Impedance of Loaded Lines, and Design of

Simulating and Compensating Networks
By RAY S. HOYT

Synop:1s: A knowledge of the impedance characteristics of loaded lines
is of considerable importance in telephone engineering, and particularly in
the engineering of telephone repeaters. The first half of the present paper
deals with the impedance of non-dissipative loaded lines as a function of the
frequency and the line constants, by means of description accompanied by
equations transformed to the most suitable forms and by graphs of those
equations; and it outlines qualitatively the nature of the modifications
produced by dissipation. The characteristics are correlated with those of
the corresponding smooth line,

The somewhat complicated effects produced by the presence of dis-
tributed inductance are investigated rather fully. In the absence of
d’stributed inductance a loaded line would have only one transmitting
band, extending from zero frequency to the critical frequency. Actually,
howev er, every line—even a cable—has some distributed inductance; and
the effect of distributed induc tance, besides altering the nominal lmpedance
and the critical frequency, is to introduce into the attenuating range above
the critical frequency a series of relatively narrow transmitting bands—
here termed the “minor transmitting bands'—spaced at relatively wide
intervals. The paper is concerned primarily with the impedance in the
first or major transmitting band; but it investigates the minor trans-
mitting bands sufficiently to determine how they depend on the distributed
inductance, and to derive general formulas and graphical methods for
finding their locations and widths—an investigation involving rather
extensive analysis,

The latter half of the paper describes various networks devised for simu-
lating and for compensating the impedance of loaded lines; it furnishes
design-formulas and supplementary design-methods for all of the networks
depicted; and outlines a considerable number of applications pertaining
to lines and to repeaters.

INTRODUCTION

HE present paper on periodically loaded lines (of the
series type) is to some extent a sequel to a previous paper
on smooth lines.!

The reader may be reminded that the transmission of alternating
currents over any transmission line between specified terminal im-
pedances depends only on the propagation constant and the char-
acteristic impedance of the line. In this sense, then, the character-
istics of transmission lines may be classed broadly as propagation
characteristics and impedance characteristics. In telephony we are
concerned primarily with the dependence of these characteristics on
the frequency, over the telephonic frequency range.

Prior to the application of telephone repeaters to telephone lines the
propagation characteristics of such lines were more important than

! Impedance of Smooth Lines, and Design of Simulating Networks,”" this Jeurnal
April, 1923, Two typographical errors in that article may here be noted: p. 37
formula for (5/Cs, affix an exponent * to the last parenthesis; p. 39, value for Cy
replace comma by decimal point.
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their impedance characteristics, because the received energy depended
much more on the former than on the latter. Indeed, the object of
loading * was to improve the propagation characteristics of trans-
mission lines; the effects on the impedance characteristics were inci-
dental, and of quite secondary importance.

The application of the two-way telephone repeater greatly altered
the relative importance of these two characteristics, decreasing the
need for high transmitting efficiency of a line but greatly increasing
the dependence of the results on the impedance of the line. As well
knewn, this is because the amplification to which a two-way repeater
can be set without singing, or even without serious injury to the
intelligibility of the transmission, depends strictly on the degree of
impedance-balance between the lines or between the lines and their
balancing networks. In the case of the 21-type repeater the two
lines must closely balance each other throughout the telephonic
frequency range. In the case of the 22-type repeater, which for long
lines requiring more than one repeater is superior to the 21-type,
impedance-networks are required for closely balancing the impedances
of the two lines throughout the telephonic frequency range. Such
balancing networks are necessary also in connection with the so-called
four-wire repeater circuit.? o

In Parts I, II, and 111 of this paper there is presented.in a simple
vet fairly comprehensive manner the dependence of the characteristic
impedance of periodically loaded lines (of the series type) on the
frequency and on the line constants, by means of description accom-
panied by equations transformed to the most suitable forms and by
graphs of those equations. Also, the dependence of the attenuation
constant on the frequency is presented to the extent necessary for
exhibiting the disposition of the transmitting and the attenuating
bands and thus enabling the characteristic impedance to be described
with reference to those bands, and the important correlation between
the characteristic impedance and the attenuation constant thereby
exhibited; for the characteristic impedance by itself is not fully
significant.

Parts IV to VIII, inclusive, relate to the simulation and the com-
pensation of the impedance of periodically loaded lines by means of

? For the fundamental theory of loaded lines, reference may be made to the original
papers of Pupin and of Campbell (Pupin: Trans. A. I. E. E., March 22, 1899 and
May 19, 1900; Elecirical World, October 12, 1901 and March 1, 1902. Campbell:
Phil. Mag., March, 1903).

* Regarding the broad subject of repeaters and repeater circuits, reference may be

made to the paper by Gherardi and Jewett: “Telephone Repeaters,” Trans.
A L E. E., 1919, pp. 1287-1345.
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the simulating and the compensating‘ networks for loaded lines
devised by the writer at various times within about the last twelve
years. Of course, the impedance of any loaded line could be simulated,
as closely as desired, by means of an artificial model constructed of
many short sections each having lumped constants; but such structures
would be very expensive and very cumbersome. Compared with
them the networks described in this paper are very simple non-periodic
structures that are relatively inexpensive and are quite compact;
yet the most precise of them have proved to be adequate for simulating
with high precision the characteristic impedance of any periodically
loaded line, while even the least precise (which are the simplest)
suffice for a good many applications. The compensating networks
also are of simple form. Design-formulas are included for all of the
networks depicted; and certain supplementary design-methods are
indicated. Finally, a considerable number of practical applications
are outlined (Part VIII).

PART 1
IMPEDANCE OF LoOADED LINES—GENERAL CONSIDERATIONS

Before proceeding to the more precise and detailed treatment of
the impedance of periodically loaded lines in Parts II and III, it
seems desirable to furnish a background by outlining broadly the
salient facts. For this purpose the loaded line will be compared with
its “corresponding smooth line,” that is, the smooth line having the
same total constants (inductance, capacity, resistance, leakance).

Comparison with the Corresponding Smooth Line

At sufficiently low frequencies the impedance of a periodically
loaded line approximates to that of the corresponding smooth line; !
but at higher frequencies departs widely. Moreovyer, the impedance
of the loaded line depends very much on its relative termination—
fractional end-section or end-load (‘‘load” is here used with the same
meaning as ‘load coil” or ‘“‘loading coil”).

To bring out simply and sharply the contrast between a periodically
loaded line and the corresponding smooth line, the effects of dissipa-
tion will at first be ignored, although the contrast is somewhat height-
ened thereby.

It will be recalled that the attenuation constant, the phase velocity,
and the characteristic impedance of a non-dissipative smooth line are

4 Defined in the second paragraph of Part IV.
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independent ® of frequency; such a line having a transmitting band
~ (that is, a non-attenuating band) extending from zero frequency to

infinite frequencies, and a characteristic impedance which is a pure
and constant resistance.

In contrast, the corresponding characteristics of a non-dissipative
periodically loaded line depend very greatly on the frequency; such a
line has an infinite sequence of alternate transmitting and attenuating
bands* wherein the impedance varies enormously with frequency,
while at the transition frequencies its nature undergoes a sudden
change. In this connection it may be remarked that, because of its
special practical importance in being the upper boundary frequency
of the first or principal transmitting band, the lowest transition fre-
quency is termed the “‘critical frequency” to distinguish it from the
other transition frequencies; though in its essential nature each
transition frequency is a “critical’’ frequency. In the ordinary case,
where the distributed inductance is small compared with the load
inductance, each transmitting band is very narrow compared with the
succeeding attenuating band. In the limiting case of no distributed
inductance there is only one transmitting band and one attennating
band, the former extending from zero frequency to the critical fre-
quency and the latter from the critical frequency to infinite frequencies.

The characteristic impedance of any non-dissipative transmission
line is or is not pure reactance according as the contemplated frequency
is in an attenuating band or in a transmitting band. For in an at-
tenuating band the line cannot receive energy, since it cannot dissipate
any energy and cannot transmit any energy to an infinite distance;
while in a transmitting band the line must receive energy, because it
does transmit. Thus, at the transition frequency between an attenu-
ating band and a transmitting band the characteristic impedance
undergoes a sudden change in its nature; the frequency-derivative
of the impedance (namely, the derivative of the impedance with
respect to the frequency) is discontinuous, so that the graph of
the impedance has a corner (salient point) at a transition frequency.
Moreover, at certain of the transition frequencies of a non-dissipative
periodically loaded line the impedance is zero, and at others is infinite.
The mid-point impedances are pure resistances throughout every
transmitting band. (The “mid-point” terminations are ‘“mid-load”
and '‘mid-section,” that s, ‘half-load" and ‘‘half-section” respectively.)

5 Except for slight change of the inductance, and even of the capacity, with
frequency.

* For distinction, the‘ﬁrst (lowest) or principal trar}smitting ban.d may be termed
the “‘major'’ transmitting band; the others, the ‘““minor' transmitting bands.



418 BELL SYSTEM TECHNICAL JOURNAL

Clearly the characteristic impedance of any dissipative line cannot
be pure reactance at any frequency; for the line receives at its sending
end the energy dissipated within itself. Also, the presence of dis-
sipation renders the frequency-derivative of the impedance continu-
ous at all frequencies; that is, it rounds off the corners on the graph
of the impedance. Dissipation prevents the impedance from becoming
either zero or infinite at any frequency; and in general it prevents the
mid-point impedances from being pure resistances in the trans-
mitting bands.

In the neighborhood of the transition frequencies of the loaded line,
the effects of even ordinary amounts of dissipation may be very large,
thus preventing the impedance from attaining the very extreme values
of the non-dissipative line; but with that exception it may be said
that the contrast between a loaded line and the corresponding smooth
line is merely softened or dulled by the presence of ordinary amounts of
dissipation: The impedance of the smooth line is no longer pure
resistance, and it varies somewhat or even considerably with the
frequency.! The impedance of the loaded line no longer varies quite
so rapidly with the frequency nor attains such extreme values; but,
except at low frequencies, it continues to depart widely from
the impedance of the corresponding smooth line, and to vary
much more rapidly than the smooth line with frequency, besides
varying greatly with its relative termination (fractional end-section
or end-load).

Non-Dissipative Loaded Lines

Except in the neighborhood of zero frequency and of the transition
frequencies, the characteristic impedance of an efficient loaded line
is dependent mainly on the inductance and capacity, only relatively
little on the wire resistance and load resistance, and very much less
still on the leakance. The present paper is confined mainly to non-
dissipative loaded lines; it deals first with the limiting case of no
distributed ' inductance, and then with the case where distributed
inductance is present. By the neglect of all dissipation the number of
independent variables is sufficiently reduced to enable a compre-
hensive, though only approximate, view to be obtained of the char-
acteristic impedance of loaded lines. Such a view is a valuable guide
in engineering work even though in most cases it may be necessary,
for final calculations or verifications, to resort to exact formulas
(Appendix D) or graphs thereof.
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Notation and Terminology

The meanings of the fundamental symbols employed in this paper
can be readily seen from inspection of Fig. 1. Thus, C and L denote
the capacity and the inductance of each whole section between loads,
and L’ the inductance of each whole load; the ratio L/L’ is denoted by
N.  Figs. 1a and 1b represent infinitely long loaded lines terminating

oy
-1 oC
K=H

Fig. 1—A Non-Dissipative Infinitely Long Loaded Line Terminating at: (a) e-Section,
(b) o'-Load

at o-section and ¢’-load respectively; the ratios ¢ and ¢’ will be termed
the ‘“relative terminations.” K and K’ denote the corresponding
characteristic impedances, and 7 and II' the characteristic admit-
tances. Stated more fully, K denotes the e¢-section characteristic
impedance, and K’ the ¢'-load characteristic impedance; similarly
for the admittances I/ and H’. The ‘‘nominal impedance’ and the
“nominal admittance” are denoted by %k and h, respectively; that is,

E=1/h=+/(L+L)/C=~/0+NL'/C, (1)

the nominal impedance of a periodically loaded line being defined
as equal to the nominal impedance of the corresponding smooth
line! Z=X+41V and Z'=X'47Y’ denote relative impedances
and W=U+44iV and W'=U'4+4V" the corresponding relative ad-
mittances, as defined by the equations

Z=K/k, Z'=K'[k, W=H/h, W'=H'/h; (2)

the real components being X, X', U, U’, and the imaginary compo-
nents Y, ¥', V, V', respectively. By (2),

ZW=Z'W=KH=K'H'=1. (2.1)

r denotes the relative frequency, namely, the ratio of any frequency

f=w/27 to the critical frequency f;; that is, i =f/f,=w/w,. 1 denotes
the imaginary operator\/— 1.
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Besides depending on the frequency f, the quantities K, H, Z, W
and K’, H', Z', W' depend on the relative terminations ¢ and ¢’
respectively (Fig. 1). This dependence will not usually need to be
indicated explicitly, but in case of such need the subscript notation
will be found convenient. Thus, K, will denote the o-section char-
acteristic impedance (Fig. 1a); and K,_, the “‘complementary char-
acteristic impedance,”’ that is, the characteristic impedance of the
same loaded line if beginning at the ‘‘complementary termination”—
namely, (1—o¢)-section. As an application of this notation we may
note here the relations

K0=K|’, II():Hl’, K1=Ku’, H1=Ifg’; (22)

the first two relations subsisting because of the coincidence of the
points g-section and ¢’-load for ¢=0 and ¢’=1, and the second two
because of the coincidence for ¢=1 and ¢"=0.

PART 11

IMPEDANCE OF NON-DISSIPATIVE LoADED LINES WITHOUT
DISTRIBUTED [INDUCTANCE

Transmitting Band and Altenuating Band

As already stated, a periodically loaded line without distributed
inductance (Fig. 1, with L=0) has only one transmitting band and
only one attenuating band; the former extending from zero fre-
quency to the critical frequency f, and the latter from the critical
frequency to infinite frequencies. The formula for f; is

fe=1/m/L'C, (3)

L’ denoting the inductance of each load and C the capacity of each
line-section between loads.

From the energy considerations already adduced, it is known that
the characteristic impedance must be pure reactance throughout the
attenuating band, but cannot be pure reactance anywhere in the
transmitting band.

Formulas for the Relative Impedances

The impedance of even a loaded line without distributed inductance
(Fig. 1, with L =0) depends on no less than four independent variables
—namely, the frequency f, load inductance L’, section-capacity C,
and one or the other of the relative terminations ¢ and ¢’. But it is
found that these quantities enter in such a way that the relative
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impedances Z=K/k and Z'=K'/k and the relative admittances
W=H/h and W'=H'/h depend on only two ratios,—namely, the
relative frequency r=f/f,, and the appropriate relative termination
o or o', —as expressed by the equations ®

ol 1 _VI=r4i(1—-20)r (4)
W 1=rP+i(2c—1)r 1—4a(l—a)r*
In particular, for ¢=0.5 amd ¢’ =0.5, respectively,
Zs=1/Ws=1//1-12, (6)
Zs=1/Ws=V1-1. )

Equations (4) and (5} are not restricted to values of ¢ and ¢ less
than unity. On the contrary they are valid for any (real) values of
these quantities—though values much exceeding unity are of infre-
quent occurrence in practice.

Miscellaneous Properties and Relations

Some of the most useful and interesting simple facts deducible from
equations (4) and (5) are noted in the next five paragraphs:

In agreement with the general conclusion already reached from
energy considerations, equations (4) and (5) show that each of the
relative impedances and relative admittances is pure imaginary in
the attenuating band (r>1). In the transmitting band (0<r<1),
each is seen to be complex for all values of the relative terminations
(¢ and ¢'), except that each degenerates to a real value when the rela-
tive termination becomes 0.5.

Throughout the transmitting band (0<r<1), a certain conjugate
property is possessed by each of the quantities Z, W, Z’, W'—namely,
each changes merely to its conjugate when ¢ is changed to 1—o, as
is readily seen from (4) and (5); that is,

Zcr =_Z—1~a, Wcr =Wl—u’, Z’o =7,1—a, W’a =-W,1—o’, (8)

the bar over a symbol denoting the conjugate of the same symbol
without the bar. Thus, complementary characteristic impedances
are mutually conjugate throughout the transmitting band.

At all values of r,
Wot Wia=2Ws,  Z'e+Z'\ 0=2Z"5; (9)

® The equatioms were written in this sequence because, in practice, section-termi-
nation occurs much more frequently than load-termination.
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although relations of this form do not hold for Z and for W'. Each
of the relations (8) and (9) can be inferred also from simple physical
considerations.

Equations (4) and (5) show that W and Z’ are alike in form, and
also W’ and Z, when ¢ and ¢ are regarded as corresponding to each
other; in fact, when s=¢’,

ZZ =WW' =W/Z'=W'/Z=KK'/k* =HH'/k*=1. (10)

Besides, there is the set of perfectly general relations (2.1), which,
of course, continue to hold when ¢=¢".

Equations (4) and (5) show also the existence of the following more
special relations, holding when the relative terminations (¢ and ¢')
have the values 0 and 1, as indicated by the subscripts:

ZoZy=ZyZ) =W W,=W W, =1, (11)
|Zo| =21 =1Z4/| =|Z1'| = |[Wo| = | W | = [ Wy'| = |W)'| =1. (12)

Graphical Representations

Graphical representations of the relative impedances Z=X+41V
and Z'=X'4+1{Y’, based on equations (4) and (5), will be taken up
in the following paragraphs. Evidently it will not be necessary to
consider also the relative admittances W= U4V and W =U'+71"
explicitly, since these are of the same functional forms as Z’ and Z
respectively—as noted in connection with equation (10).

One graphical method of representing the dependence of Z on r and
o is by means of a network of equi-» and equi-c curves of Z in the
Z-plane; likewise the dependence of Z’ on r and ¢’, by means of the
equi-# and equi-¢’ curves of Z’. The analytic-geometric properties
of these curves, as deduced from equations (4) and (5), may be formu-
lated as follows, for any (real) values of ¢ and ¢’ but for 7 restricted
to the range 0 to 1:

(a) r fixed, ¢ varied: Z moves on the circle
(X —1/2v1=P) 4 Vi=1/4(1— 1),
of radius 1/24/1—7* with center at Z=1/2v/1—7
(b) ¢ fixed, » varied: Z moves on the curve
(X2+ V)2 —X2—¥V?2/(20—1)*=0.
(c) r fixed, ¢’ varied: Z' moves on the straight line

X' =Vi-r,
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which is parallel to the X’-axis at a distanceV 1—7* therefrom.

(d) ¢ fixed, ¢ varied: Z' moves on the ellipse
(X'/1)2+(YV/[20'—1])* =1,

whose center is at Z'=0 and +. hose semi-axes along the X’ and
Y’ axes have the lengths 1 and 2¢'—1 respectively.

For values of 7, ¢, ¢’ each between 0 and 1, these facts are exhibited
graphically in Fig. 2. This is a complex-plane chart of the equi-r

2
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Fig. 2—Complex-Plane Chart of the ¢-Section Relative Impedance Z=X+{V and
the ¢"-Load Relative Impedance Z’'=X"4{Y’
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and the equi-o curves of Z, and the equi-» and the equi-¢’ curves of Z'.
The equi-r and the equi-e¢ curves constitute a curvilinear network
superposed on the rectangular background of Z=X41Y; for any
assigned pair of values of r and ¢ the value of Z can be obtained by
finding the intersection of those particular curves of » and ¢, and at
that point reading off the value of Z on the rectangular background.
Similarly for the evaluation of Z’ by means of the network of equi-»
and equi-¢’ curves.

For the ¢'-range and the o-range contemplated in Fig. 2—narmely,
0<¢’'<1 and 0<o<1l—the Z’'-realm and the Z-realm are distinct;
their mutual boundary (drawn dashed) is the unit semi-circle, that is,
the semi-circle of unit radius having its center at the origin. The
Z'-realm is the region inside; the Z-realm is all the region outside,
extending to infinity in all directions through the positive real half of
the complex-plane.

If the ranges of ¢’ and ¢ are extended to include values exceeding
unity, the Z’'-realm and the Z-realm will cease to be distinct but will
overlap. The Z'-realm will expand upward, beyond the unit semi-
circle, and ultimately will fill the region of unit width extending
upward to infinity; the Z-realm will expand into and ultimately will
fill the lower half of the unit semi-circle. Hence for values of ¢" and ¢
exceeding unity it is preferable to employ individual charts in repre-
senting Z’ and Z.

In the language of function-theory it may be said that, when ¢’ =g,
the Z’'-realm and the Z-realm are inverse realms with respect to the
unit semi-circle. The straight lines and the circles are inverse curves;
the ellipses, and the curves characterized by the equation (X4 ¥*)2—
X2—Y?/(20—1)*=0 are also inverse curves.

For =0 it is seen that Z’=Z =1 for all values of ¢ and o.

For values of r equal to or greater than unity, Z' and Z are pure
imaginary, for all values of ¢’ and ¢. For r=1, Z’ lies somewhere on
that part of the imaginary axis constituting the vertical diameter
of the unit semi-circle, its position thereon depending on the par-
ticular value of ¢’ contemplated; while Z lies somewhere on the
remainder of the imaginary axis. When # approaches infinity, Z’
approaches infinity and Z approaches zero, along the imaginary axis.

Another graphical method of representing the relative impedances
Z=X+1i¥V and Z'=X'+4Y’, based on equations (4) and (5), is by
means of the Cartesian curves of the components X, ¥ and X', V7,
with the relative frequency r taken as the independent variable and
the relative termination (¢ or ¢’) as the parameter.
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In this way, Fig. 3 represents X' and Y’, and Fig. 4rrepresents:X
and Y, all to the same scale. In each of these figures the r-range’is
0 to 1.5, thus including the entire transmitting band and a portion of
the attenuating band half as wide as the transmitting band. In the
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Fig. 3—Components of the ¢’-Load Relative Impedance Z’' =X'+{V’

attenuating band, Z’ and Z are pure imaginary; in the transmitting
band they are complex in general, though real for ¢'=0.5 and ¢=0.5.

Because in practical applications the transmitting band is much
more important than the attenuating band, Fig. 5 has been supplied
in order to represent X and ¥ in the transmitting band only, but to a
considerably larger scale and for more values of ¢.

If o is read for ¢’, Fig. 3 will represent U and V instead of X' and ¥’
respectively. If ¢’ is read for o, Fig. 4 will represent U’ and V' instead
of X and Y; so also will Fig. 5.

From Fig. 5 it will be observed that, in a certain range of o, each
curve of X has a maximum at some point within the transmitting
band (0<r<1). For any fixed value of ¢ (in the range found below)
the corresponding maximum of X and the particular value of r (critical
value) at which the maximum occurs are expressed by the formulas

Max. X =[1/4(1—20)V a(1—a)|,
.. o |8e(1=0)—1
Crit. r= mv

as is readily found from the formula for X—namely, the real part of
formula (4). The formula for Crit. r shows that the ¢-range in which
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X, regarded as a function of r, has a maximum within the trans-
mitting band (0<r<1) is

(V2—1)/2v2<a < (V2+1)/2V/2,

that is, approximately,
0.146 <o <0.854.

For values of ¢ outside of this range, X has no maximum within
the transmitting band; but X has then its largest value at r=0,
decreasing from 1 at r=0 to 0 at r=1. When o¢=1/2, Crit. r=1;
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when ¢ ranges from 1/2 to either of its extreme values appearing in the
foregoing inequality for ¢, Crit. r decreases from 1 to 0.
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Fig. 5—~Components of the o-Section Relative Impedance Z=X+iY in the Trans-
mitting Band

PART 1II

IMPEDANCE OF NoN-DissipaTIVE LoaDED LINES WITH DISTRIBUTED
INDUCTANCE

Disposition of the Transmilling and the Attenuating Bands

It will be recalled that a loaded line without distributed inductance
has only one transmitting band and only one attenuating band. In
contrast, a loaded line (Fig. 1) with distributed inductance L has (as
shown in Appendix A) an infinite sequence of alternate transmitting
and attenuating bands; beginning with a transmitting band extending
upward from zero frequency to the first transition frequency which,
because of its special practical importance in being the upper boundary
frequency of the first or principal transmitting band, is termed the
‘“critical frequency’ to distinguish it from the other transition fre-
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quencies. The critical frequency will be denoted by f;; also by fi—
particularly when regarded as the first transition frequency. The
relative frequency will be denoted by 7, that is,

r=f/fe=f/f1. (13)
Evidently r;=1. General formulas for all of the transition frequencies
are furnished a little further on. For the case of no distributed
inductance (L=0), there is only one transition frequency—the
critical frequency—and it has the value expressed by equation (3).
When necessary for distinction, the critical frequency for the case
of no distributed inductance will be denoted by f., also by f,’; thus,

f'=f'=1/=/L'C. (14)

The ratio of the critical frequency of any loaded line to the critical
frequency of the same loaded line without distributed inductance
(L =0) will be denoted by p; that is,

p=r/f =h/f\. (15)
p can be evaluated by means of formula (22).

It is convenient to employ the term “‘compound band” to denote
the band consisting of a transmitting band and the succeeding at-
tenuating band. It is shown in Appendix A that, for any specific
loaded line, the widths of all the compound bands are equal; though
the transmitting bands become continually narrower with increasing

° g ﬂ fnﬂ)ﬁ ng
D D, D Dn Dnss
Du,1 D1,2 02,3 PI‘H, n Pn.nﬂ
n' transmitting band}n attenuating barq
DrieVLO ' th —_—
N"" compound band

Fig. 6—Scale Showing the Disposition of the Transmitting and the Attenuating
Bands of a Periodically Loaded Line (Fig. 1) with Distributed Inductance

frequency, while the attenuating bands become continually wider.
These facts are represented on the D-scale in Fig. 6, D being propor-
tional to the frequency f. Fundamentally D denotes the quantity
%w\/ LC; but, by the substitution of A\=L/L’, and of r and p defined
by (13) and (15), D can be written in the following four identically
equivalent forms:

D=}wVLC=3o\AL'C=rp\/\=rD,. (16)
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It is of some interest to note that D=§w\/ LC is equal to one-half the
“phase constant” (‘wave-length constant”) of each section of line
(L, C) between loads. In Fig. 6 the compound bands are numbered
1,23, ...,n ... Thus D, denotes the transition value of D
within the nth compound band; that is, D, is the value of D at the
transition point between the nth transmitting band and the nth
attenuating band. D, denotes the transition value of D between
the nth and (n+1)th compound bands; and hence the transition
value of D between the nth attenuating band and the (n+1)th trans-
mitting band. The corresponding values of f and of @ would be cor-
respondingly subscripted. By (16),

Dn=§,w,,\/17=a}w,.\/?\L'C=!‘nP\/i;—‘ raDy; 7)

and similarly for D,_;, and D, ,4+,. In particular, D,=p\/): since
ri=1. As shown in Appendix A,

Dyyu=m—17/2, Dy pyr=nm/2. (18)
Thus the D-width of each compound band is =/2, that is,
Dynr—Dy—1n=m/2; (19)

and hence, by (16), the f-width has the value
Fontt—fuoin=1/2VLC=1/20/NL'C=f/'/2/\. (20)

If 7, denotes the D-width of the nth transmitting band,—that is,
tw=Dn—D,_1.—then the f-width has the value

Fu—fuotm=1u/ TV LC=12/ TV NI C=1aft [V (20.1)

With regard to the nth compound band it will be noted that there
are two kinds of transition points—namely, the internal transition
point D,, and the boundary transition points D,_1, and D, .41
This distinguishing terminology will be found convenient in connect-
tion with the transition frequencies also.

As indicated by Fig. 6, the widths of all the compound bands are
equal; but with increasing n the width of the nth transmitting band
continually decreases toward a width of 0, while the nth attenu-
ating band continually increases toward a D-width of 7/2; so that
the infinitely remote compound bands are pure attenuating bands,
the infinitely remote transmitting bands being vanishingly narrow.

The situation of the critical value D, of D within the nth com-
pound band has no such simple expressions as have the boundary
points D,_y , and D, ,1; for Dy is a root of a transcendental equation
and can be expressed only by an infinite series of terms or of opera-
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tions. In Appendix A a power series formula has been derived for
D, in terms of A=L/L" and D,_,,=n—1)r/2; if, for brevity, the
somewhat cumbersome (though expressive) symbol D, _,, is denoted
by d,, this power series is i

ek )+ G- - G- Q)

14 5 1 AN? 42 56 23 A\S
gz ts) () — Gamtig) @)+ @
valid for n=2,3,4, . . . but not for n=1. For n=1, so that D,=D,,

it is shown in Appendix A that the appropriate formula is?

11)\2 1783 281\ 44020)\5
Dl_\/)\( 360 ~ 5040 604800 ' 119750400 ° " ) (22)

Since, by (16), p=D./\/)\, the series for p is the series in the paren-
thesis; see also (23-A) in Appendix A. Alternative series-formulas for
evaluating D, and D, are derived in Appendix A—formulas (23-A)
and (23.1-A) for Dy, and (20.2-A) for D,. It may be observed that
Dy—dy<\/dy, that D;<V\, and that 1—p<\/6.

The smaller A, the more convergent are these formulas. Formula
(22) is highly convergent, even when X is as large as unity or even
somewhat larger. The convergence of formula (21) depends very
much on d, and hence on #: when # is large, (21) is satisfactorily con-
vergent even for fairly large values of A; but when # is small, (21) is
satisfactorily convergent only for rather small values of A.

As a supplement to or as an alternative to formulas (21) and (22)
there will now be given a widelv applicable formula of successive
approximation for Dy, valid for all the values of n—including n=1—
and suitable even for large values of \. With D,—d, (the D-width
of the nth transmitting band) denoted by 7,, this formula (derived
by Newton's general method of approximation) is:

» AT+ Nsin 1 cos 7,/ —d, sin® 1,/

A+sin? 7,/ ! (22.1)

Tn

wherein 7,’ is some approximate known value of 7,, and 7,”" is a more
accurate approximate value yielded by the formula. +,”, in turn,
is to be used in the formula to compute a still more accurate ap-
proximate value 7,/ ’; and so on, through as many cycles as may be

?From the sequence of signs in this formula, namely —+ ——+, the sign of the

next term is not evident. A similar remark applies to formulas (23-A) and (23.1-A)
in Appendix A.
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necessary—usually not more than two or three, though occasionally
four. First-approximation values for 7, are:

r_)‘ A . £
Tn _d,,(l dT”) when n £1,

7' =v/X (1—=2\/6) when n=1,

as can be scen from (21) and (22) respectively. When n=1, r,=D,
since d1=0 by the first of (18).
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Fig. 7—Graphs of 1—p Representing the Fractional Lowering of the Critical
Frequency by Distributed Inductance

D, having been evaluated, the transition frequency f, between
the nth transmitting band and the nth attenuating band is calculable

immediately from

_ D. _ Dy _Dyf
Ie= T T aALe - N (23)
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derived from (17) supplemented by (14). Formula (23) is wvalid
also when # =1, with D, evaluated from one of its appropriate formu-
las; the resulting formula for the critical frequency f,=f, reduces to

fi=fe=pVN/aVLC=p/=V/L'C=pf. =pf!, (24)

because D1=p\/)\, by (16); it is seen that (24) is consistent with (15).

For use in (24) and for certain other purposes to be met later, Fig. 7
gives graphs of 1 — p, calculated by (22) and also (22.1), for a wide range
of . Up to the present time the largest value of A occurring in prac-
tical applications in the Bell System is about 0.12; Fig. 7 covers

1.0
Tn=Dn-Dn-yn=Dn-dn=Drr ()12 = N=1
9 T
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Fig. 7.1—Graphs for Finding the Widths of the Transmitting Bands

about eight times this range. Inspection of it shows that the graph
of 1—p is sensibly a straight line up to values of r somewhat larger
than even 0.12; and that 1—p is only slightly less than A/6, which is
merely the first term in the power series formula for 1—$ obtained
from (22).

The graphs in Fig. 7.1—constructed by means of formulas (22.1),
(22), (21)—represent directly the dependence of the D-width 7,=
D,—D,_,, of the nth transmitting band on X and #, for a wide range
of A and the first eight values of #. The f-width is then obtainable



LOADED LINES AND COMPENSATING NETWORKS 433

immediately from (20.1); and f, from (23), since Dy=1y,+ (n—1)x/2.
In particular, the graph for n=1 is a graph of D;; but D—and hence
Ji—can be evaluated much more precisely by means of Fig. 7 described
in the preceding paragraph.

The boundary transition frequencies f,_y, and f,,41 of the nth
compound band (any compound band) depend on only one para-
meter (besides #)—namely, the product LC. The internal transi-
tion frequency f, depends on two independent parameters (besides 1)
—namely, the product LC and the ratio A=L/L’. Hence, fixing LC
fixes all of the boundary frequencies of the compound bands; fixing
LC and \ fixes all of the transition frequencies—boundary and in-
ternal.. Fixing any .one boundary frequency fixes LC and thereby
fixes all of the remaining boundary frequencies; fixing any two transi-
tion frequencies of which at least one is an internal transition frequency
fixes LC and X and thereby fixes all of the remaining transition fre-
quencies—boundary and internal.

The relative widths of all the transmitting and attenuating bands
depend on only one parameter—namely, the ratio A\=L/L’. Hence,
fixing A fixes the relative widths of all these bands; fixing the ratio
of the widths of any two bands not both of which are compound
bands fixes A and thereby fixes the relative widths of all the trans-
mitting and attenuating bands.

The effect of increasing X\, when L’C is fixed, is to lower the critical
frequency f.=f1, the critical frequency approaching zero when A
approaches infinity. But for even the largest values of A met in
practice the critical frequency is not much lower than for A=0; the
fractional decrease (f.—f.)/f. produced in the critical frequency by
increasing A from 0 to any value X\ is exactly equal to 1—# and hence
for any ordinary value of X\ is, by (22), closely equal to A/6 (which
is only 0.02 for A=0.12). It is interesting to note that the nominal
impedance—defined by equation (1)—is increased about three times
as much as the critical frequency is decreased; for the fractional
increase in the nominal impedance is exactly’V14+A—1, and hence
approximately A/2.

All the transition frequencies are reduced by increasing A, when L'C
is fixed. The transition frequencies bounding the compound bands,
and hence the widths of the compound bands, decrease in direct pro-
portion to an increase of VA, But the values of the internal transi-
tion frequencies do not decrease so rapidly; for the ratio of transmitting
band width to attenuating band width increases with increasing X\.
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The effect of adding distributed inductance L to a loaded line
(L', C) having originally none is to replace the previous single com-
pound band of infinite width by an infinite number of compound
bands each of finite width. The larger L the narrower are the com-
pound f-bands, and the further to the left they are situated. Although,
as already noted, increasing L decreases the critical frequency, it
increases the relative width of each transmitting band—namely, the
ratio of the width of each transmitting band to the compound band of
which it is a constituent. Thus, when L becomes very large (so that
LC and A become very large) there are within even a moderate fre-
quency-range a very large number of compound bands whose trans-
mitting constituents are very wide compared with the attenuating
constituents. :

The effect of applying lumped loading to a given smooth line (L, C)
is to introduce into the previous transmitting band of infinite width
an infinite number of attenuating bands whose upper boundary points
are equidistant and whose widths continually decrease toward the
‘lower frequencies. When the inductance L’ of the loads is con-
tinually increased the attenuating bands continually increase in
width as a consequence of their lower boundary points moving down-
ward to lower frequencies, so that ultimately the attenuating bands
fill the entire frequency scale from zero to infinity. An alternative
but equivalent statement regarding the effect of applying lumped
loading is that the previous pure transmitting bands, each of D-
width equal to 7/2, become compound bands whose attenuating
constituents continually increase in width when L' is increased.

(The four preceding paragraphs are based on the last five para-
graphs of Appendix A.)

In Fig. 6 the transmitting bands are represented as being relatively
narrow compared with the attenuating bands. In existing loaded
lines this is indeed the case, but it is not an inherent relation: for any
number of the transmitting bands can be made wider than the associ-
ated attenuating bands by so designing the loading (lumped or smooth
or both) as to secure a sufficiently large value of the ratio A=L/L".
(However, for any fixed loading and hence a fixed value of A, there
is some frequency beyond which the transmitting bands are narrower
than the associated attenuating bands.)

There will now be given two examples illustrating the relations rep-
resented in Fig. 6, and illustrating also the applications of certain
of the foregoing formulas and graphs.

The first example pertains to a heavily loaded open-wire line of
No. 12 N. B. S. gauge, having loading coils of inductance L'=0.241
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henry at a spacing of s=7.88 miles. - The line has a capacity of
00835 10-¢ farad and an inductance of .00367 henry, each per mile;
whence, for each line-segment between loads, C=.0658X10-% farad
and L =.0289 henry. Therefore A=0.12. With X\ known, the internal
transition frequencies f, (with #=1,2,3,4,...) can be readily
evaluated from (23) through the values of D, obtainable from Fig. 7.1.
However, when particularly high accuracy is desired for the first
transition frequency fi—the critical frequency—this can be attained
by resort to formula (22) or to (22.1), or else to Fig. 7; it is thus found
that 1—p=.0196, whence »=0.9804, and then f,=2479 cycles per
second, by (24). The f-width of each compound band is 11464, by
(20). The following table shows the locations and widths of the first
five (n=1, 2, 3, 4, 5) transmitting bands and associated attenuating
bands of this loaded line. The numbers in the columns headed f,_,
and f, are the transition frequencies constituting, respectively, the
lower and upper boundary points of the transmitting bands; and the
numbers in the column headed f,—f,_;, are therefore the widths of
the transmitting bands. The next to the last column shows the rela-
tive widths of the transmitting bands, referred to the first or principal
transmitting band—whose width is fi—0=f;=2479, the critical fre-
quency being 2479. Similarly, the last column shows the relative
widths of the attenuating bands.

P N I S } Sumtncrn | Unmfocrdffi | nmr=f
1 .3396 0 2,479 | 2,479 1.000 3.625
2 L0729 (11,464 | 11,996 | 532 .215 4.410
3 | 0377 22928 23203 975 111 4,514
4 .0253 134,392 | 34,577 185 074 4.551
5 L0190 | 45,856 | 45,995 139 | .056 4.569

|

It will be observed that the transmitting bands decrease rapidly in
width at first, then more and more slowly; and that the associated
attenuating bands are relatively very wide. For instance, the second
transmitting band (0.215) is only about one-fifth the width of the first
(1.000), and the second attenuating band (4.410) is more than twenty
times the width of the second transmitting band (0.215).

The second example pertains to a hypothetical, though not neces-
sarily impracticable, loaded line. Before loading, the line is the same
as in the first example; but it is very lightly loaded—namely, with
loading coils of inductance L'=.0578 henry at a spacing of s=15.76
miles. Hence, C=0.1316X10-% farad and L =.0578 henry. Therefore
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A=1. The following table shows the locations and widths of the first
eight transmitting bands and attenuating bands. The critical fre-
quency is f1=3140, and the f-width of each compound band is 5732,

n Tn fn—].» fu fu—TFu—1n (fn— n—l.n)/fl (_fn.n+l*,lrn) /fl
1 . 8604 0 3,140 | 3,140 1.000 ! .826
2 4579 | 5,732 | 7,403 | 1,671 .532 1.294
3 .2840 | 11,464 {12,500 | 1,036 .330 1.496
4 .2008 | 17,196 | 17,929 733 . 234 1.592
5 .1541 | 22,928 | 23,490 562 179 1.647
6 .1247 | 28,660 [29,115 455 . 145 1.681
7 .1046 | 34,392 | 34,774 382 . 122 1.704
8 .0900 (40,124 |40,452 328 .105 1.721

Comparison of this table with that of the first example brings out the
great diversity between the two examples: the minor transmitting
bands in the second example are relatively and absolutely much wider
and situated at much lower frequencies than in the first example. In
the second example the first or principal transmitting band is some-
what wider than the first attenuating band.

A further application of the foregoing formulas and graphs is to
obtain a precise and explicit solution of the important practical problem
of loading a given smooth line with lumped loading to secure specified
values of the critical frequency fi; and nominal impedance k. The
design-problem consists in determining the requisite values of the load
inductance L’ and load spacing s in terms of f; and k and the known
values of the inductance and capacity, L’ and C”, per unit length
of the given smooth line. Since L=sL’” and C=sC", the solution
can be obtained as follows: Substituting L'=sL’’/\ into (1) and
solving for A gives

" 1
A =—L'Lf—ﬁ .
pP—-L"/C

Then D, becomes known by means of Fig. 7 or Fig. 7.1 or formula (22)
or (22.1). Next, s becomes known from (23) or (24):

s=Di/nfrV/L"C".
Finally, from these formulas for A and s together with the relation
L'=sL"/\, it follows that
, Di(R—L"/C")
L =
Tfl\/L”/C”
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The Relative Impedances

The formulas for the impedances and admittances of a non-dissipa-
tive periodically loaded line (Fig. 1) with any amount of distributed
inductance L will next be set down, and discussed somewhat, with
particular regard to the transmitting and the attenuating bands of
the loaded line.

As before, it is convenient to deal with the relative impedances
Z,Z' and the relative admittances W, W’ defined by equations (2).
Special attention is given to the particular values Zj5, Z's, Wi, W'
corresponding to mid-point terminations.

It is found that Z, Z/, W, W' can be expressed in terms of three
independent quantities—namely, the relative frequency r=f/f,, the
inductance ratio A=L/L’, and the relative termination ¢ or ¢'. For
most applications the quantity »=f/f. is more significant than any
other quantity proportional to the frequency f, and on that score it
would be desirable to employ it explicitly in the formulas for the
impedances and admittances. However, the formulas are rendered
considerably more compact by employing the quantity D defined by
equation (16). Whenever desired, D can be expressed in terms of r,
A, and p by means of (16); and thence in terms of  and X by means
of (22).

Because of their special importance the formulas for the mid-point
relative impedances and relative admittances will be set down first.
From Appendix D these formulas are found to be

_i 'A+D cot D
2=, = \jh+1 *—D tan D' (25)
, 1 (A +DcotD) A—DtanD)
Z's=yr =N\ AT ' (26)
[ N4+2MD cot 2D — DE‘ 26.1
B \, AOFD) (26.1)

From these formulas it can be verified that Z; and Z’; are pure
imaginary throughout every attenuating band, and it can be seen
that they are pure real throughout every transmitting band.

A study of equations (25) and (26) brings out also the following
facts regarding the variation of Zs and Z'; in the transmitting and
the attenuating bands, with increasing frequency:

In the first transmitting band, Z; ranges from 1 to «, but in all
of the other odd transmitting bands it ranges from o« to «, through
finite intervening values; in the even transmitting bands it ranges
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from 0 to 0, through finite intervening values. In the odd attenu-
ating bands it ranges from —z% to —10; and in the even attenuating
bands it ranges from +:0 to +¢%.

In the first transmitting band, Z’; ranges from 1 to 0, but in all of
the other transmitting bands it ranges from <« to 0. In all of the
attenuating bands it ranges from 410 to 417 %.

These facts are illustrated by Fig. 8, which gives graphs of Z; and
Z's over a range of three compound bands, as functions of r=f/fi=
D/D,, with A=0.12; also with A=0, for comparison. On the scale
there used, the curves for the two values of A are indistinguishable
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Fig._8—Mid-Section Relative Impedance Zs=X;+i¥; and Mid-Load Relative
_ i Impedance Z’'s=X"; +i¥’; Over a Range of Three Compound Bands



LOADED LINES AND COMPENSATING NETWORKS 439

throughout the first transmitting band (0<r<1) and a considerable
part of the succeeding attenuating band; but depart widely beyond.

The exact formulas for Z, Wand Z’, W’ for any terminations ¢ and ¢’
can be written in the forms

41 _Zscot 20— D)D+iv3(1+N) (@)

W cot (20— 1)D+iZsn/ TN /N
_1_ 1:(20'—1)1)
W TN

z' (28)

These equations are not restricted to values of ¢ and ¢’ less than
unity; they are valid for any (real) values of these quantities. When
A=0, they reduce immediately to (4) and (5) respectively.

From (27) and (28) it is readily verified that Z and Z’ are pure
imaginary throughout every attenuating band, and it can be easily
seen that they are complex throughout every transmitting band;
because Z; and Z';are pure imaginary throughout every attenuating
band, and pure real throughout every transmitting band.

It is seen from (27) and (28) that, throughout every transmitting
band, each of the quantities Z, W, Z’, W’ changes merely to its con-
jugate when o is changed to 1—¢. Thus the conjugate property
expressed by equations (8) is not limited to loaded lines without
distributed inductance but holds when there is any amount of dis-
tributed inductance. Thus it continues to be true that complementary
characteristic impedances are mutually conjugate—throughout every
transmitting band. For Z’ and W', these facts are readily seen from
physcial considerations also; though not so readily for Z and W.

From physical considerations, as well as from equation (28), it is
readily seen that Z’ continues to possess the property expressed by
the second of equations (9); on the other hand, W no longer possesses
the property expressed by the first of (9).

We shall now return to the important formulas (25) and (26) for
the mid-point relative impedances in order to discuss them for small
values of N such as occur in practice, and particularly for a frequency-
range not greatly exceeding that of the first transmitting band. For
this purpose it is advantageous to write these formulas in the following
forms, notwithstanding some sacrifice of compactness:

1 f)g+DcotD/ f _ Dtan D
2w Nkt [N Dan Dy (29)
, 1 INt+DcotD ﬁDtan'D_
Z-“*W'f\/ "F1 1= b tan Dy (30)
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For the discussion of these it should be recalled that D:Em\/J\L’C
and r=D/D,=f/fi=f/f.; also that D, tan D, =\, whence D, is approx-
imately equal toV/A when A is small.

Equations (29) and (30) are in such form as to exhibit the manner
in which Z; and Z’5 approach their simple limiting values for A=0,
represented by equations (6) and (7) respectively. For when A
approaches 0, D cot D and D tan D approach 1 and D? respectively;
and for values of \ even larger than the largest (about 0.12) occurring
in practice, D cot D and D tan D respectively are at least roughly
equal to 1 and to D? throughout even more than the first transmitting
band.

The expression for Z s reduces immediately to 1/V 1—7* when M is
zero. When M\ is not zero, Z;is less than 1/\/1—1'2 for all values of
r in the first transmitting band (0 <7 <1); when 7 increases from 0 to I,
Z.; increases from 1 to e=.

The expression for Z'; reduces immediately to V1—7r2 when \ is
zero. Even when \ is several tenths, Z’s is very closely equal to
V' 1—172 for all values of 7 in the first transmitting band; when r in-
creases from 0 to 1, Z’; decreases from 1 to 0.

Effects of Distributed Inductance; the “Simulative Loaded Line'"

The above-described relations are exemplified in Fig. 9, which
gives graphs of Z; and Z’; over the first transmitting band and part
of the succeeding attenuating band, as functions of r, with X as para-
meter equal to 0.12 and to 0. It is seen that the curves of Z ; for the
two values of A do not differ much in the transmitting band (0 <r<1);
and that the curves of Z’'; for the two values of A are indistinguish-
able—on the scale there used.

In order to indicate more precisely to what extent the forms of Z;
and Z’jare affected by the presence of distributed inductance, as
specified by A=L/L’, Fig. 10 has been prepared. This gives a graph
of the ratio of the values of Z; for A=0.12 and A=0; and likewise
of Z's. That is, formulated in functional notation, it gives graphs
of Zs(r,\)/Zs(r,0) and Z'; (r,\)/Z'5(r, 0). From these it is seen
that, in the transmitting band, the mid-section ratio (first ratio) and
the mid-load ratio (second ratio) do not differ from unity by more
than four per cent. and one-tenth of one per cent., respectively.
These observations—particularly the second—suggest that, at least
over the whole of the first transmitting band, the impedance of a non-
dissipative periodically loaded line with small distributed inductance
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can be rather closely simulated by a periodically loaded line without
distributed inductance but with suitably chosen load-inductance Lo’
and section-capacity Cy. The utility of this observation resides

2 — X

2

Fig. 9—Mid-Section and Mid-Load Relative Impedances Z; and Z’; Over the First
Transmitting Band and Part of the Succeeding Attenuating Band
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Fig. 10—Ratio Curves Showing Effects of Distributed Inductance on the Forms
of the Curves of Z; and Z’ ;

ultimately in the fact that the formulas for loaded lines without
distributed inductance are much simpler than those for loaded lines
with distributed inductance.
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For mid-section or for mid-load termination the simulation of the
effects of distributed inductance described in the preceding para-
graph can be made exact at two different frequencies simultaneously,
and the requisite values of the load-inductance Lo" and section-capac-
ity Co of the simulating loaded line thereby determined. This simulat-
ing loaded line will be termed the ‘‘simulative loaded line” corre-
sponding to the two particular frequencies contemplated.

In many applications a suitable simulation can be attained by
imposing the conditions that the simulating loaded line (L', Co) shall
have the same nominal impedance k and critical frequency f. as the
actual loaded line (L', L, C). The particular simulating loaded line
so determined will be called the *‘principal simulative loaded line’;
evidently its load-inductance Lo’ and section-capacity Co are deter-
mined in terms of & and f. and also in terms of L', L, C by the pair of
equations

k=+/(L'+L)/C=~/L//Co, (31)
fe=p/7VL'C=1/n/LCy, (32)

of which (31) corresponds to (1), and (32) to (15) and (14) combined
or to (24). The solution of the pair of equations (31) and (32) is the
pair of values

Lo =L'(\/1+N) /p=Fk/xf., (33)
Co=C/pN/THr=1/nfk. (34)

In conjunction with (22), these formulas show that Ly >L"and Co <C;
in fact they show that Lo’/L’=142XA/3 and Co/C=1—\/3, as first
approximations; precise values of these ratios can be readily calcu-
lated by substituting for p the power series contained in equation (22).

The simulative precision of the ‘‘principal simulative loaded line”
depends on the value of the relative termination (¢ or ¢'). The
simulation is far more precise for mid-load termination (¢'=0.5)
than for mid-section termination (¢=0.5); this can be seen by de-
veloping in power series the functions involved; for A=0.12 the fact
is illustrated by Fig. 10 already cited. The simulative precision for
other terminations will not be discussed here, beyond remarking that
the “principal simulative loaded line” terminating at ¢’-load could
not exactly simulate the actual loaded line terminating at ¢'-load,
even if the simulation were exact at 0.5-load; for the excess-inductances
(¢'—0.5)Ly’ and (¢’—0.5)L’ are not exactly equal, the former being
slightly the larger—as shown by equation (33). However, the small-
ness of the impedance-departure between the ‘“‘principal simulative
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loaded line'" and the actual loaded line when both lines terminate at
mid-load can be identically preserved for any other load-point termina-
tion of either line by so choosing the load-point termination of the
other line that the excess inductance of its end-load beyond half load
has the same value. This fact should be kept in mind when designing
simulating and compensating networks, particularly such as pertain
to a loaded line that terminates with a fractional load; also when
choosing the relative termination ¢’ of the fractional load.

Some idea as to the simulative precision of the propagation constant
I'=A+iB of the “principal simulative loaded line” can be obtained
from Fig. 22 in Appendix A. For the present purpose the graphs
for A=0 can be regarded as pertaining exactly to the “‘principal simu-
lative loaded line” corresponding to any non-dissipative periodically
loaded line having any amount of distributed inductance, while the
graphs for A=0.12 are for any non-dissipative loaded line having
the particular inductance ratio A=0.12. Of course, 4 is zero in the
range 0 <r<1.

PART 1V

NETWORKS FOR SIMULATING AND FOR COMPENSATING THE IMPEDANCE
oF LoADED LINEs—GENERAL CONSIDERATIONS

The remainder of the paper relates to the simulation and the com-
pensation of the impedance of periodically loaded lines by means of
the simulating and the compensating networks devised by the writer,
as mentioned in the latter part of the Introduction.

The term ‘‘compensating network” requires at least a tentative
definition. The compensating networks dealt with in the present
paper are of two types: reactance-compensators, and susceptance-
compensators. For the present they may be defined—rather nar-
rowly—with reference to the first transmitting band of non-dissipative
loaded lines, as follows: a reactance-compensator is a network that
neutralizes the characteristic reactance of the line and hence simu-
lates its complementary characteristic reactance; a susceptance-
compensator is a network that neutralizes the characteristic sus-
ceptance of the line and hence simulates its complementary character-
istic susceptance.

As actually worded, this division (Part IV) of the paper pertains
mainly to the simulation of loaded lines; but with appropriate slight
changes of wording most of it pertains also to compensation. Com-
pensation is dealt with explicitly in portions of Parts V and VIII of
the paper.
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The simulating and the compensating networks were devised from
purely theoretical studies of the characteristic impedance and ad-
mittance of periodically loaded lines as dependent on the frequency
and on the relative termination, in somewhat the same way as the
previously described ! networks for smooth lines were devised from
purely theoretical studies of the characteristic impedance of smooth
lines as dependent on the frequency.

Building-out Structures, Basic Networks, and Excess-Simulators

Although the characteristic impedance of a periodically loaded
line depends greatly on its relative termination (¢ or ¢’), yet there is
no need of attempting to devise various independent networks cor-
responding to various relative terminations of the line. For any net-
work that will simulate the line-impedance at any particular relative
termination can be ‘‘extended” or ‘‘built-out” to simulate it at any
other relative termination by merely supplementing the network
with an “extension network’ or ‘‘building-out structure” in the
nature of an artificial line structure corresponding as closely as may
be necessary to the portion of actual line structure included between
the two relative terminations contemplated. Simulation can be
attained also by building-out the line instead of the network, or by
building-out both the line and the network to any common relative
termination; but in practice these alternatives are not usually per-
missible, the usual requirement being the simulation’ of a given fixed
line. (In present practice, the line is terminated usually at mid-
section [¢=0.5], or as closely thereto as practicable.)

The term ‘“‘basic network’ will be used to denote a network which
simulates the characteristic impedance of a non-dissipative periodically
loaded line without the network’s containing in its structure any
building-out elements. Regarding the loaded line, the particular
relative termination to which the basic network pertains will be
termed the ‘‘basic relative termination’ of the loaded line, and will
be denoted by o5 or o5’ whenever a symbol is needed for it. (For the
kinds of basic networks thus far devised, ¢ and ¢’ lie between about
0.1 and about 0.2, that range having been found to include the rela-
tive terminations most favorable to the design of those kinds of
basic networks.) The foregoing terms, when used in connection with
a dissipative loaded line, will be understood to refer to the corre-
sponding non-dissipative loaded line. A considerable number of
kinds of basic networks will be described in Part V supplemented

by Part VI.
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The amount by which the characteristic impedance of any peri-
odically loaded line exceeds the impedance of the corresponding non-
dissipative loaded line will be termed the ‘‘excess impedance’ (or,
more fully, the “excess characteristic impedance’); and a network
for simulating it will be termed an ‘‘excess-simulator.” Excess-
simulators for loaded lines will be considered very briefly in Part VII.

(In passing, it may be noted that the foregoing definition of the
“‘excess impedance” of a periodically loaded line properly includes
the definition already given! of the excess impedance of a smooth

Excess- Basic

simulator n @
Building-out | Excess- Basic |,
structure simulator network

(o]
o{_simulator

Building-out ] Excess-
ue i

Building-out] ©)
structure network

[ator-

Fig. 11—Abstract Diagrams of Complete Networks for Simulating Characteristic
Impedance of Loaded Line

line; for the ‘‘nominal impedance’ of any smooth line was defined !
as the impedance of the corresponding non-dissipative smooth line.
A similar statement is applicable to the terms '‘excess simulator”
and ‘‘basic network’ previously defined! for smooth lines.)

The foregoing considerations and definitions have prepared the
way for Fig. 11, which indicates in an abstract manner how the im-
pedance of any loaded line having any relative termination can be
simulated by combinations of basic networks, excess simulators, and
building-out structures.

Fig. 1la corresponds to the simple but unusual case in which the
loaded line has the basic relative termination: its impedance then
can be simulated by the corresponding basic network and excess
simulator, without any building-out structure.

When, as usual, the given line does not have the basic relative
termination, there are available the two natural alternatives repre-
sented by Figs. 11b and 1llc. Fig. 11b shows the whole network
of Fig. 11a built-out to the relative termination of the given line by
means of the requisite building-out structure, which for the highest
precision must be dissipative to correspond to the actual line. In
Fig. 11c the basic network is built-out to the relative termination of
the given line with a non-dissipative building-out structure; and then
the resulting network, which simulates the impedance that the actual
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line would have if non-dissipative, is supplemented with an excess-
simulator such as to simulate the excess impedance of the actual line.

Since the excess impedance depends somewhat on the relative
termination it can be simulated more easily at certain relative termi-
nations than at others. This fact is utilized in the arrangement
represented by Fig. 11d. Here the basic network is built-out to
some relative termination that is particularly favorable for the design
of an excess-simulator; the excess-simulator is applied; and then is
applied the building-out structure, which for the highest precision
must be dissipative to correspond to the actual line.

The simulation-range of the basic networks described in this paper
is a little less than the first transmitting band of the loaded line; but
after a basic network has been built-out, its simulation-range may
extend a little way into the succeeding attenuating band, omitting
the immediate neighborhood of the critical frequency. The com-
pensation-range of the compensating-networks is somewhat less than
the first transmitting band of the loaded line.

PART V

NETWORKS FOR NON-DISSIPATIVE LoADED LINES WITHOUT
DiISTRIBUTED INDUCTANCE

In this Part will be described a considerable number of kinds of
“basic networks" for simulating the characteristic impedance of non-
dissipative loaded lines without distributed inductance; and two
types of compensating networks for such lines. The modifications
necessary when the lines have small distributed inductance will be
indicated in Part VI.

The various kinds of basic networks here described may be regarded
as of two different types corresponding to the terminations of the
loaded lines to which they pertain; there may be several varieties of
each type. The two types correspond to fractional-section and to
fractional-load terminations respectively; that is, to the relative termi-
nations o3 and o} respectively. (It has been stated already, in Part
IV, that ¢; and o3 lie between about 0.1 and about 0.2.) It
will appear below that these two types are inverse types, in the sense
that the impedance of a network of one type is of the same functional
form as the admittance of the corresponding network of the other
type, when the frequency is regarded as the independent variable.
In particular, for equal relative terminations (o,=as"), the ratio
of the impedance and the admittance of any two corresponding
inverse networks is independent of frequency. This corresponds to
the relations Z/W'=1 and Z'/W=1, holding for the loaded line
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itself, according to equations (4) and (5). Hence the two types of
networks will sometimes be distinguished as impedance type and
admittance type. More specifically, the simulating networks of the
two types will be distinguished as impedance-simulators and ad-
mittance-simulators, respectively; and the compensating networks as
reactance-compensators and susceptance-compensators, respectively.

By being built out to the requisite extent, either type of network
evidently can be employed with a loaded line terminating at any
point in either a section or a load; but, depending on such termina-
tion, one type will require less building-out than the other, and hence
will be somewhat preferable on that score. For instance, for simu-
lating the impedance of a loaded line terminating at mid-section
(¢=0.5), a basic network of the fractional-section type of termina-
tion: will require less building-out than one of the fractional-load
type of termination.

The Basic Nelworks

The various basic networks mentioned will now be described briefly,
by aid of circuit diagrams which show the forms of the networks
and which include explicit design-formulas for the proportioning.
Mutually corresponding networks of inverse types will be described
together or in sequence, in order to exhibit clearly their correlation.

In the design-formulas the requisite values for the network-elements
will be expressed in terms of the load-inductance L’ and the section-
capacity C of the given loaded line; but when desired they can instead
be readily expressed in terms of the nominal impedance k and critical
frequency f., by means of the relations

L'=k/xf., C=1/xkf..

Of course, the design-formulas involve also the relative terminations
o and o’.

Figs. 12 and 13 show two rather simple networks which simulate
very well, over most of the transmitting band, the ¢-section character-

Ry
— A ——
nelE
L=(3-o)L. G o5
Ly -9=2¢ Gl . --d)c
Lglgﬂ‘_‘..g)u
c, 270
Fig. 12— Impedance - Simulator for a Fig. 13— Admittance - Simulator for a
Loaded Line Terminating at o-Section, Loaded Line Terminating at ¢'-Load,

with ¢ in the Neighborhood of 0.2 with ¢’ in the Neighborhood of 0.2
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istic impedance and the o'-load characteristic admittance, respec-
tively, of a non-dissipative loaded line, when ¢ and ¢’ are in the
neighborhood of 0.2. The theoretical bases of these two networks
and of their proportioning are outlined in Appendix B. (See also
Patent No. 1124904 and No. 1437422, respectively.)

Figs. 14 and 15 show two networks which are considerably less
simple than those of Figs. 12 and 13 but possess a substantially wider

R2
When 0=04,
el Re-VE/C When 0°=0.14,
: G Le=202L YL
€2=0.107C G202¢
La L3=0.483L 10107 L
o €3=0265C C=0483C
l'3=0.265 %

Fig. 14 —Impedance - Simulator for a
Loaded Line Terminating at o-Section,
with ¢ about 0.14

Fig. 15— Admittance - Simulator for a
Loaded Line Terminating at ¢'-Load,
with ¢’ about 0.14.

frequency-range of simulation; for them the best value of ¢ and of ¢
is about 0.14. The theoretical bases of these two networks are in-
dicated below in the descriptions of the networks in Figs. 20 and 21,
respectively. (See also Patent No. 11676¢3 and No. 1437422, re-
spectively.)

Fig. 16 shows a network called a reactance-compensator, for a non-
dissipative loaded line terminating at s-section. When proportioned

cs  c-[3-0c

Ls=|x-glu .
_ Lo gu=gly
Ls Cs Cs= OI_.(_I_g C Us Ls= Fi_o_ll L
z

Fig. 16—Reactance-Compensator for a
Loaded Line Terminating at o-Section:
Reactance-Simulator when 0<o<1/2

Reactance-Neutralizer when 1/2<a<1

Fig. 17—Susceptance-Compensator for
a Loaded Line Terminating at ¢’-Load:
Susceptance-Simulator when0<¢'<1/2
Susceptance-Neutralizer
when 1/2<¢’'<1

in accordance with the design-formulas there given, this network
possesses the following two-fold property with reference to the o-section
characteristic reactance of the loaded line: When ¢ has any fixed
value between 0 and 1/2, the network exactly simulates the g-section
reactance, and exactly neutralizes the (1—¢)-section reactance; or,
what is equivalent, when ¢ has any fixed value between 1/2 and 1,
the network exactly neutralizes the o-section reactance and exactly
simulates the (1— ¢)-section reactance.



LOADED LINES AND COMPENSATING NETWORKS 449

Fig. 17 shows a network called a susceptance-compensator, for a
non-dissipative loaded line terminating at ¢’-load. When propor-
tioned in accordance with the design-formulas there given, this net-
work possesses the following two-fold property with reference to the
¢’-load characteristic susceptance of the loaded line: When ¢ has
any fixed value between 0 and 1/2, the network exactly simulates
the ¢'-load susceptance, and exactly neutralizes the (1—¢’)-load
susceptance; or, what is equivalent, when ¢ has any fixed value
between 1/2 and 1, the network exactly neutralizes the ¢’-load sus-
ceptance and exactly simulates the (1—¢’)-load susceptance.

It may be noted that the resonant frequency f, of the compensators
in Figs. 16 and 17 is never less than the resonant frequency f. of the
loaded line; for when o=0¢' the two types of compensators have the
same value of f,, and

fr/fc= 1/2\/0'(1 —a).

This ratio has a minimum value of unity, when ¢=1/2; and becomes
infinite when ¢=0 and when ¢=1. It is equal to 1.25 when ¢=0.2
and when ¢=0.8.

The compensators in Figs. 16 and 17 are evidently inverse networks;
the theoretical principles underlying them are outlined together in
Appendix C. (See also Patent No. 1243066 and No. 1475997, re-
spectively.)

With ¢ and ¢’ each in the neighborhood of 0.2 or of 0.8, the s-section
characteristic reactance and the ¢'-load characteristic conductance of
a non-dissipative loaded line are simulated pretty well by the con-
stant resistance R, and the constant conductance G, of Figs. 12 and
13, respectively, as pointed out in Appendix B.

Re

‘_-[:::—1 When O=0.140r 086, o
Re= VEJC - When 0=014 or 0.86.
L2 Cz 2 I ’ ' G;'WE
L= 2,021 ¢, &
C=2.02C
€~ 0107C . ;
L ety . Uo7l
L4~ 0120 “ Ceamoc
e €4~ 1.28C L1280
Fig. 18 — Resistance - Simulator for a Fig. 19—Conductance-Simulator for a
Loaded Line Terminating at o-Section, Loaded Line Terminating at ¢'-load,
with ¢ about 0.14 or about 0.86 with ¢’ about 0.14 or about 0.86

Simulation of the g-section resistance and of the ¢’-load conductance
can be accomplished over a substantially wider frequency-range than
in the foregoing paragraph, by means of the networks of Figs. 18:and
19, respectively; for them the best value of ¢ and of ¢’ is about 0.14.
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These networks must not be confused with those of Figs. 14 and 15:
they are like the latter in form but differ in the values of certain of
their elements, as will be seen on close examination; they differ also
in their functions, the networks of Figs. 14 and 15 simulating the
o-section impedance and the ¢'-load admittance, respectively, whereas
the networks of Figs. 18 and 19 simulate merely the resistance and
the conductance components of these, respectively. In Fig. 18 the
reactance of the LyCsy-portion neutralizes that of the RyL,Ce-portion;
and in Fig. 19 the susceptance of the Ls'Cy’-portion neutralizes that
of the G2'Cy'Ly-portion. (See also Patent No. 1167693 and No.
1437422, respectively.)

By combining the resistance-simulator of Fig. 18 and the reactance-
simulator of Fig. 16 there results the impedance-simulator of Fig. 20.

Rz La
When O=0.14. When 0=0.14
Re=VL/C s
Le=2.02L G:r VCEL
Lo C Ci | cmofo7c %, Cn2.02C
Ly Q12001 L= 01071
Ls Ci- 128C . Ci=om0¢
Ls= 0360L Ls ?- azae‘assc
= Q, c =
’_‘Ewcs Cr- 0334 sz ae0¢
Fig. 20— Impedance - Simulator for a Fig. 21 — Admittance - Simulator for a
Loaded Line Terminating at e-Section, Loaded Line Terminating at ¢’-Load,
with ¢ about 0.14. (This figure indi- with ¢’ about 0.14. (This figure indi-
cates the synthesis of the network in cates the synthesis of the network in
Fig. 14.) Fig. 15.)

But it is found that the LsCy-portion and the L;Cs-portion can be
combined, without appreciable sacrifice of simulative precision, into
the single L;Cs-portion of Fig. 14—whose synthesis is thereby indi-
cated. (See also Patent No. 1167693.)

By combining the conductance-simulator of Fig. 19 and the sus-
ceptance-simulator of Fig. 17 there results the admittance-simulator
of Fig. 21. Butitis found that the Ly'Cy-portion and the Ls'Cy-portion
can be combined, without appreciable sacrifice of simulative precision,
into the single L’;C's-portion of Fig. 15—whose synthesis is thereby
indicated. (See also Patent No. 1437422.)

PART VI

NETWORKS FOR NON-DI1sSIPATIVE LOADED LINES WITH DISTRIBUTED
INDUCTANCE

From the latter portion of Part III it will be recalled that the
approximate effect of small distributed inductance is to alter slightly
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the nominal impedance and the critical frequency of the loaded line
without much affecting the relative impedance when expressed as a
function of the relative frequency, over the first transmitting band
and the lower part of the succeeding attenuating band. Thus an
approximate way of taking account of the effects of small distributed
inductance is to deal with the constants Ly’ and C, of the corresponding
“principal simulative loaded line”; since this line has no distributed
inductance it is seen that the networks described in Part V for loaded
lines without distributed inductance are adequate for loaded lines
with small distributed inductance; the design-formulas remain un-
changed beyond substituting Lo’ for L’ and C, for C; however, the
simulative precision of the networks is altered slightly.

A slightly better approximation may be secured by working not
only with Lo’ and Co but also with fictitious values of ¢ and ¢’, say
oo and ay’, slightly different from those which would be best if there
were no distributed inductance.

Owing to the presence of a certain amount of distributed inductance
in all transmission lines (even in cables), simulation of the ¢'-load
impedance (¢'>¢)') by means of a fractional-load (s,’) type of basic
network built out to ¢"-load is slightly more precise than simulation
of the g-section impedance (¢=0¢') by means of a fractional-section
(os) type of basic network built out to e-section. This is evident
from the latter portion of Part III of this paper.

(Regarding the effects of small distributed inductance in loaded
lines, Patent No. 1167693 may be of some interest.)

PART VII
NETWORKS FOR DISSIPATIVE LOADED LINES

A natural first-approximation network for simulating the impedance
of a dissipative loaded line is the network for the corresponding non-
dissipative loaded line, the excess impedance thus being neglected;
in the case of a high grade loaded line this is a good approximation
except at very low frequencies. Various forms and types of networks
for non-dissipative loaded lines having the basic relative terminations
were described in Parts V and VI; those networks (‘‘basic networks'’)
can be built-out readily to any relative terminations by means of
simple non-dissipative building-out structures.

When the excess impedance of the loaded line is not negligible
an excess-simulator is required. A first-approximation excess-
simulator for a loaded line is the excess-simulator for the corresponding
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smooth line.! This is a good approximation over about the lower
half or two-thirds of the transmitting band; but to be adequate in the
upper part of the transmitting band it requires some modification in
its proportioning or even in its form, according to several circum-
stances, such as the relative termination, the amount and distribu-
tion of the dissipation, and the ratio of the highest contemplated
frequency to the critical frequency. The immediate neighborhood
of the critical frequency is here disregarded, as having thus far been
unimportant in practice; modification of the networks to extend their
range of simulation right up to the critical frequency appears to
present much greater difficulties.

PART VIII

APPLICATIONS OF THE SIMULATING AND THE COMPENSATING
NETWORKS

In this Part a considerable number of applications of the above-
described networks will be outlined. (For some details and further
applications, reference may be made to the patents cited in Part V—
namely, Patent No. 1124904, No. 1167693, and No. 1437422, per-
taining to the simulating networks; and No. 1243066 and No. 1475997
pertaining to the compensating networks.)

Applications of the Simulating Networks

Foremost of the uses of the simulating networks is their employ-
ment for balancing purposes in connection with 22-type repeaters,
already spoken of in the Introduction.

Another application of a simulating network is for terminating an
actual loaded line in the field or an artificial loaded line in the labora-
tory in such a way as to avoid reflection effects. For this purpose
the proper terminating impedance is evidently one equal to the
complementary characteristic impedance of the loaded line. Such a
terminating impedance is often needed in the making of electrical
tests or electrical measurements on a loaded line.

Furthermore, in making certain tests on apparatus normally as-
sociated with a loaded line, such line may be represented conveniently
by the appropriate simulating network.

Applications of the Compensating Networks

The compensating networks have a wide variety of uses as neutral-
izing networks and also as simulating networks. These uses depend
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mainly on the fact that a compensating network when used as a
neutralizer enables the impedance of a loaded line to simulate ap-
proximately the impedance of a smooth line and hence to simulate
at least roughly a constant resistance, and when used as a simulator
enables the impedance of a smooth line to simulate approximately
the impedance of a loaded line.

Foremost of the uses of the compensating networks is their employ-
ment for properly connecting together a loaded line and a smooth line,
to reduce reflection effects at the junction. This may be accomplished
either by means of the reactance compensator (Fig. 16) or by means
of the susceptance compensator (Fig. 17) by adopting a suitable
relative termination for the loaded line in each method. In describing
these two methods, it will be assumed at first that the loaded line
and the smooth line are non-dissipative and have equal nominal
impedances. In the first method of compensation the loaded line is
terminated at ¢-section with ¢ in the neighborhood of 0.8, where
its curve of characteristic resistance is nearly flat; and a reactance-
compensator (Fig. 16) is inserted in series between the two lines.
This compensator, by neutralizing the reactance of the given loaded
line, makes that line appear like a smooth line; while, by simulating
the complementary characteristic reactance of the loaded line, it
makes the smooth line appear complementary to the given loaded
line. In the second method of compensation the loaded line is termi-
nated at ¢’-load with ¢’ in the neighborhood of 0.8, where its curve
of characteristic conductance is nearly flat; and a susceptance-com-
pensator (Fig. 17) is inserted in shunt between the two lines at their
junction. This compensator, by neutralizing the susceptance of the
given loaded line, makes that like appear like a smooth line; while,
by simulating the characteristic susceptance of the complementary
loaded line, it makes the smooth line appear complementary to the
given loaded line.

When, as actually, the lines are dissipative, the compensator con-
tinues to make the loaded line appear approximately like a smooth
line, and to make the smooth line appear approximately like a loaded
line; but now, unless the lines happen to be about equally dissipative,
there will exist at their junction an irregularity arising chiefly from
inequality in their ‘‘excess-impedances.” This irregularity can be
largely prevented from occurring when the gage of either or both of
the lines is at the disposal of the designer; when this is not the case
and the irregularity is seriously large, resort may be had to special
equalizers termed '‘excess-impedance equalizers.”
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When the nominal impedances of the two lines are unequal, ad-
justment in that respect can be made by means of a transformer of
suitable ratio.

Some other uses for the compensators are as follows: (a) to properly
connect a loaded. ine to a repeater system whose impedance is nearly
constant resistance; (b) to connect a loaded line type of filter (low-pass
filter) to an amplifying element whose impedance is nearly constant
resistance; (c) to connect a loaded line to terminal apparatus whose
impedance is nearly constant resistance; (d) to convert the impedance
of a loaded line to that of the corresponding smooth line and thereby
enable it to be simulated (or to be balanced) by a smooth-line type
of simulating network; (e) to convert the impedance of a smooth
line to that of a loaded line and thereby enable it to be simulated
(or to be balanced) by a loaded-line type of simulating network; (f)
to neutralize the characteristic reactance of an approximately non-
dissipative loaded line, thereby enabling the resulting nearly pure
resistance impedance to be closely simulated (or to be closely bal-
anced) by the network (Fig. 18) simulating the characteristic resist-
ance of the loaded line; or—though somewhat less closely—by a mere
resistance element; (g) to neutralize the characteristic susceptance of
an approximately non-dissipative loaded line, thereby enabling the
resulting nearly pure conductance admittance to be closely simulated
(or to be closely balanced) by the network (Fig. 19) simulating the
characteristic conductance of the loaded line; or—though somewhat
less closely—by a mere conductance element.

In applications (a), (b}, (c) the irregularity at the junction can be
still further reduced by the addition of an excess simulator for simu-
lating the excess impedance of the loaded line.

APPENDIX A

THE TRANSMITTING AND THE ATTENUATING BANDS OF A NoN-DISsSIPA-
TIVE LOADED LINE WITH DISTRIBUTED INDUCTANCE

This Appendix contains the derivations of the formulas in Part 111
pertaining to the disposition of the transmitting and the attenuating
bands; and also several alternative formulas; it outlines six graphical
methods for studying the bands; and it discusses, more compre-
hensively than in the body of the paper, the salient properties
of the bands and the effects produced by varying certain of the
parameters. '
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Disposition of the Transmitting and the Attenuating Bands

The propagation constant I'=4+4iB of a non-dissipative loaded
line (per periodic interval) can be expressed in terms of A=L/L’ and
the quantity D defined by equation (16). From Appendix D,

cosh I'=cos 2D — % sin 2D, (1-A)

sinh? I'=(sin® 2D)(D tan D —N\)(D cot D+\)/\? (2-A)

= (sin? 2D)(D*— X\ —2\D cot 2D) /N (3-A)

=(—sin? 2D)(14+1/N)Z"2. (3.1-A)

Thus, for a non-dissipative loaded line, cosh I' and sinh® I' are both

pure real.
When cosh I' is known, 4 and B can be evaluated by means of the

identity
cosh I'=cosh (4 +iB)=cosh A cos B+isinh 4 sin B. (4-A)
In particular, when cosh T' is pure real—as for a non-dissipative

loaded line—the values of 4 and B must evidently be such as to
satisfy the pair of equations

sinh 4 sin B=0, (5-A) cosh A cos B=cosh I';  (6-A)

with, of course, the added restriction that A must be real and positive,
and B real. Thence it is readily found that:

When cosh? I' <1, that is, sinh® I' <0,

then 4 =0 and B=cos™ cosh I'; (7-A)
When cosh? I'>1, that is, sinh? I'>0,
then A =cosh™ |cosh I'| and B=gr; (8-A)

cosh I' being real, and ¢ being an even or an odd integer according as
cosh T is positive or negative, respectively.

Before continuing with the general case (A=£0) it seems worth while
to digress long enough to apply the preceding general formulas to the
limiting case where A=0. For it, formula (1-A) reduces to

cosh I'=1-—2r2, (9-A)

where r=f/f.=D/D,, and f, is given by (3). Application of (7-A)
and (8-A) to (9-A) shows that:

When 0<r <1, then A =0 and B=2 sin"'r; (10-A)

When r>1, than A =2 cosh™'r and B =g, (11-A)

where ¢ is an odd integer.
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For illustrative purposes, Fig. 22 gives graphs of A and B through-
out the first transmitting band (0 <r<1) and part of the succeeding
attenuating band, for a non-dissipative loaded line, with A=0 and
with A=0.12. Of course, 4 is zero in the range 0 <r<1.

Returning now to the general case (A5=0), we see that the trans-
mitting bands (4 =0) are characterized by the inequality sinh? I' <0,

20— |- § I R

2.5 | ——f—
S—F |

2.0 - 74 e A

AT

4

o 2 .4 .6 . 1.0 1.2 1.4 1.6

Fig. 22—Propagation Constant I' =4 +¢B in the First Transmitting Band (0<r<1)
and in Part of the Succeeding Attenuating Band, of a Non-Dissipative Loaded
Line with A=0 and with A=0.12

and the attenuating bands (4<=0) by the inequality sinh? I'>0; and
hence the transition points between the two kinds of bands are char-
acterized by the equation sinh? I'=0.

We seek the transition values of D, that is, the values of D where
sinh?T'=0; and we seek the transmitting and the attenuating ranges
of D, that is, the ranges of D where sinh? I' <0 and sinh? I' >0, re-
spectively.

The transition values of D are perhaps most readily found from
the equation for sinh? I' when written in the form (2-A). They are
the zeros of the first three factors in the right-hand member of that
equation. The zeros of the factor sin? 2D are at D=mw/2, with
m=0,1, 2, 3, ...; thus they subdivide the D-scale into segments of
width #/2 each, as represented by Fig. 6; and they have the values
represented by (18). The zeros of the factors D tan D—X\ and D cot
D+ are situated in the odd and even numbered segments, respec-
tively, because, \ is positive; there is one and only one zero in each
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segment. Thus, if D, denotes the zero of sinh?I' situated in the nth
segment, then

(n—l)% <Dn<ﬂ%- (12-A)
Either analytically or graphically it is readily seen that, when X\ is
small, D, is only slightly greater than (n—1)r/2; it approaches that
value as a limit when » approaches infinity, for all finite values of X.
The power series formula (21) for D, is derived at a little later point
in this Appendix.

Formulated analytically, with the arguments of the trigonometric
functions reduced to the smallest positive values that preserve the
values of the functions, the transition values of D are the values of
D, 41 and D, satisfying the equations

sinQZ(Dn‘,,.H—n%) -0, (13-A)

Datan (D,, — - 1]%) = (14-A)

with#=0,1,2,3,...in (13-A) and =1, 2, 3, . . . in (14-A). Equa-
tion (13-A) is equivalent to sin?2D =0. With » odd and with # even,
(14-A) is equivalent respectively to DtanD —A=0and to DcotD+A=0.
An equivalent of (14-A) is obtainable from the second factor of (3-A).
By (3.1-A), still another equivalent is Z’ ;=0; that is, the values of D,
are the zeros of the mid-load relative impedance Z'5, and hence of
the mid-load impedance K’ ;.
With (n—1)r/2 denoted by d,, equation (14-A) shows that

Dp—du<\/dn, (n=2,3,4,...) Dy <\

By inspection of (2-A) it can be readily verified that sinh®l' is
negative when D,_,,<D <D, and positive when D,<D<D, .;
and hence that these two ranges of D are a transmitting band and an
attenuating band, respectively, the corresponding compound band
thus being the range D, ;,<D<D,,+;. In this connection it
may be of some academic interest to note that, strictly speaking,
D=0 is not a transition value of D between a transmitting and an
attentuating band. For (2-A) shows that sinh’I' does not change
sign when D passes through 0; on the contrary, sinh’l' is entirely
unchanged when D is changed to —D. Thus, D=0 is a point of
symmetry, but not a transition point.

The values of D,, namely, the roots of (14-A), cannot be written
down directly or expressed exactly. But they can be found to any
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desired degree of approximation by first developing the left side of
(14-A) into a power series involving D,; and then, by successive
approximation or by undetermined coefficients, solving the resulting
equation so as to express D, as a power series in X (that is, “‘reverting”
the first series to obtain the second).

Digression on the Reversion of Power Series

Since there will be several occasions here for reverting a power
series it seems worth while to digress sufficiently to furnish the requisite
general formulas for the reversion of power series:*

Given y=F(x) developed as a convergent power series in x,
y=x+ax’taxitax+ . ... (15-A)

The coefficient of x has been assumed to be unity because the formula-
tion of the reversion is much simplified thereby without any real
sacrifice of generality; for, if the coefficient of x were a,, the equation
could be reduced immediately to the form (15-A), either by treating
a;x as the independent variable, or by dividing through by a, and
then treating v/a; as the dependent variable.

The given equation (15-A) expresses y as a power series in x. It is
required to revert this relation, that is, to express x as a power series
in y. In the present work this was done originally by successive ap-
proximation, and was verified later by the method of undetermined
coefficients. Evidently the first approximation to the solution of
(15-A) is merely x;=v, and thence the second approximation is
Xs=y—axx,*=y—ay®. But the higher approximations cannot be
written down thus directly; indeed the labor of obtaining them in-
creases rapidly. The work was carried through the sixth approxima-
tion, with the result:

x=y+(—ag)y2-|—(2a§—a3)y3+(—5a§+5a2a3—a4)y4
+ (14a} — 21ala;+6a204+3a; —as)y*
+(—42&:+84(1%G3—28&2@4—2802(1;-'-7&2(15-'-7[1304'—ae)yﬁ+ s (IG-A)

£ Cf., for instance, Bromwich, ‘‘Theory of Infinite Series'; Goursat-Hedrick,
““Mathematical Analysis'; Wilson, ‘‘Advanced Calculus”; Chrystal, ‘‘Text Book
of Algebra.” But in none of these references is the reversion carried far enough;
moreover, the formulas there obtained do not apply directly to a series containing
only even powers—one of the cases in the present application. At considerable
labor, by two independent methods, I remedied both of these lacks. Somewhat
later 1 came upon a valuable article by C. E. Van Orstrand, * The Reversion of
Power Series” (Phil. Mag., March, 1910), where the reversion is carried to no less
than thirteen terms, but is not directly applicable to series containing only even
powers.
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This was verified by the method of undetermined coefficients, con-
sisting in assuming

x=y+bzy2+bay“+b4y4+ e
and then substituting this expression for x into (15-A) to evaluate the
b's by treating the resulting equation as an identity.

In the degenerate case where only even powers of x are present in
(15-A) the formula (16-A) when applied directly does not correctly
express the solution (for reasons appearing below). However, the
given equation, containing only even powers of x, say )

=x2tcox'+eaxt+cxd+ .. L, (17-A)
can be correctly solved for (x?) by direct application of (16-A), with
as=cs; and then the value of x can be expressed as a power series in
v by extracting the square root of the power series representing (x?).
In that way the solution of (17-A) was found to be

7}'—14‘( fz)y'f'(—& lfa)\’-l‘( ?g +962€3 %54)3'3

715, 143, 1 4199 ,
+ (128 ot C“"“F“‘*_*Cf’)y“r( 256

128 i 16° 2
1105 195 195 1 .
+— CyCy — 1()0 aCy — 16 ——CaC 3+ C2£'5+ 6364—565)}'”+ - (IS-A)

This result was verified by the method of undetermined coefficients,
by writing x in the form

x=vVy (1+ey+es +ey'+ .. .) (18.1-A)
and then evaluating the e's by substituting (18.1-A) into (17-A).
Still another method would be to extract the square root of (17-A)
as the first step, thereby expressing \/37 as a power series in x of the
form (15-A); and then reverting by application of (16-A), thereby
expressing x as a power series in \/;and thence of the form (18.1-A).
For use in this connection it may be noted that the square root of a
power series having the form
V' =14+hx+hox® +hax®+ ...
will be of the form
y=1+kx+kax?+hax4 .. ..
The k's can be evaluated by identifying the first equation with the
square of the second; their values are found to be _
kv=1h, ko="13ho— k3, ky=31hy—kiks,
ka=3h,— Lki—kik;, ks=3hs—kiks—koks,
k =£;]Ie— )k k1k5—k2k4
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Derivations of Formulas for the Transition Poinls

The above general formulas for the reversion of power series will now
be applied in the derivation of the formulas (21) and (22) for D, and
D,, in the body of the paper; and also in the derivation of certain
other formulas, not included there.

To outline the derivation of the formula (21) for D, denote
(n—1)7/2 by d, and Dy—d, by 74, so that (14-A) becomes

(da+1s) tan 7, =N\ (19-A)

Now replace tan , by its known power series expression, and divide
both sides of the resulting equation by d,,; thus (19-A) becomes

A

d Tll+ 7n2+ Tn3+ 3d Tn + Tn5+ 15d + s e e (20'A)

This is of the form (15-A), and hence can be reverted by direct applica-
tion of (16-A); the result is (21).
An alternative formula for D, can be obtained by starting from
Gregory's series,
tand tan® tan’

v=tan v— 3 -+ 57 + ..., (20.1:A)

Application of this to (19-A) enables the left side of that equation to
be expressed as a power series in tan r,; and when the resulting
equation is reverted by means of (16-A) and then 7, replaced by
D,—d, the result is

an 0u=ai = = () +2(32) ~ (a=32) (2)

B G Br ) @ e

It has already been noted that (21) is not valid for n=1 and hence
does not include the formula (22) for D,. To obtain this formula
for D,, start with the equation

D, tan D=, (21-A)
obtained by setting n=11in (14-A). Then replace tan D, by its known
power series expansion, thus obtaining the equation

1 62 1382
—D’!~D“| D D,10 D124 _A
A LI T ! 315 2835 * 155025 .o (22-A)

This is of the form (17-A), and hence can be reverted by direct ap-
plication of (18-A); the result is (22).
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It may be noted that (22-A), when regarded as a power series in
(Dy?), is of the form (15-A) and hence that (D,?) can be expressed
as a power series in A by direct application of (16-A); the result is’

A2 4N3 16Af 163 64N°

D12=)\_*+

3735 " 045 Tia175 T 03555 (23-4)

In certain applications this formula for D,? is more useful than formula
(22) for Dy; though the two are ultimately equivalent. A formula for
p* is obtainable by dividing both sides of (23-A) by X; for p*=D*/}\,
by (16).

An alternative formula for D, can be obtained by starting from
Gregory's series (20.1-A). Application of this to (21-A) enables the
left side of that equation to be expressed as a power series in tan D,;
and when the resulting equation is reverted by means of (18-A) the
result is’

— A A? 11A8 1357\
tan Dy = V& (145 = 550 ~ 5010 + Ts1da00- ) (1A

Series that are even more convergent than (21) and (22), though
much less simple, can be obtained by expanding the original function
in the neighborhood of a value of the variable known to be an ap-
proximate solution of the equation to be solved, and then reverting
the resulting series. To formulate the procedure analytically and
generally, let # denote the variable, and () the function; and let
the equation to be solved for # be

Y(u)=q. (24-A)
Then, if U is an approximate solution of this equation, application of

Taylor's theorem leads to the following implicit equation for u— U:

Q—kb(U)_ = (u_ U)z lf/"(U) (It— U)3 V'/”’(U)
R TR 7 €7) RS B 78 7))

The left side of this is known. The right side is a power series in u— U,
with U known; the better the approximation represented by U, the
more rapidly convergent is the series. This equation (25-A) in u— U
is of the form (15-A), with
g—y(U)

y=t " x=u—"U, as

- ()
and thence (25-A) can be reverted by application of (16-A). so that
u— U will be expressed as a power series in [¢—y¢(U)]/¢'(U).

+ ... (25-A)

_ l[/(“)(U) .

=S () (26-A)
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To apply the above general method in order to obtain for D, a
series more convergent than (21), return to (19-A) and note that
when X\ is small a first approximation for 7, is T»=MA/d,. Then apply
(16-A), with v, x, and a; having the values expressed by (26-A);
and ¢g=\, u=7,, U=\/dy, and ¢(u)=(u+d,) tan u. The formulas
for the first few successive derivatives of ¥(u) will be needed, of course.

Similarly, to obtain for D, a series more convergent than (22),
return to (21-A) and note that when X is small a first approximation

for Dy is D1=\/i Then apply (16-A), with y, x, and a; having the
values expressed by (26-A); and g=\, u=D,, Uz\/)T, and y(u)=u
tan u.

Graphical Methods for Locating the Tansition Points

The positions of the transition points D, (n=1,2,3,...) on the
D-scale can be determined also graphically, in several different ways
corresponding to several different ways of writing the function
(D tan D—\) (D cot D+X\) whose zeros are the values of D,. To
formulate such graphical methods concisely, let E denote any function
of the variable D, so that, geometrically, E is the ordinate corre-
sponding to the abscissa D. Six of the various possible graphical
methods are then briefly but completely indicated by the following
respective statements that the points D, are the abscissas of the
points of intersection of:

1. The horizontal straight line E=X with the curves E=D tan D,

. the horizontal straight line E = — X with the curves E=D cot D.

2. The straight line E=D with the curves E=X\ cot D; the straight

line E=—D with the curves E=AX\ tan D.

3. The straight line E=D/X with the cotangent curves E=cot D;
the straight line E = —D/X with the tangent curves E=tan D.

. The hyperbola E=X/D with the tangent curves E=tan D; the
hyperbola E=—\/D with the cotangent curves E=cot D.

. The parabola E=D?/A—\ with the curves E=2D cot 2D.

. The curve E=D/2x—\/2D, compounded of the straight line
E=D/2\ and the hyperbola E= —\/2D, with the cotangent
curves E=cot 2D.

.

o O

In methods 1, 2, 3, 4. the first set of intersections is situated in the
odd-numbered segments, the second set in the even numbered seg-
ments; each segment of width =/2.

Besides being susceptible of quantitative service, these graphical
methods are useful for qualitative purposes. For instance, they show



LOADED LINES AND COMPENSATING NETWORKS 463

clearly that: one and only one transition value of D lies within each
segment of width =/2; sinh®*I' <0 when D,,_; , <D <Dy, and sinh?I'>0
when D,<D <D, ,; the zeros of A—D tan D and of A4+D cot D
are situated in the odd and even numbered segments, respectively;
with increasing D, the transmitting bands continually decrease in
width and the attenuating bands continually increase in width, the
change taking place rapidly at first and then more and more slowly;
the mid-point relative impedances are pure imaginary throughout
every attenuating band and pure real throughout every transmitting
band, and, they have the ranges stated in the third and fourth para-
graphs following equation (26.1). The graphical methods are useful
also for showing the nature of the effects produced by varying the
parameter A.

Discussion of the Disposition of the Bands

The rest of this Appendix will be devoted to a discussion of the
most salient properties of the compound bands and their constituent
transmitting and attenuating bands.

The ratio of transmitting band width to compound band width
continually decreases with increasing D and becomes zero when D
becomes infinite; that is, the transmitting bands vanish and the
compound bands become pure attenuating bands. These facts can
be seen graphically, or analytically from equation (14-A).

The ratio of transmitting band width to compound band width
continually increases with increasing \; this ratio ranging from zero
when A is zero to unity when X is infinite. These facts can be seen
graphically, or from equation (14-A). When M approaches zero the
f-width of each compound band approaches infinity; the f-width of
each transmitting band approaches zero, except for the first trans-
mitting band, whose width approaches a value equal to f'y=f—
for equation (14-A) shows that D,(Dy—D,_,,)/M approaches unity,
and hence that fu(fu—f._1,.) approaches 1/x*L'C=f"?, whence
fn—fu-1.n approaches zero for n=~1 and approaches f"; for n=1.

The effects of varying the parameter A will now be outlined briefly,
in the next two paragraphs, for the cases respectively of L'C fixed and
LC fixed. The conclusions reached depend partly on the equation
D=%w\/LC=§w‘V AL'C defining D; partly on the fact already de-
duced that the D-width of each compound band is an absolute con-
stant (w/2); and partly on equation (14-A).

When L'C is fixed, increasing M reduces all of the transition fre-
quencies. The transition frequencies bounding the compound bands,
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and hence the widths of the compound bands, decrease in direct

proportion to increase of V/\. The internal transition frequencies,
however, do not decrease so rapidly; for the ratio of transmitting
band width to attenuating band width increases with increasing M.
When \ approaches infinity each compound band approaches a width
of zero, but the ratio of transmitting band width to compound band
width approaches unity; so that when X becomes infinite there are
within any finite frequency range an infinite number of compound
bands which are pure transmitting bands. On the other hand, when
\ approaches zero the compound bands approach infinite width and
hence move out toward infinity, except that the left end-point of
the first band is fixed at f=0. When \ has become zero the first
compound band has expanded to an infinite width; and its critical
value fi of f has become equal to the limiting value f',=1/#VL'C
—as can be seen from (14-A) by putting »=1 and then applying the
relation D/Vx =1oVL'C.

When LC is fixed the f-widths and locations of the compound bands
are independent of X\, but the widths of the constituent attenuating
and transmitting bands depend on \; that is, the boundary points
fu-tn and fy .41 of the nth compound band are independent of X,
but the internal transition point f, depends on A\. With increasing
A the attenuating bands become continually narrower, and vanish
when A becomes infinite, the transmitting bands thereby coalescing to
form a pure transmitting band extending from zero to infinity. With
decreasing A the transmitting bands become continually narrower,
and vanish when A becomes zero, the attenuating bands thereby
coalescing to form a pure attenuating band extending from zero to
infinity.

APPENDIX B

THEORETICAL BASES OF THE SIMULATING NETWORKS IN
Fics. 12 AnD 13

The Impedance-Simulator in Fig. 12

This network takes advantage of the fact, depicted in Fig. 5, that
the graph of the o-section characteristic resistance of a loaded line,
for values of ¢ in the neighborhood of 0.2, is nearly flat over most
of the transmitting band and hence can be approximately simulated
by a mere constant resistance chosen approximately equal to the
nominal impedance V/L'/C. This is the basis for the R-portion of
the network in Fig. 12. The basis for the L,C,-portion is the fact
(proved in Appendix C) that, in the transmitting band, the o-section
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characteristic reactance can be exactly simulated (for any fixed
value of ¢ between 0 and 1/2) by the network in Fig. 16.

The Admittance-Simulator in Fig. 13

This network takes advantage of the fact, depicted in Fig. 5, that
the graph of the o¢’-load characteristic conductance of a loaded line,
for values of ¢’ in the neighborhood of 0.2, is nearly flat over most
of the transmitting band and hence can be approximately simulated
by a mere constant conductance chosen approximately equal to the
nominal admittance V' C/L’'. This is the basis for the Gy-portion
of the network in Fig. 13. The basis for the L’,C’;-portion is the fact
(proved in Appendix C) that, in the transmitting band, the ¢’-load
characteristic susceptance can be exactly simulated (for any fixed
value of ¢’ between 0 and 1/2) by the network in Fig. 17.

APPENDIX C

DERIVATIONS OF THE DESIGN-FORMULAS FOR THE COMPENSATING
NETWORKS IN F1Gs. 16 AND 17

The Reactance-Compensator in Fig. 16

For any values of Cs and L; the reactance T of this network is

{.cJLs

T= ]. —w2L5C5‘

By equation (4) the characteristic reactance N of the loaded line
within its transmitting band is

k(1—20)w/w.

N= 1—40(1—0)e?/w®

Comparison of these two equations shows that 7" and N are of the
same functional form in w; and that the conditions for T to be iden-
tically equal to & N are

Ly=+k(1—20)/w,, L;Ci=40(1—0) /w2,
whence Cy=x4e(l—0a)/(1 —20) bu,

the upper and the lower sign of + corresponding to the use of the
compensator as a reactance-simulator and a reactance-neutralizer,
respectively. These values of L; and C; are equivalent to those

appearing in Fig. 16, because k=\/L’/C and w¢=21rf¢=2/\/L'C.
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For positive values of L; the equation for Ls shows that a51/2,
corresponding to =+ ; and then the equation for C; shows that a2
corresponding to =. Hence 0<o<1/2 for T=+N,and 1/2<¢<1
for T=—N.

The Susceptance-Compensator in Fig. 17

For any values of Cs" and Ls’ the susceptance S’ of this network is

mCa’

S = 1 —szs'Csr- '

By equation (5) the characteristic susceptance Q' of the loaded line

within its transmitting band is

0= h(1—20")w/w.
T 14 (1—d")e?/w*

Thus S’ and Q' are of the same functional formein «; and the condi-
tions for S’ to be identically equal to Q" are that

C' = £h(1—24") /u,
Ly’ = +4¢'(1— ') /(1— 20" ) ha,

the upper and the lower sign of + corresponding to the use of the
compensator as a susceptance-simulator and a susceptance-neutralizer
respectively. These values of C;" and L;’ are equivalent to those ap-
pearing in Fig. 17, because k=\/C/L’ and w,=2/ VL'C.

The equations for Cs' and Ls' show that 0<¢’<1/2 for " =+¢,
and that 1/2<¢’<1 for S'=-0Q".

APPENDIX D

GENERAL FORMULAS FOR THE CHARACTERISTIC IMPEDANCES AND
THE PROPAGATION CONSTANT OF LOADED LINES

For reference purposes this Appendix gives the general formulas
for the mid-section (¢=0.5) and mid-load (¢'=0.5) characteristic
impedances K ;and K’ and the propagation constant I of a periodically
loaded line (of the series type).

The symbols have the following meanings: d denotes the im-
pedance of each load. g and v pertain to the line before loading;
g denotes the characteristic impedance, and v denotes the propagation
constant of a segment whose length is equal to the distance between
adjacent loads after the line is loaded.
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The formulas for the mid-section and mid-load characteristic im-
pedances K5 and K';are ?

—
14+ ﬁcothg

Ki=g de“’ | (1-D)
l+§—g‘ tanh?
K's=g {(1+£c0th1) (1+i tanhl) (2-D)
STANT T 2g 2
—
:g\/ H‘Ti (%) + 7 coth 7. (3-D)

Several mutually equivalent formulas for the propagation con-
stant I' (per periodic interval) are:

cosh T'=cosh T+2£g sinh =, (4-D)
sinh T =Kg-" sinh 7, (5-D)
tanh } T =K?‘5 tanh 1 . (6-D)

The sending-end impedance J of any smooth line, of character-
istic impedance g, and total propagation constant v, whose distant
end is closed through any impedance Jy, has the formula

Jl/g1+tanh Y1
. 7-D
14 (J1/g1) tanh ¥, ( )

This enables the formula for the o-section characteristic impedance
K, of a loaded line to be established by starting with the formula
(1-D) for the mid-section characteristic impedance K ;.

9 Formulas (2-D) and (3-D) for K’.5 and formula (4-D) for cosh T' are given by

Campbell in his paper on loaded lines (Phil. Mag., March, 1903) cited in
footnote 2.

J=g1



