Theorems Regarding the Driving-Point Impedance

. of Two-Mesh Circuits™
By RONALD M. FOSTER

Synopsis: The necessary and sufficient conditions that a drl\'mg point
1l11pf.(|d|‘l(€ be realizable by means of a two-mesh circuit consisting of re-
sistances, capacities, and inductances are stated in terms of the four roots
and four poles (including the poles at zero and infinity) of the impedance.
The roots and the poles are the time coefficients for the free oscillations of
the circuit with the driving branch closed and opened, respectively, For
assigned values of the roots, the poles are restricted to a certain domain,
which is illustrated by ﬁgures for several typical cases; the case of real
poles which are not continuously transformable into Lomp]ex poles is of
spu.lal interest. All driving-point impedances satisfying the general
conditions can be realized by any one of eleven networks, each consisting
of two resistances, two capacities, and two self- inductances with mutual
inductance between them; these are the only networks without superfluous
elements by Whl(.}'l the entire range of posslble impedances can be realized;
the three remaining networks of this type give special cases only. For
each of these eleven networks, formulas are given for the calculation of the
values of the elements from the assigned values of the roots and poles.

1. STATEMENT OF RESULTS

HE object of this paper is, first, to determine the necessary and
sufficient conditions that a driving-point impedance ! be realizable
by means of a two-mesh circuit consisting of resistances, capacities,
and inductances, and second, to determine the networks ? realizing
any specified driving-point impedance staisfying these conditions.
These necessary and sufficient conditions are stated in the form of
the following theorem:
Theorem 1. Any driving-point impedance S of a two-mesh circuit
consisting of resistances, capacities, and inductances is a function of
the time coefficient X=1ip of the form

()\—a.)()\—ag)(?\—aa)()\—m)

=J1 .
S=1 N\ —Ba) (A\—Bs) (1a)

_007\4+G N tasN+ash+-ay

T BN DN baN ' (1b)

* Presented by title at the International Mathematical Congress at Torontos
August 11-16, 19 ?4. as "Two-mesh Electric Circuits realizing any specified Driving-
point lmpcdamc

! The driving-point impedance of a circuit is the ratio of an impressed electro-
motive force at a point in a branch of the circuit to the resulting current at the same
point,

? The networks considered in this paper consist of any arrangement of resistances,
capacities, and inductances with two accessible terminals such that, if the two
terminals are short-circuited, the resulting circuit has two mdependent meshes.
Thus the impedance measured between the terminals of the network is the same
as the driving-point impedance of the corresponding two-mesh circuit. Throughout
le paper this distinction will be made in the use of the terms “network” and

“eircuit.’
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where H=0, a1+a: <0, a1a: =0, az+0, <0, azey=0,
B2+B8:=<0, B28:=0, (2)
and bi%(as® —dad) +ba2[(@:—d)? — 4aeas] +bs*(ar® — 4aed) ’
—_ 2b1b2[G3(02 —_ d) —_ 201[14]_ 25153[&103 - 2d(az'— d)l
— 2bsbsfai(as—d) — 2aoas] =0, (3)
for all values of d=0, provided
—&4b22+&3b2b3—'db3220, (4)
—aub32+(Gz—d)bab[_a4b1220, (5)
— db12+{llb ]_bg — ﬂgbgz = 0, (6)

and, conversely, any impedance S of the form (1) satisfying these condi-
tions (2)—(6) can be realized as the driving-point impedance of a two-
mesh circuit consisting of resislances, capacities, and induclances.

Theorem I thus gives the most general form of this type of im-
pedance, showing that it is a rational function of the time coefficient,?
completely determined, except for a constant factor, by assigning
four roots and two poles, in addition to the poles at zero and infinity,
subject to certain conditions. The assigned roots and poles are the
time coefficients for the free oscillations of the circuit with the driving
branch closed and opened, respectively. That is, the roots and poles
correspond to the resonant and anti-resonant points of the impedance.

The conditions are as follows: The real part of each root and pole
is negative or zero; the roots and poles occur in pairs of real or con-
jugate complex quantities; certain additional restrictions must be
satisfied, as stated in terms of the symmetric functions of the roots
and poles by formulas (3)—(6).

By virtue of these restrictions, the pair of poles, for assigned values
of the two pairs of roots, is limited to a certain domain of values.
This domain is conveniently illustrated by plotting, in the upper half
of the complex plane, the locus of one pole, the other pole being its
conjugate. For real poles, a device is used to indicate pairs of points
on the real axis. Figs. 3-5 show the domain of the poles, plotted
in this manner, for several typical cases.

Provided the roots are not all real, this domain consists of a con-
nected region of values, so that it is possible to pass from one pair
of poles to any other pair satisfying the same conditions by a con-
tinuous transformation. In the case of four real roots, however, the
domain consists, in general, of two non-connected regions, as illus-
trated in Fig. 5. Under these circumstances there is a region of real
poles which are not continuously transformable into complex poles.

The networks realizing any specified driving-point impedance are

_ 3 All electrical oscillations considered in this paper are of the form e\, where the
time coefficient A =ip may have any value, real or complex.
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determined by the arrangement and magnitudes of the elements, as
given by the following theorem:

Theorem II. All driving-point impedances satisfying the necessary
and sufficient conditions, as stated in Theorem I, can be realized by any
one of the eleven networks shown by Fig. 1, upon assigning to the elements
of each network the values given by Table I. These eleven neiworks are
the only networks without superfluous elements by which the entire range
of possible impedances can be realized.

By Theorem II, any network obtained from a two-mesh circuit
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Fig. 1—Networks realizing any driving-point impedance of a two-mesh circuit
consisting of resistances, capacities, self-inductances, and mutual inductances
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consisting of resistances, capacities, and inductances can be replaced,
in so far as the impedance between terminals is concerned, by any
one of the eleven networks shown by Fig. 1, upon assigning the proper
values to the elements. Each of these networks consists of two
resistances, two capacities, and two self-inductances with mutual

inductance between them.

Each of these eleven networks realizes impedances with arbitrarily
assigned roots and with poles anywhere in the entire domain of pos-
sibilities, subject to the general conditions stated in Theorem I.
Special cases of these networks realize, for arbitrarily assigned roots,
only critical lines and points in the domain. All these special cases
are listed in Table III, with a specification of the lines or points in
the domain realizable by each, as illustrated by Figs. 4 and 5.

Certain limited regions of the domain can be realized by networks
which contain no mutual inductance and which are not special cases
of the networks given by Theorem II. These networks are given
by the following theorem:

Theorem III. Any driving-point impedance of a lwo-mesh circuit
consisting of resistances, capacities, and self-inductances can be realized
by at least three and not more than five of the twelve networks shown by
Fig. 2, upon assigning to the elements of each nelwork the values given
by Table II. These twelve networks are the only nelworks without mutual
inductance and withou! superfluous elements by which any impedance
can, in general, be realized.

These twelve networks, taken together, cover that portion of the
domain realizable without mutual inductance. Networks with mutual
inductance are needed in order to cover the entire domain. These
twelve are the only networks, without superfluous elements, realizing
limited regions in the domain. Each of these networks consists of two
resistances, two capacities, two self-inductances, and one additional
resistance, capacity, or self-inductance. The twelve networks, with
their special cases, are all listed in Table III, with a specification of
the regions, lines, or points realizable by each.

In addition to the specific formulas for the networks of Figs. 1 and 2,
it is convenient to have general formulas for the computation of all
networks meeting the given conditions, including those networks
with superfluous elements as well as all special cases. The most
general two-mesh circuit is shown by Fig. 6; accordingly, the most
general network under consideration is that shown by Fig. 7. Formulas



Table I =
22
Networks 12 13 14 15 16 17 18 19 20 21
8 gT3-dTy-a,T3-asT Ty agbyby-TyTy | (81bp=dby )Ty slaby=dby)T: | (cby-ugby )Ty Hlagby-agby)T:| %0 o c 0 = °
I 2 bbb 2 b1 by 1
Ty 17273 v b3Ty
. A um ba-ayb, ) byUZ +(ay by=28,b,)U ._.w (ayby-8gbo)’
_ TyT, nnudmunuwu?wvwgv»lpwku ;wuuunavnu?wvwlnvm...wwswv uwdmnnovu.wnpo_wvcm ?J.-no” ) noﬁn uwup 1 1Uy+(ay wn agbs)U3 . | (ay Hmuo 2 woﬁnwv»-nut
e»vw usnmml n.uw._.w 2T, T, T, a1y by by bTy %
, : 2 2
R (O ety by ey2eghy)Uy o S Rl o 0 by,
2 Z o ot K - .
baby byTy 3Ty 2 3 3 b -
2 2 2 ,
2 lo d d 0 uﬂ»ll&ﬂ.wlﬂo.ﬂ.u.ln@um—.w aPHdH!DOde.HN.-AnUPIIOVDva rod“lﬂbwwu.“w...nﬂudwlﬂ.#vnVHN o mm lo ‘
1 b, b, 2 4
2 2 UM.HN UNJ.N G.w.H.N f UN
2 2 2 2 2,
L W (a3by=db,) d(a3by-a,b,) un:»AJ._.» ) ?J-nouuw?aw:uféwdw ?wuoffx.nuwpauuip_uw b0 ?H“u 2420% 1, n?puw--o{ (ayby-dby )2
2 2 2 ) 2
21y byby b,Ty ) 27, T, 20,T, 2Ty T b3
A m.ou 5 3 )73 ( by)T b =~A- by=2db, JU 2 by-a.b 0
. b,U) +(a3b,-2db, Uy o o a3bi-a,b, (agby-cby _:wwu.,. 1)) U3+(ay mn VU3 uu 2, p;uw 2
3 3 v BT, BT 2Ty b1b, b
b b B 5 b bybby bt b2l
Cy oo = o o0 A e = - lnd’j {aab,-dba )Ta+(aybo-dby )T
b " ay u % 8 To-AToagTaa Ty Ty | 4012 12| (9P1780%3 Ty 18 Py 8Py T, | TEaP2m BRI
2 2
a2 2 b12 n? 1 b, 2 by b, 2byT3 26T}
%2 |2 ® o, (a3b,-d8] Allull'». bU2+(cb 28,600, | a (et -agh.] z Z (a1ba-cb,)U T Ty (a b -2 b,)(a b,=cb +a.b,] (a1bg-db) j(8)by+cby-a3by
301%(8305728,8,)0 432 23%37245;) 37271037 03 (cby-agby) p303+lagby=eb, /U3 3
2 2 2 2 2 2 2
n._.w qu wm _ 2T, bybs by 213 _ byb, by T 273
C3 2 2 a.b_-db w o 2 2 | |cb.-a b @ 2 T ﬂpoun-upupuqln (dby-a;b2)Ty
dePInDMUWIMPFdNuQH .H.H w 2 w _ UWGMIAQVulMﬁh—qud_N A.N . 1 0 w UWQWInPMUHlndNVGw 2 w
|
m



DRIVING-POINT IMPEDANCE OF TWO-MESH CIRCUITS 033
for the computation of the elements of this general network can be
stated in the form of the following theorem:

Theorem 1V. Any driving-point impedance satisfying the meces-
sary and sufficient conditions, as stated in Theorem I, can be realized
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'_
La Ca Ly Cas Ls Rs
13 14 15
L Rz Ce
Yoo
Lz Ras Cs
16
L2 Rz L: R2C: L. RzC2
LT o o oA o
— —
Ra Cs R: Cs3 Lz Ra
17 18 19
Lz Rz C:
Ci I
o— o
}_
L Rs Cs
20
L: C: L: RzCe L2 Rz Cz
Li RiCi Li Cs H Ri Ct h
O~ MWW o—T0 O o—WWH o
— —
Rs Cs Rs Cs Ls GCs
21 22 23

Fig. 2—Networks without mutual inductance realizing any driving-point impedance
of a two-mesh circuit consisting of resistances, capacities, and self-inductances.
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by any network of the form of Fig. 7, provided the elements of the network
satisfy the following relations: l

L\'Ly'+Ly'Ly’ + L' L' = ak?, (7)
RiR;+ R\ R3+ Ro Ry =dk?, (8)
D7\Dy+D\Dy+D:Dy=ask?, 9)
Ly'+Ly' =11, (10)

Ro+ Ry =b.k?, (11)

Do+ D3 =03k, (12)

RoD3— R3Dy = £ k% —asbt+asbabs—dbs*) 112, (13)

DsLy — D3l = + k3 [—aphs®+ (as—d) bsb — a0 2]V2, (14)
Ly'Ry— Ly Ry= £ k¥(—db,*+a,b1bs—aghs?) 2, (15)

where Dy=CrY Da=CoY, Dy=C3, (16)
and Ly =L+ M+ Miz+ Mas, (17)
Ly =Lo+Mps— Mi3— Mo, (18)

Ly =Ly— M+ Myz3— Mas, (19)

the positive directions in Fig. 7 all being assigned arbitrarily to the right.
The signs of (13)—(15) are chosen so as to satisfy the identity

(ReD3— RaDs)(Ly' + Ly’ )+ (DsLy' — DsLy') (Ra+ Rs)
+(Ly'Ry— Ly Ry) (Da+Dy) =0. (20)

The value of d is given by equation (3), which may be wrilten in lhe form

dz(b22—4b)b3) —_ 2d(2a4b12+62b22+ 2&0b32_03b1b2 - 2@2b163—01b2b3)
+ [a32b12-+— (0‘,22 — 4(10[14)1)22—}‘&12!)32— 2(@25’;3 — 2@1{14)513]2 —_ 2ﬂ',1aablb;]
—2(a102—2(10ﬂ3)b2bﬂ]=0- ' (21)

The parameter k may have any real value other than zero.

In these formulas the value of £ is independent of the impedance,
but can be chosen so as to give particular forms of the network. If
the necessary and sufficient conditions as stated by Theorem I are
satisfied, the values of the elements given by these formulas are
positive or zero, and the values of the inductances satisfy the usual
restrictions. The formulas of Tables I and II, for example, can all
be computed by means of Theorem IV.

2. Tae DriviNg-PoINT IMPEDANCE OoF A Two-MEsH CIRcuIT

Previous investigations of the two-mesh circuit have been directed,
for the most part, toward the determination of the free periods (reso-
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nant frequencies and associated damping constants) of the circuit
from the known values of the elements. This problem is intimately
related to the determination of the driving-point impedance of the
circuit, since the free periods of the circuit can be found by setting
the driving-point impedance in any one mesh equal to zero.! By
this method the free periods are found as the roots of an equation of
the fourth degree,® the exact solution of which involves, in general,
cumbersome formulas. In order to obtain formulas which are better
adapted to numerical computation, various approximations are
usually made.®

This electrical problem of the free oscillations of a circuit is formally
the same as the dynamical problem of the small oscillations of a
system about a position of equilibrium. The determination of the
free periods of a circuit can be made directly from the solution of this
dynamical problem.’

The first part of this paper treats a much more general problem
than the determination of the driving-point impedance of a particular
circuit from the given values of the elements, namely, the determina-
tion of the entire range of possibilities, together with the inherent
limitations, of such an impedance. The method employed is to find
the general form of the impedance as a function of the time coefficient,
and then to investigate the restrictions which must be satisfied by a
function of this character in order that it may represent an impedance
realizable by means of a circuit consisting of resistances, capacities,
and inductances. In the present paper, this investigation is limited
to the driving-point impedance of a two-mesh circuit; the driving-
point impedance of an #-mesh circuit will be treated in a future paper.

The driving-point impedance of any circuit containing no resistances
has been investigated in a previous paper,® where it has been shown
that any such impedance is a pure reactance with a number of resonant
and anti-resonant frequencies which alternate with each other, and

1G. A. Campbell, Transactions of the A. I. E. E., 30, 1911, pages 873-909.

5 An exhaustive discussion of this fourth degree equation has been given by J.
Sommer, Annalen der Physik, fourth series, 58, 1919, pages 375-392.

¢ For typical methods of solution see the papers of L. Cohen, Bulletin of the Bureuu
of Standards, 5, 1908-9, pages 511-541; B. Macku, Jahrbuch der drahtlosen Tele-
graphie und Telephonie, 2, 1909, pages 251-293; V. Bush, Proceedings of the I. R. E.,
5, 1917, pages 363-382.

7 Representative investigations of this dynamical problem are those of Lord
Rayleigh, Proceedings of the London Mathematical Society, 4, 1873, pages 357-368,
Philosophical Magazine, fifth series, 21, 1886, pages 369-381, and sixth series, 3,
1902, pages 97-117 (‘‘Scientific Papers,” 1, 170-181, II, 475-485, and V, 8-26);
E. J. Routh, “Advanced Rigid Dynamics,” sixth edition, 1905, pages 232-243;
A. G. Webster, '‘Dynamics," second edition, 1912, pages 157-164.

8 R. M. Foster, Bell System Technical Journal, 3, 1924, pages 259-267.
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that any such impedance may be realized by a network consisting
of a number of simple resonant elements (inductance and capacity
in series) in parallel or a number of simple anti-resonant elements
(inductance and capacity in parallel) in series.

With resistances added to the circuit, the impedance is, in general,
complex; that is, it has both resistance and reactance components.
For a two-mesh circuit the impedance is expressed as a function of
the time coefficient by Theorem I.

Formula (1) gives the driving-point impedance of a two-mesh circuit
for any electrical oscillation of the form ¢, where the time coefficient
A may have any value, real or complex. The time coefficients for
the free oscillations of the circuit with the driving branch closed are
the roots of the numerator (ai, as, @3, ai), as given by (la); the free
periods of the circuit with the driving branch opened are the roots
of the denominator (Bs, 83), that is, the poles of the impedance func-
tion. For a complex value of the time coefficient, A=X 41Xz, A1 is
the damping factor and A. is the frequency multiplied by 2.

The two forms of formula (1) are equivalent, but each has its
special advantages. Sometimes one, sometimes the other, form is
more convenient; they will be used interchangeably throughout the
paper.

Formula (1a) gives the impedance directly in terms of the roots and
poles. Formula (1b) gives the impedance in terms of the symmetric
functions of the roots and poles, with the addition of an arbitrary
factor. Thus, without changing the impedance, all the coefficients
of the numerator and denominator of (1b) may be multiplied by the
same constant factor having any value other than zero. TFormulas
stated in terms of the coefficients of (1b) are in homogeneous and
symmetrical form, and have the added advantage of involving real
quantities only.

The special case of one root equal to zero is obtained by setting
a;=0 in (la) and a;=0 in (1b). For one root infinite, however,
in (1a) it is necessary to set a; =00 and H =0, with the provision that
Hay be finite: whereas in (1b) it is simply necessary to set ay=0.

It is sometimes convenient to add the notation 8, =0 and Bi==,
corresponding to the poles at zero and infinity. In formula (1b) the
corresponding addition to the notation consists of the coefficients
by=0 and by=0.

By the general restrictions (2) the constant I/ is positive or zero,
and the roots and poles are arranged in three pairs, (a1, a2), (as, as),
and (Bs, Ba), each pair being the roots of a quadratic equation with
positive real coefficients. Thus each pair of the roots and poles is
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either a pair of conjugate complex quantities or a pair of real quan-
tities, with the added provision that the real part of each root and
pole is negative or zero.

Stated in terms of (1b), these general restrictions (2) require all the
coefficients to be real and to have the same sign. Throughout this
paper these signs will always be taken positive; thus all the a’s and
b's are positive or zero. In order to provide that the real part of
each root be negative or zero, the coefficients of the numerator must
satisfy the additional requirement

—G4alg+ﬂlazﬂu—auaazzo. (22)

and also ) as®—4ayay=0. (23)

The second condition (23) is satisfied automatically by virtue of the
first condition (22), unless both a; and a4 are zero; in that case (23)
is required. These are precisely the necessary and sufficient condi-
tions that the numerator of (1b) be factorable into two real quadratic
factors with positive coefficients. ;

In addition to the general restrictions (2) upon the individual roots
and poles, there are certain additional conditions which must be
satisfied by all the roots and poles together. These conditions are
more conveniently stated in terms of the coefficients by prescribing
a certain domain of values of the eight coefficients (ao, @1, as, as, a4,
by, bs, by) such that the coefficients of any driving-point impedance
of a two-mesh circuit lie in this domain, and, conversely, any set of
values in this domain can be realized as the coefficients of a driving-
point impedance of a two-mesh circuit.

By a realizable circuit is understood a circuit consisting of resist-
ances, capacities, and self-inductances, with positive or zero values,
together with mutual inductances with values such that every prin-
cipal minor of the determinant of the inductances is positive or zero.
In the case of two self-inductances with mutual inductance between
them, this reduces to the well known condition L L.— M?*=0.

The domain is defined analytically by formulas (3)-(6), in terms
of a parameter d. This parameter is intimately related to the resist-
ances in the circuit, as will be shown later. In order that this domain
may contain real values, the following relation must be satisfied :

A 202 — (a5 Fast — dagr)d + (—aaa P Faaas—ast) 20, (24)

or in equivalent form,

— [d —aglay + aer) (s + as) [[d — aolees ) (aatay)]
[d—uo(a1+a4)(ag+a3)]20. (25)
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Provided there is one pair of conjugate complex roots of the numerator
of the impedance, a; and as, the value of d is restricted to the range
from zero to the smallest real root of (24), that is,

0<d <ao(a;+as)(as+al). (26)

In the case of four real roots, a1 = a:=a3=aq, the parameter d is
restricted to the values

0<d<aya;+as)(aytas), |
t (27)

aolan+ay) (as+ay) <d <ay(ar+ay) (e +as). J
Thus there are, in general, two distinct ranges for the value of @ in
this case. The corresponding domain of values of the roots and poles
consists of two non-connected regions, so that it is impossible to pass
by a continuous transformation from a set of values in one region to
a set in the other.
Formulas (3)—(6) are symmetrical in three different respects, since
they remain unaltered upon interchanging certain pairs of elements,
which may be any one of the three following sets:

(a) by and bs, ap and d, a3 and (2.—d),
(b) b, and b3, a, and a4, a; and as,
(c) ba and b3, ag and d, a; and (az—d). |

)
f (28)

These three sets correspond to interchanging resistances and in-
ductances, inductances and capacities, and resistances and capacities,

respectively.
Since d is always positive or zero, formulas (4)-(6) lead to simple

necessary conditions, namely,

azhs—abs =0, (29)
-G4blz+ﬂﬂb1bs*ﬂub3220, (30)
alb1—anbz.20. (31)

The first and third of these conditions are conveniently interpreted
in terms of the roots and poles: the sum of the reciprocals of the poles
is algebraically greater than or equal to the sum of the reciprocals
of the roots; and the sum of the poles is algebraically greater than
or equal to the sum of the roots.

3. DomaIN oF PoLES FOR AssSIGNED RooTts

The conditions (2)—(6) define a domain of values for the roots and
poles without distinguishing in any way those roots and poles which
may be chosen independently. For many purposes it is convenient
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to specialize the problem to the extent of assigning definite values
to the roots, subject, of course, to the restrictions (2), and then to
investigate the domain of the poles which can be associated with these
assigned roots.

For the mathematical analysis of the problem it is convenient to
assign values of the coefficients ap . . . . a4, subject to the restrictions
stated in the preceding section, and then to plot the domain for the
coefficients by, ba, by,—treating the latter as homogeneous coordinates ?
in the plane, with x=>b./b, and y=10b;/b;.

With this method of representation, equation (3) is, for any fixed
value of d, the equation of a conic. Considering d as a variable para-
meter, (3) represents a one-parameter family of conics. Each curve
of this family is tangent to the four lines

ajebl +a’jb'.!+b3:0' (j: 1: 2: 3' 4)' (32'

These lines are real lines in the plane if, and only if, the corresponding
roots are real. They are all tangent to the parabola

by? —4b1b3=0, (33)

which is the limiting case of the conic (3) as d becomes infinite. This
parabola is a critical curve for the poles; every point in the plane above
the parabola corresponds to a pair of conjugate complex poles, every
point below the curve to a pair of real and distinct poles, and every
point on the curve to a pair of real and equal poles.

The complete family of conics, that is, the set of curves for all real
values of d, might be defined as the family of conics tangent to these
four lines, which are the four lines tangent to the critical parabola
(33) corresponding to the four roots of the impedance.

Not all the curves of this family lie in the domain of poles, however,
since the conditions (4)—(6) must also be satisfied. For any fixed
value of d, each of the three equations (4)—(6) is a degenerate conic,
that is, a pair of straight lines. The six lines defined by these condi-
tions are all tangent to the conic (3) corresponding to this same value
of d. The inequalities (4)—(6) thus demand, in general, that the
domain of poles lie within the area bounded by these six lines. Thus
only those conics of the family (3) which are real ellipses, or their
limiting cases, lie within the domain.

The condition that the conic (3) be an ellipse is precisely the neces-
sary restriction on the value of d already stated, formula (24). Ellipses
are obtained for all negative values of d, but these are not in the

9 For some purposes the other choices of x and ¥ might be used; this choice is more
convenient here inasmuch as —x is the sum and y the product of the poles.
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domain, since by the conditions of the electrical problem ¢ must be
positive or zero. Ellipses for values of d from zero up to the smallest
real root of the equation (24) are in the domain. If the roots of the
impedance are all complex, equation (24) has three real roots, and
thus there is a range of values of d from the second to the third root,
arranged in the order of magnitude, for which the curves are ellipses,
but these ellipses are imaginary, that is, there are no real points on
them: thus there is only the one range of d which gives points in the
‘domain. If two roots of the impedance are real and two complex,
equation (24) has only the one real root, and thus there is only the
one range of d. If all four roots of the impedance are real, however,
equation (24) has again three real roots, and both ranges of d give
real ellipses. In this case the two sets of ellipses are separate and
distinct.

For the limiting values of d, that is, for the roots of equation (24),
the corresponding conic (3) degenerates into a pair of coincident
straight lines. Only those segments of these lines which satisfy the
corresponding inequalities (4)—(6) are in the domain. Such segments
are the limiting cases of the real ellipses for values of d above or below
the critical values, as the case may be.

The domain of poles, plotted in terms of the coefficients in the
manner described, consists of that domain covered by these real
ellipses for d=0, a domain bounded by the envelope of the curves.
The env elopeconsists of the conic for d=0 and the four lines (32).
For the case of four complex roots of the impedance, therefore, the
domain consists simply of the region bounded by the ellipse (3) for
d=0. For two complex and two real roots, the domain consists of
the region bounded by the ellipse with the addition of the corner
bounded by the ellipse and the two tangent lines to the ellipse cor-
responding to the two real roots. For four real roots, the domain
consists of the region bounded by the ellipse together with the two
corners bounded by the ellipse and the tangent lines, one by the
two lines corresponding to the two smallest roots and the other the
two largest roots; and a second region consisting of the quadrilateral
bounded by the four tangent lines.

All points in the domain lying on or above the critical parabola
lie on a single curve of the family of conics composing the domain,
points below the parabola on two curves of the family. The corner
regions and the quadrilateral are entirely below the critical parabola.
Where there is a corner region, the ellipse goes below the parabola,
otherwise not.

The foregoing discussion has all been for the general case of un-
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restricted roots.  For special cases of zero, pure imaginary, or infinite
roots, the corresponding domains are the limiting cases of the general
domain, described above. Such limiting cases may reduce to a single
segment or to a region bounded in part by the line at infinity. The
homogeneous coordinates employed are very useful in dealing with
these special cases.

4. FIGURES ILLUSTRATING THE DomalN oF POLES

The preceding section presented a discussion of the domain of the
poles associated with any four assigned roots, the domain being
plotted in terms of the coefficients of the denominator of the impe-
dance, that is, in terms of symmetric functions of the poles. In order
to show the mutual relations between the actual values of the roots
and the poles, it is convenient to plot, in the upper half of the complex
plane, the domain of one pole, the other pole being its conjugate.
This provides a complete representation for the case of complex poles.
In order to include the domain of real poles, an auxiliary graph can
be provided to indicate pairs of points on the real axis.

The mathematical analysis for this form of representation can be
obtained from that of the preceding section by substituting g.+8;=
—ba/by and BaB3="03/b;. For complex poles, 8:=u+iv and B3 =u—1v,
this transformation from the x, y plane to the u, v plane is simply
2u=—x and #*+v*=y. Thus a conic in the x, v plane becomes, in
general, a curve of the fourth degree in the u, v plane. The analysis
of the curves obtained in the #, v plane is not so simple as in the other
plane, but there is a decided advantage in the interpretation of the
results in this plane, since the coordinate u, the real part of the pole,
corresponds to the damping factor, and the coordinate », the im-
aginary part of the pole, corresponds to the frequency factor.

In the complex plane, the necessary conditions (29)-(31) require
the domain of complex poles to lie entirely within the region bounded
by the vertical axis, a vertical line to the left of the axis, two circles
about the origin as center, and a circle through the origin with its
center on the real axis. Furthermore, the boundary curve of the
domain must be tangent to each of these lines and circles, since the
corresponding conic (3) for d=0 is tangent to the corresponding
lines (4)—(6) for d =0.

For the special case of one root a positive pure imaginary, the
second root being its conjugate, the domain in the upper half of the
complex plane reduces merely to the points on an arc of a circle with
its center on the real axis. If the third root is complex with a posi-
tive imaginary part, the fourth root being its conjugate, the domain
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is the circular arc extending from the first root to the third root.
For a pure imaginary value of the third root the radius of the circle
becomes infinite, and the domain is the segment of the vertical axis
between the first and third roots. This is precisely the result already
obtained for the resistanceless circuit.

For the limiting case of the third root real, with the fourth root
equal to it, the domain is the circular arc extending from the root on
the imaginary axis to the double root on the real axis. When the
third and fourth roots are real and distinct, the domain is the circular
arc from the first root to the point on the real axis midway between
the two real roots. The complete domain also includes real poles in
the segment between the two real roots, equally spaced about the
midpoint of the segment.

This case of one pair of roots on the axis of imaginaries is illus-
trated by Fig. 3a, with the first root fixed at the point @, and the
third root lying on any one of the family of circular arcs drawn through
a, the fourth root being its conjugate; or the third and fourth roots
lying on the real axis equally spaced about the end-point of one of
the arcs.

Starting with one pair of roots on the axis of imaginaries, it is inter.
esting to investigate the changes made in the domain by moving this
pair of roots off the axis. The domain broadens out into a region
lying about the circular arc, as shown by Fig. 3b for four typical cases.
The first case is for the third root also near the axis (1= —0.5+13,
ay= —0.5419); and the second case is for the third root some distance
from the axis (a1=—0.14143, as=—5+148). The third section of
Fig. 3b shows the domain when the third and fourth roots are real
and equal (a;=—0.14143, ay=as;=—9); in this case the region has
a cusp at this double root. The fourth section shows the domain
of complex poles when the third and fourth roots are real and dis-
tinct (1= —0.14+143, as=—6, as=—10); in this case the region of
complex poles terminates along a segment of the real axis lying in
the interval between the two real roots, there is also a domain of real
poles which is not shown.

It is interesting to note that, when both pairs of roots are near
the axis of imaginaries, that is, for small damping, the frequency factor
of the pole may always be taken outside the range of the frequency
factors of the roots; whereas for zero damping the pole must lie
between the roots, as noted above.

Fig. 3c shows the domain of the poles for two pairs of equal roots.
If the first and third roots are equal, the second and fourth roots
being their conjugates and thus also equal, the domain is bounded
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by a circle tangent to the vertical axis with its center vertically above
the double root. If, for example, the double root describes a circle
about the origin through the point @ on the vertical axis, the corre-
sponding circle is tangent to the vertical axis at @. Thus in Fig. 3c,

10 E. E 0
Fig. 3—Domain of the poles of the driving-point impedance of a two-mesh circuit
with (a) one pair of roots on the axis of imaginaries, (b) one pair of roots near the
axis of imaginaries, () two pairs of equal roots, and (d) two pairs of roots with

equal angles.

for double roots at A,, By, C, the corresponding domain is bounded
by the circles 4, B, C, respectively. The centers of these circles are
all on the horizontal line through a, and the double roots are selected
so as to space the centers uniformly. If all four roots are real and
equal, the domain is bounded by a circle D tangent to the vertical
axis at @ and to the horizontal axis at this fourfold root £y, If the
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roots are all real and equal in pairs the domain is bounded by a circle
E, tangent to the vertical axis and passing through the two double
roots, E, and E;, and by the reflection of this circle in the real axis.
Thus the domain has cusps at the double roots. For two pairs of

— T T T T
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Fig. 4—Domain of the poles of the driving-point impedance of a two-mesh circuit
with two pairs of complex roots, showing the portions of the domain realizable by
each network listed in Table II1.

equal roots, whether real or complex, the distance Oa is the geo-
metrical mean value of all four roots.

Another kind of special case is shown by Fig. 3d, the case of two
pairs of roots with equal angles. The first and third roots are on
a line with the origin, so that the second and fourth roots, being
their conjugates, are also on a line with the origin. Fig. 3d shows
.the boundary curves (4 .. . E) for five sets of roots (4, 45 . . . Ey, E;)
satisfying these conditions and with the same absolute values of the
roots in each set, so that the roots lie on two circles about the origin.
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The fifth set of roots (E,, E;) has a domain of the same type as the
corresponding set of roots on Fig. 3c, since this set, being on the real
axis, is a double set. The sixth curve F is the boundary of the domain
for four real roots so chosen that F\F;=E* and F.Fy=E;®. This is
the same type of domain as will be described later under Fig. 5. The
curves of Fig. 3d are all tangent to the vertical axis at the same point
a; for each of these sets of roots the distance Oa is the geometrical
mean value of all four roots.

The general case of four complex roots is illustrated by Fig. 4 for
the numerical values a;=—1+41710, an=—1—110, az=—2+4115,
ay=—2—115. For all complex roots the poles must also be complex;
the pole with positive imaginary part must lie in the region bounded
by the curve I'=T1,4Ty+4....4T7 This curve is tangent to the
vertical axis at the point @, and tangent to a vertical line at the left
at the point d. The largest absolute value of any point in the domain
occurs at the point ¢, and the smallest at f; these two points are the
points of tangency of the curve T' with circles about the origin as
center. The curve I' is tangent at the point e to a circle through
the origin having its center on the real axis. The coordinates of
these points are all given in Table V.

The general case of four real roots is illustrated by Fig. 5 for the
numerical values ay=—1, as=—2, a3=—35, ay=—7. The domain
of complex poles is bounded by the curve T', with the critical points
defined and labeled as in Fig. 4. The domain of complex poles is
bounded in part by two segments on the real axis, one lying in the
interval between «, and as, the other between «; and «y. Approxi-
mately, these segments are from —1.13 to —1.93 and from —5.13
to —6.70, for this numerical example. The points on these segments
are in the domain of poles, corresponding to double real poles. The
domain of real poles is shown by the graph below the axis, each point
of this graph representing two real values, the two points on the real
axis reached by following the +45° lines through the point. The
domain of real poles is bounded by the continuation of the curve T’
and the tangent lines corresponding to the four roots. This gives
two corners associated with the two segments on the real axis, and
an isolated rectangle. Corresponding to the points in the rectangle,
one pole may be chosen anywhere in the range from «; to a., and
the second pole anywhere in the range from a; to a;. Both poles
may be chosen in the range from a; to as, or in the range from a; to
ay, with certain restrictions as shown by the figure, since the curve I’
cuts off the points of the triangles. The two corners and the rectangle
are shown by Fig. 5a on a larger scale, with greater accuracy.
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In some respects, the case illustrated by Fig. 5 is the most general
case, from which all other cases can be obtainad by a continuous trans-
formation of the roots. Two of the adjacent real roots may be brought
together to a single double root; the corresponding boundary curve
then shrinks to a cusp at this point on the real axis, and the rectangle
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Fig. 5—Domain of the poles of the driving-point impedance of a two-mesh circuit
with four real roots, showing the portions of the domain realizable by each network
listed in Table III.
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in the auxiliary diagram narrows down to a single line segment.
Then if the other two real roots are brought together, the boundary
curve has a second cusp and the domain in the auxiliary diagram
shrinks to a single isolated point. 1f, now, one of the pairs of equal
real roots is separated into a pair of conjugate imaginary roots, the

-2
e : |
9 | | A9
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H( | | ‘ :/Lg“ 9
— "o_h — +—1 —
| 82 { /w7r
-1k : - = Ji

Fig. 5a—Domain of real poles of Fig. 5, on larger scale.

corresponding cusp is rounded off away from the axis, and the point
in the auxiliary diagram vanishes. When the other pair of equal real
roots separates into conjugate complex roots, the case illustrated
by Fig. 4 is obtained. As one pair of complex roots approaches the
imaginary axis, the domain narrows until, for one pair of roots on the
vertical axis, the domain shrinks to a circular arc as illustrated by
Fig. 3a. This sort of transformation may be followed through in
different ways in order to obtain any desired distribution of the roots.

The complete domains are unique, that is, any one domain is given
by only one set of roots.

Every domain includes the points corresponding to the roots for
which the domain is defined. For these points, that is, for a pole
coinciding with a root, the impedance expression has a common factor
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in numerator and denominator. When both poles coincide with roots
the corresponding impedance expression can be obtained by means
of a one-mesh circuit.

5. Two-Mest CIRCUITS AND ASSOCIATED NETWORKS

The second object of this paper is the determination of the networks
realizing any specified driving-point impedance which satisfies the
conditions established in the first part of the paper. It is neces-
sary to find the number, character, and arrangement of the elements
in these networks, as well as to find the values of these elements.

Thus the problem met in this investigation differs from the usual
network problem in that it calls for the determination of the elements
of a network which has a certain specified impedance, instead of
calling for the determination of the impedance of a network which
has certain specified elements.

The most general two-mesh circuit has three branches connected
in parallel, each branch containing resistance, capacity, and self-

L R, G
— T — AW

M.
L., R, GC,
—

M13 M23
— o ——WW—H
L, R, G,

Fig. 6—Most general two-mesh circuit consisting of resistances, capacities, and
inductances.

inductance, with mutual inductance between each pair of branches,
as shown by Fig. 6.

The most general network under consideration is, therefore, the
network obtained by opening one branch of this two-mesh circuit,
as shown by Fig. 7. All the networks considered are special cases
of this general network, obtained by making a sufficient number of
the elements either zero or infinite. If, in particular, all the elements
in one branch are replaced by a short circuit, the network splits up
into two separate sections connected essentially only by mutual in-
ductance, as shown by Fig. 7a.
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It is convenient to limit this investigation to the determination of
those networks which, without superfluous elements, realize any
driving-point impedance having arbitrarily assigned roots. A net-
work is considered to have superfluous elements if there exist other

M12 LZ R?_ Cz

Ll R‘l Ci ,
M,
M
® L. Rs Cs

Fig. 7—Most general network obtained by opening one branch of a two-mesh circuit

networks with fewer elements which, individually or collectively,
realize the same range of possible impedances. Impedances with

zero, pure imaginary, or infinite roots can be realized by the limiting
cases of these networks.

A network realizing an impedance with arbitrarily assigned roots
must consist of at least five elements,—one resistance, two capacities,

L| R c1

o O —WW————>0
M

L, C,

FFig. Ta—Special case of Fig. 7, obtained by replacing the elements of one branch
by a short circuit

and two self-inductances, in order that the numerator of the impedance
expression (1b) may contain odd powers of X, a constant term, and a
term in N, respectively.

Since the general expression for the driving-point impedance con-
tains essentially seven constants which may be assigned arbitrarily,
subject to the restrictions already established, it is to be expected
that the entire range of possible impedances can be realized by one
or more networks consisting of seven elements only. This proves
to be the case. Hence all networks with more than seven elements
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contain superfluous elements. It is also to be expected that one
additional condition must be satisfied by the roots and poles in order
that an impedance may be realized by a six-element network, and two
additional conditions for a five-element network.

Accordingly, a census has been made of all networks consisting of
not more than seven elements, each network containing at least one
resistance, two capacities, and two self-inductances. This census
is shown by Table III.

Each two-mesh circuit meeting these requirements as to the number
of elements is represented in symbolical form in Table 111. The
letters L, R, and C, printed in the first, second, or third lines of the
symbol, indicate the presence of self-inductance, resistance, and
capacity in the first, second, or third branches of the circuit, respec-
tively. The letter M is printed in the two lines of the symbol cor-
responding to the two branches which are connected by a mutual
inductance. Thus the first circuit in the table is represented by the
symbol '

LRCM
L CM
L

which indicates self-inductance, resistance, and capacity in the first
branch, self-inductance and capacity in the second branch, and self-
inductance in the third branch, with mutual inductance between the
first two branches.

Three networks, in general, are obtained from each of these circuits
by opening each of the three branches. If two of these branches are
alike, only two distinct networks are obtained. If one branch of
a circuit is a short-circuit, there being no elements assigned to that
branch, the network obtained by opening one of the other branches
is of the type shown by Fig. 7a; if the short-circuited branch is opened,
the network consists simply of the parallel combination of the other

two branches.

With circuits represented in this symbolical manner, there is, oppo-
site each line of the symbol, a reference to the domain of poles indi-
cating the portion of the domain realizable by the network obtained
by opening the corresponding branch. Two like branches in a circuit
are bracketed together with a single reference mark, since they each
give the same network. The entire domain is indicated by Z; the
boundary curve of the domain by I, this being divided into seven
segments, I'y, I's, ..., Ty; ten critical lines in the domain by the



673

DRIVING-POINT IMPEDANCE OF TWO-MESH CIRCUITS

CIEIETE) (o)) 9
SSI] OM] 1M SYIOMIDU IYI0 A PAZI[EaT 9 ued Ndomjau siyy Aq pazijeassaduepadwrayl () T
“JUWI[D SSI| R B4

U0 YIIM SYIOMIAU J2Y10 Aq PazI[edl 3 UED JI0MIAU siy) Aq pazieas soouepadwt oy () (d) N

"pAzI[Ea1 q ued s3c0d Lieurdewn jo Jred suo Suraey saouepadwi Ajuo ypigs £q J1omaN ., (1) o 7
"j1om1au ysaw-2[8wis e 01 Juareambry , ) WoNT

- < 2
g no T
. z ¥

w2 (@) 2
AN A 2z g woT
2 T gt () noyT

A._rH _..._r.— mu o4 MN
_ 2T g o T
| (m AT T - - WONT

m 9  I¥ WI=SI—-01-9—¢ J¥ | =z D

oooT T—tI—8—[—F O 7 2 woaT
¢ qT Cig A—AI—C—F—7  J¥T ‘6l 2 WNT

ooy M—I-6—1 _ O g -
8 7 © | T @ | owout
T T 0f |—mmmm [ F Vi I woyT
» orw (n . 6—9—7 O y oo
P FooT o7 4, g—g—¢ NT R N
a 2 T 'S¢ T DAT 6T | (2 o T ¥t I—-¢—¢C 28T 11 ((»)) AT
n v 0 2 (D) e 01—1 b (1) 27
ol 07 ¢ JT [T ) [ a1 (1) wo T
V' D7 e e 09T st Y\ w7 e H“ 24T 91| ((m) woaT
k) I - d N oy fey ey 27T (1) nw T
5 97 [ 0wt T 7 GLALRLRy 7 (@) WO T
D T o¢ LOD¥T Lt (v W oNT Tt ((»)) DT S1 ((2)) JQHT
2 D [ aperl 27T () ) A=RI=6—L1—F O 7 (1) w7
p 7 _ Y07 N S B RI— 0T —§—¢ a7 ((2)) 2T
D 29T se | (1) AT 9T | (v woyT 17 | M—E—-9—-F—¢ 4T T1 ((»)) WodT
% —_ | RN BN | T d — I—t1—-8—1 B 7 1) T
* 2 7 (@) 27 (2) no T 9 ' ((2)) wo T
«  J¥T FE | () YT st | () WINT 0T | O DuT et | (o) WONT

1) sapy-om v fo aouvpaduy qurog-Suraraq oy Swazyvay syiomga)
11T J4714dvVL

~




674 BELL SYSTEM TECHNICAL JOURNAL

numbers 1, 2, ..., 10; and seven critical points by the letters a,
b, ..., g as illustrated by Figs. 4 and 5

Networks with superfluous elements are indicated by placing
parentheses around the corresponding reference mark, single paren-
theses for one superfludus element and double parentheses for two.
In order that a seven-element network may contain no superfluous
elements it must give the entire domain or a region in it, a six-element
network a critical line, and a five-element network a critical point.

That is, an impedance with arbitrarily assigned roots, and with a
pole chosen arbitrarily in the domain corresponding to these assigned
roots, can be realized with the minimum number of elements only
by a seven-element network. If the pole is chosen so as to satisfy
one additional condition, namely, chosen at a point on one of the
critical lines of the domain (including the boundary curve), the
impedance can be realized by the six-element network giving that
line. If the pole is chosen so as to satisfy two additional conditions,
namely, chosen at one of the critical points, the impedance can be
realized by the corresponding five-element network.

The conditions for the critical lines and for the critical points are
given by Tables IV and V, respectively, in terms of the coefficients
of the impedance.

TABLE IV
Critical Lines

I a3} 4 (da1aq — 2a0a3)bibs— 2a.1a3b,1b; — (dagas —ad)b3+ (4ayty — 2a1a2) baby +atb = 0.

1. (8212} —4asazastad)b}— (16aw4+2alasa4 —4a3a, +aw3)b1b
+ (3000304 _4310'2114 +ala3)b1bn + (8(15(13&4 —_ 4a1aza4+u 1(!_;)51’.72
- O(Guﬂg - (llCh)b 1b2b‘| (ganﬂ 104 —441(,&2(13 +t1 [ﬂa)b b3
- ((10(13 —a [a-l) bz - (Sﬂoﬂlaq —4daya.as+a 1[,13) bzbg + (16(1004 + 2ayy0y
—4agai+ala ) bab? — (8ada; —4ag,a. Fadvd=

o

Dutybybaby — agh bl — abd 4 a3y —asbeb3 arbi =0.
3. aght —ashbs—aiblbytabbi42abibab; —aghi =0.
4. 341’%[)! *ﬂablba‘f'ﬂ |b1b§ *ﬂubghg =0.

u..u‘blb -|—a5b3b3+ (asay —aj)bzbz (aras—a 223)03baby
—2a .a;b,b;, a .a.b b3 +ala;b1b2b;, + (apas — a,a2) bbb}
—|-u,b1b3 +a..ruh, —auaab;b3+auu »b,bs —ana.b»bs =0.

wn

6. azubiba—a ;bllhfu 2w b3l — (004 —asas)by 2hoby+ 2a,a5b3 b;
+u1¢r4b|bz—u .u;,b.blb-.—l—(a.,a; as Jblblb_‘—alb b3 —agab3
+agaybib; — (aws—a l)bth-aua]b-bj =0.

ayaghy bgm£:3b3b3 —asasht bz+(ala4+a -ag)b bab;— Za,aab hJ
+a .a._blbz —aazh b2b3+(ﬂoa3+ala:)b bob‘]'*ﬂ.lb b_; — (g :.h*,
Fayazbiby —anagbzb_, +apaibab3 =0.
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(8a la§—4a2aaa4+a§}bsl — (8asa3+2a1a504—da3as4-aad)bib,

+ (dagazas a1} —4a,aa,) bibs+ (2005044102 —4a,a:0,) bibs
—(4apasay—6a iﬂ M) b::b'zba‘i’ (4aemay —ﬂ%ﬂa}b‘}b.% - (ﬂoﬂg —4agaza,
—ata)bib3 — (8agray +atag)bibibs+ (2aaia;+-afaz) bibab3
—aib?bd — 2am,a.b: b3+ (20 das+ 2a02,a:) 5,30,

— (aas+2aema2) bbb+ 2a0a b bab +-afa b — afash3bs
+ada.b3b}—ala bibi=0.

a03b3b3 — 2a3a,b3b:bs +a3bib] — a:a3b103 + (@103 4220500 5163b:
—(2a,a3a, +ﬂzﬂ§)b%bzb§ — (4aazay —alag}b%bg +a|aib1b§

— (2000} +2a,a50,) bib3bs+ (8auasas+a1a3) bib3b3

+ (4000204 — 6agad) bibab — (400,04 —dagasas+alaz) bibi

- aaaibg + 2aoa3a,b3bs — (4auaga4+aoa§ —a%a,)bibﬁ

— (2aa,104 —4aa gas-l—ﬂfaa)b%b; +(8akas+2aga,a; —4aqu§+a§a g)b-;b§
— (8adas —dagn,a:+a})bi=0.

a3abib. +aibiby —aibibi — 2a,a.a.b3bb, — 301036303

+ (4aeal — aday+aswad)bib3 4+ (dagaga,4-3a.a3 —aja;) bibb,

— (aoa} —ada) b3bob34-3adabib]

— (dagayas — 2a1aaas+a102)bibd — (dagnias+3ata; —a,ad) bib303
+ 200 12301babE —adh b3 (aga] —ala) b3 4 (daoaias — 202205
+aday)bibs — (4aday—awa}+ala2) b33 +aibibi — acaibabl =0.

TABLE V
Critical Points
Coordinates
Point
be by
b]_ bl
a 0 as
ay
apla,ay —asas) ao(aas —asas)

- a 2(10(13 —a,dz 1 PR
C —— — —(ﬂ-_=+vlu27a|,u )

2a0 gy Vai —4ay 2a, 2 4
d a a0z —apdy

o gy

2

e ag A3y

A2z —a,dy Q23— a0y

ay , 2aaz—a.as 1 S

i vl mme————3 —(a:—Vai—4u

2a, 2a, \t'a§ —Yaa, 2&0( 2 2 uﬂi)
¢ aoa5~+ajas—a1a:03 as(apas; —a,as)

o124 +ag2ads — 0105 o 104+ dodaty — 103
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These critical lines and points are illustrated, for numerical cases,
by Figs. 4 and 5. The graph showing the domain of real poles in
Fig. 5 is inaccurate to the extent that the critical lines have been
spread somewhat apart from each other in order to show the sequence
in which they occur. The actual curves are shown accurately drawn
and on a larger scale in Fig. 5a. Even on this scale, Curve 2 cannot
be distinguished from the side of the rectangle.

The diagrams for the domain of complex poles, as illustrated by
Figs. 4 and 5, are approximately symmetrical with respect to the inter-
changing of inductances and capacities, with corresponding inter-
changes in all the curves and formulas. Thus & and g correspond,
cand f,d and e, 2 and 3, 5 and 6, 8 and 9, a; and as, as and a;; while
a, 1,4, 7, and 10 remain unchanged. In the domain of real poles shown
by Fig. 5, this symmetry does not appear. The explanation of this
apparent discrepancy is as follows: Upon interchanging inductances
and capacities, the values of the roots are changed to their reciprocals.
Thus Fig. 5 is symmetrical with the corresponding figure drawn for
the case of roots equal to —1, —1/2, —1/5, and —1/7, and thus
symmetrical with the figure drawn for roots at —7, —7/2, —7/5,
and —1, since the relative distribution of the roots is the same. This
set of roots differs not very considerably from the original set of
roots, in reverse order. In the main, therefore, the two figures may
be expected to be approximately the same, that is, the original figure
symmetrical with itself. In the rectangle, however, very small
numerical changes in the constants make relatively large changes in
the curves; so it is not surprising to find a lack of symmetry here.
If the roots are assigned so that the product of two roots is equal to
the product of the other two, there will be true symmetry in the
corresponding diagram.

Table 11 lists 38 circuits, giving a total of 102 networks. Of these
networks, three are essentially the equivalent of networks obtained
from a one-mesh circuit, one realizes only those impedances which
have one pair of pure imaginary roots, and, of the 98 remaining, 41
have superfluous elements. This leaves a total of 57 networks, of
which 11 realize the entire domain as given by Theorem II, 12 realize
regions in the domain as given by Theorem 111, 23 realize critical lines
in the domain, and 11 realize critical points.

The eleven networks of Theorem II are included in the first column
of Table IIT and shown in detail by Fig. 1. Formulas for the com-
putation of their elements are given by Table I. Thus the values
of these elements can be computed directly in terms of the coefficients
of the impedance expression as stated in the form (1b). The following
method of computation is convenient:—First compute d as the root
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of the quadratic equation (21), which is repeated at the bottom
of the table. Then find ¢ by subtracting this value of d from a,. Next
compute Iy, 7%, and 77, assigning signs so that the identity 5,7
+0:T2+b3T3=10 is satisfied; this is possible since the equation for
d was obtained by rationalizing this relation among the 7's. There
are, in general, two sets of signs for which this identity is satisfied;
it is immaterial which set is chosen since the signs of all the 7"s may
be changed without changing the values of any of the elements.
Then compute U,, U., and Uj, assigning positive values to each of
these. With the values of all these quantities determined, the values
of the elements of the networks can be calculated directly from the
formulas given in the body of the table. If this solution turns out to
be impossible, that is, if the value of an element is found to be nega-
tive or complex or if the value of a mutual inductance is found to be
greater than the square root of the product of the associated self-
-inductanees, it means that the conditions upon the roots and poles
are not satisfied. If the conditions established in the first part of
this paper are satisfied, the solution is possible.

These formulas give all the special cases of the eleven networks
automatically, that is, the values of the appropriate elements will
turn out to be zero or infinite, as the case may be. Since each of these
eleven networks covers the entire domain, they are all mutually
equivalent at all frequencies. These are the only networks without
superfluous elements which cover the entire domain, that is, any net-
work covering the entire domain must be one of these eleven or a
network obtained from one of these by introducing additional ele-
ments. Each of the eleven contains just seven elements; thus the
prediction that a seven-element network would cover the entire
domain is verified. The three remaining networks of this same type,
one from Circuit 6 and two from Circuit 9 of Table 111 give special
cases only, in the sense that each of these can realize only those im-
pedances which have a pole lying on Line 2; thus each of these three
contains a superfluous element, since all the points on Line 2 can be
realized by six-element networks, as shown in the fourth column of
the table.

Network 1 of Fig. 1 is of particular interest since it consists simply
of two branches in parallel, each containing resistance, capacity, and
self-inductance, with mutual inductance between them."” By Theorem
II, this network can be made equivalent to any network whatsoever
obtained from a two-mesh circuit.

'0-Tt will be shown in a subsequent paper that any driving-point impedance of an
n-mesh circuit can be realized by a network of # branches in parallel, each branch
containing resistance, capacity, and self-inductance, with mutual inductance between
each pair of branches,
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The twelve networks of Theorem III are included in the second
column of Table 111 and shown in detail by Fig. 2. Formulas for the
computation of their elements are given by Table IT. The values of the
elements can be computed by the same rule as that given above for
Table I.

Each of these twelve networks realizes those impedances which
have poles lying in a certain restricted area or region of the entire
domain of possibilities, as indicated for each network in the table by
a specification of the boundary curves of the area. For each par-
ticular impedance in the domain various sets of these twelve networks
are mutually equivalent. Some points in the domain cannot be
realized by networks without mutual inductance. Of the remaining
points, each is realizable, in general, by at least three, and by not
more than five, of these twelve networks. This region of the domain
which is realizable without mutual inductance is covered, with no
overlapping, by each of the four following sets of networks: 13, 17,
and 21; 13, 18, and 22; 14, 17, and 23; 15, 19, and 21; the numbers
refer to the networks of Fig. 2.

That portion of the domain which cannot be realized by networks
without mutual inductance comprises the three regions bounded by
I'y and 5, Ty and 7, and T+ and 6, respectively, as illustrated by Figs.
4 and 5.

The third and fourth columns of Table III show a total of 23 net-
works, each with six elements, realizing lines in the domain. Of
these, eleven are derived as special cases of the networks of both
Figs. 1 and 2, six as special cases of Fig. 1 but not of Fig. 2, and six
as special cases of Fig. 2 alone. The fifth column of the table shows
the eleven networks, each with five elements, realizing points in the
domain.

6. ForMULAS FOR CALCULATION OF GENERAL NETWORK

Formulas for the calculation of the values of the elements of the
general network of Fig. 7 are given in Theorem IV. These are given
in the form of nine equations (7)—(15), inclusive, involving the twelve
elements of the network and two parameters, d and k. The para-
meter d, however, is fixed by the impedance, since the left-hand mem-
bers of equations (13)-(15) satisfy the identity (20). Upon sub-
stituting the right-hand members in the identity and rationalizing,
equation (21) is obtained, this being a quadratic equation in d with
coefficients which are functions of the known coefficients of the im-
pedance. Since d is fixed in this way, there are essentially eight
equations in thirteen variables,—the twelve elements and the arbi-
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trary parameter k. In general, therefore, five of the elements may
be specified, or five relations among the elements; whereupon the
equations can be solved. Thus it is to be expected that a seven-
element network will realize, in general, any specified driving-point
impedance.

This method of solution is best illustrated by considering a par-
ticular case. Take, for example, the derivation of the formulas for
Network 1 of Fig. 1, as given by Table I. This is the special case of
the general network of Fig. 7 obtained by making Li=Ry=Cy"'= M,
= M3=0. Substituting these values, together with the notation of
Table I, equations (7)-(15) become

Lng'—ﬂ.[2‘13=Gnk2,
R2R3=dk2,
D2D3 =a4k2,
L2+L3—2ﬂf'33=blk"‘;
R:+R3=Dbsk?,
Do+Dy=Dbzk?,
RgD;j—RaDg: T]ks,
D‘.’L.‘Q_DSLE—(DE_D:])J-[EH:TEkﬂy
LoRy—LyRo— (R3— Ro) Moy =T3k5.

Eliminating Ra, Ry, D2, and D; from the second, third, fifth, sixth,
and seventh of these equations, the value of k is found to be equal to
+ U,/T.. Knowing the value of k, the equations may then be solved
for the seven elements, obtaining the results given in Table 1. The
two sign choices for k in this example correspond to the possibility of
interchanging branches 2 and 3 in the network. The values given in
Table I are computed for k taken with the negative sign.

In the general solution, the parameter d is obtained from the
quadratic equation (21). The explicit solution of this equation is

d= 2ﬂ4b12+ﬂ2b22+20qb.12 —ﬂﬂab1b2 —2a2b1b3—a,baby = 2A (34)
bn_-' —4b1b3

where
A =a2h Fapashs Fagtbyt — aszusbbs— (2as04 —as?)by?by — a a4 bs?
— y :{bgﬂbx — (2[10(12 —a lz)blb 33 — 1(62‘633
+asayh tbat + (a2 + 20ty — 2a123) 01205 +aoasba*b 4
+ (3a1ay — aza;)b,2hsby — (4aoas —ar1as)bi1ba*bs

+ (3@ 3 — a1a2)b1b2by?, (35)
=a¢*(a12h1 +a1ba+b3) (a2?by +asbe+by)
(as?hy 4+ asbe+b3) (@b asba+b3), (36)

=a¢*h* (a1 — B2) (ey — B3) (a2 — B2) (s — B5)
(a5 —Ba) (as—Bs) (as—Ba)(as—B3). (37)
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In the case of real and distinct poles, formula (34) gives, in general,
two positive values of d satisfying the necessary conditions (4)—(6),
and thus two solutions for any particular network. For complex
poles, only one such value of d is obtained, and there is thus a unique
solution in each case. For real and equal poles, b,>—4b,b3=0, and so
formula (34) does not apply directly; in this case, however, (21)
reduces to a linear equation in d, so that the solution can be readily
found.

An obvious necessary condition for a solution is that A?=0, for
otherwise the value of d would be complex. This condition is satisfied
for any choice of poles provided there is not an odd number of real
roots lying between two real poles. Thus for the case of all complex
roots or for the case of complex poles with any choice of roots this
condition is automatically satisfied. It is interesting to note that
an impedance expression with poles failing to satisfy this condition
cannot be realized by any network with positive or negative resist-
ances, capacities, and inductances; it can be realized only by a net-
work with elements having complex values.

7. NETWORKS WITH NEGATIVE RESISTANCES

If negative resistances are allowed in the two-mesh circuit, the only
change necessary in the statement of the results of this investigation,
as given in Theorems I-IV, is the removal of the restrictions a;+a:<0,
as+a: <0, B2+pB:<0, and d=0. This removes the restriction of
the real part of each root and pole to negative or zero values. The
removal of the restriction on 4 adds to the domain of poles, considered
in the x, y plane, all the ellipses of the family — o <d <0, thus filling
out the region above the critical parabola (33), together with the
corners in the case of real roots. In the u, v plane the domain com-
prises the entire upper half of the complex plane and, in the auxiliary
diagram, the complete triangular corners and the rectangle, with the
provision that the rectangle is not included in the case of two roots
positive and two negative,

By means of a two-mesh circuit employing negative resistances,
any impedance expression of the form (1) can be realized, with roots
arbitrarily assigned in conjugate pairs or in real pairs, subject only
to the condition that the number of positive roots is even, and with
any pair of complex peles or with a pair of real poles lying anywhere
in the ranges from the first to the second real roots and from the third
to the fourth real roots, arranged in order of magnitude, subject only
to the condition that both poles must be positive or both negative.
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The network diagrams and all the formulas for the calculation of
the elements remain unchanged.

8. MATHEMATICAL PROOF

The circuits treated in this investigation are special cases of the
general circuit which has any number of terminals m connected in
pairs by #(m—1)/2 branches, each of which consists of a self-induct-
ance, a resistance, and a capacity in series, with mutual inductance
between each pair of branches. The only restrictions imposed are
those inherent in all electrical circuits, namely, that the magnetic
energy, the dissipation, and the electric energy are each positive for
any possible distribution of currents in the branches. Circuits with
any arrangement of elements in series or in parallel or in separated
meshes can be derived as limiting cases of this general circuit by
making a sufficient number of the inductances, resistances, and capaci-
ties either zero or infinite.

This general circuit connecting m terminals or branch-points has
n=(m—1) (m—2)/2 degrees of freedom, that is, # independent
meshes. The discriminant ' of the circuit is the determinant A
having the element Zj in the jth row and kth column, Zj. being the
mutual impedance between meshes j and k (self-impedance when
j=k), the determinant including # independent meshes of the circuit.

The driving-point impedance in the gth mesh S; is equal to the
ratio A/A,, where A, is the cofactor of the element in the gth
row and gth column of the determinant 4. In general, the cofactor
of the product of the elements located at the intersection of rows
i, q, 8 ...with columns &, 7, ¢, ..., respectively, will be denoted by
Ajtar.st, .

The determinant 4 for the general circuit described above is of
order n with the element

Zig=1Ljp+ R+ (1 Cirp) ™! (38)

where Ljx, Rjr, and Cje are the inductance, the resistance, and I'the
capacity, respectively, common to the two meshes j and k. The
inductance Lj; includes, therefore, the self-inductances of the branches
common to the two meshes together with the mutual inductances
connecting each branch of one mesh with each branch of the other
mesh. The determinant is symmetrical, that is Zji=Zs, since
Lir=Lyj, Rjx=2Rj, and Cip= Cs;.

1 A complete discussion of the solution of circuits by means of determinants has
been given by G. A. Campbell, loc. cit., pages 883-886.
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These coefficients Ljz, Rjx, and Cj: are subject to the energy con-
ditions stated above, namely, that the magnetic energy, the dissipa-
tion, and the electric energy,

n n n n ”n

5 2 E Lidjie, 3, 2 Rjijix, and ﬁz g{ ci,k St fixdt,  (39)

i=1lk= i=1k= i=1

respectively, are each positive for any possible distribution of the
currents (Zj, 2%, . . .) in the branches of the circuits.” In other words,
the coefficients Lj, Rjx, and 1/Cj are subject to the condition that
the three quadratic forms of which these are the coefficients must be
positive for all real values of the variables. All the principal minors
of the determinants

1 1 1
Ly ... L Rii Ri» ... Ry —_— —
Lll 12 In 11 12 1 C11 612 C1n
1 1 1
Loy Loz ... Low| [Rot Ros ... Roy C_m Cos Con
.. ... . land| . . .. .| (40)
Lwi Lauz oo Lpn| By Rye ... R —
! ! i " n" Cﬂl Cﬂ'—’ C?HI

are positive or zero by virtue of this condition.® This same condi-
tion holds for the inductances if the coefficients L;: apply to branches
instead of meshes.

By expanding the determinants in the numerator and denominator
of the expression for the driving-point impedance given above, we find

i ay(ip)"+a,(ip) 1t as(ip) 2. . A aan 1 (ip) T a0, (ip)
Ay bi(ip)" +ba(ip)" 2. . Ao (ip) T
12 For a recent statement of the energy conditions in this form see L. Bouthillon,

Revie Générale de I'Electricité, 11, 1922, pages 656-661.
14 A necessary and sufficient condition that the real quadratic form in n variables

Sq= (41)

2z XNy (a=ay),
i=lk=1

be positive for all real values of the variables is that each of the » determinants,

a1y iz ... adyy,
9y dos . . . A9,
@y a1z
an, ' ’ ,
@21 Az
Qp1Gu2. « « Oy

be positive. For a proof of this see, for example, H. Hancock, “Theory of Maxima
and Minima," 1917, pages 82-91.
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Upon substituting A=7p, multiplying numerator and denominator
by N, and dropping the sul:script ¢, formula (41) becomes

S_(ln)\z”+f11?\2”_1+f12?\2”_2+- . Aaz, 1A -az,
0= T U I R S (42)

which may be taken as the most general form of a driving-point
impedance. This formula, therefore, gives the impedance of the
circuit for any electrical oscillations of the form ¢, where A may
have any value, real or complex. Formula (42) may be written in the
alternative form

(?\—al)()\—ag)()\—a;;) P (?x—ag,,,1)(?\~a2,,).

S=H AMA=B2)(A—=B3) . . . (A\—B2u-1) (43)

Thus there are 2n roots of S, regarded as a function of A, which are
the 2n resonant points of the circuit. There are also 2n poles of S,
which are the 2n anti-resonant points of the circuit, namely, zero,
infinity, and the 2n—2 resonant points of the circuit obtained by
opening the branch in which the driving-point impedance is measured.

Upon setting #=2 in equations (43) and (42), formulas (la) and
(1b) are obtained, respectively.

From the fact that the coefficients L, Rj, and 1/Cy satisfy the
quadratic form conditions (39), it can be shown mathematically
that the coefficients @, @y, . . ., @ of (42) are all positive and that
the roots ai, as, ..., aw of (43) have negative real parts.® This
can also be shown from the fact that the free oscillations of the circuit
are of the forms e, ¢, ... ¢"'. Thus the roots occur in pairs
each of which has negative real values or conjugate complex values
with negative real parts.

The same restrictions hold for the coefficients by, bs, . .., bay_1
and the poles Bs, 83, . . ., Ban_1 since the denominator of S, with the
exception of the factor N, is also the discriminant of a circuit. Thus
the general restrictions (2) are obtained.

In order to obtain the necessary and sufficient conditions that a
function of the type (1b) represent a driving-point impedance realiz-
able by a two-mesh circuit, set this function equal to the impedance
of the most general two-mesh circuit and investigate the conditions
which must hold upon the coefficients in order that the two forms
may be equivalent.

Y The mathematical work is identical with the mathematics of the corresponding
dynamical problem. A detailed proof is given by A. G. Webster, loc. cil.
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The discriminant of the most general two-mesh circuit is of the form

L11R+R“+I)“?\ 'I, L];_l)\—E-Ri-_l‘}'D[g)\"l
: (44)

LisA+Ris+D A", Laoh+ Ra + Dyt

where the three sets of coefficients, using Dy instead of 1/Cj, are
subject to the restriction that the three determinants

| Ly Ly | ‘ Ryi Ris Dy Dy

(45)
Ly Lo Ris Rao Dy Doy

, and

are all positive or zero, as well as Ly;, Ry, and Dy, This condition
requires Las, Res, and Ds, also to be positive or zero.

The most general driving-point impedance of a two-mesh circuit
may be taken as the impedance in the first mesh of the circuit definec
by the discriminant (44). Set 4/A1 equal to the value of S given
by (1b). Expanding into polynomials in A, and equating coefficients
of the numerators and denominators of the two expressions, the
following relations are obtained :

Ly Las— L, =aok?, (46)

LuRos+ LosRyy —2LaRin=a, R, (47)
L11D22+L22D11+R11R22'—2L12D12—Rf-_==02k2| (48)

Ri\Das+ Ry D11 — 2R D12 = ask?, (49)

D1 Daw— D}y = a4k, (50)

Loy=bk?, (51)

Rgg = bgkﬂ, {52)

Doy =bsk?, (53)

where & has any real value other than zero. Introduce the notation
R]]Rgg*Ri’:dkg, (54)

where d is positive or zero. Then, using (46), (54), and (50), eliminate
Ly, Ry, and Dy, from equations (47)-(49), obtaining

(L12Rsz— LasRy2)* = k*(—dLy+a1LaaRos —aoR3,), (55)
(D12Laa— DasLy2)*= kB l—aDi+ (ﬂ‘.'*d)Dﬂ‘lL'-"l_ijf»:]: (56)
(Ry2Das— RasD12)* =k — asRy+asRo2 Doo — dD3y). (57)

Using (51)-(53), eliminate Lss, Ras, and Ds. from the right-hand
members of (55)—(57); extract the square root; rearrange the order
of the equations, obtaining
RisDos— RosD o= £ R3(— asba?+azhaby—dby?) V2, (58)
Dialios—DanLio= £ B—abs+ (as— d)byby—asd 12] 12 (h9)
LisRyy— LoaRiz = £ k3 (—db2+abibs —aghs?) . (60)
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Thus conditions (4)—(6) are obtained directly from (58)-(60). The
left-hand members of (58)-(60) satisfy the identity

(RI‘EDM _RQQDIE)L:!'.’-l' (DIELQQ _D22L12)R22
+ (L12Ras— LoaR12) D22 = 0. (61)

Substituting (51)—(53) and (58)—(60) in this identity (61), and rational-
izing, equation (3) and its equivalent (21) are obtained.
For the general network of Fig. 7,

Ly=L/+L), Liz=Ly, Los=Ls+Ly, i
Ry =R, +R,, Ri:=R,, Ray=R» +-R:|, (62)
Dyi=D1+ D, D= D, Das=Dy+4 D3,

where Ly, L./, and Ly’ are defined by (17)-(19). For this set of con-
stants, branch 2 is made the branch common to the two meshes; the
choice of branch 3 as the common branch would not affect the final
formulas. Substituting these values (62) in (46), (54), (50)—(53),
and (38)—(60), equations (7)-(15) are obtained directly.

Thus Theorems [ and IV are completely proved. Theorems II
and III are verified by the actual formulas for the elements given in
Tables I and II, and by the census of networks presented in Table I11.

I am indebted to Dr. George A. Campbell for inspiring the writing
of this paper and for specific advice upon many points, and to Miss
Frances Thorndike for the preparation of the tables and figures.



