Probability Curves Showing Poisson’s
Exponential Summation

By GEORGE A. CAMPBELL

N many important practical operations the constant probability
of an event happening in a single trial is extremely small, but the
number of trials is so large that the event may actually occur a suffi-
cient number of times to become a matter of importance. The curves
of Figs. 1 and 2 show the probability P of such an event happening at
least ¢ times in a number of trials for which the average number of
occurrences is a. The probability range shown is from 0.000001 to
0.999999 and the average extends from 0 to 15 in Fig. 1 and to 200
in Fig. 2. An open scale is obtained at both ends, even when the
probability approaches to within one part in a million of the limits
0 and 1, by employing an ordinate scale corresponding to the normal
probability integral.

In the practical use of these curves the first question which arises
is—What number of trials is necessary to make the curves applicable?
In practice an infinite number of trials, which is the case for which
the curves are drawn, can never be attained; and if we had absolutely
no knowledge of the relation between the probabilities for an infinite
number and a finite number of trials, the curves would have a theo-
retical interest only.  We do, however, know in a general wayv when a
finite number of trials approximates to the limiting case; the more
complete and precise our knowledge on this point, the more generally
useful the curves will become. Without attempting to go into the
question exhaustively, which would require most careful analysis, a
general answer will be found to the question as to the number of trials
required by plotting the simple functions (a/c)", ¥(c—a—1), and
te(e—a—1).

The characteristic of all probability curves when » is either finite
or infinite, is shown by Fig. 3, where P(c,n,a) denotes the probability
of an event happening at least ¢ times in » trials when the average
number of occurrences is a.  Any curve Plen,a) is contained be-
tween the ordinates at =0 and a=n and is asymptotic to these
ordinates; it cuts P=15 between a=c¢—1 and ¢—0.3. Thus as »
decreases from infinity to ¢, the central portion of the ¢ curve changes
but little, but the curve is confined to the narrowing band to the
left of a=n and becomes steeper. On reducing # to c—1 the ¢ curve
disappears entirely, since ¢ cases cannot occur; the number of trials
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n is an integer which cannot be less than the average @ or the number
of occurrences c.

Fig. 3, making use of Fig. 2 as a background, shows for ¢=1, 10,
50, 100, 150 and 200, the curves of the point binomial with # = and
n=c, as heavy full and dashed lines, respectively. Each pair of
curves, with the exception of the first, crosses in the neighborhood of
P =}, and, except near this crossing, all of the intermediate curves of
each family of ¢ curves lie between these extreme curves. The rela-
tive change in the probability P or 1—P, when these probabilities
are small, due to reducing #» to this lower limit ¢, for the ¢ curve, is
great, but the relative increase in the average a is only moderate over
the greater part of the range covered by Fig. 3. The extreme rela-
tive change in the average ¢ is shown by dots placed on each of the
Poisson exponential curves, each dot being located at the point where
the extreme relative increase in the average is =.25, =.50, or =.75.
The relative increment in the average ranges, for Fig. 3, from a de-
crease of 93 per cent at P=.999999 on ¢=1 to an increase of 97 per
cent at P=.000001 on ¢=9 and 10, but the greater part of the field
is included between the beaded curves for =50 per cent. Having
thus obtained, by examining Fig. 3, a general idea of the relative and
absolute numerical magnitudes of the extreme changes to which the
probability curves are subject, we are in a better position to make
practical use of the curves of Figs. 4 and 5 for the small initial shift
in the curves occurring when the number of trials is finite but still

large compared with c.

The rate at which the probability curves start to shift, when the
number of trials is decreased from infinity, is shown by Fig. 4, which
gives the value of the first coefficient 4 in the expansion, in descending
powers of #, for the relative increment in the average. In the upper
part of the curves the shift is to the right and in the lower part of the
curves it is to the left. The point at which the curve remains in-
itially at rest is shown by the intersection of the ¢ curve with the
curve for A =0. Since 4 =35 is the largest arithmetical value occur-
ring on Fig. 4 and #=700 will make the first term of the series equal
1/20, and the next term is then still smaller, it follows that Fig. 2
redrawn for 700 trials would not show a difference of more than about
5 per cent in any value of the average. For Fig. 1 the corresponding
number of trials is 220; it may be shown by direct computation that
n may even be reduced to the lower limit 1 with only a small
percentage changelin the abscissas of the upper portion of the
curve ¢=1.
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Curves similar to Fig. 4 showing the exact number of trials pro-
ducing a given relative or absolute shift in the average would be
useful. Still another variation is shown by Fig. 5 where the curves
give the first coefficient in the expansion, in descending powers of #,
of the ratio of the increments in probability, due to a decrease in
n and to unit increase in ¢. These curves therefore show the initial
rate at which any ¢ curve approaches the c+1 curve above it, if the
scale of ordinates were made linear; below the curve 4 =0 the initial
shift is downward as indicated by the negative sign for the 4's. If
sets of curves corresponding to Figs. 1 and 2 were drawn for the
number of trials # =400 and 2000, respectively, no curve would be
shifted by as much as the original distance between the curves shown,
since the maximum values on Fig. 5 up to a=15 and 200 are 400 and
10,000, respectively; Fig. 2 shows only every fifth curve; the second
term of the series indicates that the initial maximum rate of shift
is not maintained as # decreases at these points.

The second question arising in connection with the use of the curves
is their accuracy. Fig. 1 was drawn with the greatest care on a
scale somewhat larger than that of the reproduction, and errors are
believed to be only of the order of uncertainty of reading such curves
with the unaided eye. Fig. 2 was drawn with less skill and shows
larger deviations but it has proved accurate enough for ordinary
applications.?

The third question which may arise is that of going beyond the
curves either in range or in accuracy.® The exact calculated values
employed in plotting the curves up to ¢=101 are contained in Table II,
every entry having been independently checked by two persons.
The greater part of the table was calculated by means of a new formula
which so expresses the average in terms of P and ¢ as to readily give
accurate results for the central range of P with large values of ¢, which

1 Cf. Soper, H.E., The Numerical Evaluation of the Incomplete B-Function, 1921,
p. 41, and Fisher, A., Mathematical Theory of Probabilities, 2nd Edition, 1922, p. 276.

2 These claims for the accuracy of the curves of Figs. 1 and 2 have been confirmed
by comparison with Pearson’s Tables of the Incomplete I'-Function, 1922, which
has been received during the proof-reading of this paper. His tabulated function
I (u, p) is, in the notation of the present paper, the probability P corresponding

to the average e=u+vp+1 and the number of occurrences c=p+1.

3 When ¢ is not greater than 51, Pearson's tables may be employed. If the prob-
ability is assigned, as in many practical engineering problems, finding the corre-
sponding average from the tables requires interpolation. Formula (1) of the present
paper gives the average directly, that is, it gives the inverse incomplete gamma
function. The following formula gives ¢ in terms of a:

c=a[1—m‘4—}-,{(;'—'+2)a*1+%(t‘+2£)a""+ .. ]
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is the domain in which the ordinary formulas are not convenient for
calculation. This is formula (1) below which involved transforming
the normal probability integral to fit the skew probability summation
of Poisson’s exponential binomial limit. The reason for thinking
that this transformation would prove useful is made clear by noting
that in Figs. 1 and 2 the curves become more and more uniformly
spaced with increasing values of the average a and thus the prob-
ability approximates more and more closely to the normal probability
integral, since this is the scale employed for the ordinates. The results
of the mathematical work are summed up in the following formula:

For Poisson's exponential binomial limit the average a is expressed
as a function of the probability P of at least ¢ occurrences by the infinite

series
a=c> Qi (1)

n=a

where the coefficients (), are functions of the argument t corresponding to
the probability P expressed in the form of the normal probability integral,

= :/: /ﬂe—i”d!: (2)

twelve of these coefficients are given in the following table:

TaBLE | CoErriCiENTS IN FORMULA (1) FOR THE AVERAGE
Qn
1
1
(£—1)/3
(B=T8) /2232
(=31 —T72+16)/2'345
(984256 —433¢) /2235
(1265 —24344 — 92324 1,472) /2938517
(—3,75317— 4,353 +289,5178+289,717¢) /2738527
(270£84-4,61445— 9,513 — 104.989['3+35,968)/2439527

(—5,139£° — 547,848 — 2,742,210 47,016,224 4 37,501,325¢t) /
211310527

W 0 1 S o W R~ S 3
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10 (—364,176:°46,208,146¢.44-125,735,778:5+ 303,753,831
— 672,186,949 — 2,432,820,224) /27315°7'11

11 (199,112,985¢+-1,885,396,761£*—31,857,434,1541
—287,542,736,226¢ — 556,030,221,167£ +487,855,454,729t) /
. 218314537211

For any given value of P the corresponding value of ¢ in (2) can be
found from tables of the probability integral. The value of ¢ for
this value of P and for any value of ¢ can then be determined by (1).
In this way values of ¢ were calculated for every integral value of ¢
from 1 to 101 and for eleven particular values of P: 0.000001, 0.0001,
0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99, 0.9999, 0.999999. These results
are presented in Table II. The numerical values of the coefficients
1 to Q- corresponding to the particular values of P used in Table II,
are given in Table VII.

From the information given in Table II, two sets of curves were
drawn, Figs. 1 and 2, the first for each integral value of ¢ in the range
a=0 to a=15 and P=0.000001 to P=0.999999, and the second for
every fifth integral value of ¢ in the range ¢ =0 to 2 =200 and the same
range of P. From these curves any one of the variables (P, ¢, a)
may be found corresponding to assigned values of the other two, sub-
ject to the practical condition that ¢ is to be an integer.

Proor

The well-known expressions for the summation of Poisson's ex-
ponential binomial limit are:

ace—o ac+le—a ac+23—a

P=—r+t o terar t

oA ase=a
= Z s!

S§=c

a a? ac—1 —a
=]1- [1+1—!+2—!+ N +'-——""""—(6_1)!]8
c—lase—a
2

1 ¢ —1l,=a
=m‘£a e-oda. (3)
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The series expansion (1) is determined by equating the integrands
of (2) and (3),
1

Lac—le—ada_—_

e~ ¥4}, 4

r'(c) V2 ®

and solving for positive values of a with the condition that i=— o
when a=0.

Let ¢= ;—2, a= %Q, Q=¢k,

I (c)

= — b(bre)~1/eM, . 5

Vo (b%) (6)

—L—-1 .
R=Q7;H—%r+M:

Substituting these values (5) in equation (4},
L'=bekR, (6)

where L' is written for dL/dt.

Let L= istS, M= i M, R= iR,b , Q= i@,bs, (M

§=0 §=0 §=0

where the coefficients are polynomials in ¢ (constants in the case of
the series for M). Upon substituting these series expansions for the
functions in the last equality of (5) and equating coefficients of like
powers of b, we obtain

0 =Qo—Lo—1,

0 =Q1—L,

Ry=Qy—Ly— 324 M,,

Ri=0Qs—Ls+ M,

Ry=Qy—La+ M,

Ry=Quy2—Lypa+M, (n=1,2,3...). (8)

From (5) we obtain Q,=¢*°, and then L,+1=¢", the only real
solution of which is L,=0, and therefore, Q,=1.
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Utilizing these initial values we obtain
Qi=L,,
Q:=L.+3 L.Q,,
Qs=L3+% L.Q1+3 L1Qs,

n—1

Qn:Z?L”_EQx, (n=1,2,3...). (9)

S=0

From (6) we obtain L{=e®°, and from that L, =¢li—#"+3

Since L, is a polynomial in ¢, and M, a constant, we must have L| =1,
Ly=={, M,=0, that is, L,=¢, and hence Q1=t.

* Then Li=R,,

Li=Rs+3 R,L5,

Li=R3+3 RoLi+7% RiL3,

n—1
Lisi= D R Liy, (1=1,2,3. . ). (10)

s=o
The next set of coefficients can now be deduced, as follows:
Q.’J =L3+% L2Q1+% LlQEp
Ri=Qs—Ls+M,,
Ry=% LoQ1+3 LiQ:+ M,
Ly=R,,
Q2=La+3 L1Q,
Li=% LoQh+3% LiLo+§ LIQv+ M)y,
L,=t,
Q=1
Li=Ly+1 B4+ M,
But M, is a constant, and L. is a polynomial in . Let
Lo=cst?+c1t+co,
it being evident that L. is of the second degree. Then
Li=2cot+c;. -
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Substituting and equating coefficients of like powers of ¢
cat+2=0, 1=0, ¢co=2¢s, M1=c¢\.
Hence =(—1—2)/6, R,=—t/3,
M,=0, Qu=(—1)/3.

Starting with these initial values equations (8)—(10) are sufficient
to determine as many coefficients in the expansions (7) as are re-
quired. In order to demonstrate this, assume that all the coefficients
up to and including Ly, M,_,, R,_;, O have been determined. It can
then be shown that the next coefficient in each expansion can be
obtained from these data, as follows:

|
f(ll)

For n=Fk+2, equation (9) can be written

k+u
Qrya= Lk+"+k+gLL+lt+E P2 Lo Qs k+2@‘“t (12)

s=2

where Qpyi, Qrro Lgr1, Lpye are the unknown quantities. For
n=Fk and n=%k—1, equation (8) assumes the forms

Rip=Qrt2— Lpy2+ My, (13)
and Ri—y=Orp1— Lppr+ My, (14)

respectively, where all the quantities are unknown except R,_, and
M,_,. For n=k, equation (10) can be written in the form

Lk+1—RL+\ k S Ry sLlin. (15)

5= 1

where L,,, and R, are the unknown quantities. Substituting in (12)
the value of (Qn42—Lsys) found from (13), and then substituting
the value of R, found from (15) and the value of Q. from (14),

k41
Livy= Mk+kisz+1f+k+)(Rk 1+ L1 — M)t
k=1
k42 b
+> -}i__|_-) Lk+0 .st z A ! L_:+1. (16)

’ s=1

This is a linear differential equation in L,,, as a function of ¢, all the
coefficients being known functions of f with the exception of M
which is an undetermined numerical constant. By a suitable choice
of the constant M, (16) may be solved for L,,, as a polynomial in

o
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t of the (E+1)st degree. R; may then be determined by (15) and
Qi1 by (14).  From these results, the next set of coefficients may be
found, and so on. The values of the coefficients for k=2 (L, M1, Ry,
Q:) have been found, and equations (8)—(10) are valid for the par-
ticular values of # utilized in the above method. Hence the next set
of coefficients (L3, M2, Rz, ()3) may be found, and in the same way, as
many more as are desired. The detailed work of the first step is
indicated below:
Substituting £=2 in (16),

Li=Ms+3Lit+3(Ri+Ly— M)t+3L:Q-+ 3R, L1 17)
Substituting in (17) the values known from (11},
Li=Lat+(—1'—2£4-2)/36+ M,. (18)

Let L; be a polynomial of the form (434824 4.t+40) and sub-
stitute in (18). Upon equating coefficients of like powers of 2, we
find that A3=1/36, A,=0, A;=5/36, A;=0, and M.=1/12. R,
is then obtained by substituting these values in (15) and Qs from (14).
The results are as follows:

Ls=(#—5t)/36, Ro=(£2—5)/36,
My=1/12, 0s=(£—170)/36.

The actual work of computing these coefficients has been performed
up to and including £=11 (L11, M, Ry, Q11). These results are pre-
sented in the attached tables: Q, in I, L, in III, L, in IV, R, in V,
and M, in VI. From this information the next coefficient in the
series (1), Q1s, can be computed by the method outlined above.

It may be pointed out in conclusion that the expansion of M presented
in Table VI is the asymptotic series obtained in Stirling’s expansion
of T'(c), as is to be expected from equations (5). This in itself con-
stitutes a partial check upon the determination of the coefficients.

} (19)

ADDITIONAL PROPERTIES OF THE CURVES

At the probability P=0.5, the difference (c—a)=1/3, approxi-
mately.? Discrepancies are so small as not to be positively dis-

4 This recalls the approximate rule that the median lines one-third of the distance
from the mean towards the mode. (Yule, Theory of Statistics, 1911, p. 121.) But
in the Poisson exponential the median never lies between the mean and the mode;
the median occurs at the first integer above or below the mean, whichever mteger
corresponds to the ¢ curve cutting P=0.5 next below the mean, while the mode is
always at the first integer less than the mean. For the range of cases having a given
mode, however, the mean and the median are, on the average, greater than the mode
by # and approximately 4, respectively; thus the median must line one-third of
the distance from the mean towards the mode in the case of the corresponding hetero-
geneous samplings.
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cernible on Fig. 1, but Table II gives for c¢=1, 2,3 . . . 100, the differ-
ences (¢—a)=0.3069, 0.3217, 0.3259, ...0.3331, which differ but
littte from 0.3333 . . ., which is approached more and more closely
for large values of c. .

At P=0.5 and large values of ¢ the derivative along the ¢ curve is
dP/da=1/+/2r¢, as found by differentiating (3), substituting
a=c—1/3 and Stirling's expression for the gamma function. Thus,
for large values of ¢ the slope of the curve at P=0.5 decreases nu-
merically as the square root of ¢ increases. For large values of ¢ the
curves are approximately straight over the wide range of proba-
bility shown in the figures. This, in connection with the additional
fact that the standard deviation \/znpq is always equal toa/a for the
Paisson exponential, is an alternative way of arriving at the ex-
pression for the derivative given above.

I am indebted to Miss Edith Clarke for extending the series of
formula (1) to seven terms, for making all of the original computa-
tions and for drawing Fig. 1, and to Miss Sallie E. Pero for extending
the formula to its present eleven terms, and for checking all of the
preceding work; the single error which she found occurred in the
seventh term of the expansion where it was without effect on the final
numerical results. Finally, the work was entirely rechecked, with-
out discovering additional errors, by Mr. Ronald M. Foster, who also
put the mathematical work into its present form, pointed out the
asymptotic nature of the expansion and compared the overlapping
numerical results with those obtained by direct summation by Miss
Lucy Whitaker® and more recently by Mr. E. C. Molina, as well as
with his earlier table.®

5 Tables for Statisticians and Biometricians, 1914, Table LII.

¢ Computation Formula for the Probability of an Event Happening at Least C
Times in N Trials, American Mathematical Monthly, XX, June, 1913, p. 193.
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Fig. 2.—Probability Curves Showing Poisson's Exponential Summation P=1— AU—. + Ha.._. + w_mu_ 4+ ...+ A.m.n.hq_ e™
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