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I. INTRODUCTION

HE electric wave-filter has been very fully discussed with respect
to its remarkable steady-state properties.! In the present paper
it is proposed to give the results of a fairly extensive theoretical study
of its behavior in the transient state. This study is of particular
interest and importance in connection with the wave-filter, because,
as we shall find, its remarkable selective characteristics are peculiarly
properties of the steady state and become sharply defined only as the -
steady state is approached. To this fact, it may be remarked in
passing, is to be ascribed the uniform failure of wave-filters to suppress
irregular and transient interference, such as “static,” in anything
like the degree with which they discriminate against steady-state
currents outside the transmission range. This limitation is common
to all types of selective networks and restricts the amount of protec-
tion it is possible to secure from transient or irregular interference.
In fact the general conclusions of the present study are applicable
to all types of selective circuits.
In the present paper the discussion will be principally concerned
with the following phases of the general problem.

1. The indicial admittances of a representative set of wave-filters.
The indicial admittance, as explained below, is equal to the current,
expressed as a time function, in response to a uniform steady e.m.f.
of unit value, applied to the network at time {=0. It has been
shown in previous papers that a knowledge of the indicial admittance
of an invariable network completely determines its behavior, both in
the transient and steady state; to all types of applied forces. Its
determination is therefore fundamental to the whole problem.

2. The mode in which the steady-state is built up after a sinusoidal
voltage within the frequency transmission range is applied to the wave-

t Physical Theory of the Electric Wave-Filter, G. A. Campbell, B. §. T. J,,
Nov., 1922; Theory and Design of Uniform and Composite Electric Wave-Filters,
0. ]. Zobel, B. S. T. J., Jan., 1923,
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filter. Formulas are deduced and a set of representative curves
computed and plotted which show the dependence of the building-up
process on the constants and number of sections of the filter and the
frequency of the applied e.m.f. The outstanding deduction from
this phase of the problem is that as the selectivity of the filter is
increased either by narrowing the transmission band or increasing the
number of sections, the time required for sinusoidal currents to build
up is proportionally increased. This fact, it may be remarked, sets a
theoretical limit to the amount of selectivity which can be employed
in communication circuits.

3. The character and duration of the transient current when a sinusoidal
voltage outside the frequency transmission range is applied to the filter.
It will be found that in this case a transient disturbance penetrates
the filter which is enormous compared to the final steady state. The
magnitude of this disturbance decreases very slowly with the number
of filter sections and its duration increases therewith. This phenome-
non is an important special case of the general limitations of the
selectivity of the filter in the transient state.

4. The energy which penetrates through selective circuils from random
interference. The energy spectrum of random interference, that is,
interference from random disturbances is discussed and a formula is
deduced which defines the figure of merit of a selective circuit with
respect to random interference. This formula leads to general deduc-
tions of practical importance regarding the relative merits of selective
networks in the transient state and their inherent limitations. It
also provides a method for experimentally determining the spectrum
of random interference.

Unfortunately the complexity of transient phenomena is such as
to absolutely require a large amount of mathematical ana'ysis. Con-
sequently, while the mmathematics has been relegated as far as possi-
ble to Appendices, a considerable amount necessarily appears in the
text. The writers, however, have endeavored to emphasize the
physical significance of the mathematics and have included only
that which is absolutely essential to an understanding of the problem
and the appropriate methods of attack.

In order to keep the analysis within manageable limits and in a
form to admit of relatively simple and instructive interpretation,
the formulas will be restricted for the most part to non-dissipative
filters and the effects of terminal reflections will be ignored.? These

? The geﬁera[ solution for the case of arbitrary terminal impedances is given in
Appendix IV and briefly discussed.
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restrictions are desirable on their own account, because the selective
properties, both in the transient and steady-state, are isolated and
exhibited in the clearest manner when the disturbing effects of dissi-
pation and reflections are absent. As regards dissipation, its effect is
usually small for filters of ordinary length and, as regards transient
phenomena, is always of such a character as to require no essential
modification of the conclusions reached from a study of the ideal non-
dissipative filter. In fact the conclusions reached in this paper re-
garding the inherent limitations of selective circuits in the transient
state are conservative.

I1I. GENERAL THEORY AND FORMULAS

Before taking up the investigation of wave-filters it is necessary
to write down the fundamental formulas of electric circuit theory,
which are required in the analysis, and briefly discuss their applica-
tion to the investigation of transient phenomena in networks in
general. The theory and calculation of electrical networks may be
approached in a number of ways, as for example, from the Fourier
integral.? Perhaps the simplest way, however, is to base the theory
on the fundamental formulas

1) =2 [e-»a6iay, I
and

1/p2p)= [ " e-rt A ()t 1

In these formulas I(f) is the current (expressed as an explicit time
function) in any branch or mesh of an electric network which flows
in response to the electromotive force f(¢f) which is applied to the
network at time ¢=0 in the same or any other branch or mesh of the
network. The function A(f) is a characteristic function of the con-
stants and connections of the network only which may be termed the
indicial admittance or the Heaviside Function. Its physical sig-
nificance may be inferred by setting f({) =1, whence it follows that
I(ty=A(t). That is to say A(t) is equal to the current in response to a
“unit e.m.f.” (zero before, unity after time t=0).

In the following we shall be principally concerned with the case
when the applied electromotive force is sinusoidal. To deal with
this case we set f(¢) =sin (wt+0) and equation I becomes

I(f) =alw, 1) sin (wi+0)+b(w, £) cos (wt+0) II1
1 The Solution of Circuit Problems, T. C. Fry, Phys. Rev., Aug., 1919,
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where, denoting d/dt A(t) by 4'(1),

1]
alw, ) =A(0) + [ cos wy A'(3)dy
and ' IV
blw, £) = —[tsin wy A'(v)dy.

The ultimate steady-state amplitudes are evidently the limits of
the foregoing as ¢ approaches infinity. Thus if we write the steady-
state current as

I =o(w) sin (wt+8)+8(w) cos (wi+0),
then

alw)=A@)+ [ cos wy A'(y)dy
and A%
Blw) = — f sin wy 4’ (y)dy.

0

For the derivation and a fuller discussion of the foregoing formulas
the reader is referred to ‘‘ Theory of the Transient Oscillations
of Electrical Networks and Transmission Systems,” Proc. A. I. E. E.,
March, 1919. '

In the majority of the more important selective networks 4 (o) =0;
that is to say the initial value of the current is zero and the current
in response to the applied sinusoidal voltage of the frequency w/2r
is built up entirely from the progressive integrals

a(w, f) =‘/D‘cos wy A’ (v)dy
and

b(w, £) = —fsin wy A'(3)dy

in accordance with formula IV. The derivative A'(¢) =d/dt A(t) of
the indicial admittance which appears in the integrals will be termed
the impulse function of the network to indicate its direct physical
significance; it is equal to the current in response to a ‘“pulse’” of
infinitesimal duration and moment (or time integral) unity, or, stated
in the terminology of the radio engineer, it is equal to the response of
the network to ‘‘shock-excitation.” These formulas therefore estab-
lish a definite quantitative relation between the selective properties
of the network and its response to ‘‘shock-excitation’’; a relation which
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is of great importance in understanding and interpreting the behavior
of selective networks to transient disturbances.*

The indicial admittance 4 (¢) is calculable from and may be regarded
as defined by the very compact formula I1.5 In this equation Z(p)
is the operational impedance of the network. It is derived from the
differential equations of the problem by replacing the differential
operator d/dt by the symbol p, thus formally reducing the equations
to an algebraic form from which the ratio 1/Z(p) of the current
to electromotive force is gotten by ordinary algebraic processes.
Z(p) will involve the constants and connections of the network
and will depend, of course, on the mesh or branch in which the
electromotive force is inserted and that in which the required cur-
rent is measured.

The procedure in formulating the transient behavior of networks
is as follows. Derive the operational impedance Z(p) as stated above.
With Z(p) formulated, the corresponding indicial admittance A (%)
is determined by the integral equation II. The appropriate methods
of solution of the integral equation are briefly discussed in ‘“The
Heaviside Operational Calculus.” Sometimes the solution can be
recognized by inspection as in the case of the low pass wave-filter.
Otherwise the procedure in general is to expand 1/Z(p) in such a form
that the individual terms of the expansion are recognizable as identical
with infinite integrals of the required type. Two expansions of this
kind lead to the Heaviside Expansion and power series solution, re-
spectively. The appropriate form of expansion depends on the par-
ticular problem in hand and often calls for considerable ingenuity
and experience. An excellent illustration of the appropriate process
is furnished by the detailed derivation ¢ of the indicial admittance of
the band pass filter which is rather intricate.

In connection with the problem of the energy absorbed from forces
of finite duration, and from random interference, the following formulas
are required, of which VIII and IX are original and hitherto unpub-
lished. Formula X, which is a special case of VIII and IX was derived
by Rayleigh (Phil. Mag., Vol. 27, 1889, p. 466), in connection with
an investigation of the spectrum of complete radiation.

If an applied force f(f) exists only in the finite time interval
0=<t=T, during which it has a finite number of discontinuities and a

41t may be noted in passing that these formulas show the futility of attempting,
as so many inventors have done in connection with the problem of protection from
“static” disturbances, to design a circuit, which, in the language of patent specifi-
cations, shall be unresponsive to shock excitation while at the same time shall be
sharply responsive to sustained forces.

¢ The Heaviside Operational Calculus, J. R. Carson, B. S. T. J., Nov., 1922.

¢ See Appendix I.
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finite number of maxima and minima, it is representable by the
Fourier integral

5@ =L [T 17 cos ot+0()] do, i

|F(w)[t= [_f:f(ﬁ) cos wt dt:|2—|- [ﬁrf(t) sin wt dt:r. vII

Let this force be applied to a network in branch 1 and let the
resultant current I,(f) be measured in branch n. Let the steady-
state transfer impedance at frequency w/2w be denoted by Zi,(iw)
and let z, (iw) and cos 8, denote the impedance and power factor of
branch 7 at frequency w/27. It may then be shown that

where

- f (&) Pdt = f m[zli ((:“il;l VIII
and, as special cases,
[usora=t [ IX
and
[Tyora= "1 [71F@) ke, X
(W) TV

The total energy W, absorbed by branch # from the applied force

is given by
w=l [” IZIF((‘:)EI’ lox (i) cO8 Oy ds. VIlIa

Comparison of the formulas for W’ and W shows that, if the branch
n is a simple series combination of impedance elements, W’ is the
energy absorbed by a unit resislance element in branch n from the applied
force f(1).

In the subsequent discussion of the behavior of selective circuits to
random interference and applied forces of finite duration, W' of
formula VIII will be taken, therefore, as a measure of the energy
absorbed by the receiving branch or element. Similarly formula IX
measures the energy absorbed when the applied force is impulsive.
The application of formula VIII rather than VIIIa, when they differ
except for a constant, is justified because we are concerned with the
energy absorbed by a receiving element proper, which can be repre-
sented by a simple resistance.

The advantage of formula VIII, in addition to its simplicity, resides
in the fact that the right hand side is usually quite easily computed,
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since the integrand is everywhere positive, and this without any
explicit reference to the transient phenomena themselves. Formula
IX is of particular importance, because, as will be shown in a sub-
sequent part of this paper, it represents, except in limiting cases, the
relative amount of energy absorbed from random interference.

III. THE INDICIAL ADMITTANCES OF WAVE-FILTERS

We are now in possession of the necessary formulas and mathemati-
cal processes for investigating the behavior of wave-filters in the
transient state. We shall first write down the indicial admittances
of the representative types investigated, their derivation being dis-
cussed in Appendix I. The formulas given for the low pass and the
high pass are exact, while those of the band pass filters are approxima-
tions based on the assumption that the transmission band-width is
small compared with the “mid-frequency” of the transmission band.
They are therefore formally restricted in their application to *'narrow
band " filters. The analysis of the exact formula, given in Appendix I,
shows, however, that the deductions drawn from the approximate
formulas of the text are quite generally applicable without errors
of any practical consequence to band pass wave-filters, even when
the transmission band is relatively wide. These questions are fully
discussed in the Appendix.

In the formulas given below the filters are assumed to be infinitely
long and the voltage to be applied at ‘‘mid-series” position to the
initial or zero-th section. A,(t) is then equal to the current in the
nth section in response to a unit voltage (zero before, unity after
time ¢=0.)

1. Low Pass Wave-Filter, Type L,C,, Fig. 1.
=1 fx la
A8 3 Jo Jan(x)dx, ‘( )

where x=uw/,

wc=2/\/L1C2='21r times the critical or cut-off frequency,

7Ly Ly
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Jou(x) =The Bessel function of the order 2n and argument x,
and the filter elements, in terms of the parameters w, and &, are
given by

w;=2/\/L1Cz, L1-'=2k/w;,
k=+/L,/C,, Ca=2/wck.
For values of time such that x <2n, 4,(f) is very small and positive,

while for x >2#n, the character of the solution is exhibited by the ap-
proximate solution

,.(t)——[l -I—\/ 2 ﬂ sin (q2,,x—eg,.)]. (1b)

The formula is deduced from the approximate formulas given in
Appendix II for Bessel functions, and %,,, g., and 6,, are determined

by
1 174
= (l—nE/xﬂ)'
In =\/ l—ﬂg/xg,
and
On= 211—]— 7—n sin~}(n/x).

For sufficiently large values of x, 4, () is ultimately given by the
asymptotic formula

A o1 [1+\JW sin (¥ — ”;H w):l. (10)

Formula (1a) was first given by one of the writers (Trans. A. . E. E.,
1919) as a special case of the solution for the dissipative low pass filter
(series resistance and shunt leakage). .

2. High Pass Wave-Filter, Type Ci1La, Fig. 2.

(2n) (2n l)D

An)) = o) = 2 D1gy()+ “ga(x)—. . ..

D) (2a)
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where
X, =wcl,

w.=2n times critical frequency below which the filter attenuates,

C1=l/2w‘k, k =‘\/L2/C1,
Ly=k/2uw,, we=1/24/L,C.
R &
{ I
L, Lo
o— S
Fig. 2

The symbol D— denotes multiple integrations, repeated m times and

(m) (m—

o) =7~ T 1@+ PG 1) 4 A (=D,

A large amount of time and effort have been devoted to an attempt
to reduce this and other forms of solution (see Appendix I) to a form
in which its properties would be exhibited by direct inspection, but
without success. Numerical computations and curves must, there-
fore, be largely relied upon in the study of the high pass filter in the
transient state.

For sufficiently large values of x (x>4#»%) the ultimate behavior of
the filter is shown by the asymptotic formula

Ant) © (—1)" %\,;2_;(:05 (x—1/4). (2b)

Band Pass Wave-Filters.

In all the band pass types of filters discussed below the transmission
band lies in the frequency range between w;/27 and w,/27 so that the
band width is (w2—w;)/27. We shall write V w102 =wp, and ws—w; = .
For each type the filter elements are determined by the parameters
wm w and a third parameter 7 £ which may be so chosen as to fix
the magnitude of the impedance of the filter.
~ 7The parameter k is equal to the characteristic impedance, both mid-series and
mid-shunt, at mid-frequency of the confluent band, ‘‘constant k' type of wave-

filter. See Theory and Design of Uniform and Composite Electric Wave-Filters, this
Journal, Jan., 1923,
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The formulas for the indicial admittances of all the band pass
filters are approximate, as stated above, and are deduced on the as-
sumption that the band width is narrow. Practically, however, as
regards the essential deductions drawn from them, they are not so
restricted but are applicable to the case of relatively wide bands.

(See Appendix I.)
There are, of course, an infinite variety of band pass filters; the

ones investigated in the present paper are, however, representative
and the conclusions drawn from a study of them are, in their
general aspects, applicable to all types.

3. Band Pass Wave-Filter, Type L1C1L2Cs, Fig. 3.

A1) =;‘"—k Jan(y) sin x (3a)

where x =w,,¢; y=wt/2; and the filter elements are given by

L,=2k/w, Ly =wk /2w,
Ci=w/2kwy, Co=2/wk.
L, Cy
[, —

Fig. 3

This is the “‘constant k" type of filter and, as will be noted, the ele-
ments are so proportioned that L,C;=L;C;=1/w}, and L;/Ci=
L-.»/C1=k’.

From the properties of Bessel functions discussed in Appendix II,
it follows that A,(f) is very small until y=2n. For values of y> 2=,
the character of the function is clearly exhibited by the following
approximate formulas, although these are not sufficiently accurate
for the purposes of precise computation.

. 2 c0os (gan ¥ — Ozn) sin x (3b)
Ty

A= by

= f;;khzn\f% [sin (x—gon y4024) +-sin (x+g2ay—0621)]  (3c)
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and ultimately,
Au(f) ”mek\l 2 [sm (:c y+ in +1 ) +sin (x-i—y — 4”:-1#) ] .(3d)

ham, Q2 Og, are determined by the formulas given in Appendix IT,—

fin= (mlzw) "

— VI,
2n+1
4

and

On= T—n sin~(n/y).

4, Band Pass Wave-Filter, Type L,C,Ce, Fig. 4.

(4a)
where, as above, x =w,,t; y=wt/2, and the ﬁlter:elements are given by

L1=2k/w; C1='1U/2kw12; Ca:(wTig}kl

-

o— e
Fig. 4

The approximate formulas for y>#, are,
LW 2 ,
A t)=— hy \/_ cos (gay—6,) sin (x—nw/2) (4b)
wmk ’ﬂ'y

= Zi k,,\jz[sin(x—g,,y+9n—n7r/2)-|—sin(x+q,,y-k(-),.—mr/2)] (4¢)
wmk Ty -

and ultimately

An() o

k\{ I:sm (x—y+m/4)+sin(x+y— 4”:_1 w):l. (4d)

2wm
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5. Band Pass Wave-Filter, Type LiC\L,, Fig. 5.

A () = i“ik Tu(y) sin (x+nr/2) (5a)

where x=w,t, y=w!/2 and the filter elements are determined by
w1+ wa

L1=2w1k/w<c2; C1=1U/2kw?,,;L2= 3 k.
W
3L, 2Cy L, ¢
O~ -—— e —
Fig. 5
The approximate formulas for y>n are
A== i\ L cos (@3 —0a) sin (rtne/n) (D)
b R e A

= Y 5 2 sin(e— guy+Ontnm/2) +sin(x+guy — Ont-nm/2)] (5¢)
2C\Jmk Y
and ultimately

= r. a1
An(t)mrﬁ:k\’%[51n (x—y+ ”: o)+ sin Gby—7/9) ] (65

6. Band Pass Wave-Filter, Type L.L:C:, Fig. 6.

4,0 =22 17,(5) sin (v=n/2) = Ju(9) cos (s—nm/D]  (6a)

3L Ly
o TTTT B N —
L, ==¢, L, ==,
o e
Fig. 6

where x =w,t; y=wt/2; J.(y)=d/dy J,(y), and
2k

w1t wg

L= i La=wk/2w?; C:=2/wk.
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The approximate formulas for y># are

An(D) éwﬁf‘% ho | g[cos (@9 —0,) sin (x—nm/2)
4y sin (gny—0,) cos (x—nn/2)] (6b)

=% 3 {? (1—qn) SEn (x—gny+O6p—nr/2) (6¢)
wmk "N 7y| +(1+as) sin (x+gxy—Op—n7/2) c

and ultimately

2w [T . _dnt1
An(t) » ok \;F;’ sin (x—l—y T-rr) (6d)
7. Band Pass Wave-Filter, Type C,L:C,, Fig. 7.
l2 w \"
A"(t)zw_,,,k(fc;;,) P
+ 22 17,(y) sin (e-tnr/2) +Ta(0) cos (enn/D)], (Ta)

where x =w,,t; y=wt/2, and

C1=wl+w2- L2=wk/2wfn; C2=2w1/wwgk.

2kwi,

Fig. 7

The symbol P in the first term denotes a “‘pulse’’ at time ¢=0; that is

P=wat t=0,

=0 for >0,

f' Pdi=1.
J -

and
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The first term in A,(f) exists in consequence of the fact that at the
instant the voltage is applied the filter behaves like a pure capacity
network. For narrow band filters the factor (w/2w,)" is small so
that this term does not contribute appreciably to the steady state.
As a matter of fact in actual filters which necessarily have some series

resistance, it does not exist.
The approximate formulas for y>n are
[2 [cos (gy—0,) sin (x-+nw/2) -
iy [cos (gny—©x) sin (x+nT
gn sin (gpy—0y) cos (x+nw/2)] (7b)
——

- w_‘z;i.kknv Trz_y[(l-i—q,,} Sin (x—q;;y+en+n7r/2) +

2w
Au(t) = ok /.

(1—g») sin (x+gny—Ont+nw/2)] (7c)
and ultimately
2w 2 . - dn+1
A w3 ] 2 sin (r y+ 1r). _ (7d)
8. Discussion of Indicial Admiltances.

The indicial admittances for the low pass filter, ‘that is, the current

in response to a steady unit e.m.f. applied at time £=0, are shown
in the curves of Figs. 8, 9 and 10, for the initial or zero-th, the 8rd
and the 5th sections. These curves together with the exact and ap-
proximate formulas given above are sufficient to give a reasonably
comprehensive idea of the general character of these oscillations and
their dependence on the number of sections and the constants of the
filter. '
It will be observed that the current is small until a time approxi-
mately equal to 21z/wc=n\/L1C2 has elapsed after the voltage is ap-
plied. Consequently the low pass filter behaves as though currents
were transmittedwitha finite velocity of propagation w/2=1/VL,Cs
sections per second. This velocity is, however, only apparent or
virtual since in every section the currents are actually finite for all
values of time>0.

After time t=nV. L1C» has elapsed the current oscillates about the
value 1/k with increasing frequency and diminishing amplitude.
The amplitude of these oscillations is approximately

1/k 2
V1= (2n/wd)? N 7ot
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and their instantaneous frequency (measured by intervals between
Zeros)

We
oV 1—(2n/wd)’.

The oscillations are therefore ultimately of cut-off or critical frequency
w,./2r in all sections, but this frequency is approached more and
more slowly as the number of filter sections is increased.?

The indicial admittances of the band pass filter, type L,C1L2C3, are
shown in Figs. 11, 12 and 13 for the initial, the 3rd and the 5th sec-
tions. These curves show not the actual oscillations but their envelopes.
That is to say the curves must be multiplied by sin w,t to give the
actual oscillations. The “‘mid-frequency” w,,/2m may therefore be
regarded as the “‘carrier frequency’’ which is modulated by the rela-
tively low frequency oscillations shown in the curves.

Comparison of the formulas for the indicial admittances of the
band filters of type L,C:Cs and L,C:L, with that of type LiC1L.C,
shows that these curves are applicable to the two former types pro-
vided the number of sections is doubled and the phase of the oscilla-
tions of frequency w,,/27 is correctly modified.

Referring to Figs. 11, 12, 13 it will be observed that the oscillations
are small until time {=4n/w; consequently they are transmitted with
an apparent velocity of propagation roughly equal to w/4 = 1/2\/L1C2“
sections per second.

After time t=4n/w, the low frequency oscillations shown in the
curves are of increasing frequency and diminishing amplitude, their
envelope being roughly equal to '

w [4
wmk N\ Tt
The actual oscillations are analyzable into two frequencies
%(mm-{-%ﬂ 1— (4n/ze't)2) and %(wm—%\x 1-(4n/'wt)")
so that the ultimate oscillations are of the two critical frequencies
1 1
Zr(w,,.+w/2) and ﬂ(wm—w/m.

8 For curves showing the indicial admittance of the low pass filter when # is very
large, the reader is referred to Transient Oscillations, Trans. A. I. E. E., 1919.

* For types LiCiCy and LiCiLa the velocity in sections per second is double this.
This corresponds to the fact that two sections of these types are approximately
equivalent, as regards their selectivity, to one section of type L,CiL1Cs.



16 BELL SYSTEM TECHNICAL JOURNAL

For both the low pass and band pass filters the oscillations of the
indicial admittances are of continuously variable frequency which traverses
the frequency transmission band and ultimately reaches the critical fre-
quencies of the filter. 10

The indicial admittances of the band pass filter, type LiL2C: are
shown in Figs. 14, 15, 16 for the initial, the 6th and 10th sections.!!
The curves show the oscillation envelopes VvV (J24J'%), whereas the
actual oscillations are within a constant,

V@D F Ti@ij2)] sin(wnt—nm/2—64),

where 0, =tan"'(J,’/J,). For a narrow band filter the variation in
the phase angle 6, is very slow.

The principal difference between these curves and the correspond-
ing curves for type L,CiL:Cs is that the envelope of the oscillation
does not go through zero as in the latter. In addition the oscilla-

tions are ultimately of a single frequency 2i (v, +w/2) while for type
™
CiLs Cithe ultimate frequency is 2—1— (wp—w/2).
™

The indicial admittance of the high pass filter, shown in the curves
of Figs. 17, 18, 19, 20 for the initial, the 1st, 2nd and 3rd sections,
differs in important respects from those of the low pass and band pass
filters. In the first place the current jumps instantaneously to its
maximum value 1/% in all sections, so that the velocity of propagation
is infinite.®® After this initial jump the current oscillates with de-
creasing frequency and decreasing amplitude, the oscillation frequency
becoming ultimately the critical or cut-off frequency w,/2m. The
initial frequency and the time required for the oscillation frequency
to reduce to w,/2m, increases, practically linearly with the number of
sections. The oscillation frequency varies continuously and traverses
the frequency transmission range of the filter from infinite frequency
(represented by the initial jump) down to the critical frequency of the
filter, below which it attenuates sinusoidal currents.

0 From a purely mathematical viewpoint, this fact explains the transmission,
without attenuation, of a continuous band of frequencies.

I These curves are applicable to the C1L2C. type of band pass filter, due regard
being had to difference in phase, and to the initial jump of current. See formulas
(6a) and (7a).

1 This is, of course, a consequence of the assumption of zero series inductance
and shunt capacity. Actually, of course, the circuit must include a finite amount
of both.
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IV. TeE BuiLpiNG-UP OF ALTERNATING CURRENTS IN WAVE-
FILTERS

If an e.m.f. sin (wf+©) is applied to the low pass wave-filter (type
L,C,) at time t=0, then by formulas I and (1a), the resultant current
in the nth section builds up in accordance with the expression

%[sin 8‘[}2,,(::1) cos Mx —x;1)dx1+ cos E)ju.}g,,(xl) sin )«(x-—xl)dx,],

where x=w,t and A=w/w,.

For the band pass filter, type L;C1L:Cs, the corresponding formula,
based on the approximations discussed in the preceding, is by I and
(3a).

%[sin(py+8)£yfzn(yl) cos (A—p) (y—y1)dn
+cos (uy+6) f " Taulyn) sin (A—p) (y-yl)dyx]

where y=wt/2; A\=2w/w; and p=2w,/w so that py=w,t. Similar
formulas are deducible for the other types of band pass filters con-
sidered in the preceding section.

Comparison of these formulas shows that, in both the low pass and
band pass wave-filters, the genesis and growth of the current in re-
sponse to an e.m.f. sin (wt+0), applied at time ¢ =0, is mathematically
determined by definite integrals of the form

Su(z; v) = f * Ju(z1) sin v(z—21)dz,
0
and

Cu(z;v) =ﬁ’ Ja(z1) cos v(z—21)dz;.

These integrals ¥ have been extensively studied in the course of
this investigation; their general properties and the appropriate meth-
ods of computation are discussed in Appendix III.

The subsidence of the current, when a sinusoidal e.m.f. is removed,
is also determined by the above formulas for the low pass and band
pass filters. To show this suppose that prior to the reference time
t=0, that steady-state currents are flowing in the filter in response

13 The writers take pleasure in acknowledging their indebtedness to T. H. Gronwall,

consulting mathematician, who furnished asymptotic formulas for the computation
of these integrals. See Appendix II1.
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to an e.m.f. sin (wt+0), which is removed at time f=0. We can
represent this condition correctly by regarding the e.m.f. sin (wf48)
as continuing, while a negative e.m.f.,—sin (wf-+0), is applied at time
t=0. The resultant current for =0, is then

ay(w) sin (wt+0)+Ba(w) cos (wt+0)

—% [sin ©-Can(x;\) +cos 0-Saa(x; N)]

for the low pass filter with a corresponding expression for the band
pass. a,(w) and B,(w) are the real and imaginary parts of the steady
state admittances of the filter at frequency /2.

Figs. 21-32 exhibit the phenomena attending the building-up
of alternating currents in the low pass filter for a sufficient number of
representative cases to show the effects of the length of the filter and
the applied frequency. For w¢>25, the curves represent the transient
distortion, that is the difference between the final steady state and
actual current. For « <24 the actual current is shown. An im-
portant outstanding result which follows from a study of these curves
and the formulas of Appendix III may be stated as follows:

The time T required for an allernating current of frequency w/2w to
build up to its proximate steady state in the nth section of a low pass wave-
Jilter is given approximately by the formula

2n 1
we /1 — (w/w)?

The first factor 2n/w, represents the delay due to the apparent finite
velocity of propagation, while the second factor represents the effect of
the applied frequency in its relation to the cut-off frequency of the filter.

This formula is a rather rough approximation when the number of
sections # issmall. Furthermore the time at which the current reaches
its proximate steady state does not admit of precise definition."
Nevertheless the formula is in substantial agreement with the facts as
regards the effect of a number of filter sections, cut-off frequency and
applied frequency on the phenomena, and is of great practical im-
portance.'

4 Actually the time T corresponds to a singularity in the mathematical formulas.
See Appendix III.

18 This formula has been applied in the design of periodically loaded cable circuits,
which are of such length in the Bell System as to make transient phenomena a
factor which must be taken into account. The formula is in close agreement with
a large amount of experimental evidence.
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The transient distortion, it is interesting to note, is, as regards fre-
quency, independent of the applied frequency, and ultimately attains
the cut-off frequency of the filter. Its envelope is ultimately

w/ we |

1 .

k1 w/ W) \f 1rwct
when a voltage sin of is applied, and

11 / 2

k1—(w/w)? \ T d

when a voltage cos wi is applied.

Figs. 33 and 34 show the form of the current in the 5th section
when sinusoidal voltages sin wt and cos wi of frequency 25 per cent
above the cut-off frequency of the filter are applied. The transient
current shown in the curves increases in frequency up to the critical
frequency of the filter, the oscillations being ultimately given by

1 w/w, 92 _2n+1
13 (w/we)?— \)mogt cos (e 4 ™) .

and

™)

sin (wet—

1 1 /_2_ 2n+1
k (“—’/%)Q“ 1 \ Twit 4
corresponding respectively to applied voltages sin wf and cos wf
The amplitude of these transient oscillations are enormous compared
with the final steady state, and the curves furnish a clear illustration
of the fact, stated in a previous part of this paper, that the selective
properties of wave-filters are essentially properties of the steady state
only.

Figs. 35-41 show the bu1ldmg -up phenomena in the band pass
filter, type L,Ci,L:Cs, and are applicable also to types L,C:C; and
L.C1Ly; when proper values are assigned to the constants and para-
meters.”S The curves actually show the envelopes of the oscillations
which are of slowly variable frequency in the neighborhood of w,,/2x.

A study of these curves and the formulas of Appendix III lead to the
following proposition, analogous to that stated above for the low pass
filter.

The time T required for an alternating current of frequemcy w/2w
within the transmission range w/2w of a band filter to build up lo its

6 p sections of type L,C,L.C. are approximately equivalent to 2n sections of
type L,C\Cy or of type L,C L.
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proximate steady state in the nth section is given approximately by the

formula
4n 1

NIl

for type LiC1L2Cs and one half this amount for the other types of band
pass filters discussed in this paper.

These curves show the envelope of the oscillations with fidelity but
are not well adapted to exhibit the actual frequencies. These are
given by the formula

4/ C?*+ 5% sin [wmt+0+tan1(S/C)]
where C and S denote the definite integrals

wt 2(w—wm) wt 2(w—wm)

o (s 2522 an s (3 25 ).

The envelope is therefore substantially independent of the phase
angle © of the applied e.m.f. The frequency is ultimately the applied
frequency «/2w. The transient distortion is analyzable into two
frequencies

1 W fwf)? 2
%(wm+2\l 1= (4n/wi)?) and o (w Y J 1= @nsen?),
and its envelope is ultimately
2
1+H4(*5) =
1_4(w—wm)2 Tl
w

The building-up of alternating currents in the high pass filter has
been investigated only qualitatively owing to the extremely laborious
computations required. The process is essentially different from that
in the low pass and band pass filters. When an e.m.f. sin (w-+8) is
applied the current in all sections jumps instantly to_the value

}lgsin (wt+0).

Therefore the process depends on the applied frequency. If the
applied frequency is within the transmission band (w>w,), the current
builds up to its ultimate frequency, the time required being given
approximately by the formula

=0

Qmaf
(by the principle of stationary phase; see footnote 31).
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It thus requires an infinite time when the applied frequency isequal
to the critical frequency while infinite applied frequencies build up
instantly.

When the applied frequency is outside the transmission band, the
current subsides to its steady value, the time required being pro-
portional to the ratio #/w, and decreasing as the applied frequency is
decreased.

The fact that the initial value of the current is of the same order
of magnitude as that of steady state currents in the transmission
range is an outstanding feature of the process and reflects the failure
of the selective properties of this type of filter in the transient state.

V. THE ENERGY ABSORBED FROM TRANSIENT APPLIED FORCES

In only a relatively few cases is the solution for the transient current,
in response to suddenly applied forces, reducible to a manageable
form, which admits of interpretation or of computation without
prohibitive labor. Fortunately, however, it is usually possible to
calculate the energy absorbed by a receiving element in a selective
network from suddenly applied forces of finite time duration and
such a calculation throws a great deal of light on the general proper-
ties of selective circuits in the transient state. The calculation is
based on formulas VI to IX of Section II.

A particularly important example is the energy absorbed from the
force sin (pt+0), applied at time {=0 and removed at time ¢=T.
If the energy is averaged with respect to the phase angle 6, we get "

» oy 1 % de (1—cos(w—p)T | 1—cos (w+p)T
J wera=g_ [ ZGaF]  @=pF T (ets? %

If /2w is in the neighborhood of the frequency which the network
is designed to select, this becomes approximately

) 1 ©1— cos (w PT  dw
f Uri=5- [ S T (8)
In the steady state the time integral of the square of the current in

response to the e.m.f. sin (pt+0) during the time interval 7" is simply
T/2|Z(ip)|*. The expression

[Z(zpl 'CI—CO&. (0—P)T dw
L= mr ©

is therefore the relative amount of energy actually absorbed from the

" Here Z(iw) is the steady-state transfer impedance and the integral measures
the energy absorbed by a unit resistance in the receiving branch.
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force sin (pt+0) acting during the time interval T, to that calculated
on the assumption of a steady state in this interval.

Calculations of these formulas are of particular interest and im-
portance in multiplex carrier telephone and telegraph systems where
they furnish a measure of the interference between channels operating
at different frequencies.

In order to exhibit clearly the significance of the formulas without
detailed computation, consider an ideal selective circuit, for which
in the range w;w=w,,|Z(iw)|=Zr (a constant) and everywhere else
|Z(iw)|=Z; (a constant, very large compared with Z;). Under
these assumptions, formulas (8) and (9) become approximately, for
the case when p > w,,

T 1 Wy — w1 1
22 G -0 21 (82)
and

1 Zi wo— W
(1+;T?§(P—wz) (P“‘Wl)). (9a)

These formulas admit of some quite interesting deductions which
are applicable to band filters in general.

(1) The energy absorbed in excess of that calculated in the steady
state basis is
1 wWo— Wy 1

or (p—ws) (p—w1) 2%

This is independent of the duration of the applied force and of the
degree to which the filter discriminates against steady state currents
outside the frequency range w,Sw=w, It is proportional to the
band width and inversely to the product (p—ws) (p—wi). It follows
therefore that no amount of selectivity will appreciably reduce the energy
absorbed from a sinusoidal force of finite duration outside the transmission
range of the-filter, below the value given above.

(2) The fractional excess of energy absorbed is given by

(7)) GoorG=m
T \Zz/ (p—ws2) (p—w1)’

This decreases with the duration of the applied force but increases as
the square of the selectivity (Z;/Zr) of the filter. Hence for forces of
short duration the energy absorbed may be very large compared
with that calculated on the steady state basis.
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VI. RaxpoM INTERFERENCE

We have hitherto confined attention to the transient phenomena
when the form of the applied voltage was explicitly given. In the
problem of the behavior of wave-filters and selective circuits in general
to such disturbances as ‘‘static” in radio transmission and ‘“‘noise”
in wire transmission this is not the case, and the applied force is
usually more or less completely random. By this it is meant that
the interfering disturbance, which may be supposed to originate in
a large number of unrelated sources, varies in an irregular, uncon-
trollable manner, and is characterized statistically by no predominant
frequency. Consequently the wave form of the applied force at any
particular instant is entirely indeterminate. This fact makes it
necessary to treat the problem as a statistical one, and deal with
mean values. In the following we shall derive formulas for the mean
energy absorbed from random interference; and then define and
discuss the selective figure of merit of networks with respect to random
interference.

The mathematical treatment of the problem will be based on
formulas VI to VIII of section II. To apply these formulas to the
problem of random disturbances and their effect on selective net-
works, consider a long interval of time, or epoch, say from 0 to T.
During this epoch we suppose that the network is subjected to a
large number of individual impressed forces fi(t), fa(f) . .. fu(8),
which are unrelated and vary in intensity and wave form in an irreg-
ular, indeterminate manner, and thus constitute what will be called
random interference. 1f we write

DO=HOHLOF . .. ),

then by VI ,v(t) is representable as a Fourier integral, thus:

E(t)=lfo°°]ﬁ(w)1 cos [wi-+0(w)] doo

™

while, in accordance with formula VIII, the energy absorbed by the
selective network from this random interference is measured by '8

' _ 1 b [F(w}]z
W=zt

% Tt should be clearly understood that Z(iw) is the transfer impedance of the
receiving with respect to the driving branch of the network, and that W’ is the
energy absorbed by a unit resistance located in the former.
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We now introduce the function R(w) which will be termed the
energy spectrum of the random interference, and which is defined by
the equation

R(w) = | F@). (10)

Dividing both sides by 7" and writing W'/T =¢, formula VIII becomes

1 f° R(w)
e—?jﬂ‘ Wtiw. (11)

Both € and R(w) become independent of T" provided the epoch is
made sufficiently great, and e measures the mean energy absorbed per
unit time from the random interference. The practical significance
of this formula is contained in the statement that the required function
of the selective network, as regards random interference, is to minimize
the ratio of € to the signal energy. Consequently this ratio furnishes an
index of the merit of the network.

In order to rigorously evaluate the integral of formula (11) the
energy spectrum R(w) of the interference must be completely specified
over the entire interval of integration. Obviously this information
cannot be deduced without imposing some restrictions on the char-
acter of the interference, or making some hypothesis regarding the
mechanism in which it originates. On the other hand if the forces
Fi(D), f2(8) .. . fu(t) are absolutely random in a strict mathematical
sense, it would appear that all frequencies are equally probable in the
spectrum R(w) and that, consequently, the most probable energy dis-
tribution is that which makes R(w) a constant, independent of w.
This inference, however, has not been theoretically established;
indeed, the problem does not appear to admit of satisfactory solution
by the calculus of probabilities. Furthermore, deductions based on
the assumption that the interference is random in a strict mathemati-
cal sense might well bé inadequate for the applications contemplated,
and the “most probable” spectrum in serious disagreement with the
spectrum of the actual interference ¥ to which we wish to apply the
results of the present study. :

Fortunately, in view of these difficulties, a complete specification
of R(w) is not at all necessary for a practical solution of the problem.
This is a consequence of the following facts:

9 For example, the spectrum of the interference presented to the terminals of the
selective network will be modified by the characteristics of the ‘‘transducer,” over
which the disturbances are transmitted. Thus both in radio and wire systems,
the greater attenuation suffered in transmission by high frequencies, will reduce the
relative intensity of the high frequency part of the spectrum.
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(a) In the case of efficient selective networks, the important con-
tributions to the integral (11) are confined to a finite continuous range
of & which includes, but is not greatly in excess of, the range which
the network is designed to select.?? This fact is a consequence of the
impedance characteristics of selective networks and of the following
properties of the spectrum R(w).

(b) R(w) is a continuous, finite function of w which converges to
zero at infinity and is everywhere positive. It possesses no sharp
maxima or minima,?! and its variation with respect to w, where it
exists, is slow. These properties of R(w) are believed to be evident
from physical considerations, and will not be elaborated.

Now referring to formula (11), since the numerator and denominator
of the integrand are everywhere positive, it follows that a value
w,; of w exists, such that

1 . ®  dw
€= ;R (wm)./o‘ m-

Now suppose that the network is designed to select frequencies in the
range w; <w=ws. Then from the properties of the network and of
the spectrum R(w) discussed above, it follows that w,, lies close to, or.
within, the range w;Sw=w: In any case, if the band w;—w, is
made so narrow that the curvature of R(w) over the interval is negligi-
ble, then with negligible error w,, may be taken as 2r times the “‘mid-
frequency’” of the band. That is to say, with negligible error, w,,

may be defined either as (w;+ws) /2 or as v/ wws.

The foregoing argument may be summarized in the following
proposition :

The mean energy e absorbed per unit time from random interference by
a selective network designed to select the band of frequencies corresponding
to w1 Ew=Zwe is measured by the formula

e= L oR(wm), (12)

where p denoles the infini’e integral

”=fu ) 125::)12

20 This statement excludes from present consideration networks, which, like the
high pass filter, select an infinite band of frequencies. This limitation, however, is
of no practical consequence, because such networks are quite useless as regards
random interference. This question will be briefly discussed later.

2 The existence of sharp maxima and minima would indicate the presence of
syslemalic interference, which should not be regarded as part of the random inter-
{ference.
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and R(w,) is the spectral energy level of the interference at frequency
/2.,y les close to or within the band vy <w <ws, and when this band
is sufficiently small with respect to the curvature of R(w), w,,/2m may be
aken as the mid-frequency of the band.

Formula (12) is of very considerable practical and theoretical im-
portance. It furnishes a basis for the experimental determination
of the energy spectrum R(w), and this determination, for any given
epoch, can be made as accurate as desired by employing a band filter
which selects a sufficiently narrow hand of frequencies. It also leads
immediately to the following important proposition.

If a selective network is required to select the band of frequencies cor-
responding f0 w1 =w=ws, the mean energy absorbed per unit time by
the network from random interference is necessarily greater than

1 Rle) =1 @ de
L e s Ren) [ 7 (13)

This formula, therefore, determines the theoretical limit, beyond which
it is not possible lo discriminale against random interference.
We are now prepared to introduce a formula which defines the
- figure of merit of o selective network with respect to random interference.
This formula gives the signal-to-random-interference energy ratio of
the network as compared with the corresponding ratio in an ideal refer-
ence circuit (defined below).
Let the network, as above, be designed to select frequencies in the
band wiSw=ws;. Then the energy absorbed per unit time from
steady-state forces in this frequency range is proportional to

°’= wgiml f lzé:)P'

The corresponding mean energy absorbed from random interference

is proportional to
_ f ®  dw
P 1ZGw)]

when the energy level of the interference is corrected to unity.

The ratio S=o/p defines the selective figure of merit of the network
with respect to random interference.

Stated in words, the selective figure of merit of a network with respect
to random interference is equal to the statistical signal-to-random-inter-
ference energy ratio, divided by the corresponding ratio in an idea! band
filter which transmits without loss all frequencies in a “‘unit” band
(ws—w;=1), and absolutely extinguishes all frequencies outside this band.
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In the foregoing argument, the theoretical limitations have been
carefully pointed out and even emphasized. In practical applications,
however, it is believed that these limitations are of small or negligible
importance, and that the formula for and definition of the selective
figure of merit furnish all the information, as regards the behavior of
selective circuits to random interference, which we are in a position
to make use of. Thus the formula is immediately applicable to the
problem of determining the effect of band width, number of sections,
dissipation, and terminal reflections on the selectivity of filters
with respect to random interference. It furnishes likewise, a means of
estimating the comparative merits of the very large number of circuits
which have been invented for the purpose of eliminating ‘“‘static”
in radio communication, and leads to general deductions of practical
value regarding the inherent limitations imposed on the solution of
the “static' problem.

The utility and significance of the foregoing formulas will now be
illustrated by application to some representative selective circuits.
[t is easily shown that, to a good approximation, in the case of the low
pass filter (type L.Cs)

1

S= w(l14+1/16n%)"
and for the band pass filter (type LiC1LaCq)
1
5= w(l4+1/16n%)"

In these formulas n denotes the number of filter sections while w,
is 27 times the cut-off frequency of the low pass filter and w is 2»
times the transmission band width of the band filter. In both cases
the filters are assumed to be terminated in their characteristic im-
pedances and to be non-dissipative.”> These formulas show at once the
effect of band width and number of sections # on the behavior of wave-
filters to random interference, and lead to the following proposition.

In filters designed to select a band of frequencies of width w, the ratio
of energy transmitted through the network by the signal and by random
interference is inversely proportional to the band width and increased in-
appreciably when the number of sections is increased beyond two.

As regards the effect of dissipation, a second proposition is deducible.

The effect of introducing dissipation into a network designed to select
a single frequency or a band of frequencies is always such as to reduce
the ratio of signal energy to that absorbed from random interference.

2 These approximate formulas are in very good agreement with actual calcula-
tions for filters terminated in resistances.
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An inference drawn from the study of band filters in the preceding
section may be stated as follows:

The selective figure of merit of a wave-filter designed to select a finite
band of frequencies is approximately proportional to the minimum time
required for sinusoidal currents within the lransmission band fo build up
their approximate steady values, divided by the number of filter sections.

Another circuit of practical interest, which has been proposed as
a solution of the “static’ problem in radio-communication consists
of a series of sharply tuned oscillation circuits, unilaterally coupled
through amplifiers.®® This circuit is designed to receive only a single
frequency to which all the individual oscillation circuits are tuned.
The figure of merit of this circuit is approximately

S é 22n—2[(n_1) !]2

R (2n—2)!
where # denotes the number of sections, or stages, and L and R are
the inductance and resistance of the individual oscillation circuits.
The outstanding fact in this formula is the slow rate of increase of
S with the number of stages. For example, if the number of stages is
increased from 1 to 5, the figure of merit increases only by the factor
3.66, while for a further increase in # the gain is very slow. This gain,
furthermore, is accompanied by a serious increase in the !'sluggish-
ness'' of the circuit; that is, in the particular example cited, by an in-
crease of b to 1 in the time required for signals to build up to their
steady-state.®

The outstanding deduction of practical importance to be drawn
from the preceding is that, as regards disturbances which are pre-
dominantly random, irregular, or discontinuous, it is useless to employ
selective circuits of extremely high selectivity. The gain in signal-
to-interference ratio is very small when the selectivity is increased
beyond a moderate amount, and is only gotten by making the circuit
relatively sluggish and slowly responsive.

The preceding discussion is, for the reasons discussed above, not
applicable to selective circuits like the high pass filter, which transmit
an infinite band of frequencies. Considerable information, however,
regarding the behavior of the high pass filter to random disturb-
ances can be gotten by returning to formula (10) and comparing the
energy absorbed by the high pass filter, with that absorbed by a
pure-resistance network. Reference to formula (10) shows that the .

13 See U. S. Patent No. 1173079 to Alexanderson.
# When the number of stages # is fairly large, the selective figure of merit becomes
proportional to Vu and the building-up time to 7.
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energy absorbed from random disturbances by a pure resistance net-

work is proportional to
0
AI R(w)dw.

The relative amount of energy absorbed by the high pass filter is
greater than

fx R(w)de.

The function R(w) represents, as above, the statistical energy spectrum
of the interference.

Comparison of these formulas shows at once that, unless the energy
of the random interference is largely confined in the range w<w,,
little protection is afforded by the high pass filter.

APPENDIX [

DERIVATION OF WAVE-FILTER INDICIAL ADMITTANCES

1. Low Pass Wave-Filter, Type L\C,.

The derivation of the indicial admittance of this type of filter is
given in detail by one of the writers in a previous paper.® The
method of solution there employed, which is quite generally applic-
able to periodic structures, consists in writing down the Heaviside
Expansion formula for the current in the nth section of a filter of s
sections in length (s>#), short circuited at the sth section. The
expansion is converted into a definite integral by letting s become
infinite and the formula becomes that of the indicial admittance of
the nth section of an infinitely long filter. For the non-dissipative
filter having mid-series termination, this procedure leads to the
formula

1

A, )= A ﬁxdxlﬂz? ‘/0-”/2 cos (2n\)- cos (x; sin N)dX\, x=uwd,

which is identifiable, from known formulas, as
' 1
Aut) =3 fu Ton(er)decr. (1.1)

A much more direct and flexible method of solution and one which
avoids the necessity of setting up the Heaviside expansion formula

% Transient Oscillations, Trans. A. 1. E. E., 1919, This paper should be con-
sulted for the details of this method.



30 BELL SYSTEM TECHNICAL JOURNAL

and then converting into a definite integral, is to employ the integral
equation II. If Z,(p) denote the transfer operational impedance of
the nth section of the infinitely long low pass filter, we have

1 _ec 1 (VPtel-p)” ]
Zn(p) k‘\/pz—l—coﬁ( W, ) (1.2)

and writing x =w¢t, F,(x)=FkA,(t), the integral equation Il becomes

fo ® Fux)e—pedz = ;ﬁ( VFETI- p)g." (1.3)

The solution of this integral equation is known™ ; it is

F"(C\‘—) =-/l)‘ J2r|.(x1)dx1

which agrees with the preceding.

The “mid-series”’ termination is chosen not only for its importance
in practical applications but because in general the indicial admittance
has been found to take the simplest form when the voltage is ap-
plied at this position. This is not always the case, however. For
example in the low pass filter if the e.m.f. is applied, not directly at
mid-series but through a terminal inductance L=L,/2=Fk/w,, the
integral equation becomes

S et = (1-p /BT ) (VP -p)."

whence
Fo(x) = f ¥ Tan(en)dats — Tanpa(x). (1.4)
0

Unless, however, the terminal impedance is related in some simple
manner to the constants of the filter, the resulting formula is neces-
sarily complicated.

2. High Pass Wave-Filter, Type CiLs.

For this type of filter it can be shown, by the first method discussed
above in connection with the low pass filter, that the indicial ad-
mittance is expressible as the definite integral

9 p® cos (2n
A"([):’ﬂ'—k\[ )\2._1

2% Nielsen, Cylinderfunktionen, page 186, formula 13.

. 1, .
sin~!>-) sin xA d\
Y , (2.1)
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where x=w,f. For the case n=0, the solution can be recognized as

Ao(t) = % T(x).

To attack the problem by means of the integral equation II, we
write down the operational transfer impedance

. 1 Tt o /)
Zu(p) k x/mc%“z(‘/l*”‘ /P—adp). 2.2)

Writing w/=x, and A,.(t):";—F,,(x), and substituting in 11 gives,

as the integral equation of the problem

£wF'a(x)e xd—‘_pg,, \/p12+1(\/152—+1—1)2-n (2.3)

The solution of this equation can be expressed in a number of differ-
ent forms, depending on the type of expansion of the right hand side
which we adopt. One form is as follows:

Expansion of the bracketted expression on the right hand side by
the binomial theorem and rearrangement gives

B (e e—prdy = 1, @n)@n—1) (*+1) , (2n) .. (2n—3)
_/ﬂ‘ Fu(x)e pdx_\/j??——l [Pz" 51 o + y

o D) 2 1, (@m)En—1)@n—2) ($*+1)
S ] + +.oo... J

1[ PZn 3| pZn
Recognizing that

0 e 1
[ To)e =

the solution, after rearrangement, becomes the terminating series
Fa(x) =kA,(f)

(I-I— D 2_|_4n (4::-: 22)D_4+4n2(4n2 ?;l) (4n®— 4 )D— . ) Jo(x)
(A —22) &% (4n?—2%)(4n*—4?) xP
_2"'(“+ 31 3 51 Bt ) (2.4)

where D™ indicates multiple integration, repeated m times. Thus

D1 Ty(x) = [ Tox)dxy: DtTo(x) = [ “diy j; " Jo(xa)dxa: etc.

% This solution has been derived from the definite integral also.
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Another type of expansion, leading to the formula given in the text,
is suggested by the known identity

e —Px = 1 2 -

To introduce this identity, we write the integral equation in the form

*® 1
—px, [ P — 2
S e = T ((VFFT-p)+ - D)
and expand the bracketted expression by the binomial theorem.
Identification of the individual terms and rearrangement gives the
terminating series

2n (2n) (211

Fa(x) = ¢o(x) =70 7"¢a(x) + )D-2ga(x)— . . ..

2
—-1’—,‘D~<2"-n¢2,,_1(x) +D~2u(),

where ¢,,(x) denotes the terminating series
) = To() = T 94D 4 )

and as above D™™ denotes multiple integration.

It is an easy matter to derive solutions in the form of infinite series,
as for example power series and Bessel series. These solutions, how-
ever, which have been carefully investigated, have not proved man-
ageable for either computation or interpretation. The solutions
given above are also unfortunately, extremely difficult to compute or
interpret. For computation, numerical integration of the following
difference equations, is sometimes preferable

Fo(x) = Jo(x),

Fi(x) — Fo(x) =2 ‘f " dxy fu " Fo(a)dxs— 22,
................. . 2.5)

Fopr() — 2Fa(x) + Fos(x) =4 £ " d, fo " Fo(es) s,

n21.
3. Band Pass Wave-Filter.

The mathematical discussion of the band pass filters will be limited
to the L,C,L:Cy type shown in Fig. 8. This type is representative
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and the appropriate mathematical procedure is essentially the same
for all the band pass wave-filters.

The first method of solution outlined above for the low pass and
high pass filters, leads, for the L,C1LsC: type of band pass filter, to
the definite integral formula

0 /2 o
An(t) S jol smggx cos 2np - cos(y sin p)dy, (3.1)

wmk T
where x =w,,t; y=wt/2; p=1w/2w,,; and
g= V14ptsin® p.
In solving this definite integral, use is made of the known formulas,
2 [T .
Jou(v) = ;f cos 2nu - cos(y sin p)du (3.2)
0

and

25 /2
(—1)° ;;25 Jon(y) = —12;./0‘ sin® p - cos 2nu - cos(ysin w)dp.  (3.3)

If in (3.1) g is replaced by unity, it follows from (3.2) that, to this
approximation

A, = L:T:J,k Jou(v) sin x (3.4)

which is formula (3a) of the text*. Clearly this becomes an in-
creasingly good approximation as the parameter p becomes smaller;
that is, as the ratio of the band width w/2r to the mid-frequency
w,/27 becomes smaller. The approximate formulas of the text for
the other types of band pass filters were derived by precisely similar
procedure and involve approximations of the same character and order
of magnitude.
To investigate the approximate solution, we proceed as follows:

If we write

T/2 o1 -
@k Ay =Fu(x,y) = E./ SINEY o8 2nu - cos(ysin w)dy, (3.5)
w ™ Jy £ :

and
2 [T .
Gulx,y) = -;f sin gx - cos 2nu - cos(y sin p)dp, (3.6)
0
and if we substitute for 1/g in (3.5) the expansion
1—%p251112p+%—-p451n4p— ....... ,

2 If a series resistance R, and a shunt resistance R,=%*/R, are included in the
filter sections, the formula becomes (3.4) multiplied by the factor exp(—R,y/2k).
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it follows from a formula exactly analagous to (3.3) that

B 1 1.3 , ot 135 38
Fn(x,y}—(1+f +24pay 546 ay+ )G»(x.y) (3.7)

so that the problem is reduced to the solution of the definite integral

G,(x, 5).
In the integral (3.6), write g=1-+4#h, so that

=4/14+p*sin 2u—1, (3.8)
whence

/2
Gul(x,y) =sinx- Ef cos hx - cos 2nu - cos(y sin p)du
e (3.9)

2 [T, .
+cosx- ;f sin hix - cos 2nu - cos(y sin u)du
0
=P, sin x+Q, cos x, (3.10)

where P, and Q, denote the definite integrals of (3.9). This effects
a further reduction of the problem to the solution of the definite

integrals P, and Q,.
In the integrands of these integrals expand cos hx and sin hx in the
usual power series, and in each term thereof introduce the expansion

2\5
W= (92—) (5105 1) (14-derp? sin 2u-tasapt sin ‘ut . . . ),

where the coefficients are given by

oy %=1 1y
a5 =(=1Vs T (1)-

By aid of this procedure it is easily shown that

(p2x/2)? d* 42 d4
Py=TJo(y)— —(1—021.02@5 +£122P4d7y4 - .)]2,,();)

20 @y
2)4 4t ti"1
+ (P ;/, ) dys(]‘ a.up d 5 +a4-P dy ')J2il(y)

( ptx/2)8 4
6! dy?

+ .., (3.11)

d?
(1_ EIP d 2+GB.P dy‘i_- . ')Iin(y)

with a corresponding expansion formula for Q,.
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It is now convenient to introduce the symbolic notation

q P,=cos [x(v1—p*d*—1)] Jau(y) (3.12)
an
Qu=sin [x(V1—pd*—1)]Tzu(y) (3.13)

where the symbol d denotes the differential operator d/dy operating
on Ja,(y). The actual numerical significance of these formulas is
gotten by expanding as in (3.11).

With the same symbolic notation we get finally,

1
A4 = psin (VI=FP) iz Tul). (1)

The exact solution (3.14) is too complicated, as it stands, to be of
any practical value. Fortunately, however, it is possible to sum the
expression asymptotically, and the resultant formula shows clearly the
behavior of 4,(f) and in particular the character and magnitude of the
errors in the approximate formula of the text.

When y is large compared with (4n)?,

2 4n+1
Jzn(y)i\);r}cos (}'_ n:_ 7")

and (3.15)
T,._3 2s5(2s—1) _4nA-1
4% ) [ 2 [1 27 4y ]Cos(}r 4 'rr)
i O N
i

to order 1/
If this expression is substituted in the expanded form of (3.14),

some rather intricate and tedious operations finally give as the asymp-
totic limit of A4,(1) ¥

- (1 - é—p"’-f- .. )sin (xv/14p)cos (y—4n:_1 1r)
(3.16)

402 — (Lot eoste/ TFsin (y= 252 7).

The coefficients of the two terms of (3.16) are even and odd power
series in p respectively, powers of p beyond the second being neglected.

Formula (3.16) is important, as showing the effect of the band
width, that is of the parameter p, on the indicial admittance. It can
be used for numerical computation, however, only when y> (4n).

A corresponding formula, valid over a much wider range, is obtain-
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able from the expression derived in Appendix II for the Bessel func-

tion, namely
JZH(y) =an(}’) COos 9271(}’)-

If this expression is employed instead of (3.15), we get corresponding
to (3.16),

(1—%524- .. ) sin (xv/140%) cos Qa, (3)

A?I (5) s —'% Bﬂn(y) 1 (317)
W — (§g+ .. ) cos (xA/1+0a?) sin Qay, (y)
L w (1_%,72—5- ) ) sin (xV/140%) Jau (%) (3.18)
wmk + (%,H- .. ) cos (x\/' 140 Jop (3),

where ¢=pgs,=p/1—(2n/)%.

Formula (3.17) is valid when y>2n, and ultimately approaches the
limit (3.16) as y becomes indefinitely large.

We are now prepared to discuss the character of the approximations
of the formula of the text, which may be written as

5 Bon ) { sin [+ 2w ()] +sin [x — 2 ()] { (3.19)

Correspondingly (3.17) may be written as

(1—%04— .. ) sin [xv/ 14024 2o, ()]

w

Sk (3.20)

an (y)

1 . —
+ (14204 ... V14— Q(¥)]
(1ot sine )

Comparison of (3.19) and (3.20) shows that the approximate formula
of the text ignores slowly variable correction factors in the ampli-
tudes of the component oscillations, and a slowly variable change in
their frequencies. For band pass filters employed in practice these
corrections are not only slowly variable but in most cases are quite
small. In any case, it is important to observe that failure to include
these corrections does not appreciably affect any essential features of
the building-up phenomena discussed in the text. Consequently the
deductions from the formula of the text are valid not only for narrow-
band pass filters, but also for filters of quite wide bands. This state-
ment is substantiated by the fact that the steady-state characteristics,



TRANSIENT OSCILLATIONS IN ELECTRIC WAVE-FILTERS 37

deduced from the approximate formula in accordance with the general
formula V, are in excellent agreement with the exact values.

As illustrating the appropriate methods in the solution of problems
in electric circuit theory, it is of interest to derive the formula for the
band pass filter directly from the integral equation II. The method is
not only more generally applicable, but avoids the necessity of deriving
the definite integral (3.1). We therefore start with the formulas:

fm"’_"A"(t)dt= 1/p Zu(p)

0
or

fa * e m AL dt=1/Z(p), where A}(t) =d/dt A.(0).

For all wave-filters of the “ladder” type it may be shown that

1 (V1+r/d— /7/4)°
Za(p) 2 1Y/ (3.21)

where 2z, and 2, are the series and shunt impedances respectively, and
r=z/2,. This expression admits of series expansion

1 211 2n+2 1 (2n+3) (2n44) 1

Zu(p) = IZ TR 21! puti

_ (2n+4) (2n+5) 2n+6) 1 +
3] e ce

(3.22)

For the L,C,L:C, type of filter
_ w 2 p 2
1/r= (5) (P”-{-w?,.)

1/a= ; (w) (P’iwm)

It follows from (3.22) and the integral identity,

S e ana=1/z:(p)

and

that A4,(#) has an expansion solution of the form

450 _l{ p*"fan(%) — 2n+2 PP o ga(x) +

Qﬁ%f%_w ot fr44(x) (3.23)

_ Gt @rd5) @nt6) ontfy o) e :
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where x=w,t; p=w/2w,; and the f,(x) functions are defined and
determined by the integral identities,

/; () erpedn = (pﬂi 1)’“ (3.24)

for all integral values of s.
For s =0, the solution of this equation is known; it is

Jo(x) =cos x.

The solutions for s>0 are gotten from the recurrence formulas?
x
7 = cos (x=) fus V)N
Repeated applications of this formula give

Jas(x) = 2—12; (Pg;(I)COS x4 Qas(x)sin x)
where P, and Qs are polynomials in x of the 25" and .(2s —1)"

orders respectively. Thus:
P x2s x2s—2 x2s—4
ﬂs_a(s) 2_5,| +8 (S) (23_2)| + ’Y(S) (23_4)|+ ..

(terminating in term in x2/2!),

and
x25—1 x?:—3 x?s—ﬁ
Qu=0() m—y 20 gy He) gt
(terminating in term in x/11).

The o, 8, v...4a, b, ¢, ... coefficients are functions of the order s;
the first few coefficients are:

a(s)=1, s=0,

a(s)= 23;1, s=1,

ﬂ(s):.: — (23_2)8._.__(._2._{il), 522,

b(s) = (23—2)8(2s—|—1) _ (2s=3) (32&2—1) (2s+2)’ 5= 2.

If the foregoing expressions for the f; functions are substituted in
the series solution (3.23) for A,(f) and if the series are rearranged as
explained below, we get writing wt/2=px=y,

AL = ;-:"_ -{ J2.(v) cos x + pRi(y) sin x + p2Ra(y) cos x . . } .
# See equation 10, The Heaviside Operational Calculus, B. S. T. J., Nov., 1922,
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The first term J2,(y) is gotten by picking out the leading terms in the
P polynomials; the second term Ri(y) by picking out the leading
terms in the Q polynomials; the third term R.(y), from the second
terms in the P polynomials; etc.

The work of rearranging and identifying the ‘‘remainder” functions
Ri(y), Ra(y) . . . is rather intricate and tedious. The first few func-
tions can be written as

R =(3) (5 + 5 45) T,

Ry(y)=— 21! (y) (d +; d‘i'_,) Jan(y),

()(d“ 6 d& 6d 244

Ri(y) = Iy +§d_y_5“3?dﬂi‘*‘_5ﬂ_d_f)'h"(y)'etc'

If we substitute these expressions, rearrange and write py/2=z,
we get finally

2 J4 1 g8
Ccos x[l - %@]"[‘%d—j‘}g .. .:lfen(y)
. d? 3 ds
+ sin xl:—l—'d—y— - z,—,dys +. ]Jzn(y)

. d
~+p sin x[dy 2'dy + :Ifzn(y)

z & 2 d

+ series involving factors in p? and higher powers.

A =7

—pCOS X

Neglecting factors in p?, this becomes

. st dt | gt dB
sin x[l— EE "*-aﬁr-d? .. .]Jzn(y)
F'!'m z d? 2 d" A A

—cos x Tidy ~ 31dy -I—am. .. .]fzn(y)-

The character of this solution in the region y>2n, is shown by the
asymptotic approximation

A () =

A,(0) = — Jau(y) sin (14 3p°g)x (3.25)

where
(2»;)2
= \ 7
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To the same order of approximation in p=w/2w,, this agrees with the
solution (3.18) given above.

ArpEnDIX II
PropPERTIES OF THE BESSEL FuncTiOoN J,(x)

The Bessel functions have been studied and tabulated more ex-
haustively than any other functions largely owing to their great
importance and frequent occurrence in mathematical physics. Quali-
tatively their behavior for integral orders » and real arguments x
may be described as follows.

When the argument is less than the order (0 =x<#) the function is
very small and positive, and is initially zero (except when n=0).
In the neighborhood of x=#, the function begins to build up and
reaches a maximum a little beyond the point x=n. Thereafter the
function oscillates with increasing frequency and diminishing ampli-
tude, and ultimately behaves as

\/7 ( 2n+1 )
~—cos(x— ).
™ 4
When % =0, the initial value is unity, but the subsequent behavior of
the function is as described above.
In order to get a more accurate picture of this function the follow-

ing approximate formula was developed in the course of the present

investigation.*
Julx) = B, (x) cos Q,(x), forx>n

where

B(x) =\,g

=%

M@=§mw.

Jl 3'm2 1
2 xt (1—m?/x%)?

mi=n?—1/4.

% It was subsequently discovered that somewhat similar formulas had previously
been developed by Graf and Gubler (Einleitung in die Theorie der Besselschen
Funktionen), and by Nicholson (Phil. Mag., 1910, p. 249).

1
3 m? 1 1/4
(1_ towas m”/x2))

moo (ﬂ) _om? 1 _ 2n+1
5 x 4x4(14m2/:c2)31’2:| Fa

and
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This approximate formula is valid only where x>n, its accuracy
increasing with x and with #. For all orders of » it is quite accurate
beyond the first zero of the function.

The “instantaneous frequency’’ of oscillation is approximately

1 au( 1\} 3m2 1
2x4 (1—m?/x%)*

By this it is meant that at any point x (>n) the interval between
successive zeros is approximately m/€'(x). Otherwise stated, in the
neighborhood of any point x, the function behaves like a sinusoid of
amplitude B,(x) and frequency w/27 where w= Q,(x).

The following approximate formulas, while not sufficiently precise
for the purposes of accurate computation except for quite large values
of x, clearly exhibit the character of the functions for values of the
argument x>#, and of the order n>2.

Tulx)= k,,d 2 cos (gux —04),
T
Th(x) = —gquhn sm (gnx —©4),

b (T e
jol Ju(x)dx=1+ 7 \r %Sln (gux—8,),

where
1 s nt
hu= (1._112/-%2) - 1 + 4—3’,'2'
4n= \/1 _nzfle
and
0,= 2?1;}—177_71 sin~!(n/x).

AppENnDIX III
BuiLpING-UPr OF ALTERNATING CURRENTS IN WAVE-FILTERS
The integrals
Sy(z3v) =I/U‘:J,,(zl) sin v(z—21)dz

and

Cu(z;v) =£2J,,(zl) cos v(z—z1)dz1,

on which the genesis and growth of alternating currents in the low
pass and band pass filters depends, have been computed as follows.
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For values of 2<24, <10 and »=1, they are accurately calculable
from the following series expansions

Cn(z;y) = 2(Clju+l(z) +63]1:+3(Z) +Cﬁjn+5(z) + . '))
Su(ziv) =4v(catnra(2) FeaTnpa(@) Feedure(a) + . ),

where the coefficients ¢i, ¢ . . . are polynomials in 2», and are inde-
pendent of the index #. They are

and

61=1,

€3= 1— (2}1)2,

ﬁ=1—%@ﬂwwbw

a=1-SHa 2 @ @,
a=1-2220 + 2@ - T @@,
FERRREERE .

=2 (),

=20 — L @t @0t

a=232 T @t d @i (2

...............

The tabulation of J,(2) for values of 2 up to 24 and of # up to 60
given by Gray and Mathews and by Jahnke und Emde make the
computation for integral values of z rapid and precise.

For large values of n the integrals can be accurately computed,
except in the neighborhood of the critical point z= n/\/l -, (v<1),
from the asymptotic formulas furnished by Gronwall.

Without detailed computation, however, the general charactir of
the integrals can be shown as follows with an accuracy usually suffi-
cient for engineering purposes. By differentiation S, and C, satisfy
the differential equations

S?’: = nd,
Cl: J (Z) - VSm

and
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where the primes denote differentiation with respect to the argument
2. The solution of these differential equations is based on the ap-
proximation, valid only when z>n,

2
E‘EZ—QJ"(z) = _qf,.f,.(z), qn="N 1—?22/2’.

To this approximation, which becomes more and more accurate as
¢ and # increase, the differential equations are satisfied by solutions
of the form
v .
S, = 1’2—_& Ju(z2)+A sin (vz—a),

and
C =y—21—g Ti(z)+A cos (vz—a).

A and e« in the complementary terms are arbitrary constants, which
must be determined. These complementary terms, periodic in s,
are evidently the ultimate values of the integrals when z approaches
infinity, which are known. Other considerations, however, show that
these terms should be omitted when »<1 and z<n/+/1—#. Conse-
sequently we arrive at the following approximations.®

For v<1land n<z<n/V1—vh

Sa(zv) = J (2),
Culzv) = J (2),
and
=+/1—n?/z.

This approximation is not accurate at s=n, and breaks down at the
critical point z=n/V 11— In the interval between, however, it
is a fair approximation, particularly when » is nearly equal to unity
and 7 is not too small.

For v<1 and z>n/\/1—v2,

Sulein) = e Tl Hﬁ

sin (vz—mn sin~'p),

and

Culzv) = J:: (2)+

. cos (vz—n sin~'»).
\/ 1—3?

3 The qualitative properties of these definite integrals can be deduced from the
principle of stationary phase (See Theory of Bessel Functions, G. N. Watson, p. 229) ,
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This formula can be safely employed only when 2 considerably exceeds

the critical value #/ V' 1—32%

For v>1 and z>n, the ultimate periodic terms are very small, and
may be omitted unless # is too small. Consequently in this region,

Su(zi) = J (2),

and )
Calziw) = Ig 1 gy,

In the range of values for which the foregoing approximations are
valid we have also to the same approximation (see Appendix II)

Tu(2)= J_cos (gnz—04),

and

Jl (z) - J_Sln (qnz n)-

AprPENDIX IV
THE EFFECTS OoF TERMINAL IMPEDANCES

In the text of this paper, the calculation of the wave-filter indicial
admittances is based on the assumption that the voltage is applied
directly to the filter at ‘‘mid-series’”’ position and that the filter is
either infinitely long or else, what amounts to the same thing, is
terminated in its characteristic impedance. By virtue of these as-
sumptions, the disturbing effects of terminal reflections are eliminated,
and, as shown in the text, the solution is reducible to a relatively
simple form, which admits of considerable instructive interpretation
by inspection, and is rather easily computed.

In the following the general solution will be given for the indicial
admittance 4,(f) in the nth section of a wave-filter of s sections or
length, with the e.m.f. applied to the initial or zero-th section through
an impedance Z,(p) =2, and the last or sth section closed by an
impedance Zy(p) =Z,.

For any type of periodic structure, including as a limiting case, the
smooth line, it can readily be shown that

1 1 e—#T L pye—(2s—nT
Za(p) o-fl 1—pipae=%T 1
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where

K,=characteristic impedance, as seen from terminals of
initial or zero-th section,

K.=characteristic impedance, as seen from terminals of last
or sth section,

I' = propagation constant per section,

Z,1, Zo=terminal impedances,

‘,=_K1_
"K\+-Z)
_K\—-2Z,
Pl“K1+Zla
and
_K»—2Z,
PT K Zy

K., K., 71, Z1, and consequently a, p1, p: are, of course, functions of
the operator .

The corresponding indicial admittance A,(#) is given by the integral
equation

=] o _ 1
l e ”An(f)dt—m}- (2

By aid of (1) the right hand side of (2) can be expanded as

el n e—@s—mT n e—(2s+mT 2644:%':)1"
0 — gpy ———— +opipo ———— +o —_—
pKl P2 pKl pP1p _‘PKI P1P2 PKI
(3)
+ ) 26—(4:+n)r+
a ™3> T s s s s s s s
P1P2 PKl

Now if a,,(f) denotes the indicial admittance in the mth section of an
infinitely long periodic structure, when the e.m.f. is applied directly te
the sending end terminals, it follows from (2) and (3) that

f * et ()t = ot (4)
0 PK,
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From (2), (3) and (4) it follows at once that

A(h) = di/“dy { rolt=y)an(y) +r1(t = y)assn(y) +r2(t—y)azs 1 n(y)
tdo 73t —y)ass—u(y) Fralt—y)assin()+ . . . (5)

provided the functions 7y(t), 7:1(£), 72(£) . . . satisfy, and are defined by,
the equations

= 1 K
—pt = g_-_21
./ol e~ Pry(8)dt 5~ pKit 2y

» 1 K: K:—2Z
-ty ()t =22 = 1 22T ot 6
/0- et = 4 = S T 7 KaF 24 ©

o0 p _ ap1p2 _ 1 Kl .KI_ZI.KZ_Zz
/0‘ e~ ?'ry(t)dt b pKi+ 2 Ki+ Z K2_|_Zgjetc.

If the indicial admittance in any section of an infinitely long periodic
structure is determined, and equations (6) solved for #y(£),r1(2), 72(2) . . .
(by aid of any of the methods discussed in the present paper), then
A, () is given by (5) by a single quadrature. The solution may
appear quite involved; as a matter of fact it is the simplest and most
easily interpreted and computed form of solution possible and its
complexity merely reflects the complicated character of reflection
effects due to terminal impedances. This considered statement is
made in the light of an extensive study of the whole problem and the
literature bearing on it and has been tested in many specific cases.

When the terminal impedances Z; and Z; are complicated and en-
tirely unrelated to the corresponding characteristic impedances K; and
K, the solution of equations (6) and the numerical computations of
(5) are laborious but entirely possible, the only questions being as to
whether the importance of the problem justifies the necessary ex-
penditure of time and effort. In many cases, also, approximate
solutions are obtainable. Without any computations, however, the
solution (5) admits of considerable instructive interpretation by
inspection. The first term represents the current in the nth section
of an infinitely long structure when a unit e.m.f. is impressed through
a terminal impedance Z,. #(t) is the corresponding voltage which
exists across the terminals proper. The second term is a reflected
wave from the other terminals due to the terminal impedance irregu-
larity which exists there. The third term is a reflected wave from the
sending end terminals due to the corresponding terminal impedance
irregularity, etc. The solution, consequently, is expanded in a form
which corresponds exactly with the actual sequence of phenomena
which occur.
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The solution takes a particularly simple and instructive form when
Zi=kK, and Z,=Fk.K, where k; and k. are numerics. In this case
the solutions of (6) give

1
fo(t)‘-:fu:‘ 1+k1'

11—k

Py

ts = 1 -l_k‘ 1=k, etc. and

YT 14k 14k 14k a
1—k, 1=k 1k

10 = o | 0 + o + gt Tptenn® + -

The solution for the special cases of open and short circuit termina-
tions follow at once by assigning the values of zero or infinity, as the
case may be, to ky and k.. If ki=o0; ka=1, A,(t) reduces to a,(t)
as, of course, it should.
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