The Building-up of Sinusoidal Currents in Long
Periodically Loaded Lines

By JOHN R. CARSON

MPORTANT information regarding the excellence of a signal

transmission system is deducible from 2 knowledge of the mode
in which sinusoidal currents “build-up” in response to suddenly
applied sinusoidal electromotive forces, since on the character and
duration of the “building-up” process depend the speed and fidelity
with which the circuit transmits rapid signal fluctuations.! The
object of this note is to disclose and discuss general formulas and curves
which describe the building-up phenomena, as a function of the line
characteristics and the frequency of the applied e.m.f., in the ex-
tremely important case of long periodically loaded lines. The formulas
in question are approximate but give accurate engineering information
and are applicable to all types of periodic loading under two restric-
tions: (1) the line must be fairly long, that is, comprise at least 100
loading sections, and (2) it must be approximately equalized, as
regards absolute steady-state values of the received current, in the
neighborhood of the applied frequency. Fortunately these condi-
tions are usually satisfied in practice in those cases where the building-
up phenomena are of practical engineering importance. Furthermore,
the formulas to be discussed suppiy a means for the accurate and rapid
comparison of different types of loading in correctly engineered lines.

The building-up process may be precisely defined and formulated
as follows: Suppose that an e.m.f., E cos wf, is suddenly applied, at
reference time /=0, to a network of transfer impedance

Z(iw) = | Z(iw) | - exp [iB(w)]- (1)

The resultant current, I(¢), may be written as

I(t) =%|T}im 3 (14p) cos [wt—B(w)]+¢ sin [wt—B(w)]}, (2)
1 oo E ‘
=3 \/(1+P)'+U' t Zm cos [wt — B(w) 6], (3)
where

§=tan='(a/p).
Evidently the functions p and ¢ must be —1 and o respectively for
negative values of #, and approach the limits +1 and 0 as t = .

! For published discussions of the “building-up” of sinusoidal currents in loaded
lines, see Clark, Journ. A.I.E.E., Jan., 1923, Kupfmuller, Telegraphen u. Fernsprech-
Technik, Nov., 1923; Carson, Trans. A LLEE., 1919,
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In an engineering study of the building-up process we are prin-
cipally concerned with the envelope of the oscillations, which, by (3),
is proportional to

V(e

The problem is therefore to determine the functions p and ¢ and to
examine the effect of the applied frequency w/2r and the character-
istics of the circuit on their rate of building-up and mode of approach
to their ultimate steady values.

Two propositions will now be stated which cover the building-up
process in the practically important cases. Since the line is assumed
to be approximately equalized, as regards the absolute value of the
received current in the neighborhood of the applied frequency w/2m,
the building-up process depends only on the total phase angle B(w).
The successive derivatives of the phase angle with respect to w will
be denoted by B'(w), B"”(w), B"' (), B" (v), etc.

Case I. B"(w) #0 and v/B"'(w)/2! large compared with \3/ B"(w)/31.

The envelope of the oscillations in response to an e.m.f. E cos wt ap-
plied at time t=o, is proportional to

V(e )
where
p=C(x*)+S(x?), (5)
o=C(x*) —S(x?), (6)
_ 1—=B'(w) _ [ )

" V2B7(w) V2B"(w)

and C(x), S(x) are Fressel's Integrals to argument x.

The envelope therefore reaches 50 per cent. of its ultimate steady value
at time t=1=B'(w) and ils rate of building-up is inversely propor-
tional to /B (w).

The curve of Fig. 1is a plot of the envelope function % vV (1+p)2+o?

to the argument x and is therefore applicable to all types of loading
and lengths of line, subject to the restrictions noted above.

Case I1. B"(w)=0: B" (0)50 and \:{/Bi’}’(ucb_jf’.‘_";! large compared with
VB (@)/4T. |
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The envelope of the oscillations is proportional lo

1. 1
5+ [ AGwds )
where A(p) is Airey's Integral ® and
2\ (—B
y= (**) 5,4',”—(% (9)
™/ A/ B"(w)/3!
T

At time t=B'(w) the envelope N has reached 1/3 of its ultimate steady
value and its rate of building-up is inversely proportional to \3/ B'" (w).
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The curve of Fig. 2 is a plot of the envelope function %—}- % _[ A(u)du

to the argument y and is therefore of general applicability under the
circumstances where case Il obtains.

The practical value of the foregoing propositions resides in the fact
that they enable us to calculate two important criteria of the trans-
mission properties of the line: (1) the variation with respect to fre-
quency of the time interval 7 required for the current to build-up to

? See Wdtson, Theory of IBcsscl Functions, p. 190.
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its proximate steady-state value: and (2) its rate of building-up at
“time {=r.

As will be seen in connection with the proof given below, the formulas

of the foregoing propositions are approximate. Provided, however,

that the lines to which they are applied are long and provided that the
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applied frequency is such that the restrictions underlying either I or I1
are satisfied, their accuracy is quite sufficient for engineering pur-
poses, such as the design of loading systems, or a study of the com-
parative merit of different types of loading.

Before proceeding with the mathematical proof, the formulas will
be applied to the interesting and important case of an ideal non-
dissipative periodically coil-loaded line of N sections in length and
cut-off frequency w./2r. For this line it is easy to show that?

2N 1
B'(w)= wflc m = NpB'(w),
2N ¢ ”
B"(w)= 5 F%.Tﬂ =Ng"(w),
By 2N LH2E

w? (1—w?)5?

3 The following formulas assume that the line is closer to its characteristic im-
pedance. B(w) is then the phase angle per loading section of the line.
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where w denotes w/w,. It follows that

Yy 2N 1
we \/l w2

and that the oscillations build-up to the proximate steady-state in a
time interval * r=2N/w, v/1—w? after the voltage is applied.

Case I, it will be observed, does not hold for w=0 since B"(0) =o.
The condition that Case I shall apply is that

6 — /E}
V. (12 LY
\/18:\ (1 w ) (1_|_2.w‘3)1/.5

shall be substantially greater than unity. Hence Case I applies only
when 1/\"/18_]\,’ <w<1. This however, includes the important part
of the signalling frequency range in properly designed lines, provided
that they are long (N=100).

In the range of applied frequencies, therefore, corresponding to

1/\/ ISN<w<1, the current reaches 50 per cent. of its ultimate

2N
steady value in a time interval —— —F——;
Y we v/1—w?

and its rate of building-up at this time is proportional to

after the voltage is applied

We (li‘wz)df

VAN Nw

For the non-dissipative coil-loaded line B"'(w)=0 when w=o0, and
Case II applies. Consequently when w=o, the oscillations reach 1/3
of the ultimate steady value at time {=2N/w,, at which time their
rate of building-up is proportional to

’ / 12
We

The foregoing formulas have been shown to be in good agreement
with experimental results, and have been applied to the design of
loaded lines in the Bell System.

MATHEMATICAL DiscussioN

The functions p and ¢ of equations (2) and (3) can be formulated
as the Fourier integrals
4 It will be noted that this formula breaks down at w=w, or w=1.
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= %fuw %5 sin I\, [P,(\)+P(—N)]

_Tlﬁr | %—-LO&;”\[Q N =0, (=N

=1 7R s A 10,0 +0u(— ]

1fm@ cos IN[P,(N)—P_(—N)],

where

Pmo\) = £1W(+))\)

0.\ =A_f4w(‘:T") sin [B(w4\) — B(w)],

and A(w) =1/|Z(iw)|.

0s [B(w+N) — B(w)],
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(11)

(12)

(13)

(14)

These formulas are directly deducible from the fact that the ap-
plied e.m.f., defined as zero for negative values of ¢ and E cos wt for

t=o0, can itself be expressed as

rit 2 e dh .
7L0hmt|:1+;./n‘ —)\—sm t)\].

In the practically important case where B'(w) is finite, it is of ad-
vantage to introduce the transformation ' =¢{—B'(w), and to write:

f‘w@am”\ U,0N+U (=N

_ 1 p=dx
- ~ cos UN[V,(N) =TV, (=N)],

'f DN Gin NV 00 4+ V(= N)]

1 = dx

+ - — cos 'N[U N — U (—N)],
T A
where
1) = 1N Blon) — Bw) =B (w)],
Alw)
7oy =2etN G Blo4n) — Blw) —AB' ()],

o= )

(15)

(16)

(17)

(18)
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The foregoing formulas for p and ¢ are exact subject to certain
restrictions on the impedance function Z(iw) which are satisfied in
the case of periodically loaded lines. Their useful application to the
problem under consideration depends, however, on the following
approximations.

First it will be assumed that the line is approximately equalized, as
regards absolute value of steady state received currents in the neigh-
borhood of the impressed frequency w/2x. By virtue of this assump-
tion, which is more or less closely realized in practice, the ratio
A(w+N)/A(w) may be replaced by unity in the integrals (15) and
(16), and in equations (17) and (18). It is further assumed that the
function

B(w+N)—B{w) —AB'(w)

admits of power series expansion, so that

U_(\) =cos [(ha\)2 4 (han)* 4 . 1], (19)
V. (\) =sin [(kaA)2+ (B3 + . .], (20)
where
=L Bw)= o BOw).

By virtue of the foregoing p and ¢ are given by
pigf DN Gin 18— (ha\)d— (heN)® . ] - cos [(hs\)+ (h\) i+ . ], (21)
2f ——sin [t'N— (haX)®— (hsh)3 . ] - sin [(BaA)2 4 (RN L ] (22)

Now if the line is very long the integrals (11) and (12) may be
replaced by the approximations

g2 S DN i A= (1s\)?] - Cos (ha\)?, (23)
mJo A
L2 [LdN . .
= —sin [#'A— (ltgh)?] - sin (hah). (24)
Ti' J A

In other words we retain only the leading terms in the expansion
of the function
B(w+\) — B(w) —AB'(w).

The justification for this procedure depends on arguments similar to
those underlying the Principle of Stationary Phase (see Watson,
Theory of Bessel Functions, p. 229). Furthermore the upper limit



THE BUILDING-UP OF SINUSOIDAL CURRENTS 565

oo may be retained without serious error, even when the line cuts off
at a frequency w,/2m, provided the line is sufficiently long, and the
frequency «/27 not too close to the cut-off frequency w./2r.

The formal solutions of the infinite integrals (23) and (24) can bhe
written down by virtue of the following known relations:

2 [7AN o cos 2 (a2 2
W_[ R sin (- cos (ha)? = C(at) +S(a), (25)

2 f®dN o, . T
;j; D gin - sin ()2 = C9) = S, (26)

where C(x?) and S(x*) are Fresnel’s Integrals to argument x? and
x=t"/2h,.

Efuw‘%sin [ — (k)] = _%+£yA (3)dy (27)

™

where A(y) denotes Airey's Integral (see Watson, Theory of Bessel
Functions) and y=(2/7)**(¢'/hs).
By aid of the preceding.

3d3 6 dﬁ
Wl cersen ), @)

T U BF I B T

p={1+

where u= (fa/2hs).

This is the appropriate form of solution when (hs/hs) is less than
unity.

On the other hand when (/3/k:) is greater than unity, the appro-
priate form of solution is

_5 7V4d4 iﬂda . —1 'y .
p= ‘l E’d_)f‘+4lt??3+ !’ { g—}—'/uvfl{y}dy}, (30)

_yywar W d (I IR S !
o= \Tigp—3iggt {1 3+[)A(y)d>;, (31)

where »= (%)% G:—‘:)

While no thorough investigation has been made, it appears prob-
able that for all values of the ratio Ii3/h», either (28), (29) or (30), (31)
will be convergent. However, in practice it is sufficient for present
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purposes to deal only with the cases where k3/h. is either small or
large compared with unity, and to use the following approximations:

(1) (hs/hs) small compared with unity.
p=C(x")+5(x%),
o= C(x?) —S(x?),
x=(t'/2kh)?,
t'=t—B'(w).

(2) (ha/h2) large compared with unity.
1 ¥
p= ~§+f A(y)dy,
0

a=0,
¥=(2/m)*3(t'/ hs).



