Operation of Thermionic Vacuum Tube Circuits
. By F. B. LLEWELLYN

Svnorsis: Given the static characteristic of grid current-grid potential,
and plate current-plate potential, for any three element vacuum tube, the
g('n(‘r.ll exact equations for the output current when the tube is connected
in circuits of any impedance whatsoever, and excited by any variable
voltage, are here derived. The method nf derivation is illustrated in the
special case where resistances only are considered, and the adaptation of
complex impedance to use in non-linear equations is shown. Approxima-
tions that are allowable in various pra(‘lu'ﬂ appll(atl()[‘ls are indicated,
and the equations are applied in some detail to grid-leak detectors, and in
briel to other types of detectors, modulators, dl'!l])llﬁ(.l’s and oscillators.

Certain repetitions of previous work are contained in these pages, as it is
believed that the applications of the novel features introduced are illustrated
thereby better than by a description dealing only with new material.

HE equations in use at the present time for the relation between
input voltage and output current in thermionic vacuum tubes
are those developed by a number of pioneers in Radio Communica-
tion. They have been summarized very concisely, and somewhat
extended in an important paper by John R. Carson, entitled “A
Theoretical Study of the Three Element Vacuum Tube,” which
appeared in the Proceedings of the Institute of Radio Engineers,
April, 1919. For some time past the need of relations which include
the effect of the variation of certain quantities, considered constant
in Mr. Carson's paper, has been growing. Especially in the case of
detection and modulation has this need become pronounced. More-
over, in the special case of grid leak detectors, the need for a general
theoretical analysis has not, to the author’s knowledge, been com-
pletely satisfied.
PurrosE
It is, therefore, the purpose of the present paper to derive general
exact equations for the output current from a three-element thermi-
onic vacuum tube when it is connected in circuits of general impedance,
both on the input and output sides, and to show specific methods of
applying these general equations to several special cases, with em-
phasis on the case of the grid leak detector. [t is also proposed to
show that, whether used for detectors, modulators, amplifiers, or
oscillators, the same fundamental theory applies. It is hoped that
the theory and methods given will form a basis upon which a com-
plete rational design of vacuum tube circuits may be built.

THEORY

In the derivation of these equations, no limitations whatever should
be imposed. Consider a three-element vacuum tube connected in
circuits of general impedance on both input and output sides. The
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grid is allowed to take convection current. The amplification factor,
u, is considered variable, and the effect of plate potential on grid
current is included. Under these conditions, the total plate current
of the tube can merely be said to be a function of the grid and plate
potentials; and the total grid current, likewise, is some other function
of the grid and plate potentials. The fundamental relations:

I, =I,(E,, Ey) (1)
Ig=Ig(Egr Eﬂ) (2)
express, the operation of the device. They represent the static

characteristics of the tube. It is from these two relations alone that
the general theory must be built.

In order to do this, the following notation will be employed:

Ipy=TIpotip

I, = Loti, -
E,=Epte |

Ey=FEu,te

It will be recognized that the lower case letters represent variations
in the normal values of the currents and voltages denoted by the zero
subscripts. It should be noted, moreover, that all voltages and
currents refer to the effect directly on the element of the tube, plate
or grid as the case may be.

With the aid of (3), equations (1) and (2) may be written

ip=Preg+Poep+ 3 Pse+ Paegep + 3 Pses’ + . . . 4)
Z.g=T163+T269+%T3632+T4638p+%T58p2+ e (5)

where the P’s and T”’s have the following significance:

_odpo _0Ipo _ B po _ szpo _0po ]
Pl_aEg szaEp 1"'-":.1—aEg2 P‘_aEgaEp ey % J
p_2le g _ole g @l . Ol g, 2l | ©

! 3E;, ~° 0E» T BEg ! DEQE, ’ oE,* ]

Equations (4) and (5) are obtained directly from the extension of
Taylor's Theorem. The P’s may be written in more useful form with
the aid of (1) and the well-known definitions of the amplification
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factor, u, the plate resistance, rp, and the grid resistance, r,. Thus,
from (1)

olp
_ 2E, _ dE,
" a,If’ a dE,
oE, I, e
1_ a8l - (by definition) 7
p oE,
1 _ 2L
rﬂ aEg
Hence
pP=£
Tp
1
P-g—r:
o LOB O Ty
Ps_rPaEg rp aEﬁ‘ M rﬂz
_low (8)
.!_ Fp aE}) #?’pﬂ
—
5 7
where rpr:% _

In similarly treating the T''s, it was found convenient to introduce an
entirely new symbol. This has been done with reluctance, for it is
realized that considerable difficulty has been experienced in the
standardization of symbols already in use. But inasmuch as the
simplification of both physical interpretation and mathematical
expression which results from the use of this new symbol is enormous,
its addition is believed to be warranted.

This new symbol we will call the reflex factor, and will denote it
by the symbol, ». It is analogous in its effect on the grid circuit to
the effect of x4 on the plate circuit. Its definition is analogous to that
of p. Thus, from (2):

ol
_ 0B, _ _dE,
'S or, T TR, 9)

Gl I,



436 BELL SYSTEM TECHNICAL JOURNAL

Comparison of (7) and (9) shows that while u is equal to minus the

ratio of the increments of E, and E, necessary to maintain the plate

" current constant, » is equal to minus the ratio of the increments of

E, and E, necessary to maintain the grid current constant. On the
other hand, while in the case of g, the ratio

dE,
dE, |1,

is intrinsically negative and occurs in (7) with a negative sign, making
u intrinsically a positive number; in the case of », the ratio

L,

dE, |1,

is usually intrinsically positive, and occurs in (9) with a negative
sign; hence » is usually intrinsically a negative number.
With the foregoing definition, the 7”s may be written as follows:

.
g
Ty= -
vry
Ty=—"% (10)
e
7= 1 i(i)_ifi
4 ?’g aEg 14 v ?’g2
._1 1 (i) l_i(l)_lr_f
T wrgoE\ v re 0Ep\ ¥ p2 oyt
where r{:%-

The effective value of T, when taken over a cycle of sine wave
form, has sometimes been called the reflex mutual conductance
(L. A. Hazeltine), and has been denoted by g« An attempt to adapt
this notation to the present purpose has not proved feasible. For
reference, it may be noted in the limiting case, where the amplitude
of the sine wave approaches zero:

_1.
En= vrg

With the relations given thus far, the problem may now be more
specifically stated as follows:
It is desired to express i, the output current through a general
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impedance in the plate circuit, as an explicit function of e, a variable
voltage applied in series with a general impedance in the grid circuit.

Special Case

The following special case will make the detailed derivation, where
complex quantities are considered, more intelligible.

For this special case consider a vacuum tube connected in circuits
containing only pure resistances. Let the resistance in the grid circuit
be denoted by Q and that in the plate circuit be denoted by Z. Fig. 1
illustrates this circuit. Let 7, and 7, be determined to satisfy the
following series:

ip=a18g+ase,”+ . . . (11)
tg=bie+b>+ . . . ) (12)

(11) and (12) are valid since (4) and (5) are formally power series.
As seen from Fig. 1, e represents a variable voltage impressed in
series with the resistance, (2, on the grid of the tube.
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Fig. 1—Fundamental circuit diagram

These equations will give the plate and grid currents as explicit
function of the voltages e, and e, respectively, if we can evaluate
the a's and b's. To do this, we have the relation

ep=—1p2. ’ (13)

Substituting (11) in (4) and equating coefficients of like powers

of e, we may evaluate @, and . and thus express 7, as an explicit
function of e,:

ou

oEp

(rp+2)*

1| —wirpry’+u

) ou )
S (rp? =20+ = (rp+2)* |,
ip= (}'p+Z)Pg+ 2 aEg

e (14)
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In equation (14), when the amplification factor, g, is considered
constant, we have the well-known relation as given in Mr. Carson’s

paper

. ey 1 wirpry’
D=t 202 T (19
Experiments have shown, however, that when the resistance, Z,
is not small compared to r, the modulation resulting from variations
of u amounts to an appreciable part of the total. When the grid is
maintained at a negative potential with respect to the filament, (14)
may be simplified somewhat by the relation which then holds quite
closely!, namely:

Lou _ Bu
oE, OE;
Equation (14) then becomes
ou
y o 2
A I wrpry oE; |, .,
s A ?[m+m3(m+m2“+"" (16)

This equation is applicable to the calculation of the output current
when ¢, is known, and the grid takes no convection current, as is the
case in very many circuits met with in practice.

It is instructive to investigate the relative magnitudes of the two
components of the second term of (16) in an actual experimental case.
For convenience, the contribution of the second component of this
term will be called, ‘'z modulation.” A vacuum tube was measured
and found to have the following properties under operating conditions

rp = 6400
]"pz—ﬁl.B
u=>5.84
Ot _ o5
oF, .05

The results of applying these to (16) are shown in the following
table: '

VA Total modulation u modulation, %
03341/10° ¢ 23.35
rp .00515/10° € : 37.8
27 .00186/10% ¢ 46.6
4 rp .000889/10% ¢ 55.0

1 See appendix I for proof of this.
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This illustrates strikingly the importance of the variation of g in
modulators and detectors.

Equation (14) is expressed in terms of ¢, the voltage directly on
the grid of the tube. We may derive the expression for i, in terms
of e, a voltage impressed in series with a resistance, Q, in the external
grid circuit by noting that

eg=e—1,0.
Hence, from (12),
€g=(l—b1Q)8—b2082+ e (17)
Therefore
tp=a1(1—0:Q)e— [a:102Q — a2(1 —5,0Q)2]ez+ . . . (18)
and, as in (13), ep=—1p2.

Substituting (17) and (18) into (5) and equating coefficients of like
powers of e, we get
— T1 - Tga.Z
14+ 70— T, 20
boe [—a'zZTz'i‘%Ta—ﬂlZTH‘%UlzZsz}(l“510)2_
2 1+ TLQ_ Tzﬂle

b, (19)

(20)

The T’s may be expressed in terms of r; and v with the aid of (10).
The complete solution of this special case for first and second order
effects is then given by (18) above, in which we have now evaluated
the a's and &’s.

Mathematical Digression

Before the detailed steps in the complete development of the
general case, with general impedances instead of resistances, are at-
tempted, the following digression on the use of complex quantities in
non-linear equations is apposite. Included at this point, it serves a
two-fold purpose; first, the notation to be used is illustrated by means
of simple applications; second, it calls to mind the fundamental ideas
involved in the representation of impedances by complex quantities.

Consider a current, I. If periodic, this current may be represented
by a Fourier series and expressed as the sum of a number of cosine
terms. Thus

jlht+) | —i(hi+p) jlkt+0) 1 —i(kt+0)
Lo (ST (SET)

where the symbol, j, represents the imaginary, v/ —1. For brevity
this may be written

I=(iy4au) + Guw+iw)+ - - - (22)

(21)
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where the bar over a symbol denotes the cofijugate imaginary of the

same symbol unbarred. If this current flows through a circuit con-
taining resistance, self- inductance, and capacity in series, we have

ar 1
e=RI+LY 4+ L f Idt. (23)

Substituting for I its equivalent, as given by (21) or (22), we may
write the result in abbreviated form as follows:

e = (zyiv4-2atw) + (zwine+250e) + - - - (24)
where
2, =R+ Ljn-+ Cin
By = R —Ljn— C?z .

When the current flows through a network of impedances, we may
always write the equivalent series impedance of the network. Hence
equation (24) may be extended to cover the general case. It will be
noted that lower case s's have been used to represent impedances in
the above discussion. Throughout this paper the attempt has been
made to employ the lower case letters to denote quantities which
involve time, reserving the capitals for those which do not involve
time. With this understanding, Z denotes a resistance, while z
represents a general impedance, which, of course, varies with the time
variation of a voltage impressed on it. With the aid of (24) we are
in a position to treat non-linear equations by the complex method.
Thus, omitting conjugates ¢* becomes,

€ = 2 g2 -+ 22w + 2505012 00 T 250k E200-+4)

. . (25)
. F2zzt20—p 2220020 + - - -
which may be written
= epan) +eac2t) + e2c0m +e2intn 20—k He2on + - - (26)

In (25) and (26) the significance of the double subscript notation is
brought out. The first symbol in the subscript refers to the order
of the term, and the second refers to the frequency.

In the light of the foregoing discussion,. the problem of writing the
general equations for the therniionic vacuum tube may be attacked.
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General Analysis

Coming back to the detailed problem in hand, we follow out the
method illustrated in the special case, but must use the notation
developed in the preceding section to take care of a general impedance,
z, in the plate circuit, and a general impedance, ¢, on the grid circuit.
Fig. 1 as before, shows the skeleton circuit, where, however, lower
case z and ¢ must be substituted for the capitals. Then

3=elh+z;1;‘;+f3]k+51k+ - +eln+glﬂ . (27)
Analogous to (11) and (12):

7:13=alhﬂglh—i_alhgglh+alkeglk+a]kﬁglk+ - - } (28)

Fazg—r)2i-1 T a20-ne2n-n+ - - -
iy =buiewn+buew +buwen+buert - - -
+bagi—ye20—i +beu—0C2u-n+ - - -
Hence, analogous to (13) and (17):
ep = —Zla1nzinesint Q1B 1n€e10~ ComBmeom + A amTmCoom) (29)
€= ‘:‘[(1 - blr:(]n)eln + (1 - bﬁlnéll)élu - bzm(lmfam - Egmgln:ézm] (30)

where the summation refers to terms of different frequencies but of
similar form.

From this point on, the procedure is exactly the same as that given
in the special case. Coefficients of terms of like order and frequency
are equated, and the final results are:

ip=Zau(1—Dbugs)ew

+Z[(1 = bunan)*azen — arengenbenleaan

+ 2L = bungn) (1= bugr) a2ty — @109 G-+ b2k 20141 (31)
211 —Dugn) (1= buei)az -1y — @1t G-t bztn— ) ezia—t)
+ 21— bungn) (L = bugi) azcom — @rcom@ombeon] ezcon
+ ...

where the summation refers to terms of different frequencies but of
similar form. Note that, having @sg—r and b.g—p, we may readily
write the appropriate expressions for the other a.’s and b's by refer-
ence to the formation in equation (31).
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In (31) the a's and b’s are given by:

257 K )
¥ —|—Zh
i[ ,uw,,—kpaE (73 —Zth)-l- (errz;, rp+zk):|
20— = (ro+2u) (rp+32e) (rp +Zh—k)
M
b _ v ?’g+2},
1h= Z
rg+q;,(1—7”+2k)
1 ot ______%'1 M Ei'l _ rgz
?[ rgrg(l v ?’p+zh) (1 v ?’p—}-i’k) 2020, 2=
N A Y S i .
aEg( )(?‘p+21,+?’p+"k v (rﬁ+zh)(7'ﬂ+§k))
8 (L\( __rdwmme
+ aEp( v ) ((?’p+zh)(fg+?k))]
bagp—ny =
lirg'l_qh(]- v Tp+2'k)] [rg+gk l_Tf’p‘i‘Zk)]
i L o ]
|:rg+q(, R)( v fp-l-z(k—k)) J

Discussion of General Equations

Equations (31) and (32) contain the general solution of the prob-
lem. The formulas are too long to consider all effects at one time
but if we separate (31) into components and consider each component
separately, useful applications may be secured.

First taking the component that gives rise to amplification effects,
we get

Lp(k) :alk(l —buugn) e
—_ H ) ]’g €1h. (33)
(?'p +z Zn )

?’g"‘(],l;(]. - ? rp—l—z;,

The point to be noted in this relation is that when ¢, < <r; we have
the well-known relation

; u o
by = o e (34)

(3

2

)
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Since amplifiers are usually operated under the condition that r,
is exceedingly large, the general solution has contributed nothing
new to the amplifier equations for conditions where the grid is main-
tained at a negative potential with respect to the filament. But for
positive values of grid potential both g, and the reflex factor, v, enter
into the calculations. It may be remarked in passing that when
the grid and plate are both positive by the same amount, the absolute
value of » is approximately equal to, or somewhat less than, . On
the other hand, when, as is usually the case, the plate potential is
much greater than the positive grid potential, the magnitude of » is
much greater than p.

2 s I
“ > - B dJiu:u .Arilb T
24| @7 MEASURED|(FROM| FIG | 10) | £~ 1
| 4(
» Eg-2.5 Volts 33 d BN
32 THESE DATA ARE QBF .7 Ep|=120 Vpits
TAINED | FROM [FiG. {0 32 |
3 - .
P 3 > A
30 E
80 9 100 10 120 130 {40 150 160 170 {80 30
-5 -4 -3 -2 -1 0
E,, Volts E,, Volts

Fig. 2—Change of g with plate and grid potentials. The points on the calculated
curve were obtained as follows: since

o _ fcu
JE, “BE,
then
—!_‘eﬂE_‘n
T 1-KE,
where
O
P O
_om . au) _MT"3E,
K=3z,7 (1+E”8En s 2
”aEﬂ

From the upper curve, for E, =120, E,=—2.5

Ou
=32, 9% = 05328,
H OE,

whence
K =.06146,u, =29.55

We next consider the component of (31) that results in plate curva-
ture detection or modulation. It is given by
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ips=(1=bug) (1—bwge)azo—p ezm—k

'“I:— wirpry +# (fp —Zh-k)+— (?'p+zh)(7’p+2k):|82(h k) (35)

[fsm(l—v,,f:d,, ) lere(-57%2) ]

(rp+21) (rp+22) (ro+20-1)

For rough calculations, u may be regarded as a constant. For
very careful work, this assumption should never be made without
first drawing the curves of u—E; and u—E, and verifying the va-
lidity of the assumption under operating conditions. Examples of
such curves are given in Fig. 2. When p may be regarded as constant,
and when the grid is maintained negative with respect to the filament,
(35) becomes

fothp = S 7 "eain—t)
plh=h) (”p+zh)(?‘p+2k}{?’p+zh k)

which may be-put into the form given in Mr. Carson’s paper, referred
to before.

The third and last component of (31) is that which produces grid
detection or modulation; namely

Epth—ty = — Q10i—0 (=t D2 00— k) €20h— 1)

=( MG ch—k) [_”, ( 5‘1,)(1_ﬁ % )
rp+ Z(h—i) e vyt vry+2ok

mitnn 80 ()~ )

(#Zh ret | uIRS B TTe ) :I
rp+5fl rﬂ+;ﬁk U(Fp"}’.;;,)(]’p—}'ﬁk)

Lotmli=2 2 a2 2]

[ngrCIm—k)( ——": r_;:T)] (36)

In using this relation, » may nearly always be considered constant.
As grid leak detectors are often used, ¢ consists of a resistance, R,
and a condenser, C, in parallel. The values of R, and C are so ad-
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justed that the impedance of the combination to the first order fre-
quencies is practically that of the condenser alone and may be
neglected, and to the desired second order, or detected, frequency it
is practically that of the resistance alone. When this is the case,
and when the impedance in the plate circuit is a pure resistance, Ry,
we may write (36) as follows:

o Rt
Y iy R re t Re) "

and, considering u constant, in order to obtain a physical view of

the result, we get
1 [ s Erry (’gﬁRr’)
3z wR;| 71 (?‘p'l‘Rip)'? . :Iﬂzm

e o+ Ro)r(re+Ry)

This equation shows a condition that is present in many grid-leak
detectors and which, it is thought, has not been generally appreciated.
The condition referred to is the presence of the term involving the
curvature of the plate characteristic in the grid detection component.
This effect is in addition to the plate detection effect, given by (35).
The plate detection component and the grid detection component
are opposite in phase. Hence, it would seem that for best operation
as a grid-leak detector, the curvature of the plate characteristic
should be zero. This means a rather large value of E;, the plate
battery potential. In practice, however, it is usual to operate with
fairly low values of E,. The second term of the numerator of (37)
accounts for this. It will be seen that detection resulting from this
term and from the first term are in phase, since » is intrinsically
negative. Hence, it is entirely possible in certain cases for the optimum
operating point to be such that the effect of the plate curvature is
appreciable.

We now combine once more the three components, (33), (35) and
(36), under the simplifying assumptions that ¢ and » are constant
and that » is large enough so that terms containing » in the denomin-
ator may be neglected. The result is

2aumrg' Ry )
v

(37)

|

Yy €1j ¥q €1k

Y= reban) o) T ek (rptan)

j e — 'ty
T Gt a0 et a0 Ly Fam (ro+2) (ro F o k)] (38)

M- %Tgfg' |
(rp+an- k)[(rg-}—gh (’z+§k)(fg+q:,_k):|  €20-h +...
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The first two terms of (38) are the amplification terms and represent
undistorted reproduction in the plate circuit of the voltage, e, applied
in the grid circuit. The third term of (38) represents the second order
effects resulting from the curvature of the characteristics of the
vacuum tube. The first part of this term represents the effects of
so-called plate curvature detection or modulation, and the second
part represents the effects of detection and modulation in the grid
circuit. It is with this last-named component that the present paper
is most concerned.

The Grid-Leak Detector : ™

Fig. 3 shows the usual circuit diagram for a grid-leak detector.
It is evident that the impedance, g, in this example is composed of
the parallel combination of R, and C. Suppose that the “A” and
“k" frequencies are both radio frequencies, and that, for them, the

Rg

o:%

/\éﬂ

4 il
Fig. 3—Grid-leak detector

impedance offered by the resistance and condenser combination is
practically that of the condenser, alone. Suppose, further, that
practically the only impedance offered by the external circuit to the
“(h-k)" frequency is that of the resistance, Ry, alone. This, of
course, assumes that the “i-&" frequency is quite low. Then, when
E,, the voltage of the plate battery, is such that ry is very small,

and when
e=A cos ht+B cos ki
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we have, from (38), for second order effects

iy =1r.r,

+7

+

+

+

g (rP:R,,)I:(rg_’_ ' 1

hC

Ry

Az

R,

5( s !C) (rit

2

e i cos 2ht

() (i)

B2

(o f)

1
2jkC

(r”'+j»‘eIC) ( ety
1

] +E)C

Y
2ikC

1
+0) e R)

B2

> cos 2kt

(5

R,

+

ic) (7 +%~)(

](h—He}C)

Rﬁ

AB cos (h+k)t

4B cos (h— k_)f]

(5 oo

(39)

While most of the frequencies in this expression are unimportant

in relation to any practical case on hand, they are included here to
show the complete result for a given simple case. The last term of
the above expression results in what is known as detection.

Let us consider this component in more detail as regards detection
of an incoming modulated radio wave of the form

e=A (1+B cos gt)cos pi. (40)
They may be written
e=A cos pt+ {lré@ cos (p+g)!+ATB cos (p—q)t. (41)

If we identify the ‘“p" frequency with “%,” and let “%&" have the
values (p+q) and (p—g) in turn, the detection term of (39) gives
R,

1};2%@7{(——“ ) ——
e [( = 55¢) (" iac) e HRY

o 3 A8
1 2
(fg‘i‘jp?) ( J{P Q)C) ("g+Rg)]

(42)

cos gt.
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Reference to the mathematical digression will make clear the forma-
tion of the impedances in this expression. (42) is an important rela-
tion since it shows that there is a possibility that the amplitude of the
detected current may be affected by the phase displacements of the
side bands of the original wave which occur during the detection.
For an ideal grid-leak detector, the magnitudes of the quantities
1 1 d 1

pC pFoC "™ =0
tion (42) then becomes

W R AB
e (rptRyp) (re+Re) 2

¢ are very small compared with 7;. Equa-

ig= cos gi. (43)
In (43) we have the simplest possible form of the equation for a
grid leak detector. The next step is to show methods for evaluating
the quantities 7, and r;’. As may be seen from the relations given
in (7) and (8)
1 _ aIgO v r__ afg
I4 aEg

rg OE;
and, since the action of the grid-leak detector depends upon 7', it is
evident that 7, is not a constant but varies with the value of E,.
We may obtain 7, by direct dynamical measurements or by drawing
tangents to the static grid-potential grid-current curve of the tube
under consideration. The value of r, thus obtained applies only
to a given value of E,. Now E; is a function of the voltage, e, as
will be shown:

When e has the form given in (41), one of the resulting currents
in the plate circuit is a direct current given by

i Lry  pRy ( Asz)
d=
"2 7’3 (H"‘Rg)(?'p‘f‘Rp) 2
This means that a constant voItage given by
17 A? A2.82
o=t e [ (44)
2 7, (rg—i—R
must have appeared on the grid in order to produce the constant
component of the plate current. This constant voltage is in addition
to that which we have denoted by Eg, since it is part of ¢;. More-
over, its intrinsic value is usually negative, since #;” is usually nega-
tive. This means that the “effective” Eg has been reduced by the
amount given in (44). However, 7, is slightly different at this new
value of E,, and hence e, is not quite what a first calculation would
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lead one to believe. The method of arriving at the correct value
for ey, and hence for r, and 7,” is one of trial and error, for, after
several recalculations of e, have been made, it will be found that
check results are secured. Then 7, and »,” may be determined from
this resulting value of E.

In actually making these measurements, a dynamical method of
measuring 7, will usually be found superior to the method of drawing
tangents to the static characteristic, for the grid-potential grid-
current characteristic of any tube is rather elusive because of the

0

2

L

°.

o
0,000 \

\ I
50,000 \
\

40,000 | \ \

30,000 [ \\

20,000 \\\

N
’ Elp=19V~
\--._____.
‘ |
0 1
) 2 4 © 8 10 Eg-VOLTS

Fig. 4—Grid resistance

very small values of current involved. In the dynamic method a
Wheatstone bridge circuit excited by a high frequency buzzer will
be found convenient. The value of 7,/ is, of course, obtained by
drawing tangents to the 7, curve. Several examples of 7,— E; curves
are shown in Fig. 4.

It must be recognized that, for large values of buzzer excitation,
the dynamic value of r, differs somewhat from that found by drawing
tangents to the static characteristic. The dynamic value more nearly
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approaches the value 7, would assume with large signal inputs than
does the static value. Hence, if a large signal input, e, is to be used,
the amplitude of the buzzer excitation voltage on the grid should
equal this amplitude as nearly as possible.

When the method of drawing tangents to the static characteristic is
employed, a very close approximation to the value of r; to use for
large signal amplitudes may be obtained by drawing, not true tangents
but secant lines to the static characteristic, which join points on the
characteristic corresponding to the extreme, or peak, values of e,.

When either method is used to obtain 7,, the value of r,” must be
obtained by drawing tangents to an E,—7, curve.

With the precautions just given, and when the assumptions made
in equation (43) are justifiable, an accuracy within 109, is easily
obtained. While this is not very exact, nevertheless, it is a real
advance over calculations.made without taking the precautions just
discussed for measuring 7.

In many vacuum tubes the value of 7 is so high that the input
impedance of the tube, resulting from the interelectrode capacities
of the elements cannot justifiably be neglected. In order to include
this effect, the following relations are applicable.

Consider the circuits shown in Fig. 5. This gives the equivalent
circuit diagram for a vacuum tube with general impedances, z; and

G G

Z;

F F F
Fig. 5—Equivalent network

2,, attached to the grid and plate, respectively. The plate to filament
capacity may conveniently be included in z. The impedance, Z,,
is the effective impedance of the network looking to the right from
the point G'F. 2, is the grid to filament capacity of the tube, and
23 1s the grid to plate capacity.

We may write
Ze %,

zgl + 2&_1

S
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In order to apply the general equations we must evaluate 2, and g,.

To Evaluale z,.

From the general equations, we have

i = Meg
P et
Hence we may write Kirchoff's law for the plate circuit. This gives

_ egl(u+ 1)z2+uzs)
P rpmatas(ry +2)

Upon equating the two expressions for 7,, there results

P17 et )
" (e+1)324pszs

To Evaluate q,.

By the general equations, we have

. e
fg = ———
E et aux
where x stands for
(-2%)
v r;,-i—z,,
This may be written
e
PR
=
7
?ﬂ +Qn

which says that Kirchoff’s law may be applied to the grid circuit

. . e . . .
provided we use a modified voltage, 7 and a modified grid resistance,

P
-£. Hence
x

62
xg

ip=

e (et ) =2

Upon equating the two expressions for ¢, there results
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To sum up; the following relations are applicable when interelectrode
capacities or other coupling impedances are to be included:

zgz-% (45)

- =ﬁl@ (46)

= S, )

= e s

an="" 1-;L +2 . (49)
vrpt Sa

With the aid of (45), (46), (47), (48), (49), equation (42) may be
modified to include all cases where the plate current resulting from
detection or modulation in the grid circuit is desired, provided an
accuracy greater than about 109 is not required. Where greater
accuracy is essential, curves must be made to give the effect of the
small terms in the numerator of the expression for by, in equation (36).

Before leaving the subject of grid-leak detectors, we will discuss
briefly one of the physical aspects of grid-leak detection that the
example just given, and the equations on which it is based, have
emphasized. This is the fact that the fiction of the time-constant
of the grid-leak and condenser combination is not a necessary physical
interpretation of the phenomena which occur in the grid circuit.
Indeed, in many cases, the time constant method of calculating the
leak and condenser gives quite erroneous and misleading results.
These cases occur when the impedance looking into the vacuum tube
is of such value, as it often is, that the magnitudes and forms of qux
and gum are materially changed from those which they would have if
z; were neglected, and when 7, is not large compared with g, and gm.
Equation (38) shows that, for greatest plate current resulting from
grid detection, g, and g should be as small as possible, while gg—
should be as large as possible. It is, then, a filter problem, and if
treated as such, will give reliable results both as to physical interpre-
tation and numerical values.
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In the special case when the input and detected frequencies are

h s . )
5= and 57 respectively, and where ag>>rg.
_.1
W= 5nc
R
isC
g‘ = J 1

R =leak resistance
C=capacity in parallel with R

Then, the optimum size for the condenser, C, is easily shown to be

V2 (R+ry)
2 VY V178
C hsRrg (approx.) (50)
5
g
AT JPamar SN NN -
I [ ] | ™
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CAPACITY OF GRID-LEAK CONDENSER
Fig. 6—Optimum size of grid-leak condenser

Experimental Conditions:
I =27 % (30000 == 500)
§=2x % (1000)
Grid-leak = R =10° ohms
r, =10 ohms
Calculation” Conditions:

- >>,, Then the optimum size of the
I . .
grid-leak condenser, C, is:

i
G = _
Jh( c— V2 (R+r,)
R ot hsR r,?
= J’L or;
R+ Cope =361pp farad

jsC
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Fig. 6 illustrates the agreement between this relation and an actual
circuit where the above conditions were closely approximated.

Plate Curvature Detection

In discussing this phase of the problem we refer to equation (35).
In addition to the remarks made in connection with that equation it
is necessary only to add a few words on the evaluation of 7, and 7y’
In general, these quantities are susceptible to the same method of
treatment that was suggested in dealing with 7, and ;. Two funda-
mental circuits for plate curvature detectors are in use. In the first
the plate battery is placed in series with the load impedance. In the
case when the load impedance contains appreciable resistance the
normal or effective value of E, must be obtained in the manner
described for finding E,. In the second circuit the plate battery
potential is introduced through a low resistance, high impedance,
choke, and the normal value of E, is then equal to E;. Especially
in dealing with resistance coupled units these points should be borne
in mind.

Amplification

Equation (33) gives the general amplification relation. The remarks
made under the heading of the “Grid-Leak Detector” concerning the
evaluation of the 2's and ¢'s are applicable here, as in all other vacuum
tube relations. The special points to be brought out are the methods
of applying the equations to so-called improper amplifiers of Class II1.
In this type of amplifier the grid swings negative further than the
plate current cut-off point each cycle. Experience has shown that
even in this event, to find the tube resistances, the approximation of
using the secant line joining two points on the characteristic corre-
sponding to the extreme values of the input voltage, is often justifiable.
If greater accuracy is desired, the corrections given by the curve,
Fig. 7, should be applied. These corrections are based on the as-
sumption of a sine wave input and a characteristic that follows the
square law, and to that extent are themselves in error. For modu-
lated waves the dotted curves give values found by interpolation
between the two points shown.

Modulation

The detection equations apply equally well to modulation effects.
The only case in which a question may arise is that in which one of
the input frequencies is introduced into the plate circuit of the tube
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E Explanation:
2 I=KE?
[=KE =K(M+A cos pt)*]gs
=l;—°+bl cos pt+bycos 2 pi+ ...
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A _ 2K, . .
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Fig. 7—Correction factor for resistance of non-linear device

while the other is introduced into the grid circuit. To analyze this
condition for the general case, (see Fig. 8) let lower case ¢e's refer to
the driving voltage impressed directly on the grid. Let the E's refer
to the driving voltage in series with an impedance in the plate circuit.
We then have the series

tpy=a,(E+e)ta.(E4e)*+ ...
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which, in accordance with the complex quantity notation may be
written

ip = anE+ane+aswn B+ asenet+ 20208 EE+2a:g,41 Ee
4+ 2asp—wEe+2as00€8+ . . .

/\%D

1l aa o a

Fig. 8—Plate circuit modulation

Then, with the aid of (4), upon equating coefficients of like powers of
e, E, and Ee, we get
Go= L an= M
h ?’p+zh 1k T’p+zk

— 37ty

@20 = )2y Zam)

[ A +.u T (r =)= wrry’ |

e = (f’p+-’4) (fp+azk) o
— 31ty [ ou Tp
Oy = — = L ! —_ ’
oD =G min F R, Lok, AT ]
Bk (rp+2u) (rp+2) (rp+320+8)
L[ ou rp _

. =—E_|:_@EM —‘?"'—(Zr,,—{-zwrzk) —ur;,r,,’]

HI=h (rp+2u) (rp42e) (rp 20—k

(51)

. aE (rb+-'k) +.U (rp —Sk-)gﬁ—_}ﬁ?if;rp’:l
A R
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When z is a resistance, R, the expression for 7, reduces to

i =(.U-B+E)_ %rp?’p’ E2
"7 nt+R (R

|: (79+R) +# (?‘p“—Rz) #"’pi’p]

9

(rp-i-R)“ ¢ (52)
aaE ro(rp+R) —urpry
LA =S LR A
If x is constant, this becomes
. _,LI€+E 2Tpfp
’l’f’ - T’p"‘R (?’ +R)3(#8+E) + - - (53)

which shows that the circuit then acts as though a voltage, (ue+E)
had been impressed in series with the plate circuit.

Oscillation

The subject of vacuum tube oscillators has been so extensively
treated elsewhere that but little new material has thus far been
obtained from the general equations now offered. The method of
handling the problem is, however, illuminating as it gives an example
of what is meant by the statement that no sharply drawn line should
be placed between oscillation, detection, amplification, or other uses
of the thermionic vacuum tube.

In treating the oscillator problem we consider the amplification
term of the general equations; namely

ue re

= ("p‘i‘zn)[ retgn(l __L_J )

VT +Zn

The oscillating conditions require that current shall flow without a
driving voltage. Hence, as ¢ is zero, i, can be finite only if one of
the factors in the denominator is zero. Thus either

rp+z,. =0 . (54)
or
Zn

v ?'p+ (55)

ret+an(1—
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gives the conditions for oscillation. Fig. 5 and the relations of (45),
(46), (47), (48) and (49) are applicable here. The condition of (54)
requires a negative value of r,, and hence is not the usual oscillation

condition. The condition of (55) therefore gives the criterion for
. I |
the oscillation condition. As before, neglecting quantities in - we

may write (55) in the following form

rgt+gn=0
-'l(zg'i"'g)

or

rg+——=0. (56)

When applied to a hypothetical Hartley oscillator, Fig. 9, with the

circuit constants

1]

=0

Fig. 9—Hﬂrtley oscillator
. 1 .
Zo =ijp Z3= T+ 1 zijg,

equation (56) gives as the conditions for oscillation

 _ 1
3 I:L,HLLg-F

1
Lg] = e (nearly), (67)

Crpry

Lo=[u=7"% JLa=uLs (nearly). (58)
relop
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The relations of (57) and (58) have been given many times, and are
included here only in order to illustrate the ease with which simple
problems may be solved from fundamental relations.

A pplication of the Theory

The illustrations will serve to give a sufficiently comprehensive view
of the methods of applying the general equations to special cases.

Inasmuch as the derivation of the equations requires no assump-
tions other than that the static curves of grid current-grid potential,
and plate current-plate potential of the tube remain constant, the
accuracy with which a given problem may be calculated depends
only upon the ability to determine the effective differential coefficients
required by the Taylor’s series expansions, and the number of terms
of the series included. Practically, the component of current of a
given frequency resulting from any higher order term is entirely
negligible with respect to the component of the same frequency
resulting from lower order terms. For precise results in a general
case the calculations are necessarily tedious, since the physical proc-
esses are quite complex. However, in any given special case one of
the respective approximations indicated is usually allowable, which
greatly simplifies matters. In the event that any question arises
concerning the proper phase angles for the complex impedances, the
correct result may always be arrived at by writing the voltages in
full complex form, as illustrated in the mathematical digression. The
impedances will then take care of themselves.

While it is difficult to show mathematically the convergence of the
series of (31), experience has shown that the convergence is so rapid
that higher order terms may be neglected, unless new frequencies
developed by them are under investigation. In these cases, the
conditions of the problem are often such that simplifying assumptions
may be made at the outset. If familiarity with the complex im-
pedances has been attained, it will, in many cases, be sufficient to
derive all equations on the basis of resistance only, and then intro-
duce the complex impedances in the manner indicated by the analogy
between these and the general equations.

The higher order coefficients are given below for the special case
where resistances, only, are considered, and where the voltage, e,
is known. It is found more convenient to use the P's, equation (4),
in their derivative form than to attempt to express them in terms of
w and rp, so referring to the expansion

ip=aeyt+ase;+aze +ae tasel+ - - -
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we have
a,= ___P1
YU14PZ
1

_ 2 2Py
e 1+P;Z[P 1—2P "1+P22+P “(1-|—sz)2:|
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APPENDIX 1
To Show that with Negalive Grid Potentials the Relation:
Jou _ou
oE, OE,
Holds With Fair Precision
We have the fundamental expression :
I,=1,(E,, E,) (1)

Suppose that E; and E, are allowed to vary under the restriction
that I, is maintained constant. Then:

dl,=0 (2)
Hence:
dIi’ N aIp aIp dEp .
dE, = 3£, T 3E, 4, (3)
Whence:
dE, | _
a5 1= )
Also:
a*l,=0 (5)
Hence:
&l 2%l, dE, , o, (dE,\* , al, d*E,
di ~0= 35 T2355E, aB, T 35, (Eg) oE,dEz (0

Then with the aid of (4), above, and (6) in the body of the paper, we get
Ou ou , d'E, _

ok, 2k, tarz =° @
Equation (7) shows that:
O _ O
provided that:
&E, _
iEs =" )

when I, is constant.

Experimental curves showing the relation between E, and E,
required to maintain [, constant are straight lines, to a very close
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approximation, in the region where the grid potential is negative
with respect to the filament as shown in Fig. 10. Hence, in this
region (9) is satisfied for all practical purposes, and, therefore, the
proof of (8) follows directly.
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Fig. 10—Relation between E and E for constant plate current



