Irregularities in Loaded Telephone Circuits
By GEORGE CRISSON

Synopsis: The development of long distance telephone transmission
has made the question of line irregularities a matter of great importance
because of their harmful effect in producing echo currents and causing
the repeaters to sing.

The structure of coil-loaded circuits permits the calculation of the
probability of obtaining an assigned accuracy of balance between line and
network when certain data are known or assumed regarding the accuracy

of loading coil inductance and section capacity.
Formulae are given and the results of calculations compared with measure-
ments made on circuits of known accuracy of loading.

INTRODUCTION

HE application of repeaters to telephone circuits in which the

speech currents in the two directions of transmission pass through
the same electrical path, has caused considerable emphasis to be
placed on the matter of making the telephone circuits as free as
possible from irregularities. This paper aims to present the theory
of the relation between the irregularities in coil loaded lines and the
effects resulting therefrom, which have an important bearing upon
the operation of two-way telephone repeaters.

The idea of applying the theory of probability to the problem of
summing up the effects of many small line irregularities was first
suggested in 1912 by Mr. John Mills. The effect upon repeater
operation of impedance unbalance had been mathematically analyzed
by Dr. G. A. Campbell; and the effect upon impedance of a single
irregularity of any type had been investigated by Mr. R. S. Hoyt.
Using a probability relationship which was pointed out by Mr. E. C.
Molina, Mr. Mills developed a formula which gives the average or
probable impedance departure in terms of average or probable irregu-
larities in.inductance or capacity, which served at the time of the
engineering of the transcontinental line (1913-14) and for some
years after.

With the rapid growth of repeatered circuits in cable it became
necessary to calculate what fraction of a large number of essentially
similar lines would give a definite impedance unbalance at a given
frequency. The necessary mathematical work to indicate the con-
ditions for a large group of similar lines was recently carried out
independently by Messrs. H. Nyquist and R. S. Hoyt.

The theory which has thus been evolved over a period of years is
now presented in a manner which it is hoped will be found relatively
simple and useful. Various charts are given which should be of
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material aid in the application of the theory. There are also given
the results of some experiments made on cable circuits in which
comparison is made between the impedance departures of the circuits
as obtained by direct measurement with the departures as computed
from data covering the individual irregularities. These impedance
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Fig. 1
departures are expressed as '‘return losses,” the meaning of which
is explained below. The agreement is shown to be close enough to
constitute a good check as to the correctness of the underlying theory.

MAGNITUDE OF REFLECTED CURRENT

In Fig. 1, are shown three regular' telephone lines of the same
type beginning at a certain point A. The first line L, passes through
another point B and continues on to infinity. The second line L,
terminates at B where it is connected to an impedance Z; which
differs from the characteristic impedance Z, of the three lines, thus
constituting an irregular termination. The third line Ly also termi-
nates at B where it is connected to an impedance Z; and a generator
G of zero impedance whose purpose will be described later. At the
sending end A each line is provided with one of three identical genera-
tors, Gi, G, Gs, having an impedance equal to Z, the characteristic
impedance of the line. The internal ‘voltages of these generators
are all equal and represented by E. The generator G impresses a

!In_this paper the term “regular” implies that a telephone lin¢ is free from elec-
trical irregularities.
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voltage E,=% E upon the sending end of the line L, and causes a
current I, to flow into it. The voltage and current waves are propa-
gated regularly over the line to the point B where they set up a poten-
tial difference E, between the conductors and cause a current I, to
flow. E; and I, are smaller in magnitude and later in phase than
E, and I, because of the losses and finite velocity of transmission
of the line L;. These quantities have the relation

E, Ei

7, =1, =2, (1)
since the line is regular.

In the second line L, a different set of conditions exists. In this
case, the voltage E. and the current I. produced at B by the generator
have the relation

E2 _
-

When the e.m.f. of the generator G is zero, the conditions in the
third line L; are the same as in L, but by adjusting the phase and
magnitude of the e.m.f. of this generator the current in the terminal
impedance Z; can be made equal to I; and the drop across this im-
pedance becomes

Zy. (2)

Ey;=1,2,. (3)

Under these conditions the current I; flows at the end of the line
L; and the potential difference E, exists between the conductors at
this point. The line L is then in the same condition as the line L;
between the points A and B. When the waves arrive at B over the
line L; the generator boosts or depresses the voltage at the terminus
of the line by just the amount necessary to cause the terminal ap-
paratus to take the desired current. Then the e.m.f. of the generator
Gis
EG=E3-"E1. (4)

Removing the e.m.f. of the generator G makes the conditions in
line L; identical with the conditions in Ls, but removing this e.m.f.
is the same thing as introducing another e.m.f. — E¢ in series with the
generator which annuls its em.f. Eg. This em.f. —Eg causes a
current I3 to flow back into the line
Eq
Ia— Zo+Zt' (5)

Substituting from equations (1), (3) and (4) above

Zo_Zj

L=7.%2

I. (6)
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That is, the effect of connecting an impedance Z; to the end of a
line of characteristic impedance Z, is to return toward the source a

Zo— 2y
Zot+ 2
the terminus if the line were regularly terminated. The ratio between

]

current whose value is times the current that would exist at

Network
Zo | T

i I

Fig. 2

the reflected and the incident current is known as the ‘‘reflection
coefficient,” the value of which is expressed as follows:

Iy Zo—Z

?’—T;—Za_'_Z‘. (7)

This ratio can also be expressed in transmission units (TU). When
expressed in TU this relation will be referred to in this paper as the
“transmission loss of the returned current,” or, briefly, as the “return
loss.”

If a condition occurs in a line which causes the impedance at any
point to differ from the characteristic impedance it has the same effect
as an irregular termination.

RETURN Loss AT A REPEATER DUE TO A SINGLE IRREGULARITY

Fig. 2 shows a No. 21-type repeater connected between a line and
a network whose impedance is exactly equal to the characteristic
impedance Z, of the line. If the line is perfectly regular the repeater
will be perfectly balanced and the gain can be increased indefinitely
without causing the repeater to sing.

Assume now that the line is terminated by some apparatus having
an impedance Z; at a distance from the repeater such that the trans-
mission loss of the intervening line is 7 TU. If a wave of current
having a certain magnitude leaves the repeater, it is reduced in
strength by 7" TU when it reaches the terminus. Of this current, a
certain amount is transmitted back toward the repeater, suffering a
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further loss of " TU on the way; consequently, the relation expressed
in TU between the strength of the currents leaving and returning
to the repeater, that is, the return loss at the repeater, is given by
the equation

Zo‘[‘zt
Zo—2,

S=20 logm +2T (8)

If the gain of the repeater, expressed in TU, is equal to or greater
than S the repeater will sing provided the returning current has the
correct phase relation to reinforce the original wave. For this reason
the term “singing point” has frequently been applied to the quantity
S, which is called returned loss in this paper.

If the line is shortened until the impedance Z; is connected directly
to the repeater terminals, the transmission loss 1" between the repeater
and the irregularity is reduced to zero and the return loss becomes

Zo +ZI
Zu'_'Zj.

S5=20 logy 9)

RETURN Loss oF IRREGULAR LINES

In practice, lines are never perfectly regular. Not only is it im-
practicable to build apparatus which would form a perfectly regular
termination for a line, but there are numerous causes of irregularity
in the lines themselves, each one of which is capable of reflecting a
portion of the waves which traverse the line. These irregularities
can be kept smaller than any specified amount if sufficient care is
used in building and maintaining the line but they cannot be entirely
eliminated; consequently, if a length of actual line is terminated
regularly by a network of impedance Z,, the return loss will be high
if the line is carefully built and low if it contains large irregularities.
The return loss of such a line, when terminated regularly by a network
is a measure of the quality of the line from the standpoint of repeater
performance. In measuring the return loss of a line it is necessary
that a rather long section of the line be available so as to include
all irregularities near enough to have an appreciable effect upon the
result. If the section measured is too short, the result will be too
high because only a few irregularities will be included.

CALCULATION OF THE RETURN Loss oF CoiL LOADED LINES

Owing to the facts that the inductance of coil loaded lines is con-
centrated principally in the loading coils and the capacity is divided
into elements of finite size by the loading coils and, further, that the
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electrical irregularities are due principally to the deviations of the
inductance of the coils and the capacity of the sections from their
average values for the line, it is possible to calculate by a fairly simple
method the value of the return loss of a coil loaded line if the repre-
sentative values of these deviations and the electrical properties of
the line are known or assumed.

Since the return loss depends upon the accidental combination of
a large number of unbalance currents there will not be one definite
value applying to all circuits, but an application of the theory of
probabilities makes it possible to compute what return loss will
probably be surpassed by any assigned fraction of a large group of
lines having the given deviations.

The method of calculating the return loss of coil loaded lines will
now be described. The symbols used in this description and their
meanings are given in the following table:

TABLE I

=Attenuation Factor per Loading Section=Ratio of the Current Leaving a
Loading Section to the Current Entering it.

A
C =Normal Capacity per Loading Section in Farads.
F =Fraction of a Large Group of Lines.

f =Any Frequency for which a Return Loss is to be Found.

1
fe =—V,z—-—é =Critical or Cutoff Frequency of the Line.
™

H; =Representative?! Deviation of the Capacity of Loading Sections.

he = Deviation of the Capacity of a Particular Loading Section.
H, =Representative? Deviation of the Inductance of Loading Coils.

hr =Deviation of the Inductance of a Particular Loading Coil.

H =+ HZ+H}=Representative? Combined Deviation.

I, =Current Entering the Line.

I' =Representative? Total In-Phase Returned Current at the Sending End.
I" =Representative? Total Quadrature Returned Current at the Sending End.

Ir =Value of Returned Current which will be Exceeded in a Specified Fraction F
of a Large Group of Lines.

i’ =Total In-Phase Current at the Sending End of the Line.
#"" =Total Quadrature Current at the Sending End of the Line.

i1, 4, 13, - - - 1, =Currents Returned from the 1, 2, 3, - - - - - and nth Irregularities.
IR R P 4,/ =In-Phase Components of iy, 22, 73, - - - n
T A 1, =Quadrature Components of 71, 43, 43, - - - 7n

k =‘\I IZ'. =Nominal Characteristic Impedance of the Line.

L =Normal Inductance of a Loading Coil.
n =Number of Irregularities.

P =Probability Function for the Absolute Value of the Total Returned Current
at the Sending End.

p' =Probability Function of the Total In-Phase Returned Current.
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R =Representative® Reflection Coefficient at Capacity Irregularities.
R; =Representative? Reflection Coefficient at Inductance Irregularities.
re =Reflection Coefficient at a Capacity Irregularity.
r, =Reflection Coefficient at an Inductance Irregularity.
r1, 7z, 3, - - - r,=Reflection Coefficient at the 1, 2, 3, - - - nth Irregularities,
S =Return Loss, Infinite Line.
S, =Return Loss, Finite Line.
S, =Attenuation Function.
S = Distribution Function.
w =Irregularity Function.
S, =Frequency Function.
T =Transmission Loss in a Finite Line.

01, O3, O, - - - - 0, =Phase Angles of the Currents at the Sending End Returned by
the 1, 2, 3, - - - nth Irregularities.
w =f/f.

REFLECTION AT A CoIL IRREGULARITY

If a loading coil has too much or too little inductance, the effect
is the same as if a small inductance irL had been added to or taken
away from the coil. The reactance of this increment is 2nxfLhg.
The additional reactance has the same effect wherever it may occur
in the load but it is somewhat simpler to assume that the increment
is introduced at mid-coil. Within the useful range of telephonic
frequencies, the mid-coil impedance of a loaded line is given closely
by the expression k+/1—w?"

In equation (7) Z.,—Z, corresponds to 2afLhr while Z,+2Z, is
approximately equal to 2k+/1—w? when the irregularity is small,
consequently :

L _ wfLh

E k1w
and, substituting for f and & their equivalents obtained from relations
given in Table I,

(10)

w

. 11
o (11)

rp=h;

REFLECTION AT A SPACING [IRREGULARITY

If a loading section has too much or too little capacity, the effect,
neglecting conductor resistance, is the same as if a small bridged
capacity icC were added to or removed from the line. The effect

? The ‘“‘representative’’ deviation or current is an index of the magnitude of the
deviation or current that may be expected in accordance with the laws of the
distribution of errors. It corresponds to the root-mean-square error. It must
not be confused with the “effective” or r.m.s. value of a particular alternating cur-
rent. The meaning of the term as used here is more completely explained in
the paragraph following equation (24).
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is the same for any point in the section, but it is somewhat simpler
to assume that the additional capacity is applied at mid-section.

and the mid-section

. . 1
The reactance of the added capacity is SafheC
impedance is, closely, ﬁ'

When the bridged reactance is large compared with the line im-
pedance, the reflection coefficient 7¢ is given closely by the equation

k
: Vi—w?
re=4 (12)
21'rthC
from which, substituting the values of f and k as before
w
re=hc Vi (13)

which is identical in form with equation (11) above.

APPROXIMATIONS MADE IN DERIVING Rz AND R¢

The expressions for the mid-coil and mid-section impedances used
above in deriving equations (10) and (12) are simple approximations
which take no account of the effects of the resistance of the line
conductors and loading coils, leakage between conductors or dis-
tributed inductance. The errors due to these effects are negligible
in the important parts of the frequency range involved in telephone
transmission when the types of loading and sizes of conductors now
commonly used are considered. The errors due to these causes tend
to increase for frequencies which are very low or which approach the
cutoff frequency. For accurate calculations relating to very light
loading applied to high resistance conductors it would be desirable
to take into account the effects of resistance. Because the use of
the precise expressions would greatly complicate this discussion
and would probably serve no very useful purpose at this time, the
approximations given above are used.

CURRENT RETURNED TO THE SENDING END OF THE LINE

Consider first a line having only one kind of irregularity as, for
example, one in which only the loading coils are assumed to vary
from their normal values. If a current I, enters such a line, a current
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i, is returned to the sending end from the first irregularity (assumed
to be very near the sending end)

1':1 = rlIo (14)
a second current
1=A%.1, (15)

is returned from the irregularity located at a distance of one loading
section away from the sending end, since the current is reduced by
the factor A in going to the irregularity and again in returning.
Similarly, a current
in=A2("_nnto (16)

is returned from the nth irregularity.

The first current will return to the sending end with a certain
phase angle ©, with respect to the initial current, the second with a
phase angle 0., etc. Each returned current may be resolved into
two components, one in phase with the initial current and one in
quadrature.

The in-phase components of the currents are then:

2 =I,r, cos ©; from the first irregularity. (17)
12 =I,rsA? cos O, from the second irregularity. (18)
iy = I,r3A* cos O from the third irregularity. (19)
iy = Lry A2 =Y cos 0, from the nth irregularity. (20)

and the quadrature components ale:

i, =1I,r, sin O, from the first irregularity. (21)
to'" = I,r2A® sin O, from the second irregularity. (22)
i4' =I,r3A" sin O3 from the third irregularity. (23)
iy’ = IryA%"=1-sin 6, from the nth irregularity. (24)

Now the deviations of the inductance (and capacity) resemble the
errors of measurement discussed in many text books dealing with the
precision of measurement, consequently, they can be studied and
their effects combined by the same mathematical law.

Examination of measurements of the inductance of large numbers
of loading coils and the capacities of the pairs and phantoms in many
reels of cable have shown that the most reasonable assumption is
that the deviations of inductance and capacity follow the “normal”
law of the distribution of errors.

The deviation at each irregularity is not known but it is possible
to derive from the measurements of the inductance of large numbers
of loading coils (and the capacity of many lengths of cable) representa-
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tive values for these deviations similar to the “mean error.”” Because
of the way in which the effects of irregularities combine, this repre-
sentative deviation is taken as the square root of the mean of the squares
of the deviations (r.m.s. deviation) of the individual coils. If the
average deviation of a large group of coils is known, but the individual
deviations are not, it may be multiplied by 1.2533 to obtain the
representative deviation on the assumption that the deviations
follow the normal law of errors.

If then the representative deviation Hp, is substituted for the par-
ticular deviation kz in equation (11), we obtain the representative
reflection coefficient

Ro=Hp———. (25)

V1-w?

Now in the usual case where no effort is made to select the loading
coils and so obtain a special distribution of the deviations the repre-
sentative deviation and the representative reflection coefflcient are
the same for each coil. Substituting Ry for rq, rs, etc., in equations
(17) to (24) each equation gives the representative value, at the
sending end of the line, for the current reflected from the correspond-
ing irregularity.

According to the laws for the combination of deviations which are
demonstrated in treatises dealing with precision of measurements
the representative value of the current due to all the irregularities
would be the square root of the sum of the squares of the representa-
tive values of the different currents taken separately, consequently
the representative in-phase current is

I' = L,RiA/ (cos®0, + A*cos®0:+ APcos?0y+- - - - A*"~Dcos?0,) (26)

and the representative quadrature current is

1" = LRiA/ (sin®0, + A'sin®0, F Asin®0s - - - - - A10-Dgin®9,).  (27)

By assuming that the representative in-phase and quadrature
currents are equal the following steps can be greatly simplified. In
view of the varying effects of frequency, distance from the sending
end and nature of the irregularity upon the phase relations this
appears to be a justifiable assumption, so combining I’ and I"” in
quadrature,

I'+I"= \!WI: LRy
‘ 2 V2 VIFAF A - Atn=D (28)
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For a finite number of irregularities, that is a finite line terminated
by a perfect network just beyond the nth coil :
, ., LR |1—4a*

I=I"="/3 N 1—41

(29)

which is obtained by summing up the series of terms under the radical
in equation (28).
For an infinitely long line A*" becomes zero since 4 <1 and

ot _IGRLJ 1 30
I, =1 VR SET (30)
I’ corresponds to the r.m.s. error in the ordinary theory of errors,

consequently the probability function for the distribution of the in-
phase currents is:

i
p’=n1/7ﬂe_m. (31)
Changing the accents, this equation also applies to the quadrature
components. .
The probability that the in-phase current lies between two near
by values 7" and #'+di’ is then equal to ' di’ and the probability
that the quadrature component also lies between two values 7/ and
t”+di” at the same time is p'di’Xp”di"”. Transferring to polar
coordinates,® the probability that the total returned current will be

between a value i =Vi”+i" and a slightly different value i4+di and
also have a phase angle between 6 and 6440 is

1 _
P=5—smie " dido. (32)

Integrating with respect to the phase angle 6 between O and 2r
to find the probability of obtaining a current between 7 and i+di
of any possible phase displacement

| S Al
F= 7'_2/1: ie 21 dj. (33)

Integrating between Ir and infinity gives the probability that the
total returned current will exceed the value If.
I*

F=e 2%, (34)

3For a more complete description of this operation, see ‘‘Advanced Calculus,”
by E. B. Wilson, page 390 et seq.
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In a large number of lines, F is the fraction of the whole group
which will have a return current in excess of Ip.

From the definition of the transmission unit the return loss of the
line expressed in TU, is given by the expression

S=20 logwl® = —20 logw (35)
Ir o
from which
s
Ii=T1310"10. (36)
Substituting in (34)
ﬁ A
er'ﬁ%w—m (37)
Taking logarithms to the base e and transposing
_S 271"
10710 =— e log. F. (38)
Taking logarithms to the base 10
_ 1
S= 10 lOgm 21,2 lOge 'I];i] . (39)

Substituting the value of I,, from equation (30) for I’

Ci-dt 1
S=10 loguw R 1 1 (40)
08¢
| F
and the value of Rz from equation (25)
1 1—w? . 1
S=10 logio mi XA-A) X —7 (41)
loge 7

By a similar process of reasoning it is evident that if the line contains
capacity deviations only, the return loss is given by this same ex-
pression with H¢ substituted for £z and if both types of irregularity
occur the representative deviation is

H=~/H;+1¢

when H¢ includes the effect of spacing irregularities as well as capacity
deviations in the cable. The foregoing expression can, for con-
venience, be put in the form

S=5Sg+Su+Sr—Sa (42)
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in which each term depends upon only one independent variable
and in which the symbols have the following meanings:

Sy =Irregularity function =20 logmé (43)
Sw=Frequency function =20 logo @’ (44)
w
1
Sr = Distribution function =10 logi, 1 (45)
log.—
F
S4 = Attenuation function =10 logy, i—LA“ (46)

MEANING OF EQUATION (42)

To understand more clearly the meaning of equation (42) imagine
that a large number of circuits of the same type and gauge are to be
built in accordance with the same specifications so that the repre-
sentative (r.m.s.) deviation including all causes has the same value
H for each circuit. Further, imagine that the value of S has been
calculated by formula (42) using a particular frequency f and a con-
venient fraction F. It is to be expected that when the circuits have
been built and their return losses measured at the given frequency f
the fraction F of the whole group will have return losses lower than
S and the rest will have higher return losses.

In discussing expected results it is sometimes preferable to state
the fraction 1—F of the circuits whose return losses will be greater
than the assigned value rather than the fraction F whose return
losses will be lower. This is done in Figs. 9 to 14 described below.

LocATION OF THE FIRST IRREGULARITY

In equations (14), (15) and (16) and all the equations which depend
upon them it was assumed that the first irregularity occurs at the
sending end of the line. Two other assumptions are equally plausi-
ble and might under some circumstances be preferable. These are
that the first irregularity occurs (a) at one-half section from the
end or (b) at a full section. In the first case (a) the current returned
to the sending end from each irregularity will be reduced by the
factor A4 and in the second (b) by the factor A2 that is the return
loss given by equation (42) should be increased by (a) the amount
of the transmission loss in one loading section or (h) twice the amount
of the transmission loss in one loading section respectively,
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RETURN LosseEs OF SHORT LINES

When a line is short and regularly terminated the returned current
will be somewhat less than if it extends to infinity with irregularities
and consequently the return loss will be higher. From equations (29)

’ ——
and (30), the returned current is lowered in the ratio }I,— =/1—A
by limiting the line to n sections; consequently

Su=S+(Su— ) =5+10 loguoy — 5z 47)
in which
1
Sy—S5=10 logm'l_—A;,', (48)

is the increase in return loss.
Since the transmission loss in 7 sections of the line is

=20 10g1u—1—" (49)

it is easily seen that the increase of return loss can be expressed as a
function of this loss. Transposing (49) and substituting in (48)

1

=10 logw Y
T (50)
log"l.])ﬁ}

CHARTS

Si—S

The process of computing return losses can be greatly shortened
by using the graphs of equations (43), (44), (45), (46), and (50) to
obtain the values of the various functions. The accompanying
Figs. 3 to 8, inclusive, have been prepared to illustrate these graphs
and for use in rough calculations.

Sz may be obtained from any table or chart giving the relation
between TU and current ratio by using H like a current ratio. Fig. 3
is a chart drawn especially for this purpose. For values of H lying
between 0.1 and 0.01 look up a point on the curve corresponding to
10H and add 20 TU to the corresponding value of Sy, for values of
H lving between 0.01 and 0.001 look up a point corresponding to
100 and add 40 TU to the value of Sg, and so forth.

Figs. 4, 5, 6, and 7 are curves giving the relations between the
functions Sy, Sr and Sa, respectively, and the quantities upon which
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each depends plotted from equations (44), (45) and (46). These
are all positive except as indicated by the word “Subtract” on the
diagrams.

A simple method for extending the curve of Fig. 5 is as follows:
(a) choose a point on the curve within 3 TU of the lower end, (b)
subtract about 3 TU (accurately, 10 logw 2) from the value of Sg
for this point, and (c) square the value of F for this point. The
results obtained for (b) and (c) are the coordinates of another point
on the extension of the curve.

Fig. 6 gives the relation between S4 and the transmission loss per
loading section. On account of the wide use of 6,000 ft. spacing the
curves of Fig. 7 are plotted to give the relation between S4 and the
transmission loss per mile for 6,000 ft. spacing which is usually a
more convenient arrangement.

Fig. 8 gives the amount, S,—S, by which the return loss of a
regularly terminated line of finite length (n sections) is greater than
that of an infinite line as a function of the transmission loss of the
finite line. This was calculated by formula (50).

CALCULATION OF RETURN Loss

The process of finding the return loss by means of the curves is as
follows: .
(1) Determine the value of f{;, the representative deviation of the
loading coils, and If¢, the representative deviation of the capacity
of the loading sections. These depend upon the variations allowed
in the specifications for loading coils and cable and upon the care
with which the line is built. Calculate ' =+/H}+ HZ, the repre-
sentative combined deviation of the section. Look up the number
of TU corresponding to H in any suitable table or chart, such as
Fig. 3, to find Sg.
f

(2) Assume the frequency, f, to be considered. Calculate w=
c

and look up the corresponding value of S, on Fig. 4.

(3) Assume a value of F and look up the corresponding value of
Sr on Fig. 5.

(4) Look up the value of S4 on Fig. 7, corresponding to the trans-
mission loss per mile of the circuit at the frequency f if the coils are
spaced 6,000 feet (1.136 miles) apart, or calculate the loss per section
and look up S4 on Fig. 6, if some other spacing is used.

(5) Calculate S=Sy+Su+Sr—Sa4.
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(6) If the return loss of a finite length of line is desired determine
the transmission loss of this length and look up the corrésponding
value of S,—S on Fig. 8. Add this amount to the value of S found
in paragraph (5).

EXAMPLE

As an example to illustrate the application of these methods let
us calculate a return loss at 1,000 cycles for No. 19-H-174-63 ¢ side
circuits such that 90 per cent. of the circuits may be expected to
have a higher value and only 10 per cent. to fall below it. The neces-
sary data are given in Table II, below.

(1) H=v0.0062:40.0129*+0.0045> = 0.0150.
Fig. 3 gives 36.5 TU as the corresponding value of S.
_ 1000 _
(2) At 1,000 cycles w= 3810 =0.356.

Fig. 4 gives 8.4 TU as the corresponding value of Sy.

(3) Since 90 per cent. of the finished lines are to have return losses
greater than .S and 10 per cent. less F=0.1 and Fig. 5 gives —3.7
TU as the corresponding value of Sg.

(4) The transmission loss per mile is 0.274. Since the coils are
spaced 6,000 feet apart, Fig. 7 gives 8.7 TU as the value of S4. This
same value would be obtained less directly by calculating the loss
6000
5280
method is used when the spacing is different from 6,000 feet.

(5) Using equation (42)

S=Su+Su+Sr—S4=36.54+84—-3.7—8.7=32.5 TU.

This will be found to agree with the 90 per cent. point on the smooth
curve plotted in Fig. 10 which is described below.

(6) In case it is desired find the return loss of a length of this line
having a transmission loss of, for example, 6 TU instead of the return
loss of the infinite line. Fig. 8 gives Sy—S=0.3 from which

Sy =32.540.3=32.8 TU.

per loading section, 0.274 X =0.311 and using Fig. 6. The latter

DETERMINATION OF TOLERABLE DEVIATIONS

To determine the deviations which correspond to an assigned value
of the return loss find values of Sy, Sr and S as in paragraphs (2),

4 In accordance with the practices of the Bell System, this notation indicates a
phantom group of No. 19 B. & S. conductors in a cable with loading coils spaced
6,000 feet apart, the side circuit coils having 174 millihenrys inductance and the
phantom coils 63 millihenrys.
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(3) and (4) above and substitute in formula (42) to find the value of Sq.
This with a table or chart of TU and current ratio gives the value of
H. Limits can then be imposed on the loading coil inductances and
section capacities that will insure that the representative deviation
will nnt exceed the value H so found.

CoMPARISON OF DIFFERENT TyPEs oF CIRCUITS

These formulae are useful in comparing the return losses to be
expected in various types of circuits which are built with the same
accuracy in the matters of coil inductance and section capacity. In
such cases it is merely necessary to calculate the quantity Sw—Sa
for each circuit and take the difference.

EXAMPLE

As an example compare the No. 19-H-174-63 side circuits worked
out above with No. 16-H-44-S5 circuits at 1,000 cycles. Since the
deviations and the fraction F are the same only S, and S4 need be
considered. For the No. 16-gauge circuit f;=>5560 and the loss in
TU per mile is 0.236. From these figures:

Gauge of Line No. 19 No. 16
w=1300 0.356 0.18
Sw TU 8.4 14.8
Sa TU 8.7 9.4
Sw—S4aTU —0.3 5.4

These figures show that the return loss of the No. 16-H-44-S circuits
should be higher than that of the No. 19-H-174-63 side circuits and the
difference to be expected is 5.4 —(—0.3) =5.7 TU.

When the circuits to be compared have the same cutoff frequency
the process of comparison is even simpler since the quantity Sy is
then the same in each case. Sa is determined for each circuit as in
paragraph (4) above. The difference between the two values of Sa
is the difference between the return losses.

EXAMPLE

As an example compare the No. 19-H-174-63 side circuits with
No. 16-H-174-63 side circuits. In this case the cutoff frequencies
are the same so w and S, are the same. It is then only necessary to
compare Sa. The loss per mile of the No. 16-gauge circuit is 0.161

5 This notation indicates a side circuit of No. 16 B. & S. conductors in a cable
loaded with 44 millihenry coils spaced 6,000 feet apart.
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TU at 1,000 cycles from which S4=11 TU. In equation (42) S is
negative hence the No. 19-gauge will have a higher return loss than
the No. 16-gauge circuits and the expected difference is 11—8.7=
2.3 TU.

CoMPARISON OF CALCULATED AND MEASURED
RETURN LOSSEs

In order to test the methods of calculation described above a series
of measurements of return loss at 500, 1000 and 2000 cycles were
made on a group of loaded side and phantom circuits in a cable using
a No. 2-A unbalance measuring set.

The representative inductance deviations were found by analyzing
the inductance measurements on a large group of loading coils similar’
to those used in the cable. The representative capacity deviations,
not including the spacing irregularity were found by analyzing the
shop measurements on a number of reels of the cable. This gave
representative figures for reel lengths which were divided by 4/12 (in
accordance with the laws of probability since this cable had 12 reel
lengths in a loading section) to obtain the representative capacity
deviations due to the cable for the loading sections. The spacing
deviations were separately determined from the measured distances
between the loading points.

The data used in the calculation were as follows:

TABLE II
Sides Phantoms
Representative inductance deviation.. .................... 0.0062* 0.0061*
Representative capacity deviation........................ 0.0129*  0.0138*
Representative spacing deviation.. ....................... 0.0045*  0.0045*
Combined representative deviation, H..................... 0.0150* 0.0158*
Cutoff frequency fc (cycles sec.).......................... 2810 3727
.. S00cycles... .o 0.265 0.271
Tr%??mlssmp loss ) 1000 eyeles. .. ... 0.274 0.279
per mile
2000 cycles. ... 0.317 0.296

The smooth curves of Figs. 9 to 14, inclusive, were calculated from
the data in Table II using the methods described above. The abscissas
are the percentages of a large group of circuits which may be expected
to have return losses greater than the values given by the ordinates.
This percentage is equal to 100 (1—F). The points plotted on the

* The figures are ‘“fractional” deviations. Percentage deviations which are

sometmes used are 100 times as large. Care should be taken to avoid errors caused
by failure to divide percentage deviations by 100 before finding the value of I'p.
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Return loss of No. 19-H-174-63 phantoms exceeded by various
percentages of circuits at 2000 cycles
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curve sheets give the measured values of return loss found in the
groups of circuits listed in the explanatory notes on the drawings.

In general, it will be observed that there is a fair agreement between
the theoretical curves and the measured return losses especially at
1000 and 2000 cycles. :

Due to the limited range of the measuring apparatus, readings of
return losses greater than 40.7 TU were not made except in the case
of the Ligonier to Pittsburgh phantoms shown on Figs. 12, 13 and 14,
when a special arrangement was available to extend the range to
47.3 TU. For this reason points representing observed return losses
above these limits are not available which causes the observed values
for 500 cycles in Figs. 9 and 12 to appear somewhat low at first sight.

Where the highest point in a given set of data represents many
circuits as in the cases represented by the small triangles and circles
in Fig. 9 this point probably gives closely the return loss corresponding
to the percentage of circuits it indicates but the points for higher
return losses are not available. When the highest point represents
only one or two circuits as in the case represented by the square in
Fig. 9, it is likely that the actual return loss is higher than the point
indicates.

It should also be noted that above 40 TU the actual impedance
of the line and its characteristic impedance differ by less than 2 per
cent. so that very small departures of the network from the true
characteristic impedance of the line would tend to make the observed
return loss low.

CONCLUSION

It is believed that the procedure described in this paper offers a
reliable method for determining the probability of attaining a particu-
lar value of return loss at any assigned frequency when a circuit is
built with definite limitations on inductance and capacity deviations
so that the representative deviations are known.



