Application to the Binomial Summation of a Laplacian ¹ Method for the Evaluation of Definite Integrals #### By E. C. MOLINA #### Introduction THE numerical evaluation of the incomplete Binomial Summation, a problem of major importance for many statistical and engineering applications of the Theory of Probability, is a question for which a satisfactory solution has not as yet been obtained. Several approximation formulas have been presented,² each of which gives good results for some limited range of values of the variables involved; but a formula of wide applicability is still a desideratum. The purpose of this paper is to submit for consideration an approximation formula which seems to meet the situation to a measurable extent. The writer derived it by applying to the equation (1) $$\sum_{x=c}^{x=n} \binom{n}{x} p^x (1-p)^{n-x} = \frac{\int_0^p x^{c-1} (1-x)^{n-c} dx}{\int_0^1 x^{c-1} (1-x)^{n-c} dx},$$ a method which is peculiarly efficacious for approximately evaluating definite integrals when the integrands contain factors raised to high powers. The method used constitutes the subject matter of Chapter I, Part II, Book I of Laplace's "Théorie Analytique des Probabilités." Poisson applied the method to the integrals in the equation (2) $$\sum_{x=c}^{x=n} \binom{n}{x} p^x (1-p)^{n-x} = \frac{\int_{(1-p)/p}^{\infty} x^{n-c}/(1+x)^{n+1} dx}{\int_{0}^{\infty} x^{n-c}/(1+x)^{n+1} dx}$$ and published a first approximation, together with its derivation, in his "Recherches sur la Probabilité des Jugements." Poisson's approximation seems never to have been used and was less fortunate than his famous limit to the binomial expansion which also was lost sight of until it reappeared under the caption "law of small numbers." ¹ Presented before International Congress of Mathematicians at Bologna, Italy in September, 1928. ² For an excellent resumé of some well-known formulas, together with a discussion of their limitations, reference may be had to C. Jordan, "Statistique Mathématique," articles 37 and 38. While the integrals in equations (1) and (2) are well known equivalent forms for the complete and incomplete Beta functions, the equations themselves are not so familiar although one or the other will be found in Laplace, Poisson, Boole (Differential Equations) and at least two other places. ## Approximate Formula The approximate formula derived from equation (1) and submitted herewith for consideration is (3) $$\sum_{x=c}^{z=n} {n \choose x} p^{x} (1-p)^{n-x} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{T} e^{-t^{2}} dt - \frac{S_{i}e^{-T^{2}}}{2\sqrt{\pi}},$$ where S_i is the *i*th approximation to the infinite series (4) $$S = \frac{\sum_{s=1}^{\infty} R_s T^{s-1} [1 + (s-1)T_1^{-2} + (s-1)(s-3)T_1^{-4} \cdots]}{1 + \sum_{s=1}^{\infty} R_2 [1 \cdot 3 \cdot 5 \cdots (2s-1)] 2^{-s}},$$ $T_1 = T\sqrt{2}$ (5) $$T^2 = (n-1)\log\frac{n}{n-1} + (c-1)\log\frac{c-1}{a} + (n-c)\log\frac{n-c}{n-a}$$, and a = np; T to be taken negative when a < (c - 1)n/(n - 1). The first, second and third approximations to the infinite series S are $$S_1 = R_1,$$ $S_2 = \frac{R_1 + R_2 T}{1 + R_2 / 2},$ $S_3 = \frac{R_1 + R_2 T + R_3 (1 + T^2)}{1 + R_2 / 2},$ where $$R_1 = 4 \left[(n - c) - (c - 1) \right] / 3 \sqrt{2(n - 1)(n - c)(c - 1)},$$ $$R_2 = (1/6) \left[1/(n - c) + 1/(c - 1) - 13/(n - 1) \right],$$ $$R_3 = -(4/15) R_1 \left[R_2 + 6/(n - 1) \right].$$ It will be noted that R_2 , $|R_1|$ and $|R_3|$ are symmetric functions of (n-c) and (c-1). For the limiting case (Poisson's Exponential Binomial Limit) where $n = \infty$, p = 0 but np = a, we have $$T^2 = 1 + (c - 1) \log (c - 1)/a + (a - c),$$ $R_1 = 4/3\sqrt{2(c - 1)},$ $R_2 = 1/6(c - 1),$ $R_3 = -(4/15)R_1R_2.$ ### Numerical Results Since it is easy to compute the binomial summation directly when either c or n-c is small, the practical value of an approximate formula depends on its efficiency for large values of these quantities. The analysis given below under the heading "Derivation of the Approximate Formula" indicates that the successive R_s 's in the series for S decrease when $\sqrt{c-1}$ and $\sqrt{n-c}$ increase. Therefore, when these two quantities are large, a few terms of the approximate formula (3) may be expected to give satisfactory results. As a matter of fact, the formula gives good results when $\sqrt{c-1}$ and $\sqrt{n-c}$ are not large. To confirm this statement the Tables given at the end of this paper are submitted. In the 4th column of each table are given 10^6 times the true values of $$P = \sum_{x=c}^{x=n} \binom{n}{x} p^x (1-p)^{n-x}.$$ In the columns headed Δ_1 , Δ_2 and Δ_3 are given 10^6 times the differences between the true values and those obtained by applying formula (3) with the first, second and third approximations to S respectively. Table I in Czuber's "Wahrscheinlichkeitsrechnung" was used for evaluating the probability integral in equation (3). The range of values of P covered by the tables is such that at the lower end of each section $P \geqslant .0005$ while at the upper end $P \not < .9995$, except where this latter condition would call for a value of c < 2. Of course, a larger or smaller range might have been given. The decision as to this question was based on the fact that several writers on the theory of statistics, when dealing with the normal law of errors, speak of an error exceeding 3 or 4 times the standard deviation as being a very improbable event. In order to keep the number of pages required for the tables within reasonable bounds computations were made only for even values of c. The values of a = np used are such that each of the values p = 1/2, p = 1/10 and p = 1/20 occurs twice; likewise each of the values n = 100, n = 50 and n = 30 occurs twice. A greater degree of accuracy than that indicated by the tables can, of course, be obtained by working out and using R_4 , $R_5 \cdots$; for this purpose, recourse should be had to equation (12) below and the details immediately following it. The only practical limitation to the use of formula (3) would appear to be the number of places given ⁸ I am greatly indebted to Miss Nelliemae Z. Pearson of the Department of Development and Research both for supervising the work of my computers and contributing personally several sections of the tables. by the existing tables for the probability integral. However, this difficulty is encountered only when P, or (1 - P), is small, in which case T is large and the integral $$\int_{-\infty}^{T} e^{-t^2} dt$$ may be readily evaluated by computing the first few terms of the series $$[e^{-T^2}/2T\sqrt{\pi}][1-T_1^{-2}+(1\cdot3)T_1^{-4}-(1\cdot3\cdot5)T_1^{-6}\cdots],$$ where, as above, $T_1 = T\sqrt{2}$. When P is very small, the difference c - a = c - np is relatively large compared to a, and for this latter case recourse may be had to the approximate formula published by the writer in the *American Mathematical Monthly* for June, 1913. DERIVATION OF THE APPROXIMATE FORMULA Following Laplace closely, let us set $$y(x) = Ye^{-t^2},$$ where $Y = y(x_0)$ is the maximum value of y(x). Then (7) $$\int_0^p y dx = Y \int_{-\infty}^T e^{-t^2} \left(\frac{dx}{dt}\right) dt,$$ the upper limit T being given by the equation $$y(p) = y(x_0)e^{-\mathbf{r}^2}.$$ Assuming dx/dt expanded in powers of t so that $$(9) dx/dt = \sum_{s=0} D_{s+i} t^s$$ and setting $R_s = D_{s+1}/D_1$, equation (7) reduces to $$\int_{0}^{p} y dx = Y D_{1} \sum_{s=0}^{\infty} R_{s} \int_{-\infty}^{T} t^{s} e^{-t^{2}} dt.$$ Our fundamental equation (1) may now be written (10) $$\sum_{x=c}^{x=n} {n \choose x} p^{x} (1-p)^{n-x} = \frac{\sum_{s=0}^{\infty} R_{s} \int_{-\infty}^{T} t^{s} e^{-t^{2}} dt}{\sum_{s=0}^{\infty} R_{s} \int_{-\infty}^{\infty} t^{s} e^{-t^{2}} dt}.$$ Integrating by parts and separating the terms involving $\int e^{-t^2} dt$ from the terms containing e^{-t^2} , we obtain equations (3) and (4). To determine $R_s = D_{s+1}/D_1$, note that equation (6) gives $t = (\log Y - \log y)^{1/2}$ and set $v(x) = (x - x_0)/(\log Y - \log y)^{1/2}$ so that x may be written in the form $$x = x_0 + v(x)t.$$ This form for x gives the expansion (Lagrange's Theorem for the simple case where f(x) = x; see "Modern Analysis" by Whittaker and Watson) $$x = \sum_{s=0}^{} \frac{t^s}{s!} \left(\frac{d^{s-1}v^s}{dx^{s-1}} \right)_{x=x_0} \cdot$$ Comparing this expansion for x with the previous expansion (9) for dx/dt, we obtain $$D_1 = v(x_0)$$ and $$\frac{D_{s+1}}{D_1} = R_s = \left(\frac{1}{s!v(x)} \cdot \frac{d^s v^{s+1}}{dx^s}\right)_{x=x_0}.$$ Up to this point no particular form has been attributed to the function y(x). From now on we deal with the function which constitutes the integrand of the integrals in equation (1). The function $y(x) = x^{c-1}(1-x)^{n-c}$ gives the expansion (log $Y - \log y$) = $(x-x_0)^2[A_0 + A_1(x-x_0) + A_2(x-x_0)^2 \cdots]$, where $x_0 = (c-1)/(n-1)$ is the value of x for which y(x) is a maximum and $$A_s = \frac{1}{(s+2)!} \left[\frac{d^{s+2}(\log Y - \log y)}{dx^{s+2}} \right]_{x=x_0}$$ or (11) $$A_s = \frac{(n-1)^{s+2}}{s+2} \left[\left(\frac{1}{n-c} \right)^{s+1} + (-1)^s \left(\frac{1}{c-1} \right)^{s+1} \right] \cdot$$ We are now prepared to evaluate R_s . Set $$g = A_0 + A_1(x - x_0) + A_2(x - x_0)^2 \cdots$$ and $$g_s = d^s g/dx^s$$. Then $$v = g^{-1/2},$$ $$\frac{dv^2}{dx} = -g^{-2}g_1,$$ $$\frac{d^2v^3}{dx^2} = (3/2)g^{-7/2}[(5/2)g_1^2 - g_2g],$$ $$\frac{d^2v^4}{dx^3} = -2g^{-5}[g_3g^2 - 9g_2g_1g + 12g_1^3].$$ Therefore, since $g_s = s!A_s$ when $x = x_0$, $$R_1 = -A_0^{-3/2}A_1,$$ $$R_2 = (3/2)A_0^{-3}[(5/4)A_1^2 - A_0A_2],$$ $$R_3 = -2A_0^{-9/2}[A_3A_0^2 - 3A_2A_1A_0 + 2A_1^3].$$ Substituting for A_0 , A_1 , A_2 and A_3 the expressions derived by giving s the values 0, 1, 2 and 3 respectively in equation (11), we obtain for R_1 , R_2 and R_3 the functions of n and c given on page 2. For values of s greater than 3 the direct evaluation of d^sv^{s+1}/dx^s by successive differentiation becomes very tedious. It will be found much more practical to use the following procedure,⁴ where D is a symbol of operation, $A = A_0$ and $b = A_1$. $$A_0^{-1/2}R_s = (1/s!) \left(\frac{d^s g^{-(s+1)/2}}{dx^s} \right)$$ $$= \left[\frac{dA^{-(s+1)/2}}{1!dA} \right] D^{s-1}b + \left[\frac{d^2 A^{-(s+1)/2}}{2!dA^2} \right] D^{s-2}b^2 + \cdots$$ $$+ \left[\frac{d^{s-1}A^{-(s+1)/2}}{(s-1)!dA^{s-1}} \right] Db^{s-1} + \left[\frac{d^s A^{-(s+1)/2}}{s!dA^s} \right] b^s$$ or (12) $$R_s = A_0^{1/2} \sum_{m=1}^{m=s} \left[\frac{d^m A^{-(s+1)/2}}{m! dA^m} \right] (D^{s-m} b^m).$$ The following equations give the details requisite for the formation of R_s to R_s inclusive; A_s can be computed from equation (11). $$Db = A_2, D^2b = A_3, D^3B = A_4, D^4b = A_5,$$ $$D^5b = A_6, D^6b = A_7, D^7b = A_8,$$ $$Db^2 = 2A_1A_2,$$ $$D^2b^2 = 2A_1A_3 + A_2^2,$$ $$D^3b^2 = 2A_1A_4 + 2A_2A_3,$$ $$D^4b^2 = 2A_1A_5 + 2A_2A_4 + A_3^2,$$ $$D^5b^2 = 2A_1A_6 + 2A_2A_5 + 2A_3A_4,$$ $$D^6b^2 = 2A_1A_7 + 2A_2A_6 + 2A_3A_5 + A_4^2,$$ $$Db^3 = 3A_1^2A_2,$$ $$D^2b^3 = 3A_1^2A_3 + 3A_1A_2^2,$$ $D^3b^3 = 3A_1^2A_4 + 6A_1A_2A_3 + A_2^3$ See DeMorgan's "Differential and Integral Calculus," 1842, page 328, art. 214. $$D^{4}b^{3} = 3A_{1}^{2}A_{5} + 6A_{1}A_{2}A_{4} + 3A_{1}A_{3}^{2} + 3A_{2}^{2}A_{3},$$ $$D^{5}b^{3} = 3A_{1}^{2}A_{6} + 6A_{1}A_{2}A_{5} + 6A_{1}A_{3}A_{4} + 3A_{2}^{2}A_{4} + 3A_{2}A_{3}^{2},$$ $$Db^{4} = 4A_{1}^{3}A_{2},$$ $$D^{2}b^{4} = 4A_{1}^{3}A_{3} + 6A_{1}^{2}A_{2}^{2},$$ $$D^{3}b^{4} = 4A_{1}^{3}A_{4} + 12A_{1}^{2}A_{2}A_{3} + 4A_{1}A_{2}^{3},$$ $$D^{4}b^{4} = 4A_{1}^{3}A_{5} + 12A_{1}^{2}A_{2}A_{4} + 6A_{1}^{2}A_{3}^{2} + 12A_{1}A_{2}^{2}A_{3} + A_{2}^{4},$$ $$Db^{5} = 5A_{1}^{4}A_{2},$$ $$D^{2}b^{5} = 5A_{1}^{4}A_{3} + 10A_{1}^{3}A_{2}^{2},$$ $$D^{2}b^{5} = 5A_{1}^{4}A_{4} + 20A_{1}^{3}A_{2}A_{3} + 10A_{1}^{2}A_{2}^{3},$$ $$D^{5}b^{5} = 5A_{1}^{4}A_{4} + 20A_{1}^{3}A_{2}A_{3} + 10A_{1}^{2}A_{2}^{3},$$ $$D^{5}b^{7} = 7A_{1}^{6}A_{2}.$$ To illustrate the use of the procedure given above, let us evaluate R_4 . We have $$A_0^{-1/2}R_4 = \left(\frac{dA^{-5/2}}{1!dA}\right)D^3b + \left(\frac{d^2A^{-5/2}}{2!dA^2}\right)D^2b^2 + \left(\frac{d^3A^{-5/2}}{3!dA^3}\right)Db^3 + \left(\frac{d^4A^{-5/2}}{4!dA^4}\right)b^4$$ $$= -(5/2)A_0^{-7/2}(A_4) + (1/2)(5/2)(7/2)A_0^{-9/2}(2A_1A_3 + A_2^2)$$ $$-(1/6)(5/2)(7/2)(9/2)A_0^{-11/2}(3A_1^2A_2)$$ $$+ (1/24)(5/2)(7/2)(9/2)(11/2)A_0^{-13/2}A_1^4$$ or $$R_4 = (5/2)A_0^{-6}[-A_0^3A_4 + (7/2)A_0^2(A_1A_3 + A_2^2/2)$$ $$- (1/2)(7/2)(9/2)A_0A_1^2A_2$$ $$+ (1/24)(7/2)(9/2)(11/2)A_1^4].$$ Tables Indicating Degree of Accuracy Obtainable by Use of Formula (3) for Evaluating $$P = \sum_{x=c}^{x=n} {n \choose x} p^x (1 - p)^{n-x}.$$ $$P_1 = 1$$ st approximation, $\Delta_1 = (P - P_1)10^6$, $P_2 = 2$ d approximation, $\Delta_2 = (P - P_2)10^6$, $P_3 = 3$ d approximation, $\Delta_3 = (P - P_3)10^6$, $a = np$, $$T^2 = (n-1)\log\frac{n}{n-1} + (c-1)\log\frac{c-1}{a} + (n-c)\log\frac{n-c}{n-a},$$ $I = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{T} e^{-t^2} dt.$ TABLE I | c | T | I(106) | P(106) | Δ1 | Δ_2 | Δ_3 | | | |--|--|---|--|---|---|--|--|--| | $a=1.5, n=\infty, p=0$ | | | | | | | | | | 2
4
6
8 | + .3074653
7612106
-1.5874105
-2.2985028 | 668154
140849
12386
577 | 442174
65643
4456
170 | 15991
10816
1641
103 | 9518
1989
303
20 | -1348
30
8
0 | | | | a = 1.5, n = 30, p = .05 | | | | | | | | | | 2
4
6
8 | + .2865166
8219430
-1.6966449
-2.4640017 | 657333
122536
8211
246 | 446458
60772
3282
85 | 21266
3684
- 113
- 24 | 17382
5617
914
50 | -2083
- 97
40
7 | | | | | | | TABLE I | I | | | | | | с | T | I(106) | P(106) | Δ_1 | Δ_2 | Δ3 | | | | | | a | $= 5, n = \infty,$ | p = 0 | | | | | | 2
4
6
8
10
12
14
16 | 1.5461442
.6837566
.0000000
5960752
-1.1358169
-1.6349406
-2.1027717
-2.5454242 | 985613
833222
500000
199621
54105
10385
1471
159 | 959576
734978
384044
133376
31832
5452
692
68 | -1681
-2036
2986
4219
2128
604
107 | 2590
1897
1036
616
286
123
11 | -798
-138
- 4
17
13
2
- 5
- 1 | | | | | | a = | 5, n = 100, n | p = .05 | | | | | | 2 4 6 8 10 12 14 16 | 1.5596227
.6839234
0162780
6310024
-1.1912234
-1.7124507
-2.2138799
-2.6715388 | 986295
833281
490817
186097
46029
7723
914
79 | 962920
742162
384001
127961
28188
4274
463
37 | - 373 639 2889 1989 566 75 2 - 1 | 3331
3248
2108
1431
703
208
38
5 | -732*
-141
- 38
- 8
1
2
0 | | | | | | a : | = 5, n = 50, n | $\phi = .1$ | | | | | | 2
4
6
8
10
12
14
16 | 1.5742756
.6844600
0335708
6689826
-1.2524740
-1.7994619
-2.3191412
-2.8175965 | 987005
833471
481067
172053
38258
5467
520
34 | 966214
749706
383877
122145
24538
3220
285
17 | 830
3289
2599
- 334
- 789
- 278
- 48
- 5 | 3962
4437
3022
2076
954
244
36
3 | $ \begin{array}{r} -724 \\ -212 \\ -62 \\ 31 \\ 51 \\ 24 \\ 6 \\ 0 \end{array} $ | | | | * | $ P-P_3 > P$ | $P-P_1$. | | | | | | | | | | | | | | | | | TABLE III | TABLE III | | | | | | | | | |--|---|---|--|--|---|--|--|--| | с | T | I(106) | P(106) | Δ_1 | Δ_2 | Δ_3 | | | | | $a=10, n=\infty, p=0$ | | | | | | | | | 2
4
6
8
10
12
14
16
18
20
22
24 | 2.5879363 1.8406742 1.2386541 .7094191 .227498122002726408864 -1.0401811 -1.4215063 -1.7875189 -2.1402533 -2.4813121 | 999874
995381
960089
842135
626172
377838
182375
70640
22199
5737
1236
225 | 999499
989662
932912
779778
542069
303223
135535
48740
14277
3454
699
119 | - 47
- 533
-1532
-1585
79
1786
2077
1374
628
216
58 | 67
275
518
547
425
322
239
146
68
25
7 | -37
-53
-50
-27
- 8
1
4
0
1
0
-1 | | | | | a = 10, n = 100, p = .1 | | | | | | | | | 2
4
6
8
10
12
14
16
18
20
22
24 | 2.6528972
1.8917619
1.2715533
.7213308
.2161911
2564838
7042404
-1.1320595
-1.5434535
-1.9410214
-2.3267578
-2.7022383 | 999912
996268
963931
846163
620099
358406
159638
54691
14526
3025
500
66 | 999679
992164
942424
793949
548710
296967
123877
39891
10007
1979
312
40 | - 3
- 15
278
997
1213
503
- 222
- 376
- 222
- 80
- 20
- 4 | 71
432
1070
1349
1179
982
771
470
206
66
15 | -24* -39* -45 -36 -19 - 2 10 13 9 4 1 0 | | | | * $ P - P_3 > P - P_1 $. | | | | | | | | | | _ | TABLE IV | | | | | | | | | <i>c</i> | T | I(106) | P(106) | Δ_1 | Δ_2 | Δ3 | | | | | $a=15, n=\infty, p=0$ | | | | | | | | | c | T | $I(10^{6})$ | P(106) | Δ_1 | Δ_2 | Δ_3 | | | | |---|---|---|---|---|--|--|--|--|--| | | $a=15, n=\infty, p=0$ | | | | | | | | | | 4
6
8
10
12
14
16
18
20
22
24
26
28
30 | 2.6780004
2.1229551
1.6324888
1.1843012
.7670044
.3737500
.00000000
3574541
7009899
-1.0324325
-1.3532229
-1.6645241
-1.9672925
-2.2623270 | 999924
998660
989520
953019
860975
701445
500000
306598
160758
72134
27826
9287
2700
689 | 999788
997207
981998
930147
815249
636783
431911
251141
124781
53106
19464
6184
1715
418 | - 18
- 141
- 525
- 1066
- 1198
- 515
582
1311
1351
961
523
228
82
25 | 10
54
146
242
274
245
203
168
132
89
49
22
8 | - 4
- 9
- 14
- 15
- 10
- 4
0
2
2
2
1
0
- 1 | | | | # TABLE IV—Continued $$a = 15, n = 30, p = .5$$ | 6
8
10
12
14
16
18
20
22
24
26 | 2.6019552
2.0184138
1.4626537
.9237039
.3942720
1313195
6581761
-1.1915875
-1.7378702
-2.3057782
-2.9097701 | 999883
997845
980704
904277
711436
426335
175978
45979
6991
555 | 999837
997388
978613
899756
707667
427768
180797
49369
8062
715
30 | 52
559
2676
5946
5025
-1916
-6392
-4405
-1346
-191
-11 | 24
152
411
488
227
- 73
- 382
- 497
- 278
- 69
- 7 | - 12
- 77
- 239
- 343
- 205
72
301
316
149
32
3 | | |--|---|--|--|--|--|---|--| | TABLE V | | | | | | | | | с | T | I(106) | P(10 ⁶) | Δ_1 | Δ_2 | Δ_3 | | | | _ | 1(10) | 1 (10) | | | | | | |-----------------------|---|----------------------------|----------------------------|-------------------------|-------------------|---|--|--| | $a=25, n=\infty, p=0$ | | | | | | | | | | 10 | 2.6086661 | 999888 | 999778 | - 11 | 3 | - 1 | | | | 12 | 2.2291734 | 999191 | 998583 | - 51 | 11 | - 2 | | | | 14 | 1.8705496 | 995920 | 993531 | - 159 | 30 | $\begin{bmatrix} - & 4 \\ - & 6 \\ - & 7 \end{bmatrix}$ | | | | 16 | 1.5289263 | 984700 | 977705 | - 364 | 59 | | | | | 18 | 1.2015564 | 955365 | 939522 | - 617 | 90 | | | | | 20
22
24 | .8863972
.5818753
.2867455 | 894998
794717
657452 | 866422
752697
606120 | - 765
- 651
- 253 | 109
110
101 | - 7
- 7 | | | | 26
28 | .0000000
2791919 | 500000
346482 | 447076
299814 | 268
678 | 92
84 | - 0
- 3
1 | | | | 30 | 5515253 | 217703 | 182105 | 837 | 75 | 3 3 | | | | 32 | 8175896 | 123790 | 100070 | 761 | 62 | | | | | 34 | -1.0778902 | 63708 | 49782 | 561 | 45 | | | | | 36 | $ \begin{array}{r} -1.3328647 \\ -1.5828952 \\ -1.8283181 \end{array} $ | 29718 | 22460 | 350 | 29 | 2 | | | | 38 | | 12593 | 9212 | 189 | 17 | 2 | | | | 40 | | 4860 | 3445 | 90 | 9 | 2 | | | | 42 | -2.0694313 | 1713 | 1178 | 38 | 4 | 1 | | | | 44 | -2.3065005 | 553 | 370 | 15 | 2 | | | | # a = 25, n = 50, p = .5 | 14 | 2.3698187 | 999598 | 999531 | 80 | 16 | - 9 | |----------------|--------------------------------------|---------------------|---------------------|------------------------|---------------------|------------| | 16 | 1.9447371 | 997023 | 996699 | 404 | 57 | - 32 | | 18 | 1.5274793 | 984621 | 983580 | 1329 | 126 | -74 -113 | | 20 | 1.1159208 | 942735 | 940539 | 2844 | 170 | | | 22 | .7083182 | 841759 | 838881 | 3763 | 140 | -109 | | 24 | .3031406 | 665931 | 664094 | 2415 | 60 | - 56 | | 26 | 1010188 | 443200 | 443862 | - 873 | - 20 | 19 | | 28 | 5055162 | 237333 | 239944 | -3426 | -102 | 87 | | 30 | 9117246 | 98634 | 101319 | -3499 -2056 | -166 | 95 | | 32 | -1.3211006 | 30859 | 32454 | | -157 | 50 | | 34
36
38 | -1.7352770 -2.1561545 -2.5860897 | 7063
1147
128 | 7673
1301
153 | - 774
- 191
- 31 | - 91
- 33
- 8 | 50
17 | | 30 | -2.5800897 | 128 | 153 | - 31 | - 8 | 4 |