Applications of Poisson’s Probability Summation
By FRANCES THORNDIKE

Synopsis: The applicability of Poisson's exponential summation to a
variety of actual data is illustrated by thirty-two examples of actual fre-
quency-distributions to which the Poisson distribution is a fairly good
approximation. The comparison of actual and theoretical distributions is
made graphically, using as a background new probability curves showing
Poisson's exponential summation with a logarithmic scale for the average.
To suggest possible explanations of the observed deviations from the theo-
retical Poisson distribution consideration is given to the effect on the
theoretical distribution of certain modifications in the underlying assump-
tions, corresponding to conditions under which much actual data must be
obtained.

N an earlier number of THE BELL SysTEM TECHNICAL JOURNAL

there were published two sets of curves showing Poisson's expo-
nential summation.! These charts, which are shown on a reduced
scale in Figs. 1 and 2, give the relation between a, the average number
of occurrences of an event in a large group of trials, the number of
trials being very great compared with the average ¢, and the proba-
bility P that the actual number of occurrences in any such group of
trials will equal or exceed any given number ¢. The purpose of this
paper is to facilitate the use of these curves by making clear the char-
acteristics of the Poisson summation, especially the assumptions on
which it is based, and the precautions which must be observed in
applying it, these points being illustrated by a number of actual
frequency-distributions for which the Poisson distribution furnishes
a fairly good working approximation.

Poisson's EXPONENTIAL SUMMATION

Three assumptions underlie the mathematical treatment of Poisson’s
exponential summation

a a.’! aa ac!
P=1—[1 =ttt —:Ie"“
RS TRE TR TR =)}
and its application to practical problems. The first is that the quan-
tity measured is the number of occurrences of a particular event
which always definitely happens or fails to happen, so that the actual
number of occurrences ¢ is either zero or a positive integer. The
second assumption is that we may imagine the group of trials con-
1 Figs. 1 and 2 of “Probability Curves Showing Poisson’s Exponential Summa-

tion,” by G. A. Campbell, Bell System Technical Journal, Vol. 2, No. 1, pp. 95-113,
January, 1923,
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POISSON’'S PROBABILITY SUMMATION 605

stituting the sample in question to be repeated an infinite number of
times, independently and uniformly, with an average number of
occurrences per sample equal to a, so that we may speak of a as the
average number of occurrences for the sample in question. The
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Fig. 1—Probability curves showing Poisson’s exponential summation

a  a? a1t ] e
P=1—|:1+T!+i+{ - +—(c——1)! e
for the probability P that an event occur at least ¢ times in a large group of trials
for which the average number of occurrences is . A scale proportional to the normal
probability integral is used for P, a linear scale for a
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ber of occurrences, it consists of an infinite number of independent,
uniform trials, so that the possible number of occurrences in a sample

third assumption is that, while the sample has a finite average num-
is infinite, and the probability that the event occur in a single trial
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is infinitely small. 'The term ‘‘uniform’ applies, of course, not to
the results of the trials (or samples) but to the essential conditions
under which they are obtained, and “independent’” is used with the
‘meaning that the result of one trial (or sample) does not affect the
décurrence of the event in any other trial (or sample). ~ The first
ard third assumptions, translated into exact mathematical language,
define a particular kind of probability function, which can be de-
rived by taking the limit, as » becomes infinite and pn remains finite,
of the point binomial (p+¢)" for the probability of any number of
occurrences of a given event in a group of n independent, unifofm
trials, when the probability that the event occur in a single trial is .
The second assumption is required in order that we may pass from
the abstract idea of a probability function to the concrete idea of a
frequency-distribution.

Throughout this discussion the summatlon form of the frequency—
distribution, giving the probability of at least ¢ occurrences, is used
rather than the individual term form, giving the probability of ex-
actly ¢ occurrences. One reason for the use of the summation form:is
ts more direct applicability to many practical preblems in which
the chance of exceeding a certain limit, rather than the chance of
obtaining any one particular value, is of practical importance. Sec-
‘ondly, as Fig. 3a shows, the individual term form gives' in general
two possible values of ¢ for any pair of values of @ and P, whereas the
summation formis single-valued and introduces no such ambiguity.i

Fig. 3 also calls attention to some of the outstanding characteristics
of the Poisson distribution, its discontinuity and skewness, in par-
ticular. That the Poisson distribution must be a series of discrete
pomts and not a'dontinuous curve is a direct result of the dssumption
that ¢ represents a number of occurrences. That ‘the dlstrlbutloh is
dkew follows from the fact that the possible number of ‘occtrrénces s
‘much larger, in fact infinitely larger, than the average number of
‘occurrences. This skewness is quite marked even in the Poisson
‘distribution with a@ =5, which is shown in Fig. 3, and it becomes more
pronounced as a is decreased toward zero. If, for example, the aver-
age number of occurrences in a million trials is one, in any’ particular
group of 'a ‘million trials it is equally likely that there will be 1o oc-
currence of the event or.one occurrence, and it is almost 1.4 times as
likely that there will be no occurrence as that there will be two or
‘more occurrences, though zero and two are equally removed from the
average. A third important characteristic of the Poisson expon~ntial,
which is not brought out by this figure, is its extreme simplicity.
The distribution is entirely determined by the value given to a single
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parameter, the average a; its standard deviation is Vg, its skewness
is 1/4/a, and its kurtosis is 3+1/a.?

One consequence of this simplicity is that there is no difficulty in
deciding on a definition of the corresponding Poisson distribution with
which any other distribution should be compared. It is naturally
the Poisson distribution having the same average as the given dis-
tribution.
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Fig. 3—Poisson distribution with the average ¢ =5 shown (a) in the individual term
form and (b) in the summation form

Poisson ProBaBILITY CURVES

Another advantage is that it is possible to represent the whole family
of Poisson distributions graphically by a chart such as Fig. 1 or Fig. 2,
in which the value of the average a is read on the horizontal scale, the
value of the probability P on the vertical scale, and the number of
occurrences ¢ on the individual curves of the set. Any two of these
three variables may then be taken as the independent variables and
the values assigned to them will determine the value of the third
variable, which can be read off at once. The only ambiguity occurs

2 The standard deviation (¢), skewness (&), and kurtosis (82) of any distribution

are defined as
\( T(x—a} Z(w—a}  Zlx-a)*
¥ , , and

ad at

respectively, N being the number of samples in the series, and x; the actual number
of occurrences in the sth sample. For any point binomial

— k—» 1—6pg
- =Yt 5 _3 .
o =npq, Ny =3+ v,
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when ¢ and P are the independent variables. The point determined
by their values will, in general, fall between two of the ¢ curves and
the interpretation of P must be known to determine which of the two
values of ¢ should be taken. The desired value of ¢ is read from the
lower curve if P means a probability of P or more, from the tpper
curve if P means a probability of not more than P.

These charts may then be used conveniently in place of unwieldy
double-entry tables to obtain theoretical values needed either for
comparison with experimental data or to take the place of experi-
mental data. Examples of such uses of the Poisson exponential are
discussed in detail by Karl Pearson,® W. A. Shewhart,* and E. C.
Molina.® The use of these curves in the study of telephone trunking,
letting a represent the average number of simultaneous calls from a
large group of subscribers, c—1 the number of trunks provided for
them, and P the probability that all the trunks will be in use when a
subscriber attempts to make a call, is suggested by Mr. Molina's
paper. Other possible applications might be found in connection
with the control of errors in service, defects in a manufactured article,
the stock on hand of staple articles such as ink, shoe-polish, or spark
plugs, or the number of copies of reference books in a library serving
a large number of people. Still others may be suggested by Table I,
which is a summary of the actual data now brought together for the
first time for comparison with the theory.

The comparison of any actual distribution with the corresponding
Poisson distribution may easily be made graphically, using these
curves as a background. In fact the charts will often be found
useful as coordinate paper on which to plot any frequency-distribu-
tion, theoretical or observed, provided the values of the variate are
inherently limited to the positive integers and zero.

When the curves are used in this way the corresponding Poisson
distribution is represented by the points in which the vertical line for
the observed value of a cuts the ¢ curves, or for convenience simply
by the vertical line itself. The other distribution may then be plotted
with ¢ and P as the independent variables, and the horizontal devia-
tions of these points from the vertical line serve as a measure of the
discrepancy between the two distributions.® If the comparison is
to be made with an observed frequency-distribution the values used

5 Introduction to ““Tables of the Incomplete Gamma Function,” London, 1922,

1 “Some Applit‘atim]s of Statistical Methods to the Analysis of Physical and Engi-
neering Data,” Bell System Technical Journal, Vol. 3, No. 1, pp. 43-87, January, 1924,

5 “The Theory of Probabilities Applied to Telephone Trunkmg Prob[ems " Bell
Swystem Technical Journal, Vol. 1, No. 2, pp. 69-81, November, 1922.

8 The distributions might be plo.tte(! in other ways, e.g., lettlng P or ¢ be the de-
pendent variable, but the method used here is the simplest.
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TABLE 1
N =number of samples
aN =total number of occurrences
a =average number of occurrences per sample

Series N aN a

a 1 Alphaparticles................... ... ... 2608 10097 3.87
a 2 Alphaparticles....................... ... 1304 10094 7.74
a3 Deathsofaged.......................... 1096 903 0.82
a4 Deathsofaged.......................... 1096 2364 2.16
a 5 Telephone lines inuse....................|>1000 | >4315 4.32
a6 Bacilli..................................] 1000 1927 1.93
b1l Yeastcells........ ... .....cciiiiiiiis 400 720 1.80
b2 Yeastcells........ ... .. ..ot 400 1872 4.68
b3 Lostarticles............................ 423 439 1.04
b4 Number 12. ... .. ... . ... .. . ... ... 500 421 0.84
B 5 FireS. ..ot 364 0487 26.1

b 6 Incorrect reports. ....................... 506 138 0.27
b7 Cutoffs..... ... . oo 506 1057 2.09
b 8 Double connections. . .................... 506 1760 3.48
b 9 Calls for wrong number................... 506 2520 4.98
¢ 1 Deaths from kickof horse. . .............. 200 122 0.61
c2 Number I2. . ... ... i 250 251 1.00
¢ 3 Calls from group of two coin-hox telephones. . 145 172 1.19
¢ 4 Calls from group of four coin-box telephones.. 140 384 2.74
¢ 5 Callsfrom group of two coin-box telephones. . 141 212 1.52
¢ 6 Calls from group of six coin-box telephones. . . 138 468 3.39
e 7 Cutoffs..... ..o 267 557 2.09
¢ 8 Double connections. . .................... 267 906 3.39
¢ 9 Calls for wrong number................... 267 1351 5.06
c10  Connections to wrong number............. 267 2334 8.74
cll Partylines..........ocooiiiiiiinnen... 300 1981 6.60
c12 ‘“Lost and found" advertisements.......... 200 7051 33.7

d 1 Number 12. ... .. .. . ... ... . 100 421 4.21
d 2 Number I2.... .. .. .. 50 421 8.42
d 3 Comets...oouveen i 100 258 2.58
d 4 Particles in emulsion..................... 50 46 0.92
d 5 Particles in emulsion..................... 50 106 2.12

for the probability P are the values of the observed relative frequency .
F, which are calculated as indicated in Table II, and the observed
distribution is represented by an irregular series of dots, as in Fig. 4.

A third set of curves, Fig. 5, supplementary to Figs. 1 and 2, has
now been drawn using a logarithmic scale for a. This chart shows the
individual ¢ curves up as far as =30 and it shows more clearly than
does Fig. 1 the range 0.1<a<2. It may also be used as a background
in the same way as Figs. 1 and 2, with the additional advantage of
making the distances of the plotted points from the vertical line
proportional to the percentage deviations rather than proportional
to the absolute values of the deviations, so that the fit of a distribution
having a small average can be compared directly by eye with that of
a distribution having a large average, since it is more often the relative
than the absolute value of the deviation which is significant.
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PrACTICAL APPLICATIONS
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observed distribution and the corresponding Poisson distribution. In
the_first place, the sample considered will necessarily consist of a
finite number of trials instead of an infinite number as assumed in
the mathematical theory, and the trials may not be completely inde-
pendent or entirely uniform. Secondly, even if the individual sample
possessed the ideal characteristics assumed in the mathematical
formulation, the actual series of samples must be finite and the samples
may be interdependent and far from uniform. The size of the samples
relating to the economic, geographic, and time divisions ordinarily
used in statistical work generally varies considerably. The effect of
modifying the original mathematical assumptions to correspond with
some of these actual conditions is illustrated by Figs. 6-8, which show
various theoretical frequency-distributions plotted on Fig. 1 or Fig. 2
for comparison with the corresponding Poisson distributions.

The finiteness of the number of trials # not only makes impossible
the occurrence of values of ¢ greater than the value of #, but also tends
to produce a general trend away from the Poisson distribution. This
is illustrated by the four typical finite binomial distributions shown in
Fig. 6, which have a definite curve and slope toward the left which
becomes more pronounced as # is decreased.” Interdependence of the
trials constituting a sample will also tend to give the resulting dis-
tribution a slant, to the right if the correlation is positive, to the left
if the correlation is negative.® Thirdly, even though the trials are
independent, if they are not uniform, there will be a tendency for the
distribution to slant to the left.

The requirement that N, the number of samples in the actual
series, be finite introduces a somewhat different kind of deviation
from the theoretical Poisson distribution. The observed relative
frequency F, which is compared with the theoretical probability P,
is an integral multiple of 1/N, so that, since N is finite, the points
representing the observed distribution (except those at P=0 and
P =1, for which the ordinates are plus and minus infinity, and which,
therefore, never appear on the graph) are all in the finite range between
the two horizontal lines P=1/N and P=1—1/N. Not only is the
occurrence of points outside this range impossible, but the points
near its extremes, being determined by a comparatively small number
of samples, are of less significance than those near the center.

To call attention to these facts all observed distributions shown
here have been represented, as in Fig. 4, with the vertical line rep-

7 A more detailed discussion of the effect of finite sampling will be found in the
paper by G. A. Campbell previously referred to.

8 See “Explanation of Deviations from Poisson’s Law in Practice,” by “Student,"”
Biometrika, Vol. 12, pp. 211-215, 1919,
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POISSON’S PROBABILITY SUMMATION 613

resenting the corresponding Poisson distribution terminated at
P=1/N and P=1—1/N, and with the observed points in the range
P=10/N to P=1—10/N shown as solid black dots and the points
outside this range shown as circles with white centers. This sec-
ondary division is quite arbitrary, for the increase in reliability of
the points as the center of the range is approached is gradual. There
will, of course, be irregularities due to sampling even in the center as
long as the number of samples is finite.

Non-uniformity of the samples of the series may introduce a definite
trend away from the Poisson distribution, a slant to the right such
as is shown in Figs. 7 and 8. Such trends result when the value of a
varies from sample to sample of the series. Fig. 7 shows three theo-
retical distributions of this sort, each having the same average a =75.
Series (a) is made up of two equal sub-series having e =50 and a =100,
respectively, (b) of two unequal sub-series, in the ratio of 3:1, having
a =060 and a =120, respectively, and (c) of three equal sub-series having
a=15, a=060, and a=150, respectively.? Fig. 8 shows the effect on
the distribution of letting a vary continuously and uniformly between
the limits 5 and 15, the compound series (b) made up of two equal
sub-series with averages 5 and 15 being also shown for comparison.'®
Since in practical time series a usually increases or decreases with the
time, this kind of distribution may be expected to occur frequently.
It should be noted that in all these cases it is immaterial whether a
changes because of a change in the number of trials in the sample, or
because of a change in the probability of the event's happening at a
single trial, or because of both; if a is constant throughout the series a
Poisson distribution will be obtained, and if a varies the tendency to
slope to the right will be introduced. Various devices may be em-
ployed to keep the average constant in an actual series, some of
which will be illustrated by the examples given below.

In selecting the following examples of the Poisson summation only
two general rules were followed: that there must be some reason to

? In a compound distribution
N,
P=3 N P,
where N; is the number of samples with the average a,, and P,=P(c, a;).

10 [f g varies uniformly and continuously from a, to a»
' a2 Plc, a)

ay ﬂ'z*ﬂ[

1

P

=1- Z [P, as) —P(i, an)].
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suppose the possible number of occurrences # to be at least thirty
times the average a and at least 23, and that N, the number of samples
in the series, must be at least 50. This last requirement excludes
from our list a number of series which have previously been presented
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least ¢ times in a group of # trials for which the average number of occurrences is a =np

(a) a= 5, n= 10

(b) a=5, n=100

() a=10, n= 20

(d) e=10, n=100
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as examples of the Poisson exponential, in particular those of Mor-
tara ' and all but one of those given by Bortkewitsch.!2
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1 “Sulle Variazione di Frequenza di Alcuni Fenomeni Demografici Rari,’ by
Giorgio Mortara, Annali di Statistica, Series V, Vol. 4, pp. 5-61, 1912,

2 “Das Gesetz der kleinen Zahlen," by L. von Bortkewitsch, Leipzig, 1898.
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Each of the thirty-two actual distributions shown in Fig. 9 has
been plotted using Fig. 5 as the background, so that the percentage
deviations in all distributions may be compared directly by inspection
without regard to the magnitude of the average. The examples are
divided into four groups according to the number of samples in the
series, and are arranged in each group roughly in order of decreasing
agreement of the observed with the theoretical distributions. A
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Fig. 8—Theoretical distribution for a series in which the average a varies continuously
and uniformly from 5 to 15
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Fig. 9—Comparison of observed distributions with the corresponding Poisson distributions, using Fig. 5 asa background
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summary of the data used is given in Table I and the observed distri-
butions are given in full in Table II.

The distributions shown in the first group are taken from the work
of Rutherford and Geiger, Whitaker, Holm, and Greenwood and
White. Rutherford and Geiger observed the collision with a small
screen of an a particle emitted from a small bar of polonium placed
at a short distance from the screen. The number of such collisions
in each of 2608 eighth-minute intervals was recorded, the distance
between bar and screen being gradually decreased so as to compensate
for the decay of the radioactive substance. From this record two
frequency-distributions were calculated, that of the number of par-
ticles striking the screen in an eighth-minute interval, and in a quarter-
minute interval.’® These are distributions (al) and (a2), respectively.
Distributions (a3) and (a4) are based on a count of the number of
death notices in the London Times on each day for three consecutive
years." The distribution of deaths of men over 85 years of age (a3)
and that of deaths of women over 80 (a4) are shown here. The next
(ab) is a frequency-distribution of the number of telephone lines
simultaneously in use, from measurements on a group of 100 sub-
scribers.” The last distribution of this group (a6) was obtained
from a count of the number of bacilli in each of 1,000 phagocytes, or
white blood cells, in the same solution and as far as possible under
the same conditions, and is typical of a large number of distributions
of the number of tubercle bacilli ingested per cell.’®

The first two examples in the second group are due to “Student”
and the remaining seven are new. Distributions (b1) and (b2) show
the results obtained from two different solutions of yeast cells by
counting the number of cells per square of a haemacytometer slide
on which the solution had been spread as uniformly as possible after
it had been thoroughly shaken to break up any clumps of cells."”
The next example (b3) was obtained from the records of the “lost and
found'" office of the Telephone and Telegraph Building, 195 Broadway,
New York City. The number of lost articles found in the building

13 “The Probability Variations in the Distribution of « Particles,” by Ernest
Rutherford and Hans Geiger, Phil. Mag., Vol. 20, pp. 698-707, October, 1910.

U 4On the Poisson Law of Small Numbers," by Lucy Whitaker, Biomelrika,
Vol. 10, pp. 36-71, 1914, Six other similar distributions are given.

15 “(Calculation of Blocking Factors of Automatic Exchanges,” by Ragnar Holm,
P.O. E. E. J., Vol. 15, pp. 22-38, April, 1922,

16 “A Biometric Study of Phagocytosis with Special Reference to the ‘Opsonic
Index',” by M. Greenwood and J. D. C. White, Biomelrika, Vol. 6, pp. 376-401,
1908-1909. Fourteen other distributions are given.

17 “On the Error of Counting with a Haemacytometer,” by “Student,” Biomelrika,
Vol. 5, pp. 351-360, 1906-1907. Two other distributions are given.
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and turned in to the office on each day except Sundays and holidays
was recorded and tabulated for the period from November 1, 1923
to September 30, 1925, inclusive, excluding June, July, and August
of each year, when there might be considerable variations in the popu-
lation of the building. - Distribution (b4) shows the result of a count
of the number of times that the number 12 appeared as the last two
digits of a ten-place logarithm in a sample consisting of a column of
100 logarithms in Duffield’s table,'® and (b5) shows the number of
fires per day in New York City in 1924, as reported daily in The New
York Times, the figures for July 4 and for Election Day being discarded
for obvious reasons. The last four examples in this group were
taken from telephone company records of local service observations.
A sample consisted of the calls observed at one central office in one
month, and the series of samples used was selected from a complete
record for all the central offices in a large city by the requirement
that the number of calls per sample be not less than 450 nor more than
550, Distribution (b6) was obtained for the number of incorrect
reports, (b7) for the number of cutoffs, (b8) for the number of double
connections, and (b9) for the number of calls for the wrong number.

Group three is headed by Bortkewitsch's classical example of the
Poisson exponential.'® He found from the records of the Prussian
army the number of men killed by the kick of a horse in each of 14
corps in each of 20 successive years, and, after discarding the records
for 4 corps which were considerably larger than the others, treated
the rest as one series of samples. This is distribution (cl1). Series
(c2) is similar to (b4), except that the samples of 100 two-place num-
bers were obtained from several different sources, logarithmic tables,
trigonometric tables, and numbers listed in a telephone directory.
Examples (c3), (c4), (c5), and (c6) show the variation in the number
of telephone messages recorded per five-minute interval for certain
groups of coin-box telephones in a large transportation terminal.
The number of calls registered for each of 23 such telephones in each
of about 20 five-minute intervals between noon and 2 p.m. was
recorded on each of seven days (no Saturdays or Sundays included)
but as the telephones are arranged in groups the distribution of the
number of calls per interval was calculated for each group rather
than for the individual telephones. These shown here are for a
group of two telephones (c3), a group of four (c4), another group
of two (c5), and a group of six (c6). The next four examples are

18 “Iogarithms, Their Nature, Computation, and Uses,”” by W. W. Duffield,
Washington, 1897,
19 Bortkewitsch, op. cit.
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similar to examples (b6)—(b9), except that the limits of the number
of calls per sample were 515+25. Distribution (c¢7) was obtained
for the number of cutoffs, (c8) for the number of double connections,
(c9) for the number of calls for the wrong number, and (c10) for the
number of connections to the wrong number. The next distribution
(c11) was obtained from a count of the number of party-line sub-
scribers listed per page of a large telephone directory and the last
distribution of the group (c12) from a count of the number of ad-
vertisements in the ‘‘lost and found” column of The New York Times
on each of the week-days from January 1, 1924 to August 31, 1924,

The fourth group contains only five examples, three of which are
new. The first two of these present the same material used for ex-
ample (b4) differently arranged. The 50,000 logarithms used are
divided into 100 groups of 500 logarithms each for example (d1), and
into 50 groups of 1,000 logarithms each for example (d2). The third
(d3) is the distribution of the number of comets observed per year
for the years 1789 to 1888 inclusive.?® The other two distributions
have been given by Perrin as typical of the data obtained when, in
order to determine the density of the particles of an emulsion at a
given depth, he restricted his field of vision to a tiny part of that
layer, small enough so that the average number of particles visible
was only one or two, and then made a large number of observations
of the number of particles in that space at regular intervals.?!

As was to be expected, these observed distributions have not only
irregularities due to finite sampling but also in some cases what appear
to be definite trends away from the corresponding Poisson distri-
butions. In some cases there is an explanation ready at hand. For
example, in series (b3), which gives the number of articles lost in the
Telephone and Telegraph Building, the average number of articles
lost per day might be expected to increase as the population of the
building increased in this period following the completion of an addi-
tion, and the observed slant to the right is what would be expected.
Also in series (d3), which gives the number of comets observed per
year, the average would naturally increase steadily as a result of the
continual improvement of telescopes and other instruments from
1789 to 1888. The curve toward the left in examples (c3) and (cb)
might also be predicted because of the fact that the number of calls
which could possibly be made in five minutes from a group of two
telephones is certainly finite and probably rather small, and in ex-
amples (d4) and (d5) because it is difficult to judge by eye the number

20 “Handbook of Astronomy,” by G. F. Chambers, 4th ed., Oxford, 1889.
2 “Brownian Movement and Molecular Reality,” by Jean Perrin, London, 1910.
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of particles visible simultaneously if that number is more than three
or four.

In several cases special measures have been taken to reduce the
variation of @ and the resulting trend away from the corresponding
Poisson distribution. In general, ¢ is made as nearly constant as
possible by making # and p constant throughout. In examples
(b6)-(b9) and (c7)-(c10), for instance, each sample consists of ap-
proximately the same number of calls, and in example (c1) four corps
were rejected because they were considerably larger than the others,
In these examples it is assumed that p is practically constant and
that by making # constant a constant average will be obtained. A
somewhat different adjustment to keep a constant is illustrated by
examples (al) and (a2), where, as the decay of the radioactive sub-
stance decreases the average number of « particles emitted in a given
solid angle per unit of time, the screen on which the particles strike is
moved so that it intercepts a greater angle. In some cases n may be
controlled much more easily than p, or vice versa, and a may be kept
constant by letting one factor vary and adjusting the other to com-
pensate, rather than by keeping both constant.

SUMMARY

These examples of distributions which can be described by the
Poisson exponential are of a dozen quite different kinds. They include
eleven distributions found in published work on biometrics or statistics
and twenty-one which are new. The agreement between the ob-
served and the theoretical distribution is, in general, fairly good, and
the applicability of the Poisson summation to a great variety of data
is clearly indicated. The practical importance of some of these
cases has been discussed above.

The use of the probability curves showing Poisson’s exponential
summation in place of double-entry tables as a source of data is
shown to be simple, and their convenience as a background for plotting
and comparing frequency-distributions is illustrated by Figs. 4 and
6-9. The new chart with a logarithmic scale for a (Fig. 5) is con-
venient in comparing distributions of different averages. It also
shows the complete set of curves up to a =30 instead of only to a =15,
and it makes it possible to read with considerable accuracy values of
the variables in the range 0.1=<a <2, which is not clearly shown in
Fig. 1 or Fig. 2.



¢ =number of occurrences of the event per sample.
m =number of samples with exactly ¢ occurrences.
f=number of samples with at least ¢ occurrences.
F=relative {requency of at least ¢ occurrences per sample,
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al Alpha particles

total =10097
average=3.87

a3 Denths of aged
total =903
average=0.82

al Baelli

tobal =1927
average=1.93

¢ m I I ¢ ‘ m f ‘ F c m I F
0 | 57| 2008 1.000 0 | 484 | 1096 | 1.000 0 | 219 | 1000 | 1.000
1 | 203 | 2551 | 978 1 391 612 .558 1 | 267 | 781 | .781
2 | 383 | 2348 | 900 9 164 | 221 .202 2 | 219 514 .514
3 | 595 | 1055 | 753 3 | 45| 57 .052 3 129| 295 | .205
4 | 532 1440 | 552 4 1| 12| 0109 4 | 70| 166 .166
5 [408| o0s| 348 5 1 1100091 5 | 50| 06| .09
6 273 | 500 192 6 | 26| 46| .046
7 | 139 27| o087 7 | 13| 2 .%0
8 | 45| 88| .034 8 50 7| .007
9 | 27| 43| o3 ad Deaths of aged o | 2l 2| ‘o2
10 | 10| 16| .0061 total =2364
1 4 6 10023 average=2.16
12 o 2| 00077 5
13 1 9 00077 ¢ - f r bl Yeast cells
14 1 1100038 total =720
0 | 162 | 1006 | 1.000 _ average=1.80
. 1 | 267 | 934 | .852
a2 Alpha particles g %‘gé ggg gg? ¢ m f F
total =10094 4 | 111 211 | .193 0 75| 400 | 1.000
average="7.74 5 61| 100 | .091 1 103 | 325 | 813
6 | 27| 39| .03 2 121 222| .5%
e | m| g r 7 8 12| .0109 3 | 54| 100 | .253
- o 8 3 4 .0036 4 | 30| 47| .18
0 0| 1304 | 1.0000 S0 1l 1l 00091 3 13 17| .043
1 3| 1304 | 1.0000 o 6 2 4| .0100
2 | 17 1301 | 9977 'g (1) f '%22
3 | 46| 1284 | 0847 57, ; .
4| 99| 1238 | 049 a5 Telephont tines 9 | 1l 1] .00
5 [ 126 | 1130 | 873 .,
6 | 151 [ 1013 | 777 okl
; 187 | 862 | 661 ge=222 b2 Yeast cells
180 | 675 .518 ! Al
9 | 173 | 405 | 380 ¢ | M ( F a,,:;;";;;?gg
10 | 131 322| 247
11| 7 101 146 0 ‘ 013 | 1.000
12 | 44| 16| 089 1| 045 987 c |m | f F
13 | 35| 72| 055 2 125 1942
M| 16| 37| 028 3 185 817 0 0| 400 | 1.000
15| 14| 20| L0161 4 187 | 632 1] 20/ 400 1.000
16 ] 71 0054 5 186 445 2 | 43 3801 .950
17 1 6] 0046 G 126 .259 3 | 53| 337 .843
18 | 2 5| 0038 7 071 133 4 | 8| 2841 710
19 1 31 0023 8 036 062 5| 70| 1981 485
200 1 2| 005 9 018 0% | 54 1281 .320
21 1 1] 00077 10 005 008 7| 37| T4 185
— 1 002 003 8 | 18| 31| .09
12 001 001 9 | 10] 19| .048
— 10 5 9| .02
11 2| 4| .010
12 2] 2| .005




622 BELL SYSTEM TECHNICAL JOURNAL
b3 Lost arlicles b6 Incorrect reporis b9 Calls for wrong number
total =439 total=138 total = 2520
average=1.04 average=0.27 average=4.98
[2 m f F ¢ m I F ¢ m S F
0 | 160 | 423 |1.000 0 |388| 508 |1.000 O | 1oy 506 1.0
1 134 | 254 .600 1 102 | 118 .233 9 5| 476 ‘941
2 74| 120 | .284 2 12 16 | .032 3 60| 431 -852
3 32 46 109 3 4 4 0079 1 85| 371 '733
4 11 14| .033 :
5 2 3 0071 5 92 |. 286 .565
6 0 11 0024 6 73| 194 | .383
7 1 1 ' 0024 b7 Cuioffs 7 55 | 121 .239
: total =1057 8 | 28] 66| .130
average=2.00 9 18| 38) .075
10 9 20 | .040
b4 Number 12 11 5 11 .022
total =421 ¢ | m| f F 12 3 6| .0119
- 1 .
average =0.84 o | 75| 506 1.000 ]i f ? %gg
1 126 431 .852
c m | f F 2 | 141 | 305| .603
3 73| 164 | .324 ¢l Deaths from kick of horse
0 | 231 | 500 | 1.000 4 50 91 180 total =122
1 150 | 269 | .538 5 29 41 [ .081 average=0.61
2 92| 119 | .238 6 6 12| .024
3 | 24| 27| .03 7| 2| 6| .0119 n| s F
4 1 3| .006 8 3 4| .0079
5 1 2| .004 9 0 1| .0020 0 | 100 | 200 1.000
6 1 1 002 10 0 1 0020 1 65 91 455
11 1 11 .0020 2 | 22| 2| .130
3 3 4 .020
b5 Fires** 4 1 1] .005
total = 0487 b8 Double connections
average=26.1 total =1760 ¢2 Number 12
average=3.48 total =251
¢ m| f F average=1.00
—_— 4 m | f F
0 364 | 1.0000 e | m| f F
5 364 | 1.0000 0 21 | 506 | 1.000
10 363 | .9973 1 63 | 485 | .958 0 90 | 250 | 1.000
15 346 | .951 2 08 | 422 | .834 1 05| 160 | .640
20 286 | .786 3 97 | 324 | .640 2 46 65 | .260
25 185 | .508 4 85| 227 | .449 3 15 19 | .076
30 103 | .283 5 61 | 142 | .281 4 3 4| .016
35 53 | .146 6 42 81 160 5 0 1 .004
40 22 | .060 7 18 39| .077 i 0 1| .004
45 18 .049 8 11 21 .042 7 1 1 004
50 8 .022 9 6 10 | .0198
5 41 010 }(1] g 111 %;g ¢3 Calls from group of two
12 0 11 o020 coin-box telephones
13 o| 1| .o020 total =172
14 0 1| 0020 average=1.19
15 1 1 .0020
¢ m I F
0 44 | 145 | 1.000
1 48 | 101 | .697
2 38 53 | .366
3 13 15| .103
4 1 2| .0138
5 1 1| .0069
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c4 Calls from group of four T o8 Double connections cll Party lines
coin-box telephones total =906 total =1981
total =384 average=3.39 average=6.60
average=2.74
¢ m F
. - f F ¢ m | f F f
0 7| 300 1.000
o | 5| 140 1.000 ¢ | 5| B 100 1| ol 203| ‘o7
1 33| 135 .964 2 48| 290 | [mo4 9 14 | 284 | .047
2 24| 102 .729 3 561 172 | 644 3 17 270 | 900
3| 38| 78| 557 4 | 13| 16| 434 4 | 21| 253 .843
4 2 40| .286 5 4 73| o73 5 40| 232 | 773
5 9 17| 121 6 22 30 | 146 6 46 | 192 | .640
6 4 81 .057 7 8 17 064 7 42 | 146 | 487
7 4 41 .029 g 4 9| 034 8 | 32| 104| .347
9 3 51 .0187 9 17 72 .240
e Calls from group of two 01 2 21 .0075 i? ?g gg i?g
cotn-bor felephones 12 6 a1 | ‘om0
otal =212 13 | 10| 15| 050
average=1.50 ¢9 Calls for wrong number Y 1 g o
total =1351 15 3 4 '0133
¢ | m | f ’ F average=5.06 6 | o 1| .03
17 1 11 .0033
0 27| 141 | 1.000 ¢ m f F
1 49 | 114 .809
2 39 65 | .461 0 3| 267 1.000 cl12 “Lost and found”
3 19 26| . ]§4 1 12| 264 | .989 adrerlisements**
4 7 71 .050 2 | 23| 252| .94 total =7051
3 Eé 233 ?33 average=33.7
cb Calls from group of six 5 50 153 '573
eoin-box lelephones 6 37| 03| 386 ¢ m | f F
total =468 7 a9 66 '247 —
average=3.39 8 | 13| 31 139 0 209 | 1.0000
9 | 12| 24 .090 . 2 13000
¢ | m | f F 10 4| 12| .043 :
1 4 s 030 15 207 | .9904
0 | 8| 138 1.000 12 | 3| 4| 0130 2 1991 %2
1 | 13| 130 942 B |1 1! oo 25 1821 871
: 30 144 | 689
2 20| 117 848 = ®
3 | 37| 97| 703 35 Bl o8
4 24 60 | .435 ¢10 Connections fo wrong 49 1] .24
5 | 20| 36| .261 number b Al -
8 5|1 (lJ;g total =2334 55 o | 0096
. average=8.74
8 2 3 .022
9 1 1 L0072 . m 1 7 d1 g:;;lie;;lg
o7 Cutoffs 2 | 1| 267 |1.0000 average=4.21
total =557 3 5 266 | 9963
average=2.09 4 | 11| 21| .978 ¢ ’ m ’ 7 F
5 14 | 250 936
[4 m f r 6 22| 236 .884 0 21 100 | 1.00
7 43 | 214 | .801 1 6 98 | .98
0 44 | 267 | 1.000 8 31 171 .640 2 18 92| .92
1 62| 223 | .835 9 40 | 140 | .524 3 13 74 .74
2 71 [ 161 603 10 35| 100 .375 4 | 16 61 .61
3 43 90 .337 11 20 65 243 5 19 45 45
4 25 47 176 12 18 45 .169 6 13 26 .26
5 14 22| .082 13 12 27 .101 7 5 13 13
6 4 8 030 14 7 15 .056 8 5 8 .08
7 2 4 L0150 15 i 8 .030 9 2 3 .03
8 2 2 0075 16 2 2 0075 10 1 1 .01
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d2 Number 12 d3 Comets d4 Particles in emulsion
total =421 total =258 total=46
average=8.42 average=2.58 average=0.92
¢ m | f F c m | f F ¢ ’ m | f | F
3 1 50 | 1.00 0 19 100 | 1.00 0 22 50 | 1.00
4 5 49 .98 1 19 81 .81 1 16 28 .56
5 2 44 .88 2 17 62 .62 2 7 12 .24
6 6 42 .84 3 14 45 A5 3 4 5 .10
7 6 36 72 4 13 31 31 4 1 1 .02
8 5 30 60 5 8 18 18
9 7 25 | .50 6 4 0] .10
i? 2 %g gg ; g g gg d5 Particles in emulsion
12 5 8| .16 9 1 1] .01 total =106
13 1 3 06 average=2.12
14 0 2 .04
15 2 2| 04 ¢ 1 m f ‘ F
0 6 50 | 1.00
1 11 44 .88
2 12 33| .66
3 14 21 42
4 6 7 .14
5 1 1] .02

* M is the relative frequency of exactly ¢ occurrences per sample. Holm does
not state the actual number of samples from which this was calculated, but it was

evidently at least 1000,

** Since in the range a>30 the curves are drawn only for every fifth value of ¢,
in these two distributions which extend beyond @=30 the values of f and F are
tabulated only for every fifth value of ¢, and the values of #, which are meaningless

unless the complete series is given, are omitted.




