A Generalization of the Reciprocal Theorem
By JOHN R. CARSON

HE Reciprocal Theorem, an interesting and extremely .im-

portant relation of wide applicability, which was discovered by
Lord Rayleigh, is stated by him in the language of electric circuit
theory as follows:

“Let there be two circuits of insulated wire A and B, and in their
neighborhood any combination of wire circuits or solid conductors
in communication with condensers. A periodic electromotive force
in the circuit A will give rise to the same current in B as would be
excited in A if the electromotive force operated in B."” !

Before proceeding with the generalization which is the subject of
this paper, Rayleigh's theorem, in the following modified form, will
first be stated and proved:

I. Let a set of electromative forces V' . ...V, , all of the same fre-
quency, acting in the n branches of an invariable network, produce a
current distribution I, .. .. 1), and let a second set of electromotive
forces V' .. ..V, of the same frequency produce a second current
distribution I, .. .. I,)". Then

i = s
2[ fIJrr EV;”I_}’ (1)
J=1 i=1

To prove this theorem we start with the equations of the network
n
SZule=Vi  j=1,2,...mn, (2)
F=1

and observe that, provided the network is invariable, contains no
internal source of energy or unilateral device, and provided that the
applied electromotive forces V... V, are all of the same frequency,
say w/2m, the mutual impedances satisfy the reciprocal relations
Zip=7r. Consequently if (2) is solved for the currents, we get

(3)
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L=>A3Vee
k=1
and the coefficients also obey the reciprocal relations Az = Ag;.
Now consider two independent and arbitrary sets of equi-periodic
applied electromotive forces, Vi'.... V),  and Vi .... V,”: then
1 Rayleigh, Theory of Sound, Vol. I, p. 155.
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in accordance with (3), the corresponding distributions of network

currents I . ... 1,/ and [,/ . ... I, are given by
"
Ij’: zAjka’, j=1, 2... i, (4)
k=1
f,-”=2Ajka”. (5)
k=1

Now form the product sum EVJ-”IJ-’; by means of (4) it is easy to
show that, since A= Ayg;,
n n n
EVj”Ij’ _ E zAjk( eran+ Vjuvjf)_zAﬁV}eru_
i=1 i=lk=1
Since this is symmetrical in the two sets of applied forces Vi . ... V)
and V1. ... V,”, it follows at once that

SVt =S

which proves the theorem.

Now if we analyze the foregoing proof it is seen to depend on the
assumption, first that the network can be described in terms of a set
of simultaneous equations with constant coefficients, and secondly
on the reciprocal relation in the coefficients, Zp=2Zr. In other
words, it is assumed that the currents flow in linear, invariable cir-
cuits, and that the system is what is called quasi-stationary.? What
this means is that the network may be treated as a dynamical system
defined by # coordinates, the # currents I, ... .I, being the veloci-
ties of the » coordinates. More precisely stated, the underlying
assumption is that the magnetic energy, the electric energy, and the
dissipation function can be expressed as homogeneous quadratic
functions of the following form

T=3> > Lalils,

W= %2 ESijij, Ii=d/dt Qj,
D=%3 > Rulils,

where the coefficients Ly, Si, R are constants. Subject to these
assumptions, which, it may be remarked, underlie the whole of electric
circuit theory, the direct application of Lagrange’s equations to the
quadratic functions T, W, D leads at once to the circuit equations (1)
and the reciprocal relation Z;;=Z;;. This is merely a very brief outline
of Maxwell's dynamical theory of quasi-stationary systems or networks.

and

2 See Theorie der Electrizitat, Abraham u. Foppl, Vol. I, p. 254.
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Now in view of the foregoing assumptions and restrictions which
underlie all the proofs of the Reciprocal Theorem, known to the
writer, it is by no means obvious that the theorem is valid when we
have to do with currents in continuous media as well as in linear
circuits, and when, furthermore we have to take account of radiation
phenomena.®* The proof or disproof of the theorem in the electro-
magnetic case is, however, extremely important. The writer there-
fore, offers the following generalized Reciprocal Theorem, subject to
“the restriction noted below.

II. Let a distribution of impressed periodic electric intensity
F'=F'(x,y,3) produce a corresponding distribution of current in-
tensity u'=u'(x, v, 2), and let a second distribution of equi-periodic
impressed electric intensity F'' =F"(x, v, z) produce a second distribution
of current intensity w'’' =u'""(x, y, z), then

JF-udv=f(F" - w)dv, (6)

the volume integration being extended over all conducting and
dielectric media. F and u are vectors and the expression (F-u)
denotes the scalar product of the two vectors.

The only serious restriction on the generality of this theorem, as
proved below, is that magnetic matter is excluded: in other words it
is assumed that all conducting and dielectric media in the field have
unit permeability. This restriction is theoretically to be regretted,
but is not of serious consequence in important practical applications.

PrOOF OF (GENERALIZED RECIPROCAL THEOREM?

In order to prove the generalized theorem stated above it is neces-
sary to discard the special assumption of quasi-stationary systems
underlying Rayleigh’s theorem, and start with the fundamental
equations of electromagnetic theory. These may be formulated as
follows:

div B=0,

div E=4mp,
__12

curl E= Y B,

curl B=41ru+—i- E,

Yl

where ¢ is the velocity of light.

8 The theory of quasi-stationary systems expressly excludes radiation,

*1n the following proof it is necessary to assume a_knowledge on the part of the
reader of the elements of vector analysis; the notation is that employed by Abraham.
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It will be noted that there are only two field vectors, E and B,
instead of the usual four vectors E, D, B, H, where D=kE and
B=uH, and that the constants of the medium % and u do not explicitly
appear. This formal simplification is effected by taking as the current
density

uzl_t-l—-l—@—l—curl M
¢ ot

where = is the conduction current density, P is the polarization:
defined as

k—1

P= 47 E,
and M is defined as
1l u—1
M= i B.
The equation of continuity
. 5}
d -——19
v u Y p

then determines the charge density p.

The advantage of this formulation is that E and B can now be
expressed in terms of the retarded scalar and vector potentials &
and A, as follows:

__ 12,4
E= catA Vb,
B=curl A,

where

q)zf?_(l_rir/(;)d‘_'
Azfu(t:r/c) ..

The notation p(t—r/c) and u(t—r/c) indicates that p and u are taken
not at time ¢ but at time ¢—r/c in evaluating the integrals. It will
be observed that with p and u defined as above, all effects are trans-
mitted with the velocity of light, independently of the characteristics
of the medium, a point of view in accordance with the modern develop-
ment of electromagnetic theory.
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In the application of the preceding equations to our problem, it
will be assumed that M is everywhere zero, so that
1 P

“ut T o

It will be assumed further that w=¢E and, since P=k;1 E,

47
k—11 9
u=(o 47, o 5B

and is therefore a linear function of E. ¢ and k are in general point
functions of the medium. The reason for setting M =0, is that it
appears essential to the following proof that u shall be linear in E;
that is, that the current density at any point be proportional to the
electric intensity.?

With the foregoing very brief review of the fundamental equations,
we are now prepared to prove the generalized reciprocal therorem.
Assuming a periodic steady state, so that 5/of =1w, we start with the
vector equation

E=F-""A-vs (7)

A=f}17ex1)(—%dr)uclv,
@:f% exp(—%dr)p dv.

Here F is the impressed intensity: that is, the electric intensity which
is nol due lo the currents and charges of the system itself. Also by
virtue of the assumption M =0,

(a-l— ]“")E \E,

where

whence (7) can be written as
ut’ f—c (——-kr)ud»—’? ®)

® The question as to whether the generalized theorem itself, and not merely the
foregoing proof, is restricted in general to the case where M is everywhere zero has
not as yet received a conclusive answer. There are reasons, however, which cannot
be fully entered into here, which make it appear probable that the theorem itself
is in general restricted to the case where the current density contributing to the
retarded vector potential is linear in the electric intensity and the two vectors are
parallel. Subject to the hypothesis and assumptions of quasi-stationary systems,
however, the restriction M =0 is not necessary. The writer hopes to deal with these
questions in a future paper.

where G=F — V&,
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Equation (8) is a vector integral equation ® in ©. The nucleus or
. iw . . ]
kernel of the equation, exp (— r) /r,is symmetrical with respect to any
c

two points (x1y,21) and (x.yve2.), the distance between which is 7. By
virtue of this symmetry the following reciprocal relation is easily
established.’

If w' =u' (x,y,2) is a function satisfying equation (8) when G=G'=
G’ (x,v,2) and u'=u" (x, vy, 5) a second function satisfying (8) when
G=G"= G” (x, ¥, 3), then

f'-G"ydv=f (1" G")dv. (9)
Consequently since G=F—v®
S -Fdv— [ -Fydv={{ @ va") (@’ v&')dv. (10)
The proof of the theorem is now reduced to showing that
H (u-vd'") —(u' - yd’) }dv=0.
Now integrating by parts
.J-(u’- v )dv = ——.]-rb” div o’ dv,

i
= ®"p" dv,

since, from the equations of continuity, div u=—"p. But from
C

the fundamental field equations:
drp = — 72 + (’:_") o'
whence
’ 1(u yd) = (u' - yd®’) }d\ = ——( )_J 'y — cp”v?cb’}dv

and by Greens Theorem, the right hand volume integral is equal to
the surface integral

l(iﬁ)fjcb’ D¢l qn’}ds

47 |~ on on
the surface being any surface which totally encloses the volume, and
3/on denoting differentiation along the normal to the surface.

% The formulation of the electromagnetic field equations in this form is of con-
siderable importance. The integral equation furnishes a basis for deve]opmg electric
circuit theory from the fundamental field equations. In addition it leads to the
solution of problems in wave propagation which can not be directly solved from the
wave equation itsell.

7 Perhaps the easiest way to prove this proposition is to regard the integral equa-
tion as the limit of a set of simultaneous equations, a point of view which forms the
basis of Fredholm'’s researches on integral equations,
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Now if the surface be taken as a sphere of radius R, centered at or
near the system, it is easily shown that if R is taken sufficiently large

0 .'_g f__i"'ﬂ '
a—n‘P haR‘I)— CCIJ,
0 n__'ii" rr
aj;b = 6‘1) ,

and the surface integral vanishes. Consequently we have established
the generalized reciprocal theorem

f - Fydv= (" F)dv.

The Reciprocal Theorem [ has long been employed in electric
circuit theory, and has proved extremely useful. As an example of
the practical utility of the generalized theorem II it may be remarked
that it enables us to deduce the transmitting properties of an antenna
system from its receiving properties. The latter may sometimes be
approximately deduced quite simply, as in the case of the wave
antenna, whereas a direct threoretical determination of the former
presents enormous difficulties.



