7/10/69
A FORMAL DEFINITION OF THE SCAN ALGORITHM OF THE TRAC T-64 LANGUAGE

G. E. Whitney, Western Electric Company, Princeton, N. J.
C. N. Mooers, Rockford Research Institute Inc., Cambridge, Mass.

1. INTRODUCTION

This paper presents a formal definition of the scan algorithm of the TRACY

language. The definition does not extend to a complete processor for the

language since the definition of an evaluator for expressions is mot given,

This paper provides a rigorous starting point from which a complete pro-

cessor could be constructed.

1.1 Background of the language.

TRAC language was developed for interactive text or string proceésing. Its
basic structure is such that it can be implemented on small as well as large'
zomputers. The defining report for the language is [1]. Additional explan-
atory informagion is found in [2]. TRAC language has certain features not-

~ found in many other languages because of a dynamic relationship between the

.scanning of the text of a programivand the evaluation of an expression once

it has been successfully parsed. The essence of this relationship is given

in figure 1. -

~_

°

provides a parse for provides execution
the innermost . for a pre-parsed
- expression. expression.

Fig. 1. Simplified state diagram of a TRAC language processor.

The scanner proceedskfrqm left to right. Prior to evaluation only a suffi-
cient portion of the source text is processed to complete the parsing of

‘the innermost expression., At this point control is transferred to the eval-

4+ Trade mark and service mark of the Rockford Research Institute Inc.

*,An input string is called a script rather than a program since in TRAC
.language both source program and data are intermixed on the same input.

uator. Wheﬁ‘eVaiuation is completeg‘side effects if‘ény wili:havé Beéﬁﬁféf
‘ corded, the source ﬁext will have béen'alteredg and control ié tranéferréé f
back to the scanner. From this peoint the process repeats, Inherent wiﬁﬁihi %;
this processor is the abilitj to execute functions‘recurs‘ivelyw The‘déSQ
cription of the scan algorithm ﬁust include a means of indiéatimg a Biénch:';?ﬁ
to the evaluator and subsequent return to the scanner. The scanner itseif?“ 11
must pfovide;the ability not only t@kgarse the source text but also toftr>’°:
':glgte’the text as necessary in proparation for axpreséion'evaluétion.,:Tﬁi;
: $eparatién of scanning and evaluating is similar tqgthe ideas of inner éﬁdf;Q
,6uter syntax as defined in [3].
1.2 An example of the TRAC language processor,
: Figure‘2 shows the relationship between the two major strings wﬁich\provide:;
‘the environment for the TRAC processcor. The neutral/active string is regafdéd"
as residing on a pair of unbounded pushdown tapes, where the boundary bethen

the tapes is indicated by the scan pointer.

active

‘ neutral o
;14‘(string « ’%] o string ‘ l'-a.—
scan
pointer

Fig. 2. The schema for the instantaneous description utlllzed
by the TRAC language processor.

The following example is intended to make the body of the paper more read-
able for those not familiar with [1]. In its initial configuration, the
neutral/active string of the TRAC processor contains ;4D#(ps,#(rs)) t; .

In this configuration, EJ is the left end marker for the neutral string;

0 marks the boundary between’ the neutral and the active string; %; is the-

right end marker for the active string. The symbol] is called the scan

pointer. For this example, primitive functions will be enclosed by #(and'),k

e
w0
o]
i 3]
Py
O
et
o
Q
==
)
w
B

The operation of the pfeceﬁsgr
(1} Reédnstring:
The innermost primitive expression of the initial c@nfigurétion is found by
movement of the SC&E‘?Oinﬁar, This expression is #(rs) which is the read-

string or read-in function.

Let the input string be #{ad
is called the metacharacter, and it signifies the termination of the input

expression #(rs) is repalced by the

- string. As a

input string #(ad,5,7) and the metacharacter is omitted.

(2) Add:

, In its evaluation, it is replaced’

by dts value 12, which is the sum of the arguments 5 and 7.

‘Now the innermost expression is #(ps,12) where ps stands for the print-
string primitive function. When evaluated, this expression prints the value
12. Since there are no further functions to evaluate, the processor reloads

itself with the initial configuration.

1.3 Goals in the formal defimition of a language.

The goal of formal definition of a programming language is primarily to

3

achieve mathematical precision in the statements which describe the language.

Its main value is in men to man-comnm about the syntax and sewmantics

of a language. This communication has value both for implementors and users
of the language, Since it is difficult to achieve the desired precision with
natural language, other spaéial languages ave defined and uéed ag vehicles

for definition. This was done for PL/1, see [4]. Because of the nature of

1,

grammart, has been devel-

oped as a vehicle for the definition of the scan algorithm. Care has been

1

taken throughout this presentation to show the relationship between the pre-

sent definition and that given in [1]. The present definition is intended
to be precise, compact, complete and independent of the space and speed -

performance of specific implementations of the algorithm. ~

+ A type~T grammar is an adaption of a type-0 grammar. This adaptation allows
a type~T rule when invoked to/preserve a terminal string during the evalu-
ation of the rule even when this terminal string is specified in the rule
by means of a context-free category. Type»T rules are defined in full in
section 3. below.

The following conventions about phrase structure languages will be assumed
throughout. For o having as its range, any set of strings, then:

o} = (o}t U {e} where € is the empty string, and where
-{“}+ = Jj ﬂi where a'=a¢ and o '=0'a .
, =

Let string be an element in the set {category u terminal}*. A type-0
grammar has rules of the form “string-1 —> string-2". For a type-1 grammar
the length of string-2 must not be less than the length of string-l. In
type-2 (i.e. coﬁtext~free) grammar rules, string-l is restricted to a cat-
egory.

If string-2 —> string~4 is a rule, then the application of this rule to
the instantaneous description "string-1 string-2 string-3" produces the
result "string-1 string-4 string-3". This operation is called a generation
step and is denoted by: :

string-1 string-2 string-3 => string-l string-4 string-3 ,

where => 1is a transitive relation between a pair of instantaneous descrip-
tions. A generation sequence of n-1 steps between n instantaneous descrip-
(ID's) is denoted by ID-1 = ID-n where ¥ indicates the intervening seq-
uence of steps. A grammar defines a language as the set of all terminal
strings which can be produced by applying its rules when the initial con-
figuration for each generation sequence is the sentence symbol.

A model based on a type-0 grammar was used in [5,6] to define a varlety
of context-free parsers., A form of type-0 grammar was used in [7] to par-
tially define the TRAC scan algorithm. Complete definitions of the 0,1
and 2 grammar types can be found in [8] on page 15. A type-0 grammar
model is equivalent to the reduction language of Floyd as reported in [9]
section II.B, Introduction and subsection 5.

1.4 Methodology of formal definition.

A definition consisﬁs of a statement, or sequence of statements, written

in a meta-language abqut some object being defined. A non-trivial meta-
language must be capable-of defining an infinite class ofvobjects. The
meta-language must include the element$ of the object language as a proper
subset of ité elements and must have other elements at the meta level which
are syntactically independent of the object language, otherwise definition

would not be possible. A definition may permit a recursive reference to

5

~an object being defined, but this recursion must be within a level of defin-

i
[
st
Q-«

ition and not across levels of defin

-he process of definition, there

arisez naturally a hierachy of language levels, with the higher level standing

*in a meta relationship to the one immediately below it. The highest meta-

]

... language must be natural language. This paper will utilize three levels.
- The first or top ‘level is English which is used to define the second level

languages which are the context-free These

grammars in turn are used to defime the mapping rules between successive con-—
_figurations of the neutral/active string, The set of these mapping rules con-

titute the scan algorithm which is the third or target level of definition.

1.5 Hon~-procedural algorithms.
The term rule will be used to dencte a conditional statement and an associated
action which is to be performed when the condition is satisfied. Such a set

s

of rules is usually tested for satisfaction of the conditions in a fixed se-

2

quence. This case appears in figure 3 under the title "Sequential Evaluation"
Departures from this fixed sequence could be provided for by the use of a goto
cause a branch to a rule which iz not the next one in the sequence. However a

non-procedural algorithm consists of a set of rules which can be evaluated in

any sequence. Conceptually such a set of rules should be evaluated in parallel

=

to see if the conditions for more than one rule are satisfied. This case appears
in figure 3 under the title "Parallel Evaluation”™. If more than one rule can

be satisfied for any configuration of the system, then the set of rules is non-

deterministic. On the cther hand, if there is at most one rule which can be

satisfied for every acnfiguration of the system, then the set of rules is det-

erministic. If an algorithm of n rules is bo

[nd

h deterministic and non-procedural,

then the rules can be ordered in nl different sequences all of which are logic~

.

(=N

ally equivalent when the rules are tested for satisfaction in a fixed sequence.

Parallei Evaluation

act‘.:{.on:L -\\\\

f action2 -*-—€3!

action
, n

 action

Notation for a rule,

Sequential Evaluation:

,

.. condition

7
?

S>> action

1

=y action

2

error halt

Fig. 3. Alternative methods of rule evaluation for non-procedural algofith@s.

f_g;a&e

1.6 Relationship between a non-procedural algorithm and a grammara

In order to explain the relationship between a non-procedural algerithm and

a grammar it is necessary to introduce the concept of an gbstract machine

having a finite control and a zixad nunber of auxiliary storage tapes. This

abstract machine

vated returns control back to the

¥rom the discussion

given in 1.5 above, it should be evident that a one-state machine is equiva-

the sentence symbol. An extended grammar will be defined as a grammar for

but iz allowed to range over a

which the initial configuration

\Sv

a set of strings composed of a scan peointer aqd terminals. Processing will be

understood to halt when no rule can be applied. An extended grammar then de-

Sl

fines a mapping from one set of terminal strings into another. Depending on

the grammar, this mapping either & partial or a total fumction.

If the rules of a nonm-procedural algori -fine a mapping from ocne set of

strings to another, then for every such algerithm there exists a directly equ-

wainder of the paper, the term grammar

=

is to be understood in the more specific sense of extended grammar“

1.7 Definition problems peculis

&«E\

i

Since by definition TRAC language accepts all strings as legal input, a
grammar defining merely legal strings is trivial. A more complex grammar

serdpt without consideving the effects

could define a parse of the

which int”raﬂ -ive

waver, such a

parse would actuvally be ;. These factors

indicate that a context-free grammar of TRAC 1ahguage scripts would not beré>
meaningful definitional device, Also,.direct extensions of context-free UUtaf;
tion such as table grammars [10] are excluded and for the same‘feasons.‘ The
stages of redefinition of the TRAC language to be carried out in this paper
_are given in figuré‘B. The ocntéxt;free categories are defined first., These
categories are then utilized to provide a non-procedural restatement of the
original algorithm (Section 2.)., This algérithm is subsequently restated as

a type~T grammar (Section 4,), and as a decision table and its flow chart

(Section 6.).

.1.8 The form of context-free rules.

Certain context-free categories are used in the statement of the scan algorithm.

Each of these categories is defined by a compbsite rule of the form:

category ::= expression-l

¢:= expression-n .
A composite rule which has n rightside expressions is said to be composed of

n primitive rules each of the form:

category ::= expression-i .
Each expression-i is a string consisting either of the symbol ¢ or of an arb-
itrary number of either categories or terminals. The symbol € stands for

the string of length zero , alsc called the empty string. Each category ap-

pearing within a rule has the form:

<A

where X stands for any string composed of letters and blanks.

1.9 Terminals and undefined c;tegories.
With no loss of rigor, the categories <{digit)>, <{letter>, {format character>

and <user delimiter> will remain formally undefined. They are to be understood

NAMES FOR SUBSTRINGS

(UTILIZED WITHIN THE

~ ORIGINAL ALGORITHM

2% (15 PROCEDURAL RULES)
NEUTRAL/ACTIVE STR ;
Y

=

o
A

e e

FREE RULES ~ HOM-PROCEDURAL ALGORITHM |
- (8 CATEGORIES) (13 INDEPENDENT VERBAL RUI,»ES-)

BOUNDED CONTEXT ANALYSIS

(11

RULES IN DECISION TABLE FORMAT)

Y |
DETERMINISTIC FLOW CHART

(THREE n-WAY BRANCHES)

~ Fig. 4., Outline of the stag

R

ges of redefinition of TRAC language scan algorithm.

b s i i R e e

"1Q

as disjoint categories each of which has as its range a set of terminals.

"Hf‘The category <{digit> includes the ten numeric digits as terminals. The cat- A

. egory <letter> includes the alphabetic characters (either upper case or lower

case or both) as terminals. The category {user delimiterd> is té be under-
stood to include period and’space and : and ; and other special characters,

but specifically to exclude comma and (and) and #. There are two additional

‘terminals}which are not part of the TRAC language but which are necessary for

complete precision in formal definition. These terminals are EJ and IZ-“which
are respectively the left end marker for the neutral string and the right end

marker for the active string; Note that the symbol called the metacharacter

is not a context-free category since it is a terminator of an input string

and as such does not appear in the definition of the scan algorithm.

1.10 Rules which define the context-free categories.
{idling procedure> ::= -#(ps,#(rs))

{text character§ se=
’ 9
se= <digitd
:= <letter>

:e= <user delimiter>

- <balanced stringd ::= ¢

s= (<balanced string>)
se= <balanced string> <balanced string>
t3= <text character>

e2= <format character>

. {unbalanced string) ::= (<unbalanced part>

<unbalanced part> ::= (
' ' s:= <balanced string>

~ut= <unbalanced part)> <{unbalanced part>

o

e W
. 3

11

it

{script character> ::

ew

e
il

-«
)

{text character>

oe
H

&8

{format character>

I

i

argument

1)
se

€

{seript character»

€9
i

i

@ o
@ o

{script character? {argument?

I

irgument sequence’ 23 {argument>

g:= <argument?> , <{argument sequencel

S .11 Unbalanced strings.

4. ote that an {unbalanced string> is always defined to have an excess of

-t en parens, Also such a string always begins with (. The case of a -
~+tring with an excess of close parens can oceur, but it is handled without

the need for a special category to name the substring which is involved.

1.12 Omitted categories.

There are no special categories to name and definevthe neﬁtral string and the
actiQe string. These omissions are intentional. The schematic relationship
between these strings and the scan pointer and the respective end markers is
given in figure 2, A context—free definition of these strings is not meaning-
ful because interaction between the scan algorithm and the evaluator

dynamically alters the contents of both strings.

"1.13 Representation of a grammar as a syntax graph.

The context-free grammar rules of 1.10 can be displayed as a syntax graph.

Such a graph appears in rigure 6. The rules by which such a graph can be

const?ueted are giveﬁ in figure 5 where five specific cases are itemized.

The explénation of these:fiveAcases is as follows:

(1) A category in a gramﬁar défined by a conmposite rule, composed of n prim-
itive rules is represented im the graph by an elipse enclosing the cat-
egory name with < and > omitted and with n directed arcs leading away from

the elipse, one arc for each primitive rule.

12

(2) When the rightside of a primitive rule is a terminal, then the terminal
appears in the graph unchanged and with no arc leading away from it.

(3) When a primifive fule consists of simply of a category on the lef;side
and a category on the rightside, then the rule is represented by a single
directed arc linking two elipéesw

‘i‘(4) When the rightside of a primitive rule is a string of more than one symbol
then the arc will point to a.horizontal brace which spans the graph rep-
resentation of that rightside string. In this representation terminals
stand for themselves but categories are replaced by a circle with an arc
leading out the the actual elipse where that category is defined.

(5) If a category is defined recursively, the arc indicating this is given

as a broken line.

13

Case Grammar Format Graph Format
~ ' (1) - <abed> 3:= x-1 f
$1= X-m
(2) {abe> ::= ¢t
(3) | {abe> ::= {category’
’ categ0ry
(4) {abe? ::= {category> t
)
/
:
(5) {abe> ::= {category> <abc> »
‘ - i _ A
. i

x-1 , x-n are arbitrary rightsides of a rule.

t is an arbitrary terminal.

Fig. 5. Equivalences between grammar format and graph format for the
representation of context-free syntax rules,

T

14
Categories utilized

- Categories utilized
o parse the s

of the . to parse the prefix of the
active string

¢ unbalanced™
~.gtring

<:§nba}ance
part

5 @ B N
% :

L

v Y
R)

5€L1?§Z \
character J

-w-/

baianced A
strlng

13
ey ey
¢y \ Q) 00~
f y \\ % /
%’%ﬁ .éf / YR

M"%r
if‘ format ™
. Character

2.0 A NON-PROCEDURAL STATEMENT OF THE SCAN ALGORITHM

In [1] the scan algorithm is given as a procedure consisting of fifteen rules.

These rules are in the form of conditional statements and are linked togethe:
by goto's. Before this algorithm éan be stéted as a type~T grammar it is

- necessary to convert this praceéuxal definition into a set of non—procédural
rules, i.e. rules for which no specific order of execution is requifed. The
result of this conversion appears iﬁfﬁ;i t@ 2.9 where the scan aigorithm is
defined in the form of nine n@nwp?ﬁﬂéﬁufﬁl rules. Appendix T includes a table
-showing the relationshlp between this algor1thm and the one given in [1].

SCAN ALGORITHM

The TRAC language géan algorithm cperatééndn stringé coﬁtained between the
end markers 5{ an8 i; with B as the seéh pointer. fhis scan environment
is shown in figure 2. |

‘ 2 1 If the active Sttlng is empty, then de]ete the neutral string, reload

the <idling procedure) and p031t10n ﬂ to the left of the first
character of the <idllng procedure). o ‘
2.2 When a (is encountered 1mmedlacely to the right of ﬂ diffe¥ent actions
are possible depending on the context' } j ;
2.2.1 If there is a strlng of the form ‘é<balan;eé sgfing>) imﬁediately’
to the right of [l then the eneiosing parens of thisx<balance& string>
are removed and [] is moved to the right of the ébalanced string?.
2.2.2 If the character on the right of [] is (énd this.(is the first char- 4
acter of an <unbalanced string>‘ﬁhen the><1dling proceduré) is reloaded
because oné or mﬁr&‘close parens are miséiﬁé. ‘ |
2.3 If the character on the gight of ﬂi is‘a {format characéer) it is delated.
2.4 If the two characters to the right of [| are #(, then they are replaced

®

P 3 by (and [I is moved to its right.

2.5 If the three characte:

‘16

then they are

reglaced by T and []
2.6,1 If the character to the character to the right
of the # is neither # nor {, then [] is moved to the’right of #.
N2.§52 If the the right ¢f [are ## and if the character to
their right is not { , then [l is moved to the right of the leading #
2,7 If the charact s comma, it is marked as , and
1 is moved to
\2¢$ If the character on the is J , then a leftward scan of the
neu ral string will determine which of the following three alternatives
moved during this leftward scan.)

is the
function evaluatior The eva

with the <value) returned and
2.8,2 If the leftward scan encounte

evaluation. The evaluator re
either a <{success value> or a

it succeeds or fails., If the

to the right of <{success valu
positioned to the left of the

1‘ «&' A ~ 3
2.8.3 1f the leftward scan encount
paren to the right of [is

2.9 If the character on the right of [}
moved to the right of this {text ch

Carg

5 { prior to (or EJ then tha

gument string> for the active

luator replaces ?iargument/atring> i }
positions [} to the left of this <value).
re ? srior to { or g% thén the inter-

ent string> for neutral ﬁfuncticn

;Eaiﬁs { ¢argument string> [) with
default value> depending on whether

evaluztion succeeds, [+is positioned
e>, If the evaluation fails, [J is
<default wvalued ~ -
§ s 7 = .
ers ¢+ prior to { or { then the close
‘fx
deletedt.
is a {text character> then [] is
aractars.

17

o
&

andard TRAC lan

uage processors

i -
o ©
S g S5 mm .U e =
) at =)
o o = 10 } @ [3 < i i v Fi] et
- 5 o} hw] (&) =i e w4 o et o Ui] o=y e o
& o 7] Ui A et o 7 o opd st W @2 e £ vz
- & g 1y @y FUI > o Yop o B oW 3 @ = 4 o i
= . 2 =] T Y 4 o e 53 @ 5 i Bt e o
e L e S g g o =T @ @ W a e
doa g =% B) oo et > o & @ U & ord = £y A &
P 3 o B - o el = e} e o P) a g a “ e a2 &
e uo» i b a = = B [t @ Qb 1) o3 o i il A2 kel £ [l wpd
I P T =] o 3 n e s =l o I] & ol . ry o5 I
i;m o et mn ﬁf aged %) o apf o 48 [& ogd & £d , jmd kel [e] i
g e = G Peoor o = 2] & W g N
. S 2 e ad S w o LY & e o a o o &
OO A A @ < 0 o W ord a Eow) K o o g
@ @ = B S R B RS R - £ VIR Wooow b
Lo % 8 2 B o g o ot 4 bt @ oo e 23 oo i
- P p P M 4 ol & od U @ o ey W o = W o o3 o o
moow g8 B bt o i o @ @ 103 Y] o 54 w3
5 © o,) [P F¥ 0w O W v 0 50 g @
nM ol - = Uk ﬁ) e dut B =] [= ket
v &2 9 L3 Ne! A 54) ad) 1 o) £
oo G U [¥] o 0 o = @ 0 o bt W e
L] 3ok o N opd 2 R] Sk b .3 foed o By Rt =
T~ S it o vt o i i gt
S @ e 60 o [ER B <] 4 i oni) =] 4
® R - Q ob o] @ 0] o ki o]
G i = 5 oo 0w . e i ¥
3] e ww e e 2 b Ere) o W [~ il iy [
rm a = L aad - & o ! ord ;o
R & ; o =1 @ B & a
&) i e} gt 34 o)] i)
TR e R o e o 9 1
R Q& 2 R
¢ vmw Y (%]] for] Lf agnl -y NM)
=y . 2 o & . R @
b R S Y = b =
.3 2 Y] &y @k 5] s @ @ 43
. = &] 5 @ =] b
e 7 : fre] e
) =] g @ [5)
o 4 ; (3 £ 0 G i
o i =gd ed L@ o]]
i : R i <«]
: e = = o]
»w o Bt [l 5
o e L4] o
. g (o] i} o .
L £ A] . P
wooad b 43 [L e et
AT - B @] O 73,
J] , 3 o @] 5] £
ﬁ Qm o ey e &
= i o5]) o .
had @ [£) B 9] ol e .. oped
] o od b 7] H a ot
o ol e b T o] b = s a
i o =) o] I @ W a3 o5
i &2 4] e n ot &t @ [] A
@ 5} oyed by T E Q wd -]
Fol e dd o B o 7 i Pt ord =
heo e)] @) o < ot ¢ »
30 b o] o ey v s : 3 = nh &
¢ wo B v e o [$ S =] fee o
o 4 b 4] A P P o] a oy e
) R 5 o] 8 P &b | ¥] Q =) L2 bt o
S) , U @ [T W @ 3]
b “b gs] = (Y] e =3 @ &=] @ 3] w] o] b
- bt o Y B e G e o £ &l
W o) b gl 5] o] el = ok =] Q
R 2 8 o g 3 ¥ = v 5
=] } b4 2 it N &b €. : 0 a
oS O o i o @ & 5k I] o I 55
Oy Ak T e A @ o o= B o) b *d at =] £ Ly
& R L b] el 4 o] © o = o] &
_— &~ = © o @ Md [I & g i @ b

18
3. DEFIRITION OF A TYPE~T GRAMMA
In Section 4,, which follows, the scan algorithm is presented as a set of
s ¢ 5 .

thi:teen type-T grammar rules. The puvpose of this section is to define and

P & L 1
-explain the notation teo be emploved in the orammar rules of é These type-T
rules are numbered (4.1 te 4.9) in one~to-one correspondence with the werbal

I

non-procedural statement of each rule given above (2.1 to 2.9).

in figure 7. Unless stated otherwise

i
o "~ . . =
e A TV o b ot 1 et
context-1 [] context=2 context=3 [} @ﬂntaxzwé
| S ——— %::;,amﬁmmwﬂ L— s e .
M‘ =, 7
~ -3 m{ﬁ
R o

(Tul) (Tu k)
Note that the quantification given for the leftside has been simplified.
Fig., 7. Schema for type-f rules,

e

guantification is as given in figure 7,

Notation:
T is the set of terminals.
C is the.set of context-free categories. The extended-class of categories

given in 3.2 below are also context- fzee categories,

K = {c1.025 ves gcn}ﬁ which r a particular rule as the set of

o
categories appearing on the of that rule. Thus ﬁigure 7 requires

that the quantification of the "rightside™ be restricted to those categories

which also appear in the corresponding “leftside” of the same rule.

V =T uC, this is the set of the total vocabulary.

Quan ification:

e precise gquant cation o eftgide” within a type~T rule is not given in
The precise quantifi £ teide” withi type-T rul t

figure 7. This guan

lefrside’ i in

rule will be represented

)

This added precisior

19
by [l standing alone,

Syntactic Restriction:

For a given rule and for ci,cj in K, then ci#cj for all i#j., Synonyms will
: allowed for the context-free categories so that the restriction does not
tually restrict the parse of the leftside,

‘M_mantic Restriction:

the same category appears on both the leftside and on fhe ;%ghtside of a’
ule, then the exact terminal string séanned by the leftside category is pre-
erved during the evaluation of the rule. However the position of that string
ithin the context may have been alatered in accordance with the specification

iven by the rightside. This is explained in detail in 3.3 to 3.7 below.

Hemark:

There do not exist any type-T categories in’this grammar system,. All categ-
ories must be defined by some context~free grammar. This fact indicates the
Y type of a scan which is nexessary to determine if the conditions of a rule
ére satisfied.‘ A pushdown automaton will be powerful enough to carry out the
required trial parse. An example of the type‘of parsing required by a type-T

rule is given in figure 8.

3.2 Extended-class of.caéegories,
In listing the rules of a grawmar, it is sometimes much more compact to
 define a category by ennumerating what is not in the category rather than
s ‘ by the usual method of ennumerating what is in the category. For this

purpose, the following definition is given:

<& { list b= 1 - { list }.

The expression { list } is to be replaced by specific terminals in the form:

{ l:cs»‘rm:.ixm}_-1 E ¢ e »‘g terminé?n }.
For example the category <# {#|)]> means: "“any symbol in I except # or (".

When "list" is a single terminal the surrounding { and } are omitted.

20

The set of terminals (denoted by &) will include the three undefined
terminal categories glven in 1, 9 above and the end markersg Thus,

= {<digit> | <letter> | <user delimiter> | #]

(O T 51 TRy
Yi) Tree Format: U (())
gzzzgred NN?)
tilng

WW"‘""‘

v

d‘mw\m oy,

O (0) O .

"(2) Stratified Format: . ,;/SPan for <{balanced string>

0 (aa(aaa)a)

Fig. 8. Example of the parse produced to match the leftside of a type-T rule.

3.3 The computation step defined by a type-T rule.

A context-free language is so defined that its generation sequence will ter—
miﬁate. FA type-T grammar as used here does not define a te?minating sequence,
but rather each rule defines a computation step in a potenially infinite se-
quence. As in éhrase structure languages, a transitive step is denoted by =

¥
and a sequence of steps by = .

/M\‘

21
1f [Ja = af] is a rule then be[lad = beal[ld is a legal step which results
from the application of the rule. If cfla — f[] is a rule then beflad = bf[ld

is a legal step.

3.4 Context-free categories within a type-T rule,

. Figure 9 gives an example of the 8peration of a type«g;ule in which thebsame

category appears on both the leftside and the rightside of a rule,

Category: <x2>

Context~free rule: <x» a

b

o8 99
o &¢

i o#

Generation step: <x» => b
Type-T rule: [<x> — <x>[] .
{three category
: tracks
2 %’}/
Type-T step: ‘ < : <
daflbg =+ dallbg => dabllg => . dabflg
p m u
(1) Parsing (2) Xain (3) Unparsing
substep substep substep

Fig. 9. Preservation of a terminal character under a category during
the operation of the three substeps within a type-~T step.

This system consists of a single category <x> and one type-T rule, [Kx>—> <x>[l.
The type-T step is shown broken down into its three substeps. Note that

throughout the mapping, the terminal b was preserved (i.e. not changed to a or

‘to <x>), although this is not explicitly stated by the type-T rule. The explan-

ation of each substep is as followss

(1) Parsing substeﬁ = ;9 :
This substep discovers a local parse which is a match for the category <x>,
" This match provides sétisfaction for the leftside of the type-T rule. The
new parse information is ;tnred on the three category tracks above the ter-

minal track.

(2) Main substep = =1

This substep carries out the mp@rgtzwm inds .ca ted by the rule in accordance

with the restriction that “the terminal stx&ng uwder a category is pre-—
served”,
(3 ﬂn?arq:ng substep = =5 g’

This substep deletes the parsing info iﬁflﬁp ffﬁm thp three rategerv tracks,

. ‘so that the tracks will be emptv for the application of the next rule,

% , The number of categovies in srammar must be finite. Thus although

+

the names didentif

=

ring actual categories way be composed of several letters, it
& & b

is always possible to recods the s onto some fix alphabet 1n
' . which each category is represented by a single unigue letter. Hence for the
examples of figure 9, 10 and 11 only single letter categories are emploved,

In an actual grammar such a restriction is umnecessary.

3.5 A category which spans an arhft,ﬁry number of characters,

- A special utilizagiem of the three "category tracks” is required in the case
where a category spans more than a single termin&l‘character. An example of
-éhis case is given in figure Eém Hote t&at < on the first category track
marks the beginning of the span, and thatb> on the third category track marks
the end of the span. The category naﬁe, "v" is repeated once for each term-
inal in the string it spans. This method of processing is equivalen to hand-
‘ling parsing trees by their nod names. Figure 11 givés a summary of track
utilization, In tﬁig figure, each of the terminals within the span of the
category <z> 4is marked by a z on track CZ. The terminals under eacﬁ z are

preserve& umaltezed durlng the evaluation of the rule.

23

Category: <y>

Context~free rules <{y>

Generation sequence: {y»> => aaaa

Type-T rule: Ky> — <y>l
> oy
: Jyyyy Jyyy
Type~T < < -

Step: bflaaaac ;% bllaaaac = baaaallc = baaaalle

‘Fig. 10. A type-T step utilizing a category which spans a string.

N :
Generation sequence: <z> = bibgeee bn«

Type~T rule: Kz> — <2>[]
L category- 3 : 2
G tracks c2 R
PN Cl <
gfﬂ terminal-track T{ <ccaal[lbjby °ce b ceeee

Parsed string: b;b, ‘--bn

Unparsed strings: eccaa and cceee

< on Cl marks the beginning of'the parse span.
zze*+z marks the scope of the parse span.

> on C3 marks the end of the parse span,

‘Fig. 11. Summary of the utilization of the category tracks,

-

24
3g6 Case of the empty string,
In the context-free grammar given in 1.10 above, cases occur where for
some category <x», <x» = g, In this case there would be no place on the

tape to write <x> over g, since e does not occupy a character position.
s Py

f+ it is claimed that this case can be handled

gwa
=l
]
o
&]

Without giving & formal

without altering the definitionsl power of the svstenm.

3.7 Hotation for transfer to the evaluator.
The symbol —e~» will be used in place of -» to indicate that the execution
of a rule so designated will require a transfer of LOﬁthi temporarily to the

processing, The aategories

be sllowed on the rightside
of a rule marked with —e—>, These three categories will represent strings of
terminal symbols but the exact specification of what these strings contain lies

outside the scope of this paper. This informa Licn is dependent upon the for-

mal definition of the evaluator itself. However {success value> and
{default value> are mutually exclusive in the sense that one or the other
must equal €, With this restriction in mind then the following holds:

{value) = {success valuey <{defaulr value) ,

+ To see that this 1s true, nete that <x’ can azppear only a finite number
of times on the rightside of the var context~free rules. The rule
x> ::= £ can be deleted and i : :tained by adding a set
of parallel rules to the grammar. Thes les are added by using the

ol ,i@n throughout the right-

¥

<
formula <{x>=¢ and performing a Lrif stitut
sides of the other rule~ in the origi rammar, This expanded grammar
will define the same language and ¢ <

x> will no longer generate
€. The naming significance of x> will 1ltered except with respect

to €, This same expansive substitution must alsc be performed with respect
to the tules of the type-T grammar. '

L, TYPE=-

LA
LAY

) N
4. 8.2

s a al
4.8, 3

g
L

\Eadi /2
IGUAGE

CRAMMAR FOR THE SCAN ALGORITHM OF THE TRAC 1

&

Syntax Comments
Db = o0 fes,#xs) by

£ the idling procedure.

1 (<balanced string>) > <{balanced string> [
e) j .
- ; ek T #frmm Blral) o
I <unbalanced string> | L“ = 0 #(ps,#(xs)) =
[l {format. character> == [] Delete unprotected format character.
0#c - ? 1 Mark the open paren of an active function.
hd N 9
" = S
g #¢ = (0 rk the open paren of a neutral functien.
i ‘
I L . Step past a ¥,
[0 #<d (4] #0 < (b
O0#E o == ¢ 0 Ke O
I8 5 =y
E».g » e 8, g\j @f{ B3 .:?u xﬂ?ﬁ{:
5 ?E } . ?i:‘ {1{?&"};%}@& evaluation.
e ' i : : : = : T i meme T £ god 3
({argument string’ [| } =e-> dsuccess value’ i Cdefanlt valusd Execute neutral function evaluation.
»gﬁ srgument ﬁtmimf} 0 el gﬁ {argument string> Delete excess close paven,
[} <text character> => <text character)] Step past a text character.
2o # ") . o)) . .) .
T Leuccess vaiag} and <defaunlt valuer are mutually exelusive in the sense that
ene or the other must egual €, the empty string.
e
¥ See footnote

on 2.8,3 for an alternmate interpretation.,

26
5, EXAMPLE OF SCRIPT PROCESSING
In table I a sequence of eight instantaneous descriptions (ID's) are given

which 1llustrate configurations during the processing of a script in which both

input and output occur. The following additional conventions are adopted:

o

Eﬂ and Pg' are end markers for the input string.

' 1s the metacharacter for the "read string” function.
Eﬁ h; are the end markers for the primter string.

Table II gives a detalled explanation of the processing which cccurs between

%
each pair of instantaneous descriptions, I represents any string.

ID Heutral/active string Input string Printer string
1 ;ﬁzéﬂkg . gﬁ;%{rs}}g}ﬁigﬁg Eﬁ%;

2 T%E#{yﬁgﬁirs))}“ . no change no change

3 {Tesi Gsl) b " "

b ATesTIt I by .0k !
5 ;;!f‘(fps‘;’?m[im!-; no change)

6 HAlsD. Ml 1 "
7 -HD?; no change 'p“{),(!';

n
8 E{BE; W no change

Table I.Typical sequence of instantaneous descriptioms (Iﬁ's).

_Processing ‘Sequence of 4
Step “type~0 rules Lomments
IDy==1Dy 1 Reinitialize,
ID2§§ID3 . 4,9,9,7,4,9,9 Sean f@ﬁ close paren.
IDy=>1Dy - 8.1 Execute active "read string” function.
ID,#>1Dg 559,9 ' Scan for close paren.
IDg=>1Dg 8.2) ‘Execute neutralread string" function,
IDg=>1D; 8.1 | Execute active "print string" function.
ID=~>1Dg 8»3 B s close paren entered into IDy

e Yread string” function,
The next step is rule 4.1,
4+ The initial 4. has baen deleted from each of the rule numbers
in this column. ' ‘

Tabie 1I. Details of the processing steps utilized in the example of table I.

27

6. BOUNDED CAONTEXT ANALYSIS OF THE TYPE-T RULES

Some of the rules of Section 4. require a scan over string of unbounded
length to complete the evaluation of a rule, However such unbounded scans
are not necessary to determine which rule of the set will succeed and hence
is to be applied next. The deterministic logic necessary to achieve this
decision requires at most the exa&ination of three characterst to the right
of the <{scan pointer>. A summary of this amalysis is given as an extended
entry decision table in Table III, The corresponding actions appear in Table
IV. This decision table is converted iﬁto one péssible flow chartvin fig-
ure 12, The use of a horizontal format for the rules in the decision table
allows the three characters under scan to be viewed in their natural pos-

itions, i.e, horizontal and left to right.

+ This is known as a bounded context scan and in the noétation of Knuth is
LR(3). See [9] sections II.Cl and IL.C3 for the required definitions.,

Conditions)

Rl R2 ~ R3 ° Actions
=l ‘ 1
= 2
={fc> 3
={f =(4
=1 =1 =(5
=i #(6
={ # 6
=f =t #(6
=, 7
=) 8
={tc> 9

{fc>= {format character>.

{te>= {text character>.

Rl, R2 and R3 stand for the first, second and third
characters to the right of the scan pointer.

28

Table III. Extended entry decision table for bounded context rules

in horizontal format.

Action

1
2

9

Definition
Re-initialize to the idling procedure.

Remove the protecting parens from a <{balanced string> and
place the scan pointer immediately to the right of that
<{balanced string>; if the parse discovers <{unbalanced string>
execute re-initialization. ‘

Delete unprotected {format character>,

Mark the open paren of an active function and step past it
while deleting the #.

Mark the open paren of a neptral function and step padst it
while deleting the ##.

Step past a # which is not followed by (or by #(.
Mark a comma as an argument separator and step past it.

Execute a leftward scan which will determine which of the
following actions is to be taken:

(a) Evaluate an active function.

(b) Evaluate a neutral function.

(c) Delete an excess close paren.

Step past a <{text character).

Rule
4.1

4.2
4.3

4.4

Table 1IV. Details of actions referred to in Table III.

- 29

{fe> stands for {format character>

Fig. 12.

Bounded context schema ﬂaﬂ Rl RZ2 R3

indicates "action x".

Flowchart for bounded context decision logic.

30
AP P‘E NDIX I |
’Relatidnship Between The Griginalyélgorithm And The ‘New Noﬁ—procedural’Aigbfifﬁm.7
Let Rn‘(for n=1,..,;16) stand for the rules of [1]. R15 can Be eliminated
by adding to the end of rules RB; R4, R?g R9, R11, R12 and R13 tﬁe actionvfk'
specified by RlS; In {1} immédiately following R15 is the following statement:

YExtra close parens are iguored and are deleted
at the end of a procedure.”

For the purpose of this appendix, let this statemént be referred to as R16.

| In [1] there is informally implied the preseﬁcq of an auxiliary pushdown i
used’to record and to retrieve pointers to the neutral étringe Note in par¥
ticular the statements im R4, R5, R6 and R8 about a pointer to the "current
location™ and the statement in R8 about a pointer to the "current éunction"f;
This implied auxiliary pushdown has been replaced by adding to the tape alph-

4

abet the marked characters ? and ? and : . These marked characters can be

- retrieved by a leftward scan. The relationship between the two algorithms

is summarized in Table V.

+ It was not the intent of [1] to specify the details of implementation for
a TRAC language processor.

New Rule. Context ° 01d Rule Relationt
2.1 re-initialize | R1,R14 | L
2.2 : ¢ | R2 o 1a
2.3 [IKformat character> : R3 | D
2.4 O#¢ - RS D
2.5 ; O##(R6 D
2.6 (# [not R5,R6] R7 D
2.7 ad, ' R4 D
2.8 0 R8,R10,R13 1.3
2.8.1 T...D : R11 | D
2.8.2 1...0 | R12 1.3
2.8.3 BRSO 1) _RI6 4 1.2

2.9 otherwise RS . D

+ D = there exists an cbvious and direct relation between
the rules in the two systems.
I.x = see this appendix at Section I.x for comments on this case,

Table V. Relationship between new rules and old rules.

31
I.1 Balanced strings.,
In R2 no provision was made for the case where the expected close paren

is omitted. Rule 22,2 makes explicit provision for this situation.

I.2 Close paren.

In rule 2.8 a leftwérdwscan for (or (orv;I feplaces the "retrieve pointer"
operation of R8.‘ In the non-procedural algorithm, the case of ;4 is hand—
led by 2.8.3 while in [1] it is defined by R16. See also footnote to 2.8.3,

in this paper.

I.3 Reutral evaluation.

The rule 2.8.2 is so stated as to take into account a special case which
occurs when a neutral function returns a‘<defauit_va1ue>, This case

is covered in [1] by the non-procedural statement:

"The overflow value (in this paper called <{default valued) is
always treated as if it were produced by an active function."

This is found in [1] on page 218 under "Arithmetic Functions". The

new rule 2.8.2 provides for this case directly.

S weweioo oo - ACKNOWLEDGMENT ~==~ ~

" The authors wish to thank Mr. P, Hess of Western Electric Co., Princeton for

his constructive comments and in particulér for pointing out an error in the

";bEGCes§iﬁg-of,#_jn:ap ear1iér;formu1ation of the scan algorithm.

REFERENCES

f1} Mooers, C. N. TRAC, a proceduremdescribing language for the

o

{31

[4]

[5]

6]
o

(8l

19]

reactive typewriter. Comm. ACM 9 (Mar.;1966),215—219.
-, ”How<somerundamenta1rproblems’are treated in‘the‘dééign of
the TRAC language. Symbol Manipulation Languages and Techniques, :
Bobrow (Ed,). North-Holland Pub. Co., Amsterdam, 1968, pp. 178—190,M
Wilkes, M. V,The outer and inner syntax ofva programming language. -
, TheACbmpufeerburnaZ il (Nov, 1968), 260—263. | n
Bandat, K. On the formal definition éf PL/I. Proc. AFIPS 1968 SJCC, Vol 32,
= pp. 363-373. | |
Griffiths, T. V. and Petrick, S. R. On the relative efficiencies of
context~free grammar recognizers, szm. ACM 8 (May 1965), 289-300.
« Top-down versus bottom-up analysis. Proe. IFIP Cbnéress‘,, |

Edinburgh, 1968, pp. B80-B85, in Software I,

=

Williams, R. A concise notation for the TRAC scanning algorithm. 'SIGPLAN_ :
Notices, ACM (July-Aug. 1968), 31-32.)

Hopcroft, J. E., and Uilman, J. D, Fbrﬁdl Languages and their Ré&ﬁﬁf&ﬁ to
Automata. Addison-Wesley, Reading, Mass., 1969. |

Feldman, J., and Gries, D. Translator writiﬁg systems, Comm. ACM 11

(Feb. 1968), 77-113.

[10] Whitney, G. E. An extended BNF for specifying the syntax of declarations.

Proc. AFIPS 1968 SJCC, Vol 34.

