The Theory of the Operation of the Howling
Telephone with Experimental Confirmation
By HARVEY FLETCHER

Synopsis: A general theory of the sustained oscillations of electro-
mechanical systems is presented in the paper. The electrodynamical
properties of the telephone transmitter and receiver are described and
sufficient numerical data are given to enable one to calculate the intensity
and frequency of howling for various types of systems., Detailed con-
sideration is given to the following three systems, namely, one where the
transmitter and receiver disphragms are coupled together mechanically
by a lever system, one where they are coupled by a small box of air, and
one where they are coupled by a long tube of air. The type of electrical
circuit to use with each of these systems depends upon the type of perform-
ance desired.

HEN the telephone receiver of a subscriber’s set is held in

front of the mouthpiece of the transmitter, a shrill note is
emitted. A sustained oscillation is set up in the electro-mechanical
system which is frequently called “howling' or “singing”’ or “hum-
ming."”’

This phenomenon was first observed by A. S. Hibbard of
the United States in 1890. Frank Gill was the first to publish an ac-
count of the phenomenon. He first noted that the pitch of the howling
note was changed by reversing the telephone receiver connection. In
summarizing further his experimental results, he states ‘‘that the pitch
ol the note appears to be determined by the length of the column of air
between the two diaphragms and the conditions of the circuit. As the
periodic time of the circuit is increased, the time of the note rises. To
some extent, the pitch is governed by the rate of the diaphragm, but I
do not think this is so important a factor as the others. The main
factors appear to be the angle of lag and the length of the column of
air between the diaphragms. Although the vibration is a forced
one, we could almost see. that its rate is largely dependent on the
free period of the circuit.” !

In 1908 Kennelly and Upson extended Gill's work and made ex-
tensive experimental investigations of the case in which the trans-
mitter and receiver are coupled together acoustically by means of a

1 Taken from a paper on “Notes on the Humming Telephone” by F. Gill, read
at a meeting of the Dublin Local Section of the Society of Telephone Engineers

and published in the Journal of the Institution of Electrical Engineers, Vol. XXXI,
1901.
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hollow circular tube of varying lengths and electrically by means of
an induction coil. The summary of the conclusions is as follows: *

“(1) The mean frequency of the humming-telephone note is de-
termined solely by the receiver diaphragm, and its natural free rate
of vibration. (2) The ascending intersections of the frequency
zig-zag with the mean frequency line will be formed approximately
at tube lengths of (3/4+m) v/n, cm. for one connection, and of (1/4+
m) v/n, cm. for the other connection, of the receiver; where v is the
velocity of sound in air, # is the mean frequency in cycles per second,
and m is any positive integer, within the working range of the tube.
The constants 3/4 and 1/4 may be modified by the presence of con-
densers, and other circumstances. (3) The range of pitch variation.
and the breaking positions, are determined by the transmitter, and
by the reinforcing capability of the system. For systems that are
weak, either electrically or acoustically, the range of pitch, above or
below the mean, will be small. (4) The primary current, as measured
by a DC instrument, is ordinarily a minimum at the mean frequency,
and a maximum at a break. (5) Transmitters may be tested for
effectiveness, by measuring their hum-extinguishing resistances in
the primary or secondary circuit. The tube length should be such
as to produce mean frequency if one connection of receiver only is
used, but should favor both connections equally, if both connections
of receiver are used.”

They also give a first approximation theory to account for the
changes in frequency as the length of the coupling tube is changed.

In 1917, H. W. Nichols gave the general equations for the
special case where the two diaphragms act as pistons closing the
ends of a tube of air. This case was given as an illustrative example
of the “Theory of Variable Dynamical Electrical Systems.” *

This paper gives a theoretical treatment of the behavior of a system
containing a transmitter and a receiver coupled together acoustically
and electrically, and with a source of electrical energy feeding the
transmitter. Formulae are deduced which give the frequency and
intensity of howling in terms of the physical constants of the system.
Numerical calculations are given and sufficiently detailed solution
of some special cases are given to enable one, who is interested in
using the howling telephone as a source of alternating current or
for other experimental work, to design the set for his particular
purpose.

? “Humming Telephone” by A. E. Kennelly and Walter L. Upson, American

Philosophical Society, July 20, 1908.
3 I’hysical Revicew, Aug., 1917, p. 191.
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GENERAL SoLUTION OF THE HowLING CIRCUIT

The elements of a telephone system which is howling are the trans-
mitter, the receiver, the mechanical coupler and the electrical coupler
as indicated in Fig. 1. If there is a source of electrical power in the
electrical coupler, which is released by movements of the transmitter
diaphragm in the form of electrical vibrations, and also, if there is a
proper relationship between these four elements, then a sustained
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Fig. 1

howling will result. In other words, if the gain in the transmitter
due to its amplifying action is just equal to the losses in the electrical
and mechanical circuits, then a steady oscillatory state will be
maintained. The problem is to determine the nature of these
relationships.

Assume that the conditions are such that a steady oscillatory
state has been set up. Under such conditions let T be the electrical
impedance of the transmitter, R the impedance looking away from
the transmitter terminals into the electrical coupler, and Zg the
impedance of the receiver. It is well known that the impedance Zg
is dependent upon the velocity of motion of the receiver diaphragm.
Also, T is dependent upon the amplitude of motion of the transmitter
diaphragm as well as upon the direct current supplied to it. Conse-
quently, the impedances defined above are not only dependent upon
frequency but also upon the mechanical coupling and magnitude of
the current supplied to the transmitter.

If e is the electromotive force created in the transmitter, and 7 the
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current flowing through it both expressed in root mean square values®,
then
e=(T+R)i (1)
It is convenient to define a quantity M which I shall call the uni-
lateral mutual impedance by the qeuation

€1=M‘i1 (2)

where ‘¢, is the electromotive force created in the transmitter when
a current 4; flows in the receiver circuit. [t is a quantity which is
closely related to the effectiveness of the mechanical coupling and
the efficiencies of the transmitter and receiver.

If the electrical coupler be considered part of the receiver, and
the transmitter and receiver circuits are connected together as in
Fig. 1, then e=e¢,, and i=1,. Consequently

M=T+R (3)

is the condition for sustained oscillation. This condition is in effect
a pair of conditions, as the two sides of the equation must be equal
both in amplitude and in phase. These two conditions are sufficient
to determine the frequency and intensity of howling.

In order to express M and R in more fundamental physical constants,
it is necessary to examine more closely the mechanical and electrical
connections. Before doing this for some important special cases,
it will be necessary to discuss some of the electro-dynamical properties
of transmitters and receivers.

ELECTRODYNAMICAL PROPERTIES OF TRANSMITTERS
AND RECEIVERS

For the sake of clarity the discussion will be confined to permanent
magnet receivers and carbon transmitters. The modifications neces-
sary for other types of instruments will, I think, be evident from the
discussion. Representing by Fr and Fr the forces acting on the
diaphragms of the receiver and transmitter respectively, and by y
and z their displacements, we have the following equations defining
the “‘stiffness factors” Sg and St

]",r\-
Spg=-" 4
o= @)

_fr
Sr= p, (5)

4In what follows all quantities involving periodic variations will be expressed
as root mean square values unless otherwise specified, and the vector notation
will be used for denoting phases.
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These factors are usually complicated functions of the frequency
while St likewise depends on the kind and amount of agitation. In
the case of a system of a single degree of freedom which may be
regarded as a first approximation to this case

S=mw’+jur+s (6)

where w is 27 times the frequency. When referring to the movements
of a diaphragm, the quantity m represents the mass, r the mechanical
resistance, and s the elastic constant. The stiffness factor S divided
by jw is usually called the mechanical impedance.

Measurements have shown that for the transmitters and the
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receivers used in the experiments described below, the following
constants represent approximately the two stiffness factors in the
region of resonance

Sk = — .03 +230jw+3 X 107 . (6"

Sr=—4.50*+2000jw+2 X 10 (6")

An important constant which enters into the determination of the
unilateral mutual impedance 3/ is the force factor of the receiver
which will be designated by Z. It is defined as the force in dynes
acting upon the diaphragm per unit of current. For the receivers
used in this investigation, its values in magnitude and phase are shown
for various frequencies in Fig. 2. These were determined by the
method outlined by Wegel.> In the region of the resonant frequency
its value in absolute units can be approximately represented by

Z=53X10°|24°, (7)

® Theory of Telephone Receivers—Wegel, R, L., Jour. of A. 1. E, ., Oct, 1921,
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The impedance Zg of the receiver varies with frequency and de-
pends upon the load on the diaphragm. If S is the loaded stiffness
of the diaphragm, that is, its resistance to force under actual working
conditions, and Z; is the impedance of the receiver when the diaphragm
is prevented from moving, then it is well-known that

Wl

Zr=Zstj 3" (8)

It was found that Zs expressed in ohms could be represented in the
frequency region near resonance by the formula

Z4=93+4.06f+ j(43+.15f) (9)

where f denotes the frequency in cycles per second.

The electromotive force e created in the transmitter, the direct
current I flowing through it, and the displacement of the diaphragm
are related in a rather complicated way. For describing this rela-
tionship it is convenient to define a modulation factor i by the
equation

e=1TIhz (10)

Combining this equation with (2) it is seen that

M=Ihi:.— (11)

which shows that the modulation factor is also an important one in
determining the unilateral mutual impedance. For a sustained
oscillation the factor Ik does not enter into the periodic variation
and may be thought of as an electro-mechanical impedance between
the electromotive force created in the button and the displacement
of the diaphragm of the transmitter. However, for a different condi-
tion of sustained oscillation which results in giving 2z a different mag-
nitude the value of % changes. In other words % is dependent upon
the agitation of the carbon as represented by 2, and also upon the
direct current supplied to the transmitter. It is mainly this variable
character of % that makes it possible to fulfill the conditions for sus-
tained howling.

Simultaneous measurements of e, I and z were made upon several

transmitters of the type used in this investigation. From the results
obtained and from the defining equation (10) for %, it was found that
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the following empirical equation would represent approximately the
relation between %, I and 2, namely

32+§
h=— i (12)
(2.G+25+E) (I+.03)

where z is expressed in microns and I in amperes e in volts and &
in ohms per micron. To facilitate solving for z when % and I are
given, a set of curves showing this relation is given in Fig. 3. It
is this modulation factor # which measures the efficiency of the trans-
mitter button.
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It is also necessary to know the dependence of T upon z and I.
To obtain this relation corresponding values of e and V, the DC
drop across the transmitter as measured by direct current measuring
instruments, were obtained for various degrees of agitation and
amounts of direct current. Four transmitters were used in establish-
ing the relation, the results being shown in Fig. 4. Then, for any
value of the supply current I a value of T can be obtained from V.
From the corresponding e a value of  and g can be obtained from
equations (10) and (11). In this way the relations shown in Figs. 5
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and 6 were obtained. It is thus seen that for a given type of trans-
mitter if the direct current and any one of the four quantities e, k, z,
or T are known, the others are determined and may be obtained from
suitable curves.
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Commercial receivers and transmitters have constants which vary
largely from those given above. These values represent the general
behavior of such instruments and are useful in understanding their
operation in a howling circuit. Inasmuch as the performance of such
instruments particularly the transmitter depends very largely upon
the condition of operation the constants given cannot be applied
with confidence to conditions greatly different from those mentioned
in the paper. With these facts concerning telephone instruments
in mind we are now in a position to treat some special cases.

CastE 1—Di1apHrRAGMS CONNECTED MECHANICALLY BY A RIGID
AxD WEIGHTLESS LEVER

To illustrate the method of solution this special case will be solved
in some detail. A diagrammatic sketch illustrating the connections
is shown in Fig. 7. Neglecting the reaction of the air, the vibration of
the receiver diaphragm is controlled by the force Zi exerted by the
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receiver winding and the opposing force X exerted by the connecting

rod.
Z R———"-_g X

——
£ T

T
E k=300
Fig. 7

The amplitude of motion of the receiver diaphragm is then given by

Zi—X
i (13)
If the lever is rigid and weightless and has an arm ratio ¢, then
Fr=cFg (14)
and due to the restraint
X
Using these equations together with equation (11) it is seen that
*]I:CSR-I-%ST (16)
1
S=SR+FST, (17)
R=Zi+i"C +h. (18)

The relation between I and T is given by

E

I= s 19
T+ Roc+r (19)
where Rpe is the direct current resistance of the receiver winding
and % is the line resistance. The condition (3) for howling then

becomes

1hZ =(Za+k+T) (csﬁ+%sr) +jwZic. (20)
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This is equivalent to two scalar equations and taken together with
(19) and the curves of Fig. 6 gives the necessary four equations to
solve for the unknowns f, i, T, and 1.

The solution, however, is not straightforward since the rela-
tion between 7, 7T, and [ is only given empirically by a set of
curves. By “cut and try” methods the solution for any numerical
case can be obtained. The last term of (20) is usually negligible
or at least it is of second order of magnitude. Consequently, the
sum of the phase angles of the other factors must be approximately
equal to the phase of Z. This completes the formal solution for
this case.

The solution of a numerical case throws considerable light upon
the physical phenomenon taking place, and also upon the method ol
calculation. Let the arm ratio be unity, a case corresponding to that
when the diaphragms are connected directly together, and assume
that the supply current is furnished by a battery of 24 volts through
a line having a resistance of 300 ohms. Using the constants for the
receivers and transmitters given above and expressing f in kilocycles,
1" in ohms, 7 in amperes and & in ohms per micron, equations (19)
and (20) become

24

e (19

Th 52]24° =[393 4+ T+60 f+j(43 + 150 )] [ —2.14 f24

2347141147 1.7, (20

If I is positive there is no solution for f, since the angle of the first
factor is in the first quadrant, and that of the second factor either
in the first or second; consequently, the phases cannot match at any
frequency. If the supply current is reversed, then I is negative or
180° is added to the phase of the left hand member making it a positive
156°. The solution for this case is

f=1072 cycles 1 =8.2 mils
I =064 e=25.5 volts
1"=150 ohms y=z=1.9 microns

I=45 mils
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o
[v/s]

If a value of ¢ equal to 2.7, which is approximately equal to the
square root of the ratio of mechanical impedances of the two dia-
phragms, then the solution for reversed DC supply becomes

f=1001 cycles 1=10 mils
h=47.3 e="7.16 volts

T =236 ohms z=23.9 microns
I=39 mils y=10.5 microns

It is thus seen that changing the ratio arm has increased the howling
intensity, but the increase for the various elements is greatly different.
The frequency is slightly lowered, the values of & and I have been

Z—> [%'

Fig. 8

reduced by 269 and 149 respectively, while the values of y, z, T,
i and e have been increased 4009, 1059, 579, 229, and 309, respect-
ively.

If the circuit of Fig. 7 is modified as shown in Fig. 8, the induct-
ance L being very large, then the condition for howling becomes

IhZ

A e e L 1)
¢Sr+t _Sr

and
24

I= 300+T7"

(22)
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Using the same constants as above the condition for howling
becomes

Ih 52 |24°.= [93-|-T+60f+j(43+150f) —%’?][ —2.14/24-2.3+
7.14f14+71.7f (23)

The solution for values of K= 1 mf, K=1/2 mf, and K= 1/5 mf
are given in Table I. When K= 1 mf and the supply current is direct
the solution which satisfies the phase equality is f= 506. This corre-
sponds to 7= 220 which is an impossible value. Therefore, no howling
will be sustained for this condition. For K=1/2 mf the system will
howl for both direct and reversed supply current, the frequency
changing suddenly from 839 to 1119 cycles as the current is reversed
while the other variables change only slightly.

TABLE 1
K=1 K=1/2 K=1/5
Direct Reversed Direct Reversed Direct Reversed

f 1016 839 1119 035

It | 220 33.5 53.5 57.4 44.2

T Lo ‘ 275 160 140 220 | ...
I . | 42 52.2 54.5 46

i 20 18.3 17.0 10.9

e L. 8.2 6.13 5.6 7.5

z | e 5.9 2.2 1.8 3.7 | ..
¥ | .. 16 5.95 49 10 | ...

It is interesting to note the change in the howling frequency as
the value of K increases. When the supply current is negative, and
for values larger than 1 mf, the frequency of howling is always close
to 1000, as K goes from 1 to 1/2 the frequency increases to above
1100. For smaller values of K the frequency continues to slowly
increase until, for values smaller than 1/3, the system ceases to
sustain oscillations.  For positive values of supply current no howling
will result until K becomes smaller than 2/3 where the frequency is
around 800. The frequency then increases reaching a howling fre-
quency around 1000 for K= 1/7. For smaller values of K no howling
will be sustained.
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Case II—DiaparacMs CouPLED TOGETHER BY A SMALL
CHAMBER OF AIR

It will be assumed that the air chamber is so small that the phase
of the pressure variation is the same on both diaphragms. Let V
be the volume of air between the diaphragms. Then

V="VotQry+Q12 (24)

where 1 is the volume of air in the undisturbed state and Qg and Qv
are the effective areas of the receiver and transmitter diaphragms
respectively.

The pressure variation in the chamber (changes considered adiabatic)
is given by

dp=—7§dV=*{Q©H%hﬂ7% (25)

When the steady state is set up this may be considered a vector
equation and the variables expressed in rms values.

The equations of motion for the diaphragms are

_Zi—Qrdp .
- SR (2b)
and
o rdp
s=rg 7(27)
Solving
. yP
zd&+7@ﬂ
y= ] (28)
SSr+ 22015k + 1 0t S1
P
T 0rQr
== p O (29)
Sr+ T Q7
M= . ThZQrQr (30)
FSRST +Qr2Sr+Qr*ST

In this case the ratio between z and v is not fixed, but depends upon
St which is a function of the frequency.
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The loaded stiffness of the receiver diaphragm is

%,SRST+QT25R+QR25T
S= f- : (31)

%
_';P‘ST+QI'2

For the transmitter and receiver used
QR = 5.13,
Qr=10.3.
Let the volume of entrapped air he taken as 10 cc., then

vP

v =1.418X10°

Using these values and the values for Sg and Sr and the circuit
of Fig. 8 with K =14 the condition for howling becomes

11 3.48| 24° =27.6/°+ (50.34 459 T) f1— 59,93 — (1.017 +85.7) f2-+ 31 o
+(.539T+33) +2 l:(iSf""—i—lG.?f" — (05067 +11.1)f3— 4052

1 (05377 —233)f+23.2-+ 1}—2] (32)

where I is expressed in amperes, T in ohms, f in kilocycles and & in
ohms per micron.

For reverse current or negative I the solution is

/=970 kilocycles i=24 |17°

h=30.5 e=8.7 volts

17'=290 ohms z="7.0 microns

1 =.0407 mils y=1.9 [158° microns

Comparing this to the case where the diaphragms are coupled by a
lever having an arm ratio 2.7 it is seen that the air coupling produces
a greater e.m.f. in the transmitter and only a slightly increased AC
current. The receiver diaphragm in this case, however, has a smaller
amplitude than the transmitter diaphragm. At this particular
howling frequency the transmitter diaphragm stiffness is only about
1/4 that of the receiver diaphragm stiffness which explains this
anomalous result. Also, it will be seen that the diaphragms vibrate
almost oppositely in phase.
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These cases are sufficient to illustrate the method of calculation, but
there is one other important case for which I desire to give the results
as this is the case handled experimentally by Kennelly and Upson.

CaseE III—DiarHRAGMS CONNECTED ACOUSTICALLY BY A TUBE OF
Air oF UnirForM CROSS-SECTION WITH AN
AIr CuamBer AT Bota Exbps

In this case the two diaphragms are connected acoustically by the
air, but since the tube has considerable length phase differences exist
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R=———

NETWORK

Fig. 9

at different points along it. The connections are shown schematically
in Fig. 9.
The equation of motion for the receiver diaphragm is

_Zi—Qrdpr _ Zi
and for the transmitter diaphragm is
rd
2= g (34)

where dpr and dpr are the pressure variations in the air chambers
at the receiver and transmitter ends of the tube respectively.

The equations of motion for a gas in which the movements are
small and in only one direction and in which the fluid friction is
neglected are as follows: ¢

¢ _ ,d%

de =Y der (35)
dp __dg .
b T (36)

¢ See Rayleigh ‘‘Theory of Sound,” Vol. 11, pp. 14 and 15, 49 and 50.
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where ¢ is the velocity potential, / the time, a the velocity of sound in
the air, x the distance along the tube, p the pressure and p the density
of the air.

For the case in which we are interested, a sinusoidal oscillation is
sustained, so that the special solution

wX

¢ = et (A cos% + B sin E) (37)

is suitable for our problem. Quantities A and B are arbitrary con-
stants which are determined by the end conditions. Substituting
this value of ¢ in equation (35), there results

dp= — pjwe’et (A cos &;E +B sin @a'—t) (38)

It remains then to determine the arbitrary constants A and B.

At the receiver end of the tube, the displacement, {g of the air
diaphragm across the end of the tube is related to the displacement
v of the receiver diaphragm. This relationship is established by the
following consideration. If ¢ is the cross-section of the tube, the
increase in volume in the air chamber is given by

dVr=({rg—YQr). (39)

Assuming that the air chamber is so small that the pressure change
at any instant is the same throughout, and that it takes place adia-
batically, we have:

b
= —_— = 4
dPR Y VRdVR ( 0)
Combining equations (33), (39), and (40), we obtain:
— - Vi 2
gSrtr=QrZ1 ('}’PSIH_QR )dpg (41)
Similarly,
o — Vrg 2 . 4
qSri{r = ( TPSI +Q1 )dPI (42)

Then the following conditions must be fulfilled at the two ends of a
tube of length 7.

_ . dqﬁ:idfﬁl

Atx=0, dp=dpr and dx ~ dt’
d d

at x=1, ap=dprand 2=
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These conditions give the following equations:

awpA +SrB=jaZ"ip (43)
( awp cos +S; sin —)A—l— (amp smj — S cosio—l) B=0 (44)
where
Sh=— I8 spo 9T g ZOR
2y "Rg 2 Tq.. ey 'Tg
QR+7PR Ql—i__"/Pl QR“}'__YPR
Solving for the constants A and B, we find their values to be:
A= jaZ’iu( S} cos 9; —awp sin ‘(‘Ii’) +D, (45)
R ) / .
B =]aZ’1o(ST sin % +awp cos %) =D, (46)
where
T . mi ’ ’ wl
D =[SkST— (awp)?] sin -~ +awp(Sg+57) cos - (47)

The two pressure values are then given by:

dpr=Ztawp (ST Cos%l —awp sin %l) =D, (48)
dpr=_Zlawp St+D, (49)
and
wl

V=5, D[SRST (awp)® (1 QR#)SIHE +
. Z’ l DD Y
awp (SfaS} (1 —QRZ)) cos% ' (33"
_ng(I’wp Q?:'________ o fQR A7
=D [QTLI-KT:ST QRH——SR:" (34)

P P

The loaded stiffness of the receiver diaphragm is given by

qQOrQrawp (N sm — +P cos i'E)

: !
ST?;;D[((Qg“ %’ VRVT) Slni +a(Vr+ Vi) cos = —

awp( —|—gQ; cos j) (50)

P
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where
(awp)® VrVr
N=5¢S Lawp) ,,,,,_:l_
: Rﬂwp QRQT (v#)* QrOr
awp\ Qr - awp Qr
se(%) ) on Ve =St (G omve G
V +IR 1
P=5e 2 4508 4 5p5 : 52
R O +.57 5 Q ® - Sr 010k vp (52)
The unilateral mutual impedance A is given by
Iz
M= W (53)
N sin— +P cos—
a a
The condition for sustained howling becomes
1z, wl wl -
T—I—Rk Nsm—-{—P cos—. (54)

If the two diaphragms work directly into the connecting tube as
pistons, then Qr=0r=¢=0 and Vg=Vr=0 and the expressions
for A and S become 7

M= _Ihz Q awp = (55)

[SrST— (awp)*Q?] sm 4+ (Sr+.Sr)Q awp cos

[SkSr—(awQ)?] sin L;—F—l— (awpQ) (Sk +ST)COS%I
S=- S,.V . ﬁl_i_ 0 ol . (56)
7 sin—+awp Q) cos

The method of solution is the same as that given for the simpler
cases, although it is evident that the actual work of calculation is
more involved.

It is seen that in such a system the intensity and frequency depend
upon a large number of quantities, namely : S and Sg, the diaphragm
stiffness factors; Qg and Qr the effective areas of the two diaphragms;
Vi and Vr the volumes of air entrapped between the diaphragm
and the opening into connection tube; the length I and the cross
section ¢ of the connecting tube; the pressure a, the density s, and the
velocity of sound a for the gas in the connecting tube; the resistance
T, direct current I and modulation factor . of the transmitter; and

T These two equations were given by II. W. Nichols in essentially this form in
the Physical Review, Vol. 10, p. 171; 1917.
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the force factor and impedance of the receiving circuit. Modification
of any of these may produce marked changes in the resulting howling.

The way the length [ enters the formula (54) for sustained howling
indicates that the curves representing the possible frequencies of
howling, that is, frequencies which produce equality of phase on both
sides of the equation, vary periodically with the length.

The intersection of the branches of these curves on any given
frequency line will be separated by distances corresponding to %,
that is, corresponding to a wave length at the pitch corresponding
to f. Also, if the supply current is reversed, that is, the sign of [

TUBE LENGTH
l 365 CMS

-

changed, and the length of the tube varied until the frequency of
howling is brought back to the original value, the change in length
a
of
quantities in equation (54) remain unchanged except the sine and
cosine factors. Adding a half wave length is equivalent to adding =
to the angle which makes the left hand member the negative of its
first value, and consequently, restores the phase equality.

Using the circuit shown in Fig. 10 for the electrical coupling, the
frequency of howling was computed for various tube lengths, the
results being given in Fig. 11.

The instrument constants were those used before, the other values
being Vr=1.6 cc., Vy=6.4 cc., and ¢=.97 cm.?, ¢ =3.43 X 10* cm/sec.
p=.001203 gm/cm?®. Using these values the formulae for NV and P
become

N=(—131f5+7.5%— 9.68f+3.26j1_) X 1084j(.141f* — .63f2+.36) X 108,

Zeo~

Fig. 10

must be equal to For since the frequency is unchanged all the

P=(5.5*—12.35f2+46.77) X 1054 ( — .60f3+.66f) X 108,

where f is the frequency in kilocycles.

The points on the calculated curves of Fig. 11 were obtained by
direct experimental observation with the circuit shown, and with
various lengths of brass tube coupling the transmitter and receiver
together, The agreement between the calculated and observed



THEORY OF THE IHOIWWLING TELEPHONE 47

values is well within the experimental error involved in determining
the constants used in the calculation.

In Fig. 12 are shown similar calculated curves for a transmitter
called “hollow,” that is, for one having a lower natural period of
vibration. It is coupled to the same receiver as used before. The
dotted curves in each case represent the behavior for reversed current.
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In Figs. 13 and 14 are shown the probable frequencies of howling
for these two transmitters as the tube length of the coupler is in-
creased. The shaded areas are the so-called breaking points where
the howling mav be at either of the frequencies shown.

With these facts in mind let us review the conclusions reached by
Kennelly and Upson given in the beginning of this paper. It is seen
that conclusion (1) is not warranted. The transmitter and circuit
conditions as well as the receiver diaphragm influence the mean
frequency of humming. The second conclusion regarding the branches
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of the curves representing the relation between frequency and tube
length is correct and the explanation has just been given. This
periodic relation is not only true of the mean frequency line but for
every constant frequency line.

. 14 V
The terms corresponding to s . and # o depend upon a number of
o 0

factors including the circuit and end conditions. Conclusion (3) is
partially correct, the range of the howling frequencies depending
upon the efficiencies of the transmitter, receiver, and circuit is evident
from equation (54). Calculations show that conclusion (4) is generally
correct although not necessarily so.
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When the transmitter and receiver are coupled by the air in an
open room the behavior is somewhat similar to the case just solved.
The size and shape of the room as well as the disposition of articles
of furniture will all influence the intensity and frequency of howling.
In general when the two instruments are moved apart the frequency
will go up and down similar to that when they are coupled by a tube.

NOMENCLATURE

T  Transmitter Resistance.

R Impedance looking away from Transmitter Terminals.

Zp Impedance of Receiver.

Z; Damped Impedance of Receiver.

¢ Llectromotive Force Created in the Transmitter.

i Alternating Current in the Transmitter Branch.
M Unilat?ral Mutual Impedance between Receiver Current and Transmitter

e.m.f.

Fr Force on Receiver Diaphragm.

Fr TForce on Transmitter Diaphragm.

Sg  Stiffness Factor of Receiver Diaphragm.
Sy Stiffness Factor of Transmitter Diaphragm.

v Receiver Diaphragm Displacement.

2z Transmitter Diaphragm Displacement.
m  Mass of Diaphragm.

r  Mechanical Resistance of Diaphragm.

s Elastic Constant of Diaphragm.

f  Frequency.
w 2 times Frequency.
Z  Force Factor of Receiver.
S Loaded Stiffness of Receiver Diaphragm.

I Direct Current Supplied to Transmitter.

¥ DC Voltage Drop across Transmitter Terminals.

& Modulation Factor of the Transmitter.
X Mechanical Force on Receiver Diaphragm for Case I,
E  Electromotive Force of Supply Battery.

F  Resistance in Line for Case I.
K Capacity of Condenser.

Ve Volume of Air in Front of Receiver Diaphragm.
¥y Volume of Air in Front of Transmitter Diaphragm.

On Effective Area of Receiver Diaphragm.
Or Effective Area of Transmitter Diaphragm.
p  Air Pressure.

v  Adiabatic Constant.

¢  Velocity of Potential.

Velocity of Sound in Air.

Distance Along Connecting Tube.

Density of Air.

Displacement of Air Particle at Receiver End of Tube.
Displacement of Air_Particle at Transmitter End of Tube.
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