The Frequency Distribution of the Unknown Mean
of a Sampled Universe

By E. C. MOLINA and R. I. WILKINSON

In drawing conclusions as to the reliability of the mean of a sample it
is important that all relevant information be taken into consideration.
The mathematical analysis in this paper is based on the Laplacian Bayes
Theorem which implicitly comprehends the results of a sample together
with the a priori knowledge available concerning the parameters of the
universe.

The discussion is limited to a universe assumed to be normal but whose
mean and precision constant are unknown. Several simplifying, yet quite
reasonable, assumptions regarding the forms and independence of the
a priori frequency distribution of the true mean and standard deviation are
incorporated in the analysis so that numerical answers may more easily
be deduced.

Conclusions, properly drawn, are usually quite definitely dependent
upon the a priori assumptions made, and especially so in the case of small
samples. A considerable space is, therefore, devoted 1o the solution of a
problem in which the sample is only five, taking up a wide variety of these
a priori assumptions. They give, in consequence, a wide range of numerical
results, appearing in the form of probable errors in the mean of the sample.
Each set of assumptions is briefly discussed indicating how the sampling
technician may be able to make a selection consistent with his a priori
knowledge of a particular problem.,

VERY observation or series of observations upon the items

composing a ‘“‘universe’’ or ‘“‘population’”’ may be regarded as
constituting a sample. We may divide sampling into two broad
natural classes, (1) Sampling of Attributes, and (2) Sampling of
Variables. The theory of the first class concerns itself with some
particular characteristic, such as the color red, which each item of
the universe definitely does or does not possess, and endeavors to
assign, ultimately, a numerical value to the probability that the
number or proportion of the items in the universe having this character-
istic lies within any given range. The second division comprehends
that wide variety of problems in which each item of the universe
displays to a greater or less degree the same particular quality, such
as length, weight, or resistance. After having drawn a random
sample of items, probability theory is called upon to assert with what
likelihood certain important descriptive constants or ‘‘ parameters”
of the universe lie within any given ranges.

In either class the problem is legitimately attacked by means of a
posteriori probability theory. This theory makes use of the two
important distinct kinds of knowledge which, in varying amounts,
are always at hand, namely, (1) a priori or preexisting information

regarding the universe and the possible values which the unknown
632
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values of 2y, #, and (¢, @) in equation (1°) and solving for M. If, for
this value of A thus found, the selected values of ¢ and e coincide
with those read respectively from Figs. 2 and 3, a point was established
for the given value of zy, on the M, k plane. If not, sufficient trials
were made until the condition given by Figs. 2 and 3 were met. The
curves for zp, were thus determined. To obtain [, it was only

Zmin, .

P

necessary to use the relation I, =
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parameters may assume, and (2) the actual observed value of the
studied characteristic in each item of the sample. The a priori
information may be meager, in some instances hardly more than the
limits between which the parameters must lie, and again, from past
experience a great deal may be known about the universe, such as
its general form of frequency distribution, the most likely value for
each of its parameters to take, and a general feeling that they will
not, except in rare cases, lie outside of certain well defined ranges
closely bordering their believed most likely values. When the a
priori knowledge is meager, more weight must be attached to the
results of the sample, but when considerable a priori information is
at hand relatively less reliance should be placed in the sample; and
in some rare cases it is conceivable that so much is known before
the drawings are made that a particular sample, especially if small,
would justifiably be disregarded entirely.

The Sampling of Attributes on the a posteriori basis for both
infinite and finite universes has already been set forth in these pages
at considerable length.! The theory of Sampling of Variables when
the samples are large becomes usually a matter of assuming that some
of the parameters of the sample are sufficiently close to those of the
universe that no sensible error will be made in assuming them to be
equal. In this case the a priori knowledge of the universe, unless
far more exact than is normally found in practice, would exercise
but a slight effect in the conclusions which might be drawn, and is
therefore quite often properly neglected.

When, for one reason or another, some conclusions are demanded
after having taken a small sized sample, it cannot safely be assumed
that the sample itself adequately describes the universe, and what a
priori knowledge we have must, of necessity, play an important rdle
in the determination of any legitimate statements as to the constitution
of the universe.

The purpose of this paper is to study in strict accordance with the
theory of probability the conclusions which may be drawn concerning
the true parameters of the unknown universe after a “sample of varia-
bles’’ of any size has been examined.

The paper is divided into the following five sections:

I. The general equation is given for the a posteriori probability

L “Deviation of Random Samples from Average Conditions and Significance
to Traffic Men,” by E. C. Molina and R. P, Crowell, January 1924. ‘' Some General
Results of Elementary Sampling Theory for Engineering Use,” by P. P. Coggins,
January 1928. This second paper is based on another by Mr. E. C. Molina presented
before the Statistical Section of the International Mathematical Congress, held at
Toronto in August 1924.
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that the true mean of a sampled normal universe lies
within a given range.

II. Certain mild restrictions are placed on the general equation of
(I) to facilitate its use in practice.

III. The selection of a priori frequency functions in practice is dis-
cussed.

IV. A typical example is selected and solved for various a priori
existence probability distributions with a discussion of the
ranges of errors.

V. Conclusions.

I. TuE GENERAL A PoOSTERIORI EQUATION

It is common, unless information is known to the contrary, to
assume that the universe from which the sample is to be made is
composed of an infinite number of items all having a particular
characteristic whose numerical value from item to item follows the
normal frequency law. In the remainder of this paper we shall
limit ourselves to a discussion involving only this type of universe.
The problem may now be precisely stated:

A set of n observations has been made on a variable quantity
drawn from a universe wherein the normal law of errors

k 1/2
(—) g—h—m)t h = 1/2s*
m
is satisfied but the values of the mean and the precision constant,
or standard deviation, are unknown; before the observations were
made the probability in favor of the simultaneous existence of the
inequalities
m < mean < m + dm (1)
h < precision constant < & + dh (2)

was some function of m and &, say W(m, k)dmdh; what is the proba-
bility that affer the observations were made the unknown mean
satisfies the inequality (1)?

Let x, x2 - -+ x, be the values for x given by the n observations.
Set
n n
nT = 3 ns® = 3 (x; — I)2
T 1

Now if m and % were known the probability that a set of n observa-
tions, not yel made, would give values x;, xs, - -+ x, would be

]I- (a/2)n
(—) e~MEE—migy deo o da. 3)

m
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Therefore, by the Laplacian generalization of the Bayes formula,
the a posteriori probability that
m < mean < m + dm

is (cancelling factors which do not involve m or /)

2

dm f W(m, hYhW2 ng=t=@—migj,
0

P(m)dm = — —
f dm f W(m, h)h@2ne="EE=m g,
—® 0

= Adm f W (m, h)hWD ng="=@—midy, (4)
0
where A4 is a constant such that

£:P(?n)dm = 1.

II. INTRODUCTION OF RESTRICTIONS ON GENERAL EQUATION

We are now confronted by a difficulty inherent to a posteriori
probability problems. What do we know as to the form of the a
priori existence probability function W(m, k)? 1If in a specific practical
problem the form of W(m, %) is unknown, no conclusions can be
drawn from the set of observations unless some assumptions are made
and then the weight assignable to the conclusions drawn is a delicate
question depending on the reasonableness of the assumptions.?

The analysis and results given below are based on assumptions
which the writers believe will be found justifiable in many problems
of practical interest.

A first assumption which suggests itself is that m and / are inde-
pendent a priori so that we may write

W(m, h) = Wi(m)Wa(h). (5)
On this assumption

P(m)dm = AW (m)dm f Wa(h) R ng=h=@—mig )y (6)
0

As a second step toward tentative solutions assume that

Wa(h) = KhWDegoh )

2 See Poincare: ** Calcul des Probabilites”; 2d edition; articles 178 and 179.
3 In this connection see italicized paragraph, page 266, ‘‘Probability and Its
Engineering Uses,” T. C. Fry, 1928,
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where K, ¢ and a are constants. This, by means of the change of

variable
v = hla+ > (x: — m)?]

and throwing the definite integral

-]
f YWD (k) g—ugy
0

in with the constant 4, reduces (6) to
P(m)dm = A'Wi(m)[a + 2 (x; — m)2 - WD nt2te)dpy, (8)

We are still confronted with the a priori existence probability
function W;(m).

A plausible form, suggested by the well known “Student’ * distri-
bution of the ratio (£ — m)/s for a set of observations fo be made
from a normal universe of known mean and standard deviation, is

Wi(m) = Ai[1 4+ B(M — m)*]-WsN, &)

where M is the value of m which is a priori most probable, N and B
are positive constants while the equation

f Wi(m)dm = 1
gives
BT N)

A=TEnw -0

With this assumed form and noting that

Yi(x —m)? = ns®+ n(z — m)?
equation (8) gives
P(m)dm = A"[1 + B(M — m)*]-/»N

ns? F — m \2] -2 (nt2+0)
x[l+(a+nsﬂ)( s )] dm, (10)

the integral of P(m)dm between plus and minus infinity determining
A",

Recapitulating: formula (10) gives us the a posteriori frequency
distribution for m in terms of the observed data and the arbitrary
constants a, ¢, N, B, M which have entered into the problem in

4 The writers are aware of the fact that the '“Student” frequency function has
been put forward in more than one place as the solution for an a posteriori problem.
But it should be noted that the various deductions of this function which have been
given by ‘'Student'’ and others are entirely a priori.
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consequence of the three assumptions made regarding the form of
the a priori existence probability function W(m, k); the three assump-
tions being embodied in equations (5), (7) and (9).

III. PractIiCAL SELECTION OF A PRrIORI FREQUENCY
DISTRIBUTIONS

In equation (10) we have first to assign a numerical value to each
of the five constants a, ¢, N, B, M, before the probability P(m) can
be evaluated for any desired range of m. Obviously, in actual practise,
the selection of their values is extremely important and too much
care cannot be exercised in an attempt to satisfy the engineering
judgment that all of the a priori information at hand has been nicely
comprehended.

In an endeavor to reduce the number of constants to which we
must assign values we shall consider first the a priori function

Wao(h) = Kh\2cg—ah,
Setting
h =c/2a (11)

makes Wo(h) a maximum. On the other hand, the value of & which
would make the observed set of values of ¥ most probable is given
by the equation
1 2% (% — m)?
b n !

or, if m be set equal to &, we obtain the simpler equation

b= 1/2s% (12)
Upon eliminating # from (11) and (12),°
a = cs’. (13)

In Fig. 3 are shown four frequency curves of W:(k). Curve [ is
plotted for ¢ = 3 according to equation (13), and to illustrate the
wide possibility of forms, curves IT and III have been constructed,
keeping ¢ = 3, after changing equation (13) to

cs®

=1—~_—.1?2 and a =

cS
@ 1+ .15

respectively. Curve IV again satisfies equation (13) but has ¢ in-
creased from 3 to 6.

5 It should be carefully noted that there is no necessary relation between the
a priori most probable value of h and the value of h which would make the observed event
most probable. The elimination of & between (11) and (12) is justified solely by the
practical consideration that a tentative relation between a and ¢ will reduce by
one the number of arbitrary constants to which numerical values must be assigned.
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For every assumption of ¢ and ¢ in the a priori distribution of &
there is, of course, a corresponding a priori distribution, ¢(s), of the
standard deviation. Here

¢(0)do = K'g—(ctg-IDalaigy

and
a (1/2) c+1

L
The distributions of ¢ corresponding to each of the four frequency
curves of & in Fig. 3 are shown in Fig. 4 with similar designations.

In many cases, too, it is obvious that very little is known concerning
the shape and the parameters of the mean's a priori distribution
beyond that it is generally unimodal and quite likely to be fairly
symmetrical about its most probable value; a mathematical expression
of this has been set up in equation (9). In this circumstance we
may not introduce serious restrictions if we make two further assump-
tions which greatly simplify (9).

The first is that we set M = & which says that, a priori, the most
probable value of the unknown mean was the same as that which was
later calculated as the mean in the sample.! It is admitted that the
chance of exactly fixing on M = Z from a priori information is very
small, yet if our knowledge is so slight that we must introduce some
guesswork here, the selection of the value of & at least has the advan-
tage of being a possible one which M might assume and, except in
rare cases, it will not be greatly distant from the true m in that particu-
lar lot. The logical difficulty here also may be minimized by selecting
a form of Wy(m) of such flatness that over a considerable range of
values in the neighborhood of # the existence probability does not
take on widely differing magnitudes.”

The second assumption can more readily be allowed, and consists
in empirically defining

n

B=axme

This removes a degree of freedom from the W,;(m) function but, as
far as its form is concerned, except in special cases, the one variable,
N, may serve quite well in characterizing the pre-existing information.
As is clearly shown in Fig. 1, the increase of N indicates a greater

8 While it does not matter in this particular problem, the authors wish to carefully
distinguish, at least in thought, between an ‘‘observed’ parameter and a parameter
calculated from individual observations.

7 The setting of M = 7, it should be noted, has no effect if all values of the mean
are made a priori equally likely by setting N = 0 (that is, Wi(m) = A,).
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certainty in the investigator's mind that the true value of m lies
closer and closer to the assumed most probable figure, .

With these two assumptions incorporated in equation (10) we may
now write

P(m)ydm = f(H)dt = A" (1 + 2)~WDTgt, (10"
in which
2 _ T —m\® ns* _ e
: ( . ) (G i m‘z) B — my, (14)
I'=n+2+4+c¢+ N,
A - 1 __ran
0 L2pricfy —
f (1 + p)-umrgy ™ [3( 1)]
The formula (10’) is a ‘““Student’ ® frequency form with the argu-
T —m T —m
ments # and . replaced by n 4+ 2 4+ ¢ + N and W

respectively.
Fig. 2 shows curves plotted for ranges of ¢ such that

+1
A (1 4 £)~wm7rdt = 50, .80, .90, and .9973,°
—t
and the errors in the mean corresponding to any of these probabilities,
after determining ¢, may be found by evaluating £ — m in equation
(14).
IV. Sorution ofF A TyricalL ExaMprLE

Five samples of retardation coils rated at 47 ohms are taken from a
large lot, and careful measurements show them to have resistances of
46.30, 44.40, 47.72, 50.50, and 45.58 ohms respectively. We are
asked to determine the probable and 99.73 per cent errors of the
average of these resistances, assuming that the samples have been
drawn from a normal universe.

The average of these five values is & = 46.90 ohms and their standard
deviation about this average is found to be s = 2.097.

From the preceding discussion it is evident that as many answers
to this problem may be obtained as there are assumptions made
regarding, in general, the a priori distributions of the mean and

8 Student: ‘' The Probable Error of a Mean,"” Biometrika, Vol. VI, No. 1, March
1908.

9 Student: “New Tables for Testing the Significance of Observations,” Metron,
Vol. V, No. 3, [-XI1-1925. Tables I and II, pages 114-118, for values of n’ = 2
to 21.
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precision constant, and in our particular analysis the five constants
found in equation (10). In Table I and Fig. 1 we tabulate and
portray graphically twenty-one complete solutions of the example
based upon as many sets of values given to these constants. A wide

TABLE 1
x = 46.90 n=>35 s = 2.097
A Posteriori Probability
Parameters in Existence Probability Distributions Values of Errors in
Observed Mean
T
No. . =n-+2
Mean Precision Constant +c+ N Prolggble 99.73%
M |N| a B ¢ a K “rror Brror
1469 |0 — [.2274]| -3 | 0O — 4 923 11.16
2469 |0 — |.2274| =2| O — 5 776 6.94
31469 |0 — |.2274 0| 0 — 7 .623 4.23
41469 |0 — |.1421 3| 13.19* 475.5 10 626 3.61
51469 |0 — |.1098 3123.55t | 2,024 10 712 4.10
6| 469 | 0| — |].1605 3| 9.163%1 191.2 10 .589 3.39
71469 (0| — |.1034 6 | 26.38* | 80,770 13 .625 3.39
8469 | 1| — |.2274 0| 0 — 8 .566 3.59
91469 |1 — |.1421 3113.19* 475.5 11 587 3.33
10 | 46.9 | 2 |.1518|.2274 0| 0 — 9 524 3.17
11 | 469 | 2 |.1200 | .1421 3113.19* 475.5 12 558 3.08
12 | 46.9 | 2 | .1055|.1098 3123.55t 2,024 12 .635 3.50
13| 46.9 | 2 | .1275].1605 3| 9.163% 191.2 12 525 2.90
14 | 46.9 | 2 |.1023|.1034 6|26.38* | 80,770 15 575 3.01
15| 46.9 | 4 |.3036|.2274 0 0 — 11 464 2.63
16 | 46.9 | 4 |.2400(.1421 3[13.19* 475.5 14 511 2,71
17 | 46.9 | 4 |.2110(.1098 3123.55t | 2,024 14 581 3.09
18 | 46.9 | 4 | .2551|.1605 3| 9.163% 191.2 14 480 2.55
19 | 46.9 | 4 |.2047|.1034 6|26.38* | 80,770 17 537 2.76
20 | 41.0 | 2 |.1200 | .1421 3113.19* 475.5 — 665§ 3.87§
21| 49.0 | 2 |.1200 | .1421 3113.19* 475.5 — 635§ 3.65%
*a = cst
cs®
te=y—37"
cs?
o=y e

§ Errors determined by planimeter method.

variety of a priori conditions is assumed giving, in consequence,
widely varying probable and 99.73 per cent errors.

The a priori frequency functions, ¢(e¢), for the standard deviation
in the first seven cases are shown in broken lines superposed upon
the distributions of precision constants in Fig. 1. The scales of &
and ¢ are not to be confused, the attempt being only to represent
the form of the ¢(s) frequency curves.

(@) If we wish to be very conservative we might select values for
the unknown constants which would make all values of m and o
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equally likely, that is, N = 0, ¢ = — 3, @ = 0. Here the precision
constant’s a priori distribution is decidedly exponential and we might
predict the large probable and 99.73 per cent errors in the observed
average which actually result.

Case 1 in Table I and Fig. 1 presents the problem in its entirety
with the resultant errors tabulated as well as shown graphically.

(b) The engineer's knowledge, however, in all probability, is not so
limited as in (a) above, at least regarding the precision constant

10.0
B.0

6.0
5.0
\
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—
1.0 \ \\ I ———
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8 N ~ T
I
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0.5 N ~~—~—II ""“—-—-—._._.
" \ —]
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™ 1
0.3 =
S 4y
e
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T

Fig. 2—Errors of averages of samples of size n.

1—99.73 per cent Error.

1I—90.00 per cent Error.
111—80.00 per cent Error.
IV—50.00 per cent Error.

Note: Abscissa: T'=n+24¢+ N.
Ordinate: t = The Product of the Error of the Average and the Square
Root of B.

(or the standard deviation). He knows that extremely small values
of the precision constant are less likely than larger ones, and to some
extent we picture the transition from (a) to this impression in the
Cases Nos. 2 and 3 which as before may be found completely portrayed

10 The formula for P(m) resulting from a substitution of these constants in
equation (10’) reproduces the result obtained by Drs. J. Neyman and E. S. Pearson
for all values of the a priori function W’(m, &) equally likely: Biometrika, Vol. XXA4,
Parts I and II, July 1928; ““On the Use and Interpretation of Certain Test Criteria
for Purposes of Statistical Inference,” page 196, equation XXXV,
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in Table I and Fig. 1. Case No. 2, it is interesting to note, is the
familiar “Student’ formula; Case No. 3's outstanding characteristic
is that all values of % are a priori equally likely. The errors in the
mean have here been greatly reduced by merely changing the existence
probability distribution of the precision constant.

(c) Again, the experienced analyst is quite likely to assume willingly
that the distribution of the precision constant (and likewise the
standard deviation) is of a unimodal form having its maximum value
not greatly distant from the figure determined in the sample. Cases
Nos. 4 to 7 inclusive typify this kind of assumption while, at the same
time, all values of the true mean are held a priori, equally likely.

INIEON

AN
NARN

FREQUENCY

z \
= [ |
[/ AERNNNEN
W \\é\___""- N e |
00 o] 0.2 0.3 04 0.5 06 D..T—__

h = PRECISION CONSTANT

Fig. 3—Typical a priori frequency distributions of the precision constant,
Wz(h) = Kh(ieg—ah,
I—e = 3,a = cst = 13.1922,
O 23.5467-
1— .12
cs?
IIl—¢ = 3,a = T =9.1629.

IV—¢ = 6, a = cs? = 26.3845,

I[I-—<=3,a =

The constants for Cases Nos. 4 and 7 have been so selected as to
bring the modal value of % at that found from the sample, that is,
that value of » has been made most likely a priori which will make
the probability of occurrence of the particular value (1/2s%) calculated
from the observations, a maximum. Case No. 7 is a considerably
more peaked distribution than Case No. 4 indicating more faith in
the modal figure selected as being close to the true value. Cases
Nos. 5 and 6 illustrate how the mode of the Wa(k) function which
always lies at & = ¢/2a may be shifted either down or up and the
extent of modification in the resulting errors which may be expected,
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The four frequency distributions of % just considered are the same
as those shown in more detail in Fig. 3; the corresponding distributions
of the standard deviation are found detailed on Fig. 4.

(d) If the interpreter of the data is closely familiar with the sampled
product and has been observing similar lots for some time he may
have a reasonably good idea as to the value of the general average

I
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I
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ﬁ:‘/’%
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o
[¢,]
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0 1 2 3 4 5 6 7 8
O =STANDARD DEVIATION

Fig. 4—Typical a priori frequency distributions of the standard deviation.
¢lo) = K'g letde=Ul)alas,
I—¢ = 3,a = cs* = 13.1922.

cs?

I[—¢ = 3, a = ——— = 23.5467.
1 —.1s
cs®
IHI—¢ = 3, a = H'—ISE = 91629
IV—c = 6, a = ¢s* = 26.3845.

of items produced under these same essential conditions. In Cases
Nos. 8 to 19, inclusive, use is made of this knowledge on the assumption
that &, the mean of the sample, turns out to be so nearly equal to 3,
the most likely a priori value of the true mean m, that we may safely
call them identical. Three values of N, regulating the spread of the
Wi(m) distribution to conform to the observer's best judgment of
the true circumstances have been associated with the same sequence
of a priori assumptions regarding the precision constant as were
presented in Cases Nos. 3 to 7.
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The errors found in Cases Nos. 8 to 19 on the various combinations
of a priori frequency curves lie in a fairly narrow band distinctly
below those determined from the more conservative assumptions
underlying Cases Nos. 1, 2and 3. This well illustrates the importance
of carefully surveying and as far as possible completely utilizing the
knowledge available before the sample has been made.

(e) Finally, cases are bound to occur in which the engineer can
quite definitely say that some value of M other than # is a priori
most probable; this situation is encountered in Cases Nos. 20 and 21.
These are identical with Case No. 11 except that in Case No. 20,
M has been reduced about 6 ohms and in Case No. 21 raised about

0.6

M=46.9
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/RN
) 7 NN
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Fig. 5—Typical a posteriori frequency distributions of the unknown mean.
41 B(M 2mamy | 1+ ns? ) x—m 2]_':1"2”"*2'*"1
Pm) = (1 + BOM — m)?] [ (a + ns* ( K )

2 ohms. The errors are somewhat increased by these changes in A{,
as, of course, we should have predicted. Comparisons such as this
should help the investigator to decide whether or not his previously
selected figure for M is sufficiently close to Z that they may safely
be equated.

In the event that it is decided that 3/ may not be set equal to Z,
in any particular problem, as in Cases Nos. 20 and 21, the symmetrical
“Student”’ form of distribution for P(m), (except when N = 0) no
longer occurs. This is clear from an inspection of Fig. 5 which
shows the three cases plotted on the same scale.

It is suggested then, since the integral of P(m)dm here may become
difficult to handle, that recourse be had to the use of a planimeter
on the distribution plotted from equation (10) on rectangular co-
ordinate paper. In this way may be determined within what range,
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equidistant above and below &, lies the proportion of the total area
corresponding to the desired probability."!

V. CONCLUSIONS

We have presented a general equation for the probability that the
true mean of a sampled normal universe lies within a given range,
incorporating the kind of knowledge the investigator may be expected
to have before the sample was made as well as the information directly
presented by the individual observations themselves. It cannot be
overemphasized that the problem by its very nature is indefinite
since it would be a rare instance indeed to find a mathematical expres-
sion which would completely and exactly summarize the a priori
knowledge, impressions and beliefs in the mind of any person con-
fronted with its solution. All that can be found is, at best, an approxi-
mate probability based upon certain assumptions we are willing to
make in order to arrive at a numerical result. And only by utilizing
as far as possible all of the available knowledge will the most nearly
correct probability values ascertainable be realized.

11 On certain test cases of ‘' Student " distributions, the error in planimeter readings
averaged about one-half of one per cent, and in no case exceeded one per cent.



