Application to the Binomial Summation of a Laplacian®
Method for the Evaluation of Definite Integrals

By E. C. MOLINA

INTRODUCTION

HE numerical evaluation of the incomplete Binomial Summation,
a problem of major importance for many statistical and engi-
neering applications of the Theory of Probability, is a question for
which a satisfactory solution has not as yet been obtained. Several
approximation formulas have been presented,® each of which gives
good results for some limited range of values of the variables involved;
but a formula of wide applicability is still a desideratum.
The purpose of this paper is to submit for consideration an approxi-
mation formula which seems to meet the situation to a measurable
extent. The writer derived it by applying to the equation

P
f x 1 — x)"cdx
0

1
f (1 — x)"dx
0

a method which is peculiarly efficacious for approximately evaluating
definite integrals when the integrands contain factors raised to high
powers.

The method used constitutes the subject matter of Chapter I,
Part 11, Book I of Laplace's ‘“Théorie Analytique des Probabilités.”
Poisson applied the method to the integrals in the equation

(1) g(’f)p(l — ) =

fw .\'”7':/(1 + x)""’ldx
(

1-p)/p

@ 2 (2= [Tt wyma

and published a first approximation, together with its derivation, in
his “Recherches sur la Probabilité des Jugements.” Poisson’s ap-
proximation seems never to have been used and was less fortunate
than his famous limit to the binomial expansion which also was lost
sight of until it reappeared under the caption ‘‘law of small numbers.”

1 Presented before International Congress of Mathematicians at Bologna, Italy
in September, 1928.

2 For an excellent resumé of some well-known formulas, together with a discussion

of their limitations, reference may be had to C. Jordan, ‘‘Statistique Mathématique,”
articles 37 and 38,
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While the integrals in equations (1) and (2) are well known equiva-
lent forms for the complete and incomplete Beta functions, the equa-
tions themselves are not so familiar although one or the other will
be found in Laplace, Poisson, Boole (Differential Equations) and at
least two other places.

APPROXIMATE FORMULA

The approximate formula derived from equation (1) and submitted
herewith for consideration is

I=c

where S; is the 7th approximation to the infinite series

DRI1LA4 (s — DI+ (s — 1)(s — )T -]
(4) S — =1 ,
14+ > Rs[1-3:5 -+ (25 — 1)]2—*
=1

Tl = Tﬁ)

7 c—1 n—==c
7T (—1)log a +(n—c)logn_a,

5) I*=(mn—1)log

and @ = np; T to be taken negative when ¢ < (¢ — Dn/(n — 1).
The first, second and third approximations to the infinite series .S are

R+ RT

Ry 4 RT + Rs(1 + T7)
T 14+ Ryj2 N

Sl = RI. Sﬂ 1+ Rg/Z 1

where
Ri=4[(n —¢) — (¢ — 1)]/342(n — 1)(n — c)(c — 1),
Ry = (1/6)[1/(n — ¢) + 1/(c — 1) — 13/(n — 1)],
Ry = — 4/15)R[R: + 6/(n — 1)].

It will be noted that R, |R,| and |R;
(n — ¢)and (c — 1).

For the limiting case (Poisson’s Exponential Binomial Limit)
where # = =», p = 0 but np = a, we have

S

are symmetric functions of

T*=14(c—1)log (c — 1)]fa + (a — ©),

Il

R1 = 4/3m)
Rz = 1/6(6 —_ 1),
Rg = = (4/15)R1R2



BINOMINAL SUMMATION 101

NUMERICAL RESULTS

Since it is easy to compute the binomial summation directly when
either ¢ or n — ¢ is small, the practical value of an approximate
formula depends on its efficiency for large values of these quantities.

The analysis given below under the heading ‘‘Derivation of the
Approximate Formula” indicates that the successive R,’s in the
series for .S decrease when V¢ — 1 and 4n — ¢ increase. Therefore,
when these two quantities are large, a few terms of the approximate
formula (3) may be expected to give satisfactory results. As a
matter of fact, the formula gives good results when +¢ — 1 and
wn — ¢ are not large. To confirm this statement the Tables?® given
at the end of this paper are submitted. In the 4th column of each
table are given 10° times the true values of

I=n

P=% (1) pa = o=

In the columns headed A,, A. and A; are given 108 times the differences
between the true values and those obtained by applying formula (3)
with the first, second and third approximations to S respectively.
Table I in Czuber's ‘‘ Wahrscheinlichkeitsrechnung " was used for
evaluating the probability integral in equation (3).

The range of values of P covered by the tables is such that at the
lower end of each section P 3} .0005 while at the upper end P 4 .9995,
except where this latter condition would call for a value of ¢ < 2.
Of course, a larger or smaller range might have been given. The
decision as to this question was based on the fact that several writers
on the theory of statistics, when dealing with the normal law of
errors, speak of an error exceeding 3 or 4 times the standard deviation
as being a very improbable event. In order to keep the number of
pages required for the tables within reasonable bounds computations
were made only for even values of c.

The values of @ = np used are such that each of the values p = 1/2,
p = 1/10 and p = 1/20 occurs twice; likewise each of the values
n = 100, n = 50 and # = 30 occurs twice.

A greater degree of accuracy than that indicated by the tables can,
of course, be obtained by working out and using Ry, R; -+ -; for this
purpose, recourse should be had to equation (12) below and the
details immediately following it. The only practical limitation to
the use of formula (3) would appear to be the number of places given

31 am greatly indebted to Miss Nelliemae Z. Pearson of the Department of
Development and Research both for supervising the work of my computers and
contributing personally several sections of the tables.
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by the existing tables for the probability integral. However, this
difficulty is encountered only when P, or (1 — P), is small, in which
case 7T is large and the integral

T
f e~ dt
—o

may be readily evaluated by computing the first few terms of the
series

[em/2TVr It — Ti% 4 (1-3) Tt = (1-3-5) Ty -],

where, as above, Ty = T+2.

When P is very small, the difference ¢ — ¢ = ¢ — np is relatively
large compared to @, and for this latter case recourse may be had to
the approximate formula published by the writer in the American
Mathematical Monthly for June, 1913.

DERIVATION OF THE APPROXIMATE FORMULA

Following Laplace closely, let us set
(6) y(x) = Ve 2,

where ¥ = y(xp) is the maximum value of y(x). Then

P T dx
T, == 2 — 12 —_—
) j; ydx ! Iwe (dl )dl‘,

the upper limit 7" being given by the equation

(8) y(p) = y(xo)e ™.
Assuming dx/dt expanded in powers of ¢ so that
® dx/dt = EOD,+-,1"

and setting 'R, = D,y1/Di, equation (7) reduces to

P Vi
f ydx = YD) R, f tre=2dli.
0 §=0 /o0

Our fundamental equation (1) may now be written

z=n ZR, fT fre—t ]t
(10) > (f) po(l — pyrs = iD= '
r=c \* zRaf fxe_tldi‘-

§=0 o
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Integrating by parts and separating the terms involving e~ d!
from the terms containing e~ *, we obtain equations (3) and (4).

To determine R, = D,.,/D,, note that equation (6) gives { = (log ¥
— log ¥)*? and set 7(x) = (x — x0)/(log ¥ — log ¥)? so that ¥ may
be written in the form

x = xo + v(x)L.

This form for x gives the expansion (Lagrange’s Theorem for the
simple case where f(x) = x; see * Modern Analysis’’ by Whittaker

and Watson)
A d"_li?"
= gﬁ_' (dxH )a::xo.

Comparing this expansion for x with the previous expansion (9) for
dx/dt, we obtain
D]_ = 'b‘(xo)

Da+1_R _ 1 .dava+1 )
D, T \slh(x)  dxt )aea

Up to this point no particular form has been attributed to the
function y{x). From now on we deal with the function which consti-
tutes the integrand of the integrals in equation (1).

The function y(x) = x (1 — x)" ¢ gives the expansion (log ¥
—log ¥) = (x — x0)[do + Ai(x — x0) + Aa{x — x0)* - - -], where xo
= (¢ — 1)/(n — 1) is the value of x for which y(x) is a maximum and

A = 1 d***(log ¥ — log v)
T F D! dx? .

and

or

an 4= E= () o (7 =9) 7]

We are now prepared to evaluate R,. Set

g = Ap + Ailx — x0) + Aoz — x0)% -+ -

and
Th 8s = d’g/dx‘.
en R,
dv? .
E = = g gll
d*? . \
T (3/2)g ™ [(5/2)g* — g2,

4
o5 = = 20°(eg — 9pmg + 12¢7].
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Therefore, since g, = s!4, when x = xy,
R, = — A¢g¥4,,
R. = (3/2)A3[(5/4) A2 — Aod-],
R3 = — 2‘40—9"2[443140"’ — 3A2A1Au + 24413:[.

Substituting for 4, 4, As and A; the expressions derived by giving s
the values 0, 1, 2 and 3 respectively in equation (11), we obtain for
Ry, R: and R; the functions of # and ¢ given on page 2.

For values of s greater than 3 the direct evaluation of d*w*+'/dx*
by successive differentiation becomes very tedious. It will be found
much more practical to use the following procedure,* where D is a
symbol of operation, 4 = 4yand b = A,.

sg—(e+1)/2
AR, = (1/sY) (d_g_)

dxs®
dA-+Die B d2A—ts+102” aro
=[W]D 15+[WJD Lo
ds—14—(st1)12 - dsA4—(st+1)/2 .
+[(s—1)!dA=—1]Db +[_s!dA' ]b
or
m=8 Jm—(s+1)/2
= A2 - - s—mfym
(12) R, = 4, m{_‘,l[ A ](D bm).

The following equations give the details requisite for the formation
of R, to Rg inclusive; A, can be computed from equation (11).
Db = A, D = A;, D*B = Ay, D% = A4;,
D% = Ag, D% = A4, Db = As,
Db = 24,4,,
D = 24145 + A2,
D3p? = 24,4, + 24.4s,
D = 24,45 4+ 24.4, + A5,
Db = 24146 +12A4045 + 24344,
DSb? = 24,147 + 24.46 + 24345 + A2,
Db = 34.°4,,
D*? = 34245 + 34,42,
D3® = 34,24, + 64, 4:45 + A,
4 See DeMorgan's ‘‘ Differential and Integral Calculus,” 1842, page 328, art. 214,
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D = 34245 + 64,4ud + 34,45 + 3424,

Db = 34244 + 64,4245 + 64,4345 + 3424, + 34:42,

Dbt = 44745,

D2t = 44545 + 64242,

Dbt = 44754, + 12424:4; + 44,45,

Dbt = 4434, + 1242454, + 64245 + 124,445 + Ay,

DbS = 54,4, Db = 64,54,

D25 = 54,445 + 104,542, D% = 64,545 + 154,%A22,
D5 = 54,44, + 20454.45 4+ 104245, DbT = TA,54,.

To illustrate the use of the procedure given above, let us evaluate
R;. We have

—5/2 2 5/2 3 | —6/2 44-6/2
v re= (i )00 (e )+ (e ) P+ (e )
= —(5/2) 4 T(A)+(1/2)(5/2) (1/) A2 A1 A3+ AS)
—(1/6)(5/2)(7/2)(9/2) A0 12(3A4,245)
+(1/24)(5/2)(7/2)0/2) (11/2) 45024,

or
= (S/Z)Au_ﬁ[“ A(]:'A; + (7/2)A02(A1A3 + A22/2)
= (1/2)(7/2)(9/2)A0A A
+ (1724)(7/2)(9/2)(11/2)4,*].
TABLES INDICATING DEGREE oF ACCURACY OBTAINABLE BY
Use oF ForMuLA (3) FOR EVALUATING
= Z (Z) Pr(l‘_ p)n—z_
P, = 1st approximation, A, = (P — Py)10°,
P, = 2d approximation, Ay = (P — P2)10°8,
P3; = 3d approximation, Ay = (P — P3)}10°,
a = np,
T2=(n—1) log + (c — 1) log -|— (n —¢) log r

P —1
I#Wf on

8
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TABLE 1
c T I(107) [ P{10%) Ay A Aa
a=15,n= wo,p =0
2| + .3074653 668154 442174 15991 9518 —1348
4| — .7612106 140849 65643 10816 1989 30
6| =—1.5874105 12386 4456 1641 303 8
8| =—2.2985028 577 170 103 20 0
ea=15n =30 p = .05
2] 4 .2865166 657333 446458 21266 17382 —2083
4| — .8219430 122536 60772 3684 5617 - 97
6| —1.6966449 8211 3282 — 113 914 40
8| —2.4640017 246 85 - 24 50 7
TABLE 1II
c T I1(108) P(108) Ar As Aa
a=5§n=9w,p=0
2 1.5461442 985613 959576 —1681 2590 —798
4 .6837566 833222 734978 —2036 1897 —138
6 .0000000 500000 384044 2986 1036 — 4
8| — .5960752 199621 133376 4219 616 17
10| —1.1358169 54105 31832 2128 286 13
12 | —1.63494006 10385 5452 604 123 2
14| —2.1027717 1471 692 107 11 - 5
16 | —2.5454242 159 68 14 1 - 1
a=25n=100,p = .05
2 1.5596227 086295 962920 — 373 3331 —732%
4 .6839234 833281 742162 639 3248 —141
6| — .0162780 490817 384001 2889 2108 — 38
8| — .6310024 186097 127961 1989 1431 - 8
10| —1.1912234 46029 28188 566 703 1
12| —1.7124507 7723 4274 75 208 2
14| -—2.2138799 914 463 2 38 0
16| =—2.6715388 79 37 - 1 5 0
a=5n=>50p=
2 1.5742756 987005 966214 830 3962 —724
+ 6844600 833471 749706 3289 4437 —212
6| — .0335708 481067 383877 2599 3022 — 62
8| — .6689826 172053 122145 — 334 2076 31
10 | —1.2524740 38258 24538 — 789 954 51
12 | —1.7994619 5467 3220 — 278 244 24
14| —2.3191412 520 285 — 48 36 6
16 | —2.8175965 34 17 - 5 3 0
*|P =Py > P -Pil.



BINOMINAL SUMMATION

107

TABLE III
c T I(10%) P(10%) At s Az
a=10,n= «,p =0
2 2.5879363 999874 999499 — 47 67 —-37
-+ 1.8406742 995381 989662 — 533 275 -53
6 1.2386541 960089 932912 —1532 518 —50
8 7094191 842135 779778 —1585 547 —27
10 2274981 626172 542069 79 425 -8
12| — .2200272 377838 303223 1786 322 1
14| — .6408864 182375 135535 2077 239 4
16 | —1.0401811 70640 48740 1374 146 4
18 | —1.4215063 22199 14277 028 68 0
20 —1.7875189 5737 3454 216 25 1
22| —2.1402533 1236 699 58 7 0
24 | —2,4813121 225 119 12 1 -1
a=10,n =100, p = .1
2 2.6528972 999912 999679 - 3 71 —24*
4 1.8917619 996268 992164 — 15 432 —-39*
6 1.2715533 963931 942424 278 1070 —45
8 .7213308 846163 793949 997 1349 —-36
10 .2161911 620099 548710 1213 1179 —19
12 | — .2564838 358406 296967 503 982 -2
14 | — .7042404 159638 123877 — 222 771 10
16 | —1.1320595 54691 39891 — 376 470 13
18 | —1.5434535 14526 10007 — 222 206 9
20 [ —1.9410214 3025 1979 — 80 66 4
22 | —2.3267578 500 312 — 20 15 1
24 | —2.7022383 66 40 - 4 2 0
*|P — P3| > |P — Pyl
TABLE IV
¢ T 1(10%) P(108) Ar Az Az
a=15n= o, p =0
4 2.6780004 999924 999788 — 18 10 — 4
6 2.1229551 998660 997207 — 141 54 - 9
8 1.6324888 989520 981998 — 525 146 — 14
10 1.1843012 953019 930147 — 1066 242 — 15
12 .7670044 860975 815249 —1198 274 — 10
14 .3737500 701445 636783 — 515 245 — 4
16 .0000000 500000 431911 582 203 0
18 | — .3574541 306598 251141 1311 168 2
20 — .7009899 160758 124781 1351 132 2
22| —1.0324325 72134 53106 961 89 2
24| —1.3532229 27826 19464 523 49 1
26| —1.6645241 9287 6184 228 22 0
28 | —1.9672925 2700 1715 82 8 -1
30| —2.2623270 689 418 25 2 0
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TABLE IV—Continued
a=15nrn=30,p=.5
6 2.6019552 999883 999837 52 24 — 12
8 2.0184138 997845 997388 559 152 - 77
10 1.4626537 980704 978613 2676 411 —239
12 19237039 904277 899756 5946 488 —343
14 3942720 711436 707667 5025 227 —205
16 | — .1313195 426335 427768 —1916 — 73 72
18| — .6581761 175978 180797 —6392 —382 301
20 | —1.1915875 45979 49369 —4405 —497 316
22 | —1.7378702 6991 8062 — 1346 —278 149
24 | —2.3057782 555 715 — 101 — 69 32
26 | —2.9097701 19 30 — 11 - 7 3
TABLE V
¢ T 1(10%) P(10%) Ay Az A
a=25n=cw,p=0
10 2.6086661 999888 999778 - 1 3 - 1
12 2.2291734 999191 998583 — 51 11 - 2
14 1.8705496 995920 993531 — 159 30 — 4
16 1.5289263 984700 977705 — 364 59 - 6
18 1.2015564 955365 939522 — o617 90 - 7
20 .8863972 894998 866422 — 765 109 -7
22 5818753 794717 752697 — 651 110 - 7
24 2867455 657452 606120 — 253 101 — 6
26 .0000000 500000 447076 268 92 - 3
28| — .2791919 346482 299814 678 84 1
30| — .5515253 217703 182105 837 75 2
32| — .8175896 123790 100070 761 62 3
34| —1.0778902 63708 49782 561 45 3
36 | —1.3328647 29718 22460 350 29 2
38 | —1.5828952 12593 9212 189 17 2
40 | —1.8283181 4860 3445 90 9 2
42 | —2.0694313 1713 1178 38 4 1
44 | —2.,3065005 553 370 15 2 1
e=25n=350p=.5
14 2.3698187 999598 999531 80 16 - 9
16 1.9447371 997023 996699 404 57 — 32
18 1.5274793 984621 983580 1329 126 — 74
20 1.1159208 942735 940539 2844 170 —113
22 .7083182 841759 838881 3763 140 —109
24 .3031406 665931 664094 2415 60 — 56
26 | — .1010188 443200 443862 — 873 — 20 19
28 | — .5055162 237333 239944 —3426 —102 87
30| — 9117246 98634 101319 —3499 —166 117
32 —1.3211006 30859 32454 —2056 —157 95
34| —1.7352770 7063 7673 — 774 -0 50
36 | —2.1561545 1147 1301 — 191 — 33 17
38| —2.5860897 128 153 - 3 - 8 4




