Electric Circuit Theory and the
Operational Calculus

By JOHN R. CARSON

Note: This is the first of three installments by Mr. Carson which will
embody material given by him in a course of lectures at the Moore School
of Electrical Engineering, University of Pennsylvania, May, 1925. No
effort has been spared by the author to make his treatment clear and as
simple as the subject matter will permit. The method of presentation is
distinctively pedagogic. To electrical engineers and to engineering in-
structors, this exposition of the fundamentals of electric circuit theory and
the operational calculus should be of great value.—EDITOR.

FOREWORD

HE following pages embody, substantially as delivered, a course
of fifteen, lectures given during the Spring of 1925 at the Moore
School of Electrical Engineering of the University of Pennsylvania.

After a brief introduction to the subject of electric circuit theory,
the first chapters are devoted to a systematic and fairly complete
exposition and critique of the Heaviside Operational Calculus, a
remarkably direct and powerful method for the solution of the differ-
ential equations of electric circuit theory.

The name of Oliver Heaviside is known to engineers the world over:
his operational calculus, however, is known to, and employed by,
only a relatively few specialists, and this notwithstanding its remark-
able properties and wide applicability not only to electric circuit
theory but also to the differential equations of mathematical physics.
In the writer's opinion this neglect is due less to the intrinsic diffi-
culties of the subject than to unfortunate obscurities in Heaviside's
own exposition. In the present work the operational calculus is
made to depend on an integral equation from which the Heaviside
Rules and Formulas are simply but rigorously deducible. It is the
hope of the writer that this mode of approach and exposition will be
of service in securing a wider use of the operational calculus by en-
gineers and physicists, and a fuller and more just appreciation of
its unique advantages.

The second part of the present work deals with advanced problems of
electric circuit theory, and in particular with the theory of the propaga-
tion of current and voltage in electrical transmission systems. It is
hoped that this part will be of interest to electrical engineers gener-
ally because, while only a few of the results are original with the
present work, most of the transmission theory dealt with is to be
found only in scattered memoirs, and there accompanied by formid-
able mathematical difficulties.
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While the method of solution employed in the second part is largely
that of the operational calculus, I have not hesitated to employ
developments and extensions not to be found in Heaviside. Fcr
.example, the formulation of the problem as a Poisson integral equation
is an original development which has proved quite useful in the actual
numerical solution of complicated problems. The same may be said
of the Chapter on Variable Electric Circuit Theory.

In view of its two-fold aspect this work may therefore be regarded
either as an exposition and development of the operational calculus
with applications to electric circuit theory, or as a contribution to
advanced electric circuit theory, depending on whether the reader's
viewpoint is that of the mathematician or the engineer.

I have not attempted in the text to give adequate reference to the
literature of the subject, now fairly extensive. In an appendix,
however, there is furnished a list of original papers and memoirs, for
which, however, no claim to completeness is made.

CHAPTER 1
Tue FuNDAMENTALS OF ELECTRIC CIRCUIT THEORY

While a knowledge, on the reader’s part, of the elements of electric
circuit theory will be assumed, it seems well to start with a brief
review of the fundamental physical principles of circuit theory, the
mode of formulating the equations, and some general theorems which
will prove useful subsequently.

First, the circuit elements are resistances, inductances, and con-
densers. The network is a connected system of circuits or branches
cach of which may include resistance, inductance and capacitance
elements together with mutual inductance, and mutual branches.

The equations of circuit theory may be established in a number
of different ways. For example, they may be based on Maxwell’s
dynamical theory. In accordance with this method, the network
forms a dynamic system in which the currents play the role of veloci-
ties. If we therefore set up the expressions for the kinetic energy,
potential energy and dissipation, the network equations are deducible
from general dynamic equations.

The simplest, and for our purposes, a quite satisfactory basis for
the equations of circuit theory are found in Kirchhoff’'s Laws. These
laws state that

1. The total impressed force taken around any closed loop -or
circuit in the network is equal to the potential drop due to (a) resist-
ance, (b) inductive reaction and (c) capacitive reactance.
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2. The sum of the currents entering any branch point in the net-
work is always zero.

Let us now apply these laws to an elementary circuit in order to
deduce the physical significance of the circuit elements.

Consider an elementary circuit consisting of a resistance element
R, an inductance element L and a capacity element C in series, and
let an electromotive force E be applied to this circuit. If I denote the
current in the circuit, the resistance drop is RI, the inductance drop
is Ldl/dt and the drop across the condenser is Q/C where Q is the
charge on the condenser. It is evident that Q and I are related by the

equation I =dQ/dt or Q=‘[‘Idr. Now apply Kirchhoff's law relating
to the drop around the circuit : it gives the equation

RI+LdI/dt+Q/C=E.

Multiply both sides by I: we get
d 1 ., 4 Q?
+— —LIF+—~ - =EI
REY g g LI+ o =BT
The right hand side is clearly the rate at which the impressed force is
delivering energy to the circuit, while the left hand side is the rate
at which energy is being absorbed by the circuit. The first term
RI* is the rate at which electrical energy is being converted into heat.
Hence the resistance element may be defined as a device for con-
verting electrical energy into heat. The second term %% LI? is the
rate of increase of the magnetic energy. Hence the inductance
element is a device for storing energy in the magnetic field. The

third term %Q2/2C is the rate of increase of the electric energy.

Hence the condenser is a device for storing energy in the electric field.

In the foregoing we have isolated and idealized the circuit elements.
Actually, of course, every circuit element dissipates some energy in
the form of heat and stores some energy in the magnetic field and
some in the electric field. The analysis of the actual circuit element,
however, into three ideal components is quite convenient and useful,
and should lead to no misconception if properly interpreted.

Now consider the general form of network possessing n independent
meshes or circuits. Let us number these from 1 to %, and let the
corresponding mesh currents be denoted by I, I.....I. Let
electromotive forces E;, E.. ... E, be applied to the n meshes or
circuits respectively. Let Lj, Ry, Cj denote the total inductance,
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resistance and capacity in series in mesh j and let Ljk, Rir, Cir denote
the corresponding mutual elements between circuit j and k. Now
write down Kirchhoff's equation for any circuit or mesh, say mesh 1;
it is

(L &+ Rt [ 1+ (L 4 Rt [ ) It

o+ (Lm &+ Rut Cimfdx) I,=E,

Corresponding equations hold for each and every one of the n
meshes of the network. Writing them all down, we have the system
of equations

(Lu +R11+C fdt Ii+.. +(Lm d£+RM+C fdt)f =E,

(Lns &+ Rt 2 L f at) It . A (L 5 Rt o o [a)1.~E,

The system of simultaneous differential equations (1) constitute
the canonical equations of electric circuit theory. The interpreta-
tion and solution of these equations constitute the subject of Electric
Circuit Theory, and it is in connection with their solution that we
find the most direct and logical introduction to the Operational Cal-
culus.

As an example of the appropriate mode of setting up the circuit
equatlons consider the two mesh network shown in sketch 1. Writ-
ing down Kirschhoff's Law for meshes 1 and 2, respectively, we have

(le;+R1+ C fdt) Il+M~Iz—E1
+M&711+( o+ Rot afdt)fz=E2

In this case the self and mutual coefficients are given by

Lu=L, Loy=1L, Lyy=Loy=+M
Cl!.:Cl C2~2=C2 012=C21=0
R11=R1 R22=R2 R12=R21=0

The conventions adopted for the positive directions of currents and
voltages are indicated by the arrows. The sign of the mutual in-
ductance M will depend on the relative mode of winding of the two
coils.



CIRCUIT THEORY AND OPERATIONAL CALCULUS 689

Now write down Kirchhoff's Law, or the circuital equation for
the network of sketch 2. They are

! (LH-L:)% +(Ri+Rs) + (é +Ci3)fdz } I
—(Lag+Ret & [ @) 1.=E,,

_(L3‘%+R3+-C%fdt)h
+1 (L2+La)%+(Rz+R3)+(Clz+z%)fdt} L=E,.

Comparison with equations (1) shows that

Lyy=L,+L, Lyy=L,+L; Lis=Lsy=—L;
Riu=R,+R; Ry:=R:+R; Ri:=Ry=—R;

1 1,1 1 1,1 1 _1_ 1
Cu_C1+C3 sz_C2+C3 Ciz Cu Gy

It should be observed that the signs of the mutual coefficients Rys,
L2, C12 are a matter of convention. For example if the conventional
directions of Iy and E, are reversed, the signs of the mutual coefficients
are reversed.

Ri Ci M C2 R2
€} @ L % §La @ |E2
‘ Sketch 1
Ri ‘Gt Lt Lz Ca Rz
—— AW o—o| fo—ettWWo—
\ R3
Er \D Cs @ | e2
éLa
Sketch 2 '

The system of equations (1) possesses two important properties
which are largely responsible for the relative simplicity of classical
electric circuit theory. First, the equations are linear in both currents
and applied electromotive forces. Secondly, the coefficients Ljz,
Rjr, Cir are constants. Important electrotechnical problems exist,
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in which these properties no longer obtain. The solution, however,
for the restricted system of linear equations with constant coefficients
is fundamental and its solution can be extended to important proh-
lems involving non-linear relations and variable coefficients. These
extensions will be taken up briefly in a later chapter.

Another important property is the reciprocal relation among the
coefficients; that is Ljz=Lgkj: Rix=Rj, and Ci=Csi. It is easily
shown that these reciprocal relations mean that there are no con-
cealed sources or sinks of energy. Again important cases exist where
the reciprocal relations do not hold. Such exceptions, however,
while of physical interest do not affect the mathematical methods
of solution, to which the reciprocal relation is not essential.

Returning to equation (1) we shall now derive the equation of
activity. Multiply the first equation by Iy, the second by I, etc. and
add: we get

DI EE D IPIT S
| S S Ralili= . B,

The right hand side is the rate at which the applied forces are supplying
energy to the network. The first term on the left is the rate of in-
crease of the magnetic energy

1
LY Snn

while the second term is the rate of increase of the electric energy
1 1
7 2 250

The last term, 22 Rjx I; I, is the rate at which electromagnetic

energy is being converted into heat in the network. Consequently
in the electrical network, the magnetic energy is a homogeneous
quadratic function of the currents, the electric energy is a homogene-
ous quadratic function of the charges, and the rate of dissipation
is a homogeneous quadratic function of the currents. In Maxwell's
dynamical theory of electrical networks, these relations were written
down at the start and the circuit equations then derived by an ap-
plication of Lagrange's dynamic equations to the homogeneous quad-
ratic functions. o

Returning to equations (1), we observe that, due to the presence of
the integral sign, they are integro-differential equations. They are,

(2)
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however, at once reducible to differential equations by the substitu-
tion I =d(Q/dt, whence they become

(Lapit Rt 4:.50) 01t + (Lun gt Rurge+-S1n) On =B,

(Lmd,z+1e,.ldt+s,,1)gl+ +(L,,., -+ R +s,,,.)Q,,—E.,

Here, as a matter of convenience, we have written 1/Cir=Si. It
is often more convenient, at least at the outset, to deal with equations
(3) rather than (1).

The Exponential Solution

In taking up the mathematical solution of equations (1), we shall
start with the exponential solution. This is of fundamental import-
ance, both theoretically and practically. It serves as the most
direct introduction to the Heaviside Operational Calculus, and in
addition furnishes the basis of the sieady-state solution, or the theory
of alternating currents.

To derive this solution we set E;=F;eM and put all the other
forces Es, . . E, equal to zero. This latter restriction is a mere matter
of convenience, and, in virtue of the linear character of the equations,
involves no loss of generality.

Now, corresponding to E,= FieM, let us assume a solution of the
form

= J;e™ (G=1,2..n)

where Jj is a constant. So far this is a pure assumption, and its cor-
rectness must be verified by substitution in the differential equations.
Now if Ij=J;eM, it follows at once that

I, A=A

1 1w
ijdt=YIj=.TJJg .

Now substitute these relations in equations (1) and cancel the com-
mon factor eM. We then get the system of simultaneous equations

()\L11+R11+1/?\C11)J|+- -+()\L1n+R1n+1/7\C1n)Jn = Fl,
AL+ Ra1+1/MCa1) J1+. .+ (MLan+Ron+1/NCoi) Jn =0,

(ALui+Ru1+1/ACo)) 14 .+ (ALun+Run+1/ACon) Jn =0.

We note that this is a system of simultaneous algebraic equations
from which the time factor has disappeared. It is this that makes

and
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the exponential solution so simple, since we can immediately pass
from differential equations to algebraic equations. In these algebraic
equations, # in number, there are n unknown quantities Ji, . . Ju.
These can therefore all be uniquely determined. We thus see that
the assumed form of solution is possible.

" The notation of equations (4) may be profitably simplified as fol-

lows: write
ALje+ Rie+1/MCik = zik(N) =zt

211]1+Z12J2+- -+Zlnjn=Fh
saJ 1+ 2002+ A zawmJu=0, (5)

and we have

znljl+znﬂj2+- -+zm:-rn=0.
The solution of this system of equations is

L MaN L, _ My
| Ji= DY Fi= D Fy
" =g LB
D Zin )
where D is the determinant of the coefficients,
! Z11 212 B183 ¢+ o 0 v 0w Z1n
201 209 293 « v o0 v o0 oe .o Zoy
7
231 239« 4 v v e n e e Zan ( )
Znl Zn2 v v v 0w e s « v« Zan

and M is the cofactor, or minor with proper sign, of the jth column
and first row.

I shall not attempt to discuss the theory of determinants on which
this solution is based.! We may note, however, one important
property. Since zjk=2k, Mjx=My. From this the Reciprocal
‘Theorem follows immediately. This may be stated as follows:

If a force FeM is applied in the jth mesh, or branch, of the net-
work, the current in the kth mesh, or branch, is by the foregoing

My
D

Now apply the same force in the kth mesh, or branch, then the cur-
rent in the jth mesh is
M _ko A
D e
1 For a remarkably concise and complete discussion of the exponential solution

by aid of the theory of determinants, see Cisoidal Oscillations, Trans. A lLEE,
1911, by G. A. Campbell.
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Comparing these expressions and remembering that Mg;= M, it
follows that the current in the kth branch corresponding to an expo-
nential impressed e.m.f. in the jth branch, is equal to the current in
the jth branch corresponding to the same e.m.f. in the kth branch.
This relation is of the greatest technical importance.

In many important technical problems we are interested only in
two accessible branches, such as the sending and receiving. In such
cases, where we are not concerned with the currents in the other
meshes or branches, it is often convenient to eliminate them from
the equation. Thus suppose that we have electromotive forces E,
and E. in meshes 1 and 2 and are concerned only with the currents
in these meshes. If we solve equations 3, 4, .. n, #—2 in number,
for I3 .. I, in terms of I; and I, and then substitute in (1) and (2)
we get

Znl\+Zi2l,=Ey, 3
Zuly+ ZoaTs = s, ®)

The Steady State Solutions

The steady state solution, on which the whole theory of alternating
currents depends, is immediately derivable from the exponential
solution. Let us suppose that Ey=FE;= ... =E,=0 and that E;=
F cos (wt—6). Now by virtue of the well known formula in the
theory of the complex variable, cos x=3e"+1e™™, we can write

E, =_;_F61'(m£—ﬂ) +%Fe_i (mt—ﬂ)’
=1} (cos 0—1sin 8)!'1"""-{-%((:058 + 2sinf) Fe™ iwt, (9)
=1Fel L LF e,
Now, by virtue of this formula, the applied electromotive force E;
consists of two exponential forces, one varying as ¢ and the other

as e "™ Hence it is easy to see that the currents are made up of
two components, thus

Ij=Jj’€iw"+Jj”€ﬁiwt (/=1,2..n) (10)

and we have merely to use the exponential solution given above,
substituting for Mjw and —iw respectively. That is,

L 1 F’ n l F”
Ji'= and Ji"=3 Z(—iw)
or
1 Fe™™ et 4 L Fet .
2 Zj\(iw)" 2 Zi(—iw)’
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The second term is the conjugate imaginary of the first, so that
I;=R Fe~ e—imt
Z,—l('iw)
F e’i(wt—ﬂ)

=R —e
Zjl(’n‘;w)

F i(wl—0—¢)
[Zn(iw) |

cos (wt—0—9).
=[2G
We thus arrive at the rule for the steady state solution:
If the applied e.m.f. is F cos (wt—8), substitute 4w for d/d¢ in the
differential equations, determine the impedance function

Z(tw) = D(iw) / M (1w) (11)

by the solution of the algebraic equations, and write it in the form

Z(iw) = | Z(iw) | €. (12)

Then the required solution is

F .

I—m—l COSs (wt—ﬂ—qb) (13)

This in compact form contains the whole theory of the symbolic solu-
tion of alternating current problems.

The Complementary Solution

So far in the solutions which we have discussed the currents are of
the same type as the impressed forces: that is to say in physical
language, the currents are ‘“‘forced” currents and vary with time in
precisely the same manner as do the electromotive forces. Such
currents are, however, in general only part of the total currents. In
addition to the forced currents we have also the characteristic oscilla-
tions: or, in mathematical language, the complete solution must
include both particular and complementary solutions. This may be
shown as follows: Let I/, . . . . I/ be solutions of the complementary
equations,

(Ln%—l—Ru—&-C—lnfdt)h’—l- y +(L,,%+Rm+§;fdz) L' =0,

(L..1 +R,.1+C"1fdt) +(L,m +Rm.+c fdt) =0,
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Then if I, ... I, is a solution of (1), I,+I\, ... I+ 1)/, is also a
solution. :

To derive the solution of the complementary system of equations
(14), assume that a solution exists of the form

I,-’=J_,-’.9M (;=1,2..n)
so that d/dt=\ and fdt=1/)\. Substitute in equations (14) and
cancel out the common factor eM. Then we have
Zu i+ . 2N T =o,
--------------------- (15)
ZniMN I+ oo FZu(N) T =0,

This is a system of # homogeneous equations in the unknown quan-
tities J¢', .. J»’. The condition that a finite solution shall exist is
that, in accordance with a well known principle of the theory of
equations, the determinant of the coefficients shall vanish. That is,

ZuN) o Zm (V)
DN=| """t TT =o. (16)

Zn(N) o Zan (W)

Consequently the possible values of A must be such that this equation
is satisfied. In other words, A must be a root of the equation D(A) =o.
Let these roots be denoted by Ai, A2 . . M. Then, assigning to A any
one of these values, we can determine the ratio J;//J+ from any (n—1)
of the equations. That is to say, if we take

I =™+ Gt L Cne™™, (17)
substitution in any (n—1) of the equations determines I/, . . I .
The m constants Ci, . . C are so far, however, entirely arbitrary,
and are at our disposal to satisfy imposed boundary conditions.

This introduces us to the idea of boundary conditions which is of the
greatest importance in circuit theory. In physical language the
boundary conditions denote the state of the system when the electro-
motive force is applied or when any change in the circuit constants
occurs. The number of independent boundary conditions which
can, in general, be satisfied is equal to the number of roots of the
equation D(A}=o0. Evidently, therefore, it is physically impossible
to impose more boundary conditions than this. On the other hand,
if this number of boundary conditions is not specified, the complete
solution is indeterminate: That is to say, the problem is not correctly
set. As an example of boundary conditions, we may specify that the
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electromotive force is applied at time {=o, and that at this time all
the currents in the inductances and all the charges on the condensers
are zero. ,

So far we have been following the classical theory of linear differ-
ential equations. We have seen that the forced exponential solution
and the derived steady state solution are extremely simple and are
mere matters of elementary algebra. The practical difficulties in the
classical method of solutions begin with the determination of the
constants Cji, . . Cw of the complementary solution as well as the
roots Ay, .. Am of the equation D(A)=o. It is at this point that
Heaviside broke with classical methods, and by considering special
boundary conditions of great physical importance, and particular
types of impressed forces, laid the foundations of original and powerful
methods of solution. We shall therefore at this point follow Heavi-
side's example and attack the problem from a ‘different standpoint.
In doing this we shall not at once take up an exposition of Heaviside’s
own method of attack. We shall first establish some fundamental
theorems which are extremely powerful and will serve us as a guide
in interpreting and rationalizing the Heaviside Operational Calculus.

CHAPTER 1II

THE SOLUTION WHEN AN ARBITRARY FORCE 1s APPLIED TO THE
NETWORK IN A STATE OF EQUILIBRIUM

In engineering applications of electric circuit theory there are
three outstanding problems:

(1) The steady state distribution of currents and potentials when
the network is energized by a sinusoidal electromotive force. This
problem is the subject of the theory of alternating currents which
forms the basis of our calculations of power lines and the more elabor-
ate networks of communication systems.

(2) The distribution of currents and potentials in the network in
response to an arbitrary electromotive force applied to the network
in a state of equilibrium, i.e., applied when the currents and charges
in the network are identically zero.

(3) The effect on the distribution of currents and potentials of
suddenly changing a circuit constant or connection, such as opening
or closing a switch, while the system is energized.

We shall base our further analysis of circuit theory on the solutions
of problem (2), for the following reasons:

(A) It is essentially a generalization of the Heaviside problem and
its solution will furnish us a key to the correct understanding and
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interpretation of operational methods and lead to an auxiliary formula
from which the rules of the Operational Calculus are directly de-
ducible.

(B) The solution of problem (2) carries with it the solution of
problem (3) and also serves as a basis for the theory of alternating
currents.

(C) The solution of problem (2) leads directly to an extension of
circuit theory to the case where the network contains variable ele-
ments: i.e., circuit elements which vary with time and in which non-
linear relations obtain.

Problem (2) is therefore the fundamental problem of circuit theory
and the formula which we shall now derive may be termed the funda-
mental formula of circuit theory.

Consider a network in any branch of which, say branch 1, a unit
e.m.f. is inserted at time ¢=o0, the network having been previously in
equilibrium. By unit e.m.f. is meant an electromotive force which
has the value unity for all positive values of time (¢=0). Let the
resultant current in any branch, say branch #, be denoted by A4.,.(2).
A (¢) will be termed the indicial admaiitance of branch n with respect
to branch 1—or, more fully, the transfer indicial admittance.

The indicial admittance, aside from its direct physical significance,
plays a fundamental role in the mathematical theory of electric cir-
cuits. Inwords, it may be defined as follows: The indicial admittance,
Aun(t), is equal to the ratio of the current in branch », expressed as a
time function, to the magnitude of the steady e.m.f. suddenly inserted
at time {=o in branch 1. It is evidently a function which is zero for
negative values of time and approaches either zero or a steady value
(the d.c. admittance) for all actual dissipative systems, as ¢ approaches
infinity. [t may be noted that, aside from its mathematical determi-
nation, which will engage our attention later, it is an experimentally
determinable function.

We note, in passing, an important property of the indicial admit-
tance Aj(t), which is deducible from the reciprocal theorem:? this
is that Ajx(t)=Aw(t). That is to say, the value of the transfer
indicial admittance is unchanged by an interchange of the driving
point and receiving point. It is therefore immaterial in the expression
Ajr(t) whether the e.m.f. is inserted in branch j and the current
measured in branch k, or vice-versa. In general, unless we are con-
cerned with particular branches, the subscripts will be omitted and
we shall simply write A(f), it being understood that any two branches

? Exceptions to this relation exist where the network contains sources of energy
such as amplifiers. These need not engage our attention here.
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or a single branch (for the case of equal subscripts) may be under

consideration.
From the linear character of the network, it is evident that if a

steady e.m.f. E=E; is inserted at time ¢=7, the network being in
equilibrium, the resultant current is

E,-A(t—1).

Generalizing still further, suppose that steady e.m.fs. Eo, Ey, Es, . . . E,
are impressed in the same branch at the respective times 7o, T1, T2
.. 7o) the resultant current is evidently

EoA () +EA(t—m)+ - . +EnA(t—1a) = ZE,-A (l—). (18)

To apply the foregoing to our problem we suppose that there is
~ applied to the network, initially in a state of equilibrium, an e.m.f.
E(t) which has the following properties.

1. It is identically zero for {<o.

2. It has the value E(o) for o St<AL

3. It has the value E(0) +A.E for At<¢<2AL

4. It has the value E(0) +A,E+A.E for 2At <{ <3AL.

In other words it has the increment A;E at time = jAf.
Evidently then the resultant current I(f) is

EA(W)+AEA(t—AN+ .. +AE.A(t—nAl).

Now evidently if the interval At is made shorter and shorter, then
in the limit At—>df and jAt=7 and

AJE= ii—E(r)dT.
dr

Passing to the limit in the usual manner this summation becomes a
definite integral and we get

10=E@AW+ [ ‘4 (t—'r)%E(r)dT. (19)

Finally by obvious transformations of the expression we arrive at the
fundamental formula of circuit theory

1) =% j}' ' A(— D E@)dr, (20)

- % ﬁ "E(t—n)A(r)dr. (20-a)
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For completeness we write down the following equivalents of (20)
and (20-a)

10) =A@ E®) + [ara-nE@ar, (20-b)
=A@EO+ ‘A E—r)dr, | (20-c)
—E(0)A()+ _/0‘ "Er(t— ) A (7)dr, (20-d)
—E@)A@)+ /o' "E'(n)A(t—7)dr. (20-¢)

where the primes denote differentiation with respect to the argu-
ment. Thus A'(t) =d/dt A(1).

These equations are the fundamental formulas which mathematic-
ally relate the current to the type of applied electromotive force and
the constants and connections of the system, and constitute the first
part of the solution of our problem. The most important immediate
deductions from these formulas are expressed in the following theorems.

1. The indicial admittance of an electrical network completely
determines, within a single integration, the behavior of the network
to all types of applied electromotive forces. As a corollary, a knowledge
of the indicial admittance is the sole information necessary to com-
pletely predict the performance and characteristics of the system,
including the steady state.

2. The applied e.m.f. and the inidical admittance are similarly
and coequally related to the resultant current in the network. As a
corollary the form of the current may be modified either by changing
the constants and connections of the network or by modifying the
form of the applied e.m.f.

3. Since the applied e.m.f. may be discontinuous these formulas
determine not only the building up of the current in response to an
applied e.m.f. but also its subsidence to equilibrium when the e.m.f.
is removed and the network left to itself. In brief, formulas (20)
reduce the whole problem to a determination of the indicial admittance
of the network. In addition, as we shall see, they lead directly to
an integral equation which determines this function.

It is of interest to show the relation between formulas (20) and the
usual steady state equations. To do this let the e.m.f., applied at
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time t=0, be E sin (wf+6). Substitution in formula (20-b) and
rearrangement gives

I(t)=A(0)E sin (wt+46)

]
+E sin (wi+6) fo cos wrd/(r)dr
i
_F cos (wt+6) f sin wrd’ (r)dr (21)
0
d
where A G)=EA (t).

Now this can be resolved into two parts

E sin (wt+8) {A(o) —]—j;mcos wrd'(7)dr ;

N (22)
—E cos (t+0) | fo sin mA’(f)df}
which is the final steady state, and
_E sin (wi+8) f cos wrd'(r)dr
I3
(23)

+E cos (wt+€)fmsin wrd'(r)dr
¢

which is the transient distoriion, which ultimately dies away for suf-
ficiently large values of time.

To correlate the foregoing expressions for the steady state with
the usual formulas we observe that if the symbolic impedance of the
network at frequency w/27 be denoted by Z(iw), and if we write

1 .
ZGa) — @) i)

then the steady state current is
Ela(w). sin (wt+8) +B(w) . cos (wt+8)].

Comparison with (22) gives at once

o(w) =A (o) + _{ " cos wr A'(r)dr, (24)

Be) = — fo “sin wr A'(r)dr. (25)
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The Integral Equation for the Indicial Admittance

So far we have tacitly assumed that the indicial admittance is
known. As a matter of fact its determination constitutes the essential
part of our problem. It is, in fact, the Heaviside problem, and its
investigation, to which we now proceed, will lead us directly to the
Operational Calculus.

Heaviside's method in investigating this problem was intuitive and
“experimental”’. We, however, shall establish a very general integral
equation from which we shall directly deduce his methods and ex-
tensions thereof.

Let us suppose that an e.m.f. e”, where p is either positive real
quantity or complex with real part positive, is suddenly impressed
on the network at time f=0. It follows from the foregoing theory
that the resultant current I(¢) will be made up of two parts, (1) a
forced exponential part which varies with time as ¢”, and (2) a com-
plementary part which we shall denote by ¥(f). The exponential or
“forced"” component is simply e”/Z(p), where Z(p) is functionally of
the same form as the usual symbolic or complex impedance Z(iw).
It is gotten from the differential equations of the problem, as explained
in a preceding section, by replacing d"/dt" by p", cancelling out the
common factor e”, and solving the resulting algebraic equation. The
complementary or characteristic component, denoted by y(¢), depends
on the constants and connections of the network, and on the value of
p. It does not, however, contain the factor ¢’ and it dies away for
sufficiently large value of ¢, in all actual dissipative systems. Thus

1
ei’

I(f)=2(p—)+.\'(!)- : (26)

Now return to formula (20-a) and replace E(f) by ¢”. We get
1) =% e [ ‘A(r)ermdr
dit 0
which can be written as

g e /U‘ T A()erTdr—en [ mA(T)e_P’]i'r} .

Carrying out the indicated differentiation this becomes

I(t) = pet .[ " A(n)errdr— pert [ TA@erdrrAQ). (@7
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Equating the two expressions (26) and (27) for I(t) and dividing
through by e we get

sAyern=p [ A@erdr—p [ A@erdrtA@Qer. (28)
Z(p) 0 !

This equation is valid for all values of £. Consequently if we set
t=2, and if the real part of p is positive, only the first term on the
right and the left hand side of the equation remain, the rest vanishes,
and we get

1 * ot
O _[ A()e-rdr. (29)

This is an integral equation  valid for all positive real values of p,
which completely determines the indicial admittance A(f). It is on this
equation that we shall base our discussion of operational methods and
from which we shall derive the rules of the Operational Calculus.
Equations (20) and (29) constitute a complete mathematical formula-
tion of our problem, and from them the complete solution is obtainable
without further recourse to the differential equations, or further con-
sideration of boundary conditions.

To summarize the preceding: we have reduced the determination
of the current in a network in response to an electromotive force
E(t), impressed on the network at reference time ¢=o, to the mathe-
matical solution of two equations: first the integral equation

1 oo
- = —pt
52 ‘/0' A()e—rde (29)
and second, the definite integral
d ]
10=5 [ 40=nE@)r. (20)

It will be observed that in deducing these equations we have merely
postulated (1) the linear and invariable character of the network and
(2) the existence of an exponential solution of the type e”/Z(p) for
positive values of p. Consequently, while we have so far discussed
these formulas in terms of the determination of the current in a finite
network, they are not limited in their application to this specific
problem. In this connection it may be well to call attention explicitly
to the following points.

3 An integral equation is one in which the unknown function appears under the
sign of integration. (29) is an integral equation of the Laplace type. If Z(p) is
specified, A () is uniquely determined. Methods for solving the integral equations
are considered in detail later, in connection with the exposition of the Operational
Calculus. The phrase “all positive values of p" will be understood as meaning all
values of p in the right hand half of the complex plane.



~

CIRCUIT THEORY AND OPERATIONAL.CALCULUS 703

The formulas and methods deduced above apply not dily to finite
networks, involving a finite system of linear. equations, but to infinite
networks and to transmission lines, involving infinite systems of equa-
tions, and partial differential equations: in fact to all electrical and
dynamical systems in which the connections and constants are linear
and invariable.

Secondly the variable determined by formula (20) and (29) need
not, of course, be the current. It may equally well be the charge,
potential drop, or any of the variables with which we may happen
to be concerned. This fact may be explicitly recognized by writing
the formulas as:

1 * —pt
pT’(;b_}=fu h(e=rdt, (30)
x(t)=% b[ ‘h(t— D E()dr. (31)

Here E(t) is the applied e.m.f., x(f) is the variable which we desire to
determine (charge, current, potential drop, etc.), and

x=E/H(p) (32)

is the operational equation. H(p) therefore corresponds to and is
determined in precisely the same way as the impedance Z(p), but it
may not have the physical significance or the dimensions of an im-
pedance. Similarly in character and function, k(f) corresponds to the
indicial admittance, though it may not have the same physical sig-
nificance. It is a generalization of the indicial admittance and may be
appropriately termed the Heaviside Function. Similarly H(p) may
be termed the generalized impedance function.

CHAPTER III
THE HEAVISIDE PROBLEM AND THE OPERATIONAL EQUATION

The physical problem which Heaviside attacked and which led to
his Operational Calculus was the determination of the response of a
network or electrical system to a “unit e.m.f.”” (zero before, unity after
time {=o0) with, of course, the understanding that the system is in
equilibrium when the electromotive force is applied. His problem
is therefore, essentially that of the determination of the indicial
admittance. In our exposition and critique of Heaviside's method of
dealing with this problem we shall accompany an account of his own
method of solution with a parallel solution from the corresponding
integral equation of the problem.
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Heaviside's first step in attacking this problem was to start with the
differential equations, and replace the differential operator d/dt by
the symbol p, and the operation J dt by 1/p, thus reducing the equa-
tions to an algebraic form. He then wrote the impressed e.m.f. as
1 (unity), thus limiting the validity of the equations to values of [Zo.
The formal solution of the algebraic equations is straightforward and
will be written as

h=1/H(p) (33)

where % is the “generalized indicial admittance,” or Heaviside func-
tion (denoting current, charge, potential or any variable with which
we are concerned) and H(p) is the corresponding generalized im-
pedance. Thus, if we are concerned with the current in any part
of the network, we write

A=1/Z(p). (34)

The more general notation is desirable, however, as indicating the
wider applicability of the equation.
The equations
h=1/H(p)
A=1/Z(p)

are the Heaviside Operational Equations. They are, as yet, purely
symbolic and we have still the problem of determining their explicit
meaning and in particular the significance of the operator p.
Comparison of the Heaviside Operational Equations with the
integral equations (29) and (30) of the preceding chapter leads to
the following fundamental theorem.
The Heaviside Operational Equations

A=1/Z(p)
h=1/H(p)

are merely the symbolic or short-hand equivalents of the corresponding
integral equations

171@2 fﬂ " A(De-rdt

pTl(p)=./o. h(t)e=?dt.

The integral equations, therefore, supply us with the meaning and sig-
nificance of the operational equations, and from them the rules of the Oper-
ational Calculus are deducible.
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By virtue of this theorem, we have the advantage, at the outset,
of a key to the meaning of Heaviside's operational equations, and a
means of checking and deducing his rules of solution. This will
serve us as a guide throughout our further study.

Returning now to Heaviside's own point of view and method of
attack, his reasoning may be described somewhat as follows:—
The operational equation

h=1/H(p)

is the full equivalent of the differential equations of the problem and
must therefore contain the information necessary to the solution
provided we can determine the significance of the symbolic operator
. The only way of doing this, when starting with the operational
equation, is one of induction: that is, we must compare the operational
equation with known solutions of specific problems and thus attempt
to infer by induction general rules for interpreting the operational
equation and converting it into the required explicit solution.

The Power Sertes Solution

Let us start with the simplest possible problem: the current in
response to a “‘unit e.m.f.” in a circuit consisting of an inductance L
in series with a resistance R.

The differential equation of the problem is

d
ll = >
LE£A+RA 1, t=o,

where A is the indicial admittance. Consequently replacing d/dt by
p, the operational equation is

1
A=K
The explicit solution is easily derived: it is
— _1_ _p—at
A= R (1—e—)

where a=R/L. Note that this makes the current initially zero, so
that the equilibrium boundary condition at t=o is satisfied.
Now suppose that we expand the operational equation in inverse
powers of p: we get, formally,
_1 1 _la 1 1y
pL 1+a/p !

by the Binomial Theorem.

A

= o Eye g (Xya %y |
Rpitap R (P)+(P) (P)+“f

o
4
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Now expand the explicit solution as a power series in /: it is

_1gat_(a) (a)®_
A= T artar b

Comparing the two expansions we see at once that the operational
expansion is converted into the explicit solution by assigning to the
symbol 1/p" the value "/n!. It was from this kind of inductive
inference that Heaviside arrived at his power series solution.

Now there are several important features in the foregoing which
require comment. In the first place the operational equation is
converted into the explicit solution only by a particular kind of ex-
pansion, namely an expansion in inverse powers of the operator p.
For example, if in the operational equation

_1 a/p
A=Rita/p
we replace 1/p by #/1! we get
1 o
4 Rl-l—at

which is incorrect. Furthermore, if we expand in ascending instead
of descending powers of p, namely

A_l 5 1= (p/a)+(p/a)— . . . .. f

no correlation with the explicit solution is possible and no significance
can be attached to the expansion. We thus infer the general principle,
and we shall find this inference to be correct, that the operational
equation is convertible into the explicit solution only by the proper
choice of expansion of the impedance function, or rather its reciprocal.
In the second place we notice that in writing down the operational
equation and then converting it into the explicit solution no con-
sideration has been given to the question of boundary conditions.
This is one of the great advantages of the operational method: the
boundary conditions, provided they are those of equilibrium, are auto-
matically taken care of. This will be illustrated in the next example:
.Let a “unit e.m.f.” be impressed on a circuit consisting of resistance
R, inductance L, and capacity C: required the resultant charge on the
condenser. ‘
The differential equation for the charge Q is

(Ldﬂ+R¥+1/C)Q 1, (=o.
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Consequently the operational formula is
1

O=IpTRp+1/C
1 1 R 1
=EP—'2]W“’}]ETC a—-iand b*zz,-

This can be expanded by the Binomial Theorem as

i) =)

Performing the indicated operations and collecting in inverse powers
of p, the first few terms of the expansion are:—

1 2 i_C_Co |

7 R A Ty e
where c1=a

ca=b—a?

c3=2ab—ad
cy=b*—3a*b+at

cs =3ab*—4a’*b+a®
co=b*—6a**4+5a'b—a®

We infer therefore that in accordance with the rule of replacing
1/p" by #*/n! the solution is:—
1§ B p, B |
Q=7 131 cg gy teagytesg =

Owing to the complicated character of the coefficients in the expan-
sion, the series cannot be recognized and summed by inspection. If,
however, we put R=0) then a =0, and the series becomes

{21'(\/2;(;)2 i‘(\/zj_r,c)4+6’(\/th)a oo }
whence

- Q=C{l—cos (t/VLC)}.

We have still to verify this solution by comparison with the explicit
solution of the differential equation. This is of the form

O=C+kie™ + ko™
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where B, and k. are constants which must be chosen to satisfy the

boundary conditions and Ay, Az are the roots of the equation
LN+RA+1/C=o.

Now since we have two arbitrary constants we satisfy the equilibrium

condition by making Q and dQ/dt zero at =0, whence

C+kitks=o0,
Aki+Nkz =0,

and
Ei=X\C/(M—Na2),

k2=R1C/(h2—A1).
a a\?
== gy () -5

M- (5) -

Writing down the power series expansion of

Q= C4 k™ k™,

We have also

then
0= (C+ha-Hha) +(khiHkah) 7

+ (Bih 2+ koo %-I- BN

Introducing the values of ki, ks, A1, A2 given above and comparing
with the power series derived from the operational solution we see
that they are identical term by term.

This example illustrates two facts. ~First the power series expansions
may be complicated, laborious to derive and of such form that they
cannot be recognized and summed by inspection. In fact in arbitrary
networks of a large number of meshes or degrees of freedom the
evaluation of the coefficients of the power series expansion is extremely
laborious.

On the other hand, in such cases, the solution by the classical
method presents difficulties far more formidable—in fact insuperable
difficulties from a practical standpoint. First there is the location
of the roots of the function H(\), which in arbitrary networks is a
practical impossibility without a prohibitive amount of labor. Sec-
ondly there is the determination of the integration constants to satisfy
the imposed boundary conditions: a process, which, while theoretically
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straightforward, is actually in practice extremely laborious and com-
plicated. We note these points in passing; a more complete estimate
of the value of the power series solution will be made later.
To summarize the preceding: Heaviside, generalizing from specific
examples otherwise solvable, arrived at the following rule:—
Expand the right hand side of the operational equation

h=1/H(p)

in tnverse powers of p: thus

hoaotar/ptax/p*+ . .. Fan/p"+ . . ..

1
and then replace —, by t"/n!. The operational equation is thereby con-

P
verted into the explicit power series solution :—
h=a,+a:t/114as/2!+ . . +au"/n!+ . .. (35)

As stated above, this rule was arrived at by pure induction and
generalization from the known solution of specific problems. It can-
not, therefore, theorettcally be regarded as satisfactorily established.
The rule can, however, be directly deduced from the integral equation

'[%@ =~[mh(t)8_ptdt.

To its derivation from this equation we shall now proceed.
First suppose we assume that h(¢) admits of the power series ex-
pansion

ho-that/11+hat?/20 + .o ...

Substitute this assumed expansion in the integral, and integrate
term by term. The right hand side of the integral equation becomes
formally

ho/p+h/ PP+ ha/ PP+ ..o

by virtue of the formula

@ pn 1
jO‘ 77!8‘1"=p"+1 for p>o.

Now expand the left hand side of the integral equation asymptotically
in inverse process of p: it becomes

ao/p+ay/P*+as/pP+ ...
where

aotai/ptas/p*+ . ...
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is the asymptotic expansion of 1/H(p). Comparing the two ex-
pansions and making a term by term identification, we see that
]1n=an and

h(t) =ao+ait/11+ast?/2!+ . . ..

which agrees with the Heaviside formula.

This procedure, however, while giving the correct result has serious
defects from a mathematical point of view. For example, the asym-
totic expansion of 1/H(p) has usually only a limited region of con-
vergence, and it is only in this region that term by term integration
is legitimate. Furthermore we have assumed the possibility of ex-
panding A(f) in a power series: an assumption to which there are
serious theoretical objections, and which, furthermore, is not always
justified. A more satisfactory derivation, and one which establishes
the condition for the existence of a power series expansion, proceeds
as follows :—

Let 1/H(p) be a function which admits of the formal asymptotic
expansion

o0

2&,,/?"

4]

and let it include no component which is asymptotically representable
by a series all of whose terms are zero, that is a function ¢(p) such
that the limit, as p—oo, of p"¢(p) is zero for every value of n. Such
a function is e”?. With this restriction understood, start with the
integral equation, and integrate by parts: we get

FT%?) =h(o)+ _£ " e-p (1) dt

where A" (¢) denotes d"/dt"h(t). Now let p approach infinity: in the
limit the integral vanishes and by virtue of the asymptotic expansion

o0

1/H(p) o > an/p", (36)

o

I/H (p) approaches the limit a,. Consequently
h(o) =ao.
Now integrate again by parts: we get

p(1/H(p) —ao) =hM(0)+ /J‘ cm.e—f"k@}(t)au.
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Again let p approach infinity: in the limit the left hand Slde of the
equation becomes @, and we have

hW (o) =a,.

Proceeding by successive partial integrations we thus establish the
general relation
™ () =

But by Taylor's theorem, the power series expansion of k(t) is simply
h(t) =h(o) +hM(0)t/114+E2(0)2/214 . .. ..

whence, assuming the convergence of this expansion, we get
h(t) =ao+ait/11+ast?/21+ . . .= Za,,t"/n! (35)

o

which establishes the power series solution. It should be carefully
noted, however, that it does not establish the convergence of the
power series solution. As a matter of fact, however, I know of no
physical problem in which 7I(p) satisfies the conditions for an asymp-
totic expansion, where the power series solution is not convergent.
On the other hand many physical problems exist, including those
relating to transmission lines, where a power series solution is not
derivable and does not exist.

The process of expanding the operational equation in such a form
as to permit of its being converted into the explicit solution is what
Heaviside calls “‘algebrizing” the equation. In the case of the power
series solution the process of algebrizing consists in expanding the
reciprocal of the impedance function in an asymptotic series, thus

1/11(p) © ag+a,/ P+02/P + ...

Regarded as an expansion in the variable p, instead of as a purely
symbolic expansion, this series has usually only a limited region of
convergence. This fact need not bother us, however, as the series
we are really concerned with is

a,,-l-aﬂ/’l!—f—agtﬂ,@!-{— e

It is interesting to note in passing that the latter series is what Borel,
the French mathematician, calls the associated function of the former,
and is extensively employed by him in his researches on the summa-
bility of divergent series.

The process of “algebrizing,” as in the examples discussed above,
may often be effected by a straight forward binomial expansion.



712 BELL SYSTEM TECHNICAL JOURNAL

In other cases the form of the generalized impedance function H(p)
will indicate by inspection the appropriate procedure. A general
process, applicable in all cases where a power series exists, is as follows.

Write
/1) =1/H (<) =6 (36)
x ‘ ’
Now expand G(x) as a Taylor’s series: thus formally

G(x) = G(0) +GM(0) E 4G () 5+ - .

where
du
a0 =[ = G(x)]m. (37)
(n)
Denote G n'(o) by au, replace x* by 1/p", and we have

G(x) =1/H(p) =ac+a:/p+as/p*+ . . .

This process of “‘algebrizing'’ is formally straightforward and always
possible. As implied above, however, in many problems much shorter
modes of expansion suggest themselves from the form of the function
H(p). |

We note here, in passing, that the necessary and sufficient condi-
tions for the existence of a power series solution is the possibility of
the formal expansion of G(x) as a power series in x.

At this point a brief critical estimate of the scope and value of the
power series solution may be in order. As stated above, in a certain
important class of problems relating to transmission lines, a power
series does not exist, though a closely related series in fractional
powers of ¢ may often be derived. Consequently the power series
solution is of restricted applicability. Where, however, a power
series does exist, in directness and simplicity of derivation it is superior
to any other form of solution. Its chief defect, and a very serious
defect indeed, is that except where the power series can be recog-
nized and summed, it is usually practically useless for computation
and interpretation except for relatively small values of the time £.
This disadvantage is inherent and attaches to all power series solu-
tions. For this reason I think Heaviside overestimated the value
of power series as practical or working solutions, and that some of
his strictures against orthodox mathematicians and their solutions
may be justly urged against the power series solution. He was quite
right in insisting that'a solution must be capable of either interpre-
tation or computation and quite right in ridiculing those formal
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solutions which actually conceal rather than reveal the significance
of the original differential equations of the problem. On the other
hand, the following remark of his indicates to me that Heaviside
has a quite exaggerated idea of the value and fundamental character
of power series in general: ‘I regret that the result should be so
complicated. But the only alternatives are other equivalent infinite
series, or else a definite integral which is of no use until it is evalu-
ated, when the result must be the series (135), or an equivalent one.”
As a matter of fact the properties of most of the important functions
of mathematical physics have been investigated and their values
computed by methods other than series expansions. I may add that
in technical work the power series solution has proved to be of re-
stricted utility, while definite integrals, which Heaviside* particu-
larly despised, have proved quite useful.

The Expansion Theorem Solution®

We pass now to the consideration of another extremely important
form of solution. Heaviside gives this solution without proof: we
shall therefore merely state”the solution and then derive it from the
integral equation.

Given the operational equation

h=1/H(p)
which has the significance discussed above: i.e., the response of the
network to a “unit e.m.f.”’. The explicit solution may be written as
1 S et
=t T Z oo (B0) (38)
where py, pa . .. pn are the n roots of the equation
H(p)=o0
and
d
H'(pw) = [—H :| :
() =| 211D |, _ . (39)

As remarked above, this solution, referred to by him as The Ex-
pansion Theorem, was stated by Heaviside without proof; how he
arrived at it will probably always remain a matter of conjecture.
Its derivation from the integral equation is, however, a relatively
simple matter, though in special cases troublesome questions arise.

“Vide a remark of his to the effect that some mathematicians took refuge in a
definite integral and called that a solution.

8 This terminology is due to Heaviside. A more appropriate and physically
significant expression would be ‘“The Solution in terms of normal or characteristic
vibrations."
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The derivation of the expansion solution from the integral equation

p_;(?) - fo h()erdt

follows immediately from the partial fraction expansion

1 1 . 1
FIG) ™ F@ T 25 PIRITH) 4o
where p1, pa . . . pa are the roots of the equation I (p) =0, and
vpy_ 4@ ]
)= {Eume), . (41)

Partial fraction expansions of this type are fully discussed in treatises
~on algebra and the calculus and the conditions for their existence
established. Before discussing the restrictions imposed on H(p) by
this expansion, we shall first, assuming its existence, derive the ex-
pansion theorem solution.

By virtue of (40) the integral equation is

1 = 1 o B
pH) " Z (P—PJ)PJ'H’(P;')_ﬁ hB)e=dt. (42)

The expansion on the left hand side suggests a corresponding expan-
sion on the right hand side: that is, we suppose that

WO = ha()F ) Fha()F . . a0 (13)
and specify that these component functions shall satisfy the equations
1 f b
—= ho(t)e P'dt 44
PH0) (t)e (44)
1

— = 0“h-fe‘ﬂa!t j=1,2...n 45
e Al ] (#5)
It follows at once from (43) and direct addition of equations (44)
and (45) that (42) is satisfied and hence is solved provided %o, . . hn
can be evaluated from (44) and (45).

Now since

=] 1
M=ty = ——
j; eMe=tld} Y (46)
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provided the real part of \ is not positive (a condition satisfied in all
network problems), we see at once that equations (42) and (43) are
satisfied by taking

1
]fa(t)=ho =m, (47)
Py .
hj(f)=m, 7=12,..n

Consequently from (43) and (47) it follows that

1 - P
b0 =57+ 2 5 (45)

which establishes the Expansion Theorem Solution.

As implied above, the partial fraction expansion (40), on which
the expansion theorem solution depends, imposes certain restrictions
on the impedance function H(p). Among these are that II(p) must
have no zero root, no repeated roots, and 1/I1(p) must be a proper
fraction. In all finite networks these conditions are satisfied, or by
a slight modification, the operational equation can be reduced to
the required form. The case of repeated roots, which may occur
where the network involves a unilateral source of energy such as an
amplifier, can be dealt with by assuming unequal roots and then
letting the roots approach equality as a limit. Without entering
upon these questions in detail, however, we can very simply and
directly establish the proposition that the expansion theorem gives
the solution whenever a solution in terms of normal or characteristic
vibrations exists. The proof of this proposition proceeds as follows.

It is known from the elementary theory of linear differential equa-
tions that the general solution of the set of differential equations,
of which the operational equation is k=1/H(p), is of the form

h(t) = Cot Z el
1

where p;j is the jth root of H(p) =0, and C,, C; . .. Cy are constants of
integration which must be so chosen as to satisfy the system of dif-
ferential equations and the imposed boundary conditions. The
summation is extended over all the roots of H(p) which is supposed
not to have a zero root or repeated roots.
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Now substitute this known form of solution in the integral equation
of the problem and carry out the integration term by term. We get

1 2
75~ 2 (49)
Setting p=o0, we have at once
=1/H(o). (50)

To determine Cj let p=pi+g where ¢ is a small quantity ultimately
to be set equal to zero, and write the equation as

17
coH(p)+2P (”)C, (51)
If now p=pj+q and g approaches zero, this becomes in the limit
il (p;)Gi=1 (52)
or :
o (53)
T piH (b3)
1 2
h 1) == _e 54
whence h(t) () +zij’(pj) (54)

which is the Expansion Theorem Solution.

We shall not attempt to discuss here cases where the expansion
solution breaks down though such cases exist. In every such case,
however, the breakdown is due to the failure of the impedance func-
tion H(p) to satisfy the conditions necessary for the partial fraction
expansion (40), and correlatively the non-existence of a solution in
normal vibrations. Furthermore, it is usually possible by simple
modification to deduce a modified expansion solution. It may be
added here, that while the proof given above is also limited implic-
itly to finite networks, the expansion solution is valid in most trans-
mission line problems.

Let us now illustrate how the expansion solution works by applying
it to a few simple examples. Take first the case considered in the
preceding chapter in connection with the power series solution. Re-
quired the charge Q on a condenser C in series with an inductance L
and resistance R in response to a ‘“‘unit e.m.f.”” The operational
equation is

_ 1
O=IFTRpF1/C
_ 1
or =T Fioaptot
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where a=R/2L and «*=1/LC.
The roots of the equation H(p) =0 are the roots of the equation

P+ 2ap+tw’=0
whence

pr=—atV—w=—at8,
pr=—a—Va—w=—a—p.
Also H'(p) =2L(p+a), so that
H'(p,) =28L

H'(ps) =—28L
and
1/H(o)=1/Lu*=C.

Inserting these expressions in the Expansion Theorem Solution

(38), we get
e—al Bt g-ﬁ‘
Q_C—%_L(a-gﬁ_ﬁa+ﬂ)'

It is now easy to verify the fact that this solution satisfies the differ-
ential equations and the boundary condition Q=0 and dQ/dt=0 at
time t=o.

If w>a, 8 is a pure imaginary

B=iwV1—(a/w) =i’
and
e~ w' cos w't4a sin w't

w'L ot w'

0=C-

In connection with this problem we note two advantages of the
expansion solution, as compared with the power series solution: (1)
it is much simpler to derive from the operational equation, and (2)
its numerical computation is enormously easier. A table of expo-
nential and trigometric functions enables us to evaluate Q for any
value of ¢ almost at once whereas in the case of the power series solu-
tion the labor of computation for large values of f is very great. A
third and very important advantage of the expansion solution in this
particular problem is that without detailed computation we can
deduce by mere inspection the general character of the function
and the effect of the circuit parameters on its form: an advantage
which never attaches to the power series solution.

This last property of the particular solution above is extremely
important. The ideal form of solution, particularly in technical
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problems, is one which permits us to infer the general character and
properties of the function and the effect of the circuit constants on
its form, without detailed solutions. A solution which possesses
these properties, even if its exact computation is not possible without
prohibitive labor, is far superior to a solution which, while com-
pletely computable, tells us nothing without detailed computation.
It is for this reason that some of the derived forms of solution, dis-
cussed later, are of such importance. In fact a solution which re-
quu‘es detailed computation before it yields the information implied
in it is merely equivalent to an experimentally determined solution.

Unfortunately the advantages attaching to the expansion solution
of the spemﬁc problem just discussed, do not, in general, characterize
the expansion solution. The following disadvantages should be
noted. First, the location of the roots of the impedance function
H(p) is practically impossible in the case of arbitrary networks of
more than a few degrees of freedom. In the second place, when the
number of degrees of freedom is large it is not only impossible to
deduce the significance of the solution by inspection, but the com-
putation becomes extremely laborious. In such cases, the practical
value of the expansion solution depends, just as in the power series
solution, on the possibility of recognizing and summing the expan-
sion. This will be clear in the case of transmission lines, where the
roots of H(p) are infinite in number and the direct computation of
the expansion solution (except in the case of the non-inductive cable)
is quite impossible.

CHAPTER 1V

" SoME GENERAL FORMULAS AND THEOREMS FOR THE SOLUTION
oF OPERATIONAL EQUATIONS

We have seen that the operational equation
h=1/H(p)

is the symbolic or short-hand equivalent of the integral equation

;THI(T)= _£ " h(B)e-rdt

and from the latter we have deduced two very important forms of the
Heaviside solution. In recognizing the equivalence of these two
equations we have a very great advantage and are able. in fact, to
base the Operational Calculus on deductive 1nstead of inductive
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reasoning. In this chapter we shall employ this equivalence to estab-
lish certain general formulas and theorems for the solution of oper-
ational equations. That is to say, we shall make use of the principles
that (1) any method applicable to the solution of tlie integral equation
supplies us with a corresponding method for the solution of the
operational equation, and (2) a solution of any specific integral equa-
tion gives at once the solution of the corresponding operational
equation. We turn therefore to a brief discussion of the appropriate
methods for solving the integral equation.

It may be said at the outset, that the solution of the integral equa-
tion, like the evaluation of integrals, is a matter of considerable art
and experience; in other words there is not, in general, a straight-
forward procedure corresponding to the process of differentiation.

On the other hand, as a purely mathematical question, it is always
possible to invert the integral equation and write down A(f) as an
explicit function in the form of an infinite integral. For example
it may be shown from the Fourier Integral that

h(t) =§ / mﬂ:’—) sin fo.dw

where a(w) is defined by

1

Later on we shall briefly consider the Fourier Integral; for the
present the preceding formula will not be considered further. In
certain problems it is of value; for the explicit derivation of h(f),
however, it is usually too complicated to be of any use except in-the
hands of professional mathematicians. As a matter of fact, a direct
attack on this formula would be equivalent to abandoning the unique
simplicity and advantages of the whole Operational Calculus.

It has been noted above that any solution of the integral equation
supplies a solution of the corresponding operational equation. This
principle enables us to take advantage of the fact that a very large
number of infinite integrals of the type

f " )erds
0

have heen evaluated. The evaluation of every infinile integral of this
type supplies us, therefore, with the solution of an operational equation.

Of course, not all the operational equations so solvable have physical
significance. Many, however, do. Below is a list of infinite integrals
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with their known solutions, accompanied by the corresponding
operational equation and its explicit solution. All of these solutions
are directly applicable to important technical problems. It may be
remarked in passing that the infinite integrals have for the most

part been evaluated by advanced mathematical methods which need
not concern us here.

Table of Infinite Integrals, the Corresponding Operational Equations,
and Their Explicit Solutions

(a) ./0‘ - e Ple—Md} = j%\’

o0 m
(b) _/0' e—i";!df: 1/pm+,

h= 1'7_ = /nl.

© fu Tl T= \/
h=A/p =1/\/=t.

- (20" a1
@ ~/o- 35, @-Dat v

Vo _ (2" 1
p* 135...(2n—1) /7

RS L 1
(E) ./(: € ﬂrT!e Mdt:(p-k—k)"ﬁ'

I _
ST Ve T

- A e M =
f f e Py | — —— £=8—2V,)\#'
() A g \/Td

= N e Mt
h=pe2VRF = \j— :
P Ve

h.=

—M e2VNp
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h=/p e 2VM = T
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(m)

(n)

(p)
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-[ e~ ? sin Atdt=p—2_}_—v,

__DA
h_?z-H\z

_ P
pl -
‘/0. e~ P cos M di = e

=sin M.
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In formulas (1), (m), (n), J.(x) denotes the Bessel function of order
n and argument x. In formula (p), I,(x) denotes the Bessel function
Jo(ix) where 1=+/—1.

This list might be greatly extended. As it is, we are in possession
of a set of solutions of operational equations which occur in important
technical problems and which will be employed later.

The foregoing emphasize the practical and theoretical importance
of recognizing the equivalence of the integral and operational equa-
tions. With this equivalence in mind, the solution of an operational
equation is often reduced to a mere reference to a table of infinite
integrals. Heaviside did not recognize this equivalence. As a
consequence many of his solutions of transmission line problems are
extremely laborious and involved and in the end unsatisfactory
because expressed in involved power series.

Not all the infinite integrals corresponding to the operational
equations of physical problems have been evaluated or can be recog-
nized without transformation. This statement corresponds exactly
with the fact that a table of integrals is not always sufficient but
must be supplemented by general methods of integration. We turn,
therefore, to stating and discussing some general Theorems applicable
to the solution of Operational Equations.

In the derivation of the operational theorems, which constitute the
general rules of the Operational Calculus, the following proposi-
tion, due to Borel and known as Borel's theorem, will be frequently
employed.*

If the functions f(t), fi(t), and fo(t) are defined by the integral equations

Fo)= [ re-vat
F@) = e

F@) = ferds
and if the functions F, Fy and F» satisfy the relation

F(p) =F:1(p).Fa(p)

*For a proof of this important theorem the reader is referred to Borel, “Lecons
sur les Séries Divergentes” (1901), p. 104; to Bromwich, “ Theory of Infinite Series,"
pp. 280-281; or to Ford, *Studies on Divergent Series and Summability,” pp. 93-94
{being Vol. II of the Michigan University Science Series, published by Macmillan).
The proof depends on Jacobi's transformation of a double integral:see Edward's
“Integral Calculus,” 1922, Vol. II, pp. 14-15.
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then

10 = [ 1 fse= s

- /0' o (1)fa(1— 7)dr.

The operational theorems will now be stated and briefly proved
from the integral equation identity. )

Theorem I
If in the Operational Equation
h=1/H(p)
the generalized impedance function H(p) can be expanded in a sum of
terms, thus
1 1 1 1
) ) mp T THG)

and if the auxiliary operational equations

1
ha= 1,(p)
1
he =T

can be solved, then

h=h+ho+. .. +hn

This theorem is too obvious to require detailed proof: in fact it is
self evident. The power series and expansion theorem solutions are
examples of its application. In general, however, the appropriate
form of expansion of 1/H(p) will depend on the particular problem
in hand. The theorem, as it stands is a formal statement of the fact
that solutions can often be obtained by an appropriate expansion
whereas the equation cannot be solved as it stands.

Theorem II
If h="h(t) and g=g(t) are defined by the operational equations
h=1/H(p)
hen g=1/pH(p)

o(t) = [ ‘h(r)dr.
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To prove this theorem we start with the integral equations

R SR Y

Ffﬁ - [ " (e,

The second of these is in form for an immediate application of Borel’s
theorem since

1 1.1

pH(p)  p pH(p)

The functions fi and f, of Borel's theorem then satisfy the equations

1 * —pt
?=£ Fu(b)erdt,

I—)HL@) - _[ " fahe .
It follows at once that
filt) =1
falt) =h(2)

whence by Borel’s theorem

i
g(t) = ./0' h(7)dr.
Theorem IIT
Ifh =h(t) and g=g(i) are defined by the operational equations
| h=1/H(p)

g=p/H(p)
then

e =i

provided h(o) =o.

The integral equations of the problem are

1 °
m =./()‘ h(t)e ‘Nd.t,

1 °° o
I_f@ =_/(: g(t)e 1.
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Integrating the first of these by parts we have,

1 lh.(o)-l—% £ et

PH(p) ~ p
where B'(t) =d/dt h(2).

If i(0) =0, we have at once

1 i
G = fo W (f)edt,

Comparison with the integral equation for g(f) shows at once that
g(f)=H'(t), since the integral equation determines the function
uniquely.

Theorems II and III establish the characteristic Heaviside Opera-
¢
tions of replacing 1/p byf dt and p by d/dt.
0

Theorem IV
If in the operational equation
h=1/H(p)
the generalized impedance function can be factored in the form

H(p) =H,\(p) - Ha(p)

and if the auxiliary operational egu&tz’ans
hi=1/IL(p)
ha=1/H,(p)

define the auxiliary variables hy and he, then

W) = gi ‘/0' () halt— )dr

d !
=< _/0' ha(r)ha(t—7)dr.

This theorem is immediately deducible from Borel's theorem and
theorems II and III, as follows.
The integral equations are
1 1 1 f’”
= . = h(t)e—*'dt
P )~ PpIn(p) pHap) o M°

P—H—}(B:/D. hy(t)e=?dt

1 o0
m =~/0‘ ha(t)e—?'dt,
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Now define an auxiliary function g(f) by the operational equation
1

E=2T70m

pH(p)

1 1 =
S S S— f)e—ridt
ORT ORI L
and by Borel’s theorem

o) = _[ ha(P)ha(t— )dr

Then

- f ha(P)ha(t— 7)dr.
[1]

From this equation it follows that g(e) =0, and hence comparing the
operational equations for & and g, we have by aid of Theorem III

d
h(t) =7,¢)
and hence

R(t) =%£‘k1(r)faz(t— T)d7

.
=% _{ ha(r)ha(t— 7)dr.

This theorem is extremely important, although not stated or
employed by Heaviside himself. We shall make use of it in estab-
lishing two important general theorems and shall have frequent
occasion to employ it in specific problems occurring in connection
with the subsequent discussion of transmission theory.

Theorem V
If h=h(t) and g=g(t) are defined by the operational equations
1
h=——
H(p)
_ 1
ETHBHY

where \ is a positive real parameler, then

g(8) = (14 _[ Ay e-Mh(1).
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To prove this theorem we start with the integral equations

1 =
= h(Be—t'dt
pH(p) fo Hoe
1 o0
= t)e—?id4,
=yl AL
In the first of these equations replace the symbol $ by g+\: we get
R
g+N H(g+N) o

and then to preserve our original notation replace the symbol ¢ by p,
whence

o _re s
(p+NIT(p+N) fo h(t)e~Me=ridt, (@)
The integral equation in g(f) can be written as
VR
(1+P)(P+R}H(p+;\) _/u. g(t)e~'dt. (b)

Comparing equations (a) and (b) it follows at once from theorems
I and II that

e= (142 fo 'dt) h(t)eN,

From the foregoing, the following auxiliary theorem is immedi-
ately deducible.

Theorem Va

If A=h(t) and g=g(t) are defined by the operational equations

1

k=m

g= P
(P+NH(p+N)

then
g =h(t)eM,

The proof of this theorem will be left as an exercise to the reader.
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Theorem VI
If h=h(t) and g=g(t) are defined by the operational equations
h=1/H(p)
g=1/H(\p)

where \ is a positive real parameter, then
g(t) =h(t/N).
We start with the integral equations

-;Tfl(p) - ‘£ h(t)e-ridt

pH}xp) =f§mg“)“'“d‘

and in the first of these equations we replace p by Ag and ¢ by 7/,
whence it becomes

1 —fwh(L) e~ dr
gH(A\g) Jo A '
Now replacing the symbols g and 7 by p and ¢ respectively, we have

1 f°°
—_— = R(t/N)e—'dt

PI0H o MV
whence by comparison with the integral equation in g(¢) it follows
at once that

g(t) =h(t/N).

This theorem is often useful in making a convenient change in the
time scale and eliminating superfluous constants.

Theorem VII
If h=h(t) and g=g(t) are defined by the operational equations
1
h=—r
H(p)
T Hp)

where \ is a positive real quantity, then
g(t) =0 for t <A
=h(t—\) for 1=\
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This is a very important theorem in connection with transmission
line problems where retardation, due to finite velocity of propagation,
occurs. Its proof proceeds as follows:

If the auxiliary function k=k(f) is defined by the operational
equation

k=g M
then by Theorem IV,
13
g(t)=£% fo E(r)h(t—r)dr. (a)

A

Now, corresponding to the operational equation k=e¢™"* we have

the integral equation
e A " k(eridt
e e~PidL.

The solution of this integral equation, which is easily verified by
direct substitution in the infinite integral, is

k(1) =o0 for <X
=1 for t=A\.
Hence equation (a) becomes

g{l)y=o for t <\
[ h(t—r)dr for 1=
_ﬁj}: i(t—7)dr for t=\

=h(t—N\) for {=A.

Theorem IV, employed in the preceding proof, as stated above, is
extremely important and we shall have frequent occasion to employ
it in specific problems. We shall now apply it to deduce an important
theorem which extends the operational calculus to arbitrary impressed
forces, whereas heretofore the operational equation k=1/H(p) applied
only to the case of a '‘unit e.m.f.”” impressed on the system.

It will be recalled from a previous chapter that if x(f) denotes the
response of a network to an arbitrary force f(f), impressed at time
t=o0, and if %(¢) denotes the corresponding response to a ‘‘unit e.m.f.,”
then :

2 =4 [ W—ryis (31)
and
1 oo _'r
m = ./0 h(t)e#dt. (30)
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Now f(£) may be of such form that the infinite integral

j; " f()e-ridt

can be evaluated and has the value F(p)/p: thus
[ 10 rdi=—Fp). (55)
0 2

This is possible, of course, for many important types of applied forces,
including the sinusoidal.
It follows at once from Theorem IV that x(¢) satisfies and is de-

termined by the integral equation

1 F(p) f“’

— = = x(t)e ?ds. 56

P~ J " (56)
We have thus succeeded, by virtue of Theorem IV in expressing the
response of a network to an arbitrary e.m.f. impressed at time {=o,
by an integral equation of the same form as that expressing the
response to a ‘“unit e.m.f.” That is to say we have, at least formally,
extended the operational calculus explicitly to the case of arbitrary

impressed forces.
We now translate the foregoing into the corresponding Operational

Theorem.

Theorem VIII

If the operational equation
h=1/H(p)
expresses the response of a network to a “‘unit em.f." and if an arbitrary
e.m.f. E impressed at time t =0, is expressible by the operational equation
E=TV(p)
or the infinite integral

2 ety — VP)
_{ E()erdi="-]

then the response x of the network to the arbitrary force is given by the
operational equalion

V@)
H(p)
and x(t) is determined by the inlegral equation

LV _ % et
-5%‘)— A x(t)e »tt,
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Theorem IX

If the operational equation

h=1/H(p)
is reductble to the form
L F(p)
14+NK(p)

where \ is a real parameter, and if the auxiliary functions f=f(t) and
k=Fk(t) are defined by the auxiliary operational equations

J=F(p)
k=K(p)

then h(t) is determined by the Poissan Integral equation
3
1)) =10 [ W)k~ r)dr.
(]

This theorem is of considerable practical importance in connection
with the approximate and numerical solution of operational equations
when the operational equation and the equivalent Laplace integral
equation prove refractory. In such cases, as will be shown later,
the numerical solution of the Poissan integral equations can often
be rapidly and accurately effected, and in many cases the quali-
tative properties of k(t) can be deduced from it without detailed
numerical solution.

The proof of this theorem proceeds as follows:

By virtue of the relation h=1/H(p) the operational equation

v _F®)
1+AK(p)
can be written as
K(p)
k+h_ﬁ(;) = F(P)
h=F(p)— xl‘r%.

A direct application of Borel's theorem or Theorem IV gives at once
the explicit equivalent

=0 [ W)t —1)dr.
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The preceding theorems, together with the power series and ex-
pansion theorem solutions formulate the most important rules of the
operational calculus, and are constantly employed in the solution of
the electrotechnical problems. On the other hand, the table of
infinite integrals furnishes the solution of a set of operational equa-
tions, which are of the greatest usefulness in the systematic study of
propagation phenomena in transmission systems which will engage
our attention. Before taking up this study, however, we shall first
solve a few specific problems which will serve as an introduction to
asymptotic and divergent solutions involving Heaviside's so-called
“fractional differentiation.”

Problem A: Current Entering the Non-Inductive Cable

" The non-inductive cable is a smooth line with distributed resistance
R and capacity C per unit length; for the present we neglect induct-
ance and leakage. A consideration of cable problems leads to some
of the most interesting questions relating to operational methods,
particularly to questions regarding divergent expansions. It would
seem best to allow specific problems to serve as an introduction to
these general questions.
The differential equations of the cable are

__o©o
RI= 3% V
(57)
Cdt - axI

where x is the distance, measured along the cable from any fixed
point, I is the current at point x, and V the corresponding potential.
Replacing d/dt by the operator p, we have

__0
RI= axV
5 (58)
PCV= ‘—5;_’1-.

Eliminating, successively, V and I from these equations, we get

2

and '
2
pRC V =54 V.
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These equations have the general solutions

V="V "4+ V.e"™ (59)

BN VS (60)
where

y=+pRC. - (61)

The term in e~ "* represents the direct wave and the term in ¢'* the

reflected wave. ¥, and V, are constants which must be so chosen
as to satisfy the imposed boundary conditions at the terminals of
the cable.

For the present we shall assume that the line is infinitely long so
that the reflected wave is absent. We shall also assume that a voltage
L is impressed directly on the cable at x=0: we have then,

V=Ee *ViICR=F¢ Var (62)
__[pC —wﬁ_\{P__C ~vap
I—\}R Ee "ViCR = REe ’ (63)

where « denotes x*RC.

To convert these to operational equations let us suppose that E
is a “unit em.f.” (zero before, unity after time t=0). We have
then, in operational notation

V=¢ Var (64)
1=\/ }%8‘1/&_0. (65)

Now suppose that x=o0.s0o that a=0, in other words consider a
point at the cable terminals. Then

V=1
_Jic (66)
1 —\fﬁ'

The first of these equations means that ¥ is simply the impressed
voltage, zero before, unity after time {=o0, as of course, it should be
from physical considerations.

Corresponding to the operational equation

1-%. (66)
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we have the integral equation
c 1 =
- == I(t)e—?dt. 67
\E Vo h 1O (67)

The solution of this is known (see formula (c) of the preceding table
of integrals): it is
C

68

I= \lR\/_; \NTR (68)

Heaviside arrived at this solution from considering the known

solution of the same problem in the theory of heat flow. He there-
fore inferred that the operational equation

I=v/p
I=1//xt.

This is correct; we, however, have derived it directly from the integral
equation of the problem and the known integral

Y VR
7 /0' e (69)
We then see from the foregoing that, if a “‘unit e.m.f.”" is impressed
on the cable terminals, the current entering the cable is initially
infinite and dies away in accordance with the formula /C/xR:.
The case is, of course, idealized and the infinite initial value of the
current results from our ignoring the distributed inductance of the
cable, which, no matter how small, keeps the initial current finite,
as we shall see later.
Now let us go a step farther; suppose that in addition to distributed
resistance R and capacity C, the cable also has distributed leakage
G per unit length. The differential equations are now

has the explicit solution

2
RI= -2V

. (70)
(Cr+G)V=—Z 1.

Consequently it follows that in the operational equation for the current
entering the cable we need only replace Cp by Cp+G. Therefore,
when leakage is included, equation (66) is to be replaced by

Where )\—G/C
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The corresponding integral equation is, of course,
2 PSRN [==]
\/_Q Vptr =f I(t)e—"dL. (72)
R Vi 0

We shall give two solutions of this problem; first the solution of
the integral equation, and second the typical Heaviside solution
directly from the operational equation.

Equation (72) may be written as

(1+N/p) _
I(t)e~*4dt. 73
Ry = 10 (73)
Now suppose that J(f) is the solution of the equation
1
= —rigt (74
Vh :
it follows at once from Theorems (I) and (II) of the preceding chapter
that
C !
1) =\/ (1 [ ar) rco. (75)

Also from formula (c) of the table of integrals and Theorem (Va) the
solution of (74) is

e M

J'(!,}—\/-’r

(76)

whence
e

1(;)_\,{ = \/t + f%dt (77)

The integral appearing in (77) can not be evaluated in finite terms;
it is easily expressible as a series, however, by repeated integration
by parts. Thus

t g\
fg—dzuzf eMd\/t —2\/te-?\*+2)\f M/t dt.
Proceeding in this way by repeated partial integration we get for the

integral term of (77)

Ten {14 2N @0
2V EeM | 14 13+135+...}- (78)
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The straightforward Heaviside solution is obtained by expanding
the operational equation as follows:

~\&(5) "2

JR[1+21> 24(p) +21436 ]‘/f’

Identifying v/ with 1/4/#¢ (from known solutions of allied problems)
and substituting for 1/p" multiple integrations of the nth order we get

I= \{ R¢§1+(2M) (2n)* | 1L.3(2M)° }_ (79)

234 23456

It can be verified that this solution is convergent and equivalent
to (77).

This problem, while simple and of minor technical interest, will serve
to introduce us to the very important and interesting question of
asymptotic series solutions.

An asymptotic series, for our purposes, may be defined as a series
expansion of a function, which, while divergent, may be used for
numerical computation, and which exhibits the behavior of the func-
tion for sufficiently large values of the argument.

Let us return to equation (77). We observe that the series solu-
- tion (78) of the definite integral becomes increasingly laborious to
compute as the value of # increases. This remark applies with even
greater force to the Heaviside solution (79) on account of the alter-
nating character of the series. Right here we have an excellent
example of what I regard as Heaviside's exaggerated sense of the
importance of series solutions as compared with definite integrals.
Consider the solution in the form of (77) as compared with Heavi-
side’s series solution (79). The former is incomparably easier to
interpret and to compute, either by numerical integration or by
means of an integraph or planimeter. In fact the series (79) is prac-
tically unmanageable except for small values of .

Returning to the question of an asymptotic expansion of the solu-
tion (77), we observe that the definite integral appearing in that
equation can be written as,

f e g ‘3\21 [ ~_—Md‘t (80)
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provided A is positive, as it is in this case. Now the value of the
infinite integral is known; it is /x/A. Consequently

.!e—)\f J ./- eN )\t D

furthermore,
—}\f 1 o0 1

_ le ™ 1 p= e M i
\/ﬁf I/ N 2RJ§ i

Integrating again by parts we get
Lo 1 oM 13 p
ME 2N 2N tz\/t
Continuing this process, we get
My e[ 118 145
\/; W1 20 (2N (2a)3

b (oqye L3 .(é)\.t)(?n—l)

(82)

_(=D" 1.35... (2n+1) e—M
A 2(2)\)" f tu+l\/t

Now this series is divergent, that is, if we continue out far enough
in the series the terms begin to increase in value without limit. On
the other hand, if we stop with the nth term the error is represented -
by the integral term in (82) and this is less than

(=" 1.35...(@2n=1)
Wi @ o

Consequently the error commitled in stopping with any lerm in the
series 15 less than the value of that term. Therefore if we stop with
the smallest term in the series, the error is less than the smallest term
and decreases with increasing values of ¢.

We can therefore write the solution (77) as

(83)

i1 13 135 .

e o - .
R +\’ S R b VA G TR VT

(84)

The first term, since A=G/C, is simply v/G/R, the d.c. admittance
of the leaky cable. The divergent series shows how the current
approaches this final steady value.
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In this particular problem no asymptotic solution is derivable
directly from the operational equation, at least by the straight-
forward Heaviside processes. Asymptotic solutions, however, con-
stitute a large and important part of Heaviside's transmission line
solutions. We shall therefore discuss next a problem for which
Heaviside obtained both convergent and divergent series expansions.

Problem B: Terminal Voltage on Cable with *‘Unit E.M.F."" Impressed
on Cable Through Condenser

We now take up a problem for which Heaviside obtained a divergent
solution, and which will introduce us to the theory of his divergent
solutions and so-called “fractional differentiation.” We suppose a
“unit e.m.f.” impressed on an infinitely long cable of distributed
resistance R and capacity C per unit length through a condenser of
capacity C,: required the voltage V at the cable terminals. The
operational equation of the problem is derived as follows:—

We know from the problem just discussed that the current entering
the cable whose terminal voltage is V, is, in operational notation

Cp

2.

But the current flowing into the condenser is
Cop(1—=V)

since the voltage across the condenser is 1— V. Equating these two
expressions we get

pCo

Y e V/ACIR (55
which is the operational equation of the problem.
This may be written as
1
=F1+é _% \/LE (85)
1

geEvor

where

1
Va=7VC/R.
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Now expanding this by the binomial theorem

= I*WJ“*"*\IP "
=1+%+(;7)+
—a+5+(% )\{_,

(at)

—1+ —|— -|—.... (86)

2at | (2at)?  (2at)? 1
_(.T+ 13 T135. 1 ")\/ra;

by the usual Heaviside rules of ‘“‘algebrizing.”
It is worth while verifying this from the integral equation of the
problem. We have

1 1 _ o iy
v /(; V(H)e=rdt. (87)

The left hand side can be written as
S i\ji
p—a p—aVNp

and by the formulas and theorems given in a precedmg section the
solution can be recognized at once as:—

V() =ent — \f %e‘“ _A ’f”\_/“i dr. (88)
T

This can also be written as

V0=t [ L (89)

If the definite integral of (88) is evaluated by successive partial
integrations it will be found in agreement with the Heaviside solution
(86).

Now the solution (86) is in powers of ¢ and while absolutely con-
vergent becomes progressively more difficult to interpret and com-
pute as the value of ¢ increases. From (89), however, we can derive
a divergent or asymptotic solution applicable both for interpreta-
tion and computation, when the value of # is sufficiently large. As
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in the example discussed before, the asymptotic expansion results
from repeated partial integrations; thus

fm e’ﬂf d7= .-._-l_fw '_]._d e_ur
f \/}7 avi A/t

e—a! 10‘/“‘ e—or d
= ——"a. —= arT
a‘\/i 2aJ, -r‘\/;-

e 121
= —'—_+ — —_— d e—or
a\/ r  2a% 'r\/;
—ai —al —a
= € —_ e’ + 1'3 e d'r

aV't 20\t = 2%, N

e 1 1.3 1.3.5 , .
gt g Gt f (90)

and finally

The series (90) is divergent just as is (82) of a preceding problem
and the error committed by stopping with the smallest term, is of
the same character and subject to the same discussion. With this
understanding we write the solution (89) as

1 1 1.3 1.3.5 |
V(t)mmll—ﬂ+m*ma+f. (91)

For large values of ¢ (at>5) this series is accurately and rapidly
computable. Furthermore it shows by mere inspection the be-
havior of V(t) for large values of ¢, and that it ultimately approaches

zero as 1/4/mat.

Let us now see how Heaviside attacked this problem and how he
arrived at a divergent solution from the operational formula. Re-
turning to the operational equation (85), it can be written as

__Vpla
V= 1+/p/a ©2

Now expand the denominator by the binomial theorem: we get

formally B B
oo E )
= (1+2+(2) '+ )\}:

4 (93)
a
()8 )
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Heaviside's procedure at this point was as remarkable as it was suc-
cessful. He first discarded the second series in integral powers of p
as meaningless. He then identified 4/p with 1/4/x¢ and replaced
" by d"/dt" in the first series, getting

+1d2 ) 1

2T ) e (94)

or, carrying out the indicated differentiation,

(l+a dt

1 1 1.3 1.3.5
=\/m(1‘ﬂ+(_2az)ﬂ‘(2at)a+° )

which agrees with (91).

This is a typical example of a Heaviside divergent solution for
which he offered no explanation and no proof other than its practical
success. His procedure in this respect is quite unsatisfactory and in
particular his discarding an entire series without explanation is in-
tellectually repugnant. We shall leave these questions for the present,
however; later we shall make a systematic study of his divergent
solutions and rationalize them in a satisfactory manner. First,
however, we shall take up a specific problem for which Heaviside
obtains a divergent solution without discarding any terms.

Problem C: Current Entering a Line of Distributed L, R and C

Consider a transmission line of distributed inductance L, resistance
R, and capacity C per unit length. The differential equations of
current and voltage are

(LI +R)1I= - aa
(95)
d,__2,
CB?V_ ~5
Replacing d/dt by p, we get ‘
-_9
(pPL+R)I= 50V
(96)
-9
CpV= vl

Equations (96) correspond exactly with (58) for the non-inductive
cable: except that we must replace R by pL+R. For the infinitely
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Jong line, therefore, the operational formula for the current entering

the line is
97)
I= \ij—FR (

where V, is the voltage at the line terminals. If this is a “unit e.m.f.”
we have, as our operational equation,

I= \l _rC (98)

which can be written as
[C 1

I=
| N Vivanp )
where A\=R/2L.

The corresponding integral equation is

I'Cc 1 .
-__— = _NI d .

From either equation (99) or (100) and formula (p) of the table of
integrals, we see at once that the solution is

r=\]jfe—wo<m (101)

where I,(A) is the Bessel function J,(iN), where i=+/—1. (The
function is, however, a pure real.)

Heaviside's procedure, in the absence of any correlation between
the operational equation and the infinite integral, was quite different.
Remarking, with reference to equation (99), that “the suggestion to
employ the binomial theorem is obvious,” he expands it in the form

BN PR T V0 Rl 0 2. ! 102
I=NF 115 +51(5) (p)+"f S
and replaces 1/p" by ¢"/n in accordance with the rule discussed in
preceding sections. The explicit solution is then

I= \)C b 1N (2,)2(7\02 233;)5(”) +.f (103)
a convergent solution in rising powers of £. As yet, however, he does
not recognize this series as the power series expansion of (101), which
it is. He does, however, recognize the practical impossibility of
using it for computing for large values of ¢, and remarks “But the
binomial theorem furnishes another way of expanding the operator
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(operational equation), viz. in rising powers of p.”” Thus, returning
to (99), it can be written as,

T=al = _VB/2N
VL Vitp/an

Now expand the denominator by the binomial theorem: we get

AR ) N 0

He now identifies v/p/2\ with 1/4/2x\t and replaces " in the series
by d"/dt", thus getting finally

(104)

(1.3)* +(1.3.5)2+__ L. (106)

+2'(8M) 31(8\)3 )

\/L v/ 2nN M'

This series solution is divergent: Heaviside recognizes it, however,
as the asymptotic expansion of the function e MI,(\f), and thus
arrives at the solution

= \f € enr, ) (101)

which we have obtained from our tables of integrals.

Now the divergent expansion (106) is the well known asymptotic
expansion of the function e ™I,(\f), which is usually derived by diffi-
cult and intricate processes. The directness and simplicity with
which Heaviside derives it is extraordinary.

We note in this example that no integral powers of p appear in the
divergent expansion: consequently no terms are discarded. Other-
wise Heaviside's process is as startling and remarkable as in the
example discussed in the preceding section.

We shall later encounter many problems in which asymptotic
solutions are derivable as in the preceding example. We have suffi-
cient data, however, in these two typical examples to take up a
systematic discussion of the theory of Heaviside's divergent solution
of the operational equation.

CHAPTER V

THE THEORY OF THE ASYMPTOTIC SOLUTION OF QPERATIONAL
EqQuaTions

A study of Heaviside's methods, as exemplified in the preceding
examples and in many problems dealt with in his Electromagnetic
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Theory, Vol. II, shows that they may be divided into two classes:
(I) those of which the operational equation is of the form

h=Fp)Vb (I
and (II) those of which the operational equation is of the form
h=s(p"V/p) (I1)

where k is an integer.

Heaviside himself does not distinguish between the two classes,
but employs the following rule for obtaining asymptotic expansion
solutions:

If the operational equation
h=1/H(p)
can be expanded in the form
h=a,+aptap*+ .. +ap"+ . ..
(Bo+bip+bap?+ . . +bap"+ .. )VP (107)

a solution, usually divergent, is obtained by discarding the first expansion
entirely, except for the leading constant terms ao, replacing \/p by 1/~/rt
and p" by d"/dt"* in the second expansion, whence an explicit series
solution results.

d d* 1
h=ao+ (botb1 3 b gt - )7; (108)
. 1 1 1.3 1.3.5
_ao+—‘\/—;i(bg—b|ﬁ+bzw—'b3(2’r—)3-+ .. ) (109)

It should be expressly understood that Heaviside nowhere himself
states this rule formally. He does not distinguish between the two
cases where integral series in p do and do not appear, although very
important mathematical distinctions are involved. Furthermore,
in one case he modifies his usual procedure by adding an extra term
(Elm. Th. Vol. II, pg. 42-44). It certainly represents, however,
his usual procedure in a very large number of problems.

A completely satisfactory theory of the Heaviside Rule, just stated,
has not yet been arrived at although we can always verify the diver-
gent solutions in specific problems. Furthermore, it is not as yet
known just how general it is, though it certainly works successfully
in a large number of physical problems to which it has been applied.
Finally we know nothing in general as to the asymptotic character
of the resulting expansion. In some cases it leads. to an expansion
in which the error is less than the last term included, in others re-
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markably enough the expansion is everywhere convergent, while
in yet others its application leads to a series which is meaningless
for a certain range of values of .

Heaviside himself gives no information which would serve us as a
guide in informing us when the rule is applicable and when it is not.
Consequently it becomes a matter of practical importance, not only
to investigate the underlying mathematical philosophy of the rule
and to establish it on the basis of orthodox mathematics, but also to
develop if possible a criterion of its applicability. In this investiga-
tion we shall have recourse to the integral equation of the problem.

We shall take up first the type of problem (Class I) in which the
operational equation is

k—-— =F 5 (110)
)~ FOV?
and assume that F(p) admits of the formal power series expansion
F(p) =bo+bip+bop*+bap®+ . . . (111)
The corresponding integral equation is
FO) _ [ hipye-» .
v /{; h(t)e-?'dt. (112)

We now assume the existence of an auxiliary function k(f), defined
and determined by the auxiliary integral equation

Fp)= | " ke, (113)
0
Now since
] = @
IR Y ey 114
Vi h (114)

it follows from (112), (113), and (114) and Borel's Theorem, or
Theorem IV, that
1 k(“l’)
h(t) = —
2 ‘\/t—'r

Now if we differentiate (113) repeatedly with respect to p and put
p=o, it follows from the expansion (III) that

(115)

bu=(—1) [ LR (116)
0o n.

This equation presupposes, it should be noted, the convergence of
the infinite integrals for all values of #, and therefore imposes severe
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restrictions on k(f) and hence on F(p). We shall suppose that these
restrictions are satisfied, and discuss them later.
Now (115) can be written as:—

1 4 _1
== fo drk(r) (1—1/)= V2, (117)

It can be shown that, if k(f) satisfies the restrictions underlying
(116), the integral (117) has an asymptotic solution obtained as
follows —Expand the factor (1—7/t)""% by the binomial theorem,
replace the upper limit of integration by oo, and integrate term by
term : thus

h(t) \/1_ 5, k(t)dH—%i - ik(t}dz -

(2:)"‘-f 31 |k(t)dt + .

———

Finally from (116) we get

1.3.5
}l(l)N\/ t'gbg b1 +b2(2t) b W—'— P ;' (119)
which agrees exactly with the Heaviside rule for this case.

The foregoing says nothing regarding the asymptotic character
of the solution. It is easy to see qualitatively, however, that (118)
and therefore (119) does represent the behavior of the definite in-
tegral (117) for large values of ¢, provided k(f) converges with suffi-
cient rapidity.

The foregoing analysis may now be summarized in the following

proposition :
If the operational equation h=1/H(p) is reducible lo the form
h=Fp)Vp

and if F(p) admits of power series expansion in p: thus
F(p) =bo+b1p+bap?+ . . . +bap"+

so that, formally, :
h=(bo+b1p+bap*+ . .. +bup™+ .. )P

an explicit series solution, usually asymplotic, is obtained by replacing
VP by 1/+/xt and p"(n integral) by d"/di", whence

1
h(f) (b,,-l—bldt—’;-bgdﬁ-k . )7;

1.3 1.3.5 )

oyt

‘:“\/1;( blzt
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provided the function k=Fk(t), defined by the operational equation k= F (p),
and the infinite integrals ot

_/omt"k(t)dt (=12 ....)

exist.

We shall now apply the foregoing theory to a physical problem
discussed in the last section : namely, the current entering an infinitely
long line of inductance L, resistance R and capacity C per unit length.
It will be recalled (see equation (100) ) that the integral equation of
this problem is

o O
2Vr== vl L

where A=R/2L, and that the solution is
I= \j Cent,n).

We can derive the solution in another form appropriate for our pur-
poses by writing

C 1 w
Rvavr S A

1 « dt

= e bt —

Vo N N

e LT
Vp+2an  Jo /i

it follows from Borel's theorem that

Now since

and

3—2)\1'
\/r \/t—r

Now subject this definite integral (omitting the factor v/C/L) to
the same process applied to (117): we get

1§ [ee VI,
R \/Td tqf, Yo
[ t'\/_

+ e 2Ndl+ L.

(2¢)
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The infinite integrals are known and have been evaluated. Sub-
stituting their values this series becomes:—
1 MR S ot
\/2'_7)\;{ TN 21(8M)2 T B1(8M)? }

which is in fact the well known asymptotic expansion of the function
-\
e MIL,(\).

A second ‘example may be worth while. Consider the case of an
e.m.f. e ™ impressed at time t=o0 on a cable of distributed resistance
R and capacity C: required the current entering the cable. The
required formula is ¢

\] —Mr—r)d
Rt o “~r

£- j L _R ! E—AT '
R e ‘\/t—‘r
by obvious transformations.

Asymptotic expansion of the definite integral as in the preceding
example gives the asymptotic formula

C (1 1.3 135
[=— | Y § 1 4 29 4 299 o
R T T @ T

(120)

The operational formula of the problem is

1= [C b
\jR p+)\\/—§

T s
Ritpna VP

—Jlse ey (2o v
\}F () () - h Ve
Applying the Heaviside Rule, we get the asymptotic expansion
C§1, 13 | 135
JT=— | % ) = 4 -2 4 -~
\,th { VARG UG VIR }

which agrees with the preceding formula, derived from the definite

integral.
We shall now discuss a specific problem in which the Heaviside Rule

breaks down. For example let us take the preceding problem, and

§ The derivation of the formulas in this problem is left as an exercise for the
reader.
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replace the applied e.m.f. e by sin wf. The formula corresponding

to (120) is now
7= ‘\}f ! cos wT p 121)
¢ mRVvo Vi—T T (

If we now attempt to expand the definite integral of (121) in the
same way as that of (120), we find that the process breaks down because
each component of the infinite integral is now itself infinite. In fact
no asymptotic solution of this problem exists.

Let us, however, start with the operational formula: since

= ol w
£ e~?'sin wt'dt_;?z-l-w’

_[C wp -
I_JFPZ-I-QF\/P'

Now expand this in accordance with the Heaviside Rule: we get,

operationally, B
= )=+ 0 v

and explicitly
g1 135 |
I=- \L‘Ja‘z e @ap T S

which is quite incorrect.” The incorrectness of the result will be evident
when we remember that the final value of the current is the steady-siate
current in response to sin wf, or

it is

-\);Tg(cos attsin o). (122)

This result can be derived directly from (121) by writing it as

[T { ! cos wi . ./" sin wi
I—deﬁ Cos wt[ ‘\/t‘«— dt-‘-Sll’l wt A ‘\/E- dt } . (123)

If the time is made indefinitely great the upper limits of the integrals
may be replaced by infinity. The infinite integrals are known: sub-
stitution of their known values gives (122).
This example illustrates the care which must be used in applying
Heaviside's rules for obtaining divergent solutions and the importance
7 While this series is incorrect as an asymptotic expansion of the current it has

important significance, as we shall see, in connection with the building up of alter-
nating currents.
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of having a method of checking the correctness of his processes and
results.

We now take up the discussion of the asymptotic expansion solu-
tions of operational equations of the type

h=¢ (p*V/p) (k integral). (123)

In this discussion we shall, as a matter of convenience, assume that
k=0, so that the equation reduces to the form

h=o(\VP). (123a)

This will involve no loss of essential generality, since the analytical
theory of the two equations is precisely the same.

The Heaviside Rule for this type of operational equation may be
formulated as follows: )

If the operational equation h=1/H(p) is reducible to the form

h=o¢ (P*V/b)
and if ¢ admits of power series expansion in the argument, thus
h=ao+ap"V/'p +asp¥+H +aspPtNp + .

a series solution, usually divergent and asympiotic, is obtained by dis-
carding integral powers of p, and writing

h=a,+ (aip*+agp® ! +ap™ 2+ .. )Vp.

The explicit series solution then results from replacing \/p by 1/A/xt,
and p" by d"/di", whence
dE el gokte ) 1

hm&a+(alﬁ+ﬂsm+asm+ . ‘\(4/71'?

Naﬂ_l_(—l)k(all.S (k=) 13... (6k+1) | )

V/ni (20F @y
The theory of this series solution will be based on the following
o . N © e —
proposition, deducible from the identity .LI nt dt=1/ Vp.

If the function F(p) of the inlegral equation
Fo)= [ e
0

approaches 1/7/p as p approaches zero, then f(i) ullimately behaves as
1/~/wt: that is, if F(p)—1/\/p as p—o, then f(t)~>1/+/nt as t—o,
provided that () converges to zero, and contains no term or factor which
is ultimately oscillatory.
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To illustrate what this condition means suppose that

b cos wt

J)= G

then
_[ e ?di~a/\/p as p—0,

and the oscillatory term in f(f) convérges to a higher order. The
presence of such oscillatory terms vitiate, therefore, the Heaviside
Rule: in the following discussion we shall assume that they are absent.

We are now prepared to discuss the operational equation

h=¢ (*\/P)

and for convenience shall assume that k=0 so that the operational
equation becomes

h=¢ (\/p)

of which the corresponding or equivalent integral equation is
-;;¢ (Vp) = L£ W(O)er4dr. (123b)

We assume that ¢(+/p) admits of formal power series expansion in the
argurnent thus

o(VP) = au+a1\/p+aop+aspx/p+a.pﬂ+

without, however, implying anything regarding the convergence of
this expansion.
We now introduce the series of auxiliary functions, 2,81,82,83 « . . .
defined by the following scheme
g(t)=h(t)—a,

a)= g(!)

\/vr
g2(t) =tg
‘/'" (123c¢)
() =t~ S

135 as
2% A/t

gt) =t.gs()+
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Successive substitutions in the integral equation (123b) and repeated
differentiations with respect to p, lead to the set of formulas,

./owu g(t)e—#dt :/@1;? as p—0

wt. (e Pdtes . as p—
fo‘ gi() v/ -0

2
(123d)

> _ 1.3 as
‘/D‘ tgg(t)e Pidteo —27 7‘5 as p—0

o 135 a
‘/(; t.gs(t)ePdteo — R —»\/%as p—0

Now assuming that h(f) satisfies the restrictions stated in the pre-
ceding proposition, it follows from that proposition, that
g() o ar/ /=t as t—o0

az

as [—oo

(123e)

From the set equations (123d) and (123e) it follows by successive
substitutions that

1 1 1.3 1.3.5
h(t) Nﬂo+ﬁ(ax—ﬂa§+asﬁ “GW + .. )

which agrees with the series gotten by applying the Heaviside Rule.
The defect of this derivation, which, however, appears to be in-
herent, is that it requires us to know or assume at the outset that h(t)
satisfies the required restrictions. Consequently an automatic ap-
plication of the Heaviside Rule may or may not give correct results.
On the other hand if we know that an expansion solution in inverse
fractional powers of ¢ exists, the Heaviside Rule gives the series with
extraordinary directness and simplicity. .
The type of expansion solution just discussed will now be illustrated
by some specific problems. The first problem is that of the propagated



CIRCUIT THEORY AND OPERATIONAL CALCULUS 753

voltage in the non-inductive cable in response to a “unit e.m.f”. It
will be recalled that in a preceding chapter we derived the operational

formula
V=e¢ Vor (124)

where & =x2RC, for the voltage at distance x from the terminal of a non-
inductive cable of distributed resistance R and capacity C, in response
to a “unit e.m.f.” impressed at point x=0. Heaviside's solution of
this operational equation proceeds as follows:

Expansion of the exponential function in the usual power series gives

\/_? apVap  (ap)®
~3r T4l

+P

which may be rearranged as
ve1- (142 OO ) ap (L2 B ) 1z

Heaviside then discards the series in integral powers of p entirely,
replaces \/p by 1/4/nt and p" by d"/dt" in the first series, and then gets

—1_ o d* @
V=1 (+3'dt+5!d12+")\)ﬁ

—1- 5 (-5 () +E () -1 (2) )

=1 S (3O () () ). am

This solution is correct, as will be shown subsequently.

A rather remarkable feature of this solution—a point on which
Heaviside makes no comment—is that it is absolutely convergent.
In other words, a process of expansion which in other problems leads
to a divergent or asymptotic solution, here results in a convergent
series expansion.

To verify this solution we start with the corresponding integral
equation of the problem

or

L —va [~ —t
5o V= fo V(e ?dt. (128)

It follows from this formula and theorem (V) that

V(e = _/; o(1)dt
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where ¢(f) is determined by the integral equation

eVar =fm o(f)e—rdL.
0

Now from formula (f) of the table of integrals

V& ”j‘ —Ct,"41
e Ve = — Pt ——
e f‘\/t dt

whence
(t) J —u/4!
"2 N71 1
and finally .
‘ vy =L f e i where ¢ =41/ (129) |
=—= —aT, where ' = .
\/ 0 'r\/ T T

To convert this to the form of (127) we write

1/1' 1 ® o=t
V()= Ve f vfr e I e dr. (130)

The value of the infinite integral is known to be unity so that

L

Now in the integral term of (131) expand e in the usual expo-
nential power series and then integrate term by term: the series solu-
tion (127) results. This series, while absolutely convergent, is difficult
to compute for small values of f; an asymptotic expansion, which can
be employed for computation for small values of ¢ is gotten as follows :—

Write (129) as

- de V7
V-7 ‘f
t” e=1 —

ft' —1/r
Ti' 24/7

Repeated partial integrations of this type lead to the series

V= \ji:g—w' 5, 1— (%’)+1.3(‘—2')2~ .. } . (132)

It is interesting to note, in passing, that an asymptotic solution of
this type does not appear to be directly deducible from the operational
equation. We observe also that, in this problem, the series in inverse

-1/r
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powers of ¢ is convergent while the series in ascending powers of ¢ is
divergent : the converse is the case in the problems discussed previously.

A second specific problem may be stated as follows:

Let a “unit e.m.f.”” be impressed on an infinitely long non-inductive
cable of distributed resistance R and capacity C per unit length through
a terminal resistance R,: required the voltage V on the cable terminals.
The formulation of the operational equation of this problem is very
simple. It will be recalled that the operational formula for the current
entering the cable with terminal voltage V is V+/Cp/R. But the
current is clearly also equal to (1—V)/R,: equating these expressions
we get

1-V
R,

=V~+/pC/R
whence
1
VzT‘
V/A+1
where 1/4/A=R,\/C/R. This is the required operational formula.

To derive the Heaviside divergent expansion, expand (133) by the
binomial theorem : thus

V=1=Vp/N +(/N— (/N + ..
=1—(14+p/N (/N4 . . )VP/N (134)
+ (/N (p/N) (/N4 . L)

Discard the second series in integral powers of p; replace v/p by 1/4/nt
and p" by @"/dt" in the first series, thus getting

(133)

1d 1 d° 1
v=1=(lty gty et ) Ve (135)
1 1. 13
‘1_\7ﬁ(1_§ﬁ+(ﬁ2m)2_ ) (136)

which is the asymptotic solution of the problem.

To verify this solution we shall consider the more general opera-
tional equation
1

h=———
"V p+1
a form of equation to which a number of fairly important problems

is reducible. (The parameter A of equation (133) can be eliminated
from explicit consideration by means of theorem VI.)

(n integral) (137)
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Multiplying numerator and denominator of equation (137) by
p"v/p—1, it becomes
ptVP=1 4 1\/5-——1— (138)

P2n+1 1 PZn-’;—l PZﬁ-l—l._ 1

and by direct partlal fraction expansion, this is equivalent to

2n
n+1 1 Pm
=ont1 2 b—bm InT1 Lt b—pm (139)
where
i _2mw 2mm
pm=e L (m=0,1,2...2n).
Write, for convenience,
2n
h = Z hm
and consider the operational equation
h"'_2n+1(p pm‘/__p bm ) (140)

By the rules of the operational calculus, fully discussed in preceding
chapters, the solution of this is

L part [tetmt7 _). ' 14
om(£) = 2n+1(\/1rf e ) (141)

We have now to distinguish two cases: (1) when the real part of pm
is positive, and (2) when the real part is negative.
Taking up case (1) first, the preceding can be written

P!l+1 t gfmT

i (8) = 5 +1(1+e Ve 1} (142)
1 1+epm£{%—; ow%?d”l}
“on+1 _?;e,,mgj"wg:/p;t i (143)

Repeated integration by parts of the definite integral leads to an
asymptotic series, identical with that obtained by applying the Heavi-
side Rule to the operational equation (137).
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If, on the other hand, the real part of p. is negative, we write (141) as

1 [1—etm
m(t) =5—— .
() =201 pat e (145)
- - T
Vado \Vi—r

The term e=' ultimately dies away, and the definite integral can be

expanded asymptotically in accordance with the theory discussed
under Rule I, again leading to an asymptotic series identical with that
given by direct application of the Heaviside Rule to the operational
equation.

Consequently since the operational equation in /%, can be asymptotic-
ally expanded by means of the Heaviside Rule, the operational equa-
tion in h=2 Im is similarly asymptotically expandible, and the
Heaviside Rule is verified for equation (133).

We have now covered, more or less completely, the theoretical rules
and principles of the operational calculus in so far as they can be
formulated in general terms. We shall now apply these principles
and rules to the solution of important technical problems relating to
the propagation of current and voltage along lines. In doing, so, while
we shall take advantage of our table of integrals with the corresponding
solutions of the operational equation, we shall also sketch Heavi-
side's own methods of solution.

We shall close this discussion of divergent and asymptotic expan-
sions with a general expansion solution of considerable theoretical
and practical importance in the problem of the building-up of alter-
nating currents. It will be recalled from Theorem III that the response
of a network of generalized operational impedance H(p) to an e.m.f.
E(f) impressed at time ¢{=o0 is given by the operational formula

_V)
*THp)

where E= V() is the operational equation of the applied e.m.f.: that
is, analytically

1 = —pt
?V(p) =jo' E(f)e?dt.

Now suppose that the impressed e.m.f. is sin w¢: then by formula (k)
of the table of integrals

V) = (146)
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and denoting x by x;

_wp 1
ST EHG) (147)
If, on the other hand, the impressed e.m.f. is cos «f, then by formula (i)
_ P
Vip) = Prat (148)
and
.. 1
X=x= Py ) (149)

Now let us consider the operational expansion suggested by the
Heaviside processes:

w=2(45) "y
B @iy aw
= () ()

- (B~ (@'l am

Now let us identify 1/H(p) with 2(f) and replace p* by d"/dt": we get

and

_i1ld 14 1d&
M=\l wdp o dF "'fh(t) (152)
and

_y1a@ 14 14" ]

xc—x_EE Edﬁt“ Eﬁ ;h(t) (153)

We have now to inquire into the significance of equations (152) and
(153), derived from the operational equations of the response of the
system of an e.m.f. sin wf and cos wf respectively, impressed at time
t=0. From the mode of derivation of these expansions from the
operational equations it might be inferred that they are the divergent
of asymptotic expansions of the operational equations (147) and
(149). This would certainly not be an unreasonable inference in the
light of the Heaviside expansions we have just been considering. This
inference is however, not correct: on the other hand, the series (152)
and (153) have a definite physical significance, as we shall now show
from the explicit equations of the problem.
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By equation (31), the explicit equation for x;, given operationally
by (147), is

1] i
Xs= df sin wr.k(i—r)dr=fsin w(t—=7)h'(r)dr+h(0) sin wt (154)
dtJy 0
where h'(f) =d/dt h(t). By a well known trigonometric formula, this is

i ]
X =sin wtf cos wt.h'(t)dt—cos wt fsin wt.h'(t)dt+h(o)sin wt.
0 <

t oo o0
t= dt—fdt
Ju=[ o

Xy =sin wt f cos wl.h'(H)di — cos wt f sin wt.h/(f)dt
0 0

Writing

this becomes

- h(o)sin wi— I “sin w(i— Dk (dr. (155)

The first three terms are simply the steady-state response to the
impressed e.m.f. sin wf: that is, they represent the ultimate steady
state value of x; when the transient oscillations have died away. The
last term, which we shall denote by T5, represents the transient oscilla-
tions which are set up when the e.m.f. is applied. Thus

Tp= —f sin w(t— 1)k’ (7)dr. (156)
i
Now from (156)
1 = ’ -
T, = ﬁc_d.[ h'(7).d.cos w(r—1)

and integrating by parts
=120+ f cos w(r—1) T h(x)dr. (157)

Repeating the process of partial integration, we get:

%0 3
r,=L1 dh(t) 1 f sin w(r—t)(%ik('r)dr. (158)

Repeating the process again

=23 h- 5 dﬂh()+1 f sin w(r—1) 2 h(r)dr.
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This process can be repeated indefinitely, and we get

T,= (ld 14, 14d° (— 1)"1d2”1) ®

w di w3d£3 5 dt“ et + 2n—1  Jf2n—1

—1) L
+(w2n) [ sin w(r— t) d;2n+1 h('r)dr (159)

The series expansion (159), except for the remainder term, is identical
with the series expansion (152) derived directly from the operational
equation. This series may be either convergent or divergent, de-
pending on the frequency w/27 and the character of the indicial ad-
mittance function k(). In the important problems of the building-up
of alternating currents in cables and lines we shall see that, even when
divergent, the series is of an asymptotic character and can be employed
for computation.

We thus arrive at the following theorem :

If an e.m.f. sin wt is impressed at time t=0 on a network or system
of generalized indicial admittance i(f), and if the transient distortion,
Ts, is defined as the instantaneous difference between the actual re-
sponse of the system and the steady-state response, then T can be
expressed as the series

1d4 1d4* 14 _ (=11 g2n
(Tu_m thﬂ-i_aﬁEF st w2n—1l  Jf2n— 1)'&@) (160)

with a remainder term

1\ e 2041
( DI sin w(r*ﬁ)%ﬁ h(7)dr.

w2

If the impressed e.m.f. is cos wf, the corresponding series for the trans-
ient distortion, T, is

(1 @ 1d, 1d° (—1)" a2

PAE  wdh | @dp T o dtzn) h(t) (161)

with a remainder term

—1" = d2nt1
( w::n) J‘ cos w(T_t)dft2’=+1k(T)dT'

The second part of this theorem, relating to the transient distortion,
T., in response to an e.m.f. cos wf, is derived from formula (31) by
processes precisely analagous to those employed above in deriving
the series expansion for Ts. The derivation will be left to the reader.

To summarize the preceding discussion of the divergent solution of
operational equations, it may be said that the theory is as yet rather
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unsatisfactory. To the physicist it is unsatisfactory because he
requires an automatic rule giving a correct asymptotic expansion by
purely algebraic operations without investigations of remainder terms
or auxiliary functions. Furthermore, the precise sense in which the
expansion asymptotically represents the solution cannot be stated in
general, but requires an independent investigation in the case of each
individual problem.

On the other hand when an asymptotic expansion is known to exist,
the Heaviside Rule finds this expansion with incomparable directness
and simplicity, the problem of justifying the expansion being a purely
mathematical one, which usually need not trouble the physicist.
Furthermore, on the purely mathematical side, the Heaviside Rule
is of large interest and should lead to interesting developments in the
theory of asymptotic expansions.

(To be continued)



