The Rigorous and Approximate Theories of Electrical
Transmission Along Wires

By JOHN R. CARSON

THE theory of electrical transmission along straight parallel guiding
conductors is of fundamental importance to the communication
engineer. In its original, and largely in its present day form, it
involves only relatively simple concepts which go back to the early
work of Kelvin and Heaviside. In accordance with these concepts
the transmission phenomena are completely determined by the self
and mutual impedances of the conductors and the self and mutual
capacities (together with the dielectric leakage). As a consequence,
the phenomena are completely expressed in terms of the propagation
constants and corresponding characteristic impedances of the possible
modes of propagation deducible from these underlying concepts.

The elementary theory sketched above is of beautiful simplicity and
great value. It is, however, admittedly approximate, and in two
respects is not altogether adequate. Its first defect is that it represents
the transmission phenomena correctly only at some distance from the
physical terminals of the system or at some distance from points of
discontinuity. This defect is ordinarily of small practical significance
when the conductors all consist of wires of small cross section. When,
however, conductors of large cross sections, or the ground, form part
of the transmission system, the elementary theory may be quite
inadequate. The theoretical questions here involved were briefly
discussed by the writer in a previous paper.! The mathematics
involved in this problem are extremely complicated and the further
work of the writer has not as yet been carried to a point which justifies
publication.

With the extension of transmission theory discussed in the preceding
paragraph the present paper has no concern, and it is to be expressly
understood that we are dealing with the transmission phenomena at a
sufficient distance from the physical terminals, such that the “end
effects” are negligible. The problems here dealt with may be stated
as follows: First to investigate the conditions under which the specifi-
cation of the system by means of its self and mutual impedances is
valid and secondly to provide a general method for calculating these
circuit parameters from the geometry and electrical constants of the
system.

1 “The Guided and Radiated Energy in Wire Transmission.” Trans. A. I. E. E,,

1924.
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As regards the first phase of this problem it is found that the complete
specification of the system in terms of its self and mutual impedances
and capacities is only rigorously valid for the ideal case of perfect
conductors embedded in a perfect dielectric, and that it becomes quite
invalid if either the conductors or the dielectric are too imperfect.
Fortunately, however, it is valid to a high degree of approximation
for all systems which could be employed for the efficient transmission
of electrical energy.

Under the circumstances where the approximations discussed in the
preceding paragraph are valid it is shown that the electric and magnetic
field in both dielectric and conductors are derivable from two wave
functions. The first of these is determined as a linear function of the
conductor charges by the solution of a well-known two-dimensional
potential problem, while the second is determined as a linear function
of the conductor currents by the solution of a generalization of the
two-dimensional potential problem. The latter problem is believed
to be novel, in its general form, and to possess both practical and
mathematical interest. For detailed application of the theory to
specific problems, the following papers may be consulted.

““Wave Propagation over Parallel Wires: The Proximity Effect.”
Phil. Mag., April 1921.

“Transmission Characteristics of the Submarine Cable.” Jour. Frank.
Inst., Dec. 1921,

“Wave Propagation in Overhead Wires with Ground Return.”
B. S. T. J., Oct. 1926.

I

Maxwell's equations are the set of partial differential equations
which formulate the relations between the electric intensity E and
the magnetic intensity I in terms of the frequency w/2r and the
electrical constants of the medium. Let X, u and % denote the con-
ductivity, permeability and dielectric constant of the medium; let
it be supposed that all quantities vary with the time # as ¢!, and let

v = 1/ku,
v: = 4drhpie — w17,
i= -1

Then if we introduce the vector

M= piw-H,
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Maxwell's equations for a continuous homogeneous medium may be
written in the compact form 2

curl E= — M,

curl M = »E,

div E=0, (1)
div M = 0.

From this set of equations it is easily shown that each component
of the vectors E and M individually satisfies the wave equation

® e e N\,
(S+s+am—r)r=0 @

or in vector notation

(9% = B)f = 0.

Here f denotes any vector component; thus in Cartesian coordinates
f may stand for E., E,, E.; M. M, M,, all of which separately
satisfy (2).

Given the electrical constants and geometry of the conducting
system and dielectric media, the general problem is to find solutions
of (1) and (2) which also satisfy the boundary conditions at the surfaces
of separation of the different media. These boundary conditions are
that the tangential components of E and H shall be continuous over
such surfaces of separation. These boundary conditions, as may be
seen from (1), necessitate also the continuity of the normal components
of M and (v*/u)E.

If we introduce a vector potential A(A., ,, .) and a scalar potential
®, it is easily shown that (1) may be replaced by

M= curl 4,
E= —A4 —grad d, ©)

with the further relation
div 4 4 »® = 0. (4)

& and the components of the vector A individually satisfy the wave
equation; thus

0,

(VZ - VE)(IJ o (5)

(v* =4

In Cartesian coordinates these equations are

2 Note that in this form the constants of the medium appear explicitly only through
the parameter ».
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In technical transmission problems we are largely concerned with
propagation along a uniform transmission system, composed of straight
parallel conductors. That is to say, the transmission system does not
vary geometrically or in its electrical constants along the axis of
transmission, taken as the axis of Z. It is known that in such trans-
mission systems exponentially ® propagated waves exist. We therefore
modify the general equations by assuming that the wave (and all
vector components) vary with ¢ and z as exp (wf — 7vz), v being
entitled the propagation constant. As a consequence of this assumption
it is easily shown that the vectors E and M are derivable from the
wave functions F, ®, O as follows:

M,,=ain—ry%®,

My= =5 F =756,

M.= — (- 190,

E. = ‘a%q’_a%@' ®)
E,= -5 ®+50,

B,= — 3%~ F=3—F.

The wave functions F and ® are not independent but are connected by
the relation .
v’d = «F, (9)

3 This means that the wave involves the axial coordinate z only exponentially.
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Another useful formulation of the field equations equivalent to and
directly deducible from (8) is

2 = — 2O 9
(v YIM, = v ayE, - 'yax M.,
9 9 a a
(= )M, = v*—E, + v5- M,
dx ay (10)
a i)
2 2 — i -
(V Y )E: Y asz + ay Mll
a d
_ = A .
(¥ —E, =« 3 E, — o~ M..

In this formulation the problem is reduced to the determination of
the wave functions E, and M,, and the propagation constani -y.

It will be observed that, by virtue of the assumption that the wave
functions of (8), (9) and (10) involve ¢ and z only through the common
factor exp (iwf — v3), we can write

F= f(x,y)-exp (iwt — 7v3),
® = ¢(x, y)-exp (iwt — v3), (11)
E = e(x, v)-exp (it — ¥3), etc.,

where f, ¢, e, etc., are two-dimensional functions of x and y alone,
and satisfy the two-dimensional wave equations

? a? 5 o 12
(Z+)r= 0 = ete. (12)
In the following, therefore, we shall regard the wave functions
F, ®, E, etc., as two-dimensional functions with the understanding
that the common factor exp (iwt — ¥3) is omitted for convenience.

I1

Before taking up the discussion of the general problem in the light
of equations (8) and (10) we shall first consider a type of plane wave
propagation to which the transmission phenomena closely approximate
in an efficient transmission system. We consider the ideal trans-
mission system composed of any number of straight parallel perfectly
conducting conductors imbedded in a perfect dielectric. For such a
system we assume the possibility of plane wave propagation by
supposing that E, and M, are everywhere zero. By virtue of the
assumption of perfect conductivity, the electric force must vanish
inside the conductors, and at the surface the tangential component
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must vanish. In the dielectric reference to equations (10) shows that
if E,= M, = 0, a finite solution requires that

¥ —9t=0
or, since A = 0 in the dielectric,
v = iw/v.

That is to say, the plane wave is propagated with the velocity of light
v, without attenuation.

Reference to equations (8) and (9) shows that the boundary condi-
tions can be satisfied by setting ® = 0, writing

® = ¢-exp (twl — tw3/v),

and determining the function ¢ which satisfies Laplace’s equation in

two dimensions,
i a2
(s +ay)e =0
and is constant over the cross section of the conductors.

From the relation F = (iw/v)® it is also easily shown that the
electric and magnetic forces are both in planes normal to Z and that
these vectors are normal to each other and in time phase. The flow
of energy is therefore parallel to the Z-axis everywhere. We therefore
have a pure plane guided wave of unit power factor; the ideal for the
electrical transmission of energy.

III

We now take up the much more complicated problem arising
when the conductivity N of the conductors is finite and when the
dielectric media themselves may be dissipative. In attacking this
general problem we shall be guided throughout by the fact that the
wave solution we are seeking must approximate, more or less closely,
to the ideal plane wave ¢ if the system is to efficiently transmit elec-
trical energy. We shall therefore introduce ab initio approximations
which must be valid in all efficient transmission systems. These
approximations cannot be all justified @ priort; their justification must
come a posteriori from the fact that the final solution satisfies the
original assumptions and approximations.

41t is to be noted that the solution sought is the principal wave. (See ‘' The
Radiated and Guided Energy in Wire Transmission,” Trans. A. I. E. E., 1924.)
This wave does not, in general, completely represent the phenomena, except at a
considerable distance from the physical terminals of the transmission system, and
then only in the neighborhood of the conductors.
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First we have to define what we mean by conductor and by dielectric;
the significance of these definitions will appear in the course of the
analysis. A conducting medium is one in which «*/? is very small
compared with 4mhpw; while a dielectric medium is one in which
4m\uw is very small compared with w?/2®. The intermediate cases
will not be discussed in the present paper; in the following it will be
assumed that the conductors and dielectrics satisfy these definitions.?

The assumptions which we make at the outset in the approximate
solution may now be listed and qualitatively justified as follows:

1. The propagation constant v is an extremely small quantity and
its real part is not large compared with its imaginary part. Since | v| is
of the order of magnitude of w-107", it is evident that v is very small
even for frequencies of millions of cycles per second. As regards the
second restriction, if the real part of v is large compared with
the imaginary, the wave will be damped out in a few wave-lengths, and
the system cannot efficiently transmit energy.

2. In the conduclors the axial electric intensity E, is large compared
with the component normal to Z. This restriction means that the
dissipation in the conductors due to the axial currents is large com-
pared with the dissipation due to the charging currents. Evidently
this restriction is necessary for the efficient transmission of energy.

3. In the dielectric the axial electric intensity is small compared with
the normal electric intensity. The justification of this assumption is
as follows: The propagation of energy occurs in the dielectric, and is
normal to the direction of the electric intensity. Since the usefully
transmitted energy is propagated along the axis of transmission and
the propagation normal to the axis simply means dissipation, the axial
electric intensity must be small compared with the normal component
for efficient transmission.

4. The axial magnetic intensity II, is everywhere small compared
with the normal intensity. The justification of this assumption de-
pends on the same arguments as (3).

As regards (3) and (4) it will be remarked that in the ideal plane
wave propagation both E; and M are zero. In the case of imperfect
conductors E, in the dielectric is not zero but may be regarded as a
first order small quantity. M, on the other hand is to be regarded
as a second order small quantity because it not only vanishes for the
case of perfect conductors but also vanishes for the case of imperfect
conductors for the case where the wave is made up of a set of compo-

§ In accordance with these definitions, conductors and dielectrics depend for
their classifications on the frequency, as well as their electrical constants. The

definition of conductor means that the displacement current is negligible compared
with the conduction current.

2
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nent radially symmetrical waves oriented on the axes of the conductors;
to this the actual wave approximates in important transmission systems.

We shall now introduce the consequences of the foregoing assump-
tions into the differential equations of the problem.

v

Referring to equations (10), these may be replaced in the conductors
only where 4* is very small compared with »* and v is a very small
quantity, by the approximation:

_ 9

M, = ayE;,
a
M, =2 g,
ad 149 (13)

=22]9 -9
Er._vz{asz+ Ju—z}l
E =1{f1E ——4111}

Voo layTt yox

Therefore in the conductors the vector components M., M, are de-
rivable by spatial differentiation from E,. E,, E, are not in general
so derivable on account of the factor 1/¥, a very large quantity,
which appears with M,. (It appears that vE. and M. may be of
comparable orders of magnitude.) We assume, however, for reasons
discussed above, that both E, and E, are very small compared with
E, in the conductors.

In the dielectric, where »* and ~* are of comparable orders of magni-
tude, the foregoing approximations are not valid and the rigorous
equations must be employed. Returning to equations (10) and
writing for convenience v*/»* = 3, we have

M, = %ﬁ{i}z, ga‘lﬂf}
M”=1_iﬁ{ = gay } (14)
E;%Tl—ﬂ{ E-l———M}
e St

In equations (13) and (14), x and y may be any orthogonal co-
ordinate system. Let us suppose that they are so chosen that x is
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tangential to the conductor surface; M, is therefore the normal com-
ponent of M at the surface of the conductor and must there be con-
tinuous. E, and (d/dx)E. are also continuous. Consequently, we
must have by equating M, as given by (13) and (14),

1/ 9 9
;(55,M,>=— 2 B, (15)

the subscript e indicating the value of (9/0y) M, outside the conductor.
But from the expression for E., as given by (14), this is precisely the
condition that makes E; = 0 at the surface of the conductor. Conse-
quently we arrive at the very important proposition that, subject to
the approximations involved in (13), the tangential component of E in
the xy-plane vanishes at the conductor surfaces.

® We shall now find it convenient to express the field in the dielectric
in accordance with (8) in terms of the wave functions F, &, ®. Writing

O = f-exp (twt — v3), (16)

6 satisfies the differential equation

92 9
(5.@"'3?)9: (»* — 9%)8. (1mn

Now, in the dielectric, v* and +? are both exceedingly small quantities
which are nearly equal, so that »* — 42 is the difference of two very
small and nearly equal quantities. We therefore replace it by zero,
so that

a‘.! 62

0 is therefore a two-dimensional potential function. Consequently
a conjugate two-dimensional potential function  exists, such that

d d

_70 = )

dx ay"b (19)
Q4o 9y

dy ax 7’

Writing
¥ = y-exp (ot — v3),

equations (8) become

=9 (F_
M. = 5o (F = ),
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a
My = = (F = y¥),

p = _ 9 _ (20)
E, = 9% (® — W),
- _ 9 e
En‘ - '@ (@ ‘I’):
E,=~(@ — ¥) — (F — y¥).
Introducing new wave functions
F'= F — 47,
=0 —, (21)
we have (dropping primes)
a [
M, = EF
a
M,= — 3 b
a (22)
EZ - 5} 1
- -9
E, 3y D,
E,= b — F,

where now ® and F are independent wave functions.

If the foregoing analysis has been carefully followed, the important
advantage of equations (22) as compared with (8) will be appreciated.
The transformation of (8) into (22) is strictly dependent upon and
conditioned by the legitimacy of neglecting »* — +* in the dielectric,
whereby the wave functions are essentially reduced to two-dimensional
potential functions. It is evident that the whole engineering theory
of transmission involves this approximation.

\Y

We are now prepared to sketch the general solution of the problem,?
employing equations (13) in the conductors, and equations (22) in the
dielectric. The procedure is as follows:

1. At the surfaces of the conductors the tangential component E;
in the xy-plane of E vanishes, as shown above. That is,

a

E. = —E@‘:O (23)

8 For detailed applications of this method of solution to specific problems, the
published papers referred to in the introduction to this paper may be consulted.
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at the surface of each conductor.” In the dielectric outside the
conductor, the potential ® satisfies Laplace’s equation in two dimen-
sions; hence

62 ae _
(4t )2 =0 4
in the dielectric; and
I8=0 (=12 - n (25)
61_1 1 J 1 1

at the surface of the jth conductor. Also

§E,.J‘dr,-= —f%_mr,-:‘%”o,-, G=1,2-n) (26
1

the integration being carried around the surface of the jth conductor,
Q; being the charge per unit length on the jth conductor.

The determination of ® from (24)—(26), when the geometry of the
conductors is specified, is a well-known two-dimensional potential
problem, for the solution of which very general methods are available.
The solution results in the form

® = ¢, V)1 + ¢alx, ¥)Q2 + - -+ + ¢ulx, ¥)0n. (27)

That is, ¢ is a linear function of the conductor charges Q, --- (.,
and the coefficients ¢, : - - ¢, are unique functions of the geometry
of the transmission system and are determinable by the usual methods
of two-dimensional potential theory.

2. The continuity of M, and (1/u)M, at the surfaces of the con-
ductors is analytically formulated by the equations

iF: - 9 -Ez!
ar ar

(28)
n pedn

where x is the permeability of the dielectric and g, that of the con-
ductor. These relations, it will be understood, hold at the surfaces
of all the conductors. F is a wave function which satisfies Laplace’s
equation in two dimensions in the dieleciric; thus

J? 9°
(@—FW)F:O, (29)

7 In the following, r and » denote vectors tangential and normal to the conductor
surface respectively.
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and E, is a wave function which #n the conducior satisfies the two-
dimensional wave equation
# e o,
( i ayg) E, = »E,. (30)
In addition, E, and F are connected with the conductor current I
by the relations

I= )\fE,dS,
5 (31)
dopiw I = §5;z Fdr,

X here denoting the conductivity of the conductor.

It follows at once that the determination of F and E, from (28)-(31)
is a generalization of the two-dimensional potential problem involved
in the determination of ® from (24)—(26); it may be precisely stated
as follows:

The function F satisfies Laplace’s equation

» >
(5@+(9—3,2>F= 0 (32)

everywhere outside the » conductors. Inside the jth conductor the
electric force E,7 satisfies the two-dimensional wave equation

E BN i e . _
i Ty | B =B (=12, m) (33)

while at the surface of the jth conductor

aa-F - %E‘j’
a"": Ja (34)
- —_ — E_ —_— ] ;= “es
and
dria-I; = ‘9&9- Fdr, (j=1,2, - ). (35)
Bn,-

Just as equations (24)—(26) uniquely determine ® as a linear function
of Q1 -+ Qn, so equations (32)—(35) uniquely determine the potential
function F in the dielectric and the electric intensities E, - -+ E,™
in the n conductors as linear functions of the conductor currents; thus

F = filx, I + fale, ) T2 + -+ =+ fulw, ¥) 1, (36)
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and
Eji=e;(x, L+ - + enjlx, )5, (7=1,2,---n) (37

the f and e functions depending on the geometry of the conducting
system and, through the parameter »?, on its electrical constants.
They are uniquely determined by the differential equations.

The actual solution of the differential equations (32)-(35) is essen-
tially more difficult than the solution of (24)-(26) involved in the deter-
mination of ®, and they have not been subjected to the exhaustive
study accorded to the potential problem. On the other hand, the
analogy with the potential problem suggests that extension and
modifications of the general and well-known methods of solution
available for that problem should be possible.

To summarize the foregoing we have succeeded in expressing
the potential function & (and therefore E., E,) in the dieleciric as a
linear function of the conductor charges, the coefficients of the con-
ductor charges (1 - -+ (J» being spatial functions of x and y which
we determined by the usual methods of two-dimensional potential
theory.

Similarly it has been shown that E. (and therefore the current
distribution) 4n the conductors, and the potential function F (and
therefore the magnetic field) in the dielectric, are expressible as linear
functions of the conductor currents I, - - - I,,, the determination of the
coefficients depending on the solution of a generalization of the two-
dimensional potential problem.

3. To complete the solution of the problem, recourse is had to the
fact that E, is continuous at the surfaces of the conductors. At the
surface of each conductor we therefore equate E,, as given by (37),
in terms of the currents I, --- I, with v® — F (see (22)), ® being
given by (27) in terms of Q; - -+ O, and F by (36) in termsof I, - -+ I,.
This gives n equations of the form

i+ - + Zul, = vb, = ’Y(‘PUQL + o0+ p1aQa),
(38)

Zpdy + -+ + ZnnIn. = v®, = 'Y(Plel + o+ Panﬂ)-
Here @, - -+ @, are the values of ® at the surfaces of the # conductors
respectively; the p coefficients are Maxwell’s potential coefficients of

the system, while the Z coefficients are the self and mutual “im-
pedances’’ of the conductors.
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We require a further relation between I and Q; this is furnished by
the well-known relation

iwQ = vI — A § E,ds
— Al rd L ad (39)
= f&n $
47\
—'}’I—?Q,

the integration being carried around the contour of the conductor.
(A is the conductivity of the dielectric and the last term is the “leak-
age' current.) We have therefore, for a homogeneous dielectric,

(io+ ) Q=11 (40)

which furnishes the necessary relation.

Elimination of Q from (38) by means of (40) gives # homogeneous
equations in I, - -+ I, the coefficients involving only one unknown
quantity, the propagation constant . A finite solution necessitates
the vanishing of the determinant of the coefficients; equating this to
zero gives an nth order equation in 2, which determines the # possible
values of v, and therefore the # possible modes of propagation in the
system. The formal solution of the problem is thus completed.

In conclusion it is worth while reviewing and summarizing the
mathematical restrictions on the solution developed in the foregoing
pages; restrictions which have their counterpart in the physical
requirements of the system for the efficient guided transmission of
electromagnetic energy. The essential restrictions are that (1) in
the conductors +* is very small compared with +?, and (2) in the dielectric
the wave equation

(s3+25) 0= 02— 70

may be replaced, at least in the neighborhood of the conductors, by

*? _
(7+ap) 2o

If the conductors are so imperfect, or the dielectric so dissipative
that these approximations are not justified, the method of solution



ELECTRICAL TRANSMISSION ALONG WIRES 25

given above breaks down, and the problem must be attacked from the
rigorous equations. These have never been solved in general, in fact
the only rigorous solution known to the writer is for the case of
circular symmetry and even this involves the location of the roots of
an extremely complicated transcendental equation. Fortunately, in
view of these difficulties, the general case of quite imperfect conductors
or imperfect dielectric media is of small technical importance for the
reason given above.



