A Generalization of Heaviside’s Expansion Theorem
By W. 0. PENNELL

The expansion theorem is one of the most frequently used methods of
evaluating operational forms arising from the operational calculus de-
veloped by Heaviside. The original theorem, however, is applicable, in
general, only to expressions containing integral powers of the operator d/dt.
This paper describes an extension to, or a generalization of the original
expansion theorem whereby, in general, operational forms with either
fractional or integral powers of the operator can be evaluated. A number
of operational equivalents are given to be used with the theorem, one of
which is the equivalent used by Heaviside. Examples of the application
of the theorem to electric circuit problems are shown.

HE well known expansion theorem given by Heaviside in Vol. 11
of his ‘' Electromagnetic Theory' may be stated as follows:
An operational equation of the form & = ¥Y(p)/Z(p), may under
certain well known restrictions on the functions ¥ and Z, have as its
solution

_ Y(0) Y(pn)
Pat, =1,2,3--. 1
=70 T Xz " M
p is the differential operator d/dt, and p,, p» --- are the roots of

Z(p)y = 0. Z'(p,) is the result of substituting p, for p in d(Z(p))/dp.
The theorem is true only when no root is zero and all roots are unequal.
Y(p) and Z(p) must contain p to positive integral powers only. Various
proofs of this theorem have been given and perhaps the simplest de-
pends upon the expansion of Y (p)/Z(p) by partial fractions.

The expansion theorem is valuable in the solution by operational
methods, of problems in mathematical physics, and especially electric
circuit theory problems.

GENERALIZATION OF THE ExpANsiON THEOREM

The generalization of this theorem may be stated as follows: Under
certain circumstances it may be possible to write the operational

equation
h = ) as = Nig)
- Z(p) D(g)’

where ¢ is a function of the operator . With suitable restrictions on
the functional forms of N and D the solution of the operational equa-

tion is given by N(O) N( )
_N(ga)

where ¥(¢, g,) is the equivalent of the operational expression g/(g — ¢a)
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and g, gs, - -+ represent the roots of D(g) = 0. If g is the differential
operator, that is if

d
q = P = a y
then as is well known
9 __ P
q—Gn P — Pn
and (2) becomes the Heaviside expression (1).

A proof of the generalized theorem equation (2), is as follows:
By a theorem of partial fractions:

= anl

N(g) N(g) N(gs) N(gn)
—3 7 L —-—,—- 3
Do~ - T a-wr@ Tt a= e @
where g1, @, - -+ @. are the roots of D(¢g) = 0. The above theorem is

true when D(g) and N(g) are rational polynomials and N(g) is of a
lower degree than D(g). Further limitations are that no root can be
zero and all roots must be unequal.

In writing the above identity in terms of operators it is tacitly as-
sumed that the operators obey the three fundamental laws of algebra,
the associative, commutative and distributive laws.

Now
1 __ 1, ¢
q— qn n + 4n(q — gx) @
Substituting (4) in (3)
N(g) _ N{q) N(g.) Ni(g.)

vt oD@

+y N(gn)( q ) (5)

Do)~ )0 (@) T D' @)

N(0) N2 w @nD'(ga) \ @ — gn
Jn
= ’ tl nsy 6
D) T % 7.Dgn ¥ ¢ ©
where
L=y, g0
qd — qn
The expression fails where N(0)/D(0) is infinite. When the operator
. da
1=p=4
then
?
= gPat
P — Pn

and (6) becomes the Heaviside Expansion theorem.
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Although the above proof of (6) is for cases where D(g) is a polynom-
ial, if D(q) is a transcendental function which can be expanded by the
process shown, the equation will still hold. It is shown in treatises on
trigonometry that tan at, cot a¢, 1/sin at, 1/cos at, 1/sinh at, 1/cosh at,
tanh at, and coth at, all can be expanded in an infinite series of partial
fractions which are identical ! with the expansions obtained by applying
the process of equation (3).

EQuivaLENTS To BE UseD IN GENERALIZED THEOREM

In applying this theorem the following operational equivalents are
useful :
Egquivalent No. 1:

Let

=y
[
(Y
[
IS

Then
g _ b _ .
g-a p-a ° @

This is the equivalent used in the expansion theorem by Heaviside.
Equivalent No. 2:

Let
d 1/2
= pz= (2 .
g=p ( dt)
Then
q P '
q—a = P — g = ¢[1 + erf (at”z)] (8)
where
2 g {112
12y — & a
erf (at'/?) 7= ), e NdA.
Egquivalent No. 3:
Let
d \!e ee .
g=p'*= ( c_i_t) 5 = a positive integer.
Then
q pl,’a .
= "1+, a) +(t,a) + -+ +¥eult,a)],  (9)

g—a pl—a

where r
_ 1 611' .
W(t.0) = T 1),],,‘ NN,

1 Except in some cases for the first term ¥(0)/Z(0).
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1 a!:x]l .
o(t, @) = m f e M\,
/0

1 gt —1g(a—1)/a
boalba) = ——— [ NI,
=
s
Equivalent No. 4:
Let
d\?
= 2 = _ .
== (%)
Then
2
g - cosh at’t. (10)

g—a P —a
Equivalent No. 5:

Let
g=p*= (di)s'
t
Then
qg _ P alf3 —al{ig) UE;‘:@ . 11
g-—a_p3-—a_(1/3)e t 4 (2/3)ea'lti2cos | @ 7 (11)
Equivalent No. 6:
Let
- o= (2)"
2
Then
4
g D" _ 1 cosh (at) + 1 cos (aile). (12)

g—a p—a
Egquivalent No. 7:
Let -
1
0= +or=(g+0)"
Then

g b _ a?
g—a b—a b—a

Selatit | 5 a—\"ba2 erf (Vbt)

a?

A el =0t erf (ani).

where b # a®

Equivalent No. §8:
Let

= ()
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Then

q __1 [gﬂgb”(l*ﬂ-z) 4 ge@un ], (%t)

g—a 1-—-2d
a'b azbif (l—a?) ‘ (a®4+1)b¢/2 (a?—1) IE
+ a 02)23 A e Iy 3 dt

and I (%t) = Jy (%Jf) = Bessel Function of the first kind.

where a? = 1

The above equivalents can be obtained by known operational
methods and their derivation will not be given here.

In the application of the generalized theorem to electrical problems,
equivalents No. 1, No. 2 and No. 3, especially No. 1 and No. 2, are the
ones which will be most frequently used. Equivalents No. 4, No. 5,
and No. 6, since they involve only integral powers of  are of use in
reducing the labor of applying the original expansion theorem to ex-
pressions containing only these powers of the operator p or multiples of
these powers. Their use in such cases is illustrated by example No. 3
below.

Equivalent No. 7 enables expressions like the following to be evalu-
ated in closed form.

1 1
prep+O)E+d T +ptd
(p + b !

P+ 0= +cp+d  cosh(p o

In applying equivalents No. 2 and No. 7 some of the following proper-
ties of the error function are often conveniently used.

L
erf (—f) = —erf () and  erf (i) = 2% f M
Vr Jo
also
d = 2 —[¥ ()%,
aeff v@®)] = 1{77?6 v'(8)

and

d f (afl/? e 1/2
d—ter (at )— ﬁat .

The value of erf (¢) for different values of ¢ may be obtained from tables
of the probability integral as for example Pierce Table of Integrals.
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The values of erf (¢f) for values of ¢ from .01 to 2 are given in a table in
London Mathematical Society Vol. 29, 1897-98, page 519. The values
of erf (fe™'*) and erf (fe—"™/%) are given by the following formule:

erf (tei™/*) = \2i[C(1N2/m) — iS(tN2/m)], (14)
erf (te=i™) = 2i[ — iC(N2[7) + S(N2/7)], (15)
where
N2/ 0
C(Nz_/})=f Icos(%)dt,
and -
SN2 = f‘ " sin (%ﬂ)dt,
and °
C(— itN2/x) = — iC(t\2/x)
and

S(— it\2/x) = iS{t\2/x).

Tables of the values of these two integrals known as the Fresnel
Integrals are given in various handbooks such as Jahnke and Emde.

ExXAMPLES OF APPLICATION OF THEOREM
A few applications of the theorem will be given.
Example 1:
The operational solution for the current entering an infinitely long
ideal cable with a given impressed voltage of the form Ee!is

p3,’2
K ,
pt+a
K being a constant and
d
L=

To evaluate $2/(p + a) in closed form call p'/* = ¢ then

poI _ ¢
PFta Fta

Since the theorem applies in general only when the degree of the
numerator is less than that of the denominator we will write

¢ _ _ _aq
F+a ! F+a
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and
g _ Y@ _ Y0 Y(g.)
F+a~ 29 Z0) T ¥z’
Y(0) _ Y(gn) _ gn =i'
Z(0) ) gnZ’ (qn) 2¢ 2 2¢n
Z(g) = @ + a and the roots of Z(g) = 0 are g, = =+ ia'”?,
Yign, 1) = 1 + erf g.it/%] (seé equivalent No. 2).
So
ﬁ-ﬂ = 21.;[ g e (1 + erf (0! *?)] — 5o e [1 + erf (— da'221%) ]

1 .
== et erf (sa'/?1/?),
Hence
_q—a_— __._a_q._—ﬂ_gl_f?—ﬂl yp 1241 /2
Fra T F+a g o el G,
since )
d )[1’2 t—l,’2
= piiz = (& = .
0= = (3 )
Example 2:

The operational expression for the current entering at time £ in a
cable of distributed resistance R and capacity C with an electromotive
force sin w¢ impressed is given by '

3/2
I=\CR-22 =

Pt
where
d
P = E .
Put g = p'2. Then
ps;’Z _ gﬂ )
H P? _|_ UJ2 g4 + w2
ere
YO _, Y _ el 1
If Z(0) 7 gul'(ge)  4Aaa' 44a
gq + w?=0, Gn = wl,’ﬂgi(r.l"i), wl,'ze—i(«,'-i)’ _ wlfﬂgf(rﬂ), — 2= |

So
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wpa,rz

P2+w2

VIR — wVORY ée”“"[l + erf (gu£2)]

= wVC/R [:Tﬂlgi(fm e {1 + erf (w!2et=/Hpli2)}
I

1
+ 1 =TT e—twl“_ _|_ erf (wllze—i(r.f!)tliz)}
w2
1 uzlgt(r,u} €1 + erf (— w'2e'™Ht2 1}
w
1

— 1o ¢ 1+ erf (= w0 }]
w

= —w;j m[af(ml—rﬂ) erf (wl 1261(1/4)t1'f2)
+ g Hwi—n/4) erf (m”ze_“'n"*)[l m)]
Co - . -
= 2? [sin (wt)S(w'28242/7)
+ cos (wt) Cw! 2822]7) ]

The last transformation is obtajned by means of formula 14 and 15.
Lxample 3: '
Evaluate
1
YEFE T
This can be solved by the expansion theorem in the usual way. A

somewhat shorter method is to use the generalized theorem with the
operator ¢ = %  Then

Y=EF =¥z ¢ +Zﬂ:2g"2 — Sqn‘l/(Qm £)

gn = 1,2; ¥(gn, £) = cosh p,'/2t.
See equivalent No. 4. So

y =} + % cosh ¢42 — cosh ¢
Example 4:
Evaluate

sinh bp'’® _ sinh bg _ b sinh bg. e
sinh ap' Eh sinh aq - a + Z aqs cosh agﬂe [1 + el'f (qﬂt )]t

— sinh ag = 1 sin 1aq.
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The roots! of sin zag = 0 are

g,.=:%r. n==41, £2, etc.

Substituting these values of g, in above we get

. . nwh
sinhbg b = nr
g 05 T o[y ot (1500)|
sinhag a ' S nw nr ia
n=+2 — COSh —
ete., T
b 2 (= 1)"sin nTWb
_ = —(nirt/a2)t,
(l':+ F"=1.§3_... n ¢

If (sinh b6p'/%)/(sinh ap'/?) is solved by the expansion theorem and the
summation is extended over both positive and negative roots, the result
is

sin@
b 4 a

2 ( — 1) n g—mmfant_

a Tp=1,2,8 *++ n

In other words the summation quantity is just double what it should be.
In order to correct this in practice, those who have used the theorem
for such cases have extended the summation only over the positive
roots, notwithstanding the fact that in similar cases with integral
exponents such as, for example, 1/cosh ap the summation is extended
over all the roots. The truth is the original expansion theorem is naot
applicable if either numerator or denominator contains p to a fractional
form. In the above case were the problems to evaluate (sinh bp%/3/
sinh ap??) the expansion theorem gives an entirely incorrect answer,
while the correct answer is obtained from the extension to the theorem.

Example 5.
ﬁua _ q R
P25 — 1 g —1 z 2';;“2#’(3, n)-
Here
‘»{’(t: gn) = et l: 1 + —1-' e e"*’d)\ + 1 g,2213 e_kmdh
r'(4/3) J, I'(5/3) J, I

gn=:E1,

1 Excluding the root ¢, = 0 which is not used in this case.
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q 1 1 /s e 1 23 e
gﬂ—l_ée![1+P{4j3)_£ ¢ d"+1‘5/3)f ekd"]
. 1 —¢1/3 _Mz
1 t[1 +“P(4/3) [; . 5/3) f 'dx]

_ sinh ¢ A et M
sinh t + ——— (5/3) dh+2P(4/3)f e Md\
1 "
T3 ) e~ Md\.
Example 6:

If the problem is to evaluate

sinh &(p + 6)'/2
sinh a (p + ¢)?

Equivalent No. 7 is used. The details will not be worked out since
they are quite similar to Example No. 4. The answer is

sinh b(p + o' _ b

sinha(p + 0" a

sin (?Lb)
2 a |, ¢ nzwe
* st ‘2\:3 (=1 n n*r® © a’c + nix?
- e

g~ L(nimdja)ele |

If ¢ = 0 the above equivalent reduces to the answer of Example
No. 4.
FinaL REMARKS

Operational methods were used by Euler and other mathematicians
prior to Heaviside. Their use, however, depended in general upon a
formal definition of the operator. Heaviside, on the other hand,
adopted a different procedure. In the differential equation of the
problem he replaced the operator d/dt by p and obtained the solution of
the resulting algebraic equation. He then determined the significance
of the operator by the condition that it should give the complete solu-
tion of the original differential equation subject to equilibrium bound-
ary condition.

While Heaviside developed the operational calculus in a fairly
workable and complete form he failed to correlate it or reconcile it
with conventional mathematics or to put its theorems on a rigorous
basis. The development since Heaviside’s day has been due to a
considerable extent to the engineer and mathematical physicist rather
than to the pure mathematician.
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There are now available a number of methods of evaluating opera-
tional forms, among which may be mentioned

The original Heaviside expansion theorem,

Operational Division which gives a series solution,
Contour Integration of the Bromwich-Fourier Integral,
Carson’s Integral Equation.

It is thought that this extension to the expansion theorem will be of
value as another way of evaluating in closed form certain operational
expressions, especially those involving fractional exponents.

In preparing this paper, the author wishes to acknowledge his
indebtedness to Mr. R. M. Foster for the contribution of Equivalent
No. 7 in its present form and for notes regarding the evaluation of the
error function. He is also indebted to Mr. J. R. Carson for reading a
draft of the manuscript and for a number of helpful suggestions.



