Electric Circuit Theory and the
Operational Calculus’
By JOHN R. CARSON

CHAPTER VI

PrROPAGATION OF CURRENT AND VOLTAGE ALONG THE
NoN-INDUcTIVE CABLE

HE principal practical applications of the operational calculus in

electrotechnics are to the theory of the propagation of current
and voltage along transmission systems. Of such transmission sys-
tems the simplest is the non-inductive cable. The theory of the
non-inductive cable is not only of great historic interest, relating as it
does to Kelvin's early work on the possibility of transatlantic teleg-
raphy, but is also of very considerable practical importance today,
and serves as a basis for the theory of submarine telegraphy over long
distances. We shall therefore consider the propagation phenomena
in the non-inductive cable in some detail.

The propagation phenomena in any type of transmission system
are isolated and exhibited in the clearest possible manner when we
confine attention to the infinitely long line, with voltage applied
directly to the line terminals. Furthermore, as we shall see later,
the solution for the infinitely long line is fundamental and can be
extended to the more practical case of the finite line with terminal
impedances. We therefore, in this chapter, shall confine our atten-
tion to the case of the infinitely long cable with voltage applied directly
to the cable terminals.

Consider a cable of distributed resistance R and capacity C per
unit length, extending from x =0 along the positive x axis. From a
previous chapter (see equations (64) and (65) ), we are in possession
of the operational equations of voltage and current; they are, for the
infinitely long line,

y=e—var 7, (162)
1 i
I= 3 \ap e Vo=\/%em\fap V., (163)

where a=x2RC, and V, is the terminal cable voltage at x=0. Let
us now assume that the terminal voltage V, is a “‘unit e.m.f.”’; then

V=e Var, (164)
1, _
I=E\/ap e~ Vorp, (165)

1 Continued from the October, 1923, issue.
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The solution of (164) for V was considered in some detail in the
preceding chapter; it is, by (129)

1 e~ l,'r

V= \/Wfo vt (166)

where 7=4¢/a=41/x*RC. Series expansions of this solution were
also given. Another equivalent form is, by (131)

V=1-— e Tdr. (167)

This last form, recognizable also from inspection of the series expan-
sion (132), is useful because the integral term is what is called the error
function and has been completely computed and tabulated.

Before discussing these formulas and the light they throw on propa-
gation phenomena in the non-inductive cable, we shall derive the
solution for the current. A very simple way of doing this is to make
use of the differential equation (57)

__1o
I= R 3 V.
Now from (166) and the relation
o _drd
dx  dxdr
we get
RV 1 eV d 4
o A/mr\/r dxx°RC
—__2 em
1T V1
whence
2 -1/r C o1/
T, 168
JLR\/?F \/— 7rRt ( )

It is worthwhile verifying the formula by direct solution from the
operational equation (165). From formula (g) of the table of in-
tegrals, we have

h=e"2VA /p \/ ]—(é

6)‘1\]
K
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Comparison with the operational equation shows that they are iden-
tical, within a constant factor provided we put A=a/4. Conse-
quently the solution of (165) is

I= \] ,C, e—a/4f _— % e~ Ut

which agrees with (168). This, it may be remarked, is an excellent
example of the utility of the table of integrals in solving operational
equations.

This formula is easily calculated for large values of ¢ by expanding
the exponential function; it is

Rx\/m[l () ;I(I)Z_"']‘

The propagation phenomena of the non-inductive cable are there-
fore determined by the pair of equations

1 e Ut /7
V= [' d —1——f emd 169
Vado v VT ’ (169)

2 eTUT C Y- )
- = = 170
vrxR \/7 TR (170)

4t
where r=4t/a = ERC

and

Now an important feature of these formulas is that the voltage
. . . 4 . ..
at point x is a function only of 2RO t; that is, of 4t divided by the total

resistance and capacity of the cable from x=0 to x=x. The same
statement holds for the form of the current wave: its magnitude,
however, is inversely proportional to xR, or the total resistance of
the cable up to point x. Consequently a single curve, with proper
time scale serves to give the voltage wave at any point on the cable.
Similarly a single curve, with proper time and amplitude scales,
serves to depict the current wave at any distance from the cable
terminals. These curves are given in Figs. 3 and 4.

Referring to the curve depicting the current wave, we observe that
it is finite for all values of ¢>0; consequently, in the ideal cable, the
velocity of propagation is infinite. This is a consequence, of course,
of the fact that the distributed inductance of the cable is neglected.
Actually, of course, the velocity of propagation cannot exceed the
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velocity of light. The error, however, in neglecting the inductance
in the case of long cables is appreciable only near the head of the wave
provided we confine attention to d.c. or low frequency voltages. This
point will be discussed and explained more fully in connection with the
transmission line.

The current, while finite, is negligibly small until 7 reaches the

/ T TT—

A . R B S N et

/

S

\ Multiply ordinates byl/xR

=4t/ X*RC
05 10 15 20 25 30 35 40 as 50

o

Fig. 3—Current in non-inductive cable (G =0) unit e.m.f. applied
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Fig. 4—Voltage in non-inductive cable (G =0) unit e.m.f. applied

value 0.2. In the neighborhood of this point it begins to build up
rapidly; reaches at =2 its maximum value

2 e 2 (0429)
/7 xR \/2__\/1;1'}2 o

and then begins to decrease, ultimately dying away in accordance
with the formula

2 1 1 1/1\2 ]
SRR I P R
Vi xR\t J[ T+2I() J

T
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Its subsidence to its final zero value is very slow; for example, when
=100 its value is still
_2
\/ T xR

Turning to the voltage curve, Fig. 4, we see that it is negligibly
small until = reaches the value 0.25, at which point it begins to build
up. Its maximum rate of building up occurs when r=2/3, after

(0.10).
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Fig. 5—Power transmitted in non-inductive cable (G=0)

which it builds up more and more slowly. Its approach to its final
steady value is in accordance with the formula

2 1,11
V_1—7;(1—§+§!5—72— .. )

Even, therefore, when 7 is as great as 100, V differs sensibly from its
ultimate value, unity, its value being 0.8876.

C .. it follows that the speed of building

. . . xR
Since the actual time is 1

up is inversely proportional to the square of the length of the cable.

The power curve VI is given in Fig. 5. V.I is the rate at which
energy is being transmitted past the point x of the cable.

The fact that the form of the current and voltage waves depends
only on 4¢/x?RC is at the basis of Kelvin's famous “KR" law, long
applied to cable telegraphy and sometimes incorrectly applied to
telephony. When the first transatlantic telegraph cable was under
consideration, Kelvin attacked the problem of propagation along the
non-inductive cable and arrived at formulas equivalent to (169) and
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(170). From these formulas he announced the law that the “speed”
of the cable, i.e., the number of signals transmissible per unit time,
is inversely proportional to the product of the total capacity and total
resistance of the cable (KR in the English notation). To see just
what this means requires a little digression into the elementary
theory of telegraph transmission.

Telegraph signals are transmitted in code by means of “dots”
and “dashes.”” The “‘dot” is the signal which results when a battery
is impressed on the cable for a definite interval of time, after which
the cable is short circuited. A ‘“‘dash' is the same except that the
time interval during which the battery is connected to the cable is
increased. The ‘“dots” and ‘‘dashes’” are separated by intervals,
called “spaces”, during which the cable is short circuited. Now when
the cable is short-circuited we may imagine a negative battery im-
pressed on the cable in series with the original battery. Conse-
quently the current in the cable, corresponding to a signal composed
of a series of dots, dashes and spaces, will be represented by a series
of the form

1) = It —t)+I(t—t) —I(t—t)+I(t—t)— . .. (171)
where, in the cable under consideration, I(f) is given by (168). £ is
the duration of the first impulse, £2—#; of the first space, f3—fs of the

second impulse, etc.
Now by (168)

-1/
1) = 2 e 2

SRV 7 N1 xRV
r is, of course, 4¢/x*CR=4t/KR (in the English notation). Now
suppose that

— (7).
T

4ty
=—=%"
T ¥CR
To= 4t , ete.
© xCR
Then the signal can be written as
2 )
,\_R\/;‘}¢(T)_¢(T_T1)+¢'(T_TE)— CEERE ) (172)
Now if the relative time intervals 7q, 72 . . . are kept constant (as the
length of the cable is varied), the actual time intervals fi, f» . . . are

proportional to a?CR or to KR, and the wave form of the total signal
is independent of KR, when referred to the relative time scale .
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Hence, if 7" is the total time of the signal, T" is proportional to *CR
(or to KR). That is to say, il the duration of the component dots,
dashes, spaces of the signal are proportional to the “KR" of the
cable, the wave form of the received signal, referred to the r time
scale, is invariable, and the total time required to transmit the signal
is proportional to the ‘KR’ of the cable. Now the maximum theo-
retical speed of transmission on the cable is limited by the require-
ment that the received signal shall bear a recognizable likeness to
the original system of dots and dashes: in other words there is a
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Fig. 6—Elementary telegraph signals in non-inductive cable

maximum allowable departure in wave form between received and
transmitted signals. 1f, therefore, the actual speeds of two cables
are inversely proportional to their “KRs,” the wave form will be the
same. This establishes Kelvin's “KR" law. As a corollary, if the
length of the cable is doubled the speed of signaling,is reduced to one-
quarter, assuming the same definition of signals.

The foregoing will be somewhat clearer, perhaps, if we refer to
curves, 4, 5, 6, 7 of Fig. 6 which illustrate the distortion suffered by
elementary dot signals in cable transmission. Curve 4 shows the
dot signal produced by a unit battery applied to the cable terminals
for a time interval {=2 %‘, while curves 5, 6 and 7 are the cor-
responding dot signals when the battery is applied for the time in-
tervals ﬂcn 1 ¥*RC and 1 ngC.
4 2 4 4 4
tion of the impressed dot, beyond that shown in curve 7, does not

Any further decrease in the dura-




ELECTRIC CIRCUIT THEORY 57

affect the shape of the transmitted dot, which means that the cable
speed has reached its theoretical maximum. These curves, it should
be observed, can be interpreted in two ways. First, we can regard the
length x of the cable as fixed and the duration of the impressed dot
as varied. On the other hand, we can regard the actual duration of
the impressed dot as constant and the length of the cable as varied.
From the latter standpoint the curves illustrate the progressive dis-
tortion of the signal as it is transmitted along the cable.

The dot signal of relative duration 7" can be written as
D=1I(r), <T
=I(T)—I(‘T‘—T), r<T

and the second expression can be expanded in a Taylor’s series, giving

.d 17 g
D—TEI(T)— 97 dp I(r)+ ...
If T is sufficiently short this becomes
D=T I'(). (173)

Hence when the dot signal is of sufficiently short relative duration
T, the wave shape of the received signal is constant, I'(r), and its
amplitude is proportional to the relative duration of the dot.

This can be generalized for any type of transmission system:
Let the dot signal be produced by an e.m.f. f(t) of actual duration T
Then the received dot signal, by formula (31), is

D=%l:'f(r)1(z—r)dr, 1<T

d (7
=5 | S@1a=ndr, T,
For ¢> T this becomes
D=I'(I)l).rf(r}dr~—I"(I)lj.Trf(r)dr+ o
and for sufficiently short duration T, we have approximately,

D=I'U) -.[0 Ty, (174)

Hence for a sufficiently short duration of the impressed e.m.f. the
received dot signal is of constant wave form, independent of the shape
of the impressed e.m.f., and its amplitude is proportional to the time
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integral of the impressed e.m.f. These principles are of considerable
practical importance in telegraphy.

The leaky cable, that is, a cable with distributed leakage conductance
G in addition to resistance R and capacity C, is of some interest. The
differential equations of the problem are given in equations (70); the
operational formulas for the case of voltage directly impressed on the
terminals of the infinitely long line are

V=¢~¥VCRITRG |/,
I ‘JPC+ ﬁ:\-"émR& Vo.

Writing CRx*=« and RGx?*=3, G/C=M\, and assuming a “unit e.m.f.”
impressed on the cable, this becomes

V=g~ Varts, (175)

I= \}%\/p—-l—)\ ¢~ Varig, (176)

These equations are readily solved by means of the table and formulas
given in a preceding chapter.

But first let us attempt to solve the operational equation (175) for
the voltage by Heaviside methods, guided by the solution of the
operational equation

V=e—Var (124)

of the preceding chapter. Expand the exponential function in (175)
in the usual power series; it is

Vel apiB +(af)+ﬁ) (aP+B)3\'/aP+6 L. 177)
Now discard the integral terms and write
ap+B , (ap+3)? -
V=1— {l-i- P3' +( Po!'ﬁ) .ns }\/q@-}-ﬂ (178)

We have now to interpret the expression 4/ap+B8. We have by
ordinary algebra

Veapth=(1+5) "Vap= (14 2) "Vap
TERTE TR W

(179)
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N

9

Now identify 4/ with 1/4/# in accordance with the Heaviside rule,
and 1/p with ‘ dt. We get
N_ (0

Varth= % -G

Now in the terms of the expansion (178) identify p" with d"/dt"
and substitute (180); we get

O\tf)3 } . (180)

et (1ot (e o o)+

x\jﬁ { 147, g +1475 }

This series is hopelessly complicated to either interpret or compute.
It is, in fact, an excellent illustration of the grave disadvantages under
which many of Heaviside's series solutions labor. We shall there-
fore attack the solution by aid of the theorems and formulas of a
preceding section. The simplicity of the solutions which result is
remarkable.

(181)

The operational formula for the voltage is
V=¢— Varts, (175)

Now the operational formula for the voltage in the non-leaky cable
is (see equation (164))

V=e"Vap,

In order to distinguish between the two cases, let us denote the voltage
in the latter case by V°; thus

Vo=eg—Vap, (182)
Now by theorem (VII) and equation (182) we have

- P —vapm
Vee M= _—~=— g~ Valrth),
Pt

(183)
=—p_ e \’EPTI':T_
p+A
Now write (175) as
PN P varid
V=t—>.—=""—¢ \IGP‘HQ
x ’
p P+ (184)
= 2‘ L —Vap+B,
(5) o™
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It follows at once by comparison with (183) and the rule that 1/p is
to be replaced by [ dt, that

V= (1+>xfdr) Voe~M, (185)

By a precisely similar procedure with the operational formula (176)
for the current, we get

I= (1+xfcz:)loe—m (186)

where I° is the current in the non-leaky cable. Now by formulas
(169) and (170)
1 /e p=1/t

=1 d,
VT o it

Ir= % e—e/it, (170)

Ve (169)

which completes the formal solution of the problem.

Formulas (185) and (186) are extremely interesting, first as showing
the superiority of the definite integral to the series expansion—compare
(185) with the series expansions (181)—and secondly as exhibiting
clearly the effect of leakage on the propagated waves of current and
voltage. We see that in both the current and voltage the effect of
leakage is two-fold: first it attenuates the wave by the factor e ™,
(A\=G/C), and secondly it adds a component consisting of the pro-
gressive integral of the attenuated wave. This, it may be remarked,
is the general effect of leakage in all types of transmission systems.
Its effect is, therefore, easily computed and interpreted.

Formulas (185) and (186) are very easy to compute with the aid
of a planimeter or integraph; or, failing these devices, by numerical
integration. However, for large values of ¢, the character of the waves
is more clearly exhibited if we make use of the identity

I g =] g J--1
fdt=] dta[ dt
0 /0 /Sl

V=14 IL dt)Vae-M—x J VoeMd (187)
i

whence

and
I=(1+AJ d:)rﬂew—xj Tee—Mdl, (188)
0 [}
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The first two terms of these formulas are clearly the ultimate steady
state values of the voltage and current waves, and can be deter-
mined by evaluating the infinite integrals. A far simpler and more
direct way, however, is to make use of the fact that the ultimate
steady values of V and I are gotten from the operational formulas
by setting p=0. That this statement is true is easily seen if we
reflect that the steady d.c. voltage and current are gotten from the
original differential equations of the problem by assuming a steady
state and setting d/dt="0.
From the operational formulas we get, therefore,

(1+)J -dt) VoeN=¢=VB =¢-+VEG, (189)
0

(1+h.£mdt) Joe=M= \f% e VB = \lg e~*VEG, (190)

Introducing these expressions into (187) and (188) respectively, we get

V=e~ﬂ’7€3—7\f VeeMdt, (191)
3

I= \IC—; e*vﬂ’ﬁ?—xf IeeNd. (192)
R oSl
The definite integrals can be expanded by partial integration; thus

2 [ Voo Mt — J Vode
Sl

3
o d
— _ Vop—M__ -n 2 o
T7e j: e Vedt.
Continuing this process we get
V=g—xVE_e—ht(1+i a2

VAR TR ) Ve, (193)

I= \I% Vi (14 D Fot ) oy
Using the values of V° and I°, as given by (169) and (170), it is ex-
tremely easy to compute V and I, for large values of f, from (193)
and (194).

So far we have considered the current and voltage waves in re-
sponse to a ‘“‘unit e.m.f.,”” impressed on the cable at x=0. It is of
interest and importance to examine the waves due to sinusoidal
e.m.fs., suddenly impressed on the cable, particularly in view of

proposals to employ alternating currents in cable telegraphy.
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We start with the fundamental formula

w(t =§—tff(¢—f)k(f)dr

- l: = () dr

provided /(o) =0, which is the case in the cable.
If f(¢) =sin wt, we write

y
xs(f) =sin wtf cos wt.l'(¢)dt
0

. (194-a)
—cos wtf sin wi.B'(£)dt.
0
Similarly, if the impressed e.m.f. is cos wt,
¢
x,(f) =cos cutf cos wt. ' (£)dt
()
(194-b)

13
Fsin of f sin ot B (1)dt.
0

The investigation of the building-up of alternating currents and
voltages, therefore, depends on the progressive integrals

1]
C='[0‘ cos wt.B'(t)dt,

, (194-c)
S=‘£sin wt B (£)dt.

For the case of the woltage waves on the non-inductive, non-leaky
cable these integrals, by aid of equations (169), become, if we write

w =aw/4,
c_1 f"e“f’f cos m’rd
- : I,
0
Vi T\_ﬁ (194-d)
S 1 fre‘”f sin w'rd
7 Jo N1 T
where, as before, T =4f/a.
For the current wave we have, by (170),
2 71 1\e VY7 cos w'r
C=—F—*—'7f — |
/7 xR Jo (7 2) ™1 dr,
(194-e)

_‘?,,,,fr(l_l)mdr
S=VrxRb \772) o
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For small values of r and o' these integrals can be numerically

evaluated without great labor. Mechanical devices, such as the

Coradi Harmonic Analyzer, are here of great assistance. In fact
the Coradi Analyzer gives these progressive integrals automatically.
It may be said, therefore, that a complete mathematical investiga-
tion of the building-up of alternating current and voltage waves
on the non-inductive cable presents no serious difficulties, although
the labor of computation is necessarily considerable. One fact makes
the complete investigations much less laborious than might be sup-
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Fig. 7—Non-inductive cable (G =0), building-up of alternating current.
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Applied e.m.f. cos wh; w=2r 5
pplied e.m.f. cos wt; w=2mw ERC

posed. This is, if the foregoing integrals are calculated for a given
value of «’, the results apply to all lengths of cable and all actual
frequencies w/2w, such that aw is a constant. Then if we double the

length of the cable and quarter the frequency, the integrals are un-
affected.

The solid curve of Fig. 7 shows the building-up of the cable voltage
in response to an e.m.f. cos wf, impressed at time (=0. The fre-
quency w/2r is so chosen that o' =aw/4=2m, and the curve is cal-
culated from equations (194-b) and (194-e). The dotted curve shows
the corresponding sfeady-stale voltage on the cable; that is, the voltage
which would exist if the e.m.f. cos wt had been applied at a long time
preceding t=0. We observe that, for this frequency, the building-up
is effectually accomplished in about one cycle, and that the transient
distortion is only appreciable during the first half-cycle.
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The case is very much different when a higher frequency is ap-
plied. Fig. 8 shows the building-up of the alternating current in the
cable when an e.m.f. sin wf is applied at time t=0. The frequency
is so chosen that o' =aw/4=107. The outstanding features of this
curve are that the initial current surge is very large compared with
the final steady-state, and that the transient distortion is relatively
very large. It is evident that the frequency here shown could not be
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Fig. 8—Non-inductive cable (G=0). Building-up of alternating current.
4

Applied e.m.f. sin wf; 0= IOWW

employed for signaling purposes. This curve has been computed
from the steady-state formulas, and equations (160) and (161) for
the transient distortion.

If the applied frequency w/27 is very high, the steady-state becomes
negligibly small, and the complete current is obtained to a good
approximation by taking the leading terms of (160) and (161). Thus
if the applied e.m.f. is sin w#, and w is sufficiently large, the cable
current is

2 1d eV
VR dr/r

by (160) and (170) while, if the impressed e.m.f. is cos wt, it is

2 142 42 e~ VT
Vel 7

by (161) and (170). Here ' =aw/4 and 7=4¢/a.
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CHAPTER VII

THE PROPAGATION OF CURRENT AND VOLTAGE ALONG THE
TRANSMISSION LINE

We now take up the more important and difficult problem of
investigating the propagation phenomena in the transmission line.
The transmission line has distributed series resistance R and in-
ductance L, and distributed shunt capacity C and leakage conductance
G. 1t is the addition of the series inductance L which makes our
problem more difficult and at the same time introduces the phenomena
of true propagation with finite velocity, as distinguished from the
diffusion phenomena of the cable problem. The cable theory serves
very well for the problems of trans-oceanic telegraphy ® but is quite
inadequate in the problems of telephonic transmission.

If I denotes the current and V the voltage at point x on the line, the
well known differential equations of the problem are:—

(ng-I-R) I=— %V,

(195)

d __ 20
(cg+e)v=-2rL
Replacing d/dt by #, these become
- _29
(Lp+R) I= axV'
5 (196)
(Cr+G)V=— ﬁI‘
From the second of these equations
ov_ _ 1 9,
ox  Cp+Gow®
and substitution in the first gives
2
(Lp+R(Co+OT =5 1. (197)
Similarly if we eliminate I, we get
2
(Lp+R)(Cp+G) V=é%2V. | (198)

8 With the installation of the new submarine cable, continuously loaded with per-
malloy, this statement must be modified. In this cable, the inductance plays a very
important part, and is responsible for the greatly increased speed of signaling ob-
tainable.
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If we assume a solution of the form
V=Ae Y| Bers

where 4 and B are arbitrary constants, substitution shows that the
solution satisfies the differential equation for V" provided

¥ =(Lp+R)(CPp+G). (199)

From equation (196) it then follows that

I:L}Z;R (AB_T'Y—BBT:()

_CP+G
¥

(200)
(Ae-vx— Bevv),

Now restricting attention to the infinitely long line extending along
the positive x axis, with voltage V, impressed directly on the line at
x=0, the reflected wave vanishes and we get

V="Vee 7,

I= @jﬁ — (201)

v =(Lp+R)(Cp+G).

Now let us write

1
=L i) (202
where -
v=1/+/LC,
R G
P=§i+§a¥|
_R_G
H) A Tou

Then setting V,=1, the operational equations of the problem become
V=e iV aim-o, (203)

— %\f:p+p)=—a'-'

I=w(C+ g)pe (204)

V(p+e)—d
Now consider the operational equation, defining a new variable F:

F=ptl® DA (205)
vV (p+p)r—a
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It follows at once from our operational rules, and (203) and (204), that

]
1=z.(c+cf @), (206)

«JO

. ["oF
v=—u[ L. (207)

Our problem is thus reduced to evaluating the function F, from the
operational equation (205). This equation can be solved by aid of
the operational rules and formulas already given. The process is
rather complicated, and there is less chance of error if we deal instead
with the integral equation of the problem

- \ (P'HJ]
e /(H — f Ft)e"d1. (208)
N p)—

Now let us search through our table of definite integrals. We do
not find this integral equation as it stands, but we do observe that
formula (m) resembles it, and this resemblance suggests that formula
(m) can be suitably transformed to give the solution of (208). We
therefore start with the formula

B SN oo R
f’\/ Pﬂ’:rj_i‘.: I e TN BN dL. (m)

This, regarded as an integral equation, defines a function which is
zero for £ < and has the value J,(n/2—\2) for =X\, J, being the Bessel
function of order zero. We now transform (m) as follows:

(1) Let \p=q and f/\=t,. Substituting in (m) we get

e VoA

100 _qu _
. = SO —1) dis.
VN Lln e L(wvii=1) dh

Now, in order to keep our original notation in p and ¢, replace ¢ by p
and #; by t; we get
I e mnon/e=T) d (m.1)
= e P, (NN 1P — . m.
VPN
(2) In (m.1) make the substitution p=g¢+p and then in the final
expression replace g by p; we get
Voo —V RN
e
f e~ e m (M E—1)dt = . (m.2)
Ji ° \/(P-l— )z_i_)\z
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(3) In (m.2) make the substitution p= % g and f;= % t, and ulti-

mately replace ¢ by  and #; by {; we get

o — VTR
—ptg=mtJ, M\ g2 m.3
.L:'u e ()\l\lﬁ )d \/(P'Hu) +A° n-2)

where A\ = -%)\ and p;= % p. (They are, of course, as yet, arbitrary

parameters, except that they are restricted to positive values).
(4) Now if we compare (m.3) with the integral equation (208)
for F, we see that they are identical provided we get
H1=p,
=ic=0v—1,

which is possible, since p>o.
Introducing these relations, we have

e~ =V Bip—oi
VAR
Here I, denotes the Bessel function of imaginary argument; thus

Jo(i2) =1,(2).
It follows from (m.4) and the integral equation (208) that

F(t) =0 for i<x/v, (209)
=e~ P, (e E—x2/v?) for i=x/v.

Having now solved for F= F(f), the current and voltage are gotten
from equations (206) and (207). Thus

I=0 for t<x/v,

Lv e~ e P I,(0A/F—x2/v?)dt= (m.4)

< ! (210)
- \;T, F(f) +9G f F(O)dt for t2x/o.
xfv
The corresponding voltage formula is
V=0 for ¢ <x/v,
(211)

e PT[(o\/ 2 — &7
xfv '\/‘J’2 —x2/z:2

Here I,(c A/ —x%/2%) is the Bessel function of order 1: thus —iJ;(iz) =
I(z). The function is entirely real. The derivation of formula
(211) is a little troublesome, owing to the discontinuous character of
the function F: the detailed steps are given in an appendix.

= e-.p_t/,._,_%ﬁf dr for tZx/v.
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The preceding solution depends for its outstanding directness
and simplicity on the recognition of the infinite integral identity (m),
into which the integral equation of the problem can be transformed.
When such identities are known their value in connection with the
solution of operational equations requires no emphasis. On the
other hand, we cannot always expect to find such an identity in the
case of every operational equation; and, particularly in the case of
such an important case as the transmission equation it would be
unfortunate to have no alternative mode of solution. Fortunately
a quite direct series expansion solution is obtainable from the oper-
ational equation, and this will now be derived. As a matter of con-
venience we shall restrict the derivation to the voltage formula

Ve=e %V(Hp)’—cﬂ. (203)

As a further matter of mere convenience we shall assume that G=0,
so that ¢=p and (203) becomes
V=¢-7Viior (203-a)
where 7=x/v.
The method holds equally well for the current equation (204) and

for the general case o+p.
Write (203-a) as
V =e-ro+20/n

and expand the exponential factor (142p/$)"* by the binomial
theorem; thus

(1+20/8) =1+ +aa(5) e (5) + . .

so that
asTp® _asTp® _ autpt

V=e Tb.ePT, e\p(——p T s c. )

Now the operational equation

0T D2 3 1
7J=exp(—-q“;P _‘{;’;{’,,_E’;ﬁ_ NN )

can be expanded in inverse powers of p; thus

Bi, B2 Bs
R Tete T
the power series solution of which is
o(f) =1+ 315 531 +
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It follows at once from the preceding and Theorem VII that

V() =0 for t<7

_ Y

If the coefficients 84, 8» . . . are evaluated, a simple matter of elemen-
tary algebra, the foregoing expansion in the retarded time {—7 will
be found to agree with the solution (211) when ¢ is put equal to p.

We shall now discuss the outstanding features of the propagation
phenomena in the light of equations (210) and (211) for the current
and voltage. We observe, first, that we have a true finite velocity of
propagation v=1/4/LC. No matter what the form of impressed
e.m.f. at the beginning of the line (x=0), its effect does not reach the
point x of the line until a time {=x/v has elapsed. Consequently
v=x/t is the velocity with which the wave is propagated. This is a
strict consequence of the distributed inductance and capacity of the
line and depends only on them, since v=1/+/LC. It will be recalled
that in the case of the cable, where the inductance is ignored, no
finite velocity of propagation exists.

The question of velocity of propagation of the wave has been the
subject of considerable confusion and misinterpretation when dealing
with the steady-state phenomena. It seems worth while to briefly
touch on this in passing.

As has been pointed out in preceding chapters, the symbolic or com-
plex steady-state formula is gotten from the operational equation by
replacing the symbol p by w where =~/ — 1 and w/2x is the frequency.
If this is done in the operational equation (203) for the voltage, the
symbolic formula is

V= ZVlwtp)? otpicst,
If the expression \/(iw+p)®—¢® is separated into its real and im-
aginary parts we get an expression of the form

V =g avegic (- B5),

where B sz_,_ =V (Pt o — ) dwtp
B - ng

and

a=p/Bv.
Now if we keep the expression {—§ ¥ constant, that is, if we move
I’I

along the line with velocity dx/di=v/8, the phase of the wave will
remain constant. This is interpreted often as meaning that the
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velocity of propagation of the wave is v/8. Now since f is greater
than unity and only approaches unity as the frequency becomes
indefinitely great, the inference is frequently made that the velocity
of propagation depends upon and increases to a limiting value v,
with the frequency. This velocity, however, is not the true velocity
of propagation, which is always v, but is the velocity of phase propagation
in the steady-state. This distinction is quite important and failure
to bear it in mind has led to serious mistakes.

Returning to equation (211) and (210) we see that after a time
interval t=x/v has elapsed since the unit e.m.f. was impressed on the
cable, the voltage at point x suddenly jumps from zero to the
value e ™" while the current correspondingly jumps to the value

\l % ¢ P*"_ The exponential factor px/v is

R G ] R [C, G |L
(et se) VEC=s(§ g+ ) o

which will be recognized as the steady-state attenuation factor for high
frequencies. Similarly \/C/L is the steady-state admittance of the
line for high frequencies. The sudden jumps in the current and
voltage at time [=x/v are called the heads of the current and voltage
waves. If, instead of a unit e.m.f., a voltage f(f) is impressed on the
line at time ¢{=0, the corresponding heads of the waves are f(o)e™*
and +/C/L f(e)e " for voltage and current respectively. These
expressions follow at once from the integral formula

x(t) = -:iitl:{f(if T)h(T)dT
— f(o)h (1) + Jo Yt n)h(r)dr.

The tails of the waves, that is, the parts of the waves subsequent
to the time {=x/v, are more complicated and will depend on the
distance x along the line and on the line parameters p and o. The two
simplest cases are the non-dissipative line, and the distortionless line.

The ideal non-dissipative line, quite unrealizable in practice, is one
in which both R and G are zero. In this case p=¢=0, and formulas
(210) and (211) become

I=0 for t<x/v,

C
= — = )
JL for = x/v,
V=0 for ¢ <x/v,

=1 for t=x/v.



72 BELL SYSTEM TECHNICAL JOURNAL

Both current and voltage jump, at time {=x/7, to their steady values.
If an e.m.f. f(¢) is impressed on the line at time £=0, the corresponding
current and voltage waves are

I=0 for t<x/v,

= \jgf(;—x/y) for t=x/v,

V=0 for i<x/v,
=f(t—x/v) for t=x/v.

Consequently the ideal non-dissipative line transmits the waves
with finite velocity v, without attenuation or distortion. Such a line
is, of course, the ideal transmission system.

The non-dissipative line is, of course, purely theoretical and un-
realizable in practice; the distortionless line is, however, approxi-
mately realizable, and as the name implies, transmits without distortion
of wave form. The distortionless line is one in which the line con-
stants are so related that

P ')

If this condition is satisfied, formulas (210) and (211) become
I=0 for t<x/v,

= T_"“e_“" for iz x/v,
L

V=0 for t<x/v,
=e~ o for {=x/v.
Furthermore, if the impressed e.m.f. is f (¢), the corresponding current
and voltage waves are:—
I=0 for t<x/v,

= \(ge‘“f(t—x/v) for t=x/v,

V=0 for t<x/v,
=e~f(t—x/v) for t=x/v.

The distortionless line, therefore, transmits the waves without dis-
tortion of wave form, but attenuates the waves by the factor e=~.
Such a line is an ideal transmission system as regards preservation
of wave form, but introduces serious attenuation losses. For example,

if a line has normally negligible leakage, and leakage is introduced
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to secure the condition R/L=G/C, the line is thereby rendered dis-
tortionless but the attenuation is doubled.

One of Heaviside’s most important contributions to wire trans-
mission theory was to point out the properties of the distortionless
line, its approximately realizable character, and to base on it a correct
theory of telephonic transmission.

The character of the wave propagation when the parameters
p and ¢ are not restricted to special values, can only be roughly in-
ferred from inspection of the formulas, and then only when the prop-
erties of the Bessel function I, and I; have been studied. Fortunately
these functions have been computed and tabulated for small values
of the argument, and have simple asymptotic expansions for large
values. It is therefore a simple matter to compute and graph a
representative set of curves which show the current and voltage
waves for various values of p, ¢ and x. For this purpose it is con-
venient to introduce a change of variables and write:

7=
a=p/v
b=a/v

whence the formulas for current and voltage become:

I= \’ % e~ I, (b\/ 7 —x?)
+(a—b) \l % f Te-erI(by/ =),

T ,—aT o2
V=e-ar by f ¢ ‘;‘/(?X’:z ) 4r. (211a)

Figs. (9) to (18) give a representative set of curves illustrating
the form of the propagated current and voltage waves for different
lengths of line, and different values of the line parameters @ and b,
or p and o.

The curves of Figs. (9) and (10) show the current entering the
line in response to a unit e.m.f. applied at time ¢=0. The line is
assumed to be non-leaky (6=0) and is computed for two different
values of the parameter a. We see that the current instantly jumps to
the value v/C/L and then begins to die away, the rate at which it dies

(210a)

away depending on and increasing with the parameter a= % \) %

If we now consider a point x out on the line, the current is zero
until 7=x, at which time it jumps to the value /C/L ¢™**. It then
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begins to die away provided x and a are such that ax<2. If, however,
we are considering a point at which ax>2, the current begins to rise
instead of fall after the initial jump, and may attain a maximum
value very large compared with the head before it starts to die away.
This is shown in the curves of Figs. (11), (12) and (13), also computed

IUB T
08} \\
06 .
—|
I O
7]
0 Velues jof vi=t
20 40 60 80 100 120 140 160 180 200

Fig. 9—Current entering line; I; \',% =a=0.0132; G=0.

Multiply ordinates by v C/L

06— \
04

Valuesofvt=T
0 2 40 60 80 100 120 140 160 180 200

s
Fig. 10—Current entering line; ? \;% =a=0.2645; G=0.

Multiply ordinates by v C/L

for the non-leaky line (b=0). From these curves we see that, as
the length of the line and the parameter @ increase, the relative mag-
nitude of the tail, as compared with the head of the wave, increases.
Finally when the line becomes very long, the head of the wave be-
comes negligibly small, and the wave, except in the neighborhood of
its head, becomes very close to that of the corresponding non-inductive
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cable. This is shown in curves (13) and (14), for the line and the
corresponding cable, which are plotted to the same time scale and
ordinate scale to facilitate comparison. Curve (15) shows the effect
of leakage in eliminating the tail. This line is not quite distortionless

but nearly so.

14

06

Q2

0 Values of vt=1
180 200 220 240 260 280 300 320 340 360 380

Fig. 11—Propagated current in line; x=200; Ji‘\{% =a2=0.0132; G=0.

Multiply ordinates by v C/L.e~28
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. o R.[C _
Fig. 12—Propagated current in line; x =200; "TV A =0.02645: G=0.

Multiply ordinates by v C/L.e—5%
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An interesting feature of both current and voltage waves is that
when a sufficient time has elapsed after the arrival of the head of the
wave, the waves become closer and closer to the wave of the cor-
responding non-inductive cable; that is, to the cable having the same
R,C and G. Consequently the inductance plays no part in the
subsidence of the waves to their final values.

026

024 —
A = ——

Q22

020 /
Q18
a6

Qi4 /

a1 /

010

008 /

Q06

004

Qo2 /

0 0 04 08 2 |.Iit-4t'/l;’_ﬂRC 24 28 32 36 ﬁ%ﬂ

Fig. 13—Propagated current in line; %\/% x=10; G=0.
Multiply ordinates by 2/Rx.
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Fig. 14—Propagated current in cable. Multiply ordinates by 2/Rx.
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Curves (16), (17) and (18) illustrate the voltage wave for several
conditions. After the arrival of the head, the wave slowly builds
up to its final value. Curve (18) represents the case where the line
is very nearly distortionless, showing how completely the distorting
tail of the wave is eliminated.

— I S —— 1

12| //
7

Tk
80 200 20 240 260 280 300 320 340 360 30

Fig. 15—Propagated current in line; x=200
a:ﬁx}—%qh%\/%:o.om

R\/C & £_001765

Multiply ordinates by v C/L.e™""
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Fig. 16—Propagated voltage in line; %\/fc x=ax=3; G=0.

So far we have confined attention to the current and voltage waves
in response to a unit e.m.f, applied at time {=0 to the line terminals.
Of much greater technical importance is the question of the waves
in response to a sinusoidal e.m.f. suddenly applied to the line termi-
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nals. In order to investigate this important problem it is convenient
to divide the expressions for the current and voltage waves as given
by equations (210-a) and (211-a) into two components. We write
for r=x,

I- \/%e‘”-i-J(t), (210-b)
V= e-er W), (211-b)

where, by definition, J(¢) and W(¢)' are the differences between the
total waves and their heads. The advantage of analyzing the waves
into these components is that the distortion of the waves is due to

/
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Fig. 17—Propagated voltage in line; R% \/% x=ax=06; G=0.
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Fig. 18—Propagated voltage in line; 1;—\/% rx=ax=3; —2—-\}? x=bx=2.
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J(t) and W(t) respectively, while the first component of (210-b) and
(211-b) introduce merely a delay. Thus, if the e.m.f. impressed
at time t=0is f(¢), the corresponding waves for {=x/v or 7 =x, are

I= J——e axf(t—x/v)

: , (212)
+ L =17 ()i,

V=e "f(t—x/v)

, , (213)
+f =Wy,

where J’(t)—— () and W'(t)= —t Wi(t).

The integrals of (212) and (213) can be computed and analyzed
in precisely the same way as discussed in connection with the non-
inductive cable problem, and are of very much the same character
as the alternating current waves of the cable. In the total waves,
however, as given by (212) and (213), a very essential difference is
introduced by the absence of the first terms, which represent undis-
torted waves propagated with velocity . Thus, if the impressed
e.m.f. is sin wf, (212) and (213) become

I= \}%e“’“ sin w(t—x/v)

. (214)
_|_j sin w(t—t)J'(t)dh, for t=x/v
xfv
V=e % sin w(t—a/v)
y o (215)
+ , sin w(t—t;) W' (t)dty, for t = x/v.

Now the first terms of (214) and (215) are simply the usual steady-
state expressions for the current and voltage waves when the fre-
quency is sufficiently high to make the steady-state attenuation
constant equal to ¢ and the phase velocity equal to ». Furthermore
the integral terms become smaller and smaller as the applied fre-
quency w/27 is increased. It follows, therefore, that for high fre-
quencies the waves assume substantially their final steady value
at time t=x/v, and that the tails of the waves, or the transient
distortion, becomes negligible. This is a consequence entirely of the
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presence of inductance in the line, and shows its extreme importance
in the propagation of alternating waves and the reduction of transient
distortion.

It should be pointed out, however, that if the line is very long and
the attenuation is very high, the integral terms of (214) and (215)
are not negligible unless the applied frequency is correspondingly very
high. For example, on a long submarine cable, the a.c. attenuation
is so large that the first terms of (214) and (215) are very small, and
J(#) is very large compared with /C/L ¢ ®. Consequently here
there is very serious transient distortion and alternating currents
are therefore not adapted for submarine telegraph signalling.

This discussion may possibly be made a little clearer, without
detailed analysis, if we recall the discussion of alternating current
propagation in the non-inductive cable of the preceding chapter.
From that analysis it follows that, when the applied frequency w/2x
is sufficiently high, the integral term of (214) becomes approximately

I,
—JJ ()
and the complete current wave is
C 1.,
¢ % sin w(t-x/v)—l—:.f ®) (216)

and similarly the voltage wave is

e~o% sin w(t—x/v)+ “1, W) (217)

Now if the total attenuation ex is large the last terms of (216) and
(217), before they ultimately die away, may become very large com-
pared with the first terms, which represent the ultimate steady-state.

Appendix to Chapter VII. Derivation of Formula (211)

The only troublesome question involved in deriving (211) from
(207) and (209) is that we have to differentiate with respect to x, in
accordance with (207), the discontinuous function F(¢). To accom-
plish this we write (209) in the form

F(t)=o(t —:’c/'v)e*"”L.(cr\/t2 —x%/17) (209-a)

where ¢(f) is defined as a function which is zero for {<x/v and unity
for t=x/v. Clearly this is equivalent to (209) and permits us to deal
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with F(f) as a continuous function. Now, in accordance with (207),
perform the operation of differentiation upon (209-a) : we get

o 2f gaiqﬁ(t—x/v)c“"fo(o'\/_t'z—-x”/vz)
—v(t—x/v) % e, (o E—x2T).
The first expression follows from the fact that

a%cqb(t—x/v) =— % %¢(£—x/v).

We observe also that é%¢(t—x/v)=0 except at t=x/v, when it is in-

finite. We also observe that, for t=x/7,
]
0 _
A Ecﬁ(l-—x/v)dt— 1

and that the whole contribution to the integral occurs at t=x/v.
With these points clearly in mind, the expression

V= —v/ﬂ@g‘dt

reduces to (211) without difficulty.

CHAPTER VIII

PROPAGATION OF CURRENT AND VOLTAGE IN ARTIFICIAL
LiNEs AND WAVE FILTERS

The artificial line here considered is a periodic structure, com-
posed of a series of sections connected in tandem, each section con-
sisting of a lumped impedance z; in series with the line, and a lumped

%Z, Z, Z,
I ANV\o —oAN\o- VNN O——— =~~~
VU 22 zz 22
L l -
Fig. 19

impedance sz, in shunt across the line. In the artificial line which
we shall consider it will be assumed that the voltage is applied at
the middle of the initial or zeroth section, as shown in Fig. 19. This
termination is chosen because of its practical importance, and be-
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cause also of the fact that the mathematical analysis is simplified
thereby. Furthermore any other termination can be regarded and
dealt with as an additional terminal impedance, so there is no essen-
tial loss of generality involved.

A study of the properties of the artificial line is of practical im-
portance for several reasons:

1. The artificial line is often used as a model of an actual trans-
mission line and it is therefore of importance to determine theoretically
the degree of correspondence between the two.

2. The solution for the corresponding transmission line with con-
tinuously distributed constants is derivable from the solution for the
artificial line by keeping the total inductance, resistance, capacity
and leakage constant or finite, and letting the number of sections
approach infinity.

3. The artificial line is very closely related, in its properties and
performance, to the periodically loaded line, and its solution is, to
a first approximation, a working solution for the loaded line.

4. The structure is of great importance in its own right, and when
the impedance elements are properly chosen, constitutes a “wave
filter."”

We shall now derive the operational and symbolic equations which
formulate the propagation phenomena in the artificial line. Let I,
denote the mesh current in the nth section of the line; I,—; the mesh
current in the (z—1)"" section, etc. Now write down the expression
for the voltage drop in the #™ section; in accordance with Kirch-
hoff's law we get:

(31+252)In—32(fu~|+Iu+1)=0 (218)
where, of course, the impedances have the usual significance.

Now this is a difference equation, as distinguished from a differ-
ential equation, but the method of solution is essentially the same.
We assume a solution of the form

a=Ae "I'4 Bel (219)

where A4, B and T are independent of #, and substitute in (218).
After some simple rearrangements we get

$ (514 222) — 23, cosh r{- %Ae‘"l'-i—Be"I‘} =0. (220)

Equation (218) is clearly satisfied by the assumed form of solution,
and furthermore leaves the constants A and B arbitrary and at our
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disposal to satisfy any boundary conditions, provided T is so chosen
that

cosh T = e
2 (221)

where p=2;/42..

Now by reference to equation (219) it is easily seen that I' is the
propagation constant of the artificial line, precisely analogous to the
propagation constant vy of the smooth line. In terms of the im-
pedances 3, and 3., the propagation constant of the artificial line is
determined by (221). This equation may either be regarded as an
operational equation or a symbolic equation, depending on whether
the impedances are expressed in terms of the operator £ or in terms
of 1w, where @ 1s 27 times the frequency.

Now suppose in (221) we write el =x; the equation becomes
pp

x+1/x=2(1+2p)

and solving for x we get
v=el'=(14+2p)+V/ (1+2p,—1
=(V1H+p+ Ve =(V1+p—V5)

‘which is an explicit formula for T'.

(222)

Now return to equation (219) and let us assume that the line is
either infinitely long, or, what amounts to the same thing, that it is
closed by an impedance which suppresses the reflected wave. We
assume also that a voltage V, is impressed at mid-series position of the

zero™ section (n=). Equation (219) becomes

I, =Ae¢ T
and the currents in the zero and 1% sections are
I,=4, I, =4e T,

Now, by direct application of Kirchhoff’s law to the zero” section,
we have
V,= (%514—52)10_5211.
whence
A3 It a(l—el) ; = T.. (223)
But
L=d= V.,

V. .
I”: _oe,"] ,

K
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where K is the characterisiic tmpedance of the artificial line (at mid-
series position). Hence by (223) and (222)

i1 1
K z(—eD)+2
(224)
1 1 1 1

"2Vt VamVIte

By aid of the preceding the direct current wave can be written as

f= Ve WIto—Voel" (225)
‘\/2122 \/1 +P
This formula is not so physically suggestive as its equivalent
V.
= - 9%—nl
I, i

but is useful when we come to the solution of the operational equation.
Before proceeding with the operational equation, and the investi-
gation of transient phenomena in artificial lines, it will be of interest
to deduce from the foregoing the unique and remarkable properties
of wave filters in the steady state. For this purpose we return to
equation (221)
cosh I'=142p.

Now suppose that the series impedance z; is an inductance L and
the shunt impedance s; a capacity C, so that, symbolically,

s1=twl, Za=+—=, p=——
! 2Tl P 4

and
cosh I'=1—1% «?LC. (226)

Now let us write I'=¢0, where i=+/—1; the preceding equation
becomes
cos f=1—3% w?LC (227)
and the ratio of currenis in adjacent sections is e~%. Consequently if
0 is a real quantily the ratio of the absolute values of the currents in ad-
jacent sections is unity, and the current is propagated without allenualion.
Inspection of equation (227) shows that 6 is real provided the right
hand side lines between +1 and —1: or that e lies between 0 and
2/A/LC. Consequently this type of artificial line transmits, in the
steady state, sinusoidal currents of all frequencies from zero to
1/7+/LC without attenuation. It is known as the low-pass filter.
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If we invert the structure, that is, make the series impedance z;
a capacity C and the shunt impedance 2; an inductance L, so that
- miuL, p=—
zl_'ir.uC’ =l p= 40?LC"

we get, corresponding to (226) and (227),

1

cosh I'=1— m, (228)
1 1

cos f=1— W (228&)

This type of artificial line transmits without attenuation currents
of all frequencies for which the right hand side of (228-a) lies between
+1 and —1; that is, all frequencies from infinity to a lower limiting
frequency 1/4w+/LC, while it attenuates all frequencies below this
range. It is known, on this account, as the high-pass filter.

It is possible by using more complicated impedances to design
filters which transmit a series of bands of frequencies. We cannot,
however, go into the complicated theory of wave filters here, which
has been covered in a series of important papers. One point should
~ be noted, however: transmission without attenuation implies that
the impedance elements are non-dissipative. Actually, of course,
all the elements introduce some loss, so that in practice the filter
attenuates all frequencies. Careful design, however, keeps the
attenuation very low in the transmission bands.

We shall now derive the indicial admittance formulas for some
representative types of artificial lines and wave filters from the oper-
ational formula

! 11, —1-2n
An B Ry r—— .
V (14p)z12 Vite++/el (229)

This equation follows directly from (225) on putting V,=1.

We start with the so-called low-pass filter on account of its sim-
plicity and also its great importance in technical applications. This
type of filter consists of series inductance L and shunt capacity C.
The general case which includes series resistance R and shunt leakage
G has been worked out (see Transient Oscillations, Trans. A. I. E. E,,
1919). The solution is, however, extremely complicated and will not
be dealt with here. We shall, instead, consider the important and
illuminating case where the series and shunt losses are so related
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as to make the circuit quasi-distortionless. We therefore take,
operationally,

si=pL+R=L(p+))

(230)
1/22=pC+G=C(p+N\)
where A\=R/L=G/C.
We then have
2122=L/’C.
Zl/Zg=LC(p+h)Z, (231)

p=LC o

Now by reference to formula (229) we see that A, is a function of
(p-+n); thus

R S SRS W
A”_Z#J(P-}_x) (1+P)(p+?\)zu(9+?\)
Now write
[ LR 4_1_7
A

It follows at once from reference to theorem VII that
‘l[ _
A,,:(l—f—?\ / dt)A::e M (232)
Jo

so that the problem is reduced to the solution of the operational
equation for 4. Writing w,=2/+/LC, we have
o= )24& 17[ ,1____2 ]—2#
» \ L \/1+(p/ijg A% +(P/wb) +p/w5
. o (233)
_ & e [ \/P_‘“’ii’]a"

LVpterl |
Now refer to formula () of the table of integrals; writing /L/C=k,
we see by Theorem V that

. 1 ‘wl
A,.=kl' Jau(7)dr (234)

where J.,(7) is the Bessel function of order 2n and argument 7. We
note also that this is the indicial admittance of the non-dissipative
low-pass wave filter; that is, the current in the n*" section in response
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to a unit e.m.f. applied te the initial section (r=0). From (232)
and (234) it follows at once that

Wl
u =e 1 l Jnu (i‘r

1 W T
—I—}j[dm’h Jon(r1)d71.
k!_ 0 0

Integrating the second member by parts and noting that A4,{(0) =0,
this reduces to

Au=) f o Jou(r)dr (235)

which is the indicial admittance formula for the quasi-distortionless
low-pass filter, or artificial line.

Before discussing these formulas, it is of interest to derive the
formula for A4, by power series expansion. Formula (233) can be
written

Aﬂ=l(_)2n+l 1 1
"Tk\p V 1+ (we/ P2 1V 1+ (w0 /p)2] 2

This can be expanded in a series in inverse powers of p; thus

A3=k—212,_,{ (;_c)zll-i-l 212;2-1|-'2 (P) 2413

L (2nt3) 2ntd) (o (« )”'*5_
s p b

Replacing 1/4* by */n! in accordance with the Heaviside Rule we get

_J ‘W, { 2n+1_ - 27@"‘2 (e’g 2n+8
k| ( 2n+1) %) ) 11(2n+3)! 2)

(2n+3) (2n+4) ()2 +5 | 935.
+ 21(21+5)! (2) ..... I (235-a)

This can be recognized as the power series expansion of (234).

The artificial cable is also of interest and practical importance.
In this structure the series impedance is a resistance R and the shunt
impedance is a capacity C, so that

21=R, lf’fZg:pC,
Z]ZQ=R/PC, Z[/ZE=P.RC, (236)
p=pRC/4.
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Now let us return to formula (229), and expand in inverse powers of
p:we get

_ 1 (1 2n4+2 1 (204+3)(2n+4) 1
Ar: ‘—22’!_\/E‘r7 221! pu-|—-1 + 2'42| p"’? PP } (237)
Now since v/ p21%s = %, we have
__2 [( 2 \"_2n42/ 2 \*H
di=zg { (RCp) 211 (RCP)
(2n+3)(2n+4) 2 \nt2
+ 2:2| (R—Cp) Ut
Replacing 1/p" by */n! we get finally
2 1728\ (2n+2) (2t \t!
A"_ﬁ{n—!(f{_c) _2.1z(n+1)!(fec)
238
DO 2y e
2221(n+2)! \RC T

For large values of # and ¢ this series is difficult to compute or in-
terpret. It can, however, be recognized as the series expansion of the
function
2t

4,=2c% 1(Z) (239)
where I,(2t/RC) is the Bessel function I, of order # and argument
(2¢/RC). This solution, it may be remarked, can be derived directly
by a modification of the integral formula (n).

It is beyond the scope of this paper to consider other types of
artificial lines and wave filters; for a fairly extensive discussion the
reader is referred to “Transient Oscillations in Electric Wave-Filters,"’
B. S. T. J., July, 1923. The low-pass wave filter, however, both in
its own right and on account of its close relation to the periodically
loaded line, deserves further discussion.

For the non-dissipative low-pass wave filter, we have

1 ol
As=% U” Jon(7)dr (234)

while for the quasi-distortionless low-pass wave filter
1 ((wit _
A= J; M7 Ton(r)dr (235)

where p=\/w;=R/Lw;,=R/2vL.
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Computation and analysis of these formulas involve an elementary
knowledge of Bessel functions. The properties necessary for our
purposes are briefly discussed in an appendix to this chapter.

The indicial admittances for the non-dissipative low-pass filter,

20¢

[H]

™N | ,
) [ \ / \// N7 /\\ NN

02 4 6 0 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Values of w.bt

Fig. 20—Low pass wave filter. Indicial admittance of initial section (n=0).
Multiply ordinates by vC/L

V| |

uJ 4 6 10 1z 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Values of gt

Fig. 21—Low pass wave filter. Indicial admittance of third section (n=2).
Multiply ordinates by ¥ C/L

L5

/ \\ / AN N
o 7

/|

s
2 4 B 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
Values of w.b

Fig. 22—Low pass wave filter. Indicial admittance of fifth section (n=4).
Multiply ordinates by v C/L

that is, the current in response to a steady unit e.m.f. applied at
time ¢=0, are shown in the curves of Figs. 20, 21 and 22, for the
initial or zeroth, the 3rd and the 5th sections, respectively. These
curves together with the exact and approximate formulas given
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above are sufficient to give a reasonably comprehensive idea of the
general character of these oscillations and their dependence on the
number cf sections and the constants of the filter.

It will be observed that the current is small until a time approxi-
mately equal to 2n/w.=n+\/L,C, has elapsed after the voltage is
applied. Consequently the low-pass filter behaves as though cur-
rents were transmitted with a finite velocity of propagation w./2=
1/A/L,Cy sections per second. This velocity is, however, only ap-
parent or virtual since in every section the currents are actually
finite for all values of time> 0.

After time t=n+/L,C, has elapsed the current oscillates about the
value 1/k with increasing frequency and diminishing amplitude.
The amplitude of these oscillations is approximately

7 1/k \}772

V11— (20 /e ) VTl
and their instantaneous frequency (measured by intervals between
Zeros)

5N/ 1= (2n/ad)".

The oscillations are therefore ultimately of cut-off or critical frequency
w./2r in all sections, but this frequency is approached more and more
slowly as the number of filter sections is increased.

Figs. 23, 24, 25, give the indicial admittance in the 100th, 500th
and 1000th section of the low-pass wave filter. The flter itself seldom

I

// A AARAAAR

02

N

Values of et |

ofﬂl 200 220 240 260 280 300 320 340 360 380

Fig. 23—Low pass wave filter. Indicial admittance of 100th section (n=99).
Multiply ordinates by v C/L
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embodies more than 5 sections. The case of a large number of sec-
tions is of interest, however, because it represents a first approxi-
mation to the periodically loaded line. While the non-dissipative

14

10 R L R N R A VR ANV VSR S
!

I

0 /

0z

Al Values ofwt
960 630 1000 1020 1040 1060 1080 1100 1120 1140 1160

Fig. 24—Low pass wave filter. Indicial admittance of 500th section (n=499),
Multiply ordinates by v C/L
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Fig. 25—Low pass wave filter. Indicial admittance of 1000th section (r=999).
Multiply ordinates by v C/L

line is ideal and unrealizable, its study is of practical importance
because in this type of line the effect of the discontinuous character
of the loading of the periodically loaded line is isolated and exhibited
in the clearest possible manner.
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The dotted curves represent the current in the corresponding
smooth line. For the smooth line, the current, as we have seen, is
discontinuous, being identically zero for a time v¢i=# and having an
instantaneous jump to its final value v/C/L at vi=n. The current
in the artificial or periodically loaded line differs from that in the cor-
responding smooth line in three important respects: (1) the absence
of the abrupt discontinuous wave front, (2) the presence of super-
posed oscillations, and (3) the absence of a true finite velocity of propaga-
tion. It will be observed, however, that the current in any section
is negligibly small or even sensibly zero until 9=, so that the current
is propagated with a virfual velocity 1/ /LC per section. The pres-
ence of a well marked wave front is also evident although this is not
abrupt, as in the smooth line. The effective slope of the wave front
becomes smaller as the current wave travels out on the line, decreasing
noticeably as the number of sections is increased. When the number of
sections becomes large, however, the decrease in the slope is not rapid,
being in the 500" section about 60 per cent. of that in the 100" section.

The superposed oscillations are of interest. These are initially
of a frequency depending upon and decreasing with the number of
sections, #, but in all sections ultimately attaining the frequency

1 v
/LC m

which is the critical or cut-off frequency of the line, above which
steady-state currents are attenuated during transmission and below
which they are unattenuated. When v¢ is large compared with »
the amplitude of these oscillations becomes V/1/mvt so that they
ultimately die away and the current approaches the value +/C/L
for all sections. The current in the loaded line is thus asymptotic
to the current in the corresponding smooth line and oscillates about
it with diminishing amplitude and increasing frequency.

Since the abscissas of these curves represent values of 2vf= 2t/ V' LC,
and the ordinates are to be multiplied by +/C/L to translate into
actual values, the curves are of universal application for all values
of the constants L and C.

The investigation of the building-up of alternating currents in wave
filters and loaded lines is very important. It depends for the non-
dissipative case on the properties of the definite integrals

Wal
J; sin wr Ju(7)d,

el
.Ll cos wr Ju(7)dr,
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where w=w/w. and w=27 times the applied frequency. The mathe-
matical discussion is, however, quite complicated and will not be
entered into here. The reader, who wishes to follow this further,
is referred to Transient Oscillations, Trans. A. I. E. E., 1919 and
Transient Oscillations in Electric Wave Filters, B. S. T. J., July, 1923,

Appendix to Chapter VIII. Note on Besel Functions

The Bessel Functions of the first kind, J.(x) and I.(x), are defined,
when # is zero or a positive integer, by the absolutely convergent
series

xh x? xd
Ju(x) = 2" { 1_2(27z+2)+2.4(2n—{—2)(2n—|—4}

_ il +
2.4.6.2n+2)(2n+4)(2n+6) )
x{

L(x) =50 {1+2(2n+2) 3.4(2n+2) (2n+4)

xﬁ
Tt T }

In the following discussion of the properties of these functions it will
be assumed that the argument x is a pure real quantity.

For large values of the argument (x large compared with n), the
behavior of the functions is shown by the asymptotic expansions:—

dnt—1  (4n2—1)(4n2—9)

L) = \/ - { =@ T 21@e)
_ (4n*—1)(4n*—9)(4n*— 25)
3! (8x)3 R
Tu(x) = \E P, cos (x— 2n+1 ) — @y sin (x— n—i—l T4,
T 4
where
Po—1_ (4n*—1)(4n2—9) i (4n*—1) (4n*—9) (4n* —25) (4n*—49)
»= 21 (8x)? A1 (Sx)t A
_An*—1 (4n*—1)(4n*—9)(4n*—25)
On="gz—~ 31(8x)3 t..
We thus see that I, increases indefinitely and behaves ultimately as
e

V2%
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The function J.(x), however, is oscillatory and ultimately behaves as

For all orders of n

ﬁwf,,(x)dle.

The properties of J,(x) may be described qualitatively as follows:—

When the argument is less than the order (0=x<#) the function
is very small and positive, and is initially zero (except when #=0).
In the neighborhood of x=#, the function begins to build up and
reaches a maximum a little beyond the point x=#n. Thereafter the
function oscillates with increasing frequency and diminishing ampli-
tude, and ultimately behaves as

Jg COS(.’X}—2n4+lTI').

When #=0, the initial value is unity, but the subsequent behavior of
the function is as described above.

A more precise description of the function is gotten from the follow-
ing approximate formulas.

Ju(x) = By(x) cos Q,(x), for x>n
where
2 1

m: 3 m? 1 14y
@"_3+§?Fﬂﬁmﬁﬁﬁ)

Qm**f$‘"+ sin () ~ B (T |~

m@=%mw,

B(x)=

= m* | 3 m? 1
'¢'?+§?ﬁtwﬁﬁ'

mi=n?—1/4.

and

This approximate formula is valid only where x>#, its accuracy
increasing with x and with #. For all orders of #n it is quite accurate
beyond the first zero of the function.
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The “instantaneous frequency’ of oscillation is approximately

N

2 2 xt (I—m?/x)*

By this it is meant that at any point x(x>#) the interval between
successive zeros is approximately w/Q(x). Otherwise stated, in
the neighborhood of any point x, the function behaves like a sinusoid
of amplitude B,(x) and frequency w/2r where w=0,(x).

The following approximate formulas, while not sufficiently precise
for the purposes of accurate computation except for quite large values
of x, clearly exhibit the character of the functions for values of the
argument x>, and of the order #>2.

To(®) = Iy A|-27cos (gux—02),

X

2 .
Jr’t (-‘U) = _q»rhu ‘\}H sin (qnx-*ﬂ,,),

W hy |2 .
J Ju(x)dx =1 +E \/;r, sin (g,x—6,),

where

1 7 "
I = (’1‘_—,12/;2) =+
Ggu= V1—u?/x2,

_21z—|—1
T4

On T—nsin(n/x).



