Useful Numerical Constants of
Speech and Hearing

By HARVEY FLETCHER

Nore: The material given in this paper was prepared in a more con-
densed form for publication in the International Critical Tables. In order
to make it available in convenient form for the use of telephone engineers
it was deemed advisable to publish it in this journal. =~ The author is
indebted to Dr. J. C. Steinberg for able assistance in collecting and
arranging the material.

I. BIBLIOGRAPHY

BIBLIOGRAPH of papers on Pitch Discrimination, Intensity

Discrimination, Absolute Sensitivity of the Ear, Upper Limit
of Audibility, Lower Limit of Audibility, Theories of Hearing and
other miscellaneous works on Speech and Hearing are given in a
paper by H. Fletcher, Bell Tech. Jour., Vol. 11, 4, pp. 178-180, Oct.,
1923,

II. ABSOLUTE SENSITIVITY OF THE EAR

The sensitivity is the minimum audible rms pressure in dynes
cm~? in ear canal. The values below are the average of the results of
Wien (Areh. f. ges. Physiol. 97, p. 1, 1903), Fletcher and Wegel
(Phys. Rev., 19, p. 553, June, 1922), and Kranz (Phys. Rev., 21, p. 573,
May, 1923) weighted 3, 72, and 14, respectively according to number
of ears tested

TABLE 1
Frequency (dv)!. ... .. 64 128 256 512 1024 2048 4096
Sensitivity (dynes).... .12 .021 .0039 .001 .00052 .00041 .00042

I1I. MiniMUM AUDIBLE POWER FOR A NORMAL EARr

The power in microwatts passing through each square centimeter
in the wave front of a free progressive wave in air under average
conditions is related to the rms pressure in dynes by the formula

p=20.54/7.

The figures of Table I may be converted by this formula to minimum
audible powers. It is thus seen that the minimum audible accoustical
power is at frequencies between 2,000 and 4,000 vibrations per second
and is equal to 4X107!° microwatts per square centimeter

! The symbol dv is used to denote “‘double” or complete vibrations.
375
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IV. RANGE OF AUDITION IN FREQUENCY AND INTENSITY

In Fig. 1 the lower curve is a plot of the average sensitivity
values given in Table I. The upper curve gives the pressures that
produce a sensation of feeling and serves as a practical limit to
the range of auditory sensation. (Wegel, Bell Tech. Jour., 1, p. 56,
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November, 1922.) Investigators vary from about 8 to 40 dv for
the lower pitch limit and from about 12,000 to 35,000 dv for the
upper limit. (See I.) The values of 20 and 20,000 dv shown on
the chart were taken as being most representative. Half of the
observations lie within the dotted curves. The pitch is equal to
100 log: N and the sensation units equal to 20 log P where N is the
frequency and P is the pressure. (Fletcher, Jour. Frank. Inst., 194,

V. MINIMUM PERCEPTIBLE INCREASE IN INTENSITY AND FREQUENCY
(Knudsen, Phys. Rev. 21, p. 84, Jan., 1923)

Sensation Level in Sensation Per Cent Increase in Intensity
Units or TU's to be Just Perceptible

10 23

20 14~

30 12

40 11

50 10.6

60 to 100 10

Per Cent Increase in
Frequency to be Just

Frequency Perceptible
64 .93

128 .59

256 .40

512 .32

768 to 4096 : .30
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p. 289, Sept., 1923.) The sensation level S of a sound is defined by
S§=20 log Ijj

(e}

where P, is the threshold pressure, or it is the number

of sensation units above the threshold of audibility. These sensation
units are the same as the transmission units used in telephone en-
gineering.

The per cent increase in frequency to be just perceptible varies with
sensation level in about the same way as does the per cent increase in
intensity to be just perceptible. The values are for monaural re-
ception the tones being heard successively.

VI. THE NUMBER OF DoOUBLE VIBRATIONS NECESSARY TO
DETERMINE PrTcH

(Bode, Psvychol. Stud., 2, p. 293, 1907)

TABLE II

Weak Tones Medium Tones

Freq. dv Time (sec.) No. of dv Time (sec.) No. of dv
128 0.0496 12.1
256 0.06908 17.6
384 .0672 24 .08 0.0445 17.1
512 L0579 29 .64 0.04274 21.8

VII. TaE MASKING ErrEcT oF ONE SoUND UPON THE AUDIBILITY
OF ANOTHER SOUND

(Wegel and Lane, Phys. Rev., 23, p. 266, Feb., 1924)

If the ear is stimulated by a pure tone of frequency Ny, it is in
general rendered less sensitive to other pure tones. The tone that
constantly stimulates the ear is called the masking tone. The tone
that is heard in the presence of this stimulating tone is called the
masked tone. The masking is measured in sensation units or TU’s.
It is equal to 20Xlogy of the ratio of the pressures necessary to per-
ceive the masked tone with and without the presence of the masking
tone. In other words it is equal to the number of units that the
threshold has been shifted. Fig. 2 shows the amount of masking
(ordinate) of tones of various frequencies as a function of the sensa-

i~
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tion level (abscissa) and frequency N; of the masking tone. In
Fig. 3 data for a masking tone of 1,200 dv is plotted in which the
frequencies of the masked tones are plotted on the abscissa. In order
to get satisfactory curves of this kind it is necessary to take more
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comprehensive data than that shown in Fig. 2. The solid curves of
Fig. 4 show the masking when the masked and masking tones are
introduced into opposite ears. The dotted curves were taken from
Fig. 2.
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VIII. ConpucTiOoN OF SKULL BETWEEN THE Two EARs

A comparison of the two curves in Fig. 4 shows that the attenua-
tion introduced by the skull from one ear to the other when the tone
is introduced by a telephone receiver is between 40 and 50 sensation
units corresponding to an intensity ratio of from 10* to 10°. This
becomes 7 TU greater when rubber caps are interposed between the
head and the receiver cap.

IX. LocarizaTioN oF PURE ToNES As A FUNCTION OF THE PHASE
DIFFERENCE AT THE Two EARs

(G. W. Stewart, Phys. Rev., 25, p. 425, May, 1920)
The experimental results can be represented by the formula

g =0.0034N+.8 (approx.)

$ is the phase difference in degrees of the tones at the two ears.

0 is the number of degrees to the right or left of the median plane
that an observer locates the source of sound. The direction of
location is toward the ear leading in phase.

N is the frequency of the tone in dv. The relation applies only' for
frequencies of 100 to 1,000 dv., inclusive.

X. ConsTANTs UskEp IN THE COMPUTATION OF THE LLOUDNESS OF
A COMPLEX SOUND '

(Fletcher and Steinberg, Phys. Rev., 24, p. 306, Sept., 1924)
(Steinberg, Phys. Rev. To be published soon)

If L be the loudness as judged by an average normal ear, then

n==~k 2 2
L-3.33 logu I: > (Wapa)” :|
n=1

pn=rms pressure of the nt» component,

where

W,=a weight factor for the #'" component (Fig. 5)

r=a root factor (Fig. 5)

The sensation levels (See IV) given in the chart are for the complex
tone.
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XI. DynaMmIicAL CONSTANTS OF THE HEARING MECHANISM
(Howell, W. H., "“A Textbook of Physiology”

(Wrightson, Sir Thomas, ‘‘Analytical Mechanism of the Internal Ear" )

(a) Ear Canal
Length, 2.1-2.6 cm.
Volume, 1 cm?.
Area at Opening, .33 to .50 cm?®.
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(¢) Hammer
Length, .8 to .9 cm.
Weight, 23 mg.

(d) Anvil
Weight, 25 mg.

(e) Stirrup
Weight, 3 mg.
(f) Mechanical Impedance of the Ear Drum
(Data by Wegel and Lane, Bell Telephone Laboratories)

The order of magnitude is 20 to 30 mechanical ohms (cgs units)
over the frequency range from 200 to 4,000 dv.

XII. SpPEECH ENERGY
A. Speech Power

(Data furnished by C. F. Sacia and L. J. Sivian, Bell Telephone
Laboratories)

_ 1. The average speech power delivered by an average speaker is
about 10 microwatts. In the process of obtaining the average the
silent intervals were included. If they are excluded the average
increases about 509,. The peak power frequently rises to 2,000
microwatts.

2. Variation of average speech power delivered by different persons
during conversation. (Fig. 6.)

B. Energy Frequency Distribution of Average Speech

(Crandall and MacKenzie, Phys. Rev., 19, p. 221, March, 1922)
(Fig. 7)

C. Acoustic Power in Vowel Sounds
(Data furnished by C. F. Sacia of the Bell Telephone Laboratories.

This data together with a description of the apparatus and
methods used in obtaining it will be given in a paper soon to be
published.)

Table 111 contains data on the power of individual vowels obtained
from analyzing the vowel portions of the syllables shown in the key-
word. The first two columns give the average power in microwatts
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of 8 males and 8 females during the particular cycle of the funda-
mental containing the maximum energy for unaccented vowels. A
rough estimate of the corresponding figures of typical accented
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vowels may be obtained by multiplying these values by a factor of 3.
The third and fourth columns give peak factors which convert the
power figures of the first two columns into maximum instantaneous
powers. Columns 5 and 6 give the maximum values of these peak
factors found among the male and female voices, respectively.

TABLE 111
Acoustic Power in Microwalls of the Vowel Sounds

(1) (2) (3) 4) (5) (6)
Av. Peak | Av. Peak | Max. Peak| Max. Peak

Vowel Key Py P Factor | Factor Factor Factor
8 males | 8 fem. | 8 males | 8§ fem. 8 males 8 fem

i tool 27 41 2.6 2.8 3.8 3.4
u took 32 49 4.0 3.1 4.9 3.4
o tone 33 44 4.1 3.4 6.4 4.9
o talk 37 49 4.5 3.3 5.7 3.0
o ton 29 38 4.6 3.9 6.8 5.7
a top 50 48 4.2 1.6 4.2 4.7
a' tap 43 39 5.4 4.7 7.4 .5.2
e ten 25 30 5.6 3.8 6.3 4.6
a tape 21 30 5.3 4.5 6.0 5.1
i tip 25 31 4.1 3.8 5.8 5.7
é team 32 23 4.7 2.6 5.8 3.0

XIII. FRrREQUENCY OF OCCURRENCE OF ENGLISH SPEECH SOUNDS

(Table IV contains data from a book by Gocifrey Dewey, “The
Relative Frequency of English Speech Sounds,” Harvard
University Press)

TABLE IV
Relative Frequency of Occurrence of English Speech Sounds

Speech Rel. Speech Rel.
Sound Key Freq. Sound . Key Freq
a top 3.3 2 0.74
a tape 1.84 h 1.81
a’ tap 3.95 j 0.44
e ten 3.44 k 2.71
e eat 2.12 | 3.74
er term 0.63 m 2,78
i tip 8.53 n 7.24
i dike 1.59 ng hang 0.96
o ton 6.33 P 2.04
o tone 1.63 r 6.88
o talk 1.35 s 4.55
u took 0.71 sh shell 0.87
i tool 1.89 th (thin) .37
ou our 0.59 th then 3.43
b 1.81 t 7.13
ch chalk 0.52 v 2.28
d 4.31 w 2.08
f 1.84 y 0.60
z 2.97
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XIV. INTERPRETATION OF SPEECH
(Fletcher, H., Jour. Frank. Inst., 193, 6, June, 1922)
A measure of the interpretation of speech was obtained by means

of articulation tests. Meaningless syllables were pronounced and
observers were required to record the syllables. The articulation is
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the per cent of syllables that were correctly recorded. The articula-
tion depends upon the sensation level of the speech (Fig. 8), and
upon the width of the frequency band transmitted (Fig. 9).

The syllables that were recorded in these tests were analyzed to
show the articulation of the fundamental speech sounds. Fig. 10
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shows these articulations as functions of the sensation level of the
speech. In Fig. 11 they are shown as functions of the width of the
transmitted frequency band. It should be noted that the term
articulation as here employed denotes only the correct interpretation
of unrelated speech sounds and is not a measure of voice naturalness
which is also an important factor in the telephonic transmission
of speech.
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