A Reactance Theorem
By RONALD M. FOSTER

Synopsts: The theorem gives the most general form of the driving-point
impedance of any network composed of a finite numker of self-inductances,
mutual inductances, and capacities. This impedance is a pure reactance
with a number of resonant and anti-resonant frequencies which alternate
with each other. Any such impedance may be physically realized (pro-
vided resistances can be made negligibly small) by a network consisting of a
number of simple resonant circuits (inductance and capacity in series) in

arallel or a number of simple anti-resonant circuits (inductance and capac-
ity in parallel) in series. Formulas are given for the design of such net-
works. The variation of the reactance with frequency for several simple
circuits is shown by curves. The proof of the theorem is based upon the
solution of the analogous dynamical problem of the small oscillations of a
system about a position of equilibrium with no frictional forces acting.

AN important theorem! gives the driving-point impedance? of
any network composed of a finite number of self-inductances,
mutual inductances, and capacities; showing that it is a pure reactance
with a number of resonant and anti-resonant frequencies which
alternate with each other; and also showing how any such impedance
may be physically realized by either a simple parallel-series or a
simple series-parallel network of inductances and capacities, pro-
vided resistances can be made negligibly small. The object of this
note is to give a full statement of the theorem, a brief discussion of
its physical significance and its applications, and a mathematical
proof.
THE THEOREM

The most general driving-point impedance S obtainable by means of a
finile resistanceless nelwork is a pure reactance which is an odd rational
function of the frequency p/2m and which is completely determined,
except for a constant factor H, by assigning the resonant and anti-
resonant frequencies, subject to the condition that they alternate and
include both zero and infinity. Any such impedance may be physically

I The theorem was first stated, in an equivalent form and without his proof, by
George A. Campbell, Bell System Technical Journal, November, 1922, pages 23, 26,
and 30. By an oversight the theorem on page 26 was made to include unrestricted
dissipation.” Certain limitations, which are now being investigated, are necessary
in the general case of dissipation. The theorem is correct as it stands when there is
no dissipation, that is, when all the R’s and G's vanish; this is the only case which is
considered in the present paper.

A corollary of the theorem is the mutual equivalence of simple resonant compo-
nents in parallel and simple anti-resonant components in series. This corollary
had been previously and independently discovered by Otto J. Zobel as early as
1919, and was subsequently published by him, together with other reactance theorems,
Bell System Technical Journal, January, 1923, pages 5-9.

? The driving-point impedance of a network is the ratio of an impressed electro-
motive force at a point in a branch of the network to the resulting current at the
same point.
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constructed either by combining, in parallel, resonant circuits having
impedances of the form iLp+(iCp)~", or by combining, in series, anti-
resonant circuits having impedances of the form [iCp+(Lp)~']7'. In
more precise form,
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where H=0 and 0=po<p1<p2=< ... Spa_1=pa=2." The induct-
ances and capacities for the n resonant circuils are given by the formula,
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and the inductances and capacities of the n+1 anti-resonant circuils
are given by the formula,

1 ip . _
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which includes the limiting values,
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Formula (1) may be stated in several mutually equivalent forms.*
This particular form is the driving-point impedance of the most
general symmetrical network in which every branch contains an
inductance and a capacity in series, with mutual inductance between
each pair of branches. This includes as special cases the driving-point
impedances of every other finite resistanceless network.

3 Since the impedance S is an odd function of the frequency, resonance or anti-
resonance for =P implies resonance or anti-resonance for p=—P. In enumer-
ating the resonant and anti-resonant frequencies it is customary, however, to ex-
clude negative values of the frequency. Thus, in the present case, we say that
there are » resonant points (1, pa, ..., Pam—) and n-1 anti-resonant points
(po=0, b2, 4, . . ., Ponzy Pon= ).

4 The expression for S given by formula (1) may be written in the mutually equiv-
alent forms,
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If the constant I and all the p,’s of these formulas are restricted to finite values
greater than zero, the four cases, obtained by separating the plus and minus ex-
ponents, are mutually exclusive, but together they cover the entire field. If p is
allowed to be zero, either the first or the second pair covers the entire field. Finally,
if in addition pom_; OF p2a_s is allowed to become infinite, while Hp}, , or Hpf, o is
maintained finite, any one of the four expressions covers the entire field. Some-
times one, sometimes another way of covering the field is the more convenient.
Formulas (2) and (3) apply to all of these expressions for .S provided the p;'s include
all the resonant points and all the anti-resonant points, respectively.
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PraysicaL DiscussioN

The variation of the reactance X =S/7 with frequency is illustrated
by the curves of Fig. 1 in all the typical cases of formula (1) for n=1
and for n=2. For every curve the reactance increases with the
frequency,® except for the discontinuities which carry it back from
a positive infinite value to a negative infinite value at the anti-reso-
nant points. Thus between every two resonant frequencies there is an
anti-resonant frequency, no matter how close together the two resonant
frequencies may be. The effect of increasing # by one unit is to add
one resonant point, and thus to introduce one additional branch to
the reactance curve, this branch increasing from a negative infinite
value through zero to a positive infinite value.

That formula (1) includes several familiar circuits is seen by con-
sidering the most general network with one mesh, that is, an induct-
ance and a capacity in series, with the impedance iLp+(iCp)~".
This expression is given immediately by (1) upon setting n=1, H=L,
and p,=1/ V'LC. Since L and C are both positive these constants
satisfy the conditions stipulated under (1), thus verifying the theorem
for circuits of one mesh. This general one-mesh circuit includes as
special cases a single inductance L by setting H=L and p,=0, and a
single capacity C by setting /=0 and ;= such that Hpi=1/C.

In Fig. 1 the reactances shown by the curves on the right are the
negative reciprocals of those on the left. Fig. 1 also shows networks
which give the several reactance curves, the networks being computed
by means of formulas (2) and (3). The networks are arranged in
pairs with reciprocal driving-point impedances and with the networks
themselves reciprocally related, that is, the geometrical forms of the
networks are conjugate,® and inductances correspond to capacities
of the same numerical value and vice versa. This relation is a natural
consequence of the reciprocal relation between an inductance and a
capacity of the same numerical value, these being the elements from
which the networks are constructed.

For n=1, formulas (2) and (3) give identical networks, as illus-
trated by the reactances 4, B, A’, and B’ of Fig. 1, each of which is
realized by a single network. For the reactances C and C’ the two
formulas give distinct networks, ¢; and ¢z, cyand cs, respectively, these

5 This has been proved by Otto J. Zobel (loc. cit., pp. 5, 36), using the formula
(f:?tr tge ;t(l)gﬂst general driving-point impedance given by George A. Campbell (loc.

s,F'or a further treatment of conjugate or inverse networks, see P. A, MacMahon,

Elgctrgciau, April 8, 1892, pages 601, 602, and Otto J. Zobel, loc. cit., pages §, 36,
and 37,
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two being the only networks with the minimum number of elements
which give the specified impedance. In"general, however, there are
four ways of realizing a given impedance when n=2, as illustrated
by D and D’ of Fig. 1; formulas (2) and (3) give only the first two
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1—Reactance curves and networks for simple cases of formula (1).
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networks, d; and ds, d; and ds, respectively. The total number of pos-
sible ways of realizing a given impedance increases very rapidly for
values of n greater than 2; for =3, there are, in general, 32 distinct
networks giving a specified impedance.

Formulas (2) and (3) are to be used for determining the constants
of the circuits which have certain specified characteristics, whereas
most network formulas are for the determination of the character-
istics of the circuit from the given constants of the circuit. The ap-
plication of these formulas is illustrated by the following numerical
problem:

To design a reactance network which shall be resonant at fre-
quencies of 1000, 3000, 5000, and 7000 cycles; anti-resonant at
2000, 4000, and 6000 cycles, as well as at zero and infinite frequen-
cies; and have a reactance of 2500 ohms at a frequency of 10,000
cycles.

By formula (1) the reactance of such a network must be

5 (pi—p0) (PE—pY) (pE—p7)
x= - y; (p. 5 G- B @

where p1, p3, $5, and p7; are determined by the resonant frequencies
to be 1000X2m, 3000X2m, 500027, and 7000X 2w, respectively;
P2, p1, and pg are determined by the anti-resonant frequencies to be
2000 X 27, 4000X27, and 6000 X2, respectively; and I must be
made equal to 0.0596 in order that the reactance at p=10,000X 27

may be 2500. The variation of the reactance with the frequency
is shown by the curve of Fig. 2,

A network having this reactance may be constructed by com-
bining # =4 simple resonant circuits in parallel, or n+1=5 simple anti-
resonant circuits in series. These two networks are shown by Fig. 2.
The numerical values of the elements are determined as follows:
Applying formula (2) we have

1 (ps P (pi=p) (pi—p})
L= clp._I (Pi—p) (Bi— D) (B3 — 1Y) =0.349,

1 _ (5= p) (=) (=)
Li=—— =0.32:
= =) (=) (=g~ OO

1 (pi—13) (pi—P2) (P2—12)
L= 5= H > o> 0] o 2 41
TGP T (pi—p) (pi— ) (i — ) 026

1 (Pl —p}) (pi— %) (Pi— )
L=~ H = (=) (= pT) =0.142;
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and applying formula (3) we have

242,52
Co=- PPy _ (0888 %105, Lo= o»,

- Hpipipip:
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c. 1 —pa(pi—p3) (Pi—10) =0.0725X107%,

Lot H(p =) (0i—p) (i—pD) (Bi—p))
Cs=0, Lg=H=0.0596.

These formulas give the numerical values of the inductances in henries
and the capacities in farads. The entire set of numerical values is
shown in Fig. 2. It is to be noted that the anti-resonant circuit
corresponding to po=0 consists of a simple capacity since the induct-
ance is infinite and thus does not appear in the network, whereas for
ps= o the anti-resonant circuit consists of a simple inductance, the
capacity being zero and thus not appearing in the network.

MATHEMATICAL PROOF

We shall first prove that the driving-point impedance S, as given
by (1), may be physically realized by either a simple parallel-series
or a simple series-parallel network of inductances and capacities, pro-
vided resistances can be made negligibly small.

The rational function 1/S can be expanded in partial fractions,

1 _iHip | iHap iy 1P
S Pf—P2+P§—P2+ o +P§n-1——?2
_ (PP . _
where H,—( i3S )pxﬁj(]—1,3,...,2n 1).

Hence S is equal to the in?pedance of the parallel combination of the n
circuits having the impedances ( pﬁ— P2/ GHp) =iH ' p+ [ (Hipi ) p1 7,
that is, # simple resonant circuits in parallel, each circuit consisting
of an inductance and a capacity in series, with the numerical values
given by (2). Furthermore, these numerical values of the inductances
and capacities given by (2) are all positive, an even number of negative
factors being obtained upon substituting p=pj, since in every case
pi<pis1. Hence the network defined by (2) has the impedance S
as given by (1) and is physically realizable.
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Likewise, by expanding .S in partial fractions, it can be shown that

the network defined by (3) has the impedance S as given by (1) and is
physically realizable.
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Fig. 2—Reactance curve and networks for formula (4).
The values of the inductances and capacities are (in henries and microfarads):

L,=0.349 C,=0.0726 L,=0.137 Co=0.0888
L3=0.323 C3=0.00872 Ls=0.0302 C,=0.0461
L;=0.264 C;=0.00384 L,=0.00971 Cy=0.0523
L;=0.142 C;=0.00363 Ls =0.0596 Ce=0.0725
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The electrical problem of the free oscillations of a resistanceless
network is formally the same as the dynamical problem of the small
oscillations of a system about a position of equilibrium with no fric-
tional forces acting. The proof of formula (1) may be derived from
the treatment of this dynamical problem as given, for example, by
Routh.”

In any network the driving-point impedance in the gth mesh, S,
is equal to the ratio A /A, where A is the determinant® of the net-
work and A, the principal minor of this determinant obtained by
striking out the gth row and the gth column. The determinant of a
network has the element Zj in the jth row and kth column, Zj
being the mutual impedance between meshes j and & (self-impedance
when j=Fk), the determinant including # independent meshes of the
network.

Hence the determinant 4 has the element Zj=1iLxp+ (iCup)7,
where Ly, is the total inductance and Cj the total capacity common
to the meshes j and k. Upon taking the factor (ip)! from each row
and substituting —p*=x, the expression for A may be put in the
form 4 = (i) "D, where D is a determinant with Ljzx-+1/Cj as the
element in the jth row and the kth column. This is of exactly the
same form as the determinant given by Routh * for the solution of
the dynamical problem; it is proved there that this determinant,
regarded as a polynomial, has » negative real roots which are separ-
ated by the n—1 negative real roots of every first principal minor
of the determinant.

Hence, we may write D=E(x;4x)(x:+x) ... (xoa_1+x), where
X1, X3, . . . , ¥zn_1 are all positive and arranged in increasing order of
magnitude, and where E is also positive since I must be positive for
x=0. The determinant D, may be expressed in similar manner since
it is of the same form as D but of lower order.

7E. J. Routh, “Advanced Rigid Dynamics,” sixth edition, 1905, pages 44-55.
In the notation of the dynamical problem as presented here, the coefficients A4
correspond to the inductances, 1/C; to the capacities, p/(i2x) to the frequency,
and &', ¢', etc., to the branch currents in the electrical problem.

A complete proof of formula (1) has been worked out for the electrical problem,
without depending in any way upon the solution of the corresponding dynamical
problem, This proof has not been published here in view of the great simplification
made by using the results already worked out for the dynamical problem.

8 A complete discussion of the solution of networks by means of determinants
has been given by G. A. Campbell, Transactions of the A. I. E. E., 30, 1911, pages
873-909.

® The determinant given by Routh (loc. cit., p. 49) has the element 4 ;;p*+Cj.
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The driving-point impedance is given by

E(eitw) (eatw) - (X))
Ey(xa4x) . .. (X2p—2tx) |

S,= jqi —(ip)~! ;—,l = (ip)-

where 0<x; <xo<x3< ... <Xan_s=<xa,_;, since the roots of D are
separated by the roots of D,. Upon substituting x=—* and intro-
ducing the notation H=E/E, and p"i, pg, . p%,,,1=x,, Xoy ..., Xon_1,

respectively, we see that formula (1) is completely verified as the
most general driving-point impedance obtainable by means of a finite
resistanceless network.



