory = (none)

Omitted = 0,0

C

4105 PROGRAMMERS

J

J

This command copies pixels from one region to another. It
copies the pixel at the first-source-corner to the lower-left
corner of the destination region, which is the same width
and height as the source region. Then it copies each
remaining pixel in the source region onto a corresponding
pixel in the destination region.

The two source corners need not be the lower-left and
upper-right corners of the source region. If they aren’t,
however, the pixels written to the destination region may
form a mirror (or inverted) image of the picture in the source
region.

You can create some special effects by copying pixels to the
same location, depending on the ALU mode specified in the
BEGIN PIXEL OPERATIONS command. If the ALU
mode is set to XOR, you can erase pixels by copying them to
the same location. In other ALU modes, you can create a
mirror image by specifying the upper-right source corner
first. Using ALU modes other than XOR to copy (without
mirroring) to the same location will do nothing.

You can copy pixels to the off-screen graphics memory,
which has x values from 480 to 511, but a Level 0 warning
will be generated.

Syntax Example
Host: EcRX1”pk”K!pb!B!zt!T
Setup: PXCOPY 1,300,300,200,200,210,210

Copies an area that has one corner at 200,200 and another
corner at 210,210 to an area whose lower-left corner is at
300,300. In the host example, the xy-coordinate pair 300,300
is encoded " pk” K; the xy-coordinate pair 200,200 is encoded
Ipb!B; the xy-coordinate pair 210,210 is encoded /z¢/T.

Related Command
BEGIN PIXEL OPERATIONS

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
PROMPT MODE

PROMPT MODE

Turns Prompt mode on or off.

Host Syntax

EcNM prompt-mode

Setup Syntax

PROMPTMODE prompt-mode

prompt-mode: integer (keyword in Setup); must be one of
the following:

Host Setup
0 no Cancels Prompt mode

1 yes Initiates Prompt mode after the next EOM
character or EOL string
2 — Initiates Prompt mode immediately (host
syntax only)
Defaults: Factory = 0
Omitted = 1

See Section 2 for an explanation of how Prompt mode
works.

Related Commands

SET EOL STRING

SET EOM CHARACTERS
SET PROMPT STRING
SET TRANSMIT DELAY

5-35

4100-STYLE COMMANDS & REPORTS
RASTER WRITE

RASTER WRITE

Sets the color indices individually for one or more pixels in
the pixel viewport.

Host Syntax

EcRP number-of-pixels
color-index-codes

Setup Syntax

PXRASTERWRITE number-of-pixels
color-index-codes

number-of-pixels: integer; specifies how many pixels are to
receive a color index. Must be in the range 0 through 65535.
Defaults: Factory = (none)

Omitted = Error

color-index-codes: string (delimited string in Setup);
specifies the color indices for the pixels specified by
number-of-pixels. Must be in a special format (described
later in this discussion) which uses characters whose ADE
must be in the range 32 through 96 (Se through V).
Defaults: Factory = (none)

Omitted = 0

This command sets the color for each pixel in a string of
pixels, starting at the current pixel beam position in the pixel
viewport.

Figure 5-6 shows how to pack color indices into the
color-index-codes parameter. To see how the format for the
color-index-codes parameter works, convert the characters
in the string to their binary equivalents. Picture this data
string as a sequence of bits — to form color indices for
individual pixels, the terminal groups these bits using the
value of the bits-per-pixel parameter in the BEGIN PIXEL
OPERATIONS command.

5-36

REV, JAN 1986

Also refer to the pseudocode routine for sending the
RASTER WRITE command under Writing Into the Pixel
Viewport in Section 4.

If bits-per-pixel in the BEGIN PIXEL OPERATIONS
command is set to 1, then six color indices (each consisting
of a single bit) will fit into each code character. If
bits-per-pixel is 2, then three color indices fit into each code
character. Figure 5-6 shows how two color indices fit into
each code character if bits-per-pixel is 3.

If bits-per-pixel in the BEGIN PIXEL OPERATIONS
command is 4 or 6, the terminal interprets each code
character as containing only one color index, which is
determined by the four least significant bits. You can
represent each color index in the range 0 through 7 with a
single ASCII character.

The special character ' (ADE 96) functions much like a CrL¥
sequence; it moves the pixel beam position to the start of the
following row of pixels. The ' code is not included in the
pixel count.

Syntax Example

Host: EcRP99222333222
Setup: PXRASTERWRITE 9,/222333222/

Assuming bits-per-pixel has been set to 6 in the last BEGIN
PIXEL OPERATIONS command, this example specifies
indices for nine pixels, setting the first three pixels to Index
2, the next three pixels to Index 3, and the last three pixels to
Index 2.

Related Commands

BEGIN PIXEL OPERATIONS
RUNLENGTH WRITE

SET PIXEL BEAM POSITION
SET PIXEL VIEWPORT

4105 PROGRAMMERS

C

C

4100-STYLE COMMANDS & REPORTS
RASTER WRITE

J

If bits-per-pixel is 3, then pack the color indices 0,0, 2, 3, 2, 7 into a RASTER WRITE command as
follows:

1. Express the color indices as three-bit binary numerals:

0] 0 2 3 2 7

} } | | | |
000 000 010 011 010 111

2. Group the binary bits into six-bit groups:

000 000 010 011 010 111
L) L i —_—
! { |
000000 010011 010111

3. Add 32 (binary 100000) to these six-bit binary numerals to form seven-bit ASCII characters:

0100000 0110011 0110111
{ | {
Sp 3 7

4. Issue a RASTER WRITE command. The command’s first parameter is the integer 6, because the
command holds six color indices. The second parameter is a character array holding the charac-
ters Sp, 3, and 7.

J

RASTER WRITE = EcRP 6 35,37

4526-39

Figure 5-6. Packing Color Indices Using Three Bits per Pixel.

4105 PROGRAMMERS 5-37

4100-STYLE COMMANDS & REPORTS
RECTANGLE FILL

RECTANGLE FILL

Sets all the pixels in a rectangle to the same color.

Host Syntax

EcRR lower-left-corner
upper-right-corner
fill-index

Setup Syntax

PXRECTANGLE lower-left-corner
upper-right-corner

fill-index

lower-left-corner: xy-coordinate; specifies one corner of a
rectangle in graphics memory space. Valid range of values
for x is 0 through 479; for y, 0 through 359.
Defaults: Factory = (none)

Omitted = 0,0

upper-right-corner: xy-coordinate; specifies the opposite
corner of that rectangle. Valid range of values for x is 0
through 479; for y, 0 through 359.
Defaults: Factory = (none)

Omitted = 0,0

fill-index: integer; specifies the color index used to fill the
rectangle. Must be in the range 0 to 65535.
Defaults: Factory = (none)

Omitted = 0

The terminal writes color indices into graphics memory
using the ALU mode specified in the BEGIN PIXEL
OPERATIONS command.

If the lower-left and upper-right corners of the rectangle
have the same x value, then the rectangle filled is one pixel
wide. Likewise, if the lower-left and upper-right y values are
the same, then the rectangle filled is one pixel high.

5-38

This command also functions in off-screen graphics memory
where the x value is 480 through 511; however, a Level 0
warning will be generated.

Syntax Example
Host: EcRRSppySeY”DPry#W3
Setup: PXRECTANGLE 100,100,479,300,3

Sets all the pixels in the rectangle with corners 100,100 and
479,359 to Index 3. In the host example, the xy-coordinate
100,100 has been encoded SppySrY; the xy-coordinate
479,379 has been encoded "2ry# W.

Related Commands

BEGIN PIXEL OPERATIONS
RASTER WRITE
RUNLENGTH WRITE

REPORT ERRORS

Queries the terminal for an Error Report listing the eight
most recent errors.

Host Syntax

EcKQ

When the host requests an Error Report, the terminal
reports the eight most recently detected error codes, their
severity levels, and how many times each error was detected.

If fewer than eight errors have been detected since power-up
or since the last REPORT ERRORS command, then the
terminal sends fewer than eight reports-for-one-error.

For details, see the Error Report description in the Reports
discussion at the end of this section.

Related Commands
ENTER BYPASS MODE

4105 PROGRAMMERS

C

'k

REPORT SYNTAX MODE

Queries the terminal for a Terminal Settings Report giving
the current host command mode (ANSI, EDIT, TEK, or
VT52).

Host Syntax

Ec#10

This command has the same effect asa REPORT
TERMINAL SETTINGS command issued for the SELECT
CODE command (as if the host sent EcIQ%?/!). See the
REPORT TERMINAL SETTINGS command.

This command is recognized in all host command modes.

You can display the host command mode status on the
screen by entering the Setup command STATUS CODE.

Related Commands

REPORT TERMINAL SETTINGS
SELECT CODE

~

ﬁ

4105 PROGRAMMERS

4100--STYLE COMMANDS & REPORTS
REPORT TERMINAL SETTINGS

REPORT TERMINAL SETTINGS

Queries the terminal for a Terminal Settings Report.

Host Syntax

EcIQ inquiry-code

inquiry-code: two characters; specifies the two-letter opcode
for an escape-sequence command or a special two-character
inquiry code for other information about the terminal.
Defaults: Factory = (none)

Omitted = 0 (no effect)

This general-purpose inquiry command tells the terminal to
send a Terminal Settings Report to the host (see the Reports
discussion at the end of this section).

Besides the opcodes for commands, you can also use special
inquiry codes — Table 5-3 lists the three special inquiry
codes and the information they query for.

You can query for terminal settings status from the terminal
keyboard by issuing the STATUS command in Setup — the
settings will be displayed on the terminal screen. The
STATUS command uses keywords to make the special
inquiry requests described in Table 5-3.

Related Commands

REPORT SYNTAX MODE
STATUS

Table 5-3
SPECIAL INQUIRY CODES

Code Report Contents

™ Two integers report (1) available program memory and
(2) the largest contiguous block of program memory
(both reported as a number of 16-byte units of memory).
In Setup enterSTATUS MEMORYBLOCKS.’

T An integer reports the terminal model number. In Setup
enter STATUS TERMINAL.?
00 An integer reports the firmware version installed in the

terminal. In Setup enter STATUS VERSION.?

@ The Setup command STATUS does not send a report but displays the equivalent
information on the terminal screen.

5-39

4100-STYLE COMMANDS & REPORTS
REPORT 4010 STATUS

REPORT 4010 STATUS

Queries the terminal for a 4010 Status Report, which gives
the alpha cursor position and copier status (or just GIN
cursor position if 4010 GIN is enabled).

Host Syntax

ECEQ

This command also terminates 4010 GIN and puts the
terminal in Alpha mode.

See the description of the 4010 Status Report in the Reports
discussion at the end of this section.

Related Commands

ENABLE 4010 GIN
SET BYPASS CANCEL CHARACTER

5-40

RESET

Returns the terminal to its power-up condition.

Host Syntax

EcKV

Setup Syntax

RESET

If any of the terminal’s current settings for
communications parameters differ from settings
saved in nonvolatile memory, issuing a RESET
command can disrupt host/terminal
communications.

The RESET command initializes the terminal to its
power-up condition (a combination of factory default
settings and any settings that have been saved in nonvolatile
memory). It is equivalent to pressing the terminal’s RESET
button or turning the terminal off and then turning it on
again.

The terminal takes several seconds to execute the RESET
command. During that time, it is performing its power-up
reset and self-test routines, and cannot process data coming
from the host.

4105 PROGRAMMERS

C

»

C

C

)

J

RUNLENGTH WRITE

Sets one or more pixels in the pixel viewport to the same
color.

Host Syntax

EcRL runcode-array

Setup Syntax

PXRUNLENGTHWRITE runcode-array

runcode-array: integer array; assigns color indices to a
specified number of pixels in the pixel viewport. Each
runcode in the array can range from 0 through 65535.
Defaults: Factory = (none)

Omitted = Empty array

This command writes color indices into graphics memory
using the ALU mode specified in the BEGIN PIXEL
OPERATIONS command.

Starting at the current pixel beam position in the pixel
viewport, the terminal sets the specified number of pixels to
the specified color index for each runcode in the
runcode-array parameter. When all the pixels for a given
runcode have been loaded with the specified color index, the
process is repeated for the next runcode in the integer array.

For each runcode, the pixel beam moves to the right,
pixel-by-pixel, assigning a color index to each. Upon
reaching the right edge of the pixel viewport, the pixel beam
jumps back to the left edge on the next line down (or the top
line if the beam is at the bottom line’s right edge) and
continues assigning color indices to pixels until the runcode
specification is met.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
RUNLENGTH WRITE

Each runcode includes two numbers packed together: one is
a color index, and the other is the number of pixels that are

to be set to that color index. The runcodes are packed using
the form:

Runcode = number-of-pixels * 2" + color-index

where n = bits-per-pixel

The bits-per-pixel parameter from the most recent BEGIN
PIXEL OPERATIONS command supplies the value for #,
unless that parameter is 4 or 6; then the value of n is 3.
Section 4 shows a pseudocode routine for packing runcodes
(in the discussion of the RUNLENGTH WRITE command
under Writing Into the Pixel Viewport).

Syntax Example

Host: EcRL1E4
Setup: PXRUNLENGTHWRITE 84

Assuming that bits-per-pixel is set to 4, this example sets five
pixels to Index 4 (5+(2*) + 4 = 84). In the host example, the /
following the escape sequence RL is the array count; 84 is
encoded E4.

Related Commands

BEGIN FILL PATTERN
BEGIN PIXEL OPERATIONS
RASTER WRITE

5-41

4100-STYLE COMMANDS & REPORTS
SAVE NONVOLATILE PARAMETERS

SAVE NONVOLATILE PARAMETERS

Saves the values of those commands whose settings can be
saved in nonvolatile memory; also saves all nonvolatile
macros.

Host Syntax

EcKU

Setup Syntax

NVSAVE

This command allows you to save the effects of some
commands so that the terminal always powers up with the
settings you need for your application. The terminal’s
power-up condition is a combination of the factory default
values and the settings you save in nonvolatile memory.

When you issue SAVE NONVOLATILE PARAMETERS,
the terminal writes to its nonvolatile memory all settings that
have been changed and all nonvolatile macros that have been
defined since the last SAVE NONVOLATILE
PARAMETERS command was issued. The terminal retains
those settings and they become part of the terminal’s
power-up condition.

This command saves only those settings that have changed
since the last time this command was issued. The only
macros that it saves are those defined with the DEFINE
NONVOLATILE MACRO and LEARN NONVOLATILE
commands.

5-42

You can identify those commands that set values you can
save by referring to their purpose statements at the top of the
command description. Look for the statement can be saved
in nonvolatile memory.

NOTE

The SAVE NONVOLATILE PARAMETERS
command may take up to several seconds to
complete, depending on the number of changed
settings and nonvolatile macros that require saving.

Each byte of nonvolatile memory has a lifetime of about
10,000 writes. If you attempt to write to nonvolatile memory
after that, the terminal might display an error message
(depending on the SET ERROR THRESHOLD LEVEL
setting). When that occurs, all settings are reset to factory
default the next time the terminal is powered up, and the
terminal can no longer use its nonvolatile memory. (You can
have the nonvolatile memory replaced; see your local
Tektronix Field Office.)

Related Commands

DEFINE NONVOLATILE MACRO
LEARN NONVOLATILE

4105 PROGRAMMERS

C

C

J

J

SELECT CODE

Causes the terminal to recognize the syntax of host
commands in ANSI, EDIT, VT52, or TEK mode. (Can be
saved in nonvolatile memory.)

Host Syntax

Ec%! syntax

Setup Syntax

CODE syntax

syntax: integer; (keyword in Setup); selects one of the
following syntax modes:
Host Setup

0 TEK TEK mode syntax
1 ANSI ANSI mode syntax
2 EDIT ANSI mode syntax for EDIT mode
3 VT52 VT52mode syntax
Defaults: Factory = 0
Omitted = 0

This command causes the terminal to accept ANSI, TEK, or
VT52 commands from the host computer. It does not affect
the availability of commands entered from the keyboard in
Setup.

The syntax of TEK, ANSI, and VT52 mode commands are
not compatible. If you are using commands from one mode
and want to execute commands from another mode, you
must issue the SELECT CODE command with the
appropriate parameter.

This command is recognized in all major modes: ANSI,
EDIT, TEK, and VT52.

You can use this command while in Setup to cause the

terminal to recognize a specific command syntax when it
leaves Setup.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
SELECT CODE

In TEK mode, the terminal:
® Recognizes 4100-style commands from the host

In ANSI mode, the terminal:
® Recognizes ANSI mode commands from the host

In EDIT mode, the terminali:
® Recognizes ANSI mode commands from the host
e Configures the terminal to run VT100 applications:

Sets Origin mode to Absolute

Sets dialog area and dialog area buffer to 24 lines
Makes the dialog area visible

Defines a scrolling region of 24 lines

Sets Insert/Replace mode to Replace

Disables all programmed keys

In VT52 mode, the terminal:
® Recognizes VT52-style commands from the host

NOTE

When switching from EDIT mode to TEK mode,
you may need to reset some of your TEK mode
sertings.

EDIT Mode Settings. EDIT mode sets the terminal’s display
and keyboard characteristics to emulate a VT 100 terminal.
When your program returns to TEK mode from EDIT
mode, you may need to reset some of the terminal control
settings. Specifically:

o EDIT mode disables key expansion; if your program uses
programmed keys, issue the ENABLE KEY
EXPANSION command when you return to TEK mode.

o EDIT mode sets the dialog area and dialog area buffer to
24 lines; issue the SET DIALOG AREA BUFFER and
SET DIALOG AREA LINES commands when you
return to TEK mode to set the values you want for your
application.

® When you select TEK mode, new dialog overwrites
existing data in the dialog area rather than adding it to the
end and scrolling — and the combination of old and new
information in the dialog area may be confusing. To
avoid this, issue the CLEAR DIALOG AREA command
after returning to TEK mode.

Related Commands

CLEAR DIALOG AREA
ENABLE KEY EXPANSION
REPORT SYNTAX MODE
REPORT TERMINAL SETTINGS
SET DIALOG AREA BUFFER
SET DIALOG AREA LINES

5-43

4100-STYLE COMMANDS & REPORTS
SELECT COLOR HARDCOPY IMAGE DENSITY

SELECT COLOR HARDCOPY IMAGE DENSITY

Selects the number of dots per inch for color copies. (Can be
saved in nonvolatile memory.)

Host Syntax

EcQU density-code

Setup Syntax

HCDENSITY density-code

density-code: integer (keyword in Setup); specifies the image
density. Must be one of the following:

Host Setup
0 low Low density
1 high High density
Defaults: Factory = 1
Omitted = 1

The density-code selects the number of color dots per inch to
print on the copy paper. On the Tektronix 4692 Color
Graphics Copier, low density is 144 dots-per-inch, and high
density is 155 dots-per-inch. The image size for high density
copies is slightly smaller because of the more closely spaced
color dots.

This command only affects copies made on the 4692 Copier.

Related Commands

COPY

HARDCOPY

SELECT HARDCOPY INTERFACE
SET COLOR COPIER REPAINT

5-44

REV, JUN 1985

SELECT FILL PATTERN

Selects a color or predefined pattern to fill a panel.

Host Syntax

EcMP fill-pattern-number

Setup Syntax

FILLPATTERN fill-pattern-number

Sfill-pattern-number: integer; specifies a panel’s fill pattern.
Valid values are:
-7—0 Solid colors
1—16 Predefined patterns
50 — 174 Dithered patterns
Defaults: Factory = -1
Omitted = 0

Notice that the solid colors are indicated by the negative
value of a color index (for example, -3 means “fill the panel
with Index 3”).

Appendix F shows all the fill patterns and their associated
fill pattern numbers.

Syntax Example

Host: EcMPAO
Setup: FILLPATTERN 16

Specifies Fill Pattern 16 (encoded A0) for subsequent
panels.
Related Commands

BEGIN PANEL BOUNDARY
END PANEL

4105 PROGRAMMERS

C

C

SELECT HARDCOPY INTERFACE

Selects the type of copier or printer to be used in making
copies. (Can be saved in nonvolatile memory.)

4100-STYLE COMMANDS & REPORTS
SET ALPHA CURSOR INDICES

SET ALPHA CURSOR INDICES

Assigns color indices to the alpha cursor. (Can be saved in
nonvolatile memory.)

copier-type: integer; identifies the type of copier connected
to the terminal. Must be one of the following:
0 A monochrome printer with a Centronics-type
parallel interface; for copying dialog only
lor2 A Tektronix 4691, 4692, or 4695 Color Graphics
Copier
3 A Tektronix 4644 Dot Matrix Printer or other
printer with a Centronics-type parallel interface
and Epson FX-80 graphics protocol
4 A Hewlett-Packard ThinkJet Printer
Defaults: Factory = 2 '
Omitted = 0

You must use this command to tell the terminal what kind of
copier you’re using.

You can make color graphics copies on Tektronix 4691,
4692, or 4695 Color Graphics Copiers. Monochrome
graphics copies (which are faster) can be made on a
Tektronix 4644 Dot Matrix Printer, a Hewlett-Packard
ThinkJet, or other monochrome printers with Epson FX-80
graphics.

You can make dialog copies on some black-and-white
printers that use a Centronics-style parallel interface.

Syntax Example
Host: EcQD2
Setup: HCINTERFACE 2

Tells the terminal that you are using a 4695 Color Graphics
Copier (copier-type 2).

Related Commands

COPY
HARDCOPY
4010 HARDCOPY

!

4105 PROGRAMMERS

R
f
R
|
i
|
i
J
|
ne
|
|
H
4
)
J
|
f
i

Host Syntax Host Syntax
EcQD copier-type EcTD first-index
second-index
Setup Syntax
Setup Syntax
HCINTERFACE copier-type
ACURSOR first-index

second-index

first-index: integer; specifies the first color for the alpha
cursor; must be in the range 0 to 65535. There are eight color
indices available, corresponding to values 0 through 7; a
value greater than 7 sets first-indexto 7.
Defaults: Factory = 1

Omitted = 0

second-index: integer; specifies the second color for the
alpha cursor; must be in the range 0 to 65535. There are
eight color indices available on the terminal, corresponding
to values 0 through 7; a value greater than 7 sets
second-indexto 7.
Defaults: Factory = 0

Omitted = 0

The alpha cursor appears on the screen where the next
alphanumeric character will be displayed. If second-index is
a different color than first-index, the cursor blinks between
the two colors. If the two indices are the same, the cursor
does not blink.

The dialog area and the graphics area each have their own
set of color indices. When the dialog area is enabled, the
alpha cursor indices refer to dialog area indices. When the
dialog area is disabled, the alpha cursor indices refer to
graphics area indices.

Syntax Example

Host: EcTD23
Setup: ACURSOR 2,3

Assigns Color Indices 2 and 3 to the alpha cursor so that the
cursor blinks (alternating between Index 2 and Index 3).

Related Commands
SET DIALOG AREA COLOR MAP

5-45

4100-STYLE COMMANDS & REPORTS
SET ALPHATEXT FONT

SET ALPHATEXT FONT

Selects the font to be used for alphatext and graphtext.

Host Syntax

Ec font-code

Sfont-code: character; selects the GO or G1 character set.
Must be one of the following:
S The GO character set
So The G1 character set
Defaults: Factory = GO character set
Omitted = None

The character sets that are the current GO and G1 character
sets can be selected with the ANSI command SCS (SELECT
CHARACTER SET).

The SET ALPHATEXT FONT command does not control
the character set displayed in Setup.

Related Commands

BEGIN SEGMENT
GRAPHIC TEXT

5-46

REV, JUN 1985

SET ANSWERBACK STRING

Assigns the terminal’s answerback string. (Can be saved in
nonvolatile memory.)

Setup Syntax

ANSWERBACK answerback-string

answerback-string: delimited string; specifies up to twenty
characters as the answerback string.
Defaults: Factory = Empty string

Omitted = Empty string

The answerback string acts like a password known only to
the terminal and the host application. When the host sends
an ENQUIRY command, the terminal responds by
transmitting its answerback string. (You can send the
answerback string from the keyboard by pressing
Ctrl-Break.)

The host can verify the answerback string against a list of
authorized users and thus control the data and programs
that it lets the terminal access.

NOTE

The string you set with this command is not saved
in nonvolatile memory until you issue the SAVE
NONVOLATILE PARAMETERS command.

Issuing the SET ANSWERBACK STRING command does
not save the answerback string in nonvolatile memory; you
must issue a separate SAVE NONVOLATILE
PARAMETERS command for the terminal to retain the
answerback string in nonvolatile memory.

The terminal transmits only the characters actually in the
answerback string. If you want the answerback string to end
with a Cr, you must program a Cr into the string when you
define it.

Syntax Example

ANSWERBACK /PASSKEY/
NVSAVE

Assigns the string PASSKEY as the answerback string.

Setup:

Related Command
ENQUIRY

4105 PROGRAMMERS

C

C

J

J

N
n
0
n
n
i
i
i
n
k@
1
i
n
f
i
|
H
f
fn

SET BAUD RATES

Sets the terminal’s transmit and receive baud rates. (Can be
saved in nonvolatile memory.)

Host Syntax

4100-STYLE COMMANDS & REPORTS
SET BREAK TIME

SET BREAK TIME

Sets the duration (in milliseconds) of the terminal’s break
signal. (Can be saved in nonvolatile memory.)

Host Syntax

EcNR transmit-data-rate
receive-data-rate

Setup Syntax

BAUDRATE transmit-data-rate
receive-data-rate

transmit-data-rate: integer; specifies the baud rate at which

the terminal sends data to the host. Valid values are 1 (which

means external clock), 75, 110, 134, 150, 300, 600, 1200,

1800, 2000, 2400, 4800, 9600, 19200, and 38400 bits per

second.

Defaults: Factory
Omitted

= 2400
= Error
receive-data-rate: integer; specifies the baud rate at which
the terminal expects to receive data from the host. Valid
values are the same as for transmit-data-rate with the
addition of 0, which means same as the transmit rate.
Defaults: Factory = 2400

Omitted = Same as transmit-data-rate

This command sets internally controlled transmit and
receive baud rates from 75 to 38400 bits per second or allows
transmission rates to be controlled by an external clock.

The transmit and receive parameters need not be the same,
unless you set the baud rate to 38400.

Syntax Example

Host: EcNRe8R<
Setup: BAUDRATE 600,300

Sets a transmit baud rate of 600 (encoded e8) and a receive
baud rate of 300 (encoded R <).

Related Commands

PROMPT MODE

SET FLAGGING MODE

SET TRANSMIT RATE LIMIT
SET TRANSMIT DELAY

SET PORT BAUD RATE

SET QUEUE SIZE

4105 PROGRAMMERS

EcNK break-time

Setup Syntax

BREAKTIME break-time

break-time: integer; specifies the length of the break signal
(in milliseconds). Must be in the range 0 through 65535; a
value of 0 disables the break signal.

Defaults: Factory = 200

Omitted = 0
Syntax Example
Host: EcNKA9

Setup: BREAKTIME 25

Specifies a 25-millisecond break signal when the Break key is
pressed (25 is encoded 49).

5-47

4100-STYLE COMMANDS & REPORTS
SET BYPASS CANCEL CHARACTER

SET BYPASS CANCEL CHARACTER

Specifies the character that cancels Bypass mode. (Can be
saved in nonvolatile memory.)

Host Syntax

EcNU bypass-cancel-character

Setup Syntax

BYPASSCANCEL bypass-cancel-character

bypass-cancel-character: integer (small integer in Setup);
specifies the ADE of the character that cancels Bypass
mode. Must be in the range 0 through 127.
Defaults: Factory = 10 (Lr)

Omitted = 0

If your host provides an echo, the bypass cancel character
should be set to the last character sent by the host when it
echoes a line of text to the terminal.

If your host doesn’t provide an echo, you probably don’t
need Bypass mode, so you should set the bypass cancel
character to Nu. See Section 2 for an explanation of the
terminal’s Bypass mode.

Syntax Example
Host: EcNU:
Setup: BYPASSCANCEL 10

Specifies the Lr (Linefeed) character (ADE 10, encoded :) as
the bypass cancel character.

Related Command
ENTER BYPASS MODE

5-48

SET COLOR COPIER REPAINT
Specifies the number of times the Tektronix 4692 Color
Graphics Copier repaints an image. (Can be saved in

nonvolatile memory.)

Host Syntax

EcQT repaint-count

Setup Syntax

HCREPAINT repaint-count

repaint-count: integer; specifies the number of times the
image is transferred to the copier. Must be in the range 0
through 4 (0 defaults to 1).
Defaults: Factory =1

Omitted = 1

This command specifies how many times the terminal
transmits an image to the 4692 Copier in the course of
making a single copy. Transmitting the image several times
concentrates ink more heavily on the copy. This is useful in
preparing transparencies because it results in more intense
colors.

The time required to make a copy is multiplied by the
number of image passes. A repaint-count of 1 yields the
fastest copy of an image. Copying the same image with a
repaint-count of 4 takes four times as long.

This command affects only the 4692 Copier; it has no effect
on the 4691, 4695, or monochrome copiers.

Syntax Example
Host: EcQT4
Setup: HCREPAINT 4

Repaints an image four times.

Related Commands

COPY

HARDCOPY

SELECT COLOR HARDCOPY IMAGE DENSITY
SELECT HARDCOPY INTERFACE

SET IMAGE ORIENTATION

4105 PROGRAMMERS

C

D)

J

Il
f
R
|
J
|
f
l
i
e
|
i
n
f
A
n
N
i
f

SET COPY SIZE

Selects the image size (standard or small) for copies. (Can be
saved in nonvolatile memory.)

Host Syntax

ECQA size

Setup Syntax

HCSIZE size

size: integer; selects the image size for the copy. Must be one
of the following:
0 Selects standard size (812" x 11)

1 Selects small size
Defaults: Factory = 0
Omitted = 0

On a Tektronix 4695 Color Graphics copier, this command
allows you to select a small copy-size for either a screen copy
or a dialog copy. On a small screen copy, the image is
one-half the default size. On a Tektronix 4691 or 4692
Copier, only dialog area copies are affected.

On a small dialog area copy, the image is slightly larger than
one-half the default size.

NOTE

Screen copies made on Tektronix 4691 and 4692
Copiers are not affected by this command, but
dialog copies are.

4105 PROGRAMMERS

4100--STYLE COMMANDS & REPORTS
SET COPY SIZE

Specifying the small size produces a faster copy, but only in
eight colors: black, white, red, green, blue, cyan, magenta,
and yellow.

Refer to the HARDCOPY command for additional
information about screen and dialog area copies.

If you are using Column mode 132, the small copy size
allows you to copy 132 columns on the same line. If you
choose the standard copy size with Column mode 132, the
extra 52 columns are wrapped to the next line.

This command has no effect on a monochrome copier —
you always get the default copy size

Syntax Example

Host: EcQA1
Setup: HCSIZE 1

Selects the smaller copy size.

Related Commands

COPY
HARDCOPY
SELECT HARDCOPY INTERFACE

5-49

4100-STYLE COMMANDS & REPORTS
SET DIALOG AREA BUFFER SIZE

SET DIALOG AREA BUFFER SIZE

Specifies the number of lines available for storing text in the
dialog area buffer. (Can be saved in nonvolatile memory.)

Host Syntax

EcLB number-of-lines

Setup Syntax

DABUFFER number-of-lines

number-of-lines: integer; specifies the number of lines in the
dialog area buffer. Must be in the range 2 though 32767.
Defaults: Factory = 49

Omitted = Error

If you make the dialog area buffer smaller than the dialog
area, the terminal automatically shrinks the dialog area to
match the dialog area buffer. See Displaying Dialog Between
a Host and a User in Section 4 for a detailed discussion of
how the dialog buffer works with graphics applications.

Specifying a large dialog area buffer uses volatile memory
that could be used for other features such as macro
definitions or panel definitions. See the discussion
Managing Program Memory in Section 4 for an explanation
of how the dialog area buffer size affects the availability of
volatile memory.

5-50

The ANSI command TEKSTBM (Set Top and Bottom
Margins) can divide the dialog area into scrolling and fixed
regions. If you have fixed regions set up and you specify a
dialog area buffer larger than the screen size (30 lines), the
scrolling region’s top and bottom margins are set to Lines 1
and 30.

Similarly, if you have used the ANSI command RM (Reset
Modes) to select Origin mode Absolute and you specify a
dialog area buffer larger than the screen size, the Origin
mode is set to Relative. See Section 3 for a complete
explanation of how the dialog buffer works with screen
editing applications.

Syntax Example

Host: EcLBA>
Setup: DABUFFER 30

Selects a dialog area buffer of 30 lines (encoded A >).

Related Commands

SET DIALOG AREA LINES
SET DIALOG AREA VISIBILITY

4105 PROGRAMMERS

C

C

J

ﬁ

SET DIALOG AREA COLOR MAP

Specifies the colors assigned to color indices in the dialog
area. (Can be saved in nonvolatile memory.)

Host Syntax

ECTF color-mixtures

Setup Syntax

DACMAP color-mixtures

color-mixtures: integer array; assigns a color mixture to one
or more color indices for the dialog area.
Defaults: Factory = See Table 5-4
Omitted = Error

The integers in the color-mixtures array are in groups of four
called quadruples. There is one quadruple for each color
index you define, and the array count is the number of
quadruples times four (if you assign color mixtures to all
eight dialog area indices, the array count will be 32). The
first integer in each quadruple names a color index, while the
following three integers define the color mixture for that
color index.

The color mixture is specified in the HLS color coordinate
system. The valid ranges for the first, second, and third
coordinates are:

Hue -32768 — 32767
Lightness 0 — 100
Saturation 0 — 100

The color assigned to Index 0 applies only to the character
itself. For the dialog area background and character
background, Index 0 always means “transparent.”

4105 PROGRAMMERS

REV, JAN 1986

4100-STYLE COMMANDS & REPORTS
SET DIALOG AREA COLOR MAP

The discussion Displaying Colors in Section 4 explains the
concept of transparency and how the terminal displays
colors. Also refer to Appendix E, the Tektronix Color
Standard.

NOTE

The user can change the color mixtures in the
dialog area color map from the keyboard by using
the Interactive Color Interface. So, if your
program needs to have specific colors assigned to
particular indices, you will need to reissue the SET
DIALOG COLOR MAP command to ensure that
you get the colors you want.

The user can alter colors from the terminal keyboard by
using the Interactive Color Interface. See the discussion
Displaying Colors in Section 4 for more details.

Table 5-4 shows the factory default colors assigned to color
indices when the terminal is shipped from the factory. The
SET DIALOG AREA COLOR MAP command lets you
change these assignments.

Syntax Example

Host: EcTF830F4020C2F4
Setup: DACMAP 3,0,100,0,2,0,50,100

Defines the color mixtures for two indices in the dialog area,
white (HLS coordinates 0,100,0) for Index 3, and blue (HLS
coordinates 0,50,100) for Index 2 (50 is encoded C2, and 100
is encoded F4). In the host example, the 8 that follows the
opcode TF'is the array count.

Related Command
SET SURFACE COLOR MAP

Table 5-4
DEFAULT DIALOG AREA COLOR INDICES
Color | Color Color Coordinates
Index | Mixture Hue Lightness Saturation
0 Black 0 0 0
1 White 0 100 0
2 Red 120 50 100
3 Green 240 50 100
4 Blue 0 50 100
5 Cyan 300 50 100
6 Magenta 60 50 100
7 Yellow 180 50 100
5-51

4100-STYLE COMMANDS & REPORTS
SET DIALOG AREA HARDCOPY ATTRIBUTES

SET DIALOG AREA HARDCOPY ATTRIBUTES
Sets attributes for a copy initiated by the HARDCOPY
command or the D Copy key. (Can be saved in nonvolatile

memory.)

Host Syntax

EcQL number-of-pages
page-origin
Fe-interpretation

Setup Syntax

HCDAATTRIBUTES number-of-pages
page-origin
Fr-interpretation

number-of-pages. integer; specifies how many pages to copy.
Must be in the range 0 to 32767 (0 means no change from the
last setting).
Defaults: Factory
Omitted

1
1

page-origin: integer; specifies the copy’s starting point. Must
be one of the following:
0 First line on the screen
1 Top of the dialog area buffer
2 Bottom of the dialog area buffer
Defaults: Factory = 0
Omitted = 0

Fe-interpretation. integer; specifies how the terminal treats
Form Feed (¥r) characters in the dialog area buffer. Must be
one of the following:

0 Starts a new page every 60 lines, ignoring Fr

1 Starts a new page every 66 lines or when ¥r appears

in the text

2 Starts a new page only when Fr appears in the text

Defaults: Factory = 0
Omitted = 0

This command specifies how many pages of dialog to copy,
the starting point, and how to treat Form Feeds. As a
default, the terminal sends 60 lines of text to the copier,
starting with the first visible line on the screen.

5-52 REV, JUN 1985 4105 PROGRAMMERS

If page-origin is set to 0, the copy starts with the first line of
text visible in the dialog area. If page-originis set to 1, the
copy starts with the first line of text in the dialog area buffer.
If page-origin is set to 2, the copy starts as many pages up
from the bottom as number-of-pages specifies, and copies
from there back to the bottom of the dialog area buffer.

The Fr-interpretation parameter determines the page size.
When Fr-interpretation is set to 0, each page is 60 lines of
text, with three blank lines at the top and bottom of the page
(the terminal ignores Fr). When #r-interpretation is set to 1,
the terminal starts a new page each time it encounters a Fr in
the text, as well as after every 66 lines. When
Fr-interpretation is set to 2, the terminal starts a new page
only when it encounters a Fr in the text.

If you set number-of-pages to 1, page-origin to 1,
Fr-interpretation to 2, and there are no Form Feeds in the
text, then the copier prints the entire dialog area buffer with
no page breaks (on the Tektronix 4695 Copier, this would be
a continuous sheet of paper).

If, however, you set number-of-pages to 4, Fr-interpretation
to 2, and have four Form Feeds at the beginning of the text
on the screen, then the copier turns out only four blank
sheets of paper.

For lines that are wider than 80 characters, the terminal
sends the long lines without inserting a Cr; this allows you to
use printers that can print wide columns.

For standard sized copies with line length greater than 80,
the Tektronix 4691, 4692, and 4695 Color Copiers, which
don’t have wide column capability, automatically generate a
Crly and start printing on the next line. For small copies, all
three copiers print 132 characters en the same line. (Copy
size is selected with the SET COPY SIZE command).

Syntax Example

Host: EcQL211
Setup: HCDAATTRIBUTES 2,1,1

Specifies that, when you issue the HARDCOPY command,
the terminal should copy two pages of the dialog area,
beginning at the top of the dialog area buffer, starting a new
page after each 60 lines of text or when Fr is encountered.

Related Command
HARDCOPY

C

J

SET DIALOG AREA INDEX

Specifies the color index for alphatext characters,
character-cell background, and dialog area background.
(Can be saved in nonvolatile memory.)

Host Syntax

EcLI character-index
character-background-index
dialog-background-index

Setup Syntax

DAINDEX character-index
character-background-index
dialog-background-index

character-index: integer; specifies the color index of the
characters displayed in the dialog area. Must be in the range
0 through 65535.
Defaults: Factory
Omitted

1

o

character-background-index: integer; specifies the color
ﬂ index used for each character cell background. Must be in
the range 0 through 65535. Index 0 specifies transparent.
Defaults: Factory = 0
Omitted = 0

dialog-background-index: integer; specifies the color index
of the dialog area background. Must be in the range 0
through 65535. Index 0 specifies transparent.
Defaults: Factory = 0

Omitted = 0

The dialog area uses different color indices than those used
in the graphics area. There are eight color indices available,
corresponding to values O through 7; a value greater than 7
sets the color index to 7. The dialog area’s background index
specifies the dialog area’s color before characters are written
on it and after it is erased.

)

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
SET DIALOG AREA INDEX

When the terminal displays a character in the dialog area, it
also displays the character cell that encloses the character.
The cell is displayed in the character background color, set
with the character-background-index parameter.

When Index 0 is used for alphatext characters, it represents
an opaque color just like Indices 1 through 7. However,
when Index 0 is used for the character-cell background or the
dialog area background, that background becomes
transparent and whatever is behind it shows through. If both
the character and dialog backgrounds are transparent, the
dialog appears to be written on a piece of glass in front of
the graphics area.

The ANSI SGR (SELECT GRAPHICS RENDITION)
command gives you the same control over the dialog area
and gives you additional control over text display — you can
select underscoring, blinking, and reversed-video text. The
ANSI mode TEKSCNM command can reverse colors in
both the graphics area and dialog area.

Syntax Example

Host: EcLI321
Setup: DAINDEX 3,2,1

Sets the character-index to 3 (default value green), the
character-background-index to 2 (default value red), and the
dialog-background-index to 1 (default value white).

Related Commands

SET DIALOG AREA VISIBILITY

SET DIALOG AREA WRITING MODE
SGR (SELECT GRAPHICS RENDITION)'
TEKSCNM (SCREEN MODE)'

! These are ANSI commands, described in Section 3.

5-53

4100-STYLE COMMANDS & REPORTS
SET DIALOG AREA LINES

SET DIALOG AREA LINES

Specifies the number of lines visible in the dialog area. (Can
be saved in nonvolatile memory.)

Host Syntax

SET DIALOG AREA VISIBILITY

Specifies whether the dialog area is visible. (Can be saved in
nonvolatile memory.)

Host Syntax

EcLL number-of-lines

EcLV visibility-mode

Setup Syntax

Setup Syntax

DALINES number-of-lines

DAVISIBILITY visibility-mode

number-of-lines: integer; specifies how many lines are in the
dialog area. Must be in the range 2 through 30.
Defaults Factory = 30

Omitted = Error

If you make the dialog area larger than the dialog buffer
(assuming both are less than 30 lines), the terminal expands
the dialog buffer to be as large as the dialog area.

Syntax Example

Host: EcLL?
Setup: DALINES 15

Sets the dialog area to 15 lines (encoded ?).

Related Commands

SET DIALOG AREA BUFFER SIZE
SET DIALOG AREA VISIBILITY

5-54

visibility-mode: integer (keyword in Setup); sets the dialog
area to be either invisible or visible. Must be one of the
following:
Host Setup
0 no
1 yes
Defaults: Factory
Omitted

Dialog area invisible
Dialog area visible

1

1

This command serves the same purpose as the Dialog key —
it determines whether the dialog area is visible or not.

If the dialog area is enabled but not visible, the terminal
stores alphatext in the dialog area buffer even though the
dialog area is not visible. When the dialog area is made
visible, the alphatext in the dialog area buffer becomes
visible, too. The terminal will automatically scroll the dialog
area, if necessary, to put the cursor in view.

Related Commands

CLEAR DIALOG SCROLL

ENABLE DIALOG AREA

SET DIALOG AREA BUFFER SIZE
SET DIALOG AREA INDEX

SET DIALOG AREA LINES

SET DIALOG AREA WRITING MODE
SET 4014 ALPHATEXT SIZE

4105 PROGRAMMERS

J

SET DIALOG AREA WRITING MODE

Controls how the terminal displays Underscore and Space
characters sent to the terminal screen. (Can be saved in
nonvolatile memory.)

Host Syntax

EcLM writing-mode

Setup Syntax

DAMODE writing-mode

writing-mode: integer (keyword in Setup); specifies the way
the terminal treats the Space (Sp) and Underscore (_)
characters. Must be one of the following:

Host Setup
0 replace Replaces characters

1 overstrike Overwrites characters
Defaults: Factory = 0
Omitted = 0

Use this command with screen editing programs that rely on
a printer’s overstrike capability to create underscoring.
TEKORM allows you to display underscoring in formatted
files so that it looks the same on the screen as it does on a
hard copy. Screen editing programs that turn underscoring
on and off with the ANSI command SGR (SELECT

J

GRAPHIC RENDITION) do not need to use the TEKORM

command to emulate underscoring on the terminal screen.

J

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
SET DIALOG AREA WRITING MODE

When Overstrike/Replace mode is set to replace (which is
the terminal’s factory default), the Space and Underscore
characters overwrite other characters’, as they normally do.
When Overstrike/Replace mode is set to overstrike, the
terminal treats Space and Underscore in the same way as a
printer does — the Underscore character underlines the
current character and the Space character just moves the
cursor forward without erasing characters. (On the screen,
however, the Space character erases underscores).

Alphatext displayed in the graphics area is not affected by
this command. SET GRAPHICS AREA WRITING MODE
sets overstrike capability for graphics area alphatext.

The ANSI-style command TEKORM
(OVERSTRIKE/REPLACE MODE) also controls the
Space and Underscore characters in the same way as the SET
DIALOG AREA WRITING MODE command.

Related Commands

SET DIALOG AREA INDEX

SET GRAPHICS AREA WRITING MODE
SGR (SELECT GRAPHIC RENDITION)'
TEKORM (OVERSTRIKE/REPLACE MODE)'

! These are ANSI commands, described in Section 3.

2
Unless Insert/Replace mode (IRM) is set to insert.

5-55

4100-STYLE COMMANDS & REPORTS
SET ECHO

SET ECHO

Specifies whether the terminal echoes characters it transmits
to the host. (Can be saved in nonvolatile memory.)

Host Syntax

SET EDIT CHARACTERS

Specifies the special text-editing characters used in the dialog
area while in Setup. (Can be saved in nonvolatile memory.)

Host Syntax

EcKE echo-mode

Setup Syntax

ECHO echo-mode

echo-mode: integer (keyword in Setup); specifies whether
the terminal provides a local echo. Must be one of the
following:

Host Setup
0 no No local echo — the terminal does not
echo
1 yes Local echo — the terminal echoes
Defaults: Factory = 0
Omitted = 1

When a character is typed on the keyboard, the character
displayed on the screen is an echoed character. Some hosts
provide an echo, and some do not. By default, the terminal
does not provide an echo.

If the host provides the echo and the terminal is set to echo
too, you will need to disable local echo; otherwise,
characters typed on the keyboard will be displayed twice,
LLIIKKEE TTHHIISS. If the host does not provide the
echo, set the terminal for local echo; otherwise, characters
typed on the keyboard will not appear on the screen.

In Setup (and in Local mode) the terminal always provides
the echo.

The ANSI command SRM (SEND/RECEIVE MODE) can
also be used to enable and disable local echo.

Related Commands

LOCAL
SRM (SEND/RECEIVE MODE)'

! This is an ANSI command, described in Section 3.

5-56

EcKZ character-delete
line-delete
literal

Setup Syntax

EDITCHARS character-delete
line-delete
literal

character-delete: integer (small integer in Setup); specifies

the key that erases the character to the left of the cursor.

Defaults: Factory = 127 (Pt — the Rub Out key)
Omitted = Unchanged

line-delete: integer (small integer in Setup); specifies the key

used in Setup to delete the current line.

Defaults: Factory = 24 (°CN — the Ctrl-X key combination)
Omitted = Unchanged

literal: integer (small integer in Setup); specifies the
character used just before an editing character to suspend its
control action and print it as text.
Defaults: Factory = 126 (~)

Omitted = Unchanged

This command assigns two keys to act as editing keys in the
dialog area, and one key to act as the literal character.

The literal character allows you to enter editing characters as
characters for a Setup command, rather than for their
editing function. Just precede the editing character with the
literal character. Use the literal character to enter Cr as well.
The literal character affects only the character that
immediately follows.

Syntax Example
Host: EcCKZG?A8G>

Setup: EDITCHARS [Rub Out],24, ~

Assigns the Rub Out key (ADE 127, encoded as G?) as the
delete-character key, the Ctrl-X key combination (ADE 24,
encoded as A8) as the line-delete characters, and the =
(ADE 126, encoded as G>) as the literal character.

Related Commands

DEFINE MACRO
DEFINE NONVOLATILE MACRO

4105 PROGRAMMERS

C

5 "

)

n
|
|
n
R
f
J
n
e
|
R
A
R
R
R
f
f
R

SET EOF STRING

Specifies the string the host sends to the terminal to indicate
the end of a file. (Can be saved in nonvolatile memory.)

4100-STYLE COMMANDS & REPORTS
SET EOL STRING

SET EOL STRING

Specifies the terminal’s end-of-line string. (Can be saved in
nonvolatile memory.)

Host Syntax Host Syntax
EcNE EOF-string EcNT EOL-string
Setup Syntax Setup Syntax

EOFSTRING EOF-string

EOF-string: integer array (delimited string in Setup);
specifies the ASCII characters in the EOF string. Each
integer in the array must be in the range from 0 through 127.
Defaults: Factory = Empty array

Omitted = Empty array

This command defines the terminal’s host port end-of-file
string. When the terminal receives this string from the host
during a COPY operation, it knows that the end of a file
transfer has been reached and terminates the COPY
operation.

The EOF string may not contain more than ten characters,
and should be set to match whatever string your host
actually sends at the end of a file.

Syntax Example

Host: EcNE3ESE9E:
Setup: EOFSTRING /XYZ/

Specifies XYZ as the EOF string. In the host example, The 3
following the escape sequence NE is the array count; X, Y,
and Z are encoded E8, E9, and E:, respectively.

Related Commands

COPY
PLOT

4105 PROGRAMMERS

EOLSTRING EOL-string

EOL-string: integer array (delimited string in Setup);
specifies the ASCII characters in the EOL string. Each
integer in the array must be in the range from 0 through 127.
Defaults: Factory = 13 (Cr)

Omitted = Empty array

The end-of-line string usually consists of the single character
Cr (ADE 13), but it can contain up to two ASCII characters.

The terminal sends the EOL string at the end of all
4100-style reports it sends to the host (the EOL-string is not
sent as part of ANSI reports, the answerback string, or the
4010 Status Report). The terminal also sends an EOL string
to break up any report longer than 72 characters and to
indicate the individual parts of the Error Report. See the
discussion of the EOL string under Reports at the end of this
section.

Syntax Example

Host: EcNT1=
Setup: EOLSTRING /~Cr/

Causes the terminal to treat g (ADE 13, encoded =) as an
end-of-line string. In the Setup example, The ~ (tilde)
preceding the Cr is the literal edit character (see the SET
EDIT CHARACTERS command for details of its use).

Related Commands

REPORT ERRORS
REPORT TERMINAL SETTINGS

5-57

4100-STYLE COMMANDS & REPORTS
SET EOM CHARACTERS

SET EOM CHARACTERS
Specifies either of two characters that the terminal can use to
mark the end of a line of text in data sent to the host. (Can

be saved in nonvolatile memory.)

Host Syntax

EcNC first-EOM-character
second-EOM-character

Setup Syntax

EOMCHARS first-EOM-character
second-EOM-character

first-EOM-character: integer (small integer in Setup);
specifies the ADE of one EOM character. Must be in the
range from 0 through 127.
Defaults: Factory = 13 (Cr)

Omitted = 0 (Nu)

second-EOM-character: integer (small integer in Setup);
specifies the ADE of another EOM character. Must be in the
range from 0 through 127.
Defaults: Factory = 10 (Lr)

Omitted = 0 (Nvu)

Typically, you set the EOM characters to whatever
characters terminate a command line to your host. If you set
both characters to Nu, the terminal will not use the transmit
delay for characters typed from the keyboard.

If the terminal is in Prompt mode when the operator types
either EOM character, the terminal stops transmitting until it
receives a prompt string from the host and the transmit delay
expires (see the SET TRANSMIT DELAY command). Then
it sends the next line of text.

If the terminal is not in Prompt mode when the operator
types either EOM character, the terminal stops transmitting
only until the transmit delay expires before sending further
information.

Syntax Example

Host: EcNC=:
Setup: EOMCHARS 13,10

Defines Cr (ADE 13, encoded =) and Lr (ADE 10,
encoded) as EOM characters.
Related Commands

PROMPT MODE
SET TRANSMIT DELAY

5-58

SET ERROR THRESHOLD

Specifies the levels of error messages the terminal displays.

Host Syntax

EcKT error-threshold-level

Setup Syntax

ERRORLEVEL error-threshold-level

error-threshold-level: integer; specifies the lowest error level
displayed. Must be one of the following:
0 Displays all messages, warnings, errors, and
terminal failure messages

1 Displays warnings, errors, and terminal failure
messages

2 Displays errors and terminal failure messages

3 Displays terminal failure messages

4 No messages, warnings, errors, or terminal failure
messages displayed :
Defaults: Factory = 2
Omitted = 0

This command determines the level of error messages that
are displayed on the screen; it has no effect on which errors
are reported to the host. When you issue a REPORT
ERRORS command, the terminal records the eight most
recent error messages and transmits them in response to a

REPORT ERRORS command, regardless of what threshold

level you set.
See Appendix B for descriptions of all error messages.

Related Command
REPORT ERRORS

4105 PROGRAMMERS

C

C

J

SET FLAGGING MODE

Specifies the kind of flagging the terminal uses. (Can be
saved in nonvolatile memory.)

Host Syntax

4100--STYLE COMMANDS & REPORTS
SET GIN CURSOR COLOR

SET GIN CURSOR COLOR

Specifies the color mixture for the GIN cursor. (Can be
saved in nonvolatile memory.)

Host Syntax

EcNF flagging-mode

Setup Syntax

FLAGGING flagging-mode

flagging-mode: integer (keyword in Setup); selects a flagging
mode. Must be one of the following:

Host Setup
0 none No flagging
1 input DC1/DC3 flagging on input from the
host
2 output DC1/DC3 flagging on output to the
host
3 in/out DC1/DC3 flagging on both input

from and output to the host
4 DTR/CTS DTR/CTS flagging
Defaults: Factory = 0
Omitted = 0

J

Flagging controls the flow of data between the terminal and
host by providing a means for either device to signal the
other whenever it’s ready to send or receive data. This
prevents the input queues of each from overflowing, thus
losing data. This setting must match the flagging scheme
used by your host. See Section 2 for more details.

If the host uses the DC1/DC3 scheme, users can use the
Ctrl-S and Ctrl-Q key combinations to stop and start output
from the host.

J

4105 PROGRAMMERS

REV, JUN 1985

EcTC first-color-coordinate
second-color-coordinate
third-color-coordinate

Setup Syntax

GCURSOR first-color-coordinate
second-color-coordinate
third-color-coordinate

first-color-coordinate: integer; selects a value for hue. Must
be in the range 0 through 360°.
Defaults: Factory = 0

Omitted = 0

second-color-coordinate: integer; selects a value for
lightness. Must be in the range 0 through 100%.
Defaults: Factory = 100

Omitted = 0

third-color-coordinate: integer; selects a value for
saturation. Must be in the range 0 through 100%.
Defaults: Factory = 0

Omitted = 0

This command specifies the color mixture for the GIN
cursor using the HLS coordinate system.

Syntax Example

Host: EcTCK4C2F4
Setup: GCURSOR 180,50,100

Specifies that the GIN cursor should be yellow (HLS color
coordinates 180,50,100, encoded K4 C2 F4).

5-59

4100-STYLE COMMANDS & REPORTS
SET GIN CURSOR SPEED

SET GIN CURSOR SPEED

Determines how fast the GIN cursor moves across the screen
when the Joydisk is pressed. (Can be saved in nonvolatile
memory.)

Host Syntax

SET GRAPHICS AREA WRITING MODE
Specifies whether the terminal overwrites or replaces a
character or marker in the graphics area. (Can be saved in
nonvolatile memory.)

Host Syntax

EclJ normal-speed
shifted-speed

Setup Syntax

GSPEED normal-speed
shifted-speed

normal-speed: integer; determines the speed of the GIN
cursor when the Joydisk is pressed. Must be in the range 1

through 10.
Defaults: Factory = 10
Omitted =

shifted-speed: integer; determines the speed of the GIN
cursor when both the Joydisk and the Shift key are pressed.
Must be in the range 1 through 10.
Defaults: Factory = 1

Omitted = 1

You can choose the cursor speed from a scale of 1 to 10, with
1 being the slowest speed and 10 being the highest. If you
specify a value less than 1, the terminal interprets it as 1. If
you specify a value greater than 10, the terminal interprets it
as 10.

5-60

EcMG writing-mode

Setup Syntax

GAMODE writing-mode

writing-mode: integer (keyword in Setup); must be one of
the following:

Host Setup
0 replace Specifies replace

1 overstrike Specifies overstrike
Defaults: Factory = 1
Omitted = 0

This command affects the way the terminal displays
alphatext, markers, and graphtext in the graphics area.

If writing-mode is set to overstrike, characters can be
superimposed on other characters. That is, the terminal can
write a new character into the same character cell occupied
by an existing character without first erasing the existing
character. You can use overstrike to underline characters
with _ (the Underscore character).

If writing-mode is set to replace, the terminal does not
superimpose characters. Before the terminal writes a new
character at the location of an existing character, the existing
character is erased (with the background index specified in
the SET VIEW ATTRIBUTES command). The terminal
then displays the new character.

The SET GRAPHICS AREA WRITING MODE command
affects alphatext in the graphics area, graphtext, and
markers.

Related Commands

DRAW MARKER

GRAPHIC TEXT

SET BACKGROUND INDICES

SET DIALOG AREA WRITING MODE
SET VIEW ATTRIBUTES

4105 PROGRAMMERS

C

C

J

SET GRAPHTEXT CHARACTER PATH

Selects a direction (right, left, up, down) to move after
writing a graphtext character.

4100-STYLE COMMANDS & REPORTS
SET GRAPHTEXT CHARACTER PATH

The effect of the character path setting is relative to the
rotation angle specified in SET GRAPHTEXT
ROTATION. For example, if the rotation angle is 90° and
the character path is set to right, the characters are written

towards the top of the screen. The sense of the keywords
(right, up, left, and down) applies to the character path at 0°
rotation. Figure 5-7 shows how the terminal displays the
string “ABC” using the four different directions for
character path. Note that graphtext rotation is 0° for all
examples in Figure 5-7.

'Host Syntax

EcMN direction

Setup Syntax Syntax Example

Host: EcMN2
Setup: GTPATH UP

Writes each graphtext character above the previous one at 0°

GTPATH direction

direction: integer (keyword in Setup); specifies which rotation.
direction graphtext characters are written. Must be one of
the following: Related Commands
Host Setu
e —hR Eaual , | GRAPHIC TEXT
right - Bqual to rotation angle SET GRAPHTEXT ROTATION
1 left 180° greater than rotation angle
2 up 90° greater that rotation angle
3 down 90° less than rotation angle
Defaults: Factory = 0
Omitted = 0
Integer Setup Path Relation
Setting Parameter Example to Rotation Angle
0 RIGHT S
XQBC , ame
1 LEFT .CBA, +180°
2 UP * +90°
C
B
A
X
3 DOWN X -90°
A
B
C
*
Note: Graphtext is ‘“‘ABC’’ with rotation =0° in all examples.
x is graphics position before graphtext is displayed.
* is updated graphics position after graphtext is displayed.
4526-17B

Figure 5-7. Character Path Settings.

4105 PROGRAMMERS 5-61

4100-STYLE COMMANDS & REPORTS
SET GRAPHTEXT ROTATION

SET GRAPHTEXT ROTATION

Specifies the rotation angle (in degrees) for graphtext.

Host Syntax

EcMR mantissa
power-of-two

Setup Syntax

GTROTATION mantissa
power-of-two

C

Table 5-5

GRAPHTEXT CHARACTER ROTATION
Specified Rotation Actual Rotation

0.0to 45.0° 0°

45.0to 135.0° 90°

135.0to 225.0° 180°

225.0to 315.0° 270°

315.0to0 360.0° 0°

v81-925%

‘paAeidsip

mantissa: integer; indicates the rotation angle. The valid
values for for your terminal are 0, 90, 180, and 270. If you
enter other values, the terminal will round them off to the
nearest valid value as shown in Table 5-5.
Defaults: Factory = 0

Omitted = 0

power-of-two. integer; gives the power of two by which the
mantissa is multiplied. This is usually 0.
Defaults: Factory = (none)

Omitted = 0

These two parameters are included for compatibility with
other Tektronix terminals which can rotate graphtext to any
angle.

Figure 5-8 shows the effect of rotating graphtext.

Syntax Example

Host: EcMRE:0
Setup: GTROTATION 90,0

Specifies a clockwise rotation of 90° for the graphtext
string. In the host example, 90 is encoded E:; 0 is encoded 0.
See Host Parameters at the beginning of this section for a
discussion of encoding real parameters.

Related Commands

GRAPHIC TEXT
SET GRAPHTEXT CHARACTER PATH

5-62 REV, JUN 1985

‘pake|dsip si 1xayydesb ai0jaq uonisod saiydeub si x

s1 1xajydeub saye uonisod soydesb pajepdn st

‘sajdwexa
lle ur st yied Jayoeseys pue . 0gy,, Si xawydesn :sjoN

O
@
<T
" 0Lz
<ABC, ost
»
D
o
O
06
ogg 0
ajdwex3 Bumes

Figure 5-8. Graphtext Rotation Examples.

4105 PROGRAMMERS

J

J

f
|
f
i
1
i
4
i
"
I
4
A
n
"
H
N
N
l

SET GRAPHTEXT SIZE

Sets the size of graphtext.

Host Syntax

EcMC width
height
spacing

Setup Syntax

GTSIZE width
height
spacing

width: integer; unused (can be omitted in Setup). Valid range
is 0 through 4095. (This parameter is provided for
compatibility with other Tektronix terminals.)
Defaults: Factory = 43 (TSU)

Omitted = Depends on height value

height: integer; specifies the height (in terminal space units)
of a graphtext character. Must be in the range 0 through
4095; 0 specifies the default value.
Defaults: Factory = 61 (TSU)

Omitted = 61 (TSU)

spacing: integer; unused (can be omitted in Setup). Valid
range is 0 through 4095. (This parameter is provided for
compatibility with other Tektronix terminals.)
Defaults: Factory = 9(TSU)

Omitted = Depends on height value

NOTE

You may want to include a reasonable value for the
unused parameters if you want your application to
run on other Tektronix terminals; if you specify too
narrow a width or spacing, characters may be
unreadable on other terminals.

4105 PROGRAMMERS

REV, JUN 1985

4100-STYLE COMMANDS & REPORTS
SET GRAPHTEXT SIZE

The terminal displays graphtext in several fixed sizes,
according to the height parameter you specify. The width
and spacing parameters are accepted but ignored for
graphtext. Each fixed size corresponds to a range of height
values. The smallest available size displays an uppercase
letter as five pixels wide and seven pixels high; the other
available sizes are integer multiples of the smallest size. Table
5-6 gives the height ranges (in terminal space units) that yield
the first three character sizes available.

Syntax Example

Host: EcC?E9=
Setup: GTSIZE 63,89,13

Specifies a character size 89 terminal space units high
(encoded E9), 63 terminal spaces wide (encoded C?), with 13
terminal space units (encoded =) between characters. This
results in a displayed size of 10x14 pixels.

Note that the width and spacing parameters are not used by
your 4105 terminal; coding them allows your application to
display readable, well-proportioned graphtext on other
Tektronix terminals.

Related Commands

GRAPHIC TEXT
SET GRAPHTEXT CHARACTER PATH

Table 5-6
GRAPHTEXT SIZES®
Specified Height | Resulting Size
(TSV) (Pixels)
1—88 5x7
89 — 146 10 x 14
147 — 205 15 x 21

? These examples assume you've used the default
window size.

5-63

4100-STYLE COMMANDS & REPORTS
SET HARDCOPY MONOCHROME ATTRIBUTES

SET HARDCOPY MONOCHROME
ATTRIBUTES

Specifies the line termination (Cr or CrLr) that the terminal
sends to a monochrome printer. (Can be saved in nonvolatile

memory.)

Host Syntax

EcQE monochrome-attributes

Setup Syntax

HCMONOCHROME monochrome-attributes

monochrome-attributes: integer array (integer in Setup);
specifies the line termination used in data sent to
monochrome copiers. The array count in host syntax is
always 1. Valid values are:

0 Sends just a Cr at the end of a line

1 Sends a CrLr combination at the end of a line
Defaults: Factory = 1

Omitted = 0

Use the SET HARDCOPY MONOCHROME
ATTRIBUTES command to make the terminal send the
appropriate line endings for your monochrome printer. This
command affects copies made on either Centronics-style
monochrome printers or monochrome graphics printers.

5-64

Your terminal usually sends a Carriage Return/Line Feed
combination at the end of each line sent to a printer.
Depending on switch settings on your printer, it may expect
just a Carriage Return instead. If your terminal sends the
wrong line endings for the printer, it can cause one of two
problems:

o If the printer expects Line Feeds and the terminal doesn’t
send any, all your lines of text will print on the same line,
resulting in a single unreadable black line.

e If the printer expects just Carriage Returns and the
terminal sends extra Line Feeds, the copies you make will
have an extra blank line following each line of characters
(that is, single-spaced text will be double spaced, and
graphics will have blank lines separating each line of
graphics data).

Syntax Example
Host: EcQE10
Setup: HCMONOCHROME 0

Instructs your terminal to send just a Carriage Return (Cr) at
the end of each line. In the host example: the / following the
opcode QF is the array count.

Related Commands

HARDCOPY
SELECT HARDCOPY INTERFACE

4105 PROGRAMMERS

C

J

J

SET IMAGE ORIENTATION

Specifies whether the long axis of an image aligns with the
long or short axis of the paper. (Can be saved in nonvolatile
memory.)

4100-STYLE COMMANDS & REPORTS
SET KEY EXECUTE CHARACTER

SET KEY EXECUTE CHARACTER

Specifies the character used in key macros to specify whether
subsequent characters should be processed by the host or by
the terminal. (Can be saved in nonvolatile memory.)

Host Syntax Host Syntax
EcQO orientation EcKY key-execute-character
Setup Syntax Setup Syntax

HCORIENT orientation

KEYEXCHAR key-execute-character

orientation: integer (keyword in Setup); specifies how an
image is oriented on a copy. Must be one of the following:
Host Setup
0 horizontal Long axis of image on long axis of
paper
Long axis of image on short axis of
paper, with image at bottom of page

1 vbottom

2 vcenter Long axis of image on short axis of
paper, with image centered vertically on
page

3 vtop Long axis of image on short axis of

paper, with image at top of page
Defaults: Factory = 0
Omitted = 0

On a 4691 or 4692 Copier, this command selects a horizontal
or vertical orientation for the copied image. This command
has no effect on copies made on the 4695 Color Graphics
Copier.

At any of the vertical orientations (vbottom, vcenter, or
vtop) the image size is reduced to fit on the narrow axis of
the paper.

Syntax Example

Host: EcQO2
Setup: HCORIENT vcenter

Centers the image vertically, with its long axis aligned with
the short axis of the paper (orientation 2).

Related Commands

COPY

HARDCOPY

SELECT COLOR HARDCOPY IMAGE DENSITY
SELECT HARDCOPY INTERFACE

SET COLOR COPIER REPAINT

4010 HARDCOPY

4105 PROGRAMMERS

REV, JUN 1985

key-execute-character: integer (small integer in Setup);
specifies the character. Valid values are in the range 0
through 127.
Defaults: Factory = 16 (PL)

Omitted = 0 (Nv)

This command selects the key-execute character, which is
used during macro expansion and is part of a macro’s
definition.

The key-execute character acts as a toggle in the macro
definition. That is, if the terminal is sending macros to the
host, the key-execute character means “use what follows
locally.” If the terminal is currently using macros locally, the
key-execute character means “send what follows to the
host.”

The key-execute character has this special effect only when
the macro containing it is invoked by pressing a key. If the
macro is invoked with an EXPAND MACRO command, the
key-execute character is treated like any other character in
the macro definition.

Syntax Example
Host: EcKYAS
Setup: KEYEXCHAR 24

Specifies the ¢~ character (ADE 24, encoded A8) as the key
execute character.

Related Commands

DEFINE MACRO

DEFINE NONVOLATILE MACRO
EXPAND MACRO

LEARN

LEARN NONVOLATILE

5-65

4100-STYLE COMMANDS & REPORTS
SET LINE INDEX

SET LINE INDEX

Specifies the color index for all subsequent lines, panel
boundaries, and markers.

Host Syntax

SET LINE STYLE

Specifies the line style for subsequent lines and panel
boundaries.

Host Syntax

EcML line-index

EcMYV line-style

Setup Syntax

Setup Syntax

LINEINDEX line-index

LINESTYLE line-style

line-index: integer; specifies the color index for lines, panel
boundaries, and markers. Must be in the range 0 to 32767.
(Values greater than 7 are set to 7.)
Defaults: Factory = 1

Omitted = 0

After this command is issued, all new lines, panel
boundaries, and markers are drawn in the color specified by
the index — until the terminal receives another SET LINE
INDEX command that changes the index.

A host program assigns a color to an index with SET
SURFACE COLOR MAP. A terminal user can use the Setup
command CMAP or use the Interactive Color Interface to
assign colors to indices.

Syntax Example
Host: EcML3
Setup: LINEINDEX 3

Specifies Index 3 (default value green) for subsequent lines,
panel boundaries, and markers.

Related Commands

DRAW
DRAW MARKER
SET SURFACE COLOR MAP

5-66

REV, JUN 1985

line-style: integer; selects a predefined line style. Must be in
the range 0 through 7.
Defaults: Factory = 0 (solid line)

Omitted = 0 (solid line)

Figure 5-9 shows the line styles. The terminal displays all
new lines and panel boundaries with the line style selected
with this command or with the SET 4014 LINE STYLE
command, whichever was last executed. Changing the line
style has no effect on lines already drawn.

NOTE

While the dialog area is disabled, issuing a PAGE
command resets the line style to 0.

Syntax Example

Host: EcMV1
Setup: LINESTYLE 1

Specifies a dotted line (/ine style 1) for subsequent lines and
panel boundaries.

Related Commands

BEGIN PANEL BOUNDARY
DRAW

PAGE

SET 4014 LINE STYLE

4105 PROGRAMMERS

C

J

Parameter Line Style

4526-19A

Figure 5-9. Line Styles.

5

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
SET MARKER TYPE

SET MARKER TYPE

Selects the kind of marker to be drawn.

Host Syntax

EcMM marker-number

Setup Syntax

MARKERTYPE marker-number

marker-number: integer; selects a predefined marker type.
Must be in the range 0 through 10.
Defaults: Factory = 0

Omitted = 0

When you change marker types, markers already displayed
remain the same.

Figure 5-10 shows the predefined marker types.

Syntax Example

Host: EcMM:
Setup: MARKERTYPE 10

Specifies Marker Type 10 (encoded .).

Related Commands
ENTER MARKER MODE
DRAW MARKER
Marker Marker
Parameter Type Parameter Type
0 g 6 o
1 * 7 @
2 8 2]
3 ¥ 9 ®
4 0 10
5 £
4526-42A

Figure 5-10. Marker Types.

5-67

4100-STYLE COMMANDS & REPORTS
SET PARITY

SET PARITY

Specifies the kind of parity the terminal uses when it sends
data to the host. (Can be saved in nonvolatile memory.)

Host Syntax

EcNP parity-mode

Setup Syntax

PARITY parity-mode

parity-mode: integer (keyword in Setup); selects the kind of
parity the terminal uses. Must be one of the following:

Host Setup
0 none Parity bitsetto0
1 odd Odd parity
2 even Even parity
3 high Paritybitsetto1
4 data No parity; parity bit available for data

Defaults: Factory = 0
Omitted = 0

This command defines how the parity bit is set on characters
sent to the host. This setting must match the parity checking
scheme that the host uses on incoming data.

NOTE

The keyword none in the parity-mode parameter
means the parity bit is set to 0. For no parity, use
the keyword data.

When parity-mode is 1 (odd), the eighth bit in each
character’s binary ASCII representation is set so that the
sum of all the bits in the character is odd. When parity-mode
is 2 (even), the eighth bit is set so that the sum of all the bits
in the character is even.

When parity-mode is 4 (no parity), the eighth bit can be
data; the terminal, however, does not generate 8-bit data.

The terminal ignores the parity bit in characters it receives
from the host.

5-68

SET PIXEL BEAM POSITION

Sets the position of the pixel beam in the pixel viewport.

Host Syntax

EcRH beam-position

Setup Syntax

PXPOSITION beam-position

beam-position: xy-coordinate; specifies the position of the
pixel beam in the pixel viewport. Values for x range from 0
through 511; for y, from 0 through 359.
Defaults: Factory = 0,359

Omitted = 0,0

The pixel beam position is like an invisible cursor that marks
where pixel writing will occur. Setting the pixel beam
position in the pixel viewport establishes the starting point
for a RASTER WRITE or RUNLENGTH WRITE
command. Working from this point, these commands set
pixel colors to create a visible image in the pixel viewport.

You set the pixel beam position relative to the lower-left
corner of the pixel viewport. For instance, consider a pixel
viewport that is 100 pixels square, with its lower-left corner
located at 100,100 (in graphics memory) and its upper-right
corner located at 200,200. To place the pixel beam in the
center of the square, you must give beam position
coordinates of 50,50 because the beam position is relative to
the lower-left corner of the pixel viewport, not the graphics
memory.

If you try to set the pixel beam to a position outside the pixel
viewport, the terminal moves the beam to the nearest pixel
inside the viewport. If, for instance, you give beam position
coordinates of 150,150 and the pixel viewport is just 100
pixels square, the terminal positions the beam at 100,100,
the upper-right corner of the viewport.

Syntax Example

Host: EcSepySeY
Setup: PXPOSITION 100,100

Sets the pixel beam position at 100,100 (xy-coordinate
encoded SppysSpY).
Related Commands

RASTER WRITE
RUNLENGTH WRITE
SET PIXEL VIEWPORT

4105 PROGRAMMERS

C

(

J

SET PIXEL VIEWPORT

Specifies the pixel viewport’s size and position in graphics
memory.

Host Syntax

EcRS lower-left
upper-right

Setup Syntax

PXVIEWPORT lower-left

upper-right

lower-left: xy-coordinate; specifies one corner of the pixel
viewport. Values for x must be in the range O through 511;
for y, 0 through 359.
Defaults: Factory = 0,0

Omitted = 0,0

upper-right: xy-coordinate; specifies the opposite corner of
the pixel viewport. Values for x must be in the range 0
through 511; for y, 0 through 359.
Defaults: Factory = 479,359

Omitted = 0,0

J

The pixel viewport is a rectangular area in graphics memory.
Commands that write pixels directly operate within the pixel
viewport that was most recently defined by this command.

J

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
SET PIXEL VIEWPORT

The coordinates specified in the lower-left and upper-right
parameters may actually be the coordinates of any two
diagonally opposite corners of the pixel viewport. The
terminal will sort the two points to determine the correct
upper and lower corners.

When you create a new pixel viewport, the terminal resets
the pixel beam position to the upper-left corner of the pixel
viewport.

You can set the viewport’s x-axis to include the pixels 480 to
511, which are off the screen. A Level O warning will be
generated, however.

Syntax Example
Host: EcRSSepySeY!pb!B
Setup: PXVIEWPORT 100,100,200,200

Sets a pixel viewport with a lower-left corner of 100,100
(xy-coordinate encoded SppySpY) and an upper-right corner
of 200,200 (xy-coordinate encoded /pb!B).

Related Commands

BEGIN PIXEL OPERATIONS
SET PIXEL BEAM POSITION
RASTER WRITE
RUNLENGTH WRITE

5-69

4100-STYLE COMMANDS & REPORTS
SET PROMPT STRING

SET PROMPT STRING

Specifies the string that initiates the terminal’s Prompt
mode. (Can be saved in nonvolatile memory.)

Host Syntax

EcNS prompt-string

Setup Syntax

PROMPTSTRING prompt-string

prompt-string: integer array (delimited string in Setup
syntax); specifies the characters in the string. Valid range for
each character is ADE 0 — 127.
Defaults: Factory = Empty array

Omitted = Empty array

This command defines the string that the terminal
recognizes as a prompt string from the host. When the
terminal is in Prompt mode and receives the prompt string,
the terminal waits a specified interval before sending the
next line of data.

See Section 2 for an explanation of Prompt mode and other
communications modes.

Syntax Example
Host: EcNS3F1F2F3
Setup: PROMPTSTRING /abc/

Specifies the string abc as the terminal’s prompt string. In
the host example, the integer 3 after the opcode NS is an
array count; the letter a is encoded F1, b is encoded F2, and
cis encoded F3.

Related Commands

PROMPT MODE
SET TRANSMIT DELAY

5-70

SET QUEUE SIZE

Specifies the size (in bytes) of the terminal’s input queue for
host communications. (Can be saved in nonvolatile
memory.)

Host Syntax

EcNQ queue-size

Setup Syntax

QUEUESIZE queue-size

queue-size: integer; indicates the size in bytes of the input
queue. Must be in the range 1 through 65535.
Defaults: Factory = 300

Omitted = Error

This command reserves part of program memory for use as
an input queue for data coming from the host. Data from
the host is stored in the input queue until it can be processed
by the terminal. If the terminal is not using a flagging
scheme, the input queue fills up, and the terminal simply
discards incoming data until there is more room in the
queue. See Section 2 for details.

Specifying a very small input queue may cause data to be
lost when the input queue overflows. Specifying a large
input queue uses program memory that could be used for
other features such as macro definitions or panel
definitions. See the discussion How the Terminal’s Memory
Works in Section 4 for an explanation of how the input
queue size affects the availability of program memory.

Syntax Example
Host: EcNQx4
Setup: QUEUESIZE 900

Sets an input queue size of 900 bytes (encoded x4).

Related Commands

SET BAUD RATES
SET FLAGGING MODE

4105 PROGRAMMERS

C

J

33’_ b I

D

SET SEGMENT POSITION

Moves the GIN cursor to a specified position in terminal
space.

Host Syntax

4100-STYLE COMMANDS & REPORTS
SET SNOOPY MODE

SET SNOOPY MODE

Specifies whether the terminal displays ASCII control
characters.

Host Syntax

EcSX segment-number
position

Setup Syntax

SGPOSITION segment-number

position

segment-number: integer; must be 0, which identifies the
GIN cursor. This parameter is included for compatibility
with other Tektronix terminals, which allow you to define
and store segments and to use a segment as the GIN cursor.
Must be 0, which identifies the crosshair cursor.
Defaults: Factory = (none)

Omitted = 0

position: xy-coordinate; specifies the new location (in
terminal space) of the GIN cursor. Both x and y must be in
the range 0 through 4095.
Defaults: Factory = 0,0

Omitted = 0,0

This command relocates the GIN cursor in terminal space
and redraws the cursor at the new location.
Syntax Example

Host: EcSX1#" }#]
Setup: SGPOSITION 1,500,500

Moves the GIN cursor to 500,500 (encoded #' }#/).

Related Command
SET WINDOW

4105 PROGRAMMERS

EcKS snoopy-mode

Setup Syntax

SNOOPY snoopy-mode

snoopy-mode: integer (keyword in Setup); must be one of
the following:
Host Setup

0 no Takes the terminal out of Snoopy mode
1 yes Puts the terminal in Snoopy mode
Defaults: Factory = 0
Omitted = 1

Control characters are the characters that normally control
the terminal and aren’t usually displayed on the screen.
These are the characters shown in the first two columns of
the code charts included in Appendix A.

When in Snoopy mode, the terminal displays control
characters instead of executing them (except for P1 and P3,
which are executed but do not display, and Lr, which is
displayed and causes a new display line). Characters that are
normally filtered out of the host’s data stream (such as a
prompt sequence) are still filtered and not displayed.

While the terminal is in Snoopy mode, the terminal executes
Setup commands only, and not commands sent from the
host. As a result, only the user can take the terminal out of
Snoopy mode — the host cannot do it. To terminate Snoopy
mode, press the Cancel key, or enter Setup and issue
SNOOPY NO.

Related Command
CANCEL

5-71

4100-STYLE COMMANDS & REPORTS
SET STOP BITS

SET STOP BITS

Specifies the number of stop bits appended to each character
the terminal transmits. (Can be saved in nonvolatile
memory.)

Host Syntax

EcNB number-of-stopbits

SET SURFACE COLOR MAP

Specifies the colors assigned to one or more indices in the
graphics area. (Can be saved in nonvolatile memory.)

Host Syntax

EcTG surface-number
color-mixtures

Setup Syntax

Setup Syntax

STOPBITS number-of-stopbits

number-of-stopbits: integer; specifies how many stop bits
the terminal appends to each character it transmits. Valid
values are 1 and 2.
Defaults: Factory
Omitted

1
Error

While communicating with the host, the terminal transmits a
character as a series of 10 or 11 bits. Here’s the sequence of
bits in the series:

1. The start bit (always a 0)

2. Seven data bits

3. The parity bit (depends on the SET PARITY command)

4. One or two stop bits (always sent as 1’s —
number-of-stop-bits specifies how many)

Refer to Section 2 for more information about how the
terminal communicates with the host.

Related Command
SET PARITY

5-72

REV, JUN 1985

CMAP surface-number

color-mixtures

surface-number: integer; names the surface for which color
mixtures are being defined. (Other Tektronix terminals have
more than one surface, so the surface parameter is included
here for compatibility.) Must have a value of 1, since there is
just one surface defined on the 4105 terminal.
Defaults: Factory = 1

Omitted = Error TG11

color-mixtures: integer array; assigns color mixtures to one
or more color indices. Table 5-7 lists the default color
mixtures.
Defaults: Factory
Omitted

See Table 5-7
Error TG21

The integers in the color-mixtures array must be arranged in
groups of four called quadruples. The first integer in each
quadruple names a color index, while the following three
integers specify the color mixture for that color index.
(Remember that in host syntax, the first integer in the array
is the array count. So, to define the color mixtures for two
indices you would send first the array count of 8 followed by
the two quadruples.)

The number of quadruples in the array depends on the
number of indices you want to reset. You can define color
mixtures for eight color indices (numbered 0 through 7).
Thus you can include up to eight quadruples when issuing
this command.

The color mixture is specified in the HLS color coordinate
system. The valid ranges for the first, second, and third
coordinates are:

Hue -32768 — 32767
Lightness 0 — 100
Saturation 0 — 100

4105 PROGRAMMERS

C

C

)

J

J
i
|
M
|
R
J
0
i
k@)
4
f
f
n
i
I
n
i
n

The effect of the SET SURFACE COLOR MAP command
continues until superseded by another SET SURFACE
COLOR MAP command or until modified from the
keyboard through the Interactive Color Interface.

Use the SET DIALOG AREA COLOR MAP command to
set the dialog area color map.

Syntax Example
Host: EcTG14300C2F4
Setup: CMAP 1,3,240,50,100

Sets Index 3 to green (HLS color coordinates 240,50,100,
encoded O0C2F4):. In the host example, the array count, 4,
specifies the number of items in the color mixture array.

Note that the first parameter, /, designates Surface 1, even
though your terminal can display just one surface. This
parameter is required by the SET SURFACE COLOR MAP
command in order to be compatible with other Tektronix
terminals that can display more than one surface.

Table 5-7
DEFAULT GRAPHICS AREA COLOR INDICES

Color | Color Color Coordinates

Index | Mixture Hue Lightness Saturation
0 Black 0 0 0
1 White 0 100 0
2 Red 120 50 100
3 Green 240 50 100
4 Blue 0 50 100
S Cyan 300 50 100
6 Magenta 60 50 100
7 Yellow 180 50 100

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
SET TAB STOPS

SET TAB STOPS

Sets horizontal tab stops at the specified positions in the
dialog buffer. (Can be saved in nonvolatile memory.)

Host Syntax

EcKB tab-positions

Setup Syntax

TABS tab-positions

tab-positions: integer array; specifies one or more tab stops.
Valid values are integers from -2 to 132. Positive integers
specify specific column positions; you can also specify 0 to
clear all tabs, specify -1 (or the keyword all in Setup) to set
tabs at every column, or specify -2 to reset tab stops to the
factory default.
Defaults: Factory = Every eighth column (1,9, 17,. . .)
Omitted = 0

This command sets horizontal tab stops at the positions you
indicate, and it clears tabs that you don’t list.

There are two ANSI commands HTS (HORIZONTAL TAB
SET) and TBC (TAB CLEAR) that perform similar
functions. The ANSI commands CBT (CURSOR
BACKWARD TAB) and CHT (CURSOR HORIZONTAL
TAB) move the alphanumeric cursor to the default tab
positions or to tab positions that you set.

Syntax Example

Host: EcKB35:?
Setup: TABS 5,10,15

Sets tab stops at Columns 5, 10, and 15 (10 and 15 are
encoded : and ?).
Related Commands

CBT (CURSOR BACKWARD TAB)'
CHT (CURSOR HORIZONTAL TAB)'
HTS (HORIZONTAL TAB SET)'

TBC (TAB CLEAR)'

! These are ANSI commands, described in Section 3.

5-73

4100-STYLE COMMANDS & REPORTS
SET TEXT INDEX

SET TEXT INDEX

Specifies the color index for all text displayed in the graphics
area.

Host Syntax

SET TRANSMIT DELAY

Specifies the terminal’s delay between transmitting lines of
text. (Can be saved in nonvolatile memory.)

Host Syntax

EcMT text-index

EcND transmit-delay

Setup Syntax

Setup Syntax

GTINDEX text-index

XMTDELAY transmit-delay

text-index: integer; specifies the color index for text in the
graphics area. Valid values are in the range 0 through 65535.
Defaults: Factory = 1

Omitted = 0

This command sets the color index for all new text displayed
in the graphics area. This includes all graphtext, and any
alphatext displayed in the graphics area. This command does
not change the color index of existing text.

Alphatext displayed in the dialog area is not affected by this
command. Use the SET DIALOG AREA INDEX
command for dialog area alphatext.

Syntax Example
Host: EcMT2
Setup: GTINDEX 2

Sets the text color index to 2.

Related Commands

GRAPHIC TEXT
SET DIALOG AREA INDEX
SET VIEW ATTRIBUTES

5-74

transmit-delay: integer; indicates the transmit delay in
milliseconds; must be in the range 0 to 65535.
Defaults: Factory = 100

Omitted = 0

After the operator types an EOM character (or the terminal
sends an EOL string as part of a report), the terminal pauses
for a short time before resuming transmission. The length of
this pause is set with the SET TRANSMIT DELAY
command. This gives the host time to receive, verify, and
process one line of text before receiving another. Because of
the resolution of the terminal’s internal timer, the actual
delay time may be up to 33 milliseconds longer than the time
specified by this command.

If the terminal is in Prompt mode, the terminal waits until it
receives a prompt sequence and until the transmit delay has
elapsed before it transmits another line of text.

Syntax Example
Host: EcNDLS8
Setup: XMTDELAY 200

Sets the transmit delay to 200 milliseconds (encoded L8).

Related Commands

ENTER BYPASS MODE
PROMPT MODE
SET EOM CHARACTERS

4105 PROGRAMMERS

C

I'!

J

SET TRANSMIT RATE LIMIT

Specifies the effective transmit data rate limit. (Can be saved
in nonvolatile memory.)

Host Syntax

EcNL rate-limit

Setup Syntax

XMTLIMIT rate-limit

rate-limit: integer; specifies the terminal’s transmit rate limit;
must be in the range 110 through 65535.
Defaults: Factory = 19200

Omitted = Error

In some circumstances the host may not be able to process
information as fast as the terminal can send it. This
command causes the terminal to pace its data transmission,
spacing the characters apart so that it does not exceed the
indicated rate limit.

ﬁ Syntax Example
? Host: EcNLR<
Setup: XMTLIMIT 300

Sets the transmit baud rate limit to 300 bits per second
(encoded R<).

Related Command
SET BAUD RATES

J

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
SET VIEW ATTRIBUTES

SET VIEW ATTRIBUTES

Selects the wipe index for the graphics area.

Host Syntax

EcRA surface-number
wipe-index
border-index

Setup Syntax

VIEWATTRIBUTES surface-number
wipe-index

border-index

surface-number: integer; identifies the surface. Must be 1 or
-1. (This parameter provides compatibility with other
Tektronix terminals that support more than one surface.)
Defaults: Factory = 1

Omitted = 0

wipe-index: integer; specifies the color index of the graphics
area background. Must be in the range 0 through 65535.
Defaults: Factory = 0

Omitted = 0

border-index: unused. (This parameter provides
compatibility with other Tektronix terminals.)

The wipe index is the color index to which the graphics area
background is set when you erase it. Eight color indices are
available. If you specify a wipe index greater than the highest
numbered index available on your terminal, the terminal will
default to its highest index. The color index you specify is
one of the color indices defined by the SET SURFACE
COLOR MAP command. When you change the
background color, you do not see the new color until the
screen is erased.

Syntax Example

Host: EcRA120
Setup: VIEWATTRIBUTES 1,2,0

Changes the graphics area background color to Index 2
(default value red).

Related Command
SET SURFACE COLOR MAP

5-75

4100-STYLE COMMANDS & REPORTS
SET WINDOW

SET WINDOW

Sets the boundaries of the current window in terminal space.

Host Syntax

EcRW first-corner
second-corner

Setup Syntax

WINDOW first-corner
second-corner

first-corner: xy-coordinate; specifies one corner of the
window. Values for x and y must be in the range 0 through
4095.
Defaults: Factory = 0,0

Omitted = 0,0
second-corner: xy-coordinate; specifies the opposite corner
of the window. Values for x and y must be in the range 0
through 4095.
Defaults: Factory = 4095,3132

Omitted = 0,0

5-76

REV, JUN 1985

A window is a rectangular region in terminal space whose
contents are displayed on the screen.

The two xy-coordinates specify two opposite corners of the
window. These can be any two opposite corners; the
terminal sorts the two x-coordinates and the two
y-coordinates in the proper order.

If you specify the same x-coordinate for both corners, the
terminal will automatically assign an x-coordinate for the
upper-right corner that gives the window the same aspect
ratio (ratio of height-to-width) as the screen. Likewise, if
you specify the same y-coordinate for both corners, the
terminal will assign a y-coordinate that gives the window the
same aspect ratio as the screen.

If you specify the same xy-coordinate for both corners, the
terminal assigns the window its default dimensions.

Syntax Example

Host: EcRWSebySeL5 7|2Q
Setup: WINDOW 50,100,2372,2800

Sets a window with the xy-coordinates 50,100 (encoded
spbyseL) as the first corner and 2372,2800 (encoded 5 ' |2Q)
as the second corner.

4105 PROGRAMMERS

C

C

()

SET 4014 LINE STYLE

Specifies line styles compatible with Tektronix 4010 and 4110
Series terminals.

Host Syntax

4100-STYLE COMMANDS & REPORTS

SET 4014 LINE STYLE

Ec line-style-code

line-style-code: single character; specifies one of the line
styles shown in Figure 5-11.
Defaults: Factory = ' (solid lines)

Omitted = (none)

This command does the same thing as the SET LINE
STYLE command. The line style for lines, markers, and
panel boundaries is set by either SET LINE STYLE or SET
4014 LINE STYLE, whichever occurred most recently.

SET 4014 LINE STYLE sets line styles that are available on
other Tektronix terminals. This lets you emulate other
terminal’s displays.

Codes h through o indicate line styles that are displayed with
a defocused beam on Tektronix 4014, 4016, and 4114
Terminals. The 4105 terminal doesn’t defocus these lines.

Related Command
SET LINE STYLE

4105 PROGRAMMERS

Character

N\

@ Q o o o

o «Q

Line Style

Emulated Terminals
4014/4016
4014/4016
4014/4016
4014/4016
4014/4016
4112/4113/4114
4112/4113/4114
4112/4113/4114
4014/4016/4114
4014/4016/4114
4014/4016/4114
4014/4016/4114
4014/4016/4114
4014/4016/4114
4014/4016/4114
4014/4016/4114

4893-16

Figure 5-11. 4014 Line Styles.

5-77

4100-STYLE COMMANDS & REPORTS
STATUS

STATUS

Displays the current settings for a command or cluster of
commands.

Setup Syntax

STATUS name

name: string; the command name or command cluster name
for which you want the current parameter values. To display
the valid command names and command cluster names,
enter STATUS.
Defaults: Factory
Omitted

(none)
All commands

Give a specific Setup name or host escape sequence to
request status information about a specific command’s
settings (if there are any). If there is no status message for
the command, try requesting the status of the cluster the
command belongs to.

When you request the status of a cluster of commands, the
terminal displays the settings of all the commands in the
cluster. The cluster names are:

e ANSI e Graphics
o Communications ® Hardcopy
¢ Dialog e Keyboard
* General ¢ Pixels

You can also use three special names, which are part of the
general cluster. These are:

* Memoryblocks
e Version
® Terminal

When you request the status of memoryblocks, the terminal
displays (1) the total number of memory blocks available in
volatile memory, and (2) the largest contiguous group of
memory blocks available in volatile memory (one memory
block contains 16 bytes). See the discussion Managing
Program Memory in Section 4 for an explanation of how the
terminal’s features use memory.

When you request the status of version, the terminal displays
its standard firmware version number.

When you request the status of ferminal, the terminal
displays its model number.

5-78

REV, JUN 1985

4010 HARDCOPY
Generates a hard copy of the entire screen.

Host Syntax

EcEp

This command has the same effect as pressing the S Copy
key.

To copy only the graphics area, press the Dialog key to make
the dialog area invisible. After the copy starts, you can press
the Dialog key to make the dialog area visible. This lets you
work in the dialog area while the copy is being made.

Related Commands

HARDCOPY
SELECT HARDCOPY INTERFACE

4105 PROGRAMMERS

C

(

J

J

|
f
|
|
|
n
i
f
A
)
"
!
n
i
R
R
f
i
n

REPORTS

The terminal sends reports to the host in response to
commands sent from the host or in response to users’ input
during GIN operations. Each report is made up of report
parameters, which use an encoding scheme similar to the
scheme used for sending host parameters in commands.

This part of Section 5 describes the report parameters and
the reports that the terminal sends to the host.

REPORT PARAMETERS

Report parameters are the types of data that the terminal
sends in its reports to the host. Like command parameters,
there are three basic report parameter types — the character,
the integer, and the xy-coordinate — and two complex
variations — the string and the integer report array.

Character Report Parameters

A character report parameter is an ASCII character whose
ADE is in the range 0 through 127.

integer Report Parameters

An integer report parameter is a sequence of three ASCII
characters that represent an integer number in encoded
form. The first two characters sent are Hi-I characters
followed by the Lo-I character. The terminal always sends all
three characters.

NOTE

The encoding scheme that the terminal uses for
integer parameter reports is different than the
encoding scheme that your program must use when
it issues integer parameters in 4100-style
commands. The example included here shows how
the terminal encodes integer report parameters.

This discussion describes the encoded integer report
parameters that the terminal uses when it sends 4100-style
reports to the host. Note that, when you include integer
parameters in 4100-style commands you send from the host,
you must use integer parameters, which use a different
encoding scheme. See the discussion Integer Parameters at
the beginning of this section and the subroutine for encoding
integer parameters in Report Decoding Subroutines in
Section 6 to see how to encode integer parameters.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
REPORTS

For example, to decode the integer report " M-, your
decoding routine must first subtract 32 from each character’s
ADE. For example:

ASCII Difference
Character ADE (ADE-32)
Ist Hi-1 " 34 2
2nd Hi-1 M 77 45
Lo-I - 45 13

Use the differences to calculate the decimal integer value as
follows:

1. Multiply the first Hi-I difference by 1024 and save the
result:

2 %1024 = 2048

2. Multiply the second Hi-I difference by 16 and save the
result:

4516 = 720

3. Find the modulo 16 value of the Lo-I difference and
save the result:

13mod 16 = 13
4. Add the three results and save the sum:
2048 + 720 + 13 = 2781

5. Divide the Lo-I difference by 16 and save the integer
part of the quotient:

B+16=0

Then find the quotient’s modulo 2 value to determine
the decoded integer’s sign. If the value equals 0, the
integer is negative:

Omod2 =0

6. Give the sign from Step 5 to the sum from Step 4; this
yields the decimal integer:

-2781

You will find a sample FORTRAN subroutine for decoding
integer report parameters in Section 6.

5-79

4100-STYLE COMMANDS & REPORTS
REPORTS

XY-Coordinate Report Parameters

An xy-coordinate report parameter (usually called just
xy-report) represents in encoded form the 12-bit precision
x- and y- coordinate values the terminal sends to the host.
The terminal reports xy-coordinates to the host as five
ASCII characters. All five are always sent in this sequence:

Hi-Y
Extra
Lo-Y
Hi-X
Lo-X

To decode the xy-report, your program must first subtract
32 from each character’s ADE. For example:

ASCII Difference

Character ADE (ADE -32)
Hi-Y ! 39 7
Extra ! 33 1
Lo-Y : 58 26
Hi-X Sp 32 0
Lo-X - 45 13

You then use the differences to calculate the decimal
xy-coordinate values as follows:

1. Multiply the Hi-X difference by 128 and save the result:

0128 =0
2. Multiply the Lo-X difference by 4 and save the result:
13+x4 =52

3. Find the modulo 4 value of the Extra difference and
save the result:

Imod4 =1
4. Add the three results; the sum is the x-coordinate:
0+52+1=53

5. Multiply the Hi-Y difference by 128 and save the result:

7+ 128 = 896
6. Multiply the Lo-Y difference by 4 and save the result:
26«4 = 104

7. Divide the Extra difference by 4 and save the integer
part of the quotient:

1-4=0

Then find the modulo 4 value of the quotient, and save
the result:

Omod4 = 0
8. Add the three results; the sum is the y-coordinate:
896 + 104 + 0 = 1000

Refer to Section 6 for a sample subroutine that decodes
Xy-reports.

5-80

4010 XY-Report Parameters

The terminal sends 4010 xy-reports (10-bit precision
coordinates) to the host as four ASCII characters. All four
are always sent using the following format:

Hi-X

Lo-X

Hi-Y

Lo-Y
Notice that this format has one less character than the
xy-report format, and that the terminal sends the x and y
characters in reverse order (x’s first instead of y’s).

To decode a 4010 xy-report, your program must first

subtract 32 from each ADE, just as it did for the xy-report.

For example:
ASCII Difference
Character ADE (ADE -32)
Hi-X ! 39 7
Lo-X : 58 26
Hi-Y / 47 15
Lo-Y 4 52 20

Use the differences for each x and y to calculate the two
decimal xy-coordinates as follows:

1. Multiply the Hi-X difference by decimal 128 and save
the result:

7+128 = 896

2. Multiply the Lo-X difference by decimal 4 and save the

result:
26 +4 = 104
3. Add the results; the sum is the x-coordinate:
896 + 104 = 1000

4. Multiply the Hi-Y difference by 128 and save the result:

15 * 128 = 1920

5. Multiply the Lo-Y difference by 4 and save the result:
20«4 = 80

6. Add the results; the sum is the y-coordinate:
1920 + 80 = 2000

Look in Section 6 for a sample subroutine for decoding 4010

Xy-reports.

4105 PROGRAMMERS

(

J

COMPLEX VARIATIONS OF REPORT
PARAMETERS

Complex variations of report parameters consist of a
sequence of basic report parameters, just as complex host
parameters consist of several basic command parameters.
Since the complex report parameters have the same
construction as the complex command parameters, we’ve
included only brief descriptions of each complex report
parameter here. Refer to Host Parameters in the first part of
this section for further details and examples of construction.

String Report Parameters

The string report parameter consists of ASCII characters
preceded by an integer report that contains the number of
characters in the string. If there are no characters in the
string (an empty string), the count is 0.

Integer Array Report Parameters

An integer array report parameter consists of a series of
integer reports. The first character(s) in an integer array
report is the count, an integer report that gives the number
of individual array items to follow. If there are no integer
reports in the array (an empty array), the count is 0.

THE EOL STRING

The EOL string is a string of no more than two ASCII
characters (assigned in the most recent SET EOL STRING
command). The terminal uses this string to mark the end of
a line of data reported to the host and to break up long
reports. Typically this string consists of the single character,
Cr. The EOL string in reports allows the terminal to pace the
flow of data to the host (see Section 2 for an explanation of
Prompt mode).

The routines you develop to parse reports must include
parsing for EOL strings, even though the terminal rarely
sends them. The terminal may insert an EOL string in a long
complex report, but only if there is no other way to avoid
exceeding the current maximum line length.

This discussion explains how the EOL string is used in
reports.

J

4105 PROGRAMMERS

|
|
|
f
f
f
n
n
|
nA
R
A
f
R
|
A
N
R
f

4100-STYLE COMMANDS & REPORTS
REPORTS

The terminal sends a final EOL string at the end of all
4100-style reports except the 4010 Status Report. This final
EOL string signals the end of the report and helps to ensure
that the host application program receives the preceding
characters in a timely manner. (In many host operating
systems, the application program does not actually receive a
message from the terminal until the message ends with a Cr.)

The terminal also sends an EOL string to break up any
report longer than 72 characters and to indicate the
individual parts of the Error Report.

The terminal does not send the EOL string as part of ANSI
reports, the answerback string, or the 4010 Status Report.

REPORT DESCRIPTIONS

The terminal uses the reports described here to return
graphics or terminal status data to the host. When the
terminal sends any of these reports to the host, it
automatically enters Bypass mode. Refer to the discussion
on Bypass mode in Section 2, and the ENTER BYPASS
MODE command earlier in this section.

To describe the reports in this manual, we’ve listed each part
of the report, then individually described each unique part
of the report. Wherever possible, the names given to parts of
reports are the same names used for command parameters.
We’ve formatted these descriptions in a manner similar to
the one used to describe the command parameters in the
command descriptions in this section.

The Answerback String

The answerback string is a string of up to twenty characters
that the terminal sends to the host in response to an
ENQUIRY command. You can use the Setup command SET
ANSWERBACK STRING to define a unique answerback
string for each terminal so the host application knows which
terminal it is talking to and can control which data is
available to a specific terminal.

The host can send the ENQUIRY command to ask the
terminal to send the answerback string to identify itself. The
ENQUIRY command will work in all host command modes.
The terminal will not respond to an ENQUIRY command
issued while in Local mode.

5-81

4100-STYLE COMMANDS & REPORTS
REPORTS

Error Report

The Error Report is sent in response to the REPORT
ERRORS command. This report is actually a series of up to
eight reports-for-one-error, followed by the EOL string.

The terminal sends a report-for-one-error for each of the
eight most recently detected error codes. If fewer than eight
errors have been detected since power-up or since the last
REPORT ERRORS command, then the terminal sends
fewer than eight reports-for-one-error. The Error Report
has this format:

report-for-one-error . . .
EOL string

(The three periods following the report-for-one-error
parameter (. . .) indicate that that it can appear more than
once in the report.)

Each report-for-one-error describes an error in the following
format:

error-code
severity-level
error-count
EOL string

The following paragraphs detail the parts of the
report-for-one-error in an Error Report.

error-code: four character-reports; consists of the opcode
(two characters), the number of the parameter’s position in
the command causing the error, followed by an error-type
digit. Refer to Appendix B for an explanation and list of
error codes.

severity-level: integer report; specifies the severity level of
the error that occurred; see Appendix B for an explanation
of severity levels.

error-count: integer report; reports the number of times the
terminal has detected that error since power-up or since the
last REPORT ERRORS command.

After the last report-for-one-error, the terminal sends an
EOL string.

5-82

Terminal Settings Report

The terminal sends the Terminal Settings Report in response
to the REPORT TERMINAL SETTINGS command. The
report has the following format:

opcode-report
parameter-report ...
EOL string

The following paragraphs describe the parts of a Terminal
Settings Report.

opcode-report: two character-reports; returns either the
opcode for the commands or one of the special inquiry codes
listed in Table 5-8.

parameter-report: report parameter type depends on query;
returns the command parameter values for the command
specified in the opcode-report in the order that they appear
in the command.

The two characters reported in the opcode report are the
same two characters used in the REPORT TERMINAL
SETTINGS command. However, if the REPORT
TERMINAL SETTINGS command specifies an opcode for
a command that does not exist in the terminal, the
opcode-report is SeSp.

The type of parameter-report depends on the the type of
parameter value being reported. For instance, the SET
BAUD RATES command has two integer report
parameters. Therefore, the Terminal Settings Report for
SET BAUD RATES has two integer reports.

For special inquiry codes, use the parameter-reports listed in
Table 5-8.

Table 5-8
SPECIAL INQUIRY CODES

Code Parameter Reports

™ integer report: available-memory

integer report: largest-contiguous-block

(The available program memory, and the size of the
largest contiguous block of program memory, are
reported as a number of 16-byte units of memory.)

T integer report: model-number-code

00 integer report: standard-firmware-version-number

4105 PROGRAMMERS

C

J

J

J

Examples of Terminal Settings Report

Reporting Baud Rates. The REPORT TERMINAL
SETTINGS command for the SET BAUD RATES
command (opcode NR) queries the terminal for a report of
its current baud rate settings.

Assume that the current EOL string is the single character,
Cr, and that the terminal is set to transmit and receive at
1200 baud. In this case, the report that the terminal would
send to the host is:

NR! + 0! + OCr

Since the SET BAUD RATES command has two
parameters, transmit-data-rate and receive data rate, these
are the two parameter-reports returned in the REPORT
TERMINAL SETTINGS command. Broken down, here’s
what each character means:
NR
The report is for opcode SET BAUD RATES (the
opcode-report).

'+0
The transmit rate is set to 1200 (first parameter-report).

'+0
The receive rate is set to 1200 (second parameter-report).

Cr
The EOL string is set to Cr.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
REPORTS

Reporting the Amount of Program Memory. To request a
report on the amount of program memory available, the
host sends a REPORT TERMINAL SETTINGS command
with the inquiry code ?M. If the EOL string is the same
character as in the previous example, and the dialog buffer is
set to 200, then the report that the terminal would send the
host is:

™M 4 :Cr

The two parameter-reports are the amount of available
program memory and the largest block, which are
represented as integer reports. Broken down, here’s what
each character means:

™
Report is in response to special inquiry code ?M (the
opcode-report).

14

There are 20 16-byte blocks of program memory
available (first parameter-report).

The largest contiguous block of program memory is 10
16-byte blocks (second parameter-report).

Cr
The EOL string is Ck.

5-83

4100-STYLE COMMANDS & REPORTS
REPORTS

Exceptions for Terminal Settings Report

For two commands, the meanings of the parameters
reported in the Terminal Settings Report differ from the
meanings of the command parameters sent to the terminal.
These commands are:

PROMPT MODE (opcode NM)
SET SURFACE COLOR MAP (opcode TG)

PROMPT MODE. Prompt mode can be turned on with a
parameter of 1 or 2. However, the terminal reports / if
Prompt mode is on and 2 if Prompt mode is off.

SET SURFACE COLOR MAP. A Terminal Settings Report
for this command has two parameter-reports: an integer
report for number-of-surfaces, and an integer array report
for color-mixtures-array.

The integer report for number-of-surfaces is the number of
surfaces currently defined. Since the 4105 terminal can
display just one surface, this integer report will always be 1.
(This report is included for compatibility with other

Tektronix terminals that can display more than one surface).

The color-mixtures-array parameter report contains the
following:

® The background color mixture values
o The surface number
o The color mixture values for each of the color indices

The background color mixture values are given in three
integer reports.

The terminal sends the surface number as a negative value in

an integer report, followed by an integer report triplet for
each color index assigned to that surface. Each triplet
contains the color mixture values for the index. The color

indices are reported in numerical order following the surface

number.

5-84

C

Here is an example of the information contained in a
color-mixtures-array integer array report, which is a long
series of integer reports (spaces have been added here to
break the report up for readability; Space characters that are
actually part of the report are indicated explicitly as Sp:

TG SpSel Sp!9 SpSp0SpSp0SpSp(SpSp! SpSpQ) Sp&4SpSp(Q
Sp/ 8Sp#25p&4 Sp/0Sp#25pr&4 SpSp0Sp #25p&4
Sp2<Sp#2r&4 Sp#< Sp#2Sr&4 Sp + 45p#25r&4 Cr

Broken down, here’s what each parameter in the report
means:

TG
This report is for the SET SURFACE COLOR MAP
command (theopcode-report).

SpSpl
There is one surface (first parameter-report).

Sp!9
Here, the first integer report says that there are 25 integer
reports to follow in the integer array report (part of
second parameter-report).

SpSp(SpSp0SpSp(
These three integer reports say that the background color
is black — HLS coordinates 0,0,0 (part of second
parameter-report).

SpSp!
This integer report is the integer -/, which means the
report is for Surface 1 (part of second parameter-report).

SpSp(Sp&4SpSp(
These three integer reports say that Index 1 is set to white
with HLS coordinates 0,100,0 (part of second parameter
report).

C

4105 PROGRAMMERS

J

ﬂ

J

ﬂ

Sp 1 8sp#25pr&4
These three integer reports say that Index 2 is set to red
with HLS coordinates 120,50,100 (part of second
parameter-report).

Sp/0Sp#25p&4
These three integer reports say that Index 3 is set to green
with HLS coordinates 240,50,100 (part of second
parameter-report).

SpSpQSp#25pSp&4
These three integer reports say that Index 4 is set to blue
HLS coordinates 0,50,100 (part of second
parameter-report).

Sp2<Sp#25r&4
These three integer reports say that Index 5 is set to cyan
HLS coordinates 300,50,100 (part of second
parameter-report).

Sp#<Sp#25r&4
These three integer reports say that Index 6 is set to
magenta HLS coordinates 60,50,100 (part of second
parameter-report).

Sp + 45p#25p&4
These three integer reports say that Index 7 is set to
yellow HLS coordinates 180,50,100 (part of second
parameter-report).

Cr
The EOL string is Cr.

4105 PROGRAMMERS

4100-STYLE COMMANDS & REPORTS
REPORTS

4010 GIN Report

When 4010 GIN is enabled and the user presses a key to send
the cursor position to the host program, the terminal
generates a 4010 GIN Report. This report tells the host
program which key the user pressed and the position of the
GIN cursor in terminal space.

NOTE

The 4010 GIN Report regards terminal space as a
1024x1024 area rather than the 4096x4096 area
used when specifying locations for display.
Reported coordinate values must be multiplied by 4
to give coordinates consistent with those used in
other commands.

If the user presses a key that has a key macro defined for it,
the 4010 GIN Report is sent, but the key-character sent in
the report is the first character intended for the host in the
macro definition. The remainder of the macro is expanded
normally.

The 4010 GIN Report has the following format:

key
cursor-position
EOL string

key: character report; specifies the ASCII key that the user
pressed.

cursor-position: 4010 xy-report; reports the location of the
graphics cursor.

Since only the ten most significant bits of the x- and
y-coordinates are reported, the reported values are an
approximation of the graphics cursor position. Section 6
contains a sample FORTRAN routine that decodes the 4010
GIN Report.

5-85

4100-STYLE COMMANDS & REPORTS
REPORTS

4010 Status Report

This report is sent in response to REPORT 4010 STATUS.
The report has two forms, depending on whether 4010 GIN
is enabled when the command is sent.

If 4010 GIN is not enabled, the report has the following
format:

terminal-status
alpha-cursor-position
EOL string

If 4010 is enabled, the report has the following format:

graphics-cursor-position
EOL string

terminal-status: character report; reports the terminal status
encoded into the seven bits of an ASCII character, shown in
Table 5-9.

Bits 7 and 6 are always set to 0 and 1, respectively; Bits 2 and
1 are also set to 0 and 1, respectively.

The HCU (Bit 5) is set to 0 if a copier is attached to the
COPIER port and is ready to accept a copy request;
otherwise this bit is set to 1.

Bits 4 and 3 indicate the terminal’s implicit command mode
status as shown in Table 5-10.

For example, if the terminal (1) has a hard copy unit
attached, (2) is ready for a hardcopy command, and (3) is in
Vector mode, the bits sent are:

0101001

The corresponding character on the ASCII chart is the
closing parenthesis —) — which would be transmitted as
the status byte.

alpha-cursor-position and graphics-cursor-position.: 4010
xy-report; reports in 10-bit form the position of either the
alpha cursor or the graphics cursor.

Look in Section 6 for the sample FORTRAN routine that
decodes 4010 xy-reports.

Table 5-9 u
TERMINAL STATUS CHARACTER BITS
B7 B6 B5 B4 B3 B2 B1
0 1 HCU \" A 0 1 u
Table 5-10 u
IMPLICIT COMMAND MODE STATUS
v A Mode Status u
0 0 The terminal is in Marker mode i
0 1 The terminal is in Alpha mode
1 0 The terminal is in Vector mode u
1 1 This combination doesn’t occur ;
4105 PROGRAMMERS u

f
f
A
N

J

J

J

Section 6

PROGRAMMING EXAMPLES

This section contains subroutines that encode terminal
commands and decode terminal reports, and a program
example that uses the subroutines to perform a simple
graphics task. The subroutines we’ve included are:

e An initialization routine that must be called prior to using
any of the other routines

e A group of subroutines for encoding command
parameters

e A group of subroutines for decoding report parameters

e Specifications for the low-level 1/0 support subroutines

4105 PROGRAMMERS

These subroutines (except for the low-level I/0 support
subroutines) and the program example are written in
standard FORTRAN 77. The low-level I/0 support routines
cannot be written in standard FORTRAN-77, but — by
using nonstandard techniques — you can write them on
most commercially available FORTRAN compilers.

NOTE

The subroutines and program example in this
section work in the CP/M-86 operating system as
used on the Tektronix 4170 Local Graphics
Processing Unit. They are included here to show
one way to program for the 4105 terminal. This
code may not run as written in any other
environment.

PROGRAMMING EXAMPLES

INITIALIZATION ROUTINE

Qoo oo

Q [eXeoXe!

SUBROUTINE Init (jterm)

K KKK I I KK KK I I I K I NI I I I I NI K I K I I I KN K NN

*

* Initializes terminal communications parameters for use by the
* following routines. Gets the terminal type. Initializes
* common variables.

*

* Parameters

* Qutput:

* jterm - terminal id (for example, 4105)

*

* Global Area /Grphcs/:

* kterm - terminal id

* kchars - used to optimize XY coordinate output

* 1first - .TRUE. if no XY coordinate has been output
*

KKK I I K I KK I I I I KK K I I I I KK I I KKK K I K I KK I N KK KKK H K

COMMON /Grphcs/ kterm,kchars(5),1first
CHARACTER*10 repstr
LOGICAL 1first

Initialize the communications parameters so terminal and GIN
reports can be done. The subroutines which follow assume that
these values will not be changed.

Set terminal mode to code Tek
CALL Cmd1x ('%!'')
CALL Putchr (48)

Set End-Of-Message characters to <CR><XNL>
CALL Cmd1x ('NC')
CALL Int1x (13)
CALL Int1x (0O)

Set End-Of-Line string to <CR>
CALL Cmd1x ('NT')
CALL Inryi1x (1,13)

Set bypass cancel character to <LF>
CALL Cmd1x ('NU')
CALL Int1x (10)

4105 PROGRAMMERS

C

PROGRAMMING EXAMPLES

J

C Request terminal id, read and decode it; set global kterm
CALL Cmd1x ('IQ')
CALL Putchr (63)
CALL Putchr (84)
CALL Gtrp (10,repstr,jgot)
CALL Gtin (repstr,3,jterm, jnext)
kterm = jterm
C Initialize the optimized graphics characters
DO 100 i=1,5
kchars(i) = -1
100 CONTINUE

C No XY coordinates have been output yet, so set 1first appropriately
1first = .TRUE.

RETURN
END

COMMAND PARAMETER ENCODING SUBROUTINES

SUBROUTINE Cmd1x (opcode)

c 3 9 3 I I I I I I I I I I I I WK I I A I I I I I I I I K KKK KK KKK K KKK KK KK KN
c
C * Output a two-character terminal command sequence.
Cc *
ﬁ C * Parameters
C * Input:
c * opcode - character string containing the two-character
Cc * sequence
C *
C I I I I I I I I I I I I I I I I I K K I K I I I I I I I I I I I I KKK I K I K KK I KKK I KK KN

CHARACTER*(*) opcode

Precede the two characters with an <EC>
CALL Putchr (27)

C Output the two characters

ichr = ICHAR (opcode(1:1))
CALL Putchr (ichr)

ichr = ICHAR (opcode(2:2))
CALL Putchr (ichr)

RETURN
END

N

4105 PROGRAMMERS 6-3

I
n
R
f
i
f
N :
i
f
n
i
H
f
|

PROGRAMMING EXAMPLES

Q [oXoXoRoloXoloXoXe!

10

30

Qoo

10
99

SUBROUTINE Int1x (intarg)

HHEEEKK KX E RN X XX RERHH X EHRHEHEHE R EHERRE RN RN RNRN
*

* Encode an integer parameter and output it.
*

* Parameters

* Input:

* intarg - integer value to encode and output
*

*

HHEKEKERKKKERERHHRK LR HEHEHE XX ERH XA EREREHRRRERR RN

Break the integer value into three encoded bytes
Jint=IABS(intarg)
Jhi1=3int/1024+64
Jhi2=MOD(jint/16,64)+64
Jloi=MOD(jint,16)+32
IF (intarg .GE. 0) jloi=jloi+16

Decide whether to output 1, 2 or 3 bytes
IF (jhi1 .NE. 64) GO TO 10
IF (jhi2 .NE. 64) GO TO 20
GO TO 30

CALL Putchr (3hi1)
CALL Putchr (jhi2)
CALL Putchr (jloi)

RETURN
END

SUBROUTINE Inry1x (len,inry)

ER 2SS S S XSS LSS L S S ST I S S LSS S S S S S S S SRS SR SR RS R LR R R R R R R R E R RS E X
*

* Encode and output an integer array.

*

* Parameters

* Input:

* len - array length

* inry - array to encode and output

I3 I K I I K K I I K I KK I I K I K I K K I I KK I I K K I I I I I I I KKK I KN KK NN

INTEGER inry(*)

Output the array length
CALL Int1x (len)

Output each of the array elements
IF (len ,LE. O) GO TO 999
DO 100 i=1,1len
CALL Int1x (inry(i))
0 CONTINUE

9 RETURN
END

4105 PROGRAMMERS

W
W

U
|
U
U
U
U
U
|
|
y
U

!
!
!
!
U

1

~
!

PROGRAMMING EXAMPLES

5

SUBROUTINE Str1x (len,string)

C 3 3 I 3 IE I I K K K I I I KKK
| C *
| C * Encode and output a character array.
| Cc *
| C * Parameters
| C * Input:
| C * len - string length
| C * string - character string to be encoded and output
| c *
c

n
n
A
I
f
f
f
i
I
!
f
A
A
f
f
f
f
R

369 363 36 3 I 3 3 I I F I I I I I A I I I I I I I K I I I I I K I I I I I I K K I KK I KK KX K

CHARACTER*(*) string

C Output the array length
CALL Int1x (len)

C Output each of the characters
IF (len .LE. 0) goto 999
DO 100 i=1,1len
ichr = ICHAR(string(i:i))
CALL Putchr (ichr)

100 CONTINUE
999 RETURN
END
4105 PROGRAMMERS 6-5

PROGRAMMING EXAMPLES

SUBROUTINE Xy1x (ix,iy)

9 I I I I I I I I H I NN NN
*

* Encode and output an XY parameter.

*

* Parameters

* Input:

* ix, iy - XY coordinate to encode and output
*

333 I I I I I I I I I I I I I I I I NI I K I I I I I NI I K I I I I I I I I NN

oloXoXoXoXoXoXole!

COMMON /Grphcs/ kterm,kchars(5),1first
LOGICAL 1lfirst

C Calculate all five encoded bytes
khiy=1y/128+32
keb=MOD(iy, 4)*4+MOD(ix,4)+96
kloy=MOD(iy/4,32)+96
khix=ix/128+32
klox=MOD(ix/4,32)+64

C Output encode bytes as needed
IF (1first .OR. khiy.NE.kchars(1)) CALL Putchr (khiy)
IF (1first .OR. keb.NE.kchars(2)) CALL Putchr (keb)
IF (1first .OR. keb.NE.kchars(2) .OR. kloy.NE.kchars(3) .OR.
& khix.NE.kchars(4)) CALL Putchr (kloy)
IF (1first .OR. khix.NE.kchars(4)) CALL Putchr (khix)
CALL Putchr (klox)

C Update optimization array
kchars(1)=khiy
kchars(2)=keb
kchars(3)=kloy
kchars(4)=khix
kchars(5)=klox
1first = .FALSE.

RETURN
END

6-6 4105 PROGRAMMERS

C

m

PROGRAMMING EXAMPLES

TERMINAL REPORT DECODING SUBROUTINES

SUBROUTINE Gtrp(imaxin,repstr,jgot)

C I3 3 I 3 I I I I K I I K I KN I K I KNI I K I I I I I K I I KKK KN KN K KKK KKK
C *
C * Get a terminal report. This routine provides the base on which
C * all the following routines operate.
C *
C * Parameters
C * Input:
c * imaxin - maximum report length which will be accepted;
c * additional characters received are discarded
C * OQutput:
c * repstr - string containing the report
c * Jeot - number of characters in the report
CcC *
C I K K I KNI I I K I K I I I I I I I K I K I K I I K I I I I KKK RN H KKK
CHARACTER repstr*(*)
jgot = O
C Use the special Getchr routine to get reports. Using standard
C FORTRAN it is possible to read a report string (if the End-Of-Line
C character is <<CR>), but not to get its correct length since
C FORTRAN will pad the input string with blanks.
100 CALL Getchr (ichr)
C A <CR> signals the end of the report.
IF (ichr .EQ. 13) GO TO 110
C Add the character to the string if there is enough room, else
C discard the character.
IF (jgot .LT. imaxin) THEN
jgot = Jgot + 1
repstr(jgot:jgot) = CHAR(ichr)
ENDIF
GO TO 100
C Output a <LF> to cancel bypass mode.
110 CALL Putchr (10)
RETURN
END
4105 PROGRAMMERS 6-7

PROGRAMMING EXAMPLES

SUBROUTINE Gt10 (keychr,jx,jy)

3K 3K KK KKK I I I KK I I I I K I I I I I I I I I I I I I KKK
*

* Read and decode a 4010 GIN report. The routine will wait until

a 4010 GIN report is available.

*

Parameters
Output:
keychr - character typed by the user to create the 4010
GIN report
Jx, Jy - 4010 GIN position

* %k ok >k k k X

I KKK KKK I KKK I KK I I I KK I KK I KK I I KK I KK I I K I I KK HKN

COMMON /Grphcs/ kterm,kchars(5),1first
CHARACTER*1 keychr
CHARACTER*10 cginbf

Use the general-purpose report routine to read the 4010 GIN report
CALL Gtrp (10,cginbf,kgot)

The first character in the report is the key struck
keychr = cginbf(1:1)

Characters 2-5 are the 4010 GIN report. Call the decoding routine.
CALL Xy10 (cginbf,2,jx,jy,Jjnext)

RETURN
END

4105 PROGRAMMERS

C C

C

J

J

3

PROGRAMMING EXAMPLES

SUBROUTINE Xy10 (repstr,istart,jx,jy,Jjnext)

the report string

C HHHHH KKK H KR HHHHEEREEREREERERREREXXRREEREHHHRHHHHX XX XXX RXXXXXN
C *

C * Decode a 4010 XY report.

Cc *

C * Parameters

C * Input:

Cc * repstr - report string (obtained from Gtrp)

c * istart - starting character position of the 4010 XY report
C * in the report string

C * Output:

C * jx, jJy - decoded XY coordinate

C * Jnext - starting position of next encoded parameter in

Cc *

Cc *

c *

3636 3 ¥ K I 3K KK I I K I KK I KKK I K I I K I I I I K I I I KKK KKK KN KK

CHARACTER*(*) repstr
INTEGER*2 hiy,loy,hix,lox

C The XY coordinate is always encoded in 4 bytes.
jnext = istart
hix=ICHAR(repstr(Jjnext:jnext))
jnext=jnext+1
lox=ICHAR(repstr(jnext:jnext))
jnext=jnext+1
hiy=ICHAR(repstr(jnext:jnext))
jnext=Jjnext+1
loy=ICHAR(repstr(jnext:jnext))
Jnext=Jnext+1

C Convert the encoded bytes into separate X and Y
Jx=MOD (hix, 32)
Jx=(3x*32+MOD(1ox,32))*4
Jy=MOD(hiy, 32)
Jy=(3jy*32+M0OD(loy, 32))*4

RETURN
END

4105 PROGRAMMERS 6-9

PROGRAMMING EXAMPLES

C

SUBROUTINE Gtch (repstr,istart,jlen,jchstr, jnext)

jnext - starting position of next encoded parameter in
the report string

K I I I K K I I K I I I K I KK I I I NI I K I I I I I KK I I K I I K I I I KKK KKK NN

C 3336 3 K I I I W I A I I I I I I I I I I I I I I I I I K I I K I I I I F I I I I I I I I I I I I I KK KK NN
CcC *

C * Decode a character string report.

C *

C * Parameters

C * Input:

C * repstr - report string (obtained from Gtrp)

Cc * istart - starting character position of the character
c * string report in the report string

C * Output:

c * Jjlen - length of the obtained character string

c * jchstr - character string

C *

C *

C *

c

CHARACTER*(*) repstr, jchstr

C Get the character string report length
CALL Gtin (repstr,istart,jlen, jnext)

C Get the character string itself
jchstr = repstr(jnext:jnext+jlen-1)
Jnext = jnext + jlen

RETURN
END

6-10 4105 PROGRAMMERS

PROGRAMMING EXAMPLES

J

SUBROUTINE Gtin (repstr,istart,jval,jnext)

the report string

C 339 I 3 I I I K KK I I I I I I I I I I I I I K I I I I I I I K I I I K I I I K I I K I I I K KKK KK
Cc *

C * Decode an integer report.

Cc *

C * Parameters

C * Input:

c * repstr - report string (obtained from Gtrp)

C * istart - starting character position of the integer

C * report in the report string

C * OQutput:

C * Jjval - decoded integer value

c * jnext - starting position of next encoded parameter in
C *

C *

C *

W H K I KKK I KK I I I I I H I I I I I I I I I I I I K I I I I I I I K I I I K I I K I KKK

CHARACTER*(*) repstr
INTEGER*2 hii1,hii2,loi

C An integer report is always encoded in 3 bytes

jnext = istart

hii1 = ICHAR(repstr(jnext:jnext)) - 32
jnext = Jjnext + 1

hii2 = ICHAR(repstr(jnext:jnext)) - 32
Jnext = Jjnext + 1

loi = ICHAR(repstr(Jjnext:jnext)) - 32
jnext = Jjnext + 1

C Decode the 3 bytes to obtain the integer value
jval = hii1*1024 + hii2*16 + MOD(loi,16)
IF (MOD(1l0i/16,2) .EQ. 0) jval = -jval

RETURN
END

J

4105 PROGRAMMERS 6-11

f
n
n
n
n
|
n
N
M
"
I
"
r
h
n
n

PROGRAMMING EXAMPLES

LOW-LEVEL I/0 SUPPORT SUBROUTINES

6-12

Q [eXololoNeoloNoNoNoXoXOXQ]

Q oo

SUBROUTINE Getchr (ichr)

HEXEKEERERHRRRXEEX XXX KRR H R R HEHEHEHEHEHRHHHRREREHRRAHNRN
*

* Get a character from the terminal. This subroutine cannot be
coded in standard FORTRAN-77 and must be customized for

*

(e.g. '"A' = 65).

* each FORTRAN environment.

*

* Parameters

* Qutput:

* ichr - ASCII decimal equivalent of the character read
*

*

3K I I I K I K I I KK I I K I K K I K I KKK I K I NI K I I KKK KK

**¥*¥ Customized code goes here **xx

RETURN
END

SUBROUTINE Putchr (ichr)

33 3K KKK I KKK K I I KK I I I I I I I K I K I I NI I I K IE K I NI KK
*

* Send a character to the terminal. This subroutine cannot be
* coded in standard FORTRAN-77 and must be customized for
each FORTRAN environment.

*
*
* Parameters

* Qutput:

* ichr - ASCII decimal equivalent of the character to
* write

*

*

I I I KKK I KK I I KK I I K I K I I I KNI NI KKK KKK

***¥¥ Customized code goes here **¥x

RETURN
END

4105 PROGRAMMERS

C

(

PROGRAMMING EXAMPLES

S

. SAMPLE PROGRAM

3% I3 I I I I KK I I K I I X I I I I KKK I I K I I I K I K K I I K I I I K KK KKK AN NN

¥ This is a sample main program which uses some of the subroutines
* listed above. The program lets the user draw lines in the

* graphics area.
*
*

QOO

HHEHHHHHHHHEREEREERRRRXRRNXHNHHHHHI IR HHHHRHRERXXXXRXRXXXRXNN

CHARACTER*1 sigchr, keychr

C Initialize the graphic subroutines
CALL Init (jterm)

C Disable the dialog area and make it invisble
CALL Cmd1x ('KA')
CALL Int1x (O)
CALL Cmd1x ('LV')
CALL Int1x (0)

C Print instructions for use
CALL Cmd1x ('LF')
CALL Xy1x (0,100)
print *,'Enter "D" to draw, "M" to move, "S" to end'’

C Set old beam position
ix 0

’!!‘ iy 0
C Enable 4010 GIN (<EC><SB>)
100 CALL Putchr (27)

CALL Putchr (26)

C Get a point
CALL Gt10 (keychr,jx,Jjy)

C Move to o0ld beam position and save new position
CALL Cmd1x ('LF')
CALL Xy1x (ix,iy)
ix = Jjx
iy = Jy

C Decide what to do with the point
IF (keychr .EQ. 'S' .OR. keychr .EQ. 's') GO TO 900

IF (keychr .EQ. 'D' .OR. keychr .EQ. 'd') THEN
CALL Cmd1x ('LG')
CALL Xy1x (jx,Jy)
ELSE IF (keychr .EQ. 'M' .OR. keychr .EQ. 'm') THEN
CALL Cmd1x ('LF')
CALL Xy1x (Jx,Jy)

ENDIF
GO TO 100

C Enable the dialog area and make it visible

CALL Int1x (1)
CALL Cmd1x ('LV')
CALL Int1x (1)

900 CALL Cmd1x ('KA')

J

END

4105 PROGRAMMERS 6-13

> > >

J

J

Appendix A

CODE CHARTS AND KEYBOARD MACROS

There are eight different character sets available on your
terminal. Six character sets support language-dependent
keyboards; two character sets provide supplementary
symbols and rulings symbols. You can use any of these
character sets from the keyboard supplied with your
terminal.

When you power up the terminal, it automatically selects the
appropriate character set for your keyboard and uses that
character set as the default character set. For example, the
North American keyboard selects the ASCII character set,
while the Option 4G German keyboard selects the German
character set.

You are not limited to the character set corresponding to
your keyboard; you can select any two of the eight available
character sets and switch back and forth between them.
Enter ANSI mode and use the SCS (SELECT
CHARACTER SET) command to assign different character
sets as the GO and G1 character sets. Then you can use the
ANSI SI (SHIFT IN) and SO (SHIFT OUT) commands —
or the TEK mode SET ALPHATEXT FONT command —
to switch between the two character sets.

4105 PROGRAMMERS

For each language-dependent character set, this appendix
contains:

® A code chart
e A keyboard macro chart

The macro charts list the macro numbers invoked by each
key and key combination available on a specific keyboard.
The code charts contain the binary and ADE values for the
alphanumeric characters and control characters in the
character set.

You can find more information about macros and how to
define and use them under Using Macros in Section 4. Look
for specific information about the DEFINE MACRO,
DEFINE NONVOLATILE MACRO, LEARN, and
LEARN NONVOLATILE commands in Section 5.

The code charts for the Supplementary and Rulings
character sets are at the end of this appendix.

CODE CHARTS & KEYBOARD MACROS
ASCII/NORTH AMERICAN

ASCII/NORTH AMERICAN CHARACTER SET

5 |0 0 0 0 1 1 1 1
%ol o | P1| Yo "1 % | %4 | To| 4
BITS
B4 B3 B2 Bl CONTROL FIGURES UPPERCASE LOWERCASE
oleleley Ny | DL | Sp | 0 | @ P \ p
0 16 32 48 64 80 96 112
olojo|1| S D ! 1 A a
H 1 1 17 33 49 65 Q 81 97 113
ole|1|e| Sx | Do | 2 B R b r
2 18 34 50 66 82 98 114
oloj1[1] Ex | D3 | # 3 C S C S
3 19 35 51 67 83 99 115
o/1lojlo]| ET | Dg | $ | 4 D T d t
4 20 36 52 68 84 100 116
oj1je|1| E | Nk | % | 9 E U e u
5 21 37 53 69 85 101 117
ol111o] Ak | Sy | & 6 F Vv f v
6 22 38 54 70 86 102 118
ol1]1]1] BL | EB / Ji G W g W
7 23 39 55 71 87 103 119
1jojoje| Bg | Cp (8 H X h X
8 24 40 56 72 88 104 120,
1lojo|1| H E) 9 I Y i
T 9 M25 41 57 /3 89 105 y721
1101|o] L SB | * J VA | Z
10 26 42 58 74 90 106 122
1loj111] VT | Egc | + ; K [k {
11 27 43 59 75 91 107 123
1|1lele| FE | FS , < L \ 1 |
12 28 44 60 76 92 108 124
il1jo|1| CR | GS | - = M] m }
13 29 45 61 77 93 109 125
11l1lel So|Rs | . | > | N | ~ | n |~
14 30 46 62 78 94 110 126
il S | Us | / ? 0 | _ o | Dr
15 31 47 63 79 95 111 127

A-2

Figure A-1. ASCII/North American Character Set Code Chart.

(4526)4893-18

4105 PROGRAMMERS

C

CODE CHARTS & KEYBOARD MACROS
l G Eras|{Cancel|D Copy
JOYDISK . Menu Fl F2 F3 Fa4 F5 F6 F7 F8
RIGHT UP LEFT Dpown [Pialeg|Setup|S Copy|
Unshifted -135 -136 -137 -138 —111 -112 -113 -114 128 129 130 131 132 133 134 135
Shifted -139 -140 -141 -142 -117 -118 -119 -120 136 137 138 139 140 141 142 143
% Ctrl -143 —144 - 145 - 146 -123 -124 -125 -126 -2 -3 -4 -5 -6 -7 -8 -9
Ctrl-Shifted —-147 - 148 -149 - 150 -129 -130 -131 -132 -10 - 11 -12 -13 -14 -15 -16 -17
DEras| { ! [} # $ %z N & * |t) _ |+ } Rub
SEras|C I 2 3 4 5 6 7 8 9 @ - =] Out 7 8 3 -
% Unshifted -115 91 49 50 51 52 53 54 55 56 57 48 45 61 93 127 -62 -63 -64 -67
g Shifted 121 123 33 64 35 36 37 94 38 42 40 41 95 43 125 -34 ~76 =77 -78 -81
Ctrl -127 27 49 50 51 52 53 54 55 56 57 48 45 61 29 -35 -90 -91 -92 -95
Ctrl-Shifted —133 27 33 0 35 36 37 30 38 42 40 41 31 43 29 -36 -104 -105 -106 -109
—~ Q w E R T Y U I O P N .
Line
l | \ Feed 4 5 6 .
i Unshifted 124 113 119 101 114 116 121 117 105 1m 112 92 10 -59 -60 -61 -66
Shifted 126 81 87 69 82 84 89 85 73 79 80 96 -43 -73 -74 -75 -80
Ctrl 124 17 23 5 18 20 25 21 9 15 16 28 —-44 -87 -88 -89 -94
Ctrl-Shifted -39 126 17 23 5 18 20 25 21 9 15 16 28 -45 -101 -102 -103 -108
A S D F G H J K L : "
Ctri . Return
H ’ | 2 3
Enter|
Unshifted 9 97 115 100 102 103 104 106 107 108 59 39 13 -56 -57 -58
Shifted -46 65 83 68 70 7 72 74 75 76 58 34 -49 -70 -7 -72
Ctrl -47 1 19 4 6 7 8 10 1 12 59 39 -50 -84 -85 —-86
o Ctrl-Shifted -48 1 19 4 6 7 8 10 1 12 58 34 -51 -98 -99 -100
-68
O Zz X C \ B N M -82
Caps | shift < > v Shift Break -96
Lock g ° / 2 . ~110
Unshifted 122 120 99 118 98 110 109 44 46 47 -116 -55 -65
Shifted 90 88 67 86 66 78 77 60 62 63 -122 -69 -79
Ctrl 26 24 3 22 2 14 13 44 46 47 -128 -83 -93
Ctrl-Shifted 26 24 3 22 2 14 13 60 62 63 -134 -97 -107
SPACEBAR
Unshifted 32
Shifted -52
Ctrl -53
Ctrl-Shifted -54
4893-17
I Figure A-2. ASCIl/North American Keyboard Macro Chart.
I 4105 PROGRAMMERS A-3

CODE CHARTS & KEYBOARD MACROS
UNITED KINGDOM U
UNITED KINGDOM CHARACTER SET u
B7 0 0 0 0 1 1 1 1 u
B 0, | O, 1ol 1y e, l0, 1| 1,
BITS
B4 B3 B2 Bl CONTROL FIGURES UPPERCASE LOWERCASE u
olololo| N D S 0 | @ P \
U 0 L16 P32 48 64 80 96 p772 u
o|o|o|1] SH | D1 ! 1 A 0 a
1 17 33 49 65 81 97 113 u
olo1]o| S D 4 2 B R b r f
x 2 278 34 50 66 82 98 114
oloj11| Ex [D3 | £ | 3 C S C S u
3 19 35 51 67 83 99 115
oj1jojo| ET | Dg | § | 4 D T d t
4 20 36 52 68 84 100 116
oj1jo|1] Eq | Nk | % | 5 E U | e u U
5 21 37 53 69 85 101 117
ol1]1|o| A S & 6 F Vv f vV '
K 6 Y22 38 54 70 86 102 118 v u
ol1|1[1] BL | EB / 7 G W g w
7 23 39 55 71 87 103 119 u
1lejojo| Bg = Cn | 8 H | X h | x ‘
8 24 40 56 72 88 104 120
1lolo|1| H E 9 | Y i
T 9 M25) 41 57 73 89 105 y727 u
110]1]o] L SB | * J / ' Z
10 26 42 58 74 90 106 122 u
tel1|1] V1 | Ec | + ; K [k | {
11 27 43 59 75 91 107 123
111lolo| F F ' < L \ 1 |
F 12 S 28 ’ 44 60 76 92 108 124 u
1l110/1| CR | G - = M] m }
13 29 45 61 77 93 109 125 U
111{1)e| Sg | Rg | . > | N | A n | —
14 30 46 62 78 94 110 126
1111 S | Ug | / ? 0 _ o | DT u
15 31 47 63 79 95 111 127
(4526)4893-20B
Figure A-3. United Kingdom Character Set Code Chart. u
A-4 4105 PROGRAMMERS u

J

J

l
M
R
|
l
l
i
4
|
|
ﬂ

CODE CHARTS & KEYBOARD MACROS

G Er as[CanceilD Copy]
JOYDISK Menu Fl F2 F3 [F4 FS F6 |F7 |F8
RIGHT UP LEFT DOwWN [Di@log|Setup|S Copy
Unshifted -135 -136 -137 -138 -111 -112 -113 -114 128 129 130 131 132 133 134 135
Shifted -139 -140 —-141 -142 -117 -118 -119 -120 136 137 138 139 140 141 142 143
Cctrl —143 —144 145 —146 -123 -124 —125 -126 -2 -3 -4 -5 -6 -7 -8 -9
Ctrl-Shifted -147 - 148 -149 -150 -129 -130 -131 -132 -10 -1 -12 -13 -14 -15 -16 -17
D Eras| { i e £ $ % A & % () _ |+ } Rub
S Eras|C I 2 3 4 5 6 7 8 9) - = | Out 7 8 9 -
Unshifted - 115 91 49 50 51 52 53 54 55 56 57 48 45 61 93 127 -62 -63 -64 67
Shifted —121 123 33 64 35 36 a7 94 38 42 40 41 95 43 125 -34 -76 -77 -78 -81
Ctrl -127 27 49 50 51 52 53 54 55 56 57 48 45 61 29 -35 -90 -91 -92 -95
Ctrl-Shifted - 133 27 33 0 35 36 37 30 38 42 40 41 31 43 29 -36 -104 -105 -106 —109
— fa [w | [rR [T ¥ Ju I o [P |s Line
Feed
| \ 4 5 6 s
Unshifted 27 124 113 113 101 14 116 121 117 105 111 112 92 10 -59 -60 -61 —66
Shifted -37 126 81 87 69 82 84 89 85 73 79 80 96 -40 -43 -73 -74 -75 -80
ctrl -38 124 17 23 5 18 20 25 21 9 15 16 28 —41 —44 -87 -8 -8 -94
Ctrl-Shifted -39 126 17 23 5 18 20 25 21 9 15 16 28 -42 -45 -101 -102 -103 -108
S D F G H J K L . "
Ctri . Return
, 4 | 2 3
Enter|
Unshifted 97 115 100 102 103 104 106 107 108 59 39 13 -56 -57 -58
Shifted 65 83 68 70 71 72 74 75 76 58 34 —49 -70 =71 =72
Ctrl —47 1 19 4 6 7 8 10 1 12 59 39 -50 -84 -8 -86
Ctrl-Shifted ~ -48 1 19 4 6 7 8 10 11 12 58 34 -51 -98 -99 -100
-68
&) z X [Vv B N M < > |7 _g2
Caps . -
ift Shift Break 96
Lock | Shi s . /) . -110
Unshifted 122 120 99 118 98 110 109 44 46 47 -55 -65
Shifted 90 88 67 86 66 78 77 60 62 63 -69 -79
cul 26 24 3 22 2 14 13 44 46 47 -83 -93
Ctrl-Shifted 26 24 3 22 2 14 13 60 62 63 -97 -107
SPACEBAR
Unshifted 32
Shitted -52
Ctrl -53
Ctrl-Shifted - 54
4893-19
Figure A-4. United Kingdom Keyboard Macro Chart.
4105 PROGRAMMERS A-5

CODE CHARTS & KEYBOARD MACROS
FRENCH U
FRENCH CHARACTER SET u
87 0 0 0 0 1 1 1 1 u
®esl P %1 'o| "1 %o 94| To| "4
BITS u
B4 B3 B2 BI CONTROL FIGURES UPPERCASE LOWERCASE
olololo| N D S 0 a P
U 0 L 16 P32 48 64 80 M 96 112 u
olojo{1] SH | Dq ! 1 A Q a
1 17 33 49 65 81 97 113 u
olo|1|o| S D L 2 B R b r
X 2 2 18 34 50 66 82 98 114
oloj11| Ex | D £ 3 C S C S u
3 19 35 51 67 83 99 115 4
oj1lojle| ET | Dg | $ 4 D T d t
4 20 36 52 68 84 100 116
oj1lo|1| EQ | Nk | % | S E | U | e u u
5 21 37 53 69 85| 101 117
ol1]1]o] A S & 6 F Vv f v |
K 6 Y22 38 54 70 86 102 118 v u
ol1|111] BL | EB /] G W g W
7 23 39 55 71 87 103 119 u
1lojojo| Bg | Cp (8 H X h X
8 24 40 56 72 88 104 120
1lolo|1| H E) 9 I Y i
T 9 M25 41 57 73 89 105 y121 u
1e]1]e]| L Sp | * J VA | Z
10 26 42 58 74 90 106 122 u
1lo|1)1] VT | Eg | + ; K ° k | €
11 27 43 59 75 91 107 123 ;
1l1lole| FF | F < L | u
F 12 S 28 ’ 44 60 76 g 92 108 124 u
1l1loj1f CR | Gg | - = M § m | e
13 29 45 61 77 93 109 125 u
111]1le] So | Rg | . > | N " n N
14 30 46 62 78 94 110 126
1|1]1]1] S | Ug | / ? 0 — o | Dy u
15 31 47 63 79 95 111 127
(4526)4893-228
Figure A-5. French Character Set Code Chart. u
A-6 4105 PROGRAMMERS u

CODE CHARTS & KEYBOARD MACROS
l G Er as|{CancellD Copy
JOYDISK . Menu Fl F2 |[F3 |[F4 FS F6 |F7 |[F8
RIGHT UP LEFT DOWN [Pialeg|Setup |S Copy
Unshifted -135 -136 -137 -138 -111 -112 -113 -114 128 129 130 131 132 133 134 135
Shifted -139 -140 —-141 -142 -117 -118 -119 -120 136 137 138 139 140 141 142 143
Ctrl —143 —-144 - 145 - 146 -123 -124 -125 -126 -2 -3 -4 -5 -6 -7 -8 -9
Ctrl-Shifted -147 —148 —149 - 150 -129 -130 -131 -132 -10 -1 -12 -13 -14 -15 -16 -17
D Eras|% | 2 3 4 5 6 7 8 <] [4) o _ " bt
N S
SEras|$ |& é woo| (§ e r e a - £ 7 8 9 -
Unshifted - 115 36 38 123 34 39 40 93 125 a3 92 64 41 5 35 127 62 -63 -64 -67
Shited - 121 42 49 50 51 52 53 54 55 56 57 48 91 95 9% -34 76 -77 -78 -81
ctrl —127 36 38 27 34 39 20 29 29 33 28 0 41 45 3B -35 -9 -91 -92 -95
Ctrl-Shifted - 133 a2 49 50 51 52 53 54 55 56 57 48 27 31 28 -36 ~104 -105 -106 -109
N A Z E R T Y 6] I 6] P .
Esc —
< A 4 5 [S) s
Unshifted 60 97 122 101 114 116 121 117 105 11 112 94 27 8 -59 -60 -61 - 66
Shifted 62 65 % 69 82 84 89 85 73 79 80 126 -37 _40 73 -74 -75 -80
Ctrl 60 1 26 5 18 20 25 21 9 15 16 30 ~38 —a1 -87 -88 -89 -94
Gtrl-Shifted 62 1 26 5 18 20 25 21 9 15 6 126 -39 —42 -101 -102 -103 -108
Q S D F G H J K L M %
Ctrl N <
V] | 2 3
Enter
Unshifted 10 113 115 100 102 103 104 106 107 108 109 124 13 -56 -57 58
Shifted -43 81 83 68 70 71 72 74 75 76 77 a7 _19 70 -7 =72
Ctrl _a4 17 19 4 6 7 8 10 1 12 13 124 _50 -84 -85 86
ﬂ Ctrl-Shifted - 45 17 19 4 6 7 8 10 1 12 13 4 _51 —98 -99 -100
~68
-82
CGPSO MAJ w X C \ B N ? o v + MAJ Br e ak To6
Lock min g : : - min o) . ~110
Unshifted 119 120 99 118 98 110 44 59 58 61 ~116 —55 —65
Shifted 87 88 67 86 66 78 63 6 a7 43 —122 -69 -79
Ctrl 23 24 3 22 2 14 44 59 58 61 ~128 -83 ~93
Ctrl-Shifted 23 24 3 22 2 14 63 46 47 43 -134 -97 -107
SPACEBAR
Unshifted 32
Shifted -52
Ctrl -53
Ctrl-Shifted -54
4893-21

Figure A-6. French Keyboard Macro Chart.

:-.-)m =m

4105 PROGRAMMERS A-7

CODE CHARTS & KEYBOARD MACROS
SWEDISH U
SWEDISH CHARACTER SET u
B7 0 0 7}) 1 1 1 1 u
BGBS ﬂ@ @1 1® 11 (DQ @1 1(2) 11
BITS
B4 B3 B2 Bl CONTROL FIGURES UPPERCASE LOWERCASE u
olelelo] Ny | DL | Sp| 0 | @ | P \ p
0 16 32 48 64 80 96 112 u
ololol1| S D ! 1 A a
H 1 1 17 33 49 65 Q 81 97 113 |
olol1]e] S D " 2 B R b r ‘
X 2 2 18 34 50 66 82 98 114 u
olo|11| Ex | D3 | # | 3 C S C S
3 19 35 51 67 83 99 115 u
o|1lojo| ET | Dg | = | 4 D T d t
4 20 36 52 68 84 100 116
ol ilof1|EQ Nk | % | 5 | E | U ! !
5 21 37 53 69 85 101 117
ol1l1]o] A S & 6 F V v
K 6 22 38 54 70 86 102 118 w u
ol1]1]1] BL | EB / 7 G W g | w
7 23 39 55 71 87 103 119 u
1lojojo| Bg | Cy (8 H X h X
8 24 40 56 72 88 104 120
1lolol1| H E 9 | Y i
T 9 M25) 41 57 73 89 105 y121 u
1le|1le] LF | SB | = J Vi | z
10 26 42 58 74| 90 106 122 u
1o|1|1] VT | EC + , K A k 5
11 27 43 59 75 91 107 123
1|1lele| Fg | Fg , < L 0 1 0 u
12 28 44 60 76 92 108 124
1l1lel1| C G - = M A m 3
R13 829 45 61 77 A 93 109 125 u
111|1le| So | Rs) > N " n -
14 30 46 62 78 94 110 126
il st JUs | 7 17 o] _ | oDy 1
15 31 47 63 79 95 111 127
(4526)4893-24
Figure A-7. Swedish Character Set Code Chart. u
A-8 4105 PROGRAMMERS u

CODE CHARTS & KEYBOARD MACROS
! SWEDISH
I G Eras|CancellD Copy|
JOYDISK Menu FlI |F2 |F3 |F4 F5 |F6 |F7 |F8
RIGHT UP LEFT DOWN [Pialeg[Setup S Copy
Unshifted -135 -136 -137 -138 -111 -112 -113 -114 128 129 130 131 132 133 134 135
Shifted -139 -140 -141 - 142 -117 -118 -119 -120 136 137 138 139 140 141 142 143
Ctrl -143 -144 - 145 - 146 -123 -124 -125 -126 -2 -3 -4 -5 -6 -7 -8 -9
Ctrl-Shifted -147 - 148 -149 - 150 -129 -130 -131 -132 -10 -1 -12 -13 - 14 -15 -16 -17
DEcasA 11 e g I (% |& |/ { [N A N T
S Eras| | 2 3 4 5 6 7 8 9 o] + , < Out 7 8 g _
Unshited -115 126 49 50 51 52 53 54 55 56 57 48 43 39 60 127 —62 -63 -64 —67
Shifted -121 94 33 34 35 36 37 38 47 40 41 61 63 96 62 -34 -76 -77 -78 -81
: ctrl 127 126 49 50 51 52 53 54 55 56 57 48 43 39 60 -35 -90 -91 -92 -95
Ctrl-Shifted - 133 30 33 34 35 36 37 38 47 40 41 61 63 28 62 -36 -104 -105 -106 —109
* Q w E R T Y u [0 P A Line
@ Feed 4 5 6 .
Unshifted 64 113 119 101 114 116 121 117 105 11 112 125 10 -59 -60 -61 -66
Shifted 42 81 87 69 82 84 89 85 73 79 80 93 -43 -73 -74 -75 80
Ctrl 0 17 23 5 18 20 25 21 9 15 16 29 —44 -87 -88 -8 -94
Ctrl-Shifted 42 17 23 5 18 20 25 21 9 15 16 29 -45 -101 -102 -103 -108
l A s D F G H J |k L o I
Ctr 1 Return
| 2 3
HEnter
Unshifted 97 115 100 102 103 104 106 107 108 124 123 13 -5 -57 -58
Shifted -46 65 83 68 70 71 72 74 75 76 92 91 —49 -70 -71 -T2
Ctrl —47 1 19 4 6 7 8 10 11 12 124 27 -50 -84 -85 -86
Ctrl-Shifted - 48 1 19 4 6 7 8 10 11 12 28 27 -51 -98 -99 -100 -
— 61
X C \% B N M H H -82
Caps | ghjft Shitt Break -96
Lock 3 ° — 0 . -110
Unshifted 122 120 9 118 9% 110 109 44 46 45 -116 -55 -65
Shifted 90 88 67 86 66 78 77 59 58 95 -122 -69 -79
Ctrl 26 24 3 22 2 14 13 44 46 45 -128 -83 -93
Ctrl-Shited 26 24 3 22 2 14 13 59 58 31 —134 -97 -107
SPACEBAR
Unshifted 32
Shifted -52
ctrl -53
Ctrl-Shifted -54
4893-23
I Figure A-8. Swedish Keyboard Macro Chart.
H 4105 PROGRAMMERS A-9

CODE CHARTS & KEYBOARD MACROS
DANISH/NORWEGIAN

DANISH/NORWEGIAN CHARACTER SET

B7 0 0 0 0 1 1 1
B6 o 00 01 1® 11 ‘D@ (2)1 1® 11
BITS
84 B3 B2 Bl CONTROL FIGURES UPPERCASE LOWERCASE
olojolo| Ny | DL | Sp | 0 | @ | P \
0 16 32 48 64 80 96 112
ololo|1] S D ' | A a
H 1 1 17 33 49 65 Q 81 97 113
olo[1]e| Sx | Do | " | 2 | B | R b r
2 18 34 50 66 82 98 114
olo|11| Ex | D3 | # 3 C S C S
3 19 35 51 67 83 99 115
o1lojo| ET [Dg | § | 4 D T d t
4 20 36 52 68 84 100 116
oj1joj1| E | Nk | % | S E | U u
5 21 37 53 69 85 101 117
ol1|1lo] AK | Sy | & 6 F Vv f v
6 22 38 54 70 86 102 118
ol11]1| BL | EB / / G W g W
7 23 39 55 71 87 103 119
1lojolo| Bg | CN | | 8 | H | X h | x
8 24 40 56 72 88 104 120
1lojo|1| HT | Em |) 9 I Y | y
9 25 41 57 73 89 105 121
1lo|1]of L Sg | = J A] z
10 26 42 58 74 90 106 122
tol11| VT | Eg | + ; K | A k &
11 27 43 59 75 91 107 123
111]olo| FF | Fg : < | L | g 1)
12 28 44 60 76 92 108 124
1l1]o|1] C Gg - = M A m a
13 29 45 61 77 93 109 125
111)1le] So | Rg > N " n -
14 30 46 62 78 94 110 126
i1 S | Ug | / ? 0 _ o | DT
15 31 47 63 79 95 111 127
(4526)4893-26
Figure A-9. Danish/Norwegian Character Set Code Chart.
A-10

4105 PROGRAMMERS

C

)

CODE CHARTS & KEYBOARD MACROS

J

DANISH/NORWEGIAN
G Eras|{CancellD Copy]
JOYDISK Menu Fl F2 F3 |F4 FS F6 |F7 |F8
RIGHT UP LEFT DOwN [Pieles|Setup|S Copy
Unshifted - 135 - 136 -137 -138 -111 -112 -113 -114 128 129 130 131 132 133 134 135
Shifted -139 -140 —-141 -142 -117 -118 -119 -120 136 137 138 139 140 141 142 143
crrl —143 —144 145 —146 -123 —124 -125 —126 -2 -3 -4 -5 -6 -7 -8 -9
Ctrl-Shifted - 147 -148 —149 -150 -129 -130 -131 -132 -10 -1 -12 -13 -14 -15 -16 -17
DEras{ A 1 " # $ 7 & / () = 7 N > Rub
S Eras| | 2 3 4 5 6 7 8 g ® + , < Out - 8 Q _
Unshifted -115 126 49 50 51 52 53 54 55 56 57 48 43 39 60 127 -62 -63 -64 -67
Shifted -121 94 33 34 35 36 37 38 47 40 41 61 63 % 62 -34 -76 -77 -78 -81
ctrl -127 126 49 50 51 52 53 54 55 56 57 48 43 39 60 -35 -90 -91 -9 -95
Ctrl-Shifted - 133 30 33 34 35 36 37 38 47 40 4 61 63 28 62 -36 -104 -105 -106 —-109
% Q |w E |R T |y |u I o |P |a Line
d
e Fee ¢+ s |6 |,
Unshifted 27 64 113 119 101 114 116 121 17 105 111 112 125 10 -59 -60 -61 -66
Shifted -37 42 81 87 69 82 84 89 85 73 79 80 93 -43 -73 -74 -75 —-80
ctrl -38 0 17 23 5 18 20 25 21 9 15 16 29 —44 -87 -8 -89 -94
Ctrl-Shifted -39 42 17 23 5 18 20 25 21 9 15 16 29 —45 101 -102 -103 -108
A S D F G H J K L 2 £
Ctri Return
| 2 3
Enter|
Unshifted 9 97 115 100 102 103 104 106 107 108 124 123 13 -56 -57 -58
Shifted —46 65 83 68 70 7 72 74 75 76 92 91 - 49 -70 -71 -72
cul —a7 1 19 4 6 7 8 10 1 12 124 27 -50 -84 -8 -86
Ctrl-Shifted - 48 1 19 4 6 7 8 10 1 12 28 27 -51 -98 -99 -100 m
Zz X C \ B N M ; . -82
Caps™ | ghitft — Shift Break -96
Lock N . — ® . -110
Unshifted 122 120 99 118 98 110 109 44 46 45 ~116 -56 -65
Shifted 9 88 67 86 66 78 77 59 58 95 ~122 -69 -79
Cul 26 24 3 22 2 14 13 44 46 45 -128 -83 -93
Ctrl-Shifted 26 24 3 22 2 14 13 59 58 31 -134 -97 -107
SPACEBAR
Unshifted 32
Shifted -52
ctrl -53
Ctrl-Shifted - 54
4893-25
Figure A-10. Danish/Norwegian Keyboard Macro Chart.
4105 PROGRAMMERS A-11

CODE CHARTS & KEYBOARD MACROS
GERMAN u
GERMAN CHARACTER SET u
B7 0 1] 4] 0 1 1 1 1 u
anBGBs Op | 21| 0| 1| %] 4| Tg| i
B4 B3 B2 Bl CONTROL FIGURES UPPERCASE LOWERCASE u
olefelel Ny | DL [SP | O | § | P | ¥ [p
0 16 32 48 64 80 9% 112 u
ololo|1] S D ! 1 A a
H 1 1 17 33 49 65 Q 81 97 113
olo|1lo] Sx | Do | " | 2 B R b r u
2 18 34 50 66 82 98 114
oloj1|1| Ex | D3 | # | 3 C S C S
3 19 35 51 67 83 99 115 u
oj1joje| ET | Dg | $ 4 D T d t
4 20 36 52 68 84 100 116
ool 1| EQ | Nk | % | 5 | E | U ! \
5 21 37 53 69 85 101 117
ol1]1|0| A S & 6 F V V
K 6 Y22 38 54 70 86 102 118 v U
o[1]1]1| BL | EB / 7 G W g W
7 23 39 55 71 87 103 119 u
1lojojo| Bg | CN (8 H X h X '
8 24 40 56 72 88 104 120
1lelo]1| H E) 9 I Y i u
T 9 M25 41 57 73 89 105 y127
110]1|o| L S | = J /] Z
10 26 42 58 74 90 106 122 u
o171 VT | Eg | + : K A k a
11 27 43 59 75 - 91 107 123
1|1]ole| FF | Fs , < L 0 1 0 u
12 28 44 60 76 92 108 124
1l11e[1] CR | G - = M U m u
13 29 45 61 77 93 109 125 u
111)1]0] S Rg | . > | N A n
14 30 46 62 78 94 110 126
111)1] S | Ug | / ? 0 — o | Dy u
15 31 47 63 79 95 111 127
(4526)4893-28A
Figure A-11. German Character Set Code Chart. u
A-12 4105 PROGRAMMERS u

J

J

CODE CHARTS & KEYBOARD MACROS

G Ls |Stop |D Kop
JOYDISK Menii Fl F2 |F3 [F4 F5 |[F6 [F7 [F8
RIGHT UP LEFT DOwWN |Bialeg|Param B Kop
Unshifted ~ -135 -136 —137 -138 -111 -112 -113 -114 128 120 130 131 132 133 134 135
Shifted 139 -140 -141 -—142 -117 -118 -119 -120 136 137 138 139 140 141 142 143
crl 143 -144 145 146 —123 -124 -—125 -126 -2 -3 -4 -5 -6 -7 -8 -9
Ctrl-Shited -147 —-148 -149 —-150 -129 -130 -131 -132 -0 -11 -12 -13 -4 15 -6 -17
D L5 |A 1 " g $ VA & / () - 7 \ * g
B Lo (# I 2 3 4 |5 6 7 8 |9] / + 7 8 9 -
Unshifted -115 35 49 50 51 52 53 54 55 56 57 48 126 39 43 127 -62 -63 -64 —67
Shifted ~ —121 94 33 34 64 36 37 38 47 40 41 61 63 9% 42 _34 -76 -77 -78 -81
Ctrl -127 35 49 50 51 52 53 54 55 56 57 48 126 39 43 -35 -90 -91 -9 -95
Ctrl-Shifted —133 30 33 34 0 36 37 38 47 40 41 61 63 28 2 -3 -104 -105 —106 —109
> Q w E R T z u [s} P U $
< 4 5 6 .
Unshifted 27 60 113 119 101 114 116 122 117 105 111 112 125 10 -59 -60 -61 —66
Shitted -37 62 81 87 69 82 84 90 85 73 79 80 93 -40 -43 -73 -74 -75 -80
Ctrl -38 60 17 23 5 18 20 26 21 9 15 16 29 —41 —44 -87 -8 -89 -94
Ctrl-Shifted -39 62 17 23 5 18 20 26 21 9 15 16 29 —a2 -45 -101 -102 -103 -108
A |s D |F |6 H |J [k L o][R
Ctrl <«
‘ 2 13 [ein-
Unshifted 9 97 115 100 102 103 104 106 107 108 124 123 13 -s6 -57 -58 |99P°
Shifted -46 65 83 68 70 71 72 74 75 76 92 91 —49 -70 -71 -72
Ctrl -47 1 19 4 6 7 8 10 11 12 124 27 -50 -84 -8 -8
Ctrl-Shifted ~ —48 1 19 4 6 7 8 10 1 12 28 27 ~51 -98 -99 -100
-68
@] Y X c \% B N M - -82
Sperr * - Break -96
G ° - 4})] . -110
Unshifted 121 120 99 118 98 110 109 44 46 45 -116 -55 -65
Shifted 89 88 67 86 66 78 77 59 58 95 -122 -69 -79
ctrl 25 24 3 22 2 14 13 44 46 45 -128 -83 -93
Ctrl-Shifted 25 24 3 22 2 14 13 59 58 31 —134 -97 -107
SPACEBAR
Unshifted 32
Shifted -52
ctrl -53
Ctrl-Shifted - 54
4893-27A
Figure A-12. German Keyboard Macro Chart.
4105 PROGRAMMERS A-13

CODE CHARTS & KEYBOARD MACROS

SUPPLEMENTARY

SUPPLEMENTARY CHARACTER SET

A-14

1

1

1

1

8685 @0 01 1® 11 @0 01 10 11
BITS
B4 B3 B2 Bl CONTROL FIGURES UPPERCASE LOWERCASE
ololo|o| N Di | S 0 N [
U 0 L16 P32 48 64 N 80 ‘ 96 112
ololoj1] SH | D1 | A 1 ¢ 1l . E
1 17 33 49 65 81 97 113
olo|1|o] S D a 2 | ¢ H E
X 2 218 34 so] | 66 82 T98 114
oo11| Ex | D3 | A | ¢ |t b0 I [
3 19 35 51 67 83 99 115
ol1lo|o]| E D a 4 O a |C E
T 4 420 36 52 68 84 RTOO 116
oj1je[1| Eq | Nk | /A& 5 | o | LF I
5 21 37 53 69 85 101 117
ol1|1lo| Ak | Sy | @ s | @ | 7 | ° ([
6 22 38 54 70 86 102 ___1778
ol1]1|1] B E > 7 A +
L 7 823 d 39 55 71 \P 87 103 I119
1lololo| B C 6 N I
S 8 N24 g 40 56 a 72 M 88 L104 120
/
1lolo|1| H E e 9 A r |V <
T 9 M25 41 57 73 89 T705 = 121
\ \
1lo|1le| Lp | SB | € u | 1| Q B >
10 26 42 58 74 90 L 106 122
1lel1|1] V E 0 L T
T11 C 27 43 B 59 75 [91 l 107 123
1l1lolo| F F 0 0] B j #*
F 12 S 28 44 60 76 92 L 108 124
1]1lo|1| CR | Gs g | 4 | = |[U £
13 29 45 61 77 93| L__J1109 125
1{1|1]e] So | Rs U § — = } .
14 30 46 62 78 94 2 110 126
11|11 S | Ug | i o« | E DT
15 31 47 63 79 95 111 127
(4526)4893-29C
Figure A-13. Supplementary Character Set Code Chart.
REV, JAN 1986 4105 PROGRAMMERS

C C

| | CODE CHARTS & KEYBOARD MACROS
H RULINGS
I RULINGS CHARACTER SET
I B7] 1]]] 1 1 1 1
%ol 9| 29| 'o| 1| %0| 91| 9| i
BITS
I B4 B3 B2 BI CONTROL FIGURES UPPERCASE LOWERCASE
ololojo| N D S 0 | @ P
l Uo L16 P32 48 64 80 ’96 112
ololo|1] SH | Dq ' 1 A Q .]
1 17 33 49 65 81 97 L1113
e
olo|1]e] S D " 2 B R | Hr |L_
l X 2 2 18 34 50 66 82 T98 :_174
oloj1|1| Ex [D3 | # | 3 | C | S | Ff e
l 3 19 35 51 67 83 99|
ol1jojo| ET | Dg | $ 4 D T |CR E
I 4 20 36 52 68 84 100 116
ol1]le|1| E N % 5 E U L E[
Q 5 K27 37 53 69 85 F7O1 1 1717
H ~ ol1|1le|l Ak | Sy | & | 6 Fr v | o |
17] 6 22 38 54 70 86 102 ____118
ol1|1|1| B E /] G W +
I L 7 823 39 55 71 87 103 I119
1lolole| B C (8 H X | N I
S 8 N24 40 56 72 88 L704 120
l 1lojo|1| HT | E) 9 I Y | VT | <
3 9 25 41 57 73 89 105 121
1lo]1]o| L Sg | * . J 7 (U] >
l 10 26 42 58 74 ol L Jros| 122
1lel1|1] V E + : K [™
T71 C27 43 ’ 59 75 91 ;707 123
111lolo| F F < L \ #
I F 12 S 28 ’ 44 60 76 92 _£708 124
il1jo|1| CR | Gs | - = | M 1 (14 | ¢
l 13 29 45 61 77 93 L__1109 125
| 11)1]o] S Rg | . > N A } .
14 30 46 62 78 94 _770 126
. 11|11 S | Ug | / ? 0 DT
15 31 47 63 79 95 =771 127
(4526)4893-30
H Figure A-14. Rulings Character Set Code Chart.
N 4105 PROGRAMMERS A-15

J J)

R
i
N
f
|
|
|

J

J

J

Appendix B

ERROR CODES

INTRODUCTION

Each error that the terminal detects has an error code and a
severity level.

When the terminal detects an error, it stores the error in a
limited-size queue for later retrieval by the REPORT
ERRORS command.

If the error’s severity level is greater than or equal to the
current error level, the terminal displays a message on the
screen. When the terminal is shipped from the factory, its
error threshold is set to 2; thus the only errors displayed are
those with a severity level of 2 or 3. The error threshold can
be changed with the SET ERROR THRESHOLD command
(ERRORLEVEL in Setup syntax). The error threshold is not
remembered when the terminal is turned off.

ERROR CODES

The error codes are composed according to the following
scheme:

o Each error code consists of four characters.

e In most error codes the first two characters are the
opcode, which identifies the command that caused the
error.

e The third character is a digit. Digits from 1 to 9 name the
parameter with which the error is associated; a O indicates
that the error is associated with the command as a whole.

e The fourth character of the error code is also a digit:

0 — Indicates an existence problem. The object
referred to does not exist when it should, or it
does exist when it shouldn’t.

1 — Indicates an invalid value.
2 — Indicates an out-of-memory problem.

3 — Indicates a context problem. The command is
valid, but cannot be executed at this time.

4105 PROGRAMMERS

For example, consider the MP10 error code. Here MP refers
to the SELECT FILL PATTERN command, which has the
following syntax:

EcMP fill-pattern-number

The I refers to the first (and only) parameter of that
command, which is the fill pattern number. The 0 indicates
an existence problem; the fill pattern does not exist.

SEVERITY LEVELS

There are four error severity levels:

o Level 0. Level errors 0 are minor errors. The
corresponding message begins with Terminal issues
message, followed by the error code.

e Level 1. Level 1 errors are warnings. The corresponding
message begins with Terminal issues warning, followed by
the error code. Typically these warnings occur when the
command is inappropriate or not recognized.

e Level 2. Level 2 errors result from invalid commands.
The corresponding message begins with Terminal detects
error, followed by the error code. For instance, a
parameter may be outside the specified range.

e Level 3. Level 3 errors occur when the command is valid,
but the terminal cannot execute the command. The
corresponding message begins with Terminal system error
followed by the error code. For instance, there may be
insufficient memory to hold all the information being
entered.

B-1

ERROR CODES

ERROR CODES KD — DEFINE MACRO

The rest of this appendix lists each error code (in bold)
alphabetically with its severity level and an explanation of
the cause.

ERROR CODES FOR 4100-STYLE COMMANDS

IJ — SET GIN CURSOR SPEED

KD11 (Level 2). Invalid macro-number parameter (must
be in range -150 to 32767).

KD21 (Level 2). Invalid ADE integer in the
macro-contents parameter. (Character codes must be in
the range from 0 to 127. The array count must be in the
range from 0 to 65535.)

KD22 (Level 3). Insufficient memory to define macro.

1J11 (Level 2). Invalid normal-speed parameter (must be KE — SET ECHO

in the range 0 through 65535).

1321 (Level 2). Invalid shifted-speed parameter (must be
in the range 0 through 65535).

KE11 (Level 2). Invalid echo-mode parameter (must be 0
or 1).

KF —LFCR

JC — COPY
JC11 (Level 2). Invalid source parameter (must be HO:).

JC12 (Level 3). Out of memory while parsing the source

KF11 (Level 2). Invalid LFCR-mode parameter (must be
Oorl).

parameter. KG — DIM ENABLE

JC21 (Level 2). Invalid separator parameter (must be

KG11 (Level 2). Invalid dim-code parameter (must be 0

empty sring or 70). orl).
JC22 (Level 3). Out of memory while parsing the
separator parameter. KH — HARDCOPY

JC31 (Level 2). Either the port is busy or the destination
parameter is invalid (must be HC:).

JC32 (Level 3). Out of memory while parsing the
destination parameter.

JC39 (Level 2). Hard copy device not ready. Check the KI
hard copy unit.

KA — ENABLE DIALOG AREA

KAO03 (Level 1). Context problem, cannot disable dialog KL
area when in ANSI mode.

KA11 (Level 2). Invalid enable-mode parameter (must be
Oorl).

KB — SET TAB STOPS

KB12 (Level 2). Out of memory while parsing the array.

B-2 REV, JUN 1985

KH11 (Level 2). Invalid kardcopy-code parameter (must
be 0, 1, 2, or 3). (Or, hardcopy-code does not agree with
current setting of SELECT HARDCOPY INTERFACE
command.)

— IGNORE DELETES

KI11 (Level 2). Invalid ignore-deletes-mode parameter
(must be 0 or 1).

— LOCK KEYBOARD

KL11 (Level 2). Invalid /ocking-mode parameter (must be
Oorl).

4105 PROGRAMMERS

C

(

R
n
f
{

J

»

ﬁ

KO — DEFINE NONVOLATILE MACRO

KO11 (Level 2). Invalid macro-number parameter (must
be in range —-150 through 32767.

KO21 (Level 2). Invalid ADE integer in the
macro-contents parameter (character codes must be in the
range 0 through 127; the array count must be in the range
0 through 65535).

K022 (Level 3). Insufficient memory to define macro.

KR — CRLF

KR11 (Level 2). Invalid CRLF-mode parameter (must be
Oorl).

KS — SET SNOOPY MODE

KS11 (Level 2). Invalid snoopy-mode parameter (must be
Oorl).

KT — SET ERROR THRESHOLD

KT11 (Level 2). Invalid error-threshold-level parameter
(must be in range from 0 to 4).

KU — SAVE NONVOLATILE PARAMETERS
KUO02 (Level 2). Nonvolatile memory hardware error

(data was not saved correctly in nonvolatile memory;
defaults will be reset on power-up).

KW — ENABLE KEY EXPANSION

KW11 (Level 2). Invalid macro-expansion-mode
parameter (must be 0 or 1).

KX — EXPAND MACRO
KX01 (Level 2). The maximum nesting depth for the
command has been exceeded (the nesting depth should
not exceed five).

KX02 (Level 3). Out of memory while executing
command.

KX11 (Level 2). Invalid macro-number parameter (must
be in the range -150 to 32767).

4105 PROGRAMMERS

ERROR CODES

KY — SET KEY EXECUTE CHARACTER

KY11 (Level 2). Invalid key-execute-character parameter
(must be in range 0 to 127).

KZ — SET EDIT CHARACTERS

KZ11 (Level 2). Invalid character-delete parameter (must
range from 0 to 127).

KZ21 (Level 2). Invalid /ine-delete parameter (must range
from 0 to 127).

KZ31 (Level 2). Invalid take-literally parameter (must
range from 0 to 127).

LB — SET DIALOG AREA BUFFER SIZE

LBO03 (Level 0). Context error: dialog parameters
modified, but not as specified.

LB11 (Level 2). Invalid number-of-lines parameter (must
be in the range from 2 to 32767).

LE — END PANEL

LE02 (Level 3). Out of memory while executing
command.

LEO3 (Level 1). No panel is currently being defined.

LI — SET DIALOG AREA INDEX

LI11 (Level 2). Invalid character-index parameter (must
be in the range from 0 to 65535).

LI21 (Level 2). Invalid character-background-index
parameter (must be in the range from 0 to 65535).

LI31 (Level 2). Invalid dialog-background-index
parameter (must be in the range from 0 to 65535).

LL — SET DIALOG AREA LINES

LL11 (Level 2). Invalid number-of-lines parameter (must
be in the range of 2 through 30).

LM — SET DIALOG AREA WRITING MODE

LM11 (Level 2). Invalid writing-mode parameter (must
beOor 1).

B-3

ERROR CODES

LP — BEGIN PANEL BOUNDARY
LP03 (Level 2). Alphatext is not allowed within a panel
definition. If the dialog area is disabled when the
terminal is in Alpha mode, the terminal attempts to read
alphatext as xy parameters.
LP21 (Level 2). Invalid draw-boundary parameter (must
beOorl1).

LT — GRAPHIC TEXT

LT03 (Level 2). Command is invalid at this time.
Graphtext is not allowed within a panel definition.

LT11 (Level 2). Invalid fext parameter. Invalid array
count (must be in range from 0 to 32767), or invalid
character in the array (must be in the range ADE 32
through 126, Sp through ~).
LT12 (Level 3). Out of memory while parsing the text
parameter).

LV — SET DIALOG AREA VISIBILITY
LV11 (Level 2). Invalid visibility-mode parameter (must
beOorl).

MC — SET GRAPHTEXT SIZE

MCI11 (Level 2). Invalid width parameter (must be in
range 0 through 4095).

MC21 (Level 2). Invalid height parameter (must be in
range 0 through 4095).

MC31 (Level 2). Invalid spacing parameter (must be in
range O through 4095).

MG — SET GRAPHICS AREA WRITING MODE

MG11 (Level 2). Invalid writing-mode parameter (must
beOorl).

ML — SET LINE INDEX

ML11 (Level 2). Invalid /ine-index parameter (must be in
the range from 0 to 65535).

B-4

C

MM — SET MARKER TYPE

MM11 (Level 2). Invalid marker-number parameter
(must be in the range from 0 to 10).

MN — SET GRAPHTEXT CHARACTER PATH
MN11 (Level 2). Invalid direction parameter (must be 0,
1, 2, or 3).

MP — SELECT FILL PATTERN
MP10 (Level 2). Specified fill pattern does not exist.
MP11 (Level 2). Invalid fill-pattern-number parameter
(must be in the range from -32768 through 16, or 50
through 174).

MR — SET GRAPHTEXT ROTATION
MR11 (Level 2). Invalid angle (mantissa and

power-of-two parameters must represent an angle in the
range -32767.0 to 32767.0).

MT — SET TEXT INDEX
MT11 (Level 2). Invalid text-index parameter (must be in
the range from 0 to 65535).

MV — SET LINE STYLE
MV11 (Level 2). Invalid /ine-style parameter (must be in
the range from 0 to 7).

NB — SET STOP BITS
NB11 (Level 2). Invalid number-of-stopbits parameter
(must be 1 or 2).

NC — SET EOM CHARACTERS

NCI11 (Level 2). Invalid first-EOM-character parameter
(must be an integer in the range 0 through 127).

NC21 (Level 2). Invalid second-EOM-character
parameter (must be an integer in the range 0 through
127).

C

4105 PROGRAMMERS

J

ND — SET TRANSMIT DELAY

ND11 (Level 2). Invalid transmit-delay parameter (must
be in the range from 0 to 65535 milliseconds).

NE — SET EOF STRING
NE11 (Level 2). Invalid EOF-string parameter (must
contain from 0 to 10 characters, and each integer in the
array must be in the range from 0 to 127.)

NE12 (Lével 3). Out of memory while parsing the
EOF-string parameter.

NF — SET FLAGGING MODE

NF11 (Level 2). Invalid flagging-mode parameter (must
be in the range from 0 to 4).

NK — SET BREAK TIME

NK11 (Level 2). Invalid break-time parameter (must be in
the range from 0 to 65535).

/ ’ NL — SET TRANSMIT RATE LIMIT

NL11 (Level 2). Invalid rate-/limit parameter (must be in
the range from 110 to 65535).

NM — PROMPT MODE
NM11 (Level 2). Invalid prompt-mode parameter (must
be 0, 1,0r 2).

NP — SET PARITY

NP11 (Level 2). Invalid parity-code parameter (must be
in the range from 0 to 4).

NQ — SET QUEUE SIZE

NQO2 (Level 3). Out of memory while performing
command.

NQ11 (Level 2). Invalid queue-size parameter (must be in
the range from 1 to 65535).

J

4105 PROGRAMMERS

ERROR CODES

NR — SET BAUD RATES
NR11 (Level 2). Invalid transmit-data-rate (must be
either 1, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000,
2400, 4800, 9600, 19200, or 38,400).
NR21 (Level 2). Invalid receive-data-rate (must be either
0,1, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400,
4800, 9600, or 19200, or 38,400).

NS — SET PROMPT STRING
NS11 (Level 2). Invalid prompt-string parameter (must be
an array of up to ten integers, each in the range 0 through
127).
NS12 (Level 3). Out of memory while parsing the
Dprompt-string parameter.

NT — SET EOL STRING
NT11 (Level 2). Invalid EOL-string parameter. The array
must hold from 0 to 2 integer parameters. Each integer in
the array must be in the range from 0 to 127.
NT12 (Level 3). Out of memory while parsing the
EOL-string parameter).

NU — SET BYPASS CANCEL CHARACTER
NU11 (Level 2). Invalid ADE value in the
bypass-cancel-character parameter (must be in the range
from O to 127).

QA — SET COPY SIZE
QA11 (Level 2). Invalid copy-size parameter (must be 0
orl).

QD — SELECT HARDCOPY INTERFACE
QD11 (Level 2). Invalid copier-type parameter (must be
0,1, or2).

QE — SET HARDCOPY MONOCHROME ATTRIBUTES

QE11 (Level 2): Invalid monochrome-attributes-array
parameter must be (0 or 1).

QE12 (Level 3): Out of memory while parsing
monochrome-attributes-array.

ERROR CODES

QI — MAP INDEX TO PRINT
QI11 (Level 2). Invalid monochrome-values array.
QI12 (Level 3). Out of memory while parsing
monochrome-values array.

QL — SET DIALOG AREA HARDCOPY ATTRIBUTES

QL11 (Level 2). Invalid number-of-pages parameter
(must be in the range 0 through 32767).

QL21 (Level 2). Invalid page-origin parameter (must be
0, 1, 0or2).

QL31 (Level 2). Invalid Fr-interpretation parameter (must
be0, 1, or 2).

QO — SET IMAGE ORIENTATION
QO11 (Level 2). Invalid orientation parameter (must be
in the range 0 through 3).

QT — SET COLOR COPIER REPAINT
QT11 (Level 2). Invalid repaint-count parameter (must be
between 0 and 4).

QU — SELECT COLOR HARDCOPY IMAGE DENSITY
QU11 (Level 2). Invalid density-code parameter (must be
Oorl).

RA — SET VIEW ATTRIBUTES

RA11 (Level 2). Invalid surface-number parameter (must
be-1orl).

RA21 (Level 2). Invalid wipe-index parameter (must be in
range 0 through 65535).

RA31 (Level 2). Invalid border-index parameter (must be
in range 0 through 65535).

RL — RUNLENGTH WRITE

RL11 (Level 2). Invalid runcode-array (the array count
must range from 0 to 65535, and each integer in the array
must also range from 0 to 65535).

RL12 (Level 3). Out of memory while parsing the
runcode-array parameter, or while executing the
command.

RP — RASTER WRITE

RP11 (Level 2). Invalid number-of-pixels parameter
(must be in the range 0 through 65535).

RP21 (Level 2). There are too many or too few pixels in
the color-index-codes array.

RP22 (Level 3). Out of memory while parsing the
color-index-codes array parameter.

RR — RECTANGLE FILL

RR11 (Levels 0 and 2):

(Level 0). Invalid lower-left-corner coordinates
(x value is between range of 480 and 511, which is
off-screen memory).

(Level 2). Invalid lower-left-corner coordinates
(x must be in the range 0 through 511, and y from 0
through 359).

RR21 (Levels 0 and 2):

(Level 0). Invalid upper-right-corner coordinates
(x value is between range of 480 and 511, which is
off-screen memory).

(Level 2). Invalid upper-right-corner coordinates
(x must be in the range 0 through 511, and y from 0
through 359).

RR31 (Level 2). Invalid fill-index parameter (must be in
range 0 through 65535).

RS — SET PIXEL VIEWPORT

RS11 (Levels 0 and 2):

(Level 0). Invalid lower-left coordinate (x value is
between range of 480 and 511, which is off-screen
memory).

(Level 2). Invalid lower-left coordinate (x must be in
the range 0 through 479, and y from 0 through 359).
RS21 (Levels 0 and 2):

(Level 0). Invalid upper-right coordinate (x value is
between range of 480 and 511, which is off-screen
memory).

(Level 2). Invalid upper-right coordinate (x must be in

the range 0 through 479, and y from 0 through 359).

4105 PROGRAMMERS

J

J

J

RU — BEGIN PIXEL OPERATIONS

RU11 (Level 2). Invalid surface-number parameter (must
be in the range -1 through 1).

RU21 (Level 2). Invalid AL U-mode parameter (must be
0,7,11, 12, 15).

RU31 (Level 2). Invalid bits-per-pixel parameter (must be
0,1,2,3,4,0r6).

RX — PIXEL COPY

RX11 (Level 2). Invalid destination-surface parameter
(must be in the range -1 through 1).

RX21 (Levels 0 and 2):

(Level 0). Invalid destination-lower-left-corner
parameter (x must be in range 0 through 479 and y in
range 0 through 359).

(Level 2). Invalid destination-lower-left-corner
parameter (x must be in range 0 through 511 and y in
range 0 through 359).

RX31 (Levels 0 and 2):

(Level 0). Invalid first-source-corner parameter
(x must be in range 0 through 479 and y in range 0
through 359).

(Level 2). Invalid first-source-corner parameter
(x must be in range 0 through 511 and y in range 0
through 359).

RX41 (Levels 0 and 2):

(Level 0). Invalid second-source-corner parameter
(x must be in range 0 through 479 and y in range 0
through 359).

(Level 2). Invalid second-source-corner parameter
(x must be in range 0 through 511 and y in range 0
through 359).

SX — SET SEGMENT POSITION

SX11 (Level 2). Invalid segment-number parameter (must
be 0).

4105 PROGRAMMERS

ERROR CODES

TC — SET GIN CURSOR COLOR

TC11 (Level 2). Invalid first-color-coordinate parameter
(must be between -32768 and 32767).

TC21 (Level 2). Invalid second-color-coordinate
parameter (must be between 0 and 100).

TC31 (Level 2). Invalid third-color-coordinate parameter
(must be between 0 and 100).

TD — SET ALPHA CURSOR INDICES

TD11 (Level 2). Invalid first-index parameter (must be
between 0 and 65535).

TD21 (Level 2). Invalid second-index parameter (must be
between 0 and 65535).

TF — SET DIALOG AREA COLOR MAP

TF11 (Level 2). Invalid color-mixtures array (must be an
array of quadruples, each consisting of a color index and
three color coordinates).

TF12 (Level 3). Out of memory while parsing the
color-mixtures array.

TG — SET SURFACE COLOR MAP

TG11 (Level 2). Invalid surface-number parameter (must
be 1).

TG21 (Level 2). Invalid color-mixtures array (must be an
array of quadruples consisting of a color index and the
three HLS color coordinates).

TG22 (Level 3). Out of memory while parsing the
color-mixtures array.

ERROR CODES

ERROR CODES FOR ANSI COMMANDS

[A — CUU (CURSOR UP)

[A11 (Level 2). Invalid number-of-lines parameter (must
be in the range 0 to 32767).

[B — CUD (CURSOR DOWN)

[B11 (Level 2). Invalid number-of-lines parameter (must
be in the range 0 to 32767).

[C — CUF (CURSOR FORWARD)

[C11 (Level 2). Invalid number-of-columns parameter
(must be in the range 0 to 32767).

[c — DA (DEVICE ATTRIBUTES)
[c11 (Level 2). Invalid first parameter (must be 0 or
omitted).

[D — CUB (CURSOR BACKWARD)
[D11 (Level 2). Invalid number-of-columns parameter
(must be in the range 0 to 32767).

[f — HVP (HORIZONTAL & VERTICAL POSITION

[f11 (Level 2). Invalid row-number parameter (must be in
the range 0 to 32767).

[f21 (Level 2). Invalid column-number parameter (must
be in the range 0 32767).

[g — TBC (TAB CLEAR)
igll (Level 2). Invalid tab-clear-extent parameter (must
be 0, 2 or 3).

[H — CUP (CURSOR POSITION)

[H11 (Level 2). Invalid row-number parameter (must be
in the range 0 to 32767).

[H21 (Level 2). Invalid column-number parameter (must
be in the range 0 to 32767).

B-8 REV FEB 1986

C

[h — SM (SET MODE)

[h01 (Level 2). Invalid mode parameter (must be 4, 20,
<l1,?1,?3,?6,?7,or 78).

[h10 to [h90 (Level 2). Invalid mode parameter.
[h11 to [h91 (Level 2). Invalid mode parameter syntax.

[h13 to [h93 (Level 0). Command is invalid at this time.

[T — CHT (CURSOR HORIZONTAL TAB)

[I11 (Level 2). Invalid number-of-following-tab-stops
parameter (must be in the range 0 to 32767).

[i — (MEDIA COPY)
[i03 (Level 2). Printer not available.

[i11 to [i9(Level 2). Invalid copy-option parameter value
(the parameter must be 0, 73, 74, or ?5).

[J — ED (ERASE IN DISPLAY)
[J11 (Level 2). Invalid erase-extent parameter (must be in
the range 0 through 32767).

[K — EL (ERASE IN LINE)

[K11 (Level 2). Invalid erase-extent parameter (must be in
the range 0 through 32767).

[L — IL (INSERT LINE)
[L11 (Level 2). Invalid number-of-lines parameter (must
be in the range 0 to 32767).

[— RM (RESET MODE)

[101 (Level 2). Invalid mode parameter (must be 4, 20,
<1,?1,?3,?6,?7, or 78).

[110 to [190 (Level 0). Unrecognized mode parameter
(treated as a no-op).

[I11 to [191 (Level 0). Invalid mode parameter syntax.

4105 PROGRAMMERS

J

[M — DL (DELETE LINE)

[M11 (Level 2). Invalid number-of-lines parameter (must
be in the range of 0 to 32767).

[m — SGR (SELECT GRAPHIC RENDITION)

[mO1 (Level 2). Invalid graphic-rendition parameter
parameter (must be 0, 1, 4, 5, 7, 24, 25, 27, 30 through
37, 39, 40 through 47, 49, < with parameter 0 through
255, > with parameter 0 through 255, = with parameter
0 through 255).

[n — DSR (DEVICE STATUS REPORT)

[n11 (Level 2). Invalid status parameter (must be 0, 5, or 6).

[P — DCH (DELETE CHARACTER)

[P11 (Level 2). Invalid number-of-characters parameter
(must be in the range 0 to 32767).

[r — TEKSTBM (SET TOP & BOTTOM MARGINS)

r ’ [r11 (Level 2). Invalid top-margin parameter (must be in
the range 0 to 32767).

[r21 (Level 2). Invalid bottom-margin parameter (must be
in the range 0 to 32767).

[S — SU (SCROLL UP)

[S11 (Level 2). Invalid number-of-lines parameter (must
be in the range 0 to 32767).

n

4105 PROGRAMMERS

ERROR CODES

[T — SD (SCROLL DOWN)

[T11 (Level 2). Invalid number-of-lines parameter (must
be in the range 0 to 32767).

[X — ECH (ERASE CHARACTER)

[X11 (Level 2). Invalid number-of-characters parameter
(must be in the range 0 to 32767).

[Z — CBT (CURSOR BACKWARD TAB)

[Z11 (Level 2). Invalid number-of-preceding-tab-stops
parameter (must be in the range 0 to 32767).

[SPA — SL (SCROLL LEFT)

spA11 (Level 2). Invalid number-of-columns parameter
(must be 0 to 32767).

[Sr@ — SR (SCROLL RIGHT)

Se@11 (Level 2). Invalid number-of-columns parameter
(must be 0 to 32767).

[@ — ICH (INSERT CHARACTER)

[@11 (Level 2). Invalid number-of-characters parameter
(must be in the range 0 to 32767).

%! — SELECT CODE

%!11 (Level 2). Invalid syntax parameter (must be 0, 1, 2,
or 3).

#10 — REPORT SYNTAX MODE

#!11 (Level 2). Invalid parameter (must be 0).

B-9

> > >

J

D)

Appendix C

COMMAND SUMMARY TABLES

This appendix provides a convenient summary of the
commands available for your terminal. There are three
command sets and three tables:

e Table C-1, 4100-Style Commands
e Table C-2, ANSI-Style Commands
e Table C-3, VT52-Style Commands

Each table lists the host and Setup command syntax,
parameter names, default parameter values, and function of
each command.

All three tables use the following headings:

Descriptive Name — The name of the command as you will
find it in the concepts discussions and command
descriptions in this manual.

Setup Syntax — The name of the command as you enter it
from the keyboard while in Setup.

Host Syntax — The escape sequence (or control character)
that a host application uses to issue the command.

Parameters — The names of parameters used with each
command. The valid values and keywords for each
parameter are given in the command descriptions in Sections
3andS.

4105 PROGRAMMERS

Defaults — The value the terminal assigns to a parameter
when you do not enter it explicitly. A blank entry under the
Default column means that the terminal does not assign a
default value for that parameter. There are two possible
defaults:

® Factory — The value assigned to a parameter as delivered
from the factory. (The terminal reverts to this factory
parameter value when you enter the FACTORY
command.)

® Omitted — The value the terminal assigns to a parameter
when you enter a Setup command but do not specify a
value for the parameter. For example, entering LOCAL
has the same effect as entering LOCAL YES (because
YES is the default).

You cannot omit parameters when issuing a command
from a host application.

Saved — Specifies whether or not the effect of the command
can be saved with a SAVE NONVOLATILE PARAMETER
command. The terminal remembers saved values of
parameters at power-up. Parameters for commands that
cannot be saved either revert to the factory default or have
no power-up value.

Description — Provides a brief description of the
command’s function.

COMMAND SUMMARY

4100-STYLE COMMANDS

Table C-1 lists all the 4100-style commands, which are
available to the host computer in TEK mode.

Table C-1
4100-STYLE COMMANDS

C

Defaults®
Descriptive Host If
Name Setup Name Syntax® | Parameters® Factory Omitted” | Saved | Description
BEGIN PANEL BEGINPANEL EcLP first-point 0,0 No Starts the definition of a panel
BOUNDARY draw-boundary 0 boundary
BEGIN PIXEL PXBEGIN EcRU surface-number 1 0 No Sets up the terminal for pixel
OPERATIONS ALU-mode 1 0 operations
bits-per-pixel 6 0
CANCEL CANCEL EcKC No Stops terminal activity and
resets several terminal settings to
their default values
CLEAR CLEARDIALOG EcLZ No Erases the dialog area buffer
DIALOG
SCROLL
COPY COPY HO: TO EcJC destination Error No Sends data from the host
JC31 directly to a copier or printer
CRLF CRLF EcKR crif-mode 0 1 Yes Specifies whether a Cr character,
sent to the terminal also impliew
an Ly i
DEFINE DEFINE EcKD macro-number 0 No Creates or deletes a volatile
MACRO macro-contents Empty macro
array
string Empty
string
DEFINE NVDEFINE EcKO macro-number 0 Yes Creates or deletes nonvolatile
NONVOLATILE macro-contents Empt macro, which can be saved in
MACRO pty nonvolatile memory
array
string Empty
string
DRAW DRAW EcLG position 0,0 No Draws a vector from the current
graphics position to a new
position
DRAW MARKER EcLH position 0,0 No Draws a marker at a specified
MARKER location
ENABLE DAENABLE EcKA mode 1 1 Yes Enables or disables the dialog
DIALOG AREA area
ENABLE KEY KEYEXPAND EcCKW mode 1 1 No Enables or disables key macros
EXPANSION
ENABLE 4010 (none) EcSp No Enables the terminal for one
GIN 4010 GIN report
END PANEL ENDPANEL EcLE No Concludes a panel definition
ENQUIRY (none) Eq No Queries the terminal for its
answerback string
ENTER ALPHA | (none) Us No Puts the terminal in Alpha mode
MODE

A blank entry indicates that there is no default value.
You can only omit parameters in Setup.

C-2

(continuezx‘

4105 PROGRAMMERS

|

COMMAND SUMMARY
H Table C-1 (cont)
4100-STYLE COMMANDS
Defaults®
l Descriptive Host If
Name Setup Name Syntax® | Parameters® Factory Omitted’ |Saved |Description
ENTER BYPASS [(none) EcCN No Puts the terminal in Bypass
MODE mode
ENTER (none) Fs No Puts the terminal in Marker
MARKER mode
MODE
ENTER (none) Gs No Puts the terminal in Vector mode
H VECTOR MODE
EXPAND EXPAND EcKX macro-number 0 No Expands a macro
MACRO
FACTORY FACTORY (none) No Sets all parameters to their
factory default values and takes
the terminal out of Setup
GRAPHIC GTEXT EcLT text Empty No Writes a string of graphtext,
TEXT array starting at the current graphics
position
HARDCOPY (none) EcKH hardcopy-code 0 No Copies the terminal’s screen (or
just the dialog area) to a copier
or printer
l HELP HELP (none) | name all No Displays information about a
commands command or cluster of
commands
IGNORE IGNOREDEL EcKI ignore-deletes-mode 0 1 Yes Determines whether the terminal
H ﬁDELETES ignores the Pr (Delete) character
LEARN LEARN (none) No Programs a key from the
keyboard
LEARN NVLEARN (none) Yes Programs a key from the
NONVOLATILE keyboard so that the definition
can be saved in nonvolatile
memory
LFCR LFCR EcKF Ifcr-mode 0 1 Yes Specifies whether an Lr
character sent to the terminal
also implies a Cr
LOCAL LOCAL (none) | local-mode no yes No Specifies whether the terminal
processes commands from the
host or is controlled from its
own keyboard
LOCK (none) EcKL locking-mode 0 0 No Locks or unlocks the keyboard
KEYBOARD
MACRO MACROSTATUS macro-number 0 No Displays the definition of a
; STATUS macro
MAP INDEX TO | HCMAP EcQI monochrome-values Error No Specifies which graphics color
PRINT QIl1 indices print and which do not
print on monochrome printers
3 MOVE MOVE EcLF position 0,0 No Moves the graphics position
without drawing a vector
PAGE (none) EcFy No Erases the graphics area
l PIXEL COPY PXCOPY EcRX destination-surface 0 No Copies pixels from one
destination-lower-left-corner 0,0 rectangular region to another
first-source-corner 0,0
H second-source-corner 0,0
® Ablank entry indicates that there is no default value. (continued)
N You can only omit parameters in Setup.
H 4105 PROGRAMMERS C-3

C

COMMANDS SUMMARY
Table C-1 (cont)
4100-STYLE COMMANDS
Defaults’
Descriptive Host If
Name Setup Name Syntax’ | Parameters® Factory Omitted” |Saved |Description
PROMPT MODE | PROMPTMODE EcNM prompt-mode 0 1 No Starts or stops Prompt mode
RASTER WRITE | PXRASTERWRITE | FcRP number-of-pixels Error No Sets the color indices
RPI11 individually for one or more
color-index-codes Error pixels in the pixel viewport
RP21
RECTANGLE PXRECTANGLE EcRR lower-left-corner 0,0 No Sets all the pixels in a rectangle
FILL : to the same color
upper-right-corner 0,0
fill-index 0
REPORT (none) EcKQ No Queries the terminal for an
ERRORS Error Report listing the eight
most recent errors
REPORT (none) Ec#10 No Queries the terminal for a
SYNTAX MODE Terminal Settings Report giving
the current host command mode
(ANSI, EDIT, TEK, or VT52)
REPORT (none) EcIQ inquiry-code No Queries the terminal for a
TERMINAL Terminal Settings Report
SETTINGS
REPORT 4010 (none) EcEq No Queries the terminal for a 4010
STATUS Status Report, listing alpha
cursor position and copier status
(or just GIN cursor position if
4010 GIN is enabled)
RESET RESET EcKV No Returns the terminal to its
power-up condition
RUNLENGTH PXRUNLENGTH EC¢RL runcode-array Empty No Sets one or more pixels in the
WRITE array pixel viewport to the same color
SAVE NVSAVE EcKU Yes Saves the values of those
NONVOLATILE commands whose settings can be
PARAMETERS saved in nonvolatile memory;
also saves all nonvolatile macros
SELECT CODE |CODE Ecp! syntax 0 0 Yes Selects the host command mode,
choosing ANSI, EDIT, VT52, or
TEK (4100-style) command
syntax
SELECT COLOR | HCDENSITY EcQU density-code 1 1 Yes Selects either fast, lower density
HARDCOPY or slow, higher density copies
IMAGE (4692 only)
DENSITY
SELECTFILL FILLPATTERN EcMP fill-pattern-number -1 0 No Selects a color or predefined fill
PATTERN pattern to fill a panel
SELECT HCINTERFACE EcQD copier-type 2 0 Yes Selects the type of copier or
HARDCOPY printer to be used in making
INTERFACE copies
SET ALPHA ACURSOR E¢TD first-index 1 Yes Assigns color indices to the
CURSOR . alpha cursor
INDICES second-index 1
SET (none) E¢ font-code No Selects the font to be used for
ALPHATEXT alphatext or graphtext
FONT
SET ANSWERBACK (none) | answerback-string Empty Yes Assigns the terminal’s
ANSWERBACK array answerback string
STRING

)

* Ablank entry indicates that there is no default value.

b
You can only omit parameters in Setup.

c-4

REV, JUN 1985

(continued)

4105 PROGRAMMERS

J

J

3

Table C-1 (cont)

4100-STYLE COMMANDS

COMMAND SUMMARY

Defaults’
Descriptive Host If
Name Setup Name Syntax’ | Parameters” Factory Omitted® |Saved | Description
SET BAUD BAUDRATE EcNR transmit-data-rate 2400 Error Yes Sets the terminal’s transmit and
RATES NRI11 receive data rates
receive-data-rate 2400 Same as
transmit
data rate
SET BREAK BREAKTIME EcNK break-time 200 0 Yes Sets the duration (in
TIME milliseconds) of the terminal’s
break signal
SET BYPASS BYPASSCANCEL E¢NU bypass-cancel-character 10(*+) 0(Nv) Yes Specifies the character that
CANCEL cancels Bypass mode
CHARACTER
SET COLOR HCREPAINT QT repaint-count 1 1 Yes Specifies the number of times
COPIER the 4692 Color Graphics Copier
REPAINT overprints each image
SET COPY SIZE | HCSIZE EcQA size 0 0 Yes Selects a small image size for
dialog or graphics copies (4695
only) or for dialog copies only
(4691 and 4692)
SET DIALOG DABUFFER E¢cLB number-of-lines 49 Error Yes Specifies the number of lines
AREA BUFFER LBI1 available for storing text in the
SIZE dialog area buffer
SET DIALOG DACMAP E¢TF color-mixture See Table | No change | Yes Specifies the colors assigned to
AREA COLOR 5-4 color indices in the dialog area
MAP
SET DIALOG HCDAATTRIBUTES | F¢QL number-of-pages 1 No change | Yes Sets attributes for a copy
AREA age-origin 0 0 initiated by the HARDCOPY
HARDCOPY pag & command or the D Copy key
ATTRIBUTES Fr-interpretation 0 0
SET DIALOG DAINDEX EcLl character-index 1 0 Yes Specifies the color index for
AREA INDEX character-background-index 0 0 alphatext characters,
character-cell background, and
dialog-background-index 0 dialog area background
SET DIALOG DALINES EcLL number-of-lines 30 Error Yes Specifies the number of lines of
AREA LINES LLI11 the dialog area buffer that are
displayed on the screen
SET DIALOG DAVISIBILITY EcLV visibility-mode 1 1 Yes Makes the dialog area visible or
AREA invisible
VISIBILITY
SET DIALOG DAMODE EcLM writing-mode 0 0 Yes Controls how Space and
AREA Underscore Characters are
WRITING treated
MODE
SET ECHO ECHO EcKE echo-mode 0 1 Yes Specifies whether the terminal
echoes characters it transmits to
the host
SET EDIT EDITCHARS EcKZ character-delete 127(P1) No change | Yes Specifies the special editing
CHARACTERS line-delete 24(Cx) No change charactgrs }Jsed in the dialog
area while in Setup
literal 126(~) No change
SET EOF EOFSTRING EcNE EOF-string Empty Yes Specifies the terminal’s
STRING array end-of-file string
SET EOL EOLSTRING ECNT EOL-string 13(“r) Empty Yes Specifies the terminal’s
STRING array end-of-line string

? Ablank entry indicates that there is no defauit value.

b
You can only omit parameters in Setup.

4105 PROGRAMMERS

REV, JUN 1985

(continued)

C-5

COMMAND SUMMARY
Table C-1 (cont)
4100-STYLE COMMANDS
Defaults®
Descriptive Host If
Name Setup Name Syntax® | Parameters® Factory Omitted” |Saved |Description
SET EOM EOMCHARS EcNC first-EOM-character 13(Cr) 0(Nv) Yes Specifies two characters that the
CHARACTERS L N terminal can use to mark the end
second-EOM-character 10t¥) 0Cv) of a line of data sent to the host
SET ERROR ERRORLEVEL EcKT error-threshold-level 2 0 No Specifies the levels of error
THRESHOLD messages the terminal displays
SET FLAGGING | FLAGGING EcNF flagging-mode 0 0 Yes Specifies whether the terminal
MODE uses DC1/DC3 or DTR/CTS
flagging
SET GIN GCURSOR EcTC first-color-coordinate 0 0 Yes Specifies the color mixture for
CURSOR N the GIN cursor
COLOR second-color-coordinate 100 0
third-color-coordinate 0 0
SET GIN GSPEED EclJ normal-speed 10 1 Yes Determines how fast the GIN
CURSOR SPEED shifted-speed 1 1 cursor moves across the screen
P when the Joydisk is pressed
SET GRAPHICS | GAMODE EcMG | writing-mode 1 0 Yes Specifies whether the terminal
AREA overwrites or replaces characters
WRITING or markers in the graphics area
MODE
SET GTPATH EcMN | direction 0 0 No Selects a direction (right, left,
GRAPHTEXT up, down) to move after writing
CHARACTER a graphtext character
PATH
SET GTROTATION EcMR mantissa No Specifies the rotation angle (in
GRAPHTEXT vy degrees) for graphtext
ROTATION power-of-two
SET GTSIZE EcMC width (unused) Unused Unused No Selects the size of graphtext
GRAPHTEXT -
SIZE height 61 61
spacing (unused) Unused Unused
SET HCMONOCHROME | EcQE monochrome-attributes-array 1 0 Yes Specifies the line termination (Cr
HARDCOPY or CrL¥) that the terminal sends
MONOCHROME to a monochrome printer
ATTRIBUTES
SET IMAGE HCORIENT EcQO orientation 0 0 Yes Specifies whether the long axis
ORIENTATION of the image aligns with the long
or short axis of the paper (4691
and 4692 only)
SETKEY KEYEXCHAR EcKY key-execute-character 16(PL) 0(Nu) Yes Specifies the character used in
EXECUTE key macros to determine
CHARACTER whether subsequent characters
will be processed by the host or
by the terminal
SET LINE LINEINDEX EcML line-index 1 0 No Specifies the color index for all
INDEX subsequent lines, panel
boundaries, and markers
SET LINE LINESTYLE EcMV line-style 0 0 No Specifies the line style for
STYLE subsequent lines and panel
boundaries
SET MARKER MARKERTYPE EcMM | marker-number 0 0 No Selects the kind of marker to be
TYPE drawn
SET PARITY PARITY EcNP parity-mode 0 0 Yes Specifies the kind of parity the
terminal uses when it sends data
to the host

“A blank entry indicates that there is no default value.
You can only omit parameters in Setup.

C-6

(continued)

4105 PROGRAMMERS

w

U

=

4105 PROGRAMMERS

REV, JUN 1985

COMMAND SUMMARY
Table C-1 (cont)
4100-STYLE COMMANDS
Defaults®
Descriptive Host If
Name Setup Name Syntax’ | Parameters® Factory Omitted’ |Saved |Description
SET PIXEL PXPOSITION EcRH beam-position 0,359 0,0 No Sets the position of the pixel
BEAM beam in the pixel viewport
POSITION
SET PIXEL PXVIEWPORT EcRS lower-left 0,0 0,0 No Sets the pixel viewport’s size and
VIEWPORT upper-right 479x359 0.0 position in graphics memory
I SET PROMPT PROMPTSTRING EcNS prompt-string Empty Yes Specifies the string that initiates
STRING Array Prompt mode
SET QUEUE QUEUESIZE ECNQ queue-size 300 Error Yes Specifies the size (in bytes) of
SIZE NQI11 the terminal’s input queue
SET SEGMENT | SGPOSITION EcSX segment-number 0 No Moves the GIN cursorto a
POSITION position 0.0 0.0 specified position in terminal
space
SET SNOOPY SNOOPY EcKS snoopy-mode 0 1 No Specifies whether the terminal
MODE displays ASCII control
) characters
i SET STOP BITS |STOPBITS EcNB number-of-stop-bits 1 Error Yes Specifies the number of stop bits
| NBI11 appended to each character the
| I terminal transmits
SET SURFACE CMAP EcTG surface-number 1 Error No Defines the color map for the
COLOR MAP TGl graphics area
‘ ’ color-mixtures See Table | No change | No
| 5-7
SET TAB STOPS | TABS EcKB tab-positions Every 0 Yes Sets tab stops at the specified
eighth positions
| column
‘ l (1,9,17,...)
SET TEXT GTINDEX EcMT text-index 1 0 No Specifies the color index for all
INDEX text displayed in the graphics
area
i SET TRANSMIT | XMTDELAY EcND transmit-delay 100 0 Yes Specifies the terminal’s delay (in
DELAY milliseconds) between
‘ transmitting lines of text
l SET TRANSMIT | XMTLIMIT E¢NL rate-limit 19200 Error Yes Paces the terminal’s data
| RATE LIMIT NLI11 transmission so that it doesn’t
‘ exceed the indicated rate
i SET VIEW VIEWATTRIBUTE EcRA surface-number 1 0 No Selects the background index for
| ATTRIBUTES . the graphics area
‘ wipe-index 0 0
| l border-index 1 0
‘ SET WINDOW WINDOW ECRW first-corner 0,0 0,0 No Sets the boundaries of the
second-corner 4095.3132 |0,0 current window in terminal
space
l SET 4014 LINE (none) Ec line-style-code No Specifies line styles compatible
} STYLE with Tektronix 4014, 4016, and
| 4114 terminals
| STATUS STATUS (none) | name All No Displays the current settings for
‘ l commands acommand or a cluster of
commands
4010 (none) Eckg No Generates a hard copy of the
HARDCOPY entire screen
H ? Ablank entry indicates that there is no default value.
m ° You can only omit parameters in Setup.

COMMAND SUMMARY

ANSI-STYLE COMMANDS

Table C-2 lists the commands that are available to the host
computer in ANSI mode and EDIT mode. The table has the
same format as Table C-1, with a few differences. Since
many ANSI mode commands require a terminator character
in host syntax, we’ve used an underscore in the Host Syntax
column to indicate the position for the parameter entry.

For example, the syntax for the CUU (Cursor Up) command
is shown as Ec[_A. The parameter to enter in place of the
underscore is number-of-lines. To move the cursor up two
lines the host must send:

Ec[2A

Some ANSI mode commands use two parameters in host
syntax. Separate the two parameters with a semicolon (;).
For example the syntax for the CUP (Cursor Position)
command is Ec_H. The two parameters are row-number and
column-number — so, to move the cursor to Row S,
Column 10, the host must send:

C

The RM (Reset Modes) and SM (Set Modes) commands
have a unique format. To set or reset a mode with either of
these commands, use the table this way:

e For host syntax, use the entry in the Host Syntax column.
For these commands, the syntax in this column includes
the parameter value.

e For Setup syntax, use the Setup name in the Setup Syntax
column and the keyword (shown in all uppercase
characters) in the Parameters column.

For example, under the RM command, the host syntax for
setting Insert/Replace mode (IRM) is:

Ec[4]
The 4 is the actual parameter value to enter.

The same command setting in Setup syntax is:
INSERTREPLACE REPLACE

? In ANSI mode host syntax, most commands require a terminator character following any parameter value. An underscore __ shows where to place the parameter.

b
A capitalized keyword in this column indicates the only valid entry for the command.
N A blank entry indicates that there is no default value.
You can only omit parameters in Setup.

C-8

Ec[5;10H
Table C-2
ANSI-STYLE COMMANDS ‘
Defaults’ u

Descriptive Host If
Name Setup Name Syntax® | Parameters® Factory Omitted’ |Saved |Description
BEL (BELL) (none) By, No Sounds the terminal’s bell u
BS (none) Bg No Moves the cursor left one
(BACKSPACE) column
CBT (CURSOR | (none) Ec[_Z | number-of-tab-stops 1 No Moves the cursor backward to a
BACKWARD preceding tab stop on the :
TAB) current line
CHT (CURSOR | (none) Ec[__I number-of-following-tab-stops 1 No Moves the cursor to a following
HORIZONTAL tab stop on the current line
TAB) g
CAN (CANCEL) |(none) N No Cancels an ANSI-mode

command in progress
CPR (CURSOR | (none) Ec[_R | row No A report sent by the terminal to
POSITION column the host in response to a DSR
REPORT) command to provide the row

and column address of the

cursor
CR (CARRIAGE | (none) Cr No Moves the cursor to the first u
RETURN) column of the current line
CUB (CURSOR | (none) Ec[_D | number-of-columns 1 No Moves the cursor left one or
BACKWARD) more columns
CUD (CURSOR | (none) Ec[_B | number-of-lines 1 No Moves the cursor down one or u
DOWN) more lines
CUF (CURSOR | (none) Ec[_C | number-of-columns 1 No Moves the cursor one or more
FORWARD) columns to the right u

(continued)

C

4105 PROGRAMMERS

Table C-2 (cont)

ANSI-STYLE COMMANDS

COMMAND SUMMARY

Defaults’
Descriptive Host If
Name Setup Name Syntax® | Parameters® Factory Omitted’ |Saved |Description
CUP (CURSOR [(none) Ec[_H | row-number 1 No Moves the cursor to the specified
POSITION) row and column
column-nu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>