A Study of the Regular Combination of Acoustic Ele-
ments, with Applications to Recurrent Acoustic
Filters, Tapered Acoustic Filters, and Horns

By W. P. MASON

Synopsts: The use of combinations of tubes to produce interference be-
tween sound waves and a suppression of certain frequencies originates with
Herschel (1833), and was applied by Quincke to stop tones of definite pitch
from reaching the ear. Following the development of electrical filters, G.
W. Stewart showed that combinations of tubes and resonators could be
devised which would give transmission characteristics at low frequencies sim-
ilar to electrical filters. The assumptions made by Stewart in the develop-
ment of his theory are that no wave motion need be considered in the
elements, and that the lengths of the elements employed are small compared
to the wave-length of sound.

The present paper considers primarily regular combinations of acoustic
elements, such as straight tubes, and shows that the equations for recurrent
filters, tapered filters and horns can be obtained in this manner, The as-
sumption of no wave motion in the elements, made by Stewart, is removed
and also account is taken of the viscosity and heat conduction dissipation.
The principal difference between acoustic and electric filters is that the
former have an infinite number of bands. The effect of using filters be-
tween varying terminal impedances is also determined.

Studying next the combination of filters having the same propagation
characteristics but in which the conducting tube areas increase in some
regular manner, it is shown that a tapered filter results which has a trans-
forming action in addition to its filtering properties. It is shown that if
straight tubes are employed and the distance between successive changes in
areas is made small we obtain the horn equations first developed by Webster.
The general combination of acoustic elements is then considered, and a
proof of several theorems has been given.

TEWART, in a series of papers,! has studied the recurrent acoustic

filter as an analogue of the electric filter with lumped constants.

If due account is taken of the wave motion occurring in the individual

elements themselves, it appears that the nearest electrical analogue of
the acoustic filter is a combination of electric lines.

In the present paper we study primarily regular combinations of
acoustic elements, such as straight tubes, and show that the equations
for recurrent filters, tapered filters, and horns can be obtained in this
manner. The effect of viscosity and heat conduction dissipation has
been taken into account, and a consideration of the effect of varying
terminal impedances has been included.

I. EqQuATIONS OF PROPAGATION OF A PLANE WAVE IN A UNIFORM
TUBE

The propagation of plane waves of sound in uniform tubes has been
discussed in a number of places,? but generally the results obtained are
1 Phys. Rev., 20, 528 (1922); 23, 520 (1924); 25, 90 (1925).

® Rayleigh’s *“Theory of Sound,” Vol. II, p. 318. Lamb’s “The Dynamical
Theory of Sound,"” p. 193. .
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only a determination of the propagation constant, that is, a determina-
tion of the attenuation and phase change per unit length, or as more
often stated, the attenuation and velocity characteristics. If we solve
the differential equations in the manner first employed by Heaviside in
the solution of the equation of the electric line, we obtain one more
parameter, namely, the characteristic impedance of the tube.

The differential equation, given by Rayleigh,? for the propagation of
plane waves of sound in a tube of uniform cross-section is

R R ,uwdE 9%t
(1+ \j2mp)312+3 2ot CEEZ' (1)

where £ denotes the displacement of the fluid at a distance x from one
end of the tube,

= the coefficient of viscosity of the medium,
= the density of the medium,
= perimeter and S = cross-sectional area of pipe,

e Mo ®

= frequency of vibration times 2,

P, . . .
C = 4 Tw = velocity of sound in medium,

v = ratio of specific heats of medium.

This equation is valid for tube diameters and frequencies such that

\/pw S

and hence can be used for all frequencies of interest in connection with
acoustic filters.

Kirchoff # extended the theory to take account of the losses due to
heat conduction in the medium. His results indicate that in order to
take account of this effect, the square root of the coefficient of viscosity
should be replaced by a quantity v/, given by

v =Nt (V=)

where v is the coefficient of heat conductivity of the medium. By the
kinetic theory of gases v has the value 5/2 p.
The most useful solution for our present purpose is obtained by
writing
£ = e»*(A4 cosh ax 4+ B sinh ax), (2)
3 Rayleigh, ' Theory of Sound,” Vol. 11, p. 325.
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where A and B are constants and « by analogy with an electric line
is the propagation constant of the tube. Substituting (2) in (1), we
see that (2) is a solution provided

e-E[(ND)-AEL o

Now « can be written &« = a -+ b, where a is the attenuation constant
and b the phase constant. If we solve for ¢ and b, assuming

R
2wp

is a small quantity, we obtain

w=a+ib=LE ""“+ 141 i (4)
2CS C 2.5 2wp |

We are generally interested in the volume velocity S§¢ = V, so we can
rewrite equation (2) as

V = iwSe[ A cosh ax 4 B sinh ax]. (5)
To determine one constant of equation (3), let equal zero. Then

Voo = V1 = twe™'S4

or
W
T iwSewt” (6)
We have the additional relation
P-Py= - Pyo=p, (1)

where p denotes the excess pressure. Substituting (2) in (7), and
differentiating, we have

p = — Pyyet(Aa sinh ax 4+ Ba cosh ax).
Putting x = 0, we have

Pzeo = p1 = — Pyye“!(Ba)
or

_ __t
B = aPyyewt’ (8)
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Substituting the value of 4 and B in (5) and (7), we have

piiwS sinh ax

V = V; cosh ax — P
oya
(Pova) @
p = pycosh ax — V3 oS sinh ax.

(Pyya)/(iw) is, by analogy with the electric line, the characteristic
impedance ¢ per square centimeter of the tube. It is the ratio of
p1/€, for an infinitely long tube. For since cosh ax = 3(e** 4 e=%)
while sinh @ = 1(es* — e~9%), then when x approaches infinity, and
dissipation exists in the tube, cosh ax approaches sinh ax, and both ap-
proach infinity. Hence the ratio of P,/V; equals PyyafiwS. The
propagation constant « has the physical significance that e~** equals
the ratio of ¥V to V, or p to p1, when we are dealing with an infinitely
long tube, as can be seen by substituting p1/Vi = Pyyae/iwS in (9) and
solving for the above ratios. The real part of «, i.e. a, determines the
rate at which the linear or volume velocity, or pressure, decreases with
distance, while the imaginary part b determines the phase of pressure
or velocity with respect to the initial values, and hence is known as the
phase constant and gives the phase rotation per unit length of pipe.
Now since the velocity of propagation ' is

¢ =

>l €

we have by equation (4)
1R [+"*
’ — —— — e
c = c[1 N
The attenuation constant and the velocity reduce to the familiar

Helmbholtz formule, for circular sections.?
We write (9) as

V = V, cosh ax — -pissinh ax, ]

Z .
"z f (10)
p = P cosh ax — iS'L sinh ax,J

where Z;, represents the specific characteristic impedance Pyya/iw.

4 The analogy between pressure and electromotive force, volume velocity and cur-
rent, and impedance to ratio of pressure and volume velocity was first pointed out by
Webster®. Another system in which force and e.m.{., and linear velocity and current
are related, is very convenient when we are dealing with combinations of mechanical
elements such as masses and elasticities and no account has to be taken of the area.
In the first system, the total impedance is Zz, (per sq. cm.) divided by S whereas in
the second system it is ZzS. We follow the first system expressing, however, the
impedance in terms of the impedance per square centimeter, which is the same on
either systems of units.

®See Lamb, ‘' Dynamical Theory of Sound,” p. 193, or Rayleigh, ' Theory of
Sound,” Vol. II, p. 319.
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The value of the specific characteristic impedance Pyye/iw becomes
on substituting in the value of «

2 2
£, - VPWP[(1+%I—§ —;E>~£%§ ;Tp] (11)
If we assume no dissipation, ¥’ = 0 and Z; = VPyyp. In any case
at fairly high frequencies Z, approaches VPyyp. For example, for
air in a circular tube 1 centimeter in diameter, Z; departs from its
final value VPyyp by less than 5 per cent at 100 cycles. The attenua-
tion constant @ increases as the square root of the frequency, while the
phase constant b is little affected by the dissipation and at high fre-
quencies approaches the value w/C.

II. EFFECT OF A JUNCTION OR OF A CHANGE IN AREA OF
THE CoNDUCTING TUBE

Suppose that we have a straight conducting tube, with a sidebranch
asshown in Fig. 1. Let the excess pressure of the incoming plane wave

S2

51
Fig. 1—An acoustic junction

be 1. The ordinary assumption is that the width of the junction is
small compared with a wave-length and hence the pressure is practically
constant in the sidebranch, and main branch over the portion in im-
mediate contact with the sidebranch. It states also that the alge-
braic sum of the volume displacements at a junction of tubes is zero.
If S, is the area of the main conducting tube, S the area of the branch
tube, £ the linear velocity of the incoming wave in the conducting
tube, £ the linear velocity of the outgoing wave from the junction and
7 the linear velocity in the branch tube at the junction, we can write
the equation

£.51 = £S5+ 45 or Vi= T+ V.
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We have now that 5 = p,/Zs where Z; is the impedance per unit area
of the sidebranch, or the ratio of the excess pressure to the linear veloc-
ity. Substituting this value in the above equation, we have

V2 = V] —_ pé—&
s (12)

Pz = P]l

where p, is the excess pressure in the conducting tube on the out-
going side. The equations are exactly equivalent to Kirchoff's laws,
and hence any equation for a combination of acoustic elements will also
apply to the combinations of equivalent electric elements.

A slightly better approximation than the above has been obtained
by solving completely the case of three pistons placed in the sides of a
rectangular box. This corresponds closely to the condition considered
here, if we have rectangular tubes, since the waves can be considered
plane up to the junction point with little possibility of error. The solu-
tion obtained indicates that the main effect of the junction point is to
add an end correction to all the tubes entering the junction. For
example, we will measure the length of the main conducting tube,
between sidebranches, from the center of the sidebranches rather than
the edge, as the approximation given first would imply. Also the
length of the sidebranch should be measured from the center of the
conducting tube, rather than the edge. For other types of junctions,
different end corrections will apply to the sidebranch tubes. For
example if the width of the junction is large compared to the width of
the sidebranch, we should expect Rayleigh’s theoretical value of .82 R
to apply where R is the radius of the sidebranch tube. Hence the equa-
tions for a junction are equivalent to Kirchoff's laws with the additional
proviso that end corrections shall be added to tubes entering a junction.

The effect of a change of area of the conducting tube can be obtained
with the same assumptions as above. If we have one conducting
tube of area S;, joined to a second of area S;, we can write

£S5 = 6S:  or Vi= T, (13)

We have also

where £, is the linear velocity in the first tube and £ in the second
tube. We have also that the pressures in the adjoining tubes are
equal. Hence

Pz = Pl and Vz = Vl. (14)

This equation is of the same order of approximation as the second ap-
proximation given above for a junction, since we measure the length
from one change of area to the next change.
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Equation 14 has been found to hold well as long as the change in
area is small while equation 12 holds well as long as the length of a
junction is less than half of a wave-length.

III. RECURRENT FILTERS

With the aid of equations (10), (12), and (14), we can obtain the
propagation characteristics of any structure employing straight tubes,
sidebranches, and changes in area of conducting tubes.

Among the simplest of these are recurrent filters. Fig. 2 shows an

S /52
=

| Il

—L 2L - L——I

Fig. 2—A typical acoustic filter

example of this type of structure, a main conducting tube, with equally
spaced sidebranches. In order to make the structure symmetrical,
we let the distance L between one end and the first sidebranch equal
one half the distance between two sidebranches. We can then write
with regard to the first tube

Ve = V1 cosh ey — —?1.5'1 sinh a,L,

Zn (15)

li

p1cosh oL — Vlé sinh e\ L,

b Sl

where a; and Z;, refer to the conducting tube. For the junction, we

have by (12)

Zs
bs = po. J

V3=V2—1°—”SQ,]r »
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Combining with (15), we have

Vi= T, (cosh ol + 22 Gon alL) ]

ZsSl

Sil'lh a1L Sg CDSh C!]L l
psi | e 2SRl ] Ly

L1 Siﬂh O!lL.

P;] = P1 COSh l'.‘!‘1L — VIZ
1

.The pressures and volume velocities p4and V, at one half the distance
between the first and second sidebranches are again

Vi =V cosh sl — 2 sinh L,
7o

(18)
Py = ps cosh ey L — Vaﬁsinh o L.
1
Combining with (17), we obtain
Vi= Wi (cosh 2enl +3 E'S §1 sinh 2a1L)
_ 5 (smh 2L + 52 osh? alL)
ZL] Sl
2,5 Fo(19)
Py = pl(cosh 20, L + 22351 sinh 2a1L)
iz VAR
.ISILI (smh 2oL + 2= Zs-5'1 % sinh? alL)

These equations apply to the first section of the filter. By comparison
with equation (10) we see that we can write equation (19) as

Vi= Vi cosh T — 2251
Zy
(20)
Ps= prcosh I' — VlS_SlI'lh T,
1
where
cosh I' = (cosh 20, L + 22‘552, sinh 2mL>,
1 +§§‘ S, tanh «,L
= n Zar (21)
1 4 2£22 coth L
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and

sinh T = sinh 2a:L \/(1 +

ZL152
2ZSSI

Z, and T are sometimes called the equivalent line parameters. If we
have #n sections of the type discussed above, we can write # equations
of the kind given by (20). If we eliminate all the terms except for the
first and last sections, it can be shown that

ZL1.52
tanh a) L )( 14+ 22331C0th a1l ) .

Va= Vicosh nl' — ﬁ‘lz—slsinh nl, ]
) .
= _ r (22)
Pn = p1 cosh aT VéZn sinh nl".J
1

We see then that I' represents the propagation constant of one sec-
tion and Z, its specific characteristic impedance. They have the
physical interpretation, that Z, represents the specific impedance look-
ing into an infinite sequence of these sections, while T' represents the
ratio of excess pressure or volume velocity between one section and the
next, when we are dealing with an infinite number of sections, or with
a finite number, terminated in the characteristic impedance of the filter.

It is customary in electric filter design to determine the character-
istics of a dissipationless filter, and to regard dissipation as causing a
slight change in the filter characteristic, which usually occurs most
prominently in the pass bands. If we neglect dissipation, equation
(21) becomes

cosh I' = [cos (g%-L> —|-1'—2£Z0‘;%:szsin (Z—EJE)],

()
ZO = PO'YP - _S_l . (23)
1 — t—wsz cot %
2Zs5: C

The propagation constant I' is in general a complex number 4 + iB.
The real part represents a diminution of the volume velocity or the
pressure, while the imaginary part represents a phase change, as can be
seen from the fact that the ratio of pressure or volume velocity is

%: g T = ¢~ (4+B) = g~4 (cos B — 1 sin B).

1

Now cosh I' = cosh (4 + iB) = cosh A cos B + ¢ sinh 4 sin B.
Hence we see from equation (23), if Zg is an imaginary quantity, the
expression for cosh I' is always real, and hence either sinh 4 or sin B
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is always zero. Hence either the attenuation constant 4 is zero, or
the phase shift is zero, = radians or some multiple of 7 radians. Now
since cosh A can never be less than 1 while cos B must lie between
-+ 1 and — 1, then when the expression for cosh T' is between — 1 and
+ 1, the attenuation constant 4 is zero and cos B equals the expression
in (23). When the value of cosh T is outside the limits & 1, the phase
shift is 0, =, or some multiple and the attenuation constant 4 is given
by the expression in (23).

The specific characteristic impedance Z,, given in (23), can be shown
to be a real quantity. within the transmitted band and an imaginary
quantity outside the transmitted band.

The type of filter obtained with the structure shown in Fig. 2 de-
pends on the sidebranch impedance Zs. As long as Zs is of such a
value as to make the expression for cosh T greater in magnitude than 1,
an attenuation band occurs, while if cosh T'is less than 1, a pass band
occurs. The cut-off frequencies of the band occur when coshT' = 4 1.
From equation (23) the cut-off frequencies occur when

0 1

A. Low Pass Filter

The model shown in Fig. 2 can be used to obtain the different types
of recurrent filters possible by acoustic means. One of the simplest
types of filters in the electrical case is the low pass filter. No exact
analogue of this filter exists in the acoustic case, as every acoustic
filter has more than one band, but a filter which passes low frequencies
and attenuates high frequencies can be designed.

Suppose that the sidebranch used is a straight tube closed at one
end. Then by equation (10), the impedance Zg, when the tube is
terminated in an infinite impedance, is

Zs = Z;, coth al,

where Z;, and a. are respectively the specific characteristic impedance
and propagation constant of the sidebranch, and I its length measured
to the center of the conducting tube. Substituting this in the expres-
sion for cosh T' and Z,, we have

cosh T = (‘cosh 2a. +M) ,

2Z;,51 coth awl

/1 + ZLJSQ tanh alL
27,5, coth al

ZO = ZIA Jl + Z‘I‘“S.—Q(I)M .
27,51 coth ayl

[ (25)

18
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If we assume no dissipation, and substitute the values of e and Z,
given in section (I), we have

S, sin (2—‘”L)
2w C
cosh T' = cos(—L)—-—————— , (26)
¢ 25, cot | =1
! C
w
1_& tanE.L
| 231 w
i COtz,l
Zy = vPo‘rP . (27)
. tEL
S, [ ¢
14| ——
25, cot 21
C

An example of the type of filter obtained by acoustic means, is given
when we let I = 3L. Fig. 3 gives a plot of the value of T' for several
ratios of So/S;. Fig. 4 shows the corresponding values of the specific
characteristic impedance Z.
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Fig. 3—Propagation constants for a low pass type of filter

A knowledge of T' will determine the ratio of pressures or volume
velocities, if we have an infinite sequence of sections, or if we terminate
a finite sequence in the impedance Z,. If however the terminating
impedance is not the characteristic impedance, e~ no longer represents
the ratios of pressures between adjacent sections.
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What is generally desired is a knowledge of the effect produced by
inserting the filter in a given acoustic system. With the aid of
Thévenin's theorem, which is proved for an acoustic system in Appendix
I, and equations (20) and (21), this effect can be obtained. Thévenin's

4
3
T T T
ll.' V \ o
TN iy
2 r.' / -/ ."r is/
| sefepma | St a2
/ [/}\ \\ iy s
/ ’
% \§§ N/
S e 7 W F
) I W NY /]
x = /\'\’
5 o 72t NIRY AR 4
g R 4 o K 1.0 L 1.2 1.4 1.6 1.B 1|7
3 | | | VALUE OF = /1y
£ [TSPECIFIC CHARACTERISTIC IMPEDANCE OF IOW PASS 77 7
4 TYPE OF ACOUSTIC FILTER J 1/
CASE SHOWN IS DETERMINED BY {=3L i
EXPRESSION FOR IMPEDANCE 1S: | RESISTANCE COMPONENT /
- 7 (ol REACTANCE " ——m "/
-2 Z-\B7F 25¢| Cot (3t /C 'm" y i
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25,( Tot (5. /
HEEEN '/
3 l i

Fig. 4—Specific characteristic impedances for a low pass type of filter

theorem states: If a source of simple harmonic pressure py and of in-
ternal impedance Z,, per square centimeter, is connected to an acoustic
system, and if the specific impedance Z, terminates the system, the
volume velocity at the termination of the system will be py//[(Z4//S))
+ (Zgr/S.)], where p,' is the pressure at the terminating end when
this is closed through an infinite impedance, and Z,’ is the impedance
per sq. cm. looking back into the acoustic system when this terminated
in the impedance Z,. i, and S, are the areas at the input and output
junctions, respectively.

Making use of Thévenin's theorem, the effect of inserting a filter in
a given system is the same as the effect obtained by inserting this filter
between a source of pressure p), with an internal impedance of Z,/S,
and a terminating impedance Z,/S,, where Z,/S, and #%,/S, are re-
spectively the total impedances looking toward the source, and away
from the source at the insertion junction of the acoustic system. We
have from equation (20)

Vg = V] CDSh I — p},}—&sinh T.
0

b

p1cosh I' — Vézo sinh T,
1
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Making use of the above, we can write

Za
p=p1+ Vgl .

Substituting this, the above equation takes the form

.
pocosh I' — % [Zo sinh T + Z, cosh T'], |

lZ PyS I" (28)
—_ “a s 1 _ 021 -
Vo=V, (cosh T+ Zosmh 1 ) Z sinh T'. J

2

Eliminating V) and substituting VaZ,/S) for pu, since here the area
remains constant at the two junctions, we have
S
Ve=1 ZoZ P> I
[Zb cosh T' + Z2Ztsinh T + Z, cosh I' + Z, sinh I‘]

Z

The most useful way of writing this equation is

;o fﬁl)( 27, ) 2Z, ) o
T/z—(ng Zo + Za (Zo+Zl. ()

X

1 (29)
= =)l
Zo+ Za )\ 2o+ 2o
The volume velocity in the termination of the acoustic system, if
the filter were not inserted, is obviously po/[(Z./S1) + (Zb/S1)].

Hence the effect of inserting the filter at any junction is to change the
volume velocity of the system by the factor

(22 2 ) o)
2Zy Zo+ Za )\ Zo+ Zb

X

1 (30)
1_8721‘(ZU_Z(A)(ZD_ZEI) )
) Zo+Z /N o+ Zs

A physical interpretation of equation (30) can be obtained in terms
of the transmission and reflection factors first introduced by Heaviside."
Heaviside showed that at a junction, a reflection of a wave takes place
if the impedances looking towards the source and away from the source
are not equal. He showed that the current reflected on striking a
junction, will be the unmodified current in the line multiplied by the

¢ Heaviside ‘' Electromagnetic Theory' Vol. I1, page 79.
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factor, (Z; — Z4)/(Z; + Zp), while the current transmitted to the
terminating side of the junction will be the unmodified current in the
line multiplied by the factor 2Z,/(Z; + #Z;) where Z; and Z, are
respectively the impedances looking towards and away from the source
at the junction. We see then that the second and third factors are
transmission factors, determining respectively the transmission from
the input impedance Z, to the inserted structure, and from the inserted
structure to the output impedance Z,. The first factor is the inverse
of the transmission factor determining the transmission from the im-
pedance Z, to the impedance Z;. The fourth factor is the transfer
factor and gives the reduction in volume velocity due to attenuation.
The fifth factor has been called the interaction factor, and it gives the
change in volume velocity in the termination due to repeated reflec-
tions of the volume velocity within the structure. All of these factors
reduce to 1 except the transfer factor when Z, = Z, = Z,. It will be
noted that all factors except the transfer factor cancel out if Z, = Z,,
or Z, = Zy.

The effect on the pressure due to inserting a filter can be shown to
be given also by equation (30).

If the terminating impedances are resistances about equal to an
average of the resistance value of Z, the effect of these is generally to
introduce some loss in the pass band, when the characteristic impedance
differs materially from the terminating impedances due to a reflection
of the sound wave at the junction points. Since the characteristic
impedance of a non-dissipative filter goes either to zero or infinity
at the cut-off frequency, the effect of the reflection loss is generally to
narrow the pass bands of the filter.

The effect of dissipation, when we take account of the viscosity
effects by equations (20) or (21), is two-fold. It changes slightly the
position of the band in the frequency range, due to a small change
in the velocity of propagation. This is generally negligible. The
other effect is to introduce attenuation in the pass band, due to ab-
sorption and dissipation of the sound wave.

B. High Pass Filter

An analogous type of high pass filter, which will attenuate the low
frequencies and pass the high frequencies, can be made from the
structure shown in Fig. 2 by using side tubes which are open on the
outer end. The termination at the end of an open tube has been
shown by Rayleigh 7 to be a mass with some resistance due to radia-
tion. We could substitute this relation in equation (10) to determine

7 Rayleigh, * Theory of Sound,”” Vol. 11, p. 106.
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the impedance Zg looking into the sidebranch. Another approxima-
tion used with organ pipes is to consider the tube extended by a length
.57 times the radius of the tube, and to consider this extended tube
terminated in a zero impedance.

The impedance Zg for this case is from (10)

—P—Ilfglg = Zy= Zy, tanh al’,
where I is the corrected length of the pipe. Substituting this value
in equation (21), we have

cosh I' = ]:cosh 2a,L + Z 1,52 sinh 20-’1L] '

27,5, tanh asl’

Z1,Ss tanh a1 L
2Z,.5, tanh al’
Z1.5: coth ayL
27,51 tanh awl’

1+

ZO = ZLI (31)

1+

For no dissipation these equations become

sin(2—m_)
AN e

h I' = | cos
Cos cos ( C

5. tan (%)
1+ wl’
25, tan(f)
Zy = \Pyyp A
Sg cot (T )
1= wl’
28, tan (f

Fig. 5 shows a plot of I' for several ratios of S./S), when I’ = 3L.

C. Band Pass Type of Filter

The high pass type of filter discussed above can also be considered
as a band pass type of filter, in that an attenuation occurs at zero
frequency, then a pass band, and a second attenuation band. A
different arrangement of the pass bands can be obtained from the
structure shown in Fig. 2, by inserting two sidebranches at one junction
point,-one of which is open at the outside end and the other closed.
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An example of the type of characteristic obtained, is given by the
special case where the lengths of both tubes are the same and equal to

JIT |
T ' T
PLOT OF EQUATION - : N
- - el Sz Sinf2ad/C) T 17 7
g Cosh I = Cosh(A+(8) [c;s © *iss Tan(nd/d] S
g° FULL LINES GIVE VALUES OF A 7 A7
& DOTTED n = < «B y vl
@ [ /Ny
'z"j‘: 4 7
- -
I
Lo F
oS4 3 il -r-"--l pd
w I A
§§ 171/ / | 2
A /I 1\
£ LAt : A 7 A
1y L/
N a7 [
7 , | /
RN A T
Sefags NN ’\1/ E./r'-! TL 1 I l[ I \Jr ’ l
V\/ -1 N
o NAYY 21 f . \ [
0 2 4 G 8 0 1.2 1.4 1.e [N} .0

1.
VALUE OF &

Fig. 5—Propagation constants for a high pass type of filter

3L. 1If S, is the area of the open tube and S; that of the closed tube,
then neglecting dissipation, we find

2L 1 S S . 20l
cosh I' = cos ==+ 5| —3 7~ —3.¢ |5 ¢
tan —— T —

c ot

A plot of A4, the attenuation constant, for several values of S./5, and
S3/S; is given in Fig. 6.

D. Other Types of Sidebranches

We have so far considered only the characteristics obtained where we
employ straight tubes. A number of cases can be solved in which the
elements employed are not straight tubes although we cannot take
account of the viscosity dissipation in these cases. As an example, the
characteristics of a filter will be worked out, which employs a straight
tube for the conducting tube and conical tubes closed on the end
for the sidebranches. We can make use of equation (21) to determine
I' and Z,, if we insert the proper value of Zg for the conical tube.

It is evident that for a conical tube, the proper type of wave is a
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spherical wave, in place of the plane wave employed for a straight
tube. For this case we can write ® for a simple harmonic wave
P(ro) _ L, (re) . _ 9 p_ .
ar = C o 1 1T T and =
where ¢ is the velocity potential,  the linear velocity for the spherical
wave, p the pressure, p the average density of the medium, and 7 the

[ TTIT TP
PLOT OF REAL PART OF EQUATION
< i G T R )
z . T IT
o - S2/5 m1 $3/5¢ 1
: ______ CA SE quuE "/3‘ |5J/s'-2
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2 i
i /.l
-
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o0 2 4 & 8 1.0 L 1.2 . 1.4 _ 1.6 1.8 20

VALUE OF 5
Fig. 6—Attenuation constants for a band pass type of filter

distance from the apex of the cone. The solution for this case is
ro = A sin — r+BcosC

Hence we can determine 5 and p as

sin2r ZLeoscr cosLr  Lsinar
‘ c’ c"°C c . cc
1=A T + B — +
r r r r
and
A sin — r—|—Bcos
. c’
P = twp

r

If now we set 7 = 0 when 7 = x; and determine the ratio of p/n at

8 Lamb, ‘ Dynamical Theory of Sound,” p. 206. Rayleigh, * Theory of Sound,”
Vol. I1, p. 114,
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r = x1, we find

275

ZS =2
n r 3
0 (e x —sm%’.( 2 — X)
cos & (w2 xy) "
c"
= — iVPyyp " 1 i (32)
cos C. (x: —_ .'\:1) E— — ?
c™
-+ sm— (ke —x) | 1+ w2
C2x11?2

If we substitute this value of Zs in equation (21), we can readily

determine the value of I' and Z,. Fig. 7

this case assuming (x» — x,) = L.

shows a plot of A and B for
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Fig. 7—Propagation constant of a low pass type of filter.
IV. TaperRED FILTER STRUCTURES AND HORNS
In addition to recurrent filters, other types of filters exist. If, for

example, we connect sections with the same propagation constants and
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characteristic impedances, but whose conducting tube areas increase
in some regular manner, a tapered filter is obtained whose character-
istics differ from those of a recurrent filter. The distinguishing prop-
erty introduced by a tapered filter, in addition to its filtering property,
is a transformer action which increases the pressure by a given ratio
and decreases the volume velocity in the same ratio, or vice versa,
thus giving a transforming action and a complete transmission of
power over the pass band. This is a useful property, if acoustic sys-
tems of different impedances are to be connected together. Horns
are the limiting cases of tapered acoustic filters and hence their study
has considerable practical importance.

The typical section of a tapered filter considered here is one built
up from two symmetrical structures with the same propagation con-
stants and characteristic impedances per square centimeter, but with
different cross-sectional areas. If we use any of the recurrent filters
discussed in Section III, then, for example, since

Sz sin (%)

25, cot%{

] I' = Cos(_zw_L) —
coshn = C

for the low pass filter, to keep the same value of I' when we vary the
conducting tube area it will be necessary to keep the ratio of the areas
constant and to leave all values of L and / the same. Similarly for the
other types of filters.

If T/2 is the propagation constant of each of the symmetrical
structures, #; the characteristic impedance per square centimeter for
each structure, S; the cross-sectional area of the first structure and .S,
that of the second, we can write three sets of equations for the two
structures and the junction point. These are '

T Zo .
pi' = prcosh; — Vlﬁsmhg,]‘

2
- L _pSig, T
VJ_ = Vl C05h2 Zo Sll’lh'ﬁ,J

Pl” = Pl’; V= VY,

—_ " "I: — ’.’é H E
P2 = p'' cosh 3 Vi S sinh 5

Il
=
o)
o]
w
=

[

I

Ve
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Combining these equations, we obtain

S+ S S — S ]
P = P [(_1%2_")0)5]1 r+ ( 22& 1)]
_nz St Sg) sinh T,
S, 285, (33)
Vo=V -——SI+S"' cosh T' — Sg_S')
: ! 25, 25,
- PZ%S1 (312-; Sz) sinh T,
0 1 J
or for simplicity we write
V.2
b= pd ——<=B, }
F (34)
Vo= ViC — PéS‘D.J
0

In order to express the propagation in terms of some known func-
tions we will first obtain some relations between the impedances of
the sections and the ratios of p./p; and V»/V,. We can write the above
equations as

Pa Zy Ve

_c-%
B, V,_C Z

= D,
P1 Z

where #Z,/S, = p,/V,. Eliminating #,, we have

b Vo _ Vo b2 AC = —
D Agi- Cpl= BD AC 1 (35)

as can be seen by multiplying together the above expressions. Solv-
ing for the ratio of Vo/V, in terms of po/p1, A and C, we have

P2 _
v_‘nl
Vi P _

P 4

Multiplying both sides by pi/ps, we have

_b
0 Vi_ "
Vipe E—A

P
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P _ P _ 2
Now since =+ V.= and % AR we have
P _
Z_ 7| b
S-S, - S (36)
2]

Zs/Ss and Z,/S, then are respectively the terminating impedance and
input impedance necessary to give a structure specified by the factors
A, B, C, D the pressure ratio ps/p1. To solve for the input impedance
we take the first of equations (34) and obtain

Z = _ZB . (37)
P
P1
Hence by virtue of (36), the terminating impedance Z./.S: becomes
Zy
=B
Zy Sy
Zr 8
Y P (38)
P2

Equations (37) and (38) ‘state that there is a relation between the
input impedance and the pressure ratio, and the output impedance
and the pressure ratio. When one is specified and the constants of
the section %, 4, B, C, D are given, the others are known.

Suppose now that we wish to join a second structure of this type
to the first, assuming that the cross-sectional area at the junction is
the same for both. We must have now Zs, the specific output im-
pedance of the first section, equal to Z,’, the specific input impedance of
the second section. Hence we can write.

Zo 20 1
5. B _ o SQB[A, 153]:3,[31_ ]
KI_C (Af p") Pﬂ pﬂ '
22 Po

where the primes refer to the constants of the second section and where
Ps/p. is the pressure ratio of the second section. Substituting in the
values of A’, B, B’, C, we have

((51 + S2)(Se 4 Sy)
2315,1

) cosh I 4+ S—lg:js:sssgg

(SE+SE)£1+(SI+SQ s
25, 2

(39)
251 7 PQ
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Equation (39) gives the relationship between pi/p: and ps/p. which
must be satisfied if the output impedance of one section equals the
input impedance of the next section. If we specify a value of ps/ps,
then the value of py/p. is determined. The impedance Z.’' terminat-
ing the second section is also determined and hence the pressure ratio
of the third section, etc. Hence if we specify a value of p:/p;, we also
determine the propagation characteristic of any other section in a
series of sections. The pressure ratios will not in general be constant
from section to section.

We can write po/py = Ke® since this will represent any phase or
amplitude change. Similarly we can write ps/p. as K'e”. Sub-
stituting these values in (39), we have

(S: + S2) (S + Ss) A I s
( 25,5, ) cosh '+ =555, o)
=(52+Sa)ﬂ+ Sl+Sz)K,e_ﬁ,
2.5; K 25, ’

Now if the value of § remains unchanged from section to section a
great simplification results, for in order to determine the overall pres-
sure ratio we have only to multiply the number of sections by 8. Hence
it is desirable to determine for what rate of taper this condition is met
and also how good an approximation it is for all rates of taper.

If we set § = 8 and multiply through by e~% we obtain

((51 + So)(S: + Si)
25:5;

S5 — S
25151 e_ﬁ

) cosh I' +

Si+ S
25,

-2 __

K!

Similarly the equation for the next two sections is

[( (Sg + S)(S; + Sy ) cosh T + (SESA - S:F)]
— 2§ g

25,5, 25.5,
S‘.’.+SS "
(F757)

e
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If we are to have § = §”, we must have

e? [ [STS‘_'I_{,‘S‘ ? - Sg;’.’S‘4] cosh T
3
+ [ S18 — 82 S5S — S5 J]
(S1 + S2)SK (Ss + S3)S.K"7
_ [ (Se+ S5)S0  (Si+ Sa)Se ] (41)
Si(S1 4 So)KK'  (Se + S3)SK'K |

Since the term on the left is complex, while that on the right is a
numeric, each must separately vanish if we are to have this equality.
Similarly the terms within the bracket of the left hand side would have
to vanish.

We see that the two terms on the left do not vanish simultaneously
unless we satisfy the progression equation

2513:12 - 232254 + (Sa _— Sz)(SIS4 + SgS;;) = 0 (42)

This equation is satisfied by a system whose area increases exponen-
tially with the distance. The terms involving S.5; — S»* and 5.5,
— 53 are always very small no matter what the rate of progression.
Hence is is desirable to see if neglecting these terms we can still satisfy
the above conditions. The most useful value of the two terms on the
right hand side of equation (41) is 1. Hence setting each term equal
to 1 and solving for K’ and K", we find that

S Ss
r— D2, o[98
K= 35 k=2,

We see then that if we neglect second order quantities, we can repre-
sent with good approximation the pressure ratio of any tapered filter

by the expression
32 = 4 # Sn g"a,
Pl Sn+l

where & is the propagation constant of a tapered structure. For a
complete solution, & is not constant except for a progression which
satisfies equation (42).

A. Exponentially Tapered Filters and Horns

If we assume that the area of a given section is €*! times as large
as that of the section preceding, equation (40) reduces to

2e~*[cosh I cosh t] = K'e™® 4 (6_” X %) é. (43)
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S S,
We choose now K/ = 4[= = ¢ tand K = \/§1 = ¢!,
2

S
Then
cosh § = cosh T cosh £.

To show that & is the propagation constant for an infinite sequence of
such sections, it is necessary to show that § is the same for any two
sections. But equation (43) holds good for any two sections, and
hence § is the same, and represents a solution for an infinite sequence
of sections. Now

e~% = cosh § — sinh 6§ = cosh T cosh { — Asinh? T cosh? ¢ + sinh? £.

Hence

%= Ke=® = e~t[cosh T cosh t — ¥sinh® T cosh?® / + sinh?® ¢]
1

and
Ve _ s C — eté®
v, ¢ ele? — A

= ¢'[cosh I' cosh # — Vsinh? T cosh? ¢ + sinh? £],

and hence the pressure and volume velocity have the same propagation
constant § but an inverse multiplying factor.

The specific impedance Z,, looking into a given section, is by equa-
tion (37)

Z

) T T
Z.B 2 [ Wtanh? ¢t + sinh? I' — tanh t] (44)

= A — Ke? = sinh T

and similarly Z,, the specific terminating impedance, can be shown
equal to Z. Hence the impedance per square centimeter at the junc-
tion points is the same for each section.

To observe the action of a tapered filter, let us obtain the product of
the pressure by the volume velocity and see how these are propagated.
Since the specific impedance is the same from section to section, this will
represent also the power propagation. Now since

cosh 8 = cosh T' cosh ¢,

a pass band occurs when 1 = coshd = — 1 and hence the band
occurs only when I' is imaginary, since coshT' <1 and > — 1, or
when the filter repeated recurrently is in its pass band. Furthermore
the pass band for the tapered structure will not be as wide as that for a
similar recurrent structure, since for the tapered structure the band
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occurs when cosh I' = = 1/cosh ¢ while in the recurrent structure, the
band occurs when cosh I' = 4 1. One result of this is that no low
pass filter exists in exponentially tapered structures.

Considering now the pressure and volume velocity ratios when
1 = cosh § = — 1, the absolute value of e® is 1. Hence over the
band the ratios of pressure and of volume velocity from section to
section are respectively et and e' or ¥S,/S: and vS:/S;. Hence one
section multiplies the pressure by a ratio v.5;/S;, and the volume
velocity by the factor ¥S./S;. Therefore a tapered structure of this
kind is equivalent to a transformer of turns ratio ¥.5;/Ss, and a filter
of somewhat narrower bands than for the filter repeated recurrently.

To specify completely a filter of this type requires three parameters.
Two such parameters have been developed above and are §, the pro-
pagation constant of a tapered filter, and Zg, the specific recurrent
impedance in one direction. These are given by

cosh 6 = cosh T cosh ¢,

[{tanhﬂx + sinh?T' — tanh ;} (45)
Zo , .
sinh T’

Zp =

We take as the third parameter Zg,, the specific recurrent impedance
in the opposite direction. We can readily determine that Zg,, the im-
pedance looking in the opposite direction from that used to specify
Z ., but obtained at the same junction point, is

ZyB

S
23
It is desirable to have the same propagation constant serve for the
two directions, hence we let p’/p)/ = Kie®. Since K represents a
transformer change of the pressure in one direction, we find, when
going in the opposite direction, that the pressure should change by
the inverse of K, so K; = 1/K. Substituting these values for p.'/p./,

#.B

Zp = K —A° (46)
Hence for an exponentially tapered filter
2 =2 Wtanh? ¢ 4+ sinh®T' + tanh ¢

In terms of the parameters, 8, Z5, and Zp, we can express ps, p1, Vs,
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and V; as

P = e—t[pl [cosh5 + [%_:—i—]smhaJ
Ia Ry

RARLY AR
5| g s |

Vo = et [V [c05h6+[§k’—;7J SthJ
~ Ity “ R
' 2sinh é
Badtrnit

If now the elements of our structure are non-dissipative straight
tubes, instead of a general filter structure, and the length of these
tubes between changes of area is made very small, it is evident that
the structure reduces to an exponential horn. We now let the ratio
51/Ss = e~ be expressed as

S
S2
where [ is the distance between changes in area and T a new taper

constant. Then T, for a straight tube, neglecting dissipation, becomes
I' = 4wl/c and hence

(48)

—2¢

— g2l =

cosh § = cosh ol cosh T

C
2£2 ‘Zl‘.! 2
“( gt (G e G
2 w!
!(T —i> (T 6L ¢ )
C? C? [
=1+ 31 + It I

This reduces for small values of [ to
cosh 6 = cosh (l\}T‘Z — %) .

P _ g—nTip—nd — 8_"‘ i' +\/q' ) _ C—L(T-l-\/?‘ﬂ—-%:)
P

since nl = L, the total length of the horn.
As long as T? > (»?/C?), an attenuation band exists, while if w?/C?
> T2, the expression becomes

b e on (1E - 7) =i (25 1)

and a pass band occurs.
19

Hence
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The complete equation for the horn, equivalent to equation (48),
becomes

_ L,
w2
SiA|T? - & J
Vo = etiT 4| cosh (L\/T2 - %;)
IL B
—— L gk [(L‘/TQ - %)] 1
\/ , _ @ ¢
T* —
S,y &sinh (L,frz —%2)

These expressions can be derived from Webster's ® differential equa-
tions for an exponential horn. Exponential horns have also been dis-
cussed by a number of writers.'

B. Tapered Filters Whose Area Increases as the Square of the
Distance

One other example of a tapered filter, for which an approximate
solution can be obtained, will be considered because of its bearing on
the straight or conical horn. Let us assume that the area S, of a
typical section of a tapered filter chain is #*E, while that of the section
next to it is equal to (# + 1)E, where E is a small constant. Sub-

9 A. G. Webster, ‘‘Acoustic Impedance, and The Theory of Horns and of the
Phonograph,” Nat. Acad. of Science, Vol. 5, 1919, p. 275. The solution given by
Webster for the exponential horn appears to have some typographical errors.

1 Hanna and Slepian (Trans. A. 1. E. E,, 43, 1924, p. 393); H. C. Harrison

(British Patent No. 213,525, 1925); I. B. Crandall, * Theory of Vibrating Systems
and Sound,” D. Van Nostrand, 1926, p. 158.
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stituting these values in equation (40), we obtain

[((n2 + + D))((n + 1) + (n + 2)%)
2(n)*(n + 2)*

) cosh I'

i+ 22— 4+ 0] _ L, (4 (n+ 1)\

L arE el B e o= I
WESN LS TS
2(n + 2)2 K

) . , 5_n+1 _ S on
If we substitute K' = S n 2 and K = S a1 and

neglect 1 as compared with #? we have

cosh § = [(M) cosh I' — —1-] (50)

In? 2n?

If again our changes in areas are very small and hence n very large,
we can neglect 1 compared with 2#? and obtain

coshé = coshT', or §6=1.

Either of these solutions will hold for any other pair of sections if we
neglect 1 as compared with #® for the first of 1 compared with #? for
the second. Hence for either solution, the propagation constant is
little affected for this type of taper. The specific characteristic im-
pedances Zp, and Z;, become

. Zosinh T
Zm = 0 2m® T 1 T
E+(2n2+1)\j( T cosh I _ﬁ) -1 s
7 — Zysinh I
Ra .
i 1 2n® 2+ 1 1 )\?
E+2n2+1 ( 2n? COShF_ﬁ) -1

If we neglect 1 as compared with 2, these expressions reduce to

Zonsinh I' _ Zmsinh T

Zn = ZR’_—I—i—nsinhl"

*“ T+ nsinh T’ (52)

These impedances represent the impedances per square cm. looking
in both directions at the input junction of the filter, whose area is n2E.
As we move in either direction these impedances change since n
itself changes. If n becomes sufficiently large and I' is not zero, the
two characteristic impedances approach the value Z,.
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To express p» and Vs in terms of p, and V, and these three param-
eters, we can obtain the equations.

I __ I
pg—n:_l[pl[cosl16+(f:,:—l—+%)sillhé]

Vil 2Zp2%0! 7 .
5| o snn |

n+1 20 — Zp°
V2= p [V[IVCOShﬁ‘l‘(Z/ilu—_i_—Z—(J)S]ﬂhﬁ:l

Zp' + Zp'
— S [ 22 2! ]
. Z I __ Z I Z "U — Z lO
x [sinno 1 — (G ) (G 7)) | + comn
Zp! — Zr'\ _ (Zr° — Zr°

x [(ZRII“'Z&I) (ero"f‘zmo)]:”'
as can readily be seen by comparing these expressions with the equa-
tions, p» = 1A — (Vi/S)ZB; Va = ViC — ($1/Z0)S:D. In the above
expression the letter I indicates that the impedances Zj, and Zj, are
to be taken at the input junction, while the letter O indicates that they

are to be taken at the output junction.

The effect of this type of tapering is to change the propagation con-
stant scarcely at all, but to lower the characteristic impedances in the
neighborhood of the cut-off frequencies. This tends to produce large

reflection losses and hence effectively the band is narrowed. A
transforming action equivalent to a transformer of turns ratio V.51/5:
occurs as before.

To obtain the equation for a straight horn, we let S), a typical area
of the horn, equal

(53)

S = nK = K'(nl)* = K'(x,)%,

where nl = x,, the distance from the apex of the horn, and [ the
length of an individual section. T' becomes iwl/C, and Zg, and Zg, are

V'pwpm Z-I \”Po’}’p'b
Ziﬁ = ’
1 + ’inz 1 + ’E‘—C-, 1
and (54)
Vmﬁ Eém

ZR2=
—1+1J—Ex1
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Substituting these values in equation (53), we obtain the equation

[ . w
5 3 sin (Z‘ (x2 — x1) )
p.,' = -1.;_ Pl COSE(IQ — x1) + wx
Tl
] C
1
.V .
_ zﬁ VPyyp sm%’.(xg —x) [L,
[ . TG9)
sin (—(xg — xl))
V2=172-! Vi cosg(xg—xl)— ¢ —1 Pli
X | c %’.xg VPgyp
1 . 1 1
X 1+—T sm%},(xg—xl)-l— — cos%(xg—xl) '
(E) X1X9 Exg Z,x1

If we introduce two lengths ¢ and e defined by tan (w/C)e, = (w/C)x
and tan (w/C)es = (w/C)x: and take account of the fact that the imped-
ance as defined here must be multiplied by 4w to correspond to the
impedance defined by Webster, then it is evident that the above
equation corresponds to the relation given by Webster.” ¥

It is interesting to compare the relations obtained above involving
the assumptions introduced in Section II with the solution involving
no assumptions. This can be done for the conical horn, since its
solution can be obtained using spherical waves. In Section III-D,
the impedance looking into a conical horn was obtained when an
infinite impedance terminated the horn. If we set V> = 0 in the last
of equations (55) and solve for the ratio of $./ V3, it is evident that the
impedance agrees with that given in Section ITI-D. Hence it is evident
that both methods give the same solution.

Many other types of tapered filters can be solved in a similar man-
ner, but no more will be considered here.

V. GENERAL NETWORK EqQuaTioNs AND NETWORK PARAMETERS

We can combine a number of symmetrical structures to form a
general network. For any symmetrical structure we can write the

10 The solution for the conical horn has been discussed in more detail by I. B.
Crandall, ** Theory of Vibrating Systems and Sound,"” D, Van Nostrand, 1926, p. 152.
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equations
P2 = Py cosh Ty — VIS sinh Ty,
1
Vo= Vicosh I\ — 22tinh 1,

0y

Suppose then that we wish to join this structure to other structures,
with different characteristics and with different area conducting tubes.
At the junction of the structures, we have by equation (14)

Pa D2, Va = V::-

Combining these with the above, we have

2= prcosh T} — V1 smh Ty,

Plsl

Va = Zﬂ]

Vycosh I, — sinh I'y.

Writing a set of equations similar to the above for the second structure
and combining, we have

Pi= (LOSh I'y cosh T —|— = Z Z%sinh T, sinh I‘g)
2 L0,
- Zo (smh I'y cosh T's + Zo, 01 = cosh I, cosh Fz)
S Zo, S, |
Vi= WV, (cosh T’y cosh T’y -|— o S Z2sinh I sinh 1‘2)
Zng S
P' ! ( sinh T; cosh T + == S2 Zo, = cosh I'; sinh T';
Zul 1 2 S, Zn, 1 J
We can also write this in the form
S1 Zo, ‘ sl Zo,
pi= b cosh T, 5, Zo. —-sinh Ta| v, 2,57[,l sinh T, 572 sinh Ty '
—sinh I, cosh Iy '| —cosh I, cosh I
an Sz . ZO. S2
V=V, cosh T Z, 3, < cosh Iaf pZ.SI sinh Iy Zo. S, —sinh I _
—sinh Iy cosh I'y “% | —cosh Ty cosh I's

In fact if we combine 5 structures of this kind, we can write the

equations

z
b= A — VlSi‘B,
V.= e —22p

Z P

(56)
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where

cosh I'y

— sinh Ty

sinh T';

sinh Iy

— cosh Iy

cosh I’
— cosh T';

cosh I'

— sinh I
+ sinh F[

sinh T

— cosh T

cosh I
— cosh T

S, Z, .
§2 2;1 Slnh Fz

cosh T’

— sinh I's

SiZy, .
Ezu_l sinh T

cosh T’y

— sinh T
sinh T's

So Zo, .
s, Z—ug sinh I'»

cosh T's
— sinh T

52 Zo,

S, Zo, sinh T

cosh I's

— sinh T
sinh T'e

S Zy, .
- §a "ZE smh Fa
Sa Zo, .
E Z—o! sinh F;; v
cosh T';
cosh T,
S1 2o, -
—_ §3 Z-U’Slllh P:;
Se Zo, .
:S';Zoe sinh Ty
COSh T
Sil'lh F;;
cosh T,
S3 Z.‘_)l .
§j~ Z_Ux sinh F;;
Sy Za, . _
§2 ZsSlnh F:;
cosh I';
cosh Ty
Sa Zo,
~ S 7, sinh T
Sz 2o, . .
Ezmsmh Iy
cosh T
— sinh Pg
cosh T,

Among these four determinants there is one relation

AC — BD =1,

as can be seen by multiplying them together.

Hence to completely specify the characteristics of the structure
three parameters are required. A number of possible sets of param-
eters exist whose usefulness depends on the type of structure to which
they are applied. The set of parameters having the greatest use in
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(57)

(58)

(59)

(60)

(61)
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connection with electrical networks are the image parameters which
include two image impedances and an image transfer constant. We
define these constants as follows for the acoustic case.

If we have a network terminated in impedances Z; and Z;, (per
square centimeter of area) at the beginning and at the end of the net-
work, then these impedances are the image impedances of the structure
if they terminate the structure in such a way that at either termina-
tion junction, the impedance looking in either direction is the same.

The image transfer constant 6 may be defined as one half the
natural logarithm of the vector ratio of the product of the pressure
by the volume velocity, at the input junction point, and this product
for the output junction point, when the network is terminated in its
image impedances.

Hence
;Pl 1 .

Pn

To determine the image impedances, we have one set of equations

b= A — B, ]
(62)

51

= V,C — b

Vo= 11 Zu,

This gives the pressure and volume velocity propagated in one direc-
tion. We need also the equation of propagation in the opposite
direction. This can evidently be written

pql = plfA.' — VIJ%B’,]
n L (63)

V"J — V]'C’ pl ﬂDr J
u

where p,) and V,’ represent the pressure and volume velocity at
the beginning and Vi’ and #,’ at the end of the structure. A’ can be
obtained from A by cyclically permuting the subscripts. By writing
the expansions for these quantities we can show that

Zo1 Sy ) Zouﬁ

lodp p=F50 O

1

Eliminating the ratio V,/V, from (62) and writing p/V1 = Z,,/S
and p,/V, = Z,,/S,, we obtain

A'=C;, C'=4; B =

Z.ZuD + Zo, [z,l (%’A) _ zhc] _ 7, (%:B) — 0. (65)
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From (63) eliminating the ratio V,//V\" and writing p,//V,’ = Z,/S)
and p// V' = Z,,/S, and substituting the values in (64), we have
S

,”A) _ze2B =, (66)
Sy

YARAN U A (Z;gc - Zy 5

Solving (65) and (66) simultaneously, we find

i BC S, [AB
Z!1=A['1 A—D‘, ZIE:ZOIS_:!' ﬁ. (()7)
From the definition of # and equations (62), we can show that
cosh 6 = VAC. (68)

In terms of these parameters, the effect upon the pressure or volume
velocity in the termination of an acoustic system, due to inserting the
structure into the system, will be given by multiplying the terminal
pressure or volume velocity by the factor

é—” + Zn 2 \/ﬂ vZ,7,,
1 Sy X Sn X 2Z5 X et
2%, Zo+ 2. " Zn T Za
S, (69)
1
Xl R ) N B T SV
ZntZs " Z,+ 24

where %, and Zj are respectively the impedances, per square centi-
meter, of the acoustic system at the insertion junction looking towards
and away from the source.

AppeEnDIX I. Proor or THEVENIN'S THEOREM FOR AN ACOUSTIC
SYSTEM

The proof of Thévenin's theorem as stated in Section III can be
obtained directly from the general network equations given in Section
V. These equations are

FA
m=mA—m§a
_ . P15
Va= V,C Z D,

where AC — BD = 1. If we connect at the input end a source of
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pressure po, whose specific internal impedance is Z,, we can write
— T
po=pr+ Vig -
St

Inserting this result in the above equation, we obtain

b= pod — (2 + 2aB), |
(70)
— é‘ _ P05
Vg—Vl(C-FZOD) 7 D'j

To obtain the pressure when an infinite impedance is used at the
termination, we let V> = 0, and solving for V; we have

___ pDS
Vi= Z.C + Z:D (71)
Substituting this in the first of equations (70), we have
_ PoZo o
p? - (ZOC+ZTD) - PO: (72)

which is the terminal pressure for an infinite terminating impedance.
Eliminating V; from (70) and substituting VoZg/S, = ps, we have

_ Do 1 .
V= G+ Z.D) “ 7y % 2y 73
5, TS\ ZCF Z.D

We can show now that

ZO(ZTA + zUB> A

S\ZC+ ZD/) 5

which is the impedance at the terminating junction looking toward the
source, when the specific impedance Z; terminates the input end.
From equations (63) and (64), we can write

P =p'C =V %}J B,
1
, ' 'S
7 — _ )
Vs Vi'4 70 D

Substituting V2'(Z7/S:1) = p-’ and solving for the ratio g/ Vy', we have

Pl’_ ZT’_ZO(ZTA_FZDB)‘ (74)

Vi~ S Si\Z.C + ZD
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Hence we can express V, in equation (73) as

Ve P

= ZTZT
s, Ts
which is Thévenin's theorem.

AppENDIX II. DETERMINATION OF L0oss FOR A CONSTANT
VOLUME VELOCITY SOURCE

Another type of insertion effect desired in some cases is the effect
caused by inserting filter structures in an acoustic system in which the
source supplies a constant volume velocity. One such acoustic system
is the phonograph.

In order to obtain this effect we first prove the theorem: If a
source of constant volume velocity V7 is connected to the input of an
acoustic system, and if the impedance Z; (per square centimeter) is
used to terminate the system, the volume velocity V. will be
b0’ [[(Zr]/S) + (Z./S,)] where po" is the pressure at the termination of
the system when the system is closed through an infinite impedance,
and Z, is the specific impedance of the acoustic system at the output
junction looking toward the source when the system is terminated in
in an infinite impedance at the input junction. ) and S, are the areas
at the input and output junctions, respectively.

To prove this we substitute the value of p, given by (71) in the
first of equations (70) and obtain for the pressure, with an infinite im-
pedance termination

_ N

P =<1 (75)

Then eliminating p, from equations (70), and inserting the value
po = VoZg/S,, we obtain

_WNZ _ 1 76
V”_S,D Zp  AZ, (76)

§+SID

From equation (74) we see that the impedance looking toward the
source is (£pA4/S,D) if we make Z, approach infinity. Hence

i 1
— "
Va= po Z;R——_l_ Z.
S, S
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To obtain the insertion loss for a constant current source, then, it is
only necessary to substitute Z. for Z, in equation (30). One special
case of interest is the case where the acoustic filter is connected directly
to the source. In this case Z, = = and the insertion effect is deter-
mined by the factor

2%, ) e 1 _
(2—0 Tz X e’ X - %7, 77)
Zﬂ + Zh




