
CPL is a First Aid Kit

by Dr AA Grainger

University of Tasmania Computing Centre

Abstract
Do you realise how useful and powerful CPL programs can be? CPL is a sort of F irs t
Aid K it for System Administrators. CPL lets you place a ‘real program’ into the PRIMOS
environment, combine two or more system utilities into a new tool, or patch over nasty or
treacherous holes in a program or a PRIMOS interface. A survey of more than 100 CPL
programs written over several years shows both the good and bad sides of CPL in the
PRIMOS environment and highlights the high rate of change in PRIMOS itself.

W hat are some of the ‘tricks’ for creating powerful CPL programs? One of the most useful
approaches is to have a more general CPL create another which is specifically tailored to do
the task at hand. This paper explains a number of techniques which allow a CPL to
examine the PRIMOS environment and generate tailored CPL commands based on what it
finds.

From our experience with CPLs, we suggest a number of ‘wish list’ improvements to the
PRIMOS environment.

Biography

Dr Tony Grainger is the Systems Programmer at the University o f Tasmania Computing
Centre. He has been responsible for Prime 9955-11,750 and 2755 machines since 1985

Prior to 1985, Dr Grainger was involved for several years with the development of the
Centre’s data communications networks. He has held a number of other computing-related
and research posts within the University, as well as acting as a consultant to industry.

Dr Grainger received a PhD in Electrical Engineering from the University of Tasmania in
1978 and a B.Eng. in 1968.

Introduction
This papa: shows you the power of CPL — the broad range of ways CPL can simplify the
PRIMOS operational environment. CPL programming is not always straightforward, and some
of the most powerful commands aren’t even documented. Several of die more useful CPL
programming ‘tricks’ and general approaches are explained below. But, why have to use special
tricks at all? If PRIMOS were to incorporate a number of reasonable enhancements, the
complexity of powerful CPLs would be gready reduced.

The appendices include further CPL reference information and an index to a set o f contributed
CPL example programs which are available on tape.

Appreciating the Power of CPL
Making Informed Decisions
Why write all these CPL’s?
CPLs are suited for jobs which are tedious or difficult, subject to interruption or requiring special
training. The idea is to automate as much of the job as possible — to let the program make the
sorts of decisions that you are making.

The ‘LogOut User’ (LOU) cplis an example. (See Figure 1.1 a n d l2) The operator is presented
with information on the system console and has to make a decision: “what needs to be done in
order to get all those processes off the system?” You don’t want to have to think about that, you
just want to press a button and make it happen. That is what most CPLs do. They simplify a
complex situation into a simpler button-pushing exercise.

The crux of writing programs which take situations in context is to provide them with enough
input to define the real situation. CPL is an excellent muscle but its sensory input is limited by
what it can (a) glean from the FUNCTIONS available to it and any information it can (b) parse
from the system utilities intended for the human eye.

Figure 1.1 Figure 1.2
What LISTJJSERS provides:
[LISTJJSERS R ev 1 9 .4 _ 2 SSP]

3 u s e r s :

What we actually want to do:
/* PROCESSESjSTOP.qpl l o g o u t
&s e v e r i t y S e r r o r S ig n o r e
LO - 3 /* U112004
LO -1 0 /* DAVISM
LO -1 9 /* MCGLASHAN
LO -8 3 /* YBTSMAN
BATCH -STOP
PROP ANNEXE.B -STOP
S d a ta STOP_NTS
y e s
Send
S d a ta STOPJWSI
y e s
Send
S d ata STOP_NET
y e s
Send
STOP_DSM
& r e tu r n

3 U112004
10 DAVISM
19 MCGLASHAN

7 phantom s

78 WS13 0 0_MANAGER
79 NM_SERVER
80 WSIFTPJSERVER56
81 WSIFTP_USER0
82 BATCHJSERVICE
83 YBTSMAN
85 ANNEXE.B

9 s e r v e r s

1 SYSTEM
67 NTSJSERVER
68 TIMER_PROCESS
69 LOGINJSERVER
72 DSMSR
73 DSMASR
74 SYSTEM_MANAGER
76 NETMAN
77 RT SERVER

Techniques for Using CPL
How do you create CPL’s that can act correctly in a complex situation? A number of
general strategies are described below, along with specific details on how to implement
each technique. Once you understand the basic concepts, it will be easy to copy or adapt
these strategies and programming ‘tricks’ to suit your own CPL programs.

The First Option

The existing CPL FUNCTIONS provide information about most aspects of the file
system. However, detailed information about the users on the system, the partitions of the
file system and the actual configuration of the CPU (including the system name), are not
available. The wish list below suggests the sort of details you need to be able to obtain
from FUNCTIONS.

Alternatives

The only alternative is to use a como file to trap data from a utility and then to parse that file
to create appropriate CPL statements. You can parse either with CPL’s file interface or
more rapidly using ED.

Using CPL to Parse Data

CPL itself has poor parsing ability. Its file input interface is slow and parsing is all done by
FUNCTIONS. This is slow and inefficient. The only reasonable parser is the &ARGS
statement. Even &ARGS is limited, since it can only parse command lines, not variables.
To utilise this parser, it is necessary to call another CPL program which exports the results
of the parse to global variables and then returns. (My second wish is for a parser like
&ARGS for parsing a variable.)

Despite the slowness and poor parsing ability of the file interface, it is possible to write
small programs which have small amounts of input to actually parse file input directly. For
instance EDPAC.CPL, which parses only the access control list of an MFD, executes in a
reasonable time while DISK_GVAR.CPL takes five minutes to parse a twenty line file .

Using PRIMOS ED for parsing data

The following are typical steps which a CPL must take to examine the PRIMOS
environment and create a second customised CPL to carry out a specific task.

1. Use a como file to trap data from any utility.
2. Use an &data script for ED to transform the data to a CPL program or under rare

circumstances write a special purpose utility to scan comos specifically to massage the
data into an editable form.

3. Execute the CPL file.

Advantages
• Is nearly always feasible.
• Is not grossly inefficient, is much more efficient than reading and parsing the como in

CPL.
• Is usually straight forward to achieve.

Disadvantages
• The editor script is virtually unreadable.
• Since the editor commands are not designed as a programming language there are

deficiencies in making decisions based on the data in the file being processed.
• You must be careful not to use intermediate file names likely to be used by others.

Summary

Most CPLs in this paper use one o f the last two techniques to obtain the data needed to
sensitively apply the muscles provided by CPL. It is not the job o f a CPL user to write
functions to extract information provided by PRIMOS subroutines. This is a job for
PRIME.

Examples
Before discussing some specific utilities used to make life easier, we will look at the
techniques as they apply to LOU.cpl. (See Figure 13).

LOU has the overall structure discussed above:
• It has a capture segment, a como around a call to the LIST-USERS utility.
• It has an NSED script which allows it to make logical decisions about the data that

was captured. At the end it executes the CPL it has carefully made to take into account
all the problems of the situation.

In order to appreciate the complexity of the decisions LOU makes, look at the tables it sees
on the terminal screen (Figure 1.1) and the orders it incorporates into the program to stop
all the processes on the system (Figure 12).

The ordinary users have their entries in the table converted to logouts in the program.
Some of the phantoms are treated in the same way.

The special purpose servers, which require much more complicated orders to stop them,
have become &data scripts with the answer ‘yes’ included.

The printer phantom entries in the table have been carefully changed to PROP -STO P
orders. The utilities which require name translations are also dealt with appropriately,
STOP_DSM being the most obvious example.

Editor Script Programming

“How can an editor script make such complicated decisions? I t’s not a programming
language!” Most people make that sort of response when they hear about all the things that
can be done with an editor script. Look at the following section o f editor script to see how
it makes these decisions. It all depends on being able to detect the absence or presence of a
cue. A typical line says:

/* LOU.cpl Tidily stops all processes of specific kind. /* 'Log Out Users'
fiargs kind:unci

como processes.como -ntty
lu -sglcol -nw %kind%
como -efidata NSED processes.como

/* Remove lines from como we won't need,
f No ; d
t; n; d
1 :; d; */* Log out every_body.
t
n; g i|LO |nc iI — Ic i| /+|f; c| + |*|; */* Remove blank entries.

LOU.cpl Figure 1.3

t
1 - /; d; */* Do special logouts for these users.
t; 1 BATCH; d; b; i BATCH -STOP
&do printer filist [wild spool*>@@.ENV]&s printer := [before %printer% .ENV]
t; 1 %printer%; d; b; i PROP %printer% -STOP

fiend/* Servers for the ETHERNET LAN users
t; 1 NTS_SERVER; d; b; i &data STOPJNTS
t; 1 STOP__NTS; i Sendt; 1 STOPJNTS; i yes
/* ETHERNET connect handler.
t; 1 WSI300_MANAGER; d; b; i fidata STOP_WSI
t; 1 STOP_WSI; i Send
t; 1 STOP_WSI; i yes
t1 WSIFTP; d; *
/* PRIMENET file transfer subsystem,
t; 1 FTP; d; i FTOP -STOP_SRVR
t; 1 YTSMAN; d; b; i FTOP -STOP_MNGR
/* PRIMENET itself.
t; 1 NETMAN; d; b; i fidata STOP_NET t; 1 STOP_NET; i fiend
t; 1 STOP__NET; i yes
/* DISTRIBUTED SYSTEM RESOURCE MANAGER, t; 1 SYSTEM_MANAGER; d; b; i STOP_DSM
t; 1 DSMSR; d
t; 1 DSMASR; d
/* Don't log out these users,
t; f LO -1; d
t; 1 TIMER_PROCESS; d
t
1 LHS_; d; *
t1 _SERVER; d; *
i &return
t; i &severity fierror &ignore
file processes_stop.cpl

fiend
delete processes.c o m o ________

/* como -tty
/* klist processes_stop.cpl/*&return ____

sac processes__stop.cpl -like lou.cpl
como -tty
r processes_stop.cpl&return

itL
/A ^vv

t; 1 BATCH; d; b; i BATCH -STOP
If the locate statement fails, the remainder of the commands on the line are skipped. So in
this case, BATCH -STO P would only be included as an order if BATCH was ‘located’
successfully.

Look at how it deals with printers.

&do printer &list [wild spool*>@@.ENV]
&s printer := [before %printer% .ENV]
t; 1 %printer%; d; b; i PROP %printer% -STOP

Send
The &do statement in the CPL loop picks up the names of all printer’s environment files
from the SPOOL* directory. It then checks each one o f these names to see whether it is
referred to in the table of users. If a name is found, then it replaces that line with the PROP
name -STO P order.

The Ethernet Connect handler is a good example of the third category.

/* ETHERNET connect handler,
t; 1 WS1300_MANAGER; d; b; i &data STOP_WSI
t; 1 STOP_WSI; i &end
t; 1 STOP_WSI; i yes

W e need to make a data statement. The first part, making the &data STOP_WSI line, is
easy. In order to make the other two parts you must use the same philosophy but instead of
changing an existing line you have to create a new one. (Insert commands must be last on a
script line so you need three lines o f script).

These are specific examples o f the power of the editor. To gain a full appreciation of how
much the editor can do in this sort of situation, refer to the Editor Techniques help
sheet in Appendix A.

Getting the Full Power of CPL

Make fu ll use o f parameter syntax
In order to fully appreciate how powerful CPL is you must understand one particular
aspect of the language which is not normally explained. This is the kind of parameters you
may use in particular CPL statements. One example is the &call statement. The name of
the routine part of the & call statement can be any combination of literal and variable
name. This is not explained in the CPL manual.

This example (See Figure 2) is called MATRIX.CPL because it takes two independent
parameters, merges their names together to make a subroutine name, and thereby manages
to call six or so subroutines based on the three possible values of one parameter and two
possible values o f the second.

If you look at the CPL summary sheet in Appendix B, you will see that each kind of CPL
statement parameter is represented by different fonts. ITiis enables you to quickly find out
what you can put in each CPL statement.

You can see that not only is the & call statement capable o f using FUNCTIONS,
variables and literal strings in any mixture, but the &goto statement has the same power.
Thus, computed gotos in CPL are particularly powerful.

Matrixed Addressing of Subroutines Figure 2
If you have two (or more) independent variables and you need to deal with each
possible pair (or triplet etc) by a unique subroutine then CPL will allow you to
manufacture the name of the subroutine and then call it. The following example
shows the principle:

/* M ATRIX.cpl demonstrates matrixed addressing of routines.
/* operation has legal values of add, change, delete.
/* object has legal values of tree, acl
&args operation; object; parameterl; parameter2

&call %operation%__%object%
&return
& routine add__tree

create %parameterl%
&return
& routine change__tree

cname %parameterl% %parameter2%
&return
&routine delete_tree

delete %parameterl%
&return
&routine add_acl

sac %parameterl% %parameter2%
&return
&routine change_acl

edac %parameterl% %parameter2%
&return
& routine delete_acl

sac %parameterl%
Send

Figure 4
/ * RECURSE. cp l Figure 3 Recursive Use of &do
/ * D em o n stra te do lo o p in r e c u r s iv e c a l l s
& args p a th <USERB1>UCC>AAG>D0CUMENTS contains:

& if [n u l l %path%] &then ~ _____PRIM OS_AREAS
&s p a th := [d i r [pathnam e x]]

S e i s e &s p a th :=* [pathnam e %path%]
&s p ad := ------- NEWSLETTER
t y p e %path% c o n t a in s :
S c a l l d ir e c t o r y

&r e tu r n ____ HELP

&r o u t in e d i r e c t o r yHELP IN D E X .H E L P
&s pad := % pad%
&do e n t r y S l i s t [w i ld %path%>@@] _____PACKAGE_DATA

t y p e %pad% % e n tr y %
& if [a t t r i b %path%>%entry% - t y p e] = UFD~
S th en &do _____BACKUP

&s p a th := %path%>%entry%
&call directory
&s p a th := [d ir %path%] _____NON_PRIM E_STUFF

Send
Send
&s pad := [a f t e r %pad%]

&r e tu r n

Make fu ll use o f recursion
A feature of CPL hidden within the iteration part of the &do statement enables recursive
procedure calls to contain &do statements. When an &do statement is entered, any
& to , &by o r & lis t parameters are evaluated and stored. If the & do is within a
procedure called recursively, then each recursion has its own separate store. This feature of
CPL is very useful. The RECURSE.CPL example (See figures 3 and 4) demonstrates one
use. (Please note that [WILD . . .] has a limit of 1024 characters.)

Utilities to make life easier:

Each new release o f PRIMOS cures some problems and introduces new ones. The
turnover o f problems is a good indicator of the progress of PRIMOS over the years. CPL
programs which patched the problems of the past and present provide these indicators. A
number of CPLs are included below to show the span of problems faced by the Systems
Administrator. PRIMOS doesn’t provide any other way to accomplish these objectives.

We will review the following areas:
• spoolers
• the batch subsystem
• process control commands
• commands associated with partitions
• the shared segments list
• the system administrator’s data base
• envelopes for utilities
• the aberrations of Rev.21

O f the eight areas listed above, PRIME have made significant improvements in two, and
useful improvements in a third.

Spoolers
Prior to Rev.21 we maintained PRINT.CPL which decided from a user’s project where to
spool his output. It ensured that 500 students had output distributed among the 15 printers
other than PRO and thus made the operators’ lives bearable. The Rev.21 spooler has
rendered PRINT.CPL almost redundant. A small change (see the wish list for details)
would make it completely so. This is an example o f PRIME getting it right!

Batch

Prior to recent revs o f PRIMOS we maintained two CPL programs, WAIT_UNTIL_-
DARK.CPL and BATCH_IDLE.CPL. The latter ensured that BATCH jobs ran at IDLE
priority. Recent changes to the BATCH subsystem have rendered this CPL totally
redundant PRIME have it right again!

The WAIT_UNTIL_DARK.CPL clogged the NIGHT BATCH queue so that no jobs
could run from that queue dining working hours from Monday until Friday, but did not
clog the queue at weekends. Recent changes have given,usersihe ability to apply a batch
window which is much neater than clogging the queue,. But, we still need to change that
window at weekends. So, now we have BATCH_WINpOW.CPL. Prime nearly did it!

Process Control Commands
The discussion of LOU.CPL earlier showed how difficult it is to make appropriate actions
when groups of users need to be logged off, sent messages, or be chapped. LOU.CPL and
CHAPU.CPL allow any group of users, selected by LIST_USERS options, to be dealt
with appropriately. We have a special version of LOU.CPL which shuts down all network
servers and phantoms. There is no obvious way for PRIME to make these CPLs
redundant, but I hope they do.

Commands Associated With Partitions

EDPAC.CPL is to priority access rights what EDAC is to normal access rights. Where two
or more processes are controlling access to the same partition, EDPAC is essential; so
essential that we converted our CPL to an EPF long ago. PRIME could provide EDPAC as
a standard utility — why don’t they?

Physical DEVice numbers (octal numbers) are used by PRIME to ADD, SHUTDN and
FIX disk partitions. Our MOUNT, UMOUNT and CHECK_DISK CPL programs allow
us to do the same things by partition name. W e do this by creating global variables for
every partition and removable pack drive from a disk definition file. Could PRIME achieve
the same functionality? I wish they would.

The Shared Segments List

One task often neglected until the last minute is to update the shared segments list
w henever a change is m ade to any utility w hich uses shared segm ents.
MAKE_SHARE_LIST bypasses the need to do this by creating a shared segments list
from the PRIMOS.COMI (STARTUP.CPL) and the individual SYSTEM>@@.SHARE
files. It uses ED scripts to find the actual share commands and creates an annotated file of
the segment numbers, the access mode and the package name. It cannot get the shared
segments for INFORMATION because the share statement uses a CPL variable rather than
a literal argument. I wish Prime maintained this list with the actual share command. (See
the wish list below.)

The System Administrator’s Database

EDITJPROFILE is one system utility where it is almost impossible to effectively utilise the
editor to transform como files. Output related to one user, one user project, or one project
is spread over many lines of the como. For this particular case a general purpose extractor
was written; it generates reports with all details of a particular subject on one line. Such a
file is easily edited to make cpl programs which call other CPLs for SAD and file system
maintenance. (See wish list.)

We have many CPLs which utilise these SAD dumps to tidy the file system, create user
and project lists, and to tidy the SAD itself — for example, by removing users with no
projects or no file trees.

A problem in the SAD: The sheer size of the data base brings problems not anticipated by
the designers. For example at the end of each teaching year we must de-register some 500
student entries. This may take up to 6 hours. The slow part is the delete of the global user
information. Even if the user is not in any project the entire project data base is searched to
ensure this is true. This phase takes a long time. (See the ‘wish list’ below.)

Envelopes for Prime Utilities
Many PRIME utilities and packages require CPL envelopes to tame them for the use of
ordinary mortals, particularly so for novice users. TED.CPL is a typical example.

ED is the basic editor on a Prime. To be useful as a production editor it needs many of it’s
default modes reset. It also needs to be protected against forced logouts. In addition tab
stops need to be set appropriately for the source language of the file edited. TED.CPL is an
envelope for ED which provides all these functions. I don’t expect Prime to ever make this
CPL redundant

The Aberrations of Rev21

Each new PRIMOS rev has its teething problems. A typical conversion problem is
described here. CPL provided a quick solution, even though every user in the SAD had to
be checked.

At REV21 the OWNER key was added to the access rights keys. Information users need
this right to some files which the automatic conversion done by remaking the file system
did not give them. To correct this deficiency all information users needed to be found and
their access rights upgraded. GIVE_OWNER_GROUP.cpl used the SAD dump files to
find users with the .INFO group and then used their LAP to locate and fix the access
problem.

Each new rev o f PRIMOS has its own ‘features’, some of which have uncomfortable
consequences. Rev21 has per process search lists. When these become ‘circularised’
PRIMOS re-initialises your command environment (ICEs you). In our login sequence all
users have abbreviation files and global variables initialised: ICE disables them again. We
use THAW to re-establish abbreviations and global variables. In the course of time PRIME
will make this CPL redundant (I hope).

Wish List of PRIMOS Enhancements
Many of the CPLs and techniques mentioned above could be made simpler or would
perhaps be unnecessary if Prime provided the necessary ‘hooks’ into the system. Other
operating systems which we use, such as Unix and IBM S/38, are structured in such a
way as to easily provide virtually all o f information the systems programmer requires to
accomplish the task at hand.

Experience demonstrates that PRIMOS continues to change to meet user’s needs. The
following enhancements are suggested as logical extensions o f current PRIMOS
commands and functions. Their availability would increase the control user’s could exert
over their environment. No less importantly, they would vastly simplify the implementa­
tion o f the kind of powerful CPLs this paper has described. One would not have to be a
‘systems guru’, using arcane techniques to achieve an objective.

FUNCTION Extra file system functions:
The [ATTRIB ...] options need augmenting. Consider the extras:

- LAC List of access rights;
- LPAC List of priority access rights;
- LQ The actual quota;
- LSIZE The actual size in records;

FUNCTION Extra user data functions:
[WILD_U user_nam e...] where user name is wild yields a list o f process numbers for
which the options below are valid:

- TERM Only terminal users
- PH Only phantom users
- PRIMIX Primix process
- PHX Primix phantom
- REMOTE Network user
- SLAVE Process accessing file system from remote system, with support from:

[ATTRIB_U process_number...] yields specific details:
- U_NAME The name of the user.
- TYPE The process type.
- PROJ The project associated with process.
- GROUPS The list of groups available to the process.
- COMO The pathname of any como file open by the user.
- IAP The initial attach point
- HOM The current attach point
- CPU The CPU seconds used by process since startup.
- 1 0 The 10 seconds used by process since startup.
- CON The number of minutes since process startup.
- SSEGS The list o f static segments in use by process.
- DSEGS The list o f dynamic segments in use by process.
- ASSIGN The list of devices assigned to the process.

FUNCTION Extra partition information:
[WILD_D partition_name...] where partition name is wild and yields a list of partition

numbers satisfying options:
- SYS The name of the system partition.
- REMOTE The list of remotely mounted partitions.
- LOCAL The list o f locally mounted partitions, with support from:

[ATTRIB_D partition_number...] yields specific details:
- PDEV The physical device number.
- FREE The free space on the partition.
- USED The space used by the file system on the partition.
- NAME The name of the partition.

FUNCTION Extra network information:
[WILD_N net_nam e...] where net_name is wild and yields a list of node names

satisfying the options:
- PDN Public data network.
- RING Local ring network.
- FDN Full duplex network with support from:

[ATTRIB_N node_name...] yielding specific details:
- TYPE The types of network as above.
- STATE The current state of the node interface.

FUNCTION Extra PRIMOS information:
[ATTRIB_S ...] System information:

- NAME The name of the system.
- PMEM The memory size o f the hardware in records.
- MEM The memory actually in use in records.
- WIRED The wired memory at configuration time.
- NSEGS The maximum number of segments.
- SEGS The segments in use.
- CPU The cpu seconds usefully used since boot.
- 1 0 The io seconds since boot.
- USERS The maximum number o f process slots.
- START The seconds since boot.

In fact there is a good argument for a CPL function to access any data which is available
from a system call. This should be a target for any good operating system.

CPL Parsing a variable as a text line:
CPL provides a means of parsing the command line arguments which is both effective
and powerful. It does not however provide the same power to parse and split a line of
text read from a file. This prevents effective use of CPL to interactively deal with lines
from a file. It reduces it’s potential power to split a string variable into words, check
their syntax, and distribute them word by word to other variables. CPL would have
greatly enhanced power if a new statement was introduced to the language with the
form:

&PARSE %ffed% &TO <normal &ARGS syntax>

BATCH The batch window control could include day o f the week:
The CAP open and CLOSE times at present cater for time of day. It would be useful if
two pairs o f open and close times be given: one effective on week days the other if
present over-riding at week ends.

PDEVS Physical device numbers should be invisible:
The form and rules for manipulating PDEVS are archaic. They make CPLs and COMIs
unreadable especially when more than one removable drive is available and disks may
be moved between machines. If functions were available as suggested under extra
partition information this would help but what is really needed is a small data base
holding particulars of every disk. This should be updated from a disk as it is mounted
on a drive or for fixed disks as they are mounted.

EDPAC Priority access needs to be edited:
In a multiprocess situation SPAC and RPAC are too crude for administering priority
access rights to partitions. EDPAC is needed in the same way as ED AC is needed for
ordinary access rights. (My epf seems to work but perhaps there is a null access period
during the change over to new rights and this stops Prime from providing this essential
tool.)

LOG shared segments list:
When the share command is issued from a cpl it would be easy for the share details and
the name of the cpl to be logged as a one line entry in a shared segments log file. This
could be done by making the share command a normal program which does the logging
and calls the system as it does now. I have simulated this by enabling my abbreviations
in the share cpls just before the share statement and thus replace the share command by
a call to a logging cpl. While this approach is effective it is very non standard. The first
option is far better.

SAD Dumps o f SAD contents:
I wish the sad could be asked to create a list of all global user data, or all user project
data, or all project profile data with one line containing all the details about one user,
one user project, or one project respectively. It would be much more efficient than
scanning a como and extracting the details.

SAD User count o f project entries:
The design of the SAD needs modifying by adding a field to the global data for a user.
This is a count of the projects for which the user is registered. This would speed user
deletions enormously in our case since we delete users after we delete all their project
entries. It would also speed deletes of any user by a factor of two on average since there
is no need to scan further projects when the count reaches zero.

SAD Free form at store fo r USER and PROJECT entries:
The SAD would become a true user data base if it could hold a small amount of extra
data for each global user entry and each project entry. This field should allow a free
format line of text so that user details such as their full name may be stored. The full
name o f a project is also useful in the same way.

SAD ACL and QUOTA data fo r each IAP:
The SAD could be much more helpful by storing and setting some file system attributes
associated with the IAP it presently stores for user project entries and for project
entries. The ability to create the entry part of an IAP is needed first An ACL which was
used to ED AC or SAC the IAP when requested by the administrator would be very
useful. A QUOTA which could be applied by edit_profile would complete the tasks
presently done by our CPLs.

PRIMOS SPOOLER
Prior to the REV21 spooler we used a PRINT cpl which used the user’s project name to
decide which printer to send output to. This was essential since we support widely
dispersed printers and terminals. Our projects are distributed among some sixty
departments of the University with up to seven or so projects per department. For this
reason the first three characters of a project are defined by the department name. Thus
die Science faculty department of Information Science projects are:

SIS210 A second year undergraduate project,
SIS310 A third year undergraduate project,
SIS.SUPPORT A project for support programmers,
SIS.RESEARCH A project for staff doing general research.

When the REV21 spooler was released we could dispense with our CPL and add one
file per project to the SPOOL* >ATTRIBUTES directory. This sounded like heaven. On
our smaller machine we did it. On the larger machine which supports 164 projects we
did not. The physical effort did not seem worth the result: so our users still incur the
CPL overhead and we must still maintain the CPL to cater for any changes in the legal
syntax of SPOOL requests.

Alternative
I f w ild charac te rs and fie ld s w ere allow ed in the nam es o f the
SPOOL*>ATTRIBUTES file names and they had their usual meanings, then we could
restrict Information Science printers with a single file called SIS@@. A more useful
alternative would be to have three files called SIS2@@ SIS3@@ and SIS.@@ so that
student access to special printers could be inhibited. If there was a NOT wild character,
this could be reduced to SIS.@@ and SISA.@@ which would be ideal.

Appendix A: Editor Techniques
Conditional Edit Commands
If TARGET then <edit if found> else <edit if not found>:
1. To transform the file if any TARGET is found in the file you do:

t; 1 TARGET; <editor orders to change file>
the editor orders are not executed if the TARGET is not found.

2. To transform the file if no TARGET is found in the file you do:
t; 1 TARGET; t
n - 1 ; <editor orders to change file>

If the TARGET is found the pointer will be placed at the top of the file: the second
pointer movement then fails and the editor orders are not executed. When the
TARGET is not found the pointer is at the bottom of the file: the second pointer move
then succeeds and the associated editor commands are executed.
3. Do editing commands both if target is present and if target is absent by
merging these two.

t; 1 TARGET; <edit if found>; t
n-1; <edit if not found>

Using File Content to Edit File Content
To make a macro from the current line to change other lines in the file, take these
steps:

1. Reduce the line to the PART(s) you need to make the edit order, e.g. use:
g e 5m8 to get the 6th to 13th characters
g nd d nd c to get the second word.

2. Make the PART(s) into the edit order you need to achieve your goal. Common
goals are listed below:
(a) To use the PART as the TARGET of a conditional edit command. e.g.

use
g i 11; 1 | f i | ; <edit commands if TARGET found>l

will locate all lines containing PART and edit them.
g i 11; f (7) | f i | ; <edit commands if found>l

will find all lines with PART starting in column 7 and edit them.
(b) To make the PART into an edit command with explicit search or address

to set the pointer before the edit. e.g.
g i I n- 1 ; g a I f will append PART to previous line,
g i 11; 1 TARG; c/TARG/IfiI/; *|

will replace every TARG with PART.
(c) To use one PART of the line for a TARGET and a second (or the same)

part as a modification to a line which is found.
g i|t; f |c i|; c//|nd c i| / ; * |

will use first word to find the lines to be edited and will insert the second
word at the start o f the line.

3. Put the command into a buffer and delete it from the file with:
mov STR.l inlin; d

4. Execute the macro with:
x STR.l

CPL: Command Procedure Language
General Remarks

• Put only one statement per line o f CPL program.
• Indicate a statement is continued on the next line by appending a
• Text between a f* string and line end is treated as a comment
• The only legal statements are PRIMOS commands or CPL statements.
• Reserved words are words beginning with an ampersand (&) character.
• Ignore case for all except literal strings.
• Ignore case for label, routine and variable names and for reserved words.
• A PRIMOS command’s return status is assigned to variable SEVERTTYS.
• Any text enclosed by single quotes becomes a LITERAL string.

Variables Strings only. Maximum 1024 characters. Global scope.
%var_name% Read as “replace me with text in local variable var_name”.
%.var_name% Read as “replace me with text in global variable .var_name”.

Documentation Conventions Abbreviations and kinds o f parameters.
&OPTk)NaL Write as &OPTNL, &OPTIONAL, &optnl or &optional. (Ignore case)
[can.omit] The item enclosed is optional.
{many_times} The item enclosed is optional and may be repeated many times.
The sub-strings allowed in a situation are shown by the text font and style:

literal strings only (no unquoted % [&] or space characters.);
variable strings and literal strings in any mixture;
f u n c t io n s , v a r i a b l e s , and l i t e r a l s t r i n g s in any m ix tu r e ;
expressions (CALC function syntax) or any string mixture.

Entry/Exit from CPL programs
&ARGS

&RESULT

&STOP

Assign parsed command line words to the specified variables.
&ARGS [var_spec {; var_spec)] (optional_var_list;)

where an optional_var_list is:
var_name:{-option_key) {var_spec}

and a var_spec is:
var_name:[parse_rule][=cfefa(/ft_vafc/e]

and a parse_rule is one of: CHAR, CHARL, DEC, OCT, HEX, PTR,
ENTRY, TREE, DATE, REST, UNCL

Optional_var_list variables are set if the option_key is found.
Export expression when this CPL function finishes.

&RESULT the answer Jo Jje je tw rnedJoJhe_ca ller
Exit the program arid optionally' return a severity and message.

&STOP [severityjiumber][&MESSAGE message_f or_user_terminal]
Simple Statements
prim e s_coirmand
AEXPAND

&Set_var

&DATA-&END

Invoke the primos command with its normal terminal input.
Do/Don't expand abbreviations as a first step of CPL parsing.

&EXPAND ON I OFF (default OFF, Scope: current procedure)
Set variables in list to string formed by expression.

&S var_name {, var_nam e) := assignedjralue
Text formed by statements is filed, then program is started with terminal input from
file, then file is deleted.

&DATA p rim os command
{ s t a t e m e n t) F Text formed here goes to a temporary file.
[&TTY] f* Revert to terminal at end o f file input
&END

Debugging CPL programs Scope: current subroutine
&DEBUG Enable or disable execution and/or echo all or primos commands and/or display

variables when their value changes(default OFF)
&DEBUG [&OFF l &[NoJEXecule I &[[NOJECHO [ALL I COM I DIR]] I ~
[&[NOJWATCH { va rjta m e }]]

Execution Flow
&IF-&THEN-&ELSE

&SELECT-&END

&DO-&END

M ABEL

&G0TO

Control
When expression is true, execute statement following &THEN.
When expression is false, execute statement following &ELSE.

&IF expression &THEN s ta te m e n t
[&ELSE s ta te m e n t]

Find the first &WHEN expression matching the control expression and execute
the next statement If no WHEN expression matches, execute the statement
following &OTHERWISE.

&SELECT expression
(&WHEN expression
s ta te m e n t}
[&OTHERWISE
sta te m e n t]
&END

For each iteration execute the statements enclosed by &END.
&DO [iteration]
{s ta te m e n t}
&END
iteration may be omitted (statements are executed once only)
or [var name := initial_value]~

["t&TO final value [&BY incrementjfalue]] l~
[&REPEATnext value]]~

[[&WHILE condSion] l~
[&UNTEL condition]]

or var_name &LEST 1 is t_ w ith _ s p a c e s _ b e tw e e n i t e m s
or v a r name &ITEMS ajtalue (usually [wild-SGL])
NB: final~value and increment_value are calculated only once.

Name a place to which program flow may transfer with &GOTO.
M abel label_name

Transfer program flow to named label
&goto la b e l_ n a m e

Subroutines
&CALL Invoke the named subroutine.

&CALL r o u t ine_nam e
&ROUTINE Declare the following program text to be the subroutine named.

AROUIINE routine_name
{ s ta te m e n t}
&ROUTENE I &RETURN I "end of file”

&RETURN Exit the subroutine and optionally return a value or a message.
&RETURN [severityjiumber] [&MESSAGE te r m in a l_ m e ssa g e]

Special Conditions Scope of &CHECK, &SEVERITY and &ON is current subroutine.
&CHECK Invoke named handler if expression is true after any PRIMOS command.

&CHECK myjruth &ROUTINE h a n d le r name
&SEVERTTY At specified level of severityS (set by PRIMOS commands) stop the program, ignore

the error or execute named routine.

&ON

&REVERT

&SIGNAL

&SEVER1TY (&ERROR I &WARNING) (&FAIL I &IGNORE I &ROUTINE nam e)
When the named condition arises execute the routine named.

AON condition &ROUTINE h a n d le r name
Cancel the condition handler for condition.~(Armed by &ON.)

&REVERT condition
Set nominated condition. W ill invoke a handler armed by &ON.

&SIGNAL condition
ANY$ and QUTT$ are the most useful o f the 50 odd PRIMOS conditions.

Primos Command Line Functions
General Remarks

The PRIMOS command line parser (and the CPL language parser) inteipret text enclosed within square
braces, e.g. [date -full] as a function and parameters. The braces and the enclosed text are replaced by text
produced by function execution, thus rebuilding the command before it too is executed. Each PRIMOS
intrinsic function, its parameters, and returned text are summarised below.

Documentation Conventions
(iteml item2 item3) means select at most one of the enclosed items.

Environment
ABbrev

CMDJNFO

DATE

GET_VAR
GVPATH

-EXPand text “text” expanded from your abbreviations.
-STatus Pathname of current abbreviations file.
•name Name of the condition on your stack,
-CONTinue SWitch Boolean value o f the continue-to switch on the stack,
-RETum_PerMiT Boolean value from stacked return-permitted switch.
-VFULL 21 Oct 81 13:24:48 Tuesday -TAG 811021
-FULL 81-10-21.13:24:48.Tue -TIME 13:24:48
-UFULL 10/21/81.13:24:48 -AMPM 1:24 PM
-CAL October 21,1981 -DOW Tuesday
-FTAG 811021.132448 -DAY 21
-VIS 21 Oct 81 -MONTH October
-USA 10/21/81 -YEAR 1981
expr String in the variable named by expression or $UNDEFINED$.

Pathname o f your active global variables file.

File System Information
ATTRIB path {-TYPE -DTA -DTB -DTC -DTM -LENGTH)

-TYPE Type of file. e.g. SAM DAM SEGSAM SEGDAM UFD ACAT etc.
-DT{ A B C M) Date and time: Accessed, Backed .u p , Created, Modified.
-LENGTH Length in words. (2 bytes per word.)

EXISTS path {-FILE -DIRectory, -SEGmentJDIRectoiy, Access_CATegory)
TRUE if file o f optional type exists else FALSE.

Expand_Search_Rules entry_pathname_in_key_directory {search_rule_name)
Full pathname of file system object located by rule.

PATHNAME rel_path Pathname o f “rel_path” even if entiy part nonexistent.
WILDwildpath {wildentiy(s)) {control] {-SINgle unit.var}

Entry name list, space separated, of all files in the directory of
wildpath which satisfy the wildpath or wild entries and also satisfy the
control options. Use HELP WILDCARDS to get wild and control
details. -SINGLE checks variable “unit.var”. If 0 it opens the wildpath
directory and sets “unit.var” to file unit. One directory entry is
returned for each call.

File Access (status_var is set to PRIMOS ERROR CODE.)
OPENJF1LE pathname -MODE (rw rw) statusjvar

Decimal unit number of file unit opened.
Variable “status_var” is set: 0 if file opened
(To close file use a form of the PRIMOS command as in:

CLOSE -UNIT unit_number or
CLOSE pathname or
CLOSE [TOjOCTAL %unit_number%])

READ_FILE unit status_var {-BRIEF)
Quoted string containing one line of file.
Variable “statusjvar” is set, if read ok: 0, if EOF: 1.

WRITE JFILE unit text 0 if unquoted text is written to file else PRIMOS ERROR CODE.

Interactive Input
QUERY text {default} TRUE if response to “text” on screen is Yes or OK.

FALSE if response is NO (or <RETURN> when no “default**)
“default** if given and RETURN is pressed.

RESPONSE text {default} User’s answer to “text” on screen unless answer is <RETURN>
when “default” is returned.

Substrings of Strings
AFTER text target The part o f “text** after substring “target” else NULL.
BEFORE text target The part o f “text** before substring target else “text**.
DIR path The part o f “path** before last “>” else “*”r
ENTRYNAME path The part of “path” after last “>** else “path**.
SUBSTR text nth {num} “text** from and including “nth” char (for “num” chars).
TRIM text {-LEFT -RIGHT -BOTH} {char}

Remove leading, trailing, or both “chars” (spaces).

Translating Arbitrary Strings
SUBST text old new “text** with each occurence of “old” replaced by “new”.
TRANSLATE text {new old} “text** with each occurrence o f a char in “old** swapped for the matching

char in “new**. If “old** is omitted the ASCII collating sequence is
assumed. Upper case output results when both “old** and **new” are
omitted.

Translating Number Strings
HEX hex_string
OCTAL octal_string
TO_HEX decimaljstring
TO_OCTAL decimaljstring

Decimal string for the number defined by hex.string.
Decimal string for the number defined by octal_string.
Hex string for the number defined by decimal_string.
Octal string for the number defined by decimal .string.

Boolean and Numeric
NULL text
LENGTH text
INDEX text target
SEARCH text taigets
VERIFY text targets

String Data
TRUE if no text or text is *' else FALSE
Position in “text” o f last character.
First position in “text** o f “target”. (0 if not found)
First position in “text” o f any char in “taigets”. (0 if not found)
First position in “text** o f a char not in “targets**. (0 if not found)

Manipulating Quotes
QUOTE list
UNQUOTE list
RESCAN text

‘list* with any enclosed ’ translated to *'.
list with single *s deleted and ' * replaced by '.
Evaluation o f the expression formed by [UNQUOTE text].

Numeric and Boolean
CALC expression

0
A +-
/*+-
= A=<><=>=
&
I

MOD d_A d_B

Arithmetic
Decimal string or TRUE or FALSE resulting from the evaluation of
“expression** containing the operators below.

Space each side of each operator is mandatory.
Parentheses may be nested to five levels deep.
Unary “not” “plus” and “minus” used first.
Arithmetic operators “divide” and “multiply** are next.
Binary “add** and “subtract” are used next.
Relational operators are next.
Logical “and** is next
Logical “or** is last to be used.

Decimal string for remainder^ A / B) where A and B are the numbers
defined by decimal strings d_A and d_B.

Appendix C: List of CPLs
Utility:
TITLE_EXTRACT.cpl
MAKE_BOOK.cpl
ED.cpl

FTP.cpl

Extract the title line of everc file in this directory.
Concatenate the files w ithS alphabetic index and long file. / .
Prime's ED with cpl for wild file names and recovery at
logout
Call WSI_FTP when arg is either name or LAN address.

Partition:
MAKE_DISK.cpl
CHECK_DISK.cpl
MOUNT.cpl
UMOUNT.cpl
DISK_GVAR.cpl
CHECK.DISK.cpl
EDPAC.cpl

Make the named disk partition.
Runs fix_disk to verify disk directories.
ADDs a disk given its partition name.
SHUTDNs a disk given its partition name.
Scans the DISK_DEFTNlTlON file to create global vars.
Runs fix_disk to verify disk directories.
Adds or deletes access rights from existing ones.

New Primos Rev:
MAKEJSHAREJLIST.cpl
NEW_ENV.cpl
INSTALL.cpl
CONVERT.cpl

A program to extract shared segment numbers from a cpl.
Call from old spool directory to convert all old E. files.
Install new PRIMOS REV from distribution partition(s).
Converts new comi share files to cpl files.

Process control:
LOU.cpl
TIDY_NET.cpl
CHAPU.cpl
CHECK_USER.cpl

Stops all processes of specific kind.
Stops and restarts the network.
Chap using argl all users selected by lu arg2 arg3 ..
Use LU options and count users selected.

File system:
SEARCH.cpl
TREE.cpl
TMP_TIDY.cpl
DEFACC.cpl
AGE_SIZE_TREE.cpl

Finds target file(s) anywhere in tree below current ufd.
Just walks over the tree starting from current at point.
Delete file(s) if more than %back% work days old
Set default access to directories, files, and segdirs in tree.
Reports file sizes in reverse dtm order for a tree.

University of Tasmania Prime configuration

‘PrimeA’ 750:
339 users

34 projects
4 departments

‘PrimeB’ 9955H:
728 users
164 projects
65 departments

‘Admin’ 2755:
186 users

13 projects

/ 8

ftp://FTP.cpl

