Mutual Inductance in Wave Filters with
an Introduction on Filter Design

By K. S. JOHNSON and T. E. SHEA

PART 1

GENERAL PrincirLEs OF WAVE FILTER DESIGN

Principles of Generalized Dissymmetrical Networks. We shall con-
sider first the impedance and propagation characteristics of certain gen-
eralized networks. [t can be shown that any passive network having
one pair of input and one pair of output terminals may, at any frequency,
be completely and adequately represented by an equivalent T or m net-

Fig. 1—Generalized Dissymmetrical 7" Network Connected to Impedances Equal
to Its Image Impedances

work.! The impedance and propagation characteristics of any such
network may be expressed in terms of its equivalent 7" or 7 network.
These characteristics are defined by (1) the #mage impedances, and
(2) the transfer constant, the latter including the attenuation constant*
and the phase constant* In the case of a symmetrical network,
the image impedances and the transfer constant are, respectively,
the iterative impedances (or characteristic impedances) and the propaga-
tion constant employed by Campbell, Zobel, and others. The terms
involved will be subsequently defined.

Consider the dissymmetrical 7" network of Fig. 1. If the 3—4
terminals of the 7" network are connected to an impedance Zjy, the

1 Campbell, G. A., “Cisoidal Oscillations,” Transactions A. I. E. E., (1911),
Vol. XXX, Part II, pp. 873-909.

The T and 7 networks referred to above are sometimes called star (V) and delta (A)
networks, respectively.

? The real and imaginary parts of the transfer constant have been called by Zobel,
the diminution constant and the angular constant, respectively. (See Biblicgraphy 13.)
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impedance looking into the 7" network at the 1—2 terminals will be

Zc(Zp+2Z1,) (1)

ve=lat g Tr 2

Similarly, if the 1—2 terminals of the T network are connected to an
impedance Zz,, the impedance looking into the 3—4 terminals of the
T network will be
Zy s=Zp+ ?:7(2.4_+ Zn), (2)
ct+Zat+ 2y

If Z,-, is equal to the terminal impedance Z;, and if, similarly,
Zy-4 is equal to the terminal impedance Zz,, the network will then be
terminated in such a way that, at either junction (1—2 or 3—4), the
impedance in the two directions is the same. In other words, at each
junction point, the impedance looking in one direction is the image
of the impedance looking in the opposite direction. Under these
conditions Z;, and Z, are called the image impedances of the T net-
work. If equations (1) and (2) are solved explicitly for Z;, and Zy,,
the following expressions are obtained : .

7 (ZatZc) (ZaZp+ZaZc+ZpZc) (3)
h (Zs+Zc) '

7 ’ (Zp+Zc)(ZaZp+ZaZe+ZpZc) 4)
27N (Za+Zc) '

If Ze. is the impedance looking into one end of the network with
the distant end open-circuited, and if Z is the corresponding imped-
ance with the distant end short-circuited, it may be shown that the
image impedance at either end of the network is the geometric mean
of Z,e and Z,.. What is here termed the image impedance is, there-
fore, equivalent to what Kennelly has called the surge impedance.’

The propagation characteristics of a dissymmetrical network may
be completely expressed in terms of the transfer constant. The
transfer constant of any structure may be defined as one-half the
natural logarithm of the vector ratio of the steady-state vector volt-
amperes entering and leaving the network when the latter is termi-
nated in its image impedances. The ratio is determined by dividing
the value of the vector volt-amperes at the transmitting end of the
network by the value of the vector volt-amperes at the receiving end.

3 There is at present lack of common agreement as to the basis of definition of
this term, and it is often defined upon the basis, not of open and short-circuit im-
pedances, but of a uniform recurrent line (See A. I. E. E. Standardization Rule

12054, edition of 1922). The formulae derived by the two methods are not equiva-
ment in the case of dissymmetrical networks.
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The real part of the transfer constant, that is, the attenuation con-
stant, is expressed by the above definition in napiers or hyperbolic
radians and the imaginary part, that is, the phase constant, is ex-
pressed in circular radians. The practical unit of attenuation here

Fig. 2—Generalized Symmetrical 7' Network Connected to Impedances Equal to
Its Image Impedances

used is the transmission unit* (1 TU=.11513 napier). It can be
demonstrated that the transfer constant, 0, of the T° network shown
in Fig. 1is
0= tanh- ,\/ ZAZB+ZAZC+ZBZC
ch (ZA +ZC) (ZB+ZC)

(5)

— cosh- J (Z4 +Zc)(ZB+ZC)

in which Z,. and Z;. are, as previously deﬁncd, the open and short-
circuit impedances of the network. The ratio Z;/Z, is the same at
both ends of any passive network.

Principles of Generalized Symmetrical Networks. Consider now the
impedance and propagation characteristics of the generalized sym-
metrical structure shown in Fig. 2. On account of the symmetry of
the structure, the image impedances at both ends are identical, and
from equation (3) or (4) their value may be shown® to be

z,=\]zlz2(1+4£é;)- (6)

In the case of a symmetrical T structure, such as is shown in Fig. 2,
the impedance Z; is called the mid-series image impedance. The
significance of this term will be evident, if the series-shunt type of

4+W, H. Martin, ' The Transmission Unit and Telephone Transmission Reference
System,”" Bell Sys. Tech. Jour., July, 1924; Jour. A. I. E. E., Vol. 43, p. 504, 1924,

§ Zobel, O. J., “Theory and Design of Uniform and Composite Electric Wave-
Filters," Bell Syst. Tech. Jour., Jan., 1923,
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structure shown in Fig. 3 is regarded as made up of symmetrical T
networks or sections, the junctions of which occur at the mid-points
of the series arms.

Suppose now that the structure of Fig. 3 is considered to be made
up of symmetrical 7 networks, or sections, each of which is represented

Z, Z,
- — —W AW AWV ———AWW— - -

zzg 2.3 z,

Fig. 3—Generalized_ Recurrent Series-Shunt Network
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Fig. 4—Generalized Symmetrical = Network Connected to Impedances Equal to
Its Image Impedances

as in Fig. 4. By methods similar to those employed for the T network
of Fig. 2 it can be shown® that the image impedance of the general-
ized 7 network of Fig. 4 is given by

[ZiZy .
Zy
Ntz
In this symmetrical structure the image impedance is called the mid-
shunt image impedance.

The image transfer constant of either a T or a = symmetrical struc-
ture is?

Zy= (7)

: . . Z Z
0=A+jB=2 s1nh*‘\’4zle=cosh—‘(l+2—212). (8)

In discussing the generalized networks of Figs. 1, 2 and 4, it has been
assumed that the networks were terminated in their respective image
impedances. In practical cases, filters must be designed to work
between impedances which are, in general, not exactly equal to their
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image impedances at more than one or a few frequencies. For a
generalized structure, such as that of Fig. 1, operating between a
sending-end impedance Zs and a receiving-end impedance Zg, the
current in Zg, for an electromotive force acting in Zg, is

_E | ZstZr \4Z1,7Zs_ 417z
Ip=-+ X X
ZsH+ZR" N/AZsZy Zn+Zs " Znp+Zg
1
Xe X (9)

Lp—Zr  Zn—Zs

VAR A RVANS A
Since E/(Zs+Zg) is the current (Ig) which would flow if the gener-
alized T network were not inserted in the circuit, the ratio of the re-

ceived current, with and without the network in the circuit, may be
expressed by the relation

Ir — (Z_S_i__gﬂ_) (\/'42!125) (‘\/421221{)

1 XE—ZO

I \VAZsZp/ \ Z1,+Zs VAR A
1
-0 _ . 10
e Xl_(ZIE_ZR)(ZI,—ZS)E_ZB (10)
Zi+Zr/ \Z1,+Zs

In general, the electromotive force does not act through a simple
sending-end impedance Zs but through some complex circuit. The
current ratio ({g/Ig) will, however, be the same in either case. The
principle underlying this fact is known as Thévenin's Theorem.®

The absolute magnitude of the current ratio, l Ig/Ig [, is a measure
ol the transmission loss caused by the introduction of the network.
The transmission loss may be expressed in terms of transmission units
{T"U) by aid of the following relation

TU: 20 Ing

Ig
- ’ (11)
Reference to equation (10) shows that the transmission loss caused
by the introduction of any network is composed of five factors. The
first three factors of this equation are all of the same general type
with the exception that the first of the three is reciprocal in nature
to the other two. These two latter factors have been called reflection
factors and determine the reflection losses which exist between the im-
pedances involved. The fourth factor is the transfer factor and
expresses the current ratio which corresponds to the transfer con-

S Casper, W. L., “Telephone Transformers,” Transactions A. I. E. E., March,

1924, p. 4. Thévenin, M. L., *Sur un Nouveau Théoréme d’Electricité Dynamique,'’
Comptes Rendus, vol. 97, p. 159, 1883,
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stant. The last factor has been called the interaction factor. The
value of the reflection factor is evidently a function simply of the ratio
of the impedances involved, while the absolute value of the transfer
factor is € * where A is the real portion of the transfer constant and
_hence is the attenuation constant. The value of the interaction
factor is seen to be unity either when Z;,=Zg or when Z;,=Zs. It
also approaches unity if the value of 8 is sufficiently large.
In the case of a symmetrical structure, such as is shown in Fig. 2,
or Fig. 4, Z,vl Z1,=Zp and equation (10) reduces to

Ir ( Zs+Zr ) (\/4/145) (\/M)

Ie \N/1ZsZp! \Zi+ 75 Zi+Zr
1
we= 0% . = . 12
‘ _(ﬂﬂ) (Q—_é')fzs (12
Zi+Zr) \Z1+2Zs

If the structure is symmetrical, and if, furthermore, the sending-end
impedance Zs is u]ual to the receiving-end impedance Zg, equation
(12) becomes

In _, gy Vil 1
IR' (Zf+ZR)2 1— (Z]_ZR)ze_gg.
Zi+2Zg

(13)

The preceding formulae make it possible to calculate rigorously
the transmission loss caused by any network whose image impedances
and transfer constant are both known. In the symmetrical case, if
Zy=Zs=/Zpg, the transmission loss is determined simply by the value
of the attenuation constant. In general, in the attenuation range
of frequencies, the value of © of a wave filter is relatively large and
the interaction factor is substantially unity. Consequently, the
transmission loss caused by any filter in its attenuation range is de-
pendent practically only upon the value of the attenuation constant
and the reflection losses between Zs and Zj;, Zr and Zy, and Zg
and Zg, respectively. Throughout most of the transmission range
of a filter, its image impedances may be made very closely equal to the
terminating impedances so that the transmission loss caused by the
filter in this range is dependent simply upon its attenuation constant.
In the intervening range, between the attenuated and the non-at-
tenvated bands, the transfer factor, the reflection factors and the
interaction factor must all be taken into account.”

7 Zobel, O. J., “Transmission Characteristics of Electric Wave-Filters,” Bell Sys.
Tech. J'our ()ct 1924,
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Impedance and Propagation Characteristics of Non-Dissipative
Filters. 1If the series and shunt impedances of the structures shown in
Figs. 2 and 4 are pure reactances, as they would be in the case of a
non-dissipative filter, the ratio of the quantity Z,/4Z; must be either
a positive or negative numeric. It has been shown by Campbell® and
others that the attenuation constant is zero, and that the structure
freely transmits at all frequencies at which the ratio Z,/4Z, lies
between 0 and —1. Therefore, by plotting values of the ratio Z,/4Z,
it is possible to determine the attenuation characteristic of any sym-
metrical structure as a function of frequency.

In the transmission range, the phase constant of the symmetrical
structure shown in Fig. 2 or Fig. 4, is

| =2
B=2 sin™! LR
4Zy (14)
Hence, the expression for the image transfer constant of either of the
symmetrical structures shown in Fig. 2 or Fig. 4 is

— -
A
0=0+47 2 sin'4 21, (15)
4z,
In the attenuation region, Z,/4Zs may be either negative or positive.
If Z,/4Z, is negative and is greater in absolute magnitude than unity,
the attenuation constant is
A=2 cosh*‘J —Z (16)
47,
and the phase constant, or the imaginary component of the image
transfer constant, is

B=(2K—-1)~r (17)
where K is any integer. Hence, ‘

0=2 cosh—l\f %z*zf+ j(2K —1). (18)
From equation (8), when Z,/4Z, is positive, the attenuation constant is

A=2 sinh—l\/ ) (19)

and the phase constant B is zero. _Hence,
T2

6=2sinh™1 | 2! 440. 20

4Z, J (20)

8 Campbell, G. A., “Physical Theory of the Electric Wave-Filter,” Bell Sys. Tech.
Jour., Nov., 1922.
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As a result of equations (18) and (20), in the attenuation range,
the phase constant of a non-dissipative symmetrical filter section is
always zero or an odd multiple of .

The cut-off frequencies, by which are meant the divisional frequencies
which separate the transmission bands from the attenuation bands,
must always occur when Z;/4Z:=0 or when Z,/4Z,=—1, since,
for the transmission bands, Z;/4Z, must lie between 0 and —1.

The general formulae for the image impedances of the symmetrical
networks shown in Figs. 2 and 4 are equations (6) and (7), respectively.
From these equations, the image impedances are pure resistances in
the transmission range of a non-dissipative structure. In the at-
tenuation range, however, the image impedances are pure reactances;
the mid-series image impedance is a reactance having the same sign
as Z;, while the mid-shunt image impedance is a reactance having the
same sign as Z». In these attenuation bands, the image impedances
(pure reactances) have positive or negative signs depending upon
whether they are increasing or decreasing with frequency. The order
of magnitude of the image impedances may be found from Table I.

TABLE 1
. Then the And the
valugfo?iez lis Vaﬁgdof'ﬁf;hzelis Mid-Series Mid-Shunt
s * Image Impedance is | Image Impedance is
Zero Zero Zero Zero
Zero Finite Zero Zero t
Zero Infinite Finite t Finite t
Finite Zero Finite ** Zero **
Finite Finite Zero* or Finite Infinite * or Finite
Finite Infinite Infinite T Infinite T
Infinite Zero Infinite ** Zero **
Infinite Finite Infinite ** Finite **
Infinite Infinite Infinite Infinite

* When both Z; and Z; are finite and Z,= —4Z,, the mid-series image impedance
is zero and the mid-shunt image impedance is infinite.

t This condition gives a cut-off frequency.
** This condition results in infinite attenuation.

Types of Non-Dissipative Series-Shunt Sections Having Not Movre
Than One Transmission Band or More Than One Attenuation Band.
Since the series and shunt arms of a non-dissipative filter section may
each be composed of any combination of pure reactances, it is possible
to have an infinite number of types of filter sections. However, it
is seldom desirable to employ filters having more than one transmission
band or more than one attenuation band. Under these conditions,
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it is generally impracticable to employ more than four reactance ele-
ments in either of the arms of a section. Likewise, a total of six
reactance elements in both the series and shunt arms is the maximum
that can be economically employed.

Types of two-terminal reactance meshes having not more than four
elements, are listed in Fig. 5. In Fig. 6, the corresponding frequency-

—ee— e G ~arf
L 0 O el el
mmm%fﬁ-@%

L

8d
Fig. 5—Two-Terminal Reactance Meshes Containing Not More Than Four Elements
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Fig. 6— Rcantdncc Frequency Charactcrlstlcs of the Meshes of Fig. 5, Shown in
Symbolic Form

reactance characteristics are represented. Reactance characteristics
Nos. 1 and 2 of Fig. 6 are reciprocal in nature, that is, their product
is a constant, independent of frequency. Reactance characteristics
Nos. 3 and 4 are similarly related if the frequencies of resonance and
anti-resonance coincide. Similar relations exist between character-
istics Nos. 5 and 6, and between characteristics Nos. 7 and 8. Two
forms of reactance mesh in Fig. 5 (Nos. da and 5b) give the same
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reactance characteristic (No. 5 of Fig. 6) and are, therefore, by proper
design, electrically equivalent. Characteristic No. 6 of Fig. 6 also
corresponds to two reactance meshes of Fig. 5 (Nos. 6a and 6b) and
the latter may, therefore, be considered equivalent. Likewise, re-
actance meshes 7a, 7b, 7c and 7d of Fig. 5 give characteristic No. 7
of Fig. 6 and are therefore potentiallv equivalent; also reactance

YT N

fcoo
| 2 3 4
= © n + = 3
0 0 0 0 8] 0 0
fcoo 0 o o 0O w o o o0 m 0
5 6 7 8
n m Yoo = m= *
4] 0 o] 0 0 0 0]
fcoo o @ 0 W 0 ® 0 ®w 0 W 0
9 10 I 17

>

AN 1AL

D:fo:ao o]
13 14

Fig. 7—Propagation Constant (Attenuation Constant and Phase Constant)
Characteristics, Shown in Symbolic Form

o

meshes Nos. 8a, 8b, 8¢ and 8d of Fig. 5 are represented by reactance
characteristic No. 8 of Fig. 6 and, consequently, may also be designed
to be equivalent. The equivalence of the above reactance meshes
has been discussed by Zobel ® and will be subsequently treated at
length. It is to be understood that, for the sake of brevity, in what
follows, meshes Nos. 5, 6, 7 and 8 cover, respectively, all forms of
the equivalent meshes: 5a and 5b; 6a and 6b; 7a, 7b, 7c and 7d; and
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8a, 8b, 8¢ and 8d. Using these reactance combinations® for the
series and shunt arms, there are only a relatively small number of
types of filter structures. All of these types of filter structures are

@© - -
2 ";"‘( \— v N/ lJJ'A\‘% %\_\\A .“7‘\_
1 ! N L i N

O §® 0 ® 0 ®O0 ®WO0O ®O0 ®O0 oaQa
l 2 3 4 5 6 7 8

0

RESISTANCE .
-~ — —— REACTANCE (POSITIVE #) OR NEGATIVE (-)

Fig. 8 —Mid-Series and Mid-Shunt Image Impedance Characteristics, Shown in
Symbolic Form

listed in Table II, and are called low pass, high pass, and band pass
filters (having only one transmission band) and band elimination

9 The general method of deriving the attenuation and phase characteristics of a
section from the reactance-frequency characteristics of its series and shunt arms

is discussed by Zobel in Bibliography 13.
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filters (having two pass bands and only one attenuation band). Their
attenuation constant and phase constant characteristics, with respect
to frequency, are shown symbolically in Fig. 7. The mid-series and
mid-shunt image impedance characteristics with respect to frequency
are shown in Fig. 8. In Table II, the figure at the head of each
column indicates the reactance mesh in Fig. 5 which is used for Z,
(series impedance) and the figure at the left of each row indicates
the mesh in Fig. 5 which is used for Z: (shunt impedance). The
figures in the squares of the table denote, reading from left to right,
the propagation characteristics (attenuation and phase), the mid-
series image impedance, and the mid-shunt image impedance, re-
spectively, as shown in Figs. 7 and 8.

For example, the filter corresponding to the third column and to
the fourth row (3—4) has a series arm composed of an inductance
in series with a capacity as indicated by mesh 3 of Fig. 5, and has a
shunt arm composed of an inductance in parallel with a capacity,
as designated by mesh 4 of Fig. 5. The attenuation constant and
phase constant characteristics of this filter are shown symbolically
by diagram 5 of Fig. 7, while the mid-series and mid-shunt image
impedances are indicated, respectively, by diagrams 13 and 14 of
Fig. 8. The symbolic nature of the diagrams lies in the fact that
the abscissae of each diagram cover the frequency range from zero
to infinity, and the ordinates of Figs. 7 and 8 cover the attenuation
constant and the impedances from zero to infinity. For example,
the structure cited has an attenuation constant characteristic (diagram
5 of Fig. 7) composed of a transmission band lying betwcen two at-
tenuation bands, the attenuation constant being infinite in one of
them at zero frequency, and in the other, at infinite frequency. The
phase constant of this structure is — radians in the lower of the two
attenuation bands, increases from —= to + radians in the trans-
mission band (passing through zero), and is +r radians throughout
the upper of the two attenuation bands. The mid-series image
impedance (diagram 13 of Fig. 8) is a negative reactance in the lower
of the two transmission bands, decreasing from infinity, at zero fre-
quency, to zero at the lower cut-off frequency, is a pure resistance
throughout the transmission band, and is a positive reactance, increas-
ing from zero to infinity, in the upper of the two attenuation bands.
The mid-shunt image impedance characteristic (diagram 14 of Fig. 8)
is reciprocal in nature, for this structure, to the mid-series image
impedance characteristic. This type of filter also possesses, in the
general case, a double band pass attenuation characteristic and cor-
responding phase and impedance characteristics. A discussion of such
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characteristics is outside the scope of this paper even though many
of the structures listed in Table IT will show, if completely analyzed,
multi-band characteristics. Where no specific characteristics are
listed in Table II, no low pass, high pass, single band pass, or single
band elimination characteristics are obtainable with a filter section
limited to six different reactance elements.

In Table II, a large number of the structures have identically the
same types of attenuation constant and phase constant characteris-
tics. For example, six of the seven low pass filter sections have at-
tenuation constant and phase constant characteristic No. 2 of Fig. 7.
Likewise, six of the high pass structures have attenuation constant and
phase constant characteristic No. 4. Also, in Table II, band pass
groups are to be found having respectively, the following propagation
characteristics common to each group:6,7,8,9, 10, 11 and 12. Finally,
ten of the eleven band elimination structures listed have propagation
constant characteristic No. 14.

Although six of the seven low pass wave filters have the same at-
tenuation constant and phase constant characteristics, the various
image impedance characteristics differentiate the structures among
themselves. Similar differentiations exist in the high pass, band pass,
and band elimination groups of structures. In each of the four types
of filter sections however, all of those structures having the same series
rcactance meshes (that is, having the same series configuration of
reactance elements) may be designed to have the same mid-series
image impedance characteristic and, similarly, all of those structures
within each type having the same shunt reactance meshes, or con-
figuration of elements, may be designed to have the same mid-shunt
image impedance characteristic.

In view of the fact that some of the structures listed in Table 11
have the same attenuation and phase constants but have different
impedance characteristics, the question arises as to the relative virtues
of the latter. Furthermore, since certain of the structures have
the same mid-series or mid-shunt image impedances but have different
propagation characteristics, it is possible to join together such struc-
tures and obtain a composite structure which has no internal reflection
losses, that is, one whose total transfer constant is the sum of the
various transfer constants of the individual sections. In order to
minimize reflection and interaction losses in the transmission range,
it is generally desirable to use, at the terminals of the filter, sections
whose image impedances closely simulate those of the terminal im-
pedances to which the filter is connected. The choice presented by
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filter structures having different impedance characteristics but the
same propagation characteristic is, therefore, of advantage. In the
attenuation range this is also true where impedance conditions are
imposed at the terminals of the filter.

One class of structures which possess desirable image impedances
and whose characteristics are readily determined from simpler struc-
tures is the so-called derived m-type.d The simplest forms of derived

mZ, mZ,
— —
o——— MWW AMM—o
Z2
m
I =m?
a4m
o o

Fig. 9—Mid-Series Equivalent m-Type of Section

structures are shown in Figs. 9 and 10. The structure of Fig. 9
has the same mid-series image impedance as that shown in Fig. 2
and the value of this impedance is given by equation (6). The
structure of Fig. 10 has the same mid-shunt image impedance as the =
structure shown in Fig. 4 and the value of this impedance is given by

WA

mZ,

—AMM

?_é Am
™m PE——

Fig. 10—Mid-Shunt Equivalent #-Type of Section

equation (7). On account of this identity of the respective mid-series
and the mid-shunt image impedances in the two cases, the structures
shown in Figs. 9 and 10 are called, respectively, the mid-series equiva-
lent derived m-type and the mid-shunt equivalent derived m-type. The
T and = structures of Figs. 2 and 4 are called, respectively, the proto-
types of the derived m-structures of Figs. 9 and 10. In a series-
shunt filter composed of sections of the m-type of Fig. 9 or Fig.\'fU,
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the ratio (Z,/4Z;), of the series impedance to four times the shunt
impedance is

(&)
(4241) N = Zi\ @D
2/ m —ag? “1
1+(1—m )(422)
From this expression, when Z,/4Z, of the prototype is 0 or —1, the

corresponding value of (Z,/4Z,)n for the derived m-type is also 0 or
—1. Hence, the derived type has the same cut-off frequencies and
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Fig. 11—Attenuation Constant (in 7'U') of a Filter Section Expressed in Terms of the
Ratio of Its Series Impedance to Four Times Its Shunt Impedance (i.e., Z,/4Z,= K/j-)

therefore the same transmission and attenuation regions as its proto-
type.

' Impedance and Propagation Characteristics of Dissipative Filters.

It has been pointed out, in the case of non-dissipative structures, that

the ratio Z,/4Z, is either a positive or a negative numeric. If there

is dissipation in the filter structure, that is, if the resistance associ-

ated with the reactance elements cannot be neglected, then the ratio
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Z1/4Z, will not, in general, be a numeric but a vector. However, the
general formula (8), still holds true with dissipation. For determining
the attenuation constant and phase constant of a dissipative structure
it is convenient to use two formulae which may be derived from (8).
These formulae are

4 =eosh*1(K+\/ (K —1)*44K cos? %) (22)
B=cos™'(—K++/K*+42K cos o+1), (23)
where .
Z | 7
B=| 2| ro=x/xe.
oy
b 32 $180°
Zz ——— $#75°
2 .8 /L —t—en70°
y 4
2 k/ |__——$3160°
n
x 24 / —— $#150°
. -
& /// L— &40°
/ -
W 20 // o130
E ///——¢=t|20°
o // L— 4211 0°
<L |.6 / ] =
z 7/ - /.——-¢=‘_’I00°
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i 2 A Aﬂ//___ —+g0°
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Fig. 12—Phase Constant of a Filter Section Expressed in Terms of the Ratio of Its
Series Impedance to Four Times Its Shunt Impedance (ie., Z\[4Z,= K,/ ®)
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Formulae (22) and (23) are expressed in napiers and circular radians,
respectively. They are represented in 7'/ and in radians by families
of curves such as are shown in Figs. 11 and 12.

A convenient ratio which expresses the dissipation in any reactance
element is the absolute ratio, d, of its effective resistance to its re-
actance. In the case of a coil, d =R/Lw while in the case of a con-
1 Lo 1
d R RCe
widely used as a measure of dissipation in reactance elements. The
ratio d or O will not, in general, be constant over a wide frequency

denser d=RCw. The reciprocal ratio Q= has also been

Z Z,
2 2
L >
7' 2C, 2¢C, _Z_
o— (01 I' H m\_o
L,
Z,

C,
o 1 .

Fig. 13—Typical Band Pass Wave Filter Section (Mid-Series Termination)

range. If the value is known at an important frequency in the trans-
mission range, it may ordinarily be regarded to hold for the rest of
the transmission range. The effect of dissipation on the attenuation
constant is most important in the transmission band, where the at-
tenuation constant would be zero if there were no dissipation. Its
effect is most pronounced in the neighborhood of the cut-off fre-
quencies where the transmission bands merge into attenuation bands.

In the attenuation bands, the general effect of dissipation is negli-
gible. It largely controls, however, the value of the attenuation
constant at those frequencies at which infinite attenuation would
occur if there were no dissipation. The effect of dissipation upon
the phase constant is most pronounced in the neighborhood of the
cut-off frequencies where resistance rounds off the abrupt changes in
phase which would otherwise occur (see Fig. 12).

Characteristics of a Typical Filter. 1In order to illustrate specifically
the principles employed in filter design, consider as an example the
band pass structure 3—3 of Table II. This structure is illustrated
in Fig. 13. It will be assumed that the dissipation in the coils cannot
be neglected, but that the dissipation in the condensers is of negligible
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magnitude. If R, and R; are the effective resistances of the inductance
elements L, and L., respectively, the series impedance, Z;, of a series-
shunt recurrent structure composed of sections of the type shown
in Fig. 13 is

. 1
Zl:Rl_{.—J(le#‘wa’l)' ) (24)
The impedance of the shunt arm is
. 1
Zg=R2+j(wL2—‘w—CTﬂ) - (25)

In substituting for R, its value Liwd and for R, its value Lowd, the
ratio Z1/4Z, becomes

1
1—jd— —7—
Zil = ﬁ ! WL, Cy (26)
47, 4L, 1 —id— 17
]( w2L2C2
Assuming d to be zero, the ratio Z;/4Z, is
Z1 C2 (nglC'lfl) (27)

17, 4C (W' LyCa— 1)

Referring to Table IT, the structure shown in Fig. 13 has two dis-
tinct attenuation and phase characteristics. These are, respectively,
characteristics Nos. 9 and 10 of Fig. 7. These two sets of character-
istics arise from the fact that the shunt arm may be resonant at a
frequency less than, or greater than, the resonant frequency of the
series arm. The two attenuation characteristics are inverse with
respect to frequency. We shall, therefore, discuss only one of the two
cases, namely, that in which the shunt arm resonates at a frequency
greater than the resonant frequency of the series arm (that is, L,C)
is greater than L.C:). The frequency at which the shunt arm is
resonant will be designated as .., due to the fact that in a non-dis-
sipative filter the attenuation constant is infinite at this point. In

other words,
1

27/ LaCs (28)

fe

It is evident that the frequency at which Z, is resonant is a cut-off
frequency since Z;, and therefore Z,/4Zs, is zero at this point. An
inspection of graphical curves® drawn for Z, and 4Z,, under the above

10 For an illustration of the construction of such curves see Bibliography 12, Fig. 7,
also Bibliography 13, Fig. 2.
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conditions, will show that this is the lower of the two cut-off frequencies
(f1), that is
1
2]1‘\/L1C1-
By equating Z,/4Z, to —1 in equation (27) the upper cut-off fre-
quency (fs) is found to be
fom Ly GG
? 2‘11'\ ClCﬂ(L1+4L2)

For these explicit relations for fy, fs and f., equation (26) may be

rewritten
. 45 -—1_][ 1—jd - ]
z_(ny Ly () -1 ][a-in(7) -
4Z, \f I: h J .
=0 1= (L l—d L —1
() JLa-in () -1]
When d is zero this equation becomes, for the non-dissipative case

T ()]
i)

From the preceding formulae and from the curves shown in Figs.
11 and 12, it is possible to read directly the attenuation constant and
the phase constant for the structure shown in Fig. 13, at any fre-
quency, provided the values of fy, f» and f. are known. The formulae
for the dissipative case are of use mainly throughout the transmission
bands and near the frequency f.. Elsewhere, the formulae for
Z/4Z, for the non-dissipative structure may be employed without
undue error. The preceding formulae have been derived in a direct
manner, but may be obtained more simply by considering the structure
of Fig. 13 to be a derived form of the structure 3—2 in Table II.

In order to minimize reflection loss effects, it is, as a rule, desirable
to terminate a filter in an impedance equal to the image impedance
of the filter at the mid-frequency,!'t (fu) or at some other important
frequency. From equation (6) and the values of Z, and Z,, the mid-
series image impedance (Z,), at the mid-frequency in the non-dissipa-

tive case is
L L
Za= 2[\ Cs 11 ]‘ (33)

1 Defined as the geometric mean of the two cut-off frequencies f, and fs; or f,

= V’f 1 fa.

Ji= (29)

(30)

(31)

(32)
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From formulae (6), (29), (30), and (33) the mid-series image impedance

at any frequency is
(L _fmy
| (. 7) (34)

Zi=Zy | 1———F%—
I u\} (E_il)z
fm f"!
An inspection of formula (34) indicates that the mid-series image
impedance is symmetrical with respect to the mid-frequency, S
In a similar way, the mid-shunt image impedance (Z,') at the mid-

frequency is

7= ‘] 1L, 4L, (35)

C: ‘\) L

\ CQ(E—H) C,(EH)
and the mid-shunt impedance, (Z/), at any frequency is

f : /f2 fm ?
() (705
=N

fx fl fm
It will be noted, that if the values of the inductances and resistances of
a filter are multiplied by any factor and if all the values of the capacities
are divided by the same factor, the transmission loss-frequency character-
istic is not changed'® (neither are the cut-off frequencies, nor the frequencies

of infinite attenuation) but the image impedances are multiplied by this

factor.

From the preceding formulae, explicit expressions may be derived
for the values of Ly, Ci, Ls, and Cs.. These expressions, which are
given by Zobel ® in a slightly different form, are as follows:

le = Zur

Lom
b=ty 0
_fhi—h
Cl_‘ﬁffﬂ' (38)
Zo 1—m?
Lz=m “am (39)
Cy= 2 um (40)

wZo( fi—fim?)’

12 Since the value of the transfer factor, e~ 9, is dependent simply upon the ratio
Z1/42,, it is evident from equation (10) that the transmission loss caused by the inser-
tion of any metwork in a circuit is dependent simply upon impedance ratios. Con-
sequently, the above theorem is quite general and applies not only to filters but to
any passive network.
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)
m=\/ 1—):72- (41)

() -1
As a numerical example of the determination of the constants of a
filter section of the type under consideration, assume that the lower
cut-off frequency, fi, is 20,000 cycles, and that the upper cut-off fre-
quency, fa, is 25,000 cycles and that the frequency of infinite attenu-
ation, f., is 30,000 cycles. Assume, furthermore, that the value of
the mid-series image impedance, Z,, at the mid-frequency is 600 ohms.
Then from formula (41), m =.742; hence from (37), L,=.0284 henry;
from (38), C,=.00224 X107% farad; from (39) L.=.00577 henry and
from (40) C.=.0048610° farad. Assuming d=.01, the value of
Z1/4Z, as given by formula (31) at fm (22,360 cycles) is found to be
.305/176°.4. Referring to formula (22), in which K=.305 and ¢ =

176°.4, or to the curves of Fig. 11, this value of Z,/4Z. corresponds
approximately to .041 napiers or .36 I'U. Similarly, from equation
(23), or from the curves of Fig. 12, this value of Z,/4Z, gives 1.15
radians, or 67°, for the phase constant. At zero frequency, the value
of Z,/4Z, is, from equation (31), .542/0°, which corresponds to 1.36
napiers or to 11.8 T'U. Likewise, at infinite frequency, the value of
VAYE VAR 1.23/0; which corresponds to an attenuation loss of 1.97
napiers or to 16.6 7’U.  From the curves of Fig. 12, the phase constant
is zero both at zero and at infinite frequency.

Composite Wave Filters. It has previously been pointed out that
certain groups of the structures listed in Table II have the same mid-
series or mid-shunt image impedance characteristics but that the
various structures in such a group may have different attenuation
and phase constant characteristics.

If a filter is composed of any number of symmetrical or dissym-
metrical sections, so joined together that the image impedances at
the junction points of the sections are identical, the attenuation and
phase constant characteristics of the composite structure so formed,
are equal to the sum of the respective characteristics of the individual
sections. Furthermore, the image impedances of the composite filter
will be determined by the image impedances of the accessible ends of
the terminating sections. The desirability of forming such composite
filters arises from the fact that a better disposition of attenuation
and phase can be obtained by employing, in one composite structure,
a number of different types of the characteristics shown in Fig. 7.

where
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The dissymmetrical networks ordinarily employed in composite
structures are usually L type networks each of which may be regarded
as one-half the corresponding symmetrical T or = network. General-
ized forms of such networks are shown in Figs. 14A, B, and C. By
joining two of these half-sections, such as are shown in Figs. 14B

2, Z| ZI
2 2

7
WMo — — oAM= — =

ZIZ§ 2 Zz 21' ij‘_-l- 2 ZZ é?ﬂ Ei-z 22‘2 f_:l

o O — = O— o — —

(A) (B) ©)
Fig. 14—Generalized Series-Shunt Structure Divided Into Successive Half-Sections
(L-Type)

and C, we may form the full T section shown in Fig. 2. Similarly,
by joining the two half-sections illustrated in Figs. 14A and B, the
full = section of Fig. 4 results. The transfer constant, 6,;, of a half-
section, such as is shown in Figs. 14A, B, or C, is one-half the transfer
constant of the corresponding full section, that is,

0. =3 =sinh—1\/ 4%‘3 (42)
Hence, the alitenuation constant and phase constant of a half-section
are, respectively, one-half the attenuation constant and phase constant
of a full section. An important relationship between the half-section
and the full section, which makes it convenient to use half-sections
in composite wave filter structures, is that the image impedances,
Z;, and Zp, of any half-section are equal respectively to the mid-
series and the mid-shunt image impedances of the corresponding
full sections.

A typical example of the method of forming a composite low pass
wave filter is given in Fig. 15, where three half-sections of different
types and one full section are combined into a composite filter. The
designations below the diagrams in Fig. 15A refer to the number of
full sections and to the ratio f./f.. In a practical filter, the various
shunt condensers and series coils are combined as illustrated in Fig. 15B.

The composite nature of the attenuation characteristic of the filter
of Fig. 15B is illustrated in Fig. 16, on a non-dissipative basis. In
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Fig. 15
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Fig. 15B, the image impedance, Z;,, at the 1—2 terminals has char-
acteristic No. 2 of Fig. 8, while the image impedance, Zp,, at the
3—4 terminals has characteristic No. 4 of Fig. 8.

Electrically Equivalent Networks. Reference has been made to
the fact that any passive network having one pair of input terminals
and one pair of output terminals may be adequately represented, at any
frequency, by an equivalent T or = network. In general, this represen-
tation is a mathematical one and the arms of the T or = network
cannot be represented, at all frequencies, by physically realizable
impedances.

Furthermore, any concealed network, containing no impressed electro-
motive forces, and having N accessible terminals is always capable of
mathematical representation, at a single frequency, by a network having
not more than N (N—1)/2 impedances, which impedances are determin-
able from the voltage and current conditions at the accessible terminals.
For networks having three or more terminals, this arbitrary mesh of
impedances may possess a number of variant configurations. It is
also true that the equivalence of the arbitrary mesh to the concealed
network holds, at any single frequency, for any and all sets of ex-
ternal or terminal conditions, and that the magnitudes of the imped-
ances of the arbitrary mesh are determinable, at will, on the assump-
tion of the most convenient set of terminal conditions for each in-
dividual case. Familiar instances are the impedance equations
derivable under various short-circuit and open-circuit conditions.

In specific cases, which are of particular interest, one network may
be shown to be capable of representation, as far as external circuit con-
ditions are concerned, by another nelwork which is physically realizable,
and the latter may be substituted for the former, indiscriminalely, in any
circuit without comsequent alteration, at any frequency, in the circuit
conditions external to the interchanged networks.

Equivalent meshes having two accessible terminals and employ-
ing respectively, three or four impedances in each mesh have been
discussed by O. J. Zobel.® In filter design, two-terminal meshes are
of importance only in those cases where the impedances are essentially
reactances. Figs. 17A, B, C and D illustrate the physical configura-
tions which reactance meshes employing not more than four elements
may take. We are not generally interested in meshes having more
than four elements for practical reasons which have previously been
discussed. Whenever any of the reactance meshes shown in Fig. 17
occur, we may, with proper design, substitute for it an equivalent mesh

13 See Appendix 111 of Bibliography 13.
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of the associated type or types. Rigorous equivalence exists, even with
dissipation, when the ratio of resistance to reactance, (d), is the
same for all coils and the ratio of resistance to reactance (d') is the
same for all condensers.

Ly Ca
ooy Gy *ETDW-EZTF
w

Fig. 17—Groups of Equivalent Two-Terminal Reactance Meshes

The relations which the equivalent meshes of Fig. 17 must observe
are as follows:

Cg L
Cz—CA+(B, (1—6—4( ‘4+Cp), 1=—2~F, (43)
14158
17A ¢ ( +CA)
_ G GG _ Q :
C=cro “PTora L“_L‘(1+c‘2) : (44)
(L= LB o Lay®  _ La Lp
b= ¥y C‘_C“(1+La) L= Ty (45)
17B{ L, C,
="—=(Li+Ls), Ca=—5—,, Lp=Li+Ls,
L (1+‘E) (46)
Ly
L1—_(L1+LB)=L||'( -*-C”')'3
Cy
17C _ LrLs(Lg+Ls)(Cr+Cs)* (47)
(LrCr—LsCs)?
Ly=La+Lp=Ly=Lg+Ls, (48)
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(e G _ CF  _ (LrCr=LsCs)*
| (1452) e Bt b (Gt &)
oo CvCw  CRGs

CamCa= Cr+Cw~ Cr+Cs'

L'.! _ 1Lg -~

LA_L]'FLQ' LB—LHer,' Cp=0Cy,

L
(+5)

Ly=Lo, Cy=Ci+Cy, Cw _e(c +C.),

ca=Ci(1+ %‘) L=

K++/K*—4L:C,C.K

LR L.S L’ Ls—LR

(49)

(50)
(51)

(52)

(53)

Cs= o130,
where K =(L,C,+LaCy+LaCo)?—4L,C,LyCo, (54)
CsC, LiC\ A LoCiALoaCa—LoCr
Cr= (S—b" Ls=: Cs—Cg » Lr=Ly—Ls, (55)
(. _Cg Liw\* _ CrCs(Cr+Cs)(Lr+Ls)*
Ci= C. ~ (C 1+C,rs)—(u(1+ ) (LeCr—LsCs)? , (56)
Co=Cy+Cp=Cr=Cr+Cs, (57)
L L; (LrCr— LsCs)?
e S - 58
Ly Cp LI +Liy (Cr+Cs)*(Lr+Ls)' (38)
- ()
A
Ly Lw  LgLs
9= = s 59
Li=Ls= Ly+Lw Lg+Ls (59)
e GG _
CG=era “Toro B (60)
Ci\? C
Li=Li(l4g) . Cr= — 1 (61)
(1TL1)
L L]
Cy=Cy Ly=LitLa, Lw=7"(Li+Ly), (62)
1 K+VE —ALL,CPK
ST 2L1C22
where K =(L,C14L1Co4 LaCo)*—4L,C1LaCs, (63)
LsLs Cs= L1C1+LIC2+L2C‘.’_LR('2, Cr=Ca—Cs. (64)
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For example, the two meshes in Fig. 17A will be equivalent if

C, =.009 mf. s =.001 mf. L, =.001 h.

Cp=.0009 mf. C4=.0001 mf. Ls=.100 h.

and the two meshes in Fig. 17B will be equivalent if

L, =.002 h. Cy =.025 mf. L, =.008 h.

L.=.040 h. C4=.001 mf. Lg=.010 h.

Also, the four meshes of Fig. 17C will be equivalent if

Lr=.001 h. Ls=.002 h. Cr=.001 mf. Cs=.002 mf.

L, =.006 h. L. =.003 h. C, =.000333 mf. (. =.000667 mf.
Li=.001h. Lp=.002 h. Cq=.003 mf. Cp=.000667 mf.
Ly =.003 h. Ly =.000667 h. Cy=.001 mf. Cw=.002 mf.
and the four meshes of Fig. 17D will be equivalent if

Lg=.001 h. Ls=.001h. Cr=.001 mf. Cs=.002 mf.

Ly =.0000555 h. Ls=.0005 h. C, =.024 mf. s =.003 mf.

L,=.0045 h. Ly=.0005 h. C4=.000333 mf. Cp=.00267 mf.
Ly=.000555h. Ly=.005h. Cy=.003 mf. Cw=.00024 mf.

It is then evident that the following reactance meshes of Fig. 5
may Dbe designed to be equivalent: 5a and 5b; 6a and Gb; 7a, 7b, 7c,
and 7d; and 8a, 8b, 8c, and 8d. Hence, the following filter sections

ZA za ZB

2, Z, Z

MW

(o]

o . —0 (e,
Fig. 18—Equivalent T and = Generalized Networks

referred to in Table II have, for the same impedance and propagation
characteristics, a number of variant forms of physical configuration.
4—6,6—2,3-5,6—4,2-6,5—3,4—-5,1—-5,3—-6,5—4,5—1,4--8,
5—5, 6—6, 7—3, 6—3, 3—7, 4—-7, 8—4 and 8-3.

Of the equivalent meshes having three accessible terminals the
most common are the familiar 7" and = networks. The general rela-
tionships which must be observed for the equivalence of T" or = net-
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works are due to Kennelly  and for their generalized form, as illus-
trated in Fig. 18, are as follows:
ZA'Zp Zg'Zc . ZA'Zc!
L4 = o T Zp= 7 7 7 7 7. =77 7 65
v=girzi Ttz P nvzi vl Y v zi vz @

ZAZ, , ZaZp ., YAYA
Za' =Za+ZoA T E I = Zat Zut =0 Zle=Lpt Ze+=5 5. (66)

Z

We shall discuss here only two of the principal reactance meshes of
the T and = form, namely, those employing solely inductances and

La Le Lg'
o—T 21 o] o— I ' o
3L L3 Le
o, -0 O 0]
CA CB CBI

—_—C; Chl == ==C
o- %o} o o
Fig. 19—Equivalent T and » Inductance Networks and Equivalent T"and = Capacity
Networks

solely capacities. It is to be understood that wherever an inductance
or a capacity mesh of any of the following types occurs, its variant
network may be substituted for it without change in the electrical
characteristics of the circuit excluding those conditions within the
mesh or its variant. Fig. 19 illustrates equivalent 7" and = networks
of inductance and capacity.® The formulae relating the inductance
and capacity meshes of Fig. 19 are as follows:
Ls'Lg' Lg'L¢! La'Lc!
La=+——5—5» Le=v—r7o17 7 Lc=ia g7
Li'+Ls'+Lc La'+Lp'+Lc La'+Lg'+Lc

4 Kennelly, A. E., “The Equivalence of Triangles and Three-Pointed Stars in
Conducting Networks,"” Electrical World and Engineer, New York, Vol. XXXIV,
No. 12, pp. 413-414, Sept. 16, 1899. Also, *‘Application of Hyperbolic Functions to
Electrical Engineering” (1911) (Appendix E).

15 These meshes are rigorously equivalent, even when resistance is present if the

ratio d is the same for all of the inductances and if the ratio @’ is the same for all of
the capacities.

(67)
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L LiLlp LgLe

L' =LatLetZ4€ Ly Lo Lot B8 1o o4 220 (68
LB LC LA
CaCe CaCsp CgCc
’=_—‘; . ’2#, C":—f, 69
Ca Ca+Cp+Cc Ca Ca+Cp+Cc © T Ca¥CatCe (69)
C“f ’ . , C ;C !
Ca=Ca+Ca+ L5, ComCyrCe+BSE,
c 4
' ' Ca'Cc’
Ce=Ca'+Cc'+ cy - (70
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Fig. 20—Typical Examples of Equivalent Filters Involving the Interchange of
Three-Terminal Networks of Inductances or of Capacities

A few examples of the variant filter structures which may arise,
due to the existence of equivalent three terminal meshes of capacity
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and inductance, are illustrated in Fig. 20, in which Figs. 20A, B, and
C represent either individual sections or portions of composite filters
and Fig. 20D represents a composite filter. When equivalent re-
actance meshes occur entirely within a filter or within a section of a
filter, the filter or the section will have the same cut-off frequencies
and frequencies of infinite attenuation and the same attenuation,
phase, and image impedance characteristics, whichever equivalent

Z, Z | 2,
2 2 AW

z; ZB —©

Z;

Zc

Fig. 21—Generalized Forms of Equivalent Series-Shunt, Bridged-7, and Lattice
Type Filter Structures

form of mesh is substituted for an existing mesh. When equivalent
meshes are interchanged in either recurrent or composite filters the
substitution is generally made after the series-shunt structure is
designed and after it has been found that the substitution will effect
economies. The three terminal meshes referred to occur, in general,
in unbalanced filter structures. For balanced filter circuits, corre-
sponding meshes will be found for each of the equivalent networks by
the process of dividing equally the series impedance between the two
series lines of the filter.

While the discussion in this paper is based principally on the series-
shunt structure there are two other important types of structures
which will be mentioned. These are the so-called lattice ® type struc-
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ture and the bridged-T type structure. Typical series-shunt, bridged- T,
and lattice type structures are illustrated in Fig. 21A, B and C,
respectively. The three circuits shown are electrically equivalent,

except for balance between the series arms, if the following relations
hold :
1y,
Zao=(1+ B4 Ze=(42K0Z,  Ze=2,, (71)
Z'=2Z, Z=G3(4+K)Z\+Zs. (72)

In the previous discussion of equivalent networks no reference has
been made to networks containing mutual inductance, many of which
are of particular interest and importance. These will be now discussed
in detail.

PART 1II
"WAVE FILTERS UsING MUTUAL INDUCTANCE

Before considering the equivalent meshes which may be formed by
the use of mutual inductance between pairs of coils, and the types of
wave filters which may be obtained by the use of these equivalent
meshes, it will be necessary to define certain general terms.

The self impedance between any two terminals of an electrical net-
work is the vector ratio of an applied e.m.f. to the resultant current
entering the network when all other accessible terminals are free from
external connections.

The mutual impedance of any network, having one pair of input
terminals and one pair of output terminals, is the vector ratio of the
e.m.f. produced at the output terminals of the network, on open cir-
cuit, to the current flowing into the network at the input terminals.
Since mutual impedance is a vector ratio, it may have either of two
signs, depending on the assumed directions of the input current and
the output voltage. The sign of the mutual impedance is, in general,
identified by its effect in increasing or decreasing the vector impedance
of the meshes in which it exists. It is usually convenient, in this
case, to consider either a simple series or a simple parallel mesh of
two self impedances between which the mutual impedance acts. For
the purpose of determining the sign of the mutual impedance, we shall
confine our discussion to a simple series combination. Consequently,
the mutual impedance will be called either series aiding or series
opposing.

When a mutual impedance, Zy;, acts between two self impedances
Zyand Z,, (Fig. 22) connected in series in such a way as to increase
vectorially the impedance of the combination, it is called a series aiding
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losses) the arms of its equivalent T network are composed simply
of positive or negative inductances. Of the three inductances in-
volved, at least two of them must be positive while the third may be
either positive or negative.

From Fig. 25, it is evident that two windings..or coils, together
with their mutual impedance, may be represented by an equivalent
network which affords a transfer of energy from one winding to the
other. This equivalent network may, with limitations, contain
positive or negative inductances.

While the two-winding transformer of Fig. 23 has been represented
by an equivalent T network in Fig. 26, the equivalent network may
alternatively be of = form (Fig. 27) instead of T form, through the

2122_21\42
*Z.,
| o ' 211 ' o 3
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Fig. 27— m Network of Sell Impedances Equivalent to the Structure of Fig. 23

general relationships for T or = networks previously stated. When
no dissipation exists in the transformer, either equivalent network
will have at least two positive inductances while the third inductance
may be either positive or negative.

From the principles previously outlined in Part I, for the equivalence
of certain electrical meshes and for their substitution for one another
in any circuit, it is obvious that when two coils, with mutual im-
pedance between them, exist in a circuit, in the manner shown in
Fig. 23, either of the meshes shown in Fig. 26 or 27 may be substituted
for them or vice versa. The representation of the mutual impedance,
Zy, by an equivalent network (Fig. 25) makes it possible to represent
the transformer of Fig. 23 by a T or = network containing only self
impedances. This affords a great simplification in the analysis of
filter circuits containing pairs of coils having mutual impedance
between them in that it permits such circuits to be reduced to an
equivalent series-shunt (or lattice or bridged-T) type structure.
Consequently, the methods of design which have been built up for
the series-shunt and kindred type structures may be directly applied
to the solution of circuits containing such pairs of coils.
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Two-1erminal Equivalent Meshes. A list of equivalent two-terminal
reactance meshes, due to Zobel, has been given in Fig. 17. All of the
meshes in Figs. 17B, C and D contain two inductance elements.
Mutual inductance may exist between any two inductive elements
without changing fundamentally the nature of the reactance meshes.
This means that when mutual inductance exists between two coils in

—} ——
(c) (o)

Fig. 28—Equivalent Two-Terminal Reactance Networks, Only One of Which
Contains Mutual Inductance

any of these meshes, the mesh may be designed to be electrically
equivalent to, and consequently can be substituted for, a correspond-
ing mesh of the same type having no mutual inductance.

For example, consider the mesh shown in Fig. 28A which is poten-
tially equivalent to the first reactance mesh of Fig. 17C and, conse-
quently, to the other three reactance meshes of the same figure.
The inductance elements L,’ and L.', together with the mutual in-
ductance M acting between them, may be represented by an equiva-
lent T network, as previously stated. The reactance mesh formed
by L., Ly, and M, together with its equivalent 7 and = forms, is
shown in Fig. 29. By means of the relations given in Figs. 20A and
B, it is possible to derive, from the structure of Fig. 28A, the equiva-
lent structure shown in Fig. 28B. Likewise, from formulae (45) and
(46) for the equivalence of the two structures of Fig. 17B, the mesh of
Fig. 28C can be obtained from that of Fig. 28B. Furthermore, if the
two inductances shown in series in Fig. 28C are merged, it is again
possible, by means of the conversion formulae for the two meshes of
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Fig. 17B, to determine the constants of the mesh shown in Fig. 28D
from the known values of the constants of the structure of Fig. 28C.

The relations which must exist if the structure of Fig. 28D is to be
equivalent to the structure shown in Fig. 28A, or vice versa, are given
by the following relations

_Ly(Ly/Ly/ — M?)

C2=C2,s Ll— (Lgn’-_}:M)g ' (75)
L)+ M\?
L.=Ly, C,=CY (—Rf?—) . (76)

The upper and lower of the alternative signs, in the preceding equa-
tions, correspond respectively to series aiding and opposing connec-
tions. The equivalence of these four-element meshes makes it possible

L, My LY L'sM  L'.3M
Al B D

(a) (8)

Fig. 29—Equivalent Three-Terminal Inductance Networks

La L's
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Fig. 30—Equivalent Two-Terminal Reactance Networks, Only One of Which
Contains Mutual Inductance

to derive at once, the relations which must exist between certain
equivalent three-element meshes involving mutual inductance. For
example, if the capacity C.’ of Fig. 28A is zero, the mesh reduces to
the three-element mesh of Fig. 30A and the formulae given above
are then applicable for the equivalence of the structures of Figs.
30A and B. '

In the same way that the meshes illustrated in Fig. 28 were shown
to be potentially equivalent to each other, it is possible to prove that
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the meshes of Fig. 31 are potentially equivalent. The equivalence
of the mesh shown in Fig. 31B to that of Fig. 31A is satisfied by the
relations given in Figs. 29A and B. The equivalence of the mesh
of Fig. 31C to that of Fig. 31B is governed by the equations (56 to 64)
for the equivalence of the first and last structures of Fig. 17D. Fin-
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Fig. 31—Equivalent Two-Terminal Reactance Networks, Only One of Which
Contains Mutual Inductance

ally, the equivalence of the mesh of Fig. 31D to that of Fig. 31C is
controlled by the relations for the equivalence of the first two structures
of Fig. 17D.

The formulae relating the constants of the structure shown in Fig.
31D to the corresponding constants of the structure shown in Fig.
31A are as follows:

r__ Q : r_ r__ CZE _ CIC2
La'=La(14G) Lo =L Ca'= o, Com (%, (70)
in which—
_ CaCp(Ca+Cr)La* .
Cl" [CA(LA :!:M):EMCB]'Z‘ (/2'_CA+CBp (78)
and ) Cal
*[CA(LA:I:M + MCg)? _LALB‘.MTZ
SRR (RS i P (79)

The upper and lower of the alternative signs, in the preceding
equations correspond, respectively, to series aiding and opposing
connections.
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The equivalence of these four-terminal meshes makes it possible
to derive the relations which must exist {or corresponding equivalent
three-element meshes, with and without mutual inductance. For
example, if in Fig. 31A, the capacity Cy is of infinite value, the mesh
reduces to that shown in Fig. 32A and the formulae given above are
applicable for the equivalence of the meshes of Figs. 32A and B.

The remaining meshes of Figs. 17C and D have similar potential
equivalence to meshes of the same fundamental type but having mutual
inductance between the respective pairs of coils.

Three-Terminal Equivalent Meshes. Three terminal meshes con-
taining mutual inductance will now be discussed. It has been shown

(a) (8)

Fig. 32—Equivalent Two-Terminal Reactance Networks, Only One of Which
Contains Mutual Inductance

that two coils, with mutual inductance between them (Fig. 20A), are
equivalent to certain 7 and = structures containing only tangible
inductances (Figs. 29B and C). Referring to Fig. 29B, it is seen that
two coils, with series opposing mutual inductance between them
(corresponding to the upper alternative signs in Fig. 20B), are equiva-
lent to a 7 network having three positive inductance arms, provided
the mutual inductance M is less than L," and L,’. The values of
these arms are respectively, Li'— M, Ly’— M, and M. If M is larger
than L,’, one arm of the equivalent T network is a negative inductance
while the other two arms are positive inductances. Similarly, if M
is larger than L./, a different arm of the T network will be a negative
inductance while the two remaining arms will be positive inductances.
It is physically impossible for the value of A/ to be greater than both
L, and L;. Hence, it is impossible for more than one arm of the I
‘network, shown in Fig. 29B, to be a negative inductance.

When two coils have series aiding mutual inductance between them
(the lower of the alternative signs in Fig. 29B) they are equivalent
to a T network in which two of the arms consist of positive inductances
viz., L'+ M and Ly’+ M, while the third arm consists of a negative
inductance of the value — M.
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Whenever, in an equivalent 7' network, one of the arms is a positive
(or negative) inductance, a corresponding arm of the = network will
also be a positive (or negative) inductance. Consequently, as inthe
case of the equivalent T network, the equivalent = network shown
in Fig. 20C may consist of three positive inductances or two posi-
tive inductances and one negative inductance, depending upon the
sign and magnitude of M.

It is interesting to note that, in Fig. 29B, point D is in reality a con-
cealed terminal, i.e., it cannot be regarded as physically accessible.
There are, therefore, only three accessible terminals to the equivalent

L| Mll

L, La Le

Le

c C
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Fig. 33—Equivalent T Networks of Inductance

T network. In the = network shown in Fig. 29C there is no such
concealed point. There are, however, as in the preceding case, three
accessible terminals A, B and C.

When the mutual inductance, M, is equal to either one of the self
inductances, L," (or L.'), and the windings are connected in series
opposing, the equivalent T and 7 networks of the transformer coalesce
to the same L type network. For example, if L,’=1M in Fig. 29A
both the T and the = networks of Figs. 29B and C resolve into an L
network whose vertical arm has the value M and whose horizontal
arm is L.'— M.

A problem of practical importance is the equivalence of 7" and =
meshes, containing three coils with mutual inductance between all
of the elements, to similar 7' and = meshes containing no mutual
inductance. The T networks of Fig. 33 are potentially equivalent.
The formulae governing their equivalence are

Ly =L1+-nfle+l1{13—ﬂ{2a, (80)
Lp=Lo+Ms— M3+ Moy, (81)
Lc=L3—‘1[]2+ﬂ.[13+11f23. (82)

In the above formulae, the signs correspond to the case of a series
aiding mutual inductance between all the pairs of coils. When the
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mutual inductance between any two coils changes sign, the signs ac-
companying that mutual inductance in the above formulae are
reversed.

Fig. 34—FEquivalent = Networks of Inductance

Similarly, the = networks of Fig. 34 are also potentially equivalent
The formulae governing their equivalence are

L.Ly+L.L,+L,L,
Ly ="~ I, =, (83)
v Lely+ L L,+L,L,
Lg' ="~ I 2 (84)
LI X- Z -4
Lot = Ealyt LeLatLyL | (35)
in which—
~ LAHLBN ,
Lx_LA"-f-La"-l-LC”:FﬂLz’ (86)
_ LB”LC” ,
b L L e e &7)
_ LAHLCH ,
7 7iEs Ak (88)
where
La" =L+ Mizs+ Mi,, (89)
Lp"" =Ly + M{a= M3y, (90)
L' =Ly 4+ Mg+ Mjs. (91)

As in the preceding case, the upper of the two signs occurs with the
series aiding mutual inductance between all the pairs of coils. When
. the mutual inductance between any two coils changes sign, the signs
accompanying that mutual inductance in the above formulae are
reversed.

At least two of the three inductances (in Fig. 33B or in Fig. 34B)
will always be positive in sign while the third inductance may be
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either positive or negative. Consequently, three coils having mutual
inductance between each of them and having only three accessible
terminals offer no greater possibilities than do two coils having mutual
inductance between them and having three terminals. In both
cases the structure is equivalent to a T or = mesh composed of three self

La Le

Lc
Mz,

T o

(8)

(o) (E)

Fig. 35—Equivalent Filter Sections, With and Without Mutual Inductance

inductances, at least two of which must be positive. With specific
relations between the various self and mutual inductances, it is possi-
ble for the three coils with mutual inductance between each of them
to be equivalent (as in the case of two coils with mutual inductance)
simply to an L network composed of two positive self inductances.

Since either two or three coils with mutual inductance between
them are, in general, equivalent, at all frequencies, to a T" or = net-
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work composed of three self inductances, it is possible to substitute
the one type of mesh for the other in any kind of a circuit without
affecting the currents or voltages external to the meshes involved.
This substitution is always physically possible provided none of the
arms of the equivalent 7 or = networks is a negative inductance.
The structures shown in Fig. 35 are illustrative of the power of
equivalent networks as tools for the solution of filter structures con-
taining mutual inductance. The equivalence of the structure shown
in Fig. 35B to that of Fig. 35A is evident from the equivalence of two
coils (Fig. 29) with mutual inductance (M;.) between them to three
inductances, L4, Lp and L¢ without mutual inductance. Likewise,

Z, 22,

Fig. 36—Balanced and Unbalanced Forms of a Filter Section, Containing Mutual
Inductance

the equivalence of the structure shown in Fig. 35C to that of Fig. 35B
is obtainable by successive mesh substitutions. The equivalence of
the structures shown in Fig. 35D and E to that of Fig. 35C are also
obtainable from equivalences previously referred to. If the propaga-
tion and impedance characteristics of either of the structures of
Fig. 35C or D are known, then the other structures shown in Fig. 35
will have the same characteristics. Furthermore, if the values of
the constants of any one of these structures are known, the constants
of any of the other structures are readily obtainable by means of
transformation formulae.

In a large number of wave filters, the structures are unbalanced;
that is, all of the series impedances are placed in one of the two line
wires while the remaining wire is a short circuit. Ordinarily, the
object in using such an unbalanced structure is to minimize the num-
ber of elements required in the series arms. It should be noted,
however, (Fig. 36) that in case an inductance element enters into
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both series arms, it can be replaced, in symmetrical structures, by
two equal windings of a single coil having mutual inductance between
them and of such value that the series aiding inductance of these two
coils is equal to the total inductance required in the corresponding
unbalanced structure. For example, the structures shown in Figs.
36A and B are clectrically equivalent to each other, that is, they
have the same image impedance and transfer constant.

Types of Sections Obtainable Whose Equivalent Series-Shunt Sections
Contain No Negative Inductances. 1t has previously been stated that
an infinite number of types of series-shunt filter sections may be had,
if no limitations are placed on the complexity of their reactance arms.
It has also been stated, however, that for filters employing only one
transmission or one attenuation band, the maximum number of ele-
ments which can ordinarily be used economically per section is six.
A similar limitation exists when mutual inductance is employed, in
that sections can seldom be economically used whose prototype
structures contain more than six reactance elements.

Inasmuch as by the equivalences which have been discussed, many
varient forms of a section may exist, which forms are reducible to the
same series-shunt prototype, an effort only to list and discuss the
p:o’otype sections will be made. The prototype to which any given
section then reduces will readily be found by the application of the
foregoing principles. A few examples will later serve to make this clear.

In considering the prototype sections which exist when mutual
inductance is present in a filter section, we shall first list the reactance
meshes of which mutual inductance may form a part. Referring to
Fig. 5, an inspection of the equivalences so far discussed will show
that the following meshes may be partly or wholly composed of mutual
inductance:

1,3,4,5 (aand b), 7 (a and b), and 8 (a and b).

Consequently, a large number of the sections listed in Table IT and
formed from the reactance meshes of Fig. 5 may represent not only
actual sections containing no mutual inductance, but also equivalent
prototypes of sections containing mutual inductance. Sections con-
teining mutual inductance within only the series arm or the shunt
arm, respectively, are not included in this discussion since such arms
may be readily reduced to equivalent arms, without mutual induct-
ances, by the substitution of equivalent two-terminal meshes. The
prototypes which are under discussion are listed below :

Low pass High pass
1—3,5-3 4—1,4-5
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Band pass
3—1,1—4,3-3,4—4,1-5, 5—1,3-7, 3—5, 84, 4—8, 5—4,
5—5, and 7—3. o}

Sections corresponding to the equivalent series-shunt prototypes
listed will have the same impedance and propagation characteristics
as the prototype, and may be used indiscriminately in place of the
prototype. Consequently, when a section has been reduced to any
of the above prototypes, its various characteristics may be found
from Table II and Figs. 7 and 8.

As an example of structures which have mutual inductance and
which are equivalent to structures listed above, consider the section

| /M\
L [PL
5 4

Fig. 37—Low Pass Filter Section Containing Two Coils, Having Mutual Inductance
Acting Between Them, and a Condenser Shunted From Their Junction Point

shown in Fig. 37. This section contains two coils having mutual
inductance, and a condenser shunted from their junction point. The
three-terminal mesh formed by the two coils L/2 and L/2, together
with their series opposing mutual inductance M, may be represented,
as in Fig. 29B, by its equivalent T mesh. The resulting equivalent
section is that shown in Fig. 38. The structure of Fig. 38, having a
series reactance mesh corresponding to No. 1 of Fig. 5, and a shunt

L _ L
| M g z2-M,
M
5
o T .
3 4

Fig. 38—Filter Section Containing No Mutual Inductance, Equivalent to the
Section of Fig. 37

reactance mesh corresponding to No. 3 of Fig. 5 is that listed as
1—3in Table II and in the above list. Consequently, it has propaga-
tion characteristic No. 2 of Fig. 7, and mid-series image impedance
characteristic No. 1 of Fig. 8 The section of Fig. 37 may, conse-
quently, be joined at either end to any structure having a mid-series
image impedance characteristic such as that designated as character-
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istic No. 1 of Fig. 8. The section of Fig. 37 is not capable of mid-
shunt termination since point 6 of Fig. 38 is not physically accessible.

Similarly, the section shown in Fig. 39 is equivalent to the series-
shunt structure of Fig. 40. If the transformer mesh in Fig. 39,
formed by 2Ls, M and 2L. be replaced by its equivalent = mesh,—
assuming series opposing windings—the structure of Fig. 40 results.

4% -m°
2L, | 2L, >
‘ -|-c C C LM 2LAM c
N
2 4 2 4
Fig. 39—Band Pass Filter Section Fig. 40—Filter Section, Containing No
Containing Mutual Inductance Mutual Inductance, Equivalent to the

Section of Fig. 39

This structure is listed as band pass section 1—4 in Table IT and has
propagation characteristic No. 7 of Fig. 7, and mid-shunt image im-
pedance characteristic No. 14 of Fig. 8. Consequently, the section
of Fig. 39 may be joined efficiently to any filter section of Table II
having the mid-shunt image impedance characteristic No. 14 of
Fig. 8 or to any section containing mutual inductance and having
the same mid-shunt image impedance characteristic. The section
of Fig. 39 is not capable of mid-series termination, since point 5 of
inductive element 1—3 of Fig. 40 is not physically accessible.
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Fig. 41—Examples of Filter Sections Containing Mutual Inductance

Three further examples of the substitutions which have been dis-
cussed are represented in Figs. 41A, B, and C. By means of sub-
stitutions these structures are evidently equivalent to series-shunt
sections 4— 1 (mid-shunt terminated), 4—4, (mid-shunt terminated),
and 3—7 (mid-series terminated), respectively, and they have the
characteristics detailed in Table TI. The above examples represent
only a few of the many variant forms of structures which may be con-
structed by means of the various equivalences heretofore discussed.
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The representation of the characteristics of the structures of Table
I1T is similar to the scheme of Table II. The figures at the top and
side (for example 1—3’) indicate respectively, the series and shunt
reactance meshes of Figs. 5 and 42 which form the prototype sections.
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Fig. 44—Propagation Constant (Attenuation and Phase Constant) Characteristics
of Filter Sections Containing Negative Inductances, Shown in Symbolic Form

The figures in the corresponding box (for example, 15—1—*) indicate
that the structure has propagation characteristic No. 15 of Fig. 44,
and mid-series image impedance No. 1 of Fig. 8. The symbol *
indicates, when inserted in the second or third position, that the
structure is not physically capable of mid-series or mid-shunt termina-
tion, respectively.

It will be noted that only one low pass prototype section (1—3')
is given in the table, exclusive of special cases of band filter structures.
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Its attenuation characteristic (No. 15 of Fig. 44) is unique as a low
pass characteristic in that the altenuation constant is finite at all fre-
quencies. The phase characteristic simulates, in a general way, that
of the two element low pass filter (see propagation characteristic
No. 1 of Fig. 7) but the phase shift in the transmission band is, in
general, different. Since the structure has mid-series image im-
pedance characteristic No. 1 it may be joined efficiently (i.e., without
reflection losses) to sections of the 1—2 and 1—3 types.

Similarly, high pass prototype section 4"—1 has a unique high pass
attenuation characteristic in that the attenuation constant is finite
at all frequencies. The phase characteristic is, in general, similar
to that of the two element high pass filter 2—1 except for the values
of the phase constant in the transmission band. The section may be
joined efficiently at mid-shunt to sections of the 2—1 and 4—1 types—
since it has the same mid-shunt image characteristic (No. 9).

The attenuation characteristics of the band pass prototypes listed
in Table II1 will, in general, differ from the attenuation character-
istics of structure listed in Table II. However, many of them differ
only in minor respects and could have been represented identically
in the symbolic fashion of Fig. 7. Inasmuch as such structures will
not, however, have exactly the same attenuation characteristics for
given cut-off frequencies and frequencies of infinite attenuation,
different symbols or diagrams have been employed to represent them.

Certain characteristics are worthy of comment because they are
not obtainable, even approximately, in structures not having negative
inductance. For example, propagation characteristics Nos. 16 and 26
(Fig. 44) are band pass filter characteristics having finite attenuation
at all frequencies. Characteristics No. 22 and No. 29 are unique in
that there exist two frequencies of infinite attenuation, located on
one side of the pass band. The attenuation constant is, in general,
finite at zero and at infinite frequencies. Characteristics 19 and 28
are special cases of Nos. 22 and 29, respectively, and have two fre-
quencies of infinite attenuation on one side of the pass band. In
the case of 19, the attenuation is infinite at zero frequency and at a
frequency between zero and the lower cut-off frequency. Charac-
teristic 28 has infinite attenuation at infinite frequency and also at a
frequency between the upper cut-off frequency and infinite frequency.
Characteristics Nos. 18 and 27 have confluent band characteristics
and have only one frequency of infinite attenuation, located either
at zero frequency or at infinite frequency. Finally, characteristics
Nos. 20 and 31 are confluent characteristics in each of which one fre-
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quency of infinite attenuation occurs and the attenuation is finite
at zero {requency and infinite frequency.

As a general rule the phase shift characteristics shown in Fig. 44
are similar to the corresponding characteristics shown in Fig. 7. The
phase characteristics of the former, within the pass bands are, in
general, however, of a distinctly different character than those of the
latter even though the phase constant at the cut-off frequency and the
mid-frequency may be the same. Phase characteristics 21 and 24
(Fig. 44) are of special interest, however, in that while they belong
to the peak type sections, the phase is of the same sign throughout
the entire frequency range. Also phase characteristics 22, 29, 30 and
32 have a unique property, for band pass structures, in that the phase
undergoes a change in sign within one attenuation band.

In regard to the impedance characteristics, it is noted from Table I11
that no wnovel impedance characteristics are oblained in structures
having negative inductances as compared to the structures not having
negative inductances. This is a valuable property of the prototype
structures listed in Table III as it permits composite filters to be
readily formed utilizing both the sections of Tables II and IIL.'

Characteristics of a T'ypical Filter. In order to illustrate the deriva-
tion of design formulac for a specific prototype having negative
inductances, consider as an example the band pass structure 3—3’ of
Table III. We shall neglect the effect of dissipation on the character-
istics of the structure, as the treatment of dissipation has been previ-
ously outlined. The prototype cited is illustrated in Fig. 45A. Two

2¢, +L £l 2¢, 2G, 2C
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Fig, 45—Prototype Section Containing Negative Inductance, and Two ‘of Its
Physically Realizable Forms

methods of physically obtaining such a prototype are illustrated in
Figs. 45B and C. In this structure the series impedance Z, is

zl=j(le—wiCl). (92)

1 For a general method of proving the equality of the image impedances of sections
containing negative inductance and of appropriate sections containing no negative
inductance, refer to the Appendix.
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The impedance of the shunt arm is
) 93)

The ratio, Z,/4Z,, which controls the attenuation and phase con-
stants, per section, of the structure is

Zy= —j(WL2+wi

Zi _ ] ("’L‘ Tl_ Cy 1-L wa (04)

From the impedance characteristics of reactance meshes 3 and 3', as
illustrated in Figs. 6 and 43, and the combined reactance character-
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Fig. 46—Reactance-Frequency Characteristics of the Series and Shunt Arms of
the Prototype Section of Fig. 45-A

istics of Fig. 46 for Z,, 4Z, and —4Z,, it will be noted that the lower
cut-off frequency, f1, is that at which Z,=0. Hence,
1
fi= ——. 95
" 2rVLCL ©9)

Similarly, the upper cut-off frequency is that at which Z,=—4Z, or
jwLi—j/wCy=j4wL,+j4/wCs.  From this relationship, the upper cut-
off frequency is
e C 2+4C1
=2 CrCalLi—4Ls) (96)
Let f, be assumed as the frequency where Z; is a minimum, that is,
where w?LyCa=1. We may then write

fre=—
" 2rV LGy

(97)
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Substituting the above values of [1, f2 and f; in formula (94) we obtain

for 21/422
() (8
Zo_ SN (98)
Y ()
Ir fi
From this last expression the attenuation and phase characteristics
may be plotted from formulae (22) and (23) or from Figs. 11 and 12.
The attenuation and phase constant characteristics are shown sym-
bolically as characteristic 16 of Fig. 44. This structure has unusual
attenuation properties which have already been discussed.
From equation (6) and the values of Z, and Z,, in (92) and (93),

the mid-series image impedance (Z,), at the mid-frequency, is

[ 4L1 B IL1_4L-,

' C: G

Since the mid-series image impedance, at any frequency, is the
same as that of filter section 3—3, we have:

(99)

0

[ L% [f,,, 5,1 )
ZI_ZD\X jm jj_ \Il—' f} \ff (100)

where f» is the mid-frequency (fn = \/flf }, as before.
The prototype is not capable of mid-shunt termination, hence, its
hypothetical mid-shunt impedance characteristic will not be derived.
From the preceding formulae, explicit expressions may be derived
for the values of L, Cy, L: and Cs

Zom'

L=ty (101)
—Zo l1—m"
A T (o
_ (fe=fOm’
Cz_?TZo(f‘ag"'flzmm, (104:)
| e
o (E) —1
m' = (1+ (105)
\ (7) +1
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As a numerical example of the solution of the prototype discussed
assume, as in the example following equation (41), that the lower cut-off
frequency fi is 20,000 cycles and that the upper cut-off frequency f2
is 25,000 cycles. Assume f;, a convenient parameter for the families
of attenuation and phase constant curves which this section may
have, for any given cut-off frequency, to be 30,000 cycles. Assume
that the value of the mid-series image impedance Z, at the mid-fre-
quency is 600 ohms; then from formula (99) " =1.083: hence L, =.0412
henries, C;=.00153 X 10~% farads, L.=.00152 henries and Cs=.0184X
10-¢ farads. The structure with the numerical values of inductance
and capacity for this specific example is shown in Fig. 47A.

L 2= 20=
< +5'=0206h— 00306 m#. 00306

— I

20,=.00306m#. =0398h =0398h
~L=00152h. - 0%h '

= C0i84me = =084

EC|:
00306 mf.

£C,=00306mf.

_|

L,=04izh.  2C=00306mf

|__

Fig. 47—Numerical Example of Equivalent Filter Sections Containing Negative
Inductance

If, for the T mesh inductances in Fig. 47A, we substitute a trans-
former mesh having the values shown in Fig. 47 B, the mesh of the latter
figure is clectrically equivalent to the prototype structure and is an
example of the method of employing the structure. Similarly, Fig. 47C
illustrates the substitution of another type of three element mesh
for the coil mesh of the prototype structure of Fig. 47A and is another
example of the manner in which the prototype may be physically
expressed.

The structure of Fig. 47B represents a similar case to that of 48A.
However, as the mutual inductance is here series opposing, the proto-
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type series-shunt equivalent structure is shown in Fig. 48B and con-
tains no negative inductances. It will be found that the values
chosen correspond to the numerical example of the structure 3—3
following equation 41.
= 2Gi= L
00448 mf 00448 mf q?':.omz hp

o

_ . S = 2=
L=.0200 h. o L=0200h. 0ads g

I_

2.C,=.00448 m#
L=+00577h.

C.=00486 mf =, ,=100486 mf

A B

Fig. 48—Numerical Example of a Filter Section Containing No Negative Inductance

APPENDIX

CONDITIONS FOR THE EQUALITY OF THE IMAGE IMPEDANCES OF
TypricaL FILTER STRUCTURES

It has been stated that the formation of recurrent and composite
wave filters is dependent upon the maintenance of equal image im-
pedance characteristics (of the sections or half-sections joined) at
each junction point throughout the filter.

_"A general method of ascertaining the conditions for the equality
of image impedance characteristics will be demonstrated by illus-
trations from typical pairs of sections.

Hlustration No. 1—Negalive Inductance in Shunt Arm of One Struc-
fure. Consider the filter sections listed as 3-4 (confluent structure)
in Table II, and 3-1' in Table ITI. It will be shown that, under
proper conditions, their mid-series image impedance characteristics
may be made equal at all frequencies. (By reference to the above
tables, both sections have mid-series impedance characteristic No. 13
of Fig. 8).

From equation (6)

a

212:21Z‘3+ZT1_. (106)

In Fig. 49, let
. 1
lezl_.g‘l‘ZlB:'Jle—i’E, (107)
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Z/ =KaZa+Kg Zs, (108)
and Z-_),' = —KcZIA. (109)
where Ki=L\//L,, Kg=C,/C\ and Kc=Ly'/L,. (110)
From (106)
. 2t
ZI2=R~+T (111)
in which
[L._ [L:
=A==~ 112
r=ENE (1)
1 I
%z L o2, 2 =
o - - - = —vwEInN—| p—wsrrn—
> B Syt fape
E \—”l—’ |
Lz Ca = i =Lz
z Z % @ P T En
2 1 1 Z

Fig. 49—Two Structures Having Equal Mid-Series Image Impedances, One of
Which Contains a Negative Inductance in [ts Shunt Arm

From (107) and (111)
Zr=R+{(Zia+2Z.p)*=1/4Z1,+(1+K/2)R*+1/4Z15  (113)
where K=Z.1Zp/R*=L,/L.=0C>/C\. (114)
Now from (106) and (108)

1o rez ot (Z’ )? K4 4
(Zy)=2,2 +’Tl = ( _; —K‘4AC)Z¥"+
(Rafe gk kRt B 2, (115)

Since, by postulation, in Fig. 49, Z,=Z,/, we may equate the coeffi-
cients of (113) and (115). This gives

1 K. i
1 =1 —KaKe, (116)
K (K.K
1+ :(_:‘2 ‘”—KBKC)K, (117)
1 Kpg
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Whence K- E%,zl, (119)
1

| L LI_LICE _fi .

and K, = 7 AreRaiy R X (120)

where fi and f, are the lower and upper cut-off frequencies, respec-
tively, and fu= \/j'lj'g'of the structures of Fig. 49.

From (116) and (120)
. LS 1 N _ I/ N
Ke= Ll_‘I(Kﬁ Kﬁ)"4(71 ﬁ)' (121)

Therefore, when the relationships between the constants of the two
structures of Fig. 49 satisfy equations (119), (120) and (121), the
structures will have the same mid-series image impedance character-
istics. Explicit relations for the values of C,’, L\’ and L.’ may be
obtained from equations (119), (120) and (121) as follows:

C/=0C, (122)
= 1%, (123)
v Lafa Sy

= “I(fl fz)' (124)

Consequently, if the constants and cut-off frequencies of a confluent
structure are known, the constants of a structure of the 3-1' form
having an identical mid-series image impedance characteristic can be
derived from equations (122), (123) and (124).

Llustration No. 2—Negative Inductance in Series Arm of One
Structure. Consider next the flter sections listed as 3-4 (confluent
structure) in Table II and 1'-4 in Table III. It will be shown that,
under proper conditions, their mid-shunt image impedance charac-
teristics may be made equal at all frequencies. (By reference to the
above tables, both sections have mid-shunt impedance characteristic
No. 14 of Fig. 8).

From equation (7)

Vii=7, y2+%“, (125)

where Y1=1/Z1, Y2=1/Zz and Y[:I/ZI.
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In Fig. 50, let

13_‘: 172A+}23—ij2+]w(,2. (126)
Vi/'=KsY.4+KpYVsp, (127)
and Vi=—KcVaa, (128)

Fig. 50—Two Structures Having Equal Mid-Shunt Image Impedances, One of
Which Contains a Negative Inductance in Its Series Arm

where Ki=L./Ly, Kg=Cy'/Cs and Kc=L,/L/. (129)
From (125)
R (130)
4
in which G= \/ Cs 131
\ L, (131)

From (126) and (130)

V=G4 1/4(Vos+ YVop)?=1/4V2, + 1+ K/2)G2+1/4V2,  (132)
where K=Yo.,Vip/G*=L,/Ls=Cs/C,. (133)
Now from (125) and (127)

Vy')? Koo
(YI’)E""YL’Y;*F_( i) - ( 4‘4 y )Y-EA'F

(KAKB

5 —KBKC)KG‘-’-{—EEY.EB (134)

4

Since, by postulation, in Fig. 50, ¥;=¥,, we may equate the coeffi-
cients of (132) and (134). This gives

1 K}

= 1 —KiKe (135)
K (KK
145 = (%—KBKC)K, (136)
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1 K

e

_C
Whence KB:C =1, (138)
L, L,Cy f2_ fe
Ki=2% = L 139
and A Lg’ Lg’ C2 fM“ fl ( )

where f, and f» are the lower and upper cut-off frequencies, respec-
tively, and fa is the mean frequency (\/fl f2) of the structures of
Fig. 50.

From (135) and (139)

K¢»5%=%(KA—I—(}I):%(%—%). (140)

Therefore, when the relationships between the constants of the two
structures of Fig. 50 satisfy equations (138), (139) and (140), the
structures will have the same mid-shunt image impedance character-
istics. Explicit relations for the values of Cy', L," and L, may be
obtained from equations (138), (139) and (140) as follows:

Co' =Cy, (141)
Lz’ ';Lg';—;, (142)
, 4L,
L ﬁ_r_(ig _f_l)' (143)
v f

Therefore, if the constants and cut-off frequencies of a confluent
structure are known, the constants of a structure of the 1’—4 form
having an identical mid-shunt image impedance characteristic can be
derived from equations (141), (142) and (143).
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