Observations on Modes of Vibration and Temperature
Coefficients of Quartz Crystal Plates *

By F. R. LACK

The characteristics of piezo-electric quartz crystal plates of the per-
pendicular or Curie cut are compared with parallel or 30-degree cut plates
with reference to the type of vibration of the most active modes, the fre-
quency of these modes as a function of the dimensions, and the magnitude
and sign of the temperature coefficients of these frequencies.

It is pointed out that the two principal modes of the perpendicular
cut plate appear to be of the longitudinal type, the high-frequency mode
being a function of the thickness while the low-frequency mode is a function
of the width (along the electric axis). Both modes have a negative tempera-
ture coefficient of frequency. Of the two corresponding modes of the
parallel cut plates a shear vibration is responsible for the high frequency.
This frequency has a positive temperature coefficient. The low-frequency
mode is of the longitudinal type and has a negative temperature coefficient.

Considering only the high-frequency vibration of these plates it is ob-
served that there are characteristic variations of the frequency and tempera-
ture coefficient with the ratio of dimensions of the plate and the temperature,
which are peculiar to the parallel cut plate. These variations can be
attributed to a coupling of the shear and longitudinal modes.

Tt is then shown that if the parallel cut plate be treated as a group of
coupled oscillatory systems with appropriate temperature coefficients the
usual coupled system analysis will explain the curves of frequency vs.
dimensional ratio, frequency vs. temperature, and temperature coefficient
vs. dimensional ratio that are characteristic of this plate. This analysis
offers an explanation of the low temperature coefficients which can be
produced by a proper choice of the dimensional ratios.

WITH the increasing demands of the radio industry for a high
degree of carrier-frequency stability, considerable attention
has been focused recently on the piezo-electric quartz crystal as a
circuit element in frequency generating systems. The low damping
of these mechanical oscillators, combined with their piezo-electric
properties makes them particularly suitable for frequency control
where a high degree of constancy is required. The frequency stability
of the quartz plates prepared in the usual manner, is however, often
not sufficient for many of the demands for constant frequency. For
instance such a crystal plate does not compare favorably as a sub-
standard of frequency with a good astronomical clock. To meet the
demands for frequency substandards as well as many other practical
problems concerning frequency generation in the communication art,
it becomes necessary to devise methods for improving the frequency
stability of these crystal systems. This involves a study of the
many factors upon which this stability depends.

A crystal plate constitutes an extremely complex vibration system
with a large number of degrees of freedom which are for the most

1 Presented April 3, 1929, before Institute of Radio Engineers.
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part combinations of certain fundamental types of vibration. The
ultimate frequency stability attained with a given crystal-controlled
frequency generator is then a function of the equivalent electrical
characteristics of the combination vibration set up in the crystal plate
as well as the constants of the rest of the generator circuit. In
particular, the frequency change in a crystal oscillator with changes
in tube constants or attached load is a function of the equivalent
electrical decrement of the vibration which the crystal happens to be
executing. Further, the temperature coefficient of frequency of the
crystal oscillator depends largely upon the temperature coefficient of
frequency of the crystal vibration, which in turn depends upon the
change with temperature of the various mechanical elastic constants
that are called into play by this vibration.

The general relation between stress and strain, which in an ordinary
isotropic medium involves only two constants, in crystal quartz
requires six.2 The choice of a particular constant or constants that
enter into a given mode of vibration depends upon the orientation of
the plate with respect to the original crystal axes, and the particular
type of vibration, whether longitudinal, torsional, etc.

It is to be expected, therefore, that there will be a variation among
the characteristics of the modes of vibration of plates cut in a different
fashion, as well as between the different modes of a given plate. In
practice we have found considerable difference in the magnitude of the
electric and electrothermal constants, between the various modes of
vibration of a given crystal plate, even when the vibration frequencies
are within a few hundred cycles of each other.

To secure uniformity of results with respect to frequency stability
it becomes necessary, therefore, to study the various possible modes of
vibration of these crystal plates in detail, and set up certain criteria
by which it will be possible to produce plates that will vibrate in a
definite mode whose characteristics are known.

The theoretical aspects of this problem offer considerable difficulty,
for it will be remembered that the classical case of the vibrations of
an isotropic plate whose edges are free has as yet only been solved
approximately,® and with the extension of the theory made necessary
by the crystalline nature of quartz, the complexity of the problem is
considerably increased, with the possibility of a complete solution

very remote.
Using long rods or bars of crystal, instead of plates, other investi-

2 Voigt's ' Kristallphysik," pp. 749-755, or Love's ‘Mathematical Theory of

Elasticity,” Chap. VL.
3 Rayleigh, “ Theory of Sound,” Chap. X and X 4.
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gators 4 have been able to set up the three types of vibration (longi-
tudinal, flexural, and torsional) common to isotropic bars. Moreover,
the formule for these vibrations in isotropic material can be used to
determine the frequency of the quartz rods to a good first approxi-
mation.

Returning to the problem of the plate, if the experimentally de-
termined facts concerning plates of certain definite orientations are
examined, it will be seen that they suggest the treatment of the plate
as a special case of a bar. A résumé of these facts will illustrate this
point and at the same time indicate the effect of orientation on the
character of the modes of vibration.

AMPLITUDE OF RESPONSE

—L T T T T T
720 728 736 744
FREQUENCY — KILOCYCLES

Fig. 1—Response frequencies of 32 x 47 x 2.760 mm. parallel cut crystal plate in
the region of the major high frequency.

In general, a quartz crystal plate cut with any orientation with
respect to the crystal axes will respond to a large number of fre-
quencies. A plot of these frequencies showing their spacing and the
relative magnitudes of response® may be termed the frequency
spectrum of the plate. Fig. 1 shows part of the high-frequency
region of such a spectrum. In these frequency spectra there are
usually one or more frequencies at which the crystal will react with
sufficient voltage to drive a vacuum tube in the usual crystal oscillator
circuit.

4 Cady, Proc. I.R.E. 10, p. 83, 1922, Harrison, Proc. I.R.E. 15, p. 1040, 1927
Giebe, ZS. f. Phys. 46, p. 607, 1928,

5 The amplitude of response in this case is the maximum amplitude of current

through the crystal at constant voltage, which in turn is a measure of the equivalent
series resonant impedance of the crystal system.
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The relation between these major response frequencies and the

dimensions of the plate for the two principal orientations can be
outlined as follows: ’

CuriE orR PErRPENDICULAR CuT

When the crystal plate is so cut that its major surfaces are parallel
to the optic axis and perpendicular to an electric axis (the Curie or
perpendicular cut, see Fig. 2) there are two major response frequencies,
one high and one low.® The high frequency is a function of the
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Fig. 2—Orientation of a perpendicular or Curie cut plate with respect
to the crystal axes.

thickness of the plate and to a good approximation is given by the
expression

where ¢ is the thickness in millimeters and K = 2.860 X 105 If the
plate could be considered as a bar of length ¢ then the frequency of a
simple longitudinal vibration would be given by the expression
_ 1 |Ey
f - 2t d '’ (2)
where E., is Young's modulus in the X-Y plane and d is the density.
If the numerical values” of E., and d are substituted in the above

6 For this discussion the low-frequency flexural vibration of the type described
by Harrison will not be considered.

7 For numerical values of the elastic constants and the density of quartz, see

Sossman, ‘‘The Properties of Silica,” the American Chemical Society Monograph
Series.
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expression it is found that the same value for K is obtained as that of
equation (1).

The low frequency is a function of the width, the dimension parallel
to the Y axis, and is given by the same expression as equation (1)
with the same value of K, the width in millimeters being substituted
for the thickness.

For this type of crystal plate there are then two possible major
modes which appear to be of the longitudinal type and depend upon
the same elastic constant. (Young’s modulus in the X-Y or equatorial
plane has the same magnitude in any direction.)

The temperature coefficient of both these frequencies is negative,
which is in agreement with the temperature coefficient of Young's
modulus for the equatorial plane.?

THE PARALLEL OR 30-DEGREE CuUT

When the crystal plate is so cut that its major surfaces are parallel
to both the optic and electric axes (the parallel or 30-degree cut,
see Fig. 3) this 30-degree shift in orientation from the perpendicular
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T

Fig. 3—Orientation of a parallel or 30-degree cut plate with respect
to the crystal axes.

changes the characteristics in some important respects. As before
there is a high and a low principal frequency, but in this case the high
frequency sometimes occurs as a doublet (two response frequencies a
kilocycle or so apart).

For thin plates of large area the high frequency is a function of
the thickness of the plate and is given by the approximate expression

8 Perrier & Mandrot, Mem. Soec. Vaudoise Sci. Nat. (1923), 1, pp. 333-364.
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r=E, 3)

where ¢t is the thickness in millimeters and K is now 1.96 X 10°,
It will be noted that this constant differs from that found in the case
of the perpendicular cut crystal. Moreover the temperature coefficient
of this frequency is positive.

These facts lead one to believe that this is not a simple longitudinal
vibration. Cady ® has pointed out that if it be considered as a shear
vibration in the X-¥ plane the frequency can be calculated using the
appropriate shear modulus.!

The low frequency is a function of the width, the dimension parallel
to the electric or X axis, and is given by the same expression and
constant as the frequencies of the perpendicular cut plate. It has
the same characteristic negative temperature coefficient.

For these parallel cut plates there are then two possible major
modes which, however, differ in type of vibration and sign of tempera-
ture coefficient.

Limiting this discussion to the high-frequency region, it is seen that
these parallel and perpendicular cut plates have different frequency-
thickness constants and temperature coefficients of opposite sign. On
closer examination it is found that there is an additional difference
which involves the variation of the magnitudes of these frequency-
thickness constants and temperature coefficients with the ratio of
width to thickness of the plate.

For the perpendicular cut plate the frequency-thickness constant
changes but little with the size of the crystal. The same is true for
the temperature coefficient, and from recent measurements on a
number of sizes of plates the magnitude of this coefficient lies between
minus 20 and minus 35 cycles in a million per degree centigrade.

The parallel cut plate, on the other hand, has a frequency-thickness
constant which for any but thin plates of large area varies considerably
with the width. The temperature coefficient also varies with the
width, and is in addition a function of the temperature. This
coefficient has a wide range of values whose limits are approximately
plus 100 cycles in a million per degree centigrade and minus 20 cycles
in some special instances, with all possible intermediate values in-
cluding zero. Then, as has been mentioned before, these parallel cut

® Cady, Phys. Rev., 29, p. 617, 1927.

10 [f it could be shown that the shear modulus of this plane had a positive tempera-
ture coefficient it would substantiate this assumption, but there is no information

at present available regarding the effect of temperature on the elastic constants
other than for the two values of Young's modulus.
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crystals frequently have two high-frequency modes of vibration within
a kilocycle or so of each other and will start on either of these modes if
the circuit constants are changed slightly. These two modes usually
have widely different characteristics.
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Fig. 4—The wave-length at which a 2.5 cm. square parallel cut crystal plate will
operate in an oscillator circuit as its thickness is progressively reduced.

Apart from this seemingly erratic variation it has been the experience
of this laboratory that the parallel cut crystal will oscillate more
readily in the Pierce type of oscillator circuit. For this reason this
type of crystal has been used for a number of purposes and these
observed variations have been the object of considerable study.

As a result of this work an explanation has been evolved to account
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for these variations. This explanation not only suggests reasons for
the above mentioned phenomena, but, what is more important, it
indicates the procedure by which it is actually possible to produce
crystals having negligible temperature coefficients. Before outlining
this theory the experimental facts which served as its foundation will
be discussed in detail.

FrEQUENCY-THICKNESS CONSTANT AS A FUNCTION OF DIMENSIONS

When work on the production of parallel cut crystals in the broad-
cast frequency band was first started, it was found that it was very
difficult to grind crystals for certain low frequencies using a 2.5 cm.
square plate because of discrete jumps in frequency for a small re-
duction of thickness. Fig. 4 is a typical curve showing the wave-
length * as a function of the thickness for a 2.5 cm. square crystal.
This curve should be a straight line (for from equation (3) it is evident
that A = K’f) but it will be noted that there are certain discontinuities

K

Wy w, =

Fig. 5.

at the upper end. It was found that these discontinuities were
present at frequencies that could be identified with harmonics of the
frequency the crystal would have if it were vibrating in the direction
of its length along the electric axis.

This was the first definite indication obtained in the Bell Telephone
Laboratories that the longitudinal vibration of the crystal in the
direction transverse to the applied field could affect the frequency
supposed to depend only on the thickness. It was checked by further
work on crystals of other dimensions, and in each case the position of
these discontinuities was found to depend on the width of the crystal.

The presence of a resonant system whose frequency depends upon
the width is evidently responsible for this phenomena, this system
affecting the frequency of the vibration along the thickness through
some form of mechanical coupling. At the suggestion of Mr. R. A.
Heising of the Bell Telephone Laboratories, an explanation of these
experimental facts was developed based on the treatment of the plate

1 In plotting the change in rate of vibration of a crystal plate as a function of

the dimension, it is more convenient to use wave-length instead of frequency because
of the direct linear relation between the dimensions and the wave-length.
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as a system of coupled circuits.!? Consider the two coupled oscillatory
circuits shown in Fig. 5 having the uncoupled angular frequencies
w; and wy, then the frequencies of the coupled system in the absence
of damping will be given by the usual expression 1

— \/%(Wlﬂ + w22) =+ %W'(wlz - w'.'z) -+ 4k2w;2w22 (4)
_ T — &2 ’
k being the coupling.
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Fig. 6—Angular frequencies of a system of two coupled circuits as a function of the
tuning of one circuit, the tuning of the other circuit being fixed.

If these two frequencies be plotted as a function of the tuning of
the second circuit, i.e., ws, the familiar set of curves shown in Fig. 6
results.

Suppose now other circuits are added to the system as shown in
Fig. 7, each additional circuit being fixed at a harmonic of the un-
coupled frequency of circuit No. 2, and so linked with this circuit
mechanically that the group is tuned as a whole.

12 The term ‘‘circuit” is introduced here to describe a mechanical oscillatory

system because many readers are accustomed to think in terms of electrical circuits.
13 See Pierce, ‘‘Elec. Osc. & Waves,” Chap. VII.
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There are now two possible combinations depending upon which
circuit or group of circuits is kept fixed while the other is varied.
If the case in which the second group of circuits is kept fixed be
examined first, it will be seen that as the frequency of circuit No. 1
is varied it will come into tune successively with each of the circuits
of the second group. The result will be a series of coupling curves
with the characteristic reaction illustrated by Fig. 6 repeated at each
coincident point. If it be assumed that the coupling decreases as
the order of the harmonic increases, then the magnitude of the re-
action also decreases. This is illustrated by Fig. 8, which shows the
coupling curves of such a system plotted in terms of the equivalent
electrical wave-length.
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Returning to the crystal plate, if the vibration in the direction of
the thickness be identified with circuit No. 1 while the width vibration
and its harmonics be identified with circuit group No. 2, then Fig. 8
should represent what happens to the crystal wave-length as the
thickness is reduced. Comparing Figs. 4 and 8, it is seen that this is
true in a restricted region but that the wave-lengths which depend
upon the width vibration do not continue much beyond the coupling
region in the experimental curves. This is to be expected, for these
wave-lengths which depend upon a harmonic of a vibration transverse
to the applied field are more difficult to excite than the fundamental
in the direction of the field. This particular point is discussed further
in connection with temperature coefficients.

If now the case be examined in which the tuning of the second
group of circuits is varied, it will be seen that the coupling curves
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are slightly different in character. The curves for this case are
illustrated by Fig. 9 which shows the wave-lengths of this system as
a function of the tuning of circuit group No. 2. Fig. 10 shows the
wave-lengths at which a parallel cut plate will oscillate plotted as a
function of the width. The similarity between this experimentally
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Fig. 8—Wave-lengths of the system of coupled circuits of Fig. 7 as a function of the
tuning of circuit No. 1, the tuning of circuit group No. 2 being fixed.

TUNING 0F NO.I CIRCUIT M

determined curve and Fig. 9 is at once apparent. There is one
anomalous segment of a curve between the 7th and 8th harmonics,
the line AB; but it is possible that this is caused by the coupling of
some third free period which has not been considered, perhaps a high
order harmonic of a flexural vibration. In general, however, the
curves of wave-length versus thickness for these crystal plates are of
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such a character as to indicate that the analogy between the two
systems of coupled circuits and the crystal modes of vibration is
sufficiently good to serve as a useful guide.

If, then, these parallel cut crystal plates are considered as a system
of coupled circuits the reason for the variation of the frequency-
thickness constant with dimensional ratios and the presence of the
frequency doublets is at once apparent. With the coupling at the
various harmonics determined, the character of these variations can

/“,/
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TUNING OF NO.2 CIRCUIT GROUP A,

Fig. 9—Wave-lengths of the system of coupled circuits of Fig. 7 as a function of the
tuning of circuit group No. 2, the tuning of circuit No. 1 being fixed.

be predicted. Given an experimentally determined series of coupling
curves similar to Fig. 10, the coupling at the nth harmonic can be
determined from the expression

(%)
ku=)\f—2r (5)
() +1

where A and A" are the wave-lengths of the coupled system at the
point where A\, = nX,.
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TEMPERATURE COEFFICIENT AS FUNCTION OF DIMENSIONS
AND TEMPERATURE

As mentioned above, when the temperature coefficients of these
parallel cut crystals were studied it was found that there was con-
siderable variation between plates having the same thickness but
slightly different areas, and the temperature coefficient of a given
plate was found to be a function of the temperature. To illustrate
this last point a typical frequency-temperature curve for a parallel
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Fig. 10—The wave-lengths at which a parallel cut crystal will operate in an
oscillator circuit as its width (the dimension along the electric axis) is progressively
reduced, the other dimensions being fixed.

Mo = 153 X thickness.
Thickness along mechanical axis = 1.64 mm.
Length along optic axis = 54.8 mm.

cut crystal is shown in Fig. 11. It will be noted that the frequency
increase is linear until a given temperature is reached, at which point
the curve flattens off and then begins to reverse. Just beyond the
point of reversal the frequency jumps to a new value and, if the
curve is continued, the frequency increases again at the same rate as
originally. This type of frequency-temperature curve is common to a
large percentage of parallel cut crystals, the only difference being the
width of the flat part of the curve and the temperature at which the
discontinuity occurs.
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Mr. W. A. Marrison of the Bell Telephone Laboratories first
suggested that low temperature coefficients could be obtained with
parallel cut crystals by utilizing the coupling of two modes of vibration
having individual coefficients of opposite sign. Several of this type
of low temperature coefficient crystals were produced by Marrison
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Fig. 11—The frequency change of a 32 x 47 x 2.760 mm, parallel cut
crystal with temperature.

and are described in his concurrent paper ‘‘ A High Precision Standard
of Frequency.”

If Heising's coupled circuit analysis is extended to include the
effect of temperature and the proper temperature coefficients with due
regard to relative magnitude and sign are identified with each circuit,
the change in temperature coefficient with dimensional ratio and
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temperature can be explained. In addition, the dimensional ratios or
tuning points which yield zero temperature coefficients for a given
temperature can be predicted if the coupling is known.

Referring again to Fig. 6, suppose the two coupled circuits have
temperature coefficients of opposite sign, circuit No. 1 being positive
and circuit No. 2 negative, for w; less than w; say at the point A, o’
has a positive and '’ a negative temperature coefficient. For a
value of ws greater than w, say at B, «’ now has a negative and o' a
positive temperature coefficient, w’ and o'’ having interchanged rdles.
Somewhere between therefore, both «’ and «" must have had a zero
temperature coefficient. Returning to equation (4), if this expression
for w be differentiated with respect to the temperature, regarding %,
the coupling as constant, and the result placed equal to zero, the

condition that w is independent of temperature s is obtained as
follows:
wlzwzz(m —_ ﬂ)

2 =
@ (mt'-d]_z - nwgﬂ) ' (6)
where
1 dwl . . .
m = — — = temperature coefficient of circuit No. 1,
w] ar
1 dwz . . .
n = — — ——= = temperature coefficient of circuit No. 2;
wy T
now let Q¢ = n/m then equation (6) becomes
1 —
w2 = w22____._._Q_ (7)

t-o(S)

solving equation (7) for ws/w; replacing w? by its value from equa-
tion (4)

(ﬂy: k(1 — Q)2+ 1 i\/[kz(lzé 0)2]2+k2(1 — Q):a’

w) 2Q Q
which when £k is small becomes
wr\' o k=0
(m) 14+ 0 (8)

This equation gives the tuning points, or the values of w: at which
the angular frequencies of the coupled system, «’ and w”’, will have

% Dr, F, B. Llewellyn of the Bell Telephone Laboratories is responsible for this
analysis, .
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zero temperature coefficients, in terms of the ratios of the uncoupled
temperature coefficients and the coupling.

Referring again to Fig. 6, wy’ and wy’’ represent the values of »’ and
o' which would have zero temperature coefficient provided m is
greater than =, that is, the temperature coefficient of w, is greater in
magnitude than that of w.. Carrying this idea over to the case of
the group of circuits for which the curves of Figs. 8 and 9 are drawn,
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Fig. 12—Effect of temperature on the angular frequencies of a system of two coupled
circuits having temperature coefficients of opposite sign.

there will be points of zero coefficient in the neighborhood of each
coupling point as indicated by the circles on the curves.

The above conditions for zero temperature coefficient only apply
if the coefficient as a function of the tuning be examined in the region
of some given temperature. If the temperature is varied over a
considerable range a small change in the tuning of both circuits is
effected, one having its frequency raised, the other lowered. The
result of this tuning on the frequencies of the coupled system can be
illustrated by Fig. 12, which shows the tuning with temperature on a
magnified scale. In this figure, the lines w; and w-» represent the change
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in frequency of these circuits with temperature if there were no
coupling between them. The change of the frequencies of the coupled
system with temperature is shown by the curves ' and «”. It will
be seen that both these frequencies pass through regions of zero
temperature coefficient.

Such frequency-temperature curves can be derived graphically by a
construction similar to that shown in Fig. 13. This figure illustrates
what happens when the tuning of both circuits No. 1 and No. 2 is
varied, and consists of a series of the usual coupling curves (the
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Fig. 13—Effect on the angular frequencies of a system of two coupled circuits as the
individual circuits are tuned simultaneously in opposite directions.

coupled frequencies plotted as a function of w.), each set of curves
of the series being drawn for a different value of w;. When the
temperature is increased from 7', to T, the uncoupled frequency of
circuit No. 2 is reduced by an amount Aw, and the uncoupled frequency
of circuit No. 1 is increased by an amount Aw;. The result is the
frequencies o’ and «’" move from curve to curve in the direction shown
by the lines 4B and CD.

Now if the variation of the temperature coefficient of a crystal
plate when used in an oscillator circuit be examined at a given tempera-

35
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ture as the width is changed (which amounts to a change in the tuning
of the transverse vibration), it will be seen that the experimental
results are in accord with the above treatment. Fig. 14 shows the
temperature coefficient of the two frequencies of a crystal plate at
58° C. as its width is progressively reduced in the neighborhood of
the 5th harmonic of the transverse vibration. These curves show how
the temperature coefficients change sign in this region. The dotted
sections of the curves are extrapolated, for owing to the rapid reduction
in activity once a coupled frequency acquires a negative coefficient,
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Fig. 14—The change of temperature coefficient of a parallel cut crystal at 58° C.
as the width is progressively reduced in the region where the fifth harmonic of the
vibration in the direction of the width coincides with the frequency of the vibration
in the direction of the thickness.

data on the crystal plate used as an oscillator are difficult to obtain
in this region.

Returning to the experimentally determined curve of frequency
versus temperature for a parallel cut crystal plate shown in Fig. 11,
this can also be explained with the aid of the above analysis. Referring
to Fig. 12, if it be assumed that at 20° C. the crystal is oscillating
with a frequency 4, this is in the region where this particular frequency
has a positive temperature coefficient. As the temperature increases
the frequency increases in the direction of B, passing through a
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maximum at the point w’ where it has zero coefficient, and then

decreases. As the frequency decreases the activity of this particular
mode decreases rapidly and finally the crystal ‘“hops” frequency to

point C on the w" curve. From this point on the frequency with
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Fig. 15—The response-frequency spectra of a parallel cut crystal plate at different
temperatures illustrating the interchange of activity between the two frequencies
as the frequencies of the two modes of vibration pass through a coincident value.

Length of plate along optic (£) axis = 47 mm.
Width along electric (X) axis = 19.35 mm.
Thickness along mechanical (YY) axis = 2.75 mm.

temperature increases, for this frequency has a positive temperature
coefficient in this region.
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If it were not for the decrease in activity of the period with the
negative temperature coefficient it is to be expected that the crystal
frequency, instead of “hopping,” would continue to decrease with
increase in temperature. In some instances (for low order of har-
monics) the crystal frequency will decrease for a few degrees, and it
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Fig. 16—The frequency change with temperature of two parallel cut crystals of
different width.
Curve A4 region of eighth harmonic
(width = 32.0 mm.)
Curve B region of fifth harmonic
(width = 19.35 mm.)
The other dimensions of the plates are identical.
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is found that the magnitude of the negative coefficient for this region
approximates that to be expected for the transverse vibration alone.
In general, however, a frequency jump occurs just after the zero
temperature coefficient region is passed.

This interchange of activity of these two periods as they inter-
change temperature coefficients can be studied in detail by examining
the changes in the spectrum of a crystal at different temperature
levels. Fig. 15 shows a series of spectra of a crystal taken for different
temperatures in the region of zero temperature coefficient, the dimen-
sions of the crystal being unchanged. These spectra illustrate the
rapid decrease in activity of the frequency «’ after it passes through
zero temperature coefficient while at the same time '’ increases and
assumes the place of major activity vacated by «’.

The assumption that the coupling increases with the decrease in
the order of the harmonic finds confirmation in the experimentally
determined facts as computed from curves of the type shown by
Fig. 10. As the coupling increases the temperature range for which
there is no frequency change with temperature increases, that is the
region of zero temperature coefficient becomes extended. Toillustrate
this, Fig. 16 shows two curves of frequency versus temperature, one
for the coupling of a fifth harmonic, the other for an eighth.

It would, of course, be desirable to extend the zero temperature
coefficient range over the limits of temperature to be expected in
normal operation. This necessitates tight coupling of the two modes
which in turn demands a dimensional ratio in the neighborhood of
unity. The cross sectional area of such a plate in the direction of its
thickness and width approaches a square in shape which, for high-
frequency crystals, is of very small dimensions.

Before concluding it should be noticed that since both modes of
the perpendicular cut crystals have a negative temperature coefficient,
it is to be expected that it would be impossible to obtain zero tempera-
ture coefficient crystals with this orientation. This seems to be true
as far as our experience with those crystals is concerned.



