Correction of Data for Errors of Measurement

By W. A. SHEWHART

INTRODUCTION

VERY measurement is subject to error. This universally

accepted truth is the result of every-day experience. From
the simplest type of measurement, such as determining the length
of a board with an ordinary tape measure, to the most refined type
of measurement, such as determining the charge on an electron,
errors are bound to creep in.

Now, a manufacturer must constantly make measurements of one
kind or another in an effort to control his production processes and
to measure the quality of his finished product in terms of certain of
its characteristics, but, before he can safely determine the significance
of observed differences in his production processes or in the quality
of his product as given by these measurements, he must make allow-
ance for his errors of measurement: i.e., for the fact that the observed
differences may be larger or smaller than the true differences. To
make such allowances for the errors of measurement of any character-
istic, to find out what the true magnitude of the characteristic most
probably is, to find out, as it were, what a thing most probably is
from what it appears to be, presents an endless chain of interesting
problems to be solved.

Three important types of problems arising in engineering practice
are discussed in this paper. They are:

1." Error correction of data taken to show the quality of a par-
ticular lot.

2. Error correction of data taken periodically to detect significant
changes in quality of product.

3. Error correction of data taken to relate observed deviations in
quality of product to some particular cause.

The solution of the first one is presented here for the first time.
The solution of the second has been generalized to include cases not
previously solvable. All three types of problems are illustrated.
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PART I

TypPE 1—ERROR CORRECTION OF DATA TAKEN TO SHOW THE QUALITY
OF A PArTICULAR LoT

Let us take a specific problem first. Assume that we have a lot
consisting of 15,000 transmitters ! and a machine with which to measure
the efficiency of each instrument. Suppose we make one observation
on each transmitter—a total of 15,000 measurements. Suppose we
find, as in the distribution illustrated in Fig. 1, that one measure-
ment is in the efficiency range —1.75 to —1.50, 17 within the range
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Fig. 1—Typical frequency distribution. Chart showing observed number of trans-
mitters versus efficiency

—1.50 to —1.25 units, and so on. The vertical height of a point
represents the number or frequency of occurrence of observations
falling within the corresponding interval laid off on the horizontal
axis of the chart.

So far so good, but suppose a customer wants to buy these trans-
mitters. We know that some transmitter which appeared to have an
efficiency within the range of 1.25 to 1.50 units say, may actually have
had an efficiency within some other interval. We know too that,
because of the errors of measurement, the transmitters appear to
differ more among themselves than they really do. We therefore

L Of course, the efficiency of a transmitter does not remain constant during a

series of tests but these inherent variations in the transmitter may be considered,
for our purpose, as forming a component part of the resultant error of measurement.
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desire to find the most probable numbers of transmitters within the
different intervals indicated in Fig. 1.

Analytical Statement of Problem

Let us assume that the most probable number of transmitters within
the interval of efficiency from X to X4dX is fr(X)dX. It is this
function fr(X) that we want to find. Similarly let us assume that
there is some function f,(X) such that f,(X)dX gives the observed
number of transmitters appearing to have efficiencies within the
interval X to X 4dX where the measurements are made by a method
wherein the probability of making an error within the interval x to x
+dx is fe(x)dx. It is reasonable to expect that, if two of these func-
tions are known, the third can be easily determined. We shall pro-
ceed to show that this is the case. Let us first find the law of error
experimentally.

Finding the Law of Error

The problem is to determine the chance of making an error of a
given magnitude in measuring the efficiency of any transmitter.
Naturally, the only way of doing this is to make a series of measure-
ments on a single transmitter from which we can determine the
observed frequency of occurrence of measurements which differ from
the average by some fixed amount, and thus find what percentage of
the total number of measurements may be expected to fall within
any given range on either side of the average. Common sense and
intuition may tell us that we may expect to find a large percentage
of the measurements within a narrow range on either side of the
average, that there will be just as many measurements greater than
the average by a certain amount as there are less than the average
by the same amount, and that large deviations from the average may
be expected to occur with less frequency than small deviations.
Suppose we make 500 observations of the efficiency of a single trans-
mitter and find the distribution given in Fig. 2. Just as we might
have expected, the observed values of the efficiency of the transmitter
are grouped symmetrically about the average of all the observed
values. We see that the maximum deviation between observations
on a single transmitter is quite large (339;) compared with the actual
maximum differences observed between the efficiencies of the trans-
mitters.

The results reproduced in Fig. 2 suggest that the deviations for the
case in_hand are distributed in a manner closely approximating the
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bell-shaped distribution so familiar in the theory of errors. We often
find, as we do in this case, that the observed distribution can be closely
approximated by a function fe(x) of the form
1 _ (X=X d 1)
— ¢ 2 dx,
6\/ 2T

where fe(x)dx is the probability that an error x will lie within the
i_therval x to x+dx, ¢ is the root mean square or standard deviation,
X is the arithmetic mean value and (X —X) is the deviation x. The

Je(x)dx =
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Fig. 2—Typical form of distribution of errors of measurement, Chart showing
number of measurements on a single transmitter versus efficiency

function fg(x) is referred to in the literature as the normal law of
error. If we try to fit such a curve to the deviations? given in Fig. 2,
we obtain the results shown in Fig. 3. This figure is the same as
Fig. 2 except for the addition of the smooth normal curve of error
calculated for the observed data. Without further consideration, we
shall assume the law of error to be normal and hence of the form

indicated by Equation (1).

Finding the True Distribution fr(X)

We have next to consider the choice of the function to represent
the true distribution fr(X). Often we have reason to believe that this

2 If the average of the observed values of the 500 observations of efficiency given
in Fig. 3 is assumed to be the true value of the efficiency of the transmitter, then the
deviation of an observed value from this mean is also the error of this observed value,
We shall usc the terms “error’’ and “deviation’’ interchangeably in this sense,
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is also approximately normal, and hence we shall consider first the
method for finding the observed distribution f,(X) for the special case
when both the true distribution fy(X) and the law of error fr(X) are
normal; i.e., when they are both of the form given by Equation (1).
We shall first obtain an experimental answer to this problem.
Suppose we take, say, 1,000 instruments of some kind which are
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Fig. 3—Chart showing the observed distribution of errors fitted by a typical smooth
curve. Data of Fig. 2 fitted by normal law of error, Eq. 1

known to be distributed in normal fashion, in respect to some char-
acteristic, with a standard deviation or. Let us measure each of
these instruments by a method subject to the normal law of error
whose standard deviation oz is § or. The results of one such experi-
ment are given in Fig. 4. The observed frequencies of occurrence
are represented by the circles. It was found that this observed
distribution could be closely approximated by a normal law fo(X)
for which the standard deviation ¢, was v/ o%+og. This experiment
suggests a general theorem which will be demonstrated analytically
in a succeeding paragraph. The theorem is: When the true distri-
bution fr(X) and the law of error fz(x) are both normal (hence ex-
pressible in form indicated by Equation (1)) with root mean square
or standard deviations o7 and ¢z respectively, the most probable ob-
served distribution will be normal in form with a standard deviation
co=V or+ok

The observed distribution in Fig. 1 is asymmetrical and hence not
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normal as it should be if f+(X) and fe(x) were both normal. We
must therefore, try some other function for fr(X).

Of course, experiments might be performed for other types of true
and error distributions, but in all such cases the results, as in the
illustration just considered, would be subject to errors of sampling.
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Fig. 4—Experimental results shpwing effects of errors of measurement. Normal curve
fitted to observed points, when the true distribution and the law of error are both
normal

Hence we shall proceed at once to the analytical treatment of the
problem.

Assuming the law of error to be normal, we see that the fraction
fe(x)dx of the number of objects having magnitudes between X +x
and X +x+dx will be measured with an error between —x and —x—dx
and hence will be observed as of magnitude X (Fig. 5). Thus

53y = [ 51X ks, @)

For the particular case treated in a previous paragraph where both
the true distribution f7(X) and the law of error fr(x) are normal,
we may write Equation (2) in the form

o0 (X+x)= xr
£(X)dX = —L f e 20 e 202dX dx 3)

orog2T

where o1 and ¢z are the root mean square or standard deviations of
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the true and error distributions respectively. Integration of Equation
(3) gives ?

3 4

'ld‘
S.|%

1 _
oA X)) =- — ¢
JolX) Y
where

do=\ o5+ 0k (5)

Equations (4) and (5) are the analytical expression for the rule stated
“previously, for finding the observed distribution fo(X) when both
the true and error distributions are normal, because Equation (4)

TRUE DISTRIBUTION = £1{X)
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Fig. 5—Chart used in explaining the derivation of f.(X) in terms of fr{X)

shows it to be normal and Equation (5) expresses the standard devi-
ation ¢, of the observed values in terms of those of the true values
and of the errors.

In practice, however, we often find that the true distribution is
non-symmetrical or skew and can be more nearly approximated
by the function *

frlX) = \1/2?_[1_1?2(;_ =2 v

where Er is a measure of the asymmetry or skewness, the modal or

most probable value of X being at a distance — I%T from the average

1 See Appendix 1 where another method of solution is given.

1 This is often referred to in the literature of statistics as the second approxima-
tion. It isin fact the first two terms of the Gram-Charlier series.
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value of X. Substitution of this expression and a normal error
function in Equation (2), yields upon integration® the following
distribution f.(X) of the observed values

] i,[_ko XX
fG(‘X)_JOvZTe 20| 1 3(}:_303)] @)
where
0= 0%+ ok, (5)
and
0T
kawkng. | (8)

We see that the distribution fo(X), Equation (7), of the observed
values is of the same form as that f#(X), Equation (6), of the true
values. The standard deviation of the errors of measurement g,
as in the previous case, has equal weight with the standard deviation
op in influencing the standard deviation ¢, of the observed values.
The degree of asymmetry of the observed distribution as measured
by the skewness ko is, however, less (Equation (8) ) than that of the
true distribution as measured by the skewness kr of the true dis-
tribution,

Now we can correct the observed distribution, Fig. 1, for the errors
of measurement, because we find that the observed frequencies,Fig. 1,
can be closely approximated by a function of the type defined by
Equation (7). Knowing that the law of error, Fig. 3, is normal we
conclude that the true distribution f7(X) must be a function of the
same type as fo(X) was found to be except that the true standard
deviation 7 will be, from Equation (5), v/¢2+0¢% and the true skewness

1
kr will be, from Equation (8), U—: k.. Now, ¢, and k, can be calcu-
or

lated from the observed distribution, Fig 1, and ¢g can be determined
by the data given in Fig. 3.

Thus finding the values of o7 and kr and substituting them in
Equation (6), we have the function fr(X) representing the true dis-
tribution which we started out to find. From this knowledge of
fr(X) we can now get the most probable frequencies of occurrence
of the different efficiencies. Subtracting these frequencies from those
abserved and shown in Fig. 1, we get the corrections plotted in Fig. 6,
expressed as percentages of the observed frequencies.

& This solution is also obtained by another method in Appendix 1.
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Summary

We are now in a position to summarize the practical routine to be
followed in finding the most probable distribution f7(X) of quality
when the observed distribution is given.

To find f7(X), we must first know the law of error fu(x). We
must show this to be normal and find the standard deviation og
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Fig. 6—Correction which must be applied to the observed distribution of transmitters
Fig. 1, because of the existence of errors of measurement

by multiple tests on a single unit. The error made in determining
. . . . a- -

the standard deviation o5 from » observations is :/;i; Hence the pre-

cision we attain in finding f1(X) depends upon the number of obser-

vations # made in finding 7.

Having found ¢z to the required degree of precision, we must next
discover whether or not the observed distribution fr(X) is either
normal or the second approximation. Standard statistical methods
can be used for this purpose.

If the f,(X) is normal, we then know that

1 x:

fr(X)=

— € 2(@i—-0%).

V27 (0i— %)

and, if f (X) is second approximation, we know that fr(X) is given
by Equation (6), where or and kr can be found with the aid of Equa-
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tions (5) and (8) in terms of the observed values of ¢r, o, and k..
In other words we have

X
frx )_\/zw(l,,—a,z)e P
X X3
[ —(f-" _U'E) ((U'g—‘??g)—;_ 3(0’3—0%)%)].
PART II

CoORRECTION OF DATA TAKEN PERIODICALLY TO DETECT SIGNIFICANT
CHANGES 1N QuaLiTy oF Probuct

Irrespective of the care taken in defining and controlling the manu-
facturing processes, the units of a product will differ among them-
selves in respect to any measurable characteristic. Random fluctua-
tions in such factors as humidity, temperature, grade of raw material,
and wear and tear on machinery may produce such differences be-
tween units of a product. Such random variations in the factors
underlying the manufacturing process usually yield a product in
which the units differ in random fashion according to some law of
probability.

Customarily, product is inspected periodically, and the data are
analyzed to determine if the observed difference in two samples is
greater than can be accounted for as a random variation. If it is,
we may assume that the manufacturing processes have changed
significantly for some reason which further investigation should dis-
close. Now, the presence of errors of measurement effectively in-
creases the magnitude of the random differences to be expected from
one sample to another and hence makes it harder for us to detect
trends or fluctuations in product. Let us investigate this effect of
errors of measurement.

Symbolic Statement of Problem

Symbolically we may assume that the probability of production of
a unit of product having a characteristic X within any range X to X
+dX is f7(X)dX, where the characteristic X is measured by a method
subject to a law of error fz(x), so that frz(x)dx represents the proba-
bility of occurrence of an error x within the range x to x+dx. The
problem is to find the corresponding distribution f,(X) for the ob-
served magnitudes. ;
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General Solution of Problem

Obviously the observed magnitude X, is the algebraic sum of the
true value X and the error x. Assuming that there is no correlation
between these two quantities, the probability of a unit having a value
of X within the range X to X + dX being measured with an error x
within the range x to x + dx is fr(X)dX fe(x)dx. Assuming that
X,=X-+ux we may write the probability

yo=fuXJaXo= [ fr(Xom2)dXofs(x)dr,

because f,(X,) is obtained by taking into account that all possible
values of & between 4+ o and — o may be combined with a given X.
This integral is of the same form as that given in Equation (2). Inte-
gration for the case where both fr(X) and fe(x) are normal gives

1 b

Jo(Xo) =——=e~

— € 2
goN 2 g

where as before 0,=v/0%+0c%. This result is well known as the law
of propagation of error.

When fz(x) is normal and f(X) is given by the first two terms of
the Gram-Charlier series, Equation (6), with skewness kr and stand-
and deviation o7, the observed distribution fo(X,) is of the same func-
tional form as the true distribution fr{X) and has values of standard
deviation o, and skewness &, given by Equations (5) and (8) in Part I.
This result appears to be new. '

Now for the case where the true distribution f¢(X) and the law of
error fe(x) are both second approximation type, the integration is
somewhat tedious, but we can approach a special case of this problem
easily from a slightly different angle as indicated in Appendix 2.
Under certain special conditions therein set forth, the resultant dis-
tribution is also second approximation form with a skewness which

1
is less than that of either f7(X) or fe(x) and is equal to \—/=2kr when
kr=Fkg, the standard deviation ¢, being again equal to Vot ok
Example of Applications to Determine Most Economical Way of Measur-
ing Quality

Let us next consider a very simple method of using the above
results to indicate the most economical method for determining the
quality of product with a given degree of precision.
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What is the most economical way of determining the quality of
product within some predetermined range X=+AX with a known
probability P, where X is the average quality? Let us assume that:

a; =cost of selecting each unit and making it available for measure-
ment,

@, =cost of making each measurement,

1y =number of units selected,

#s =number of measurements made on each unit,

oy =standard deviation of the errors of observation.

gy =cp=standard deviation of the true distribution f7(X).

Let us take P=.9973. Then the range X +3¢x includes 99.73 per
cent. of the observations, and hence AX =3¢%.

The average of #; measurements made on one unit is the observed
value of the magnitude X for that unit, and this average has the

. o1
standard deviation ¢ E=—\/n_' Hence, from the theory of the preced-
2

ing section, the standard deviation of the observation is

2
o 7 g
co=\ o+ ok = \/a5+;‘.
2

The standard deviation of the average of #u; observations is

[oF .
ox=—2 and we find upon solving for 7,

—

VN

The cost of inspection is
y=a n1+as iy s,
and by customary methods this can be shown to be a minimum when
g1 s
Ng = — G_ .
g2 s

The following values correspond to one practical case:
AX =.3 unit a,=$0.50
o) =.3 unit a»=$0.02
g =.9 unit P =.9973
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Thus with the aid of the above theory we find the most economical
method of inspection requires 2 observations on each of 86 units.

A pplication in Selting Limil Lines

Over 99 per cent. of the averages of samples of size N drawn from
a product whose law of distribution is f7(X) where fr(X) is either
normal or second approximation may be expected to lie within the

. = . ar
limits defined by the true average X plus or minus 3\_/ﬁ If an average

falls outside these limits, this fact is taken as probably indicating the
existence of a trend or cyclic fluctuation in product, the cause of
which should be sought. The presence of errors of measurement
increases the separation of these limits to 6o, from Goz. Our pre-
cision of detecting trend or cyclic fluctuation is thereby decreased.

Cases often happen in practice where o, is from 15 per cent. to
25 per cent. greater than ¢7. In some instances oo has been found
to be nearly 50 per cent. greater than or.

PART III

ErrOR CORRECTION OF DATA TAKEN TO RELATE OBSERVED
DEvVIATIONS IN QUALITY OF PRODUCT TO
SoME PARTICULAR CAUSE

In many practical cases it is not possible to write down an equation
to show how the quality of a finished product depends upon the
factors controlled by different manufacturing steps. To cite one such
case, we may know that the quality of the finished article depends
upon the control of the temperature to which some of the piece parts
are heated in the process of manufacture. Thus the microphonic
properties of carbon depend upon the temperature to which the
carbon is heated. In cases where the relationship between quality
and some factor (such as temperature in the above illustration) can
only be determined through a study of the correlation existing between
the quality and the particular factor, use must be made of the correl-
ation coefficient » which is defined as

Zyx
r=
G'xo'yN

where x and y represent respectively deviations from the average
quality X and the average magnitude Y of some factor which is
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to be controlled by the manufacturing process, and N is the number of
observations. Now, if errors of observation are made in determining
x and ¥, the observed correlation coeficient ry,y, is known to be given
by the expression

TxCTy
¥xoyo = Fxy (10)
TxgTyo
where Oxo= \/ai + JEE and Oyo= \/cr"; - aﬁs,

oz and oy, being the root mean square errors of observation of x and
y respectively.

Attention is directed to Equation (10) which shows that the observed
correlation coefficient ry,y, is always less than the true correlation co-
efficient 7., irrespective of the number of observations made. Ob-
viously, this point is of considerable commercial importance as we
shall now see.

If the observed correlation is small, we customarily assume that
there is little need of trying to control the quality X by controlling the
manufacturing factor ¥, whereas this conclusion cannot be justified
unless it can be shown that the true correlation has not been masked
by the errors of measurement.

This point has had to be taken into account in the development
of machine methods for testing transmitters and receivers, because
the calibration curves of the machines in terms of ear-voice tests
depend upon the correlation coefficient.

APPENDIX |

It may be of some interest to certain readers to note that the results
given in Equations (4) and (7) can also be obtained in the following
way by the method of moments so often used in statistical investi-

gations.
Assuming that fr(X +x) is expansible in terms of a Taylor’s series,

we get

2
50 =100+ G0+ () 0 +
(k)
IE(?E) fEX)+ oo (11)

If we substitute a normal form for fr(X) in Equation (11) and
solve for the moments of f,(X), we find that the odd moments are zero
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and the ratio of the 4th moment to the square of the 2nd is numerically
3 which indicates that f,(X) is normal in form.

A similar substitution of the 2nd approximation form for fr(X) in
Equation (11) yields a distribution fo(X) from whose moments we
deduce Equation (7). Use is made in this proof of the easily demon-
strated theorem that

[ wi@ =0
if i < j, where f}; is the jth derivative of the normal law function.

APPENDIX II

It is well known that the normal law of distribution may result from
a system of n (n being large) causes each of which produces an incre-
ment AX measured from some fixed origin with a probability =1 and
no increment with a probability ¢g=3%. Furthermore the second ap-
proximation may result from a similar system in which p+g¢ and =
is large. Under such systems of causes, the probabilities of the oc-
currences of #, n—1,...3, 2, 1, 0 increments are given by the suc-
cessive terms of the point binomial (p4¢)".

Let us assume that the symbols pr, ¢r, n7, AX and pg, qg, ng, Ax
refer to the systems of causes controlling the product and errors
respectively. The probabilities of observed combinations n7AX+
nedx, (np—1)AX +(ng—1)Ax, . . . are given by the successive terms
of the expansion (pr+qr)"" (pr+gr)"®. Now for the special case
pr=pr=p and AX =Ax we have the resultant probability distribu-
tion (p+¢)"T™"E with skewness

=—t -
\/ pg(nr+ng)
and standard deviation

go="pq(nr+ng).

Now if p=g, the skewness k. is zero and the observed distribution
is more nearly normal than either component, and its standard devi-
ation ¢ is the square root of the sum of the squares of o7 and of.
This result is similar to that given by Equation (4) of this paper.

We may also consider by this method a case not treated in this
paper. When the skewness kr of the true values is equal to that
ke of the law of erior, or, more particularly, when nr=nr=n, pr=
pe=p, gr=qr=q, p=gq, we see that the observed distribution is given
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by the successive terms of (p+4g)" and the skewness of the observed

e .1 - .=
distribution &, is :/3 k, and the standard deviation g, is /2 o i.e. the

. I . e
observed skewness is only \/-5 times that of either the true distribution

or the law of error, and the observed standard deviation o, is /2
times the standard deviation of either of the true or error distributions.



