Ground Return Impedance: Underground Wire
with Earth Return

By JOHN R. CARSON

Syw~opsis: In certain transmission problems principally those relating to
induction and interference phenomena, it is necessary to know the trans-
mission characteristics of a circuit composed of an underground wire with
earth return. These can be evaluated by well known engineering formulas
provided the ground return impedance is known. The present paper gives
the mathematical solution of this problem and shows that the ground return
impedance is substantially independent of the depth of the wire below the
surface.

HE object of this note is to give the solution of a problem of

considerable interest and practical importance which does not
appear to have been solved heretofore; this is the “ground return"
impedance, per unit length, of a circuit composed of an underground
wire or cable with earth return,

The physical system and the problem may be more explicitly
described and explained as follows: An underground wire or cable
parallel to and at depth % below the surface of the ground is surrounded
by a concentric dielectric cylinder of external radius a. The earth
then forms the return path for currents flowing in the wire. The
ground return impedance Z, is then defined as the ratio of the mean
axial electric intensity at the external surface of the dielectric sheath
to the current flowing in the wire.

When the earth extends indefinitely in all directions about the
wire so that circular symmetry obtains, the problem is quite simple,
and the formula for the ground return impedance, denoted in this
case by Z,, is well known. In practice, however, we are interested
principally in the case where the wire is close to the surface of the
earth, so that the distribution of return current in the ground is
anything but symmetrical. For this case the formula for the ground
return impedance, which it is the object of this note to state and
discuss, is

Z, = (1 + OZy. (1)

Here the correction term ¢, which takes care of the departure from
circular symmetry, is given by
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In formula (2),
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a' = a4a,
B = hqa,

4mhe where M\ is the conductivity of the ground in
elm. c.g.s. units, w is 27 times the frequency,

R
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Ko(a'ini) is the Bessel Function of the second kind; it is equal to
%r_ HoW(a'i\i) where Ho" is the Hankel function as defined by

Jahnke u. Emde in their Funktionentafeln. Denoted by ker a’ 4
i kei @’ the function K,(a'ivi) has been computed and tabulated by
the British Association. The only restriction on formula (2) is that
the radius a is supposed small compared with the depth #.

Now the ground conductivity A lies between 1071 and 107, while
the depth % will not in practice exceed a few meters (z = 10%). Under
such circumstances, at ordinary frequencies, 2’ will be exceedingly
small compared with unity, and e’ still smaller. Consequently in
evaluating the infinite integral in (2), it is permissible to take e~2¥Vit+i
as unity, since for x > 2, the rest of the integrand converges as 7/4p%

Now we have
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and hence ¢ of formula (2) becomes

¢ = 1 _1—.
2 K D(G’T:'\ITT)
Furthermore since a’ by hypothesis is very small compared with

unity, we can replace K, by its limiting form for vanishingly small
arguments which is approximately

log (1/a’).

We thus get, finally, the approximate formula, valid for most practical
applications,

1
z= {1+ 7755 T/a) }Z°°' ®

The interesting and somewhat surprising feature of this formula is
that the value of the correction term 1/2 log (1/a’} likely to occur in
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practical applications amounts at most to 0.05 to 0.10. On the other
hand, with the wire close to the surface of the ground, the conducting
area of the ground return path is just one half the area available when
the ground extends indefinitely in all directions and the return im-
pedance is Z,%. In other words, the departure from circular symmetry
means only a very small increase in the ground return impedance.
In fact this increase is so small and the ground conductivity actually
so variable, the correction is hardly justified by the precision of the
data, so that, in most engineering applications, we may take Z, as
equal to Z,° with an error probably less than that involved in other
factors, and lack of precision in data.

DERIVATION OF PRECEDING FORMULAS

The derivation of the preceding formulas is not without interest.
Since, however, this derivation is, in general, an adaptation of the
methods employed in my paper ‘Wave Propagation in Overhead
Wires with Ground Return’ (B. S. 7. J., Oct., 1926) it will be out-
lined rather than given in detail.

Take the axis of the wire as the origin and Y as the vertical axis;
then the surface of the ground is the plane ¥ = k. Let a unit current
flow in the wire and take the axis of the wire as the Z axis. In the
ground (p = Va* + 4% = a) the axial electric intensity will be written

A -

= —1 _ Kyplini) + E' = E* + E/, 4

A @

where p' = Yavx® + 32 and K, is the Bessel function of the second
kind, related to the Hankel function by the equation

Ko(a'iNG) = -’;—”Hum(awa.

The first term on the right hand side of (4) represents the circularly
symmetrical distribution which would alone exist if the surface of
the ground were removed to an infinite distance, while £’ is a secondary
distribution due to reflection at the surface of the earth (y = £).
Inspection of equation (4) shows that when p = @, E is the required
return impedance Z.

Strictly speaking E° should be written as

Ko(a'ivi)

0

{Ko(p'i'\f{) + K, (p"iVi)cos 0
+ 7 Ka(p'iNt) cos 20 + - -},

(3)
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the harmonic terms representing secondary reflection at the surface
of the dielectric cylinder (p = @). If a is made sufficiently small,
however, the harmonic terms become negligible. In view of this
fact, the large amount of tedious additional analysis required, if the
harmonic terms are retained, is not believed to be justified by the
practical applications contemplated. E° will therefore be taken as in
formula (4).

The secondary electric intensity E’ can always be written as the
Fourier integral

E' =j F(u)er Veticosa'u dy, 0=y =h, (6)
o

where &' = xva, ¥/ = yWa, and the Fourier function F is to be
determined. For the formulation of the boundary conditions at
y = I we also require the expansion of Ko(p'iV7) as a Fourier integral;
the required expansion is *

e [F S | R
Ko(p “ﬁ) =£ Wa vVt cos &' du, p > 0. (7)

In the dielectric, the magnetic forces H,, If, are taken as

H, = f d(u)e v cos xp du
o y=h (8)
Hy, = — f o(p)e v sin xu dp
/0
In the ground, on the other hand, we have
1w, = — iE,
ay
, ©)
ioH, = - E.

In order to satisfy the boundary conditions at the plane y = &, we
equate H, as given by (8) and (9), and H, as given by (8) and (9).
The explicit formulas for H; and H, are derived from (9) by substi-
tuting the Fourier integral for K,, as given by (7), in (4) and differ-
entiating as indicated.

The two equations resulting from equating the two expressions for
H_ and the two expressions for H, can be solved for the Fourier function

* See note at end of this paper.
7
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F(u). With this determined the required impedance Z, is simply

by (4)
Z,=Z)+E, =0 (10)

on the assumption that ¢’ = aVa is quite small compared to unity.
This gives formula (1).

Note: The expansion (7), which is believed to be novel, was derived
by a limiting process rather too long and unsuitable for inclusion in
this paper. It and the following additional expansions are quite
useful in certain problems on wave propagation.

— @ — —
cos 6-K\(p'ini) = — \Hf e~ v Vit cos x'u du,
0
3 —Ti
sin 0-Ki(p'iNi) = — w:f " — vVt gin x'u dy,
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where
cos 0 = y/p = y/Vx* + 3%,

sin 0 = x/p = x/Vx* + %



