Wave Propagation Over Parallel Tubular
Conductors:
The Alternating Current Resistance
By SALLIE PERO MEAD

Synopsis: On the basis of Maxwell's laws and the conditions of con-
tinuity of electric and magnetic forces at the surfaces of the conductor, the
fundamental equations are established for the axial electric force and the
tangential magnetic force in a non-magnetic tubular conductor with parallel
return. The alternating current resistance per unit length is then derived
as the mean dissipation per unit length divided by the mean square current.
The general formula is expressed as the product of the alternating current
resistance of the conductor with concentric return and a factor, termed
the “proximity effect correction factor,” which formulates the effect of
the proximity of the parallel return conductor. The auxiliary functions which
appear in the general formula are each given by the product of the cor-
responding function for the case of a solid wire and a factor involving the
variable inner boundary of the conductor.

In general, the resistance may be calculated from this formula, using
tables of P :ssel functions. The most important practical cases, however,
usually invulve only the limiting forms of the Bessel functions. Special
formulae of this kind are given for the case of relatively large conductors,
with high impressed frequencies, and for thin tubes. A set of curves illus-
trates the application of the formulae.

I. INTRODUCTION

HERE circular conductors of relatively large diameter are

under consideration, the effect on the alternating current
resistance of the tubular as distinguished from the solid cylindrical
form becomes of practical importance. Mr. Herbert B. Dwight has
worked on a special case of this problem and developed a formula
for the ratio of alternating to direct current resistance in a circuit
composed of two parallel tubes when the tubes are thin.! As infinite
sums of infinite series are involved, however, his result is not well
adapted to computation.

Mr. John R. Carson has given a complete solution for the alter-
nating current resistance of two parallel solid wires in his paper
“Wave Propagation Over Parallel Wires: The Proximity Effect,”
Phil. Mag., April, 1921. The analysis of that paper may readily be
extended to the more general case of propagation over two tubular
conductors by a parallel method of development. This is done in
the present paper. As the underlying theory is identical in the two
problems, familiarity with the former paper will be assumed and the
analysis will merely be sketched after the fundamental equations are
established.

14 Proximity Effect in Wires and Thin Tubes,” Trans. 4. I. E. E., Vol. XLII
(1923), p. 850.
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In this paper formulae for the alternating current resistance have
been worked out in detail with particular reference to the case of
relatively large conductors at high frequencies and to relatively
thin tubes. In general the auxiliary functions involved are expressed
as the product of the corresponding functions for solid wires by a
correction factor which formulates the greater generality due to
the variable inner boundary of the conductors. As far as possible
the symbols are the same as in the solid wire case but refer now to
the system of tubular conductors. Primes are added where the
letters denote the corresponding functions for the solid wire case.
This will hardly lead to confusion with the primes used in connection
with the Bessel functions to denote differentiation.

The general solution is developed in section II. The alternating
current resistance of one of the tubular conductors is expressed as the
product of the alternating current resistance of the conductor with
concentric return and a factor which formulates the effect of the
proximity of the parallel return conductor. Section III is a sum-
mary of the general formula, special asymptotic forms and forms
for thin conductors.

II. MATHEMATICAL ANALYSIS AND DERIVATION OF FORMULAE

We require the expression for the axial electric force, E; in the
conductors. Since the tubular conductor does not extend to r=0,
the electric force must be expressed by the more general Fourier-
Bessel expansion,

E,= Z; A [7u(p) + MK n(p)] cos né,

where
p=f?‘\/41r)\,u?:w
=t=xi\/71 when r=a
=t =y£\/£'—when r=a,

a and o being the outer and inner radii, respectively, of the con-
ductors. The additional set of constants Ao, A1 ... Ar is to be deter-
mined by the conditions of continuity at the inner boundary of the
conductor. It is necessary to satisfy the boundary conditions at the
surface of one conductor only, since the symmetry of the system
insures that they will then be satisfied at the surface of the other also.
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In the dielectric space inside the tube where 7 <«, the axial electric
force may be written

E.= 20 CuTn(p) cos n, (1)

or replacing the Bessel functions by their values for vanishingly
small arguments,

E.= Z D" cos nb (2)
n=0
where Do, D, . . . D, are constants determined by the boundary condi-

tions. Applying Maxwell's law relating the normal and tangential
magnetic forces H, and H, to the axial electric force, gives

wiwHy = 2" 4n 73/ (0) +MaK'a(p)] cos n, 3)

n=0

: 1~ :

piwHy =— " A [Ta(p) +MKn(p)] sin 70, (1)

n=0

for the space inside the conductor, and
twHy= nDyr"—1 cos no, (5)
twll, = Z nDyr"—1sin uf, (6)
n=0

for the inner dielectric (u=1). Equating the two expressions for
the tangential magnetic force Hy and for the normal magnetic in-
duction pH, term by term at the surface r=q,

[£74 () = pn (DM LKA () — mnKa(0)]=0. (7

Whence, for the practically important case of non-magnetic con-
ductors in which =1, we have

__ T
M Kpa(§) ®
and

E,= ; An [Jn(p)_ j—;:—:% Kﬂ(ﬂ)] cos nf. (9)
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In the subse.quent analysis J, (¢) of the solution for the solid wire
case is replaced by

Jn+1(f) _
Jn(f)_mKn(E) = Ma(£), (10)
and J,' (£) is replaced by
T 0 = K () = My (8, (1)

Otherwise the formulation of the alternating current resistance of
the conductor proceeds exactly as in the solid wire case. For the
electric force at the surface » =a in the conductor, we write

E=A [ M (&) +hi Mi(§) cos 0+ haMa(E) cos 20+ . . ] (12)

and determine the fundamental coefficient 4, in terms of the current
in the conductor. The resistance R of the tubular conductor per
unit length is defined as the mean dissipation per unit length divided
by the mean square current where the mean dissipation is calculated
by Poynting's theorem. Accordingly, we get

M (§) M, (&)

_ %d M, (E)
R=Real= {M (G M N A (o 19
To determine the harmonic coefficients k... %y or A;... Ay,

the total tangential magnetic force and the total normal magnetic
induction at the outer surface of a conductor are expressed in terms
of the coordinates of that conductor alone, and the conditions of
continuity at the surface are applied. This leads to the set of equations

gn=(—1)"2pub" — 1)'pnk Z (14)
n=1,2,3.
where

()—_kx—

!
ST

=(EM (&) —npl, (£))/8 M'(8),
Pn= (Eﬂfn’ (£) —npﬂ/fn(.f))/(ﬂf,,’(f) +nuda(£)),

In= Unkm
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When the permeability is unity, the solution, to the same order of
approximation as in the solid wire case, is

_ w® v’ 1+NKA(8) /T (8) | 2 /=1
il = o T MK (8 Toa (8] 2 2088/57) - (16)
where
_\/2_p[ul(uo+vo)—wl(uo—ﬂo}]—q[ul(uo—va}—I—vl(u:,-%—'uu)] 17
£ 7% TN ’ (17)
- 14MEL(E) /(8
P = N Ko (8)/To(D)’ (18)

Ju(f)=1ln+1:1!,,,
Pn=(—1)u2kns", n=1,2... o,

1—-1/1—(2k)?
CO
Since the resistance R, of an isolated tubular conductor is given by

2uip M, (£)
£ MS(%)

equation (13) becomes equation (I) of the formulae in the next section.
This is the general solution for the case of non-magnetic conductors.

In general R may be calculated from this formula and tables of
Bessel functions. The ber, bei, ker and kei functions ? and the recur-
rence formulae are sufficient to evaluate the Bessel functions but
the process is long. In the most important practical cases, the
conductors are rather large and the applied frequencies fairly high.
When this is true as well as when the tubes are very thin the formulae
usually involve only the limiting forms of the Bessel functions. These
special results are given in the next section.

s=2

R,= Real

(19)

III. ALTERNATING CURRENT RESISTANCE FORMULAE FOR

NoN-MaGNETIC CONDUCTORS
The symbols used are:

a =outer radius of conductor in centimeters,

«a =inner radius of conductor in centimeters,

¢ =interaxial separation between conductors in centimeters,

k=a/c

A =conductivity of conductor in electromagnetic c.g.s. units,

2 A convenient table of these functions for arguments from 0 to 10 at intervals of
0.1 is incorporated in Mr. Dwight's paper “A Precise Method of Calculation of
Skin Effect in Isolated Tubes,” J. 4. I. E, E., Aug., 1923,
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p=permeability of conductor in electromagnetic c.g.s. units,
w=2r times frequency in cycles per second,

i=v—1

x=av/4mhe

y=aV4m\w

E=xi\1

F=yivi
A= — n+1(§-)/Kn+l(f)

Tu(E) =tn+1iva
=Bessel function of first kind of order n and argument xi\/%,

rrey_ @Tn(§)
. dJu(E)
7 r__
Hy 10, = Ix
K (&) =Bessel function of second kind of order # and argument x14/7,
1oy GKa(E)
R =resistance per unit length of tubular conductor with parallel
return,

R,=resistance per unit length of tubular conductor with con-
centric return in electromagnetic c.g.s. units,

C = proximity effect correction factor,

R = C Ro. (I)
The auxiliary functions involved are:
a Pt _n uaua’*i“ﬂab'o’
Ro —Ro m(l m uoﬂo’ — ﬂo,ﬂo) (20)
where
1 [ — v,
Ry = a N7 il (21)
=resistance of solid wire with concentric return,
. 14 NKo(§)/Jo(§)
M K (87 (8 (22)
o8y g Lo —v0) +0i (1o +-20) |
£k PZ ! P a1 (ato+20) —v1 (200 —0) 1§’ (23)

3 The ratio R,/R. oscillates about unity which it approaches more and more
closely as the frequency increases. It is due to the fact that the phase of the current
in the inner portion of the solid conductor may be such as to oppose the current
in the outer portion, that the resistance of the solid conductor may be greater than
that of the tube even though the heating effect in the latter is the greater.
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where
, \/2 w1 (tto+v0) — 161 (10— vu)
£=7% o+ 00" (24)
. TNMEKL(E) /(8
= 25
b= TN K (8) /(B (25)
' iy _ba WUntly 000
Wn = | l+)\nKr:—1(E)/Jn—1(E) ‘2( iy ﬂnﬂn’_un’it'n)' (26)
where
s Unln' — Un'Un
= Uny 4701 (27)
. Ku(t) . Ky'(§)
n [ On = N7 e . o mrasa K 2
antib (H‘?‘ J,.(zz))‘:""J (1“ T (g)) (28)
1= V1—(2k) 29
_2_——(%)2 . (29)
The formula for the correction factor C is then
a2 Je )
C_1+aRo\’ Tr)\(S;-!-2g.l@ar Sa) (1)
where
Si= D wiken s, (30)
n=1
= Zﬂw,,kz"s"“. (31)
For large values of the argument
, _ 1
Ra—Ra [m ?l(l -\/_2:6)] (32)
and the correction factor is
V2-1/x 2\/“'
C=1 S +q 1— e kES ITI
+2 :11—11(1—1/\/2\)( b I:P ] 2 (In

When x and y are both large quantities, the auxxhary functions are
as follows, provided terms of the second order in 1/x and 1/y are
negligible, 7 in d and & below being equal to the number of terms
in which S, and S: converge to a required order of approximation.

With the notation
cos = cosV 2(x—y),
sin=sinv/2(x—7v),
exp=exp [—v2(x—y)],
Ro=Ra'1+[(1+a) sin — (1—a) cos]exp—a exp?
1—[(1=0) sin+ (1+b) cos] exp+b exp?

(33)
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where
3

2\/2x 24/2y’
R
2\/2x 24/2y'

N5V

b=1+

_ ,14[(1—¢) cos— (1+¢) sin] exp—c exp?
£=8 1= [(14+¢) cos+(1—¢) sin] exp+c exp®

where
1 15

2/2¢  2v/2y
=- ‘\/E/x!

;1 =[(1—d) cos— (14d) sin] exp—d exp®
1—[(1+%) cos+(1—1) sin] exp+h exp?

c=1—

Wy =Wy
where
dn*—1 4(n+1)*—
24/ 2x 242y
4(n—1)2—1 d(n+1)*—
2/ 2x 22y
o1 _2n-1

W =\_/§_ 2x

d=1+

h=1+

(34)

(35)

(36)

(37)

(38)

At frequencies sufficiently high to afford practically skin conduction,
the following formulae indicate the way in which the resistance of
the tubular conductor approaches its limit, the resistance of the

solid wire.

R,=R/ 142 sin exp
1—2 cos exp’

1
aR, \f \/———
C=Cn(l—A4/x),
1R
C’"_l—k’sﬂ’
{ ,(1—k%%)? 1—2 sin exp
A=2V2 1— k" “? 1425 (1—#%%)% 1—2 cos exp

(39)

(Iv)

(40)

(41)
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When the conductors are very thin tubes, i.e., thin as compared to
the radius, (e—a)/a is necessarily small and, in general, x—y is
small. Of course, when the frequency is high enough, x—y becomes
large in any case. When this is true with respect to thin tubes, how-
ever, ¥ and y will usually be large enough to make the asymptotic for-
mulae applicable; but, if x—y is small, the approximations

1) =Iu®— -0 @ + 5@,

Kul®) = Kn(®)— (- 0K O+ S5V K @),
reduce the correction factor to

2
o —_A-IBH o0
d x? d
= 2 j 2no2n M __ 9 h2 \ 2nent1 _"} V
C=1+2 0 ;k s¥ — 2k kEnsttings- (V)

ﬂ—l

a—ao
where = %

(14B8/2)* _ ¢
1+B8+p  do’

2
Du=Fen+ 44 d?,

f=

2n+1

=1+ B,

=1+(n+1)ﬁ+£'ﬁ1)2(i?_) B2

and the resistance with concentric return to

1 1+8+4° (42)

Ro= 2mha(a—a) 14+B/2°

1/27\a(a—«) is, of course, the direct current resistance of a very thin
conductor.

If (a—«)/a is very small and negligible compared with 2n/x? where
n is the number of terms in which the series of (V) converge to a
required order of approximation,

2J (1-“;"){ Zk% 4 2% log(l—kgs)%

C=1+’-‘f(“_“) e
=

(VI)
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As a check on formulae (V) and (VI), the limiting cases may be
arrived at directly as follows. If the conductors are thin tubes,
the harmonic coefficients are given by

¢
= (— 1)1+ n
hw=(—1) ngf_(g—ﬁ(l—zﬂn+1»
3 g
—(—1)n E“r n _?i-(ﬂ+]_) 2
( 1)+éﬁ_(g_g(1_2M”+lnkl}mm - kkr+.“].@$
£ o
When £ is very large
lz,.=(—1)"2k"|:1—é§nkh;—"(n;,_l)k’kz+ 1]
—_ (_, l)rrzknsnl (44)
and
M, M,
=, ! (45)
so that
B 1 M, . My
C-Real[l—i—E% | h,;lﬂﬂ—%con]. M_o’:l
14k
- 1— k25?2 (46)

the same result as for the corresponding limiting case of a solid con-
ductor.
On the other hand, if { is not large and £—{ is very small,

b= (=1 E ey, (47)
Mn —
=1 (48)
M, in
M7 T o
so that
c=1, (50)
and

R=R,=Rq., (51)
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where R, is the direct current resistance of the thin tubular con-
ductor. Egs. (46) and (50) agree with the corresponding limits of
formulae V and VI respectively.

The curves of the accompanying figure do not pretend to represent
the proximity effect correction factor with precision. They are, how-
ever, accurate for thin tubes, and indicate the order of magnitude
of the factor for various values of the thickness of the tubular con-
ductor and show the nature of its variation with respect to the applied
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frequency. They are computed from formula (V) which is valid
for quite high frequencies when the tubes are thin. When the thick-
ness of the tubes is greater, however, the range of validity with respect
to frequency is smaller, the dotted portions indicating a doubtful
degree of precision. It was previously pointed out in connection
with formula (IV) and is immediately deducible from physical con-
siderations, that all of the curves eventually coincide with the curve
for the solid wire which approaches the value 1.155 asymptotically.

As a simple application, suppose the resistance is required of a
tubular conductor with an outer radius of 0.4125 cm. (that of No. O
gauge A.W.G. copper wire) whose resistivity is 1696.5 electromagnetic
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units per cm., where there is an equal parallel return so situated that
k=0.25 and a frequency of 5,000 cycles per second is applied to the
circuit. Then m=4/4rA0=15.26 and x=ma =15.26X%0.4125=6.30.
When the ratio of the thickness of the conductor to the radius is
greater than about 0.01 the proximity effect correction factor C is
appreciable. If the ratio is 0.05, reading C from the curves, gives
C=1.064. From formula (42), R,=5.24 ohms per mi. which makes
the resistance R=5.53 ohms per mi.



